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AERODYNAMIC TESTING TECHNIQUE FOR TWIN-FUSELAGE

MODELS AT HYPERSONIC SPEEDS

George C. Ashby, Jr.
Langley Research Center

SUMMARY

A testing technique for obtaining the static aerodynamic characteristics of twin-

fuselage configurations at hypersonic speeds by using a conventional single-balance instal-

lation has been evaluated. Data from a triple-fuselage model and a single-fuselage model

were summed and then halved to obtain the characteristics for a twin-fuselage model of

the same scale. The three related models were evaluated experimentally at Mach 20.3 in

helium and Mach 6 in air for an angle-of-attack range from -6o to 500. The Reynolds

numbers, based on model length, were 1.88 x 106 for the Mach 20.3 tests and 2.55 x 106

for the Mach 6 tests. The results indicate that the agreement between the longitudinal

aerodynamic data obtained by the summation test technique and the data obtained by direct

measurement on the twin-fuselage model is excellent except where sting effects occur.

INTRODUCTION

Wind-tunnel force and moment investigations of twin-fuselage configurations can

present formidable measurement problems because of special balance mounting require-

ments. If, for example, a balance is mounted in one fuselage, the offset center of pres-

sure of the configuration would probably overload the rolling-moment component of most

available balances, especially at high angles of attack. On the other hand, a balance spe-

cifically constructed for large rolling moments would be too stiff for an accurate meas-

urement of the lateral stability of a more conventional single-fuselage configuration.

Moreover, a long lead time is required for the design and construction of strain-gage

balances. If dual mounting is employed (a balance mounted in each fuselage supported on

a forked sting), the sting would have to be tailored for the distance between the fuselages,
which in a parametric study could be a variable requiring special equipment. Dual mount-

ing also complicates data reduction by requiring a calibration of the balances as arranged

and the determination of rolling and yawing moments from normal-force and axial-force

couples, respectively.

To circumvent such problems and allow for the use of conventional wind-tunnel

balances and mounting arrangements, a testing technique using a single-fuselage model



and a triple-fuselage model was devised. This paper presents the summation test tech-

nique and its experimental evaluation at Mach 6 in air and Mach 20.3 in helium. Aerody-

namic characteristics obtained by the technique are compared with measured values for

the twin-fuselage model at angles of attack from -60 to 500 . Some lateral-directional

data at Mach 6 and angles of attack from 00 to 250 are also presented.

SYMBOLS

b reference span, 4.470 cm (see fig. 1(b))

Axial force
CA axial-force coefficient, AxialforceqS

Rolling moment
Cl  rolling-moment coefficient,

qSb

Cl0 rate of change of rolling-moment coefficient with sideslip angle (measured

at 0 = 00 and -40), AC 1/AP, per deg

Pitching moment
Cm pitching-moment coefficient,

qsj

qS

Yawing moment
Cn yawing-moment coefficient,

qSb

Cnp rate of change of yawing-moment coefficient with sideslip angle (measured at

n = 00 and -40), ACn/Ap, per deg

Side force
Cy side-force coefficient, Side force

qS

Cy rate of change of side-force coefficient with sideslip angle (measured at

0 = 00 and -40), ACy/1, per deg

L/D lift-drag ratio

1 body length

M Mach number

q dynamic pressure

2



r nose radius

S reference area, total projected planform area of twin-fuselage model

a angle of attack, deg

sideslip angle, deg

APPARATUS AND TESTS

Tunnels

The tests were conducted in the Langley 22-inch helium tunnel at a Mach number
of 20.3 and in the Langley 20-inch Mach 6 tunnel. Operational characteristics of the
facilities and details of the characteristics of contoured nozzle flow are presented in ref-
erences 1 and 2 for the 22-inch and 20-inch tunnels, respectively.

Models

Two sets of three models each were used in the investigation and are shown in fig-
ure 1. The models tested at Mach 20.3 in helium were approximately 12.7 cm long with
a reference area of 64.19 cm 2 for the twin-fuselage model. The models tested at Mach 6
were approximately 18.85 cm long with a reference area of 136.77 cm 2 for the twin-
fuselage model and were constructed with an interchangeable fuselage within which the
balance was mounted. The Mach 20.3 models utilized simplified forebodies and fins as
noted in figure 1(b).

Test Conditions and Methods

All models were mounted on sting-supported strain-gage balances. A balance with
a large roll capability was used to test the twin-fuselage configuration at high angles of
attack. Because of the limitations of the angle-of-attack mechanism in the helium tunnel,
two stings (one straight and the other bent) were required to cover the complete angle-of-
attack range from -60 to 500 at a sideslip angle of 00 for the Mach 20.3 tests. The angles
of attack for the Mach 6 tests varied from 00 to 500 at a sideslip angle of 00 and from 00
to 400 for a sideslip angle of -40. The lateral-directional data were obtained on a conven-
tional balance, and the excess rolling moment of the twin-fuselage configuration limited
its angle of attack to 250. The relative sizes of the stings and models are depicted in
figure 2.
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The angles of attack were set optically by the use of a point source of light and a

small lens-prism combination mounted on the model. The image of the souce was

reflected by the prism and focused by the lens onto a calibrated chart. Additional fea-

tures of the systems can be found in reference 1 for the Mach 20.3 tests and in refer-

ence 3 for the Mach 6 tests.

The Reynolds numbers, based on model length, were 1.88 x 106 for the tests at

M = 20.3 and 2.55 X 106 for the tests at M = 6. The axial force was not corrected for

base pressure. All the aerodynamic coefficients were based on the geometric parameters

of the twin-fuselage model. The lateral-directional stability derivatives were determined

by assuming a linear variation in the characteristics between 00 and -40 sideslip angle.

SUMMATION TEST TECHNIQUE

A technique has been devised wherein the twin-fuselage configuration is divided into

components, about a vertical plane, that have the following characteristics: The compo-

nents together with their mirror images about the dividing plane form a configuration that

is symmetrical on a balance (fig. 2(a)), and the flow fields about each half of these sym-

metrical models are not significantly different from those about the twin-fuselage model

they represent. Figure 2(b) shows the shock intersection patterns for the three models

sketched from motion pictures in which an electron beam was used to illuminate the flow

at Mach 20.3 in helium. There are two differences between the shock systems of the twin

fuselage and the symmetrical representations. First, the single fuselage does not have

the shock intersection of the adjacent body and wing near the tail. Second, there is an

additional shock intersection near the tail of the center body of the three-fuselage model.

These differences are judged to be insignificant for the longitudinal data because the

absence of the shock intersection over the single fuselage is compensated by the additional

shock intersection over the tail of the center body of the three-fuselage configuration and

because the area affected by this shock intersection and the pressure rise across the

intersection (obtained from a simplified calculation) are relatively small. For the lateral-

directional data, however, the differences in shock patterns were expected to have more

effect because the pressure differentials act on large surfaces (fin sides). The effect of

these differences in shock patterns at P = 00 is small; therefore, one-half of the forces

and moments measured on each of the symmetrically supported models can be summed

to obtain the longitudinal results for the twin-fuselage model. The base pressures were

assumed to act symmetrically and were not measured. The steps in the total process are

given in figure 2(c).
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RESULTS AND DISCUSSION

Longitudinal Aerodynamic Characteristics

The longitudinal aerodynamic characteristics of the twin-fuselage model are pre-

sented in figure 3. The data obtained by direct measurement are represented by the

symbols, and the data obtained by summing one-half of the measurements from the triple-

fuselage and single-fuselage models are represented by the curve. The switch in symbols

from circles to squares indicates that a change from a straight sting to a bent sting was

required to cover the angle-of-attack range in the Langley 22-inch helium tunnel at

Mach 20.3.

The variations with angle of attack of the aerodynamic coefficients obtained at

M = 20.3 by direct measurement and by the summation test technique are presented in

figure 3(a). With the exception of the pitching-moment coefficients obtained with the bent

sting, the data obtained by the two methods are in excellent agreement. The discrepancy

in the pitching-moment data appears to be due to sting effects; also, there is a difference

in the axial-force coefficients as well as the pitching-moment coefficients where the two

stings overlap (a = 180). At Mach 6, the data obtained by the summation test technique

and by direct measurement are in-excellent agreement up to a = 350. (See fig. 3(b).)

Both sets of data (M = 20.3 and M = 6) have similar trends and inflection points at about

the same angles of attack. Note especially the variation of axial-force coefficient with

angle of attack. The undulating character of the curves is associated with changes in

shock patterns around the bodies as the angle of attack changes.

Lateral-Directional Stability Derivatives

The flow fields about the center lines of the triple-fuselage and single-fuselage

bodies do not remain symmetrical -when the bodies are yawed, and the shock patterns are

somewhat different from those of the twin-fuselage body; therefore, the testing technique

should only be used for stability derivatives at very small angles of sideslip. Stability

derivatives obtained from data at f = 00 and -40 by the summation test technique and

by direct measurement on the twin-fuselage model are compared in figure 4.

In general, the summation test technique can be used only to determine whether a

twin-fuselage configuration is directionally stable and what the trends of stability with

angle of attack will be. The data of figure 4 show that the values of the stability deriva-

tives obtained by the summation test technique are good representations of the actual

values at angles of attack only up to 200. As angle of attack increases beyond 200, the

values diverge.

5



CONCLUDING REMARKS

A testing technique for obtaining the static aerodynamic characteristics of twin-

fuselage configurations at hypersonic speeds by using a conventional single-balance instal-
lation has been evaluated. Data obtained from a triple-fuselage model and a single-

fuselage model were summed and then halved to obtain the characteristics for a twin-

fuselage model of the same scale. The three related models were evaluated experimen-
tally at Mach 20.3 in helium and Mach 6 in air for an angle-of-attack range from -60
to 500. The Reynolds numbers, based on model length, were 1.88 x 106 for the Mach 20.3
tests and 2.55 X 106 for the Mach 6 tests.

For both Mach numbers, the summation test technique predicted the trends and the
values of the longitudinal force and moment coefficients for the twin-fuselage configura-
tion up to an angle of attack of about 350. The disagreement above this angle of attack
was attributed to sting effects. The summation test technique also predicted the lateral-
directional stability derivatives reasonably well up to an angle of attack of 200.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., February 5, 1975.
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Nose and fin for Mach 20.3 models
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(b) Twin-fuselage model.

Figure 1.- Continued. All linear dimensions are in terms of a body diameter of 1.93 cm
for Mach 20.3 models and 2.86 cm for Mach 6 models.



(c) Single-fuselage model.

2.000

2.000

(d) Triple-fuselage model.

Figure 1.- Concluded. Dimensions are the same as those in figure 1(b).
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Component A Component B Component A Mirror image Mirror image Component B
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(a) Transformation to symmetry.
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(b) Shock intersection patterns
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(c) Summation process.

Figure 2.- Schematic representation of the summation test technique.
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