
PD-74-058
December 1974

LASER DOPPLER VELOCIMETER SYSTEM SIMULATION

FOR SENSING AIRCRAFT WAKE VORTICES

J.A.L. Thomson and J.C.S. Meng

Contractor: Physical Dynamics, Inc.
Contract Number: NAS8-28984
Effective Date of Contract: 18 December 1972
Contract Expiration Date: 2 February 1975
Amount of Contract: $89,466.00

Principal Investigator: J. Alex Thomson
Phone: (415)848-3063

Procurement Of ficer :.-•-— -'Ray "Weems , ."" •
" " " " " ' "vPhone: ,, (205)453-2857 {

Contracting Officer's Representative:
R. Milton Huffaker

Phone: (205)453-1595

Approved for public .release;
distribution unlimited.

This research was supported by the
National Aeronautics and Space Administration
and was monitored by R. Milton Huffaker,
S&E-AERO-A, NASA, Marshall Space Flight
Center, Ala. 38512, under Contract NAS8-28984.

https://ntrs.nasa.gov/search.jsp?R=19750010193 2020-03-22T22:20:14+00:00Z



SECURITY CLASSIFICATION OF THIS PACE (When Dull gnl*r*d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

•EBORT NUMBER 2. GOVT ACCESSION NO I. RECIPIENT'S CATALOG NUMBER

4. TITLE (m*d Sublltl*) • . . . . . .

LASER DOPPLER VELOCIMETER SYSTEM SIMULATION FOR
SENSING AIRCRAFT WAKE VORTICES

5. TYPE OF BE' 1BT » PEB'OO COVERED

! . .Final " .. . •
i 18 Dec 72 - 2 Feb 75 ; '

e. PERFORMING C "»G. REPORT NUMBER
PD-74-058

7-. AUTHORfc)

J..A.L. Thomson and J.C.S. Meng

8. CONTRACT OR GRANT NUMBER/*)

NAS8-28984'

>. PERFORMING ORGANIZATION NAME AND ADDRESS

Physical Dynamics, Inc..•
P.O. Box 1069. ; . . ,,. , ..
Berkeley, California 94701 -

10. PROGRAM ELEMENT. PROJECT. TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

George C..Marshall .Space.Flight Center. .
National.Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812

12. REPORT DATE

December 1974
13. NUMBER OF PAGES

111

1*. MONITORING AGENCY NAME A ADDRESSf" <HH»nnl treat Cant nit In t Olllet) 15. SECURITY CLASS, (ol Ihli report)

UNCLASSIFIED.
»S«. DECLASSIFIC ATI ON/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT fof Ml* Report; .. .: ,

..Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th» fbftrfet *nt»nd In Block 20, II dltlfrtnl from Rtport)

IS SUPPLEMENTARY NOTES

>. KEY WORDS (Conllnut on r•»«••• •/«• If n»e»»»mrjr tnd identify *r Moe* mmibtr)

Laser Velbcimeter, , . . :, . , . ...
Vortex.Wakes
Simulation

0. ABSTRACT (Confirm* en r*r«r«* *fo> II n»e**«arr •"<' Monttfr by block number)

• ••• . A hydrodynamic model of aircraft vortex wakes in an irregular wind
shear field near the ground is developed and used as a basis for modeling the
characteristics of a laser dqppler detection and vortex location system.... The
trailing vortex'sheet and the wind shear are represented by discrete free: "
vortices distributed over a. two-dimensional grid. The time dependent hydro-
dynamic equations are solved by direct numerical integration in the Boussinesq
approximation. The ground boundary is simulated by., images,.and fast Fourier
Transform techniques are used to evaluate the voirticity stream function. The

'°"M
1 JAN 71 1473 EDITION OF 1 KOV S» |« OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whin Oaf* Knl»r*d)



INSTRUCTIONS FOR PREPARATION Of RETORT DOCUMENTATION PACE

RESPONSIBILITY. The controlling OoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in
•II technical reports prepared by or for DoD organizations.

CLASS!FICAT1ON. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data
banks, i< should be unclassified If possible. If a classification is required, identify the classified items on the page by the appropriate
symbol.

COMPLETION CUIDE , J -.,

General. Make Blocks I, 4, 5, 6, 7, II, 13. 15. and 16 agree with the corresponding information on the report cover. Leave"
Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This apace is for use by the Defense Documentation Center.

'Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future
retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be
unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (aee
"Abstracting Scientific and Technical Reports of Defense-sponsored RDT/E,"AD-667 000). If the report has a subtitle, this subtitle
should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized, If a publication has a
title in a foreign language, translate the title into English and follow the English translation with the title in the original language.
Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report ia interim, final, etc., and, if applicable, inclusive
dates of period covered, such as the life of-a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such
as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in thia space. If no such numbers
are used, leave this space blank.

Block 7. AuthorCs.). Include corresponding information from the report cover. Give the name(s) of the authorfs.) in conventional
order (for example, John R. Doe or, it author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that
o f t h e performing organization.. ' . . .

Block 8. Contract or Grant Numberfs). For a contractor or grantee report, enter the complete contract or grant numbers,) under
which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol,
of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the
report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable
Department of Defense form, such as the DD Form 1498. "Research and Technology Work Unit Summary" or the DD Form 1634.
"Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent
under which the work was authorized. . • '

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the
controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5300.20. "Distribution Statements on
Technical Documents.")

'"• Block 12'. Report Date. Enter here the .day, month, and year or. month and year as shown on the cover. •

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from 'Controlling Office). For use when the controlling or funding
office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & ISa. Security Classification of the Report: Declassiflcation/Downgrading Schedule of the Report. Enter in IS
the highest claasification of the report. If appropriate, enter in ISa the declaasification/downgrading schedule of the report, using the
abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.

Block 16. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD
Directive 5200.20. "Distribution Statements on Technical Documents."

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report).
Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Doc-
uments"

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with
. . . Translation of (or by) . . . Presented at conference of ... To be published in ...

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are
suff ic ient ly specific and precise to be used as index entries for cataloging, conforming to standard terminology- The DoD "Thesaurus
of Engineering and Scientific Terms" (TEST}. AD-672 000. can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant informa-
tion contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified
report should consist of publicly- releasable information. If the report contains a significant bibliography or literature survey, mention
it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDTfcE,"
AD-667 000.



UNCLASSI
Form 1473: Report Documentation Page

SECURITY CLASSIFICATION OF THIS F-AOEf»»«n

atmospheric turbulence was simulated by constructing specific realiza-
tions at time t=0, assuming Kolmogoroffs law applies, and that the
dissipation rate is constant throughout the flow field. Although the
primary purpose of the study reported here was to analyze the laser
doppler velocimeter system, characteristics of other systems are also
discussed in the framework of the present model.

The response of a simulated laser doppler velocimeter is analyzed
by simulating the signal return from the flow field as sensed by a
simulation of the optical/electronic system. Patterns of various
features of the signature are presented in range-elevation angle plots.
The problem of locating the vortex centers is discussed both as a pattern
recognition problem and as a "point" target problem.

UNCLASSIFIED

SECURITY CLAMiriCATION OP THIS PAOIpfflwi Bart Bnf»r»«



TABLE OF CONTENTS

Page

LIST OF FIGURES iii

SUMMARY 1

I.0 INTRODUCTION 3

II.0 FORMULATION OF THE HYDRODYNAMIC MODEL 9

11.1 Equation of Motion 9

11.2 Numerical Procedure for the
Inviscid Fluids 12

11.3 Formulation of a Hybrid
Vortex-in-Cell Method 16

11.4 Calculation of the Circulation
of the Vortex Sheet 19

11.5 Simulation of the Turbulent Wind
Shear Field 22

III.O SPECTRAL SIGNAL CHARACTERISTICS FOR
COAXIAL LDV SYSTEMS 26

111.1 Signal-to-Noise Ratio 26

111.2 Spectral Response 30

IV.0 LDV SIMULATION CODE 44

V.O SIMULATION CASE HISTORIES 49

V.I B747 Simulation 49

V.2 DC-3 Simulation 56

V.3 B720 Simulation 62



Page

VI.0 CONCLUSIONS 90

REFERENCES 92

APPENDIX I : • . A-I-1

APPENDIX II A-II-1

APPENDIX III A-III-1

11



LIST OF FIGURES

Figure No. Fage

1 Determination of the strength of the
aircraft trailing vortex 21

2a LDV fan Beam configuration 31

2b r,0-plot for parallel velocity 31

3 Aerosol size distribution 35

4 Angular dependence of aerosol scattering 35

5 Attenuation coefficients (per km) for aerosol
transmittance (absorption and total extinction) 37

6 Signal-to-noise per joule vs. range«(Continental
air) . 39

7 Aerosol density at various times 43

8a Initial aircraft trailing vortex configuration 50

8b Velocity vectors for the intial trailing vortex
configuration 50

9 Trailing vortex configuration at 6 seconds 51

10 Trailing vortex configuration at 12 seconds 51

lla Trailing vortex configuration at 20 seconds 52

lib Trailing vortex configuration at 40 seconds 52

lie Trailing vortex configuration at 50 seconds 52

12a Parallel velocity along a line of sight at 6 seconds 53

12b Gradient of the parallel velocity along a line
of sight at 6 seconds 53

13a Parallel velocity along line of sight at 12 seconds 55

13b Gradient of the parallel velocity along a line of
sight at 12 seconds 55

14 Line of sight geometry at 18 seconds 5?

111



Figure No. Page

15 Theoretical parallel velocity vs. range
at 8 seconds (DC-3 simulation) 58

16 Mean velocity deduced from a simulation of a DC-3 59

17 Comparison of DC-3 fly-by data and simulation
results for v 60

18 Trailing vortex configuration (B720) at
17 seconds 63

19 An LDV fan beam configuration at 18 seconds;
downwind site 64

20 An LDV fan beam configuration at 18 seconds;
upwind site 65

21 Parallel velocity along lines of sight
(downwind site) >, 66

22 Mean parallel velocity with finite range
resolution along lines of sight
(downwind site) 67

23 Mean parallel velocity from simulated spectra
with rectification along lines of sight
(downwind site) 68

24 Square root of spectrum variance along
lines of sight (downwind site) 69

25 Peak velocity on each line of sight vs.
elevation angle (downwind site) 70

26 Simulated spectra for line of sight D
(downwind site) 72

27 Simulated spectra for line of sight C
(downwind site) 73

28 Simulated spectra for line of sight B
(downwind site) 74

29 Simulated spectra for line of sight A
(downwind site) 75

30 Parallel velocity along lines of sight
(downwind site) 76

iv



Figure No. Page

31 Mean parallel velocity with finite
range resolution along lines of
sight (upwind site) . 77

32 Mean parallel velocity from simulated
spectra with rectification along lines
of sight (upwind site). 78

33 Square root of spectrum variance
along lines of sight
(upwind site)

34 Peak velocity on each line of sight vs.
elevation angle (upwind site) 80

35 Simulated spectra for line of sight G
(upwind site) .8.1

36 Simulated spectra for line of sight F
(upwind site) 82

37 Simulated spectra for line of sight E
(upwind site) 22

38 Peak velocities as a function of elevation
angle and lines of sight 84

39 Local parallel velocity along various lines
of sight for two LDV systems located at
close and far ranges (B720 simulation at
8 seconds') 86

40 Various spectral moments simulated for the
short range sensor (LDV1): B720 -simulation
at 8 seconds 87

. 41 Various spectral moments simulated for the
long range sensor (LDV2): B720 simulation
at 8 seconds 88

42 Peak velocities (B720 simulation at
t = 8 seconds) ?^

A-I.l Aerosol density at various times A-I-4



LASER DOPPLER VELOCIMTER SYSTEM SIMULATION

FOR SENSING AIRCRAFT WAKE VORTICES

by

J.A.L. Thomson and J.C.S. Meng

SUMMARY

A hydrodynamic model of aircraft vortex wakes moving

in a turbulent wind shear field near the ground is developed

and used as a basis for modeling the characteristics of a

laser doppler detection and vortex location system. The

trailing -vortex sheet and the wind shear are represented by

discrete free vortices distributed over a two-dimensional grid.

The time dependent hydrodynamic equations are solved by direct

numerical integration. The effects of buoyant exhaust and

atmospheric stratifications are incorporated in the Boussinesq

approximation. The ground boundary is simulated by images,

and fast Fourier Transform techniques are used to evaluate

the vorticity stream function. The atmospheric turbulence

was simulated by constructing specific realizations at time

t=0, assuming Kolmogoroff's law applies, and that the dissipa-

tion rate is constant throughout the flow field. Although

the primary purpose of the study reported here was to analyze

the laser doppler velocimeter system, characteristics of

other systems are also discussed in the framework of the

present model.

The response of a simulated laser doppler velocimeter

is analyzed by simulating the signal return from the



flow field as sensed by a simulation of the optical/

electronic system. Patterns of various features of the

signature are presented in range-elevation angle plots.

The problem of locating the vortex centers is discussed

both as a pattern recognition problem and as a "point"

target problem.



I.0 INTRODUCTION

The implementation of reliable, efficient and safe

control of the air traffic in the airport terminal environment

requires detailed knowledge of the wind shear fields in

the vicinity of the airport and, in particular, in wakes of

the larger aircraft. These wakes following the aircraft bear

characteristics of the aircraft's weight, wing span and

configuration, approach speed and height, engine configuration,

engine exhaust buoyancy and thrust, as well as environmental

characteristics: vertical wind shear, turbulence level and _

atmospheric stability. In this report we describe a model

which simulates the interaction of a laser-doppler veloci-

meter with the wake flow field. This combined model of the

wake and the detector system is expected to be useful both

in the design of detection systems and in analyzing or

correlating test data.

For simple wings the jif^- force is distributed ellip-

tically (to a good approximation), along the wing so that the

maximum circulation shed per length (the spanwise derivative

of the lift) is at the wing tip. Hence, the maximum upwash

velocity is also at the tip, and roll up occurs there

first and extends toward the fuselage. Since the maximum

vorticity is at the tip, most of the vorticity shed by the

wing is relatively quickly concentrated into a tip vortex.

Many previous analyses were based upon the approximation

that the trailing vortex sheet can be represented by two

well defined counter rotating cylindrical "tip vortices".



All of the detection systems presently considered

rely specifically on such a model of the flow field in order

to deduce the vortex locations. One of the prime objectives

of the LDV system is to provide spatially-resolved velocity

fields. However, even here finite range resolution limits

the location accuracy. In order to be able to assess and

develop an optimal design, a hydrodynamic model is developed

which provides a reasonably realistic description of the wind

shear field; in particular, it is capable of treating non-

simple wing loadings (i.e., general flap configuration), the

early time period before wrap-up, the vertical wind shear,

simulated atmospheric turbulence, interaction of multiple

wake vortex regions, buoyant and stratification effects of

the ambient atmosphere and of the engine exhaust gases.

When the buoyancy of the exhaust gases and of the

ambient atmosphere is included, the vertical motion of the

wake is modified at late time. Characteristic times for

stratification effects are measured by the Brunt-Vaisala

time (T = IT /(g3T /9z)I , where T is the "potential" tem-

perature) , and are typically several minutes in the lower

atmosphere.

In the presence of a finite wind, the above-mentioned

phenomena will further be complicated by a shearing effect

of the atmospheric turbulent boundary layer. In addition to

simple convection of the wake by the wind, the wind shear is

expected to alter the relative motion of the two vortices.

*
Laser Doppler Velocimeter



From observation, it is known that the downwind vortex often

rises.

All the physical phenomena mentioned above - the vortex

sheet, the buoyant exhaust, the wind profile and turbulence,

ground images and vertical stratification - are modeled in the

current analysis in two dimensions on a rectangular mesh. The

continuous vorticity field is represented by a cloud of closely

spaced discrete vortices. The airplane wake appears initially

as a line of closely spaced vortices which subsequently wrap

up and form the tip vortices. Except for the concentrated

tip vortices, the velocity field is calculated at the mesh

points from the Poisson equation relating the stream function

to the vorticity. The vorticity itself is evaluated by

calculating the local concentration of the discrete vertex
'': ••&*&'•''•

cloud. Turbulence is simulated by adding a random additional

term to the circulation of each vortex element in such a way

as to guarantee a Kolmogoroff spectrum as the mean. Fast

Fourier Transform techniques are used to solve for the

velocity field at each time step. The- individual vortices

are then moved appropriately in this velocity field.

A primary effect which is not coupled into the model

at present, but which may be important at early time, is the

axial motion. However, the axial flow does not affect

directly the transport of the trailing vortex except when •

it is drastically reduced. Until a three-dimensional approach

is adopted,, we shall not include this axial motion.



The laser doppler system is modeled by calculating

the system response as the focal point is moved in range

and elevation angle in the scan plane. When the system is

focused at a given point in space, the Doppler spectrum

response is calculated by considering contributions from each

range point and superposing these, multiplied by a theoretical

range response function. The velocity components are ob-

tained from the hydrodynamical model at various times. A

unique feature of the modeling of the hydrodynamics allows

the tip vortices to be treated with high spatial resolution

by invoking specific models of the core structure while at

the same time retaining a lower resolution representation of

the larger scale features. In the present analysis, we use

Owen's model of the core structure and its decay. More

accurate representations of the vortex structure are currently

available (Betz, 1933; Donaldson, 1973) and can be included

as required. The range response function is constructed from

a previous analysis of the optical system for Gaussian beams.

Effects of finite truncation and blocking of the primary

mirror have been treated by a detailed two-dimensional propa-

gation analysis. In the system model these effects are in-

cluded by simply degrading the Gaussian beam analysis appro-

priately.

The spectrum is calculated by multiplying the aerosol

density by the response function at each range point and



cumulating this contribution in the appropriate velocity (or

frequency) channel. The aerosol density in the neighbor-

hood of the core is affected by centrifuging at late time,

and a model for this has been developed (Appendix I). How-

ever, in the present simulation calculations, a uniform

particle density is assumed.

Once the spectrum has been evaluated, simulations of

the data analysis procedure are carried out. After speci-

fying appropriate velocity and intensity thresholds, various

moments of the spectrum are calculated (the mean velocity,

variance, skewness and kurtosis). In addition, certain other

characteristics of the spectrum are calculated: the velocity

of the highest channel above threshold (V ,), the velocity

of the channel having the peak signal (V ), the signal level
IT13.2C

in this channel (I ,). All of these data, in addition topeak

the fundamental input (the value of the parallel velocity at

the particular range point) are presented on a (3-dimensional)

range-elevation angle plot. Also plotted are the actual

locations of the vortex cores. The geometry of the simulated

laser scan pattern together with the vortex wake motion are

separately displayed. This entire procedure is repeated for

each time step of interest.

In the following section we give a detailed descrip-

tion of the hydrodynamic model followed by a description of

the laser doppler system simulation. Example case histories



are given in Section V for a simulation of a B747, a B720,

and a DC-3. The DC-3 example is included to show comparisons

with experimental LDV returns for a flight measurement.

Detailed analyses of the LDV optics and the aerosol density

evolution are relegated to appendices.



11.0 FORMULATION OF THE HYDRODYNAMIC MODEL

11.1 Equations of Motion

The momentum equation for an incompressible fluid

may be written in the form

f| - - 1 7p + .V25 + 5 . (1,

where u is the velocity, p the pressure and p the fluid

density, n the kinematic viscosity, and g is the acceleration

due to gravity. The vorticity

t = V*u (2)

satisfies the equation obtained by taking the curl of •

Eq. (1):

= - V ix vp + nV
2t . (3)

Thus vorticity is generated as a result of buoyancy

forces associated with density and pressure gradients and

diffusively dissipates as a result of viscosity. Eq. (3)

provides a means for evaluating the vorticity of given

fluid elements. The velocity at any point (r) in the fluid

may be evaluated from the integral of Eq. (2) which, in two

dimensions, has the form



dx'dy' (4)

where the integral extends over the entire rotational

region of the fluid. The continuity equation for an in-

compressible fluid:

,5,

can be used to follow the evolution of the density distri-

bution in time.

Instead of the Green's function form for the velocity

field (Eq. .4), the velocity may be expressed in terms of

a stream function Y:

u = Vxf (6)

defined such that V»V = 0 (the vanishing of V*1? is auto-

matically fulfilled in two-dimensional motion) . The stream

function satisfies a Poisson equation with the vorticity

as the source function :

V2f = T, (7)

for which the formal solution can be written

10



Hn |r - r1 | dx'dy1 . (8)

The curl of this expression yields the identity in Eq. (4)

In the present analysis we will be concerned pri-

marily with fluids where the fractional variation of the

density and viscosities are small I — , —— t « 1 1 and we

carry out calculations only to first order in these

variations.

11



11-2 Numerical Procedure for the Inviscid Fluids

When the viscosity is negligible the vorticity

equation (3) takes the form

and to first order in the density difference I since p =

°(¥)]'p
09

ao,

For the two-dimensional motion in the x, y plane

the vorticity is effectively a scalar (i.e., has only a

z component). Thus, for a vertical (y direction) downward

gravitational acceleration g, Eq. (10) becomes

d£ = J_ i£
dt p 3x

Of particular interest is the case of a stratified fluid.

Here we divide the entire fluid into layers of slightly

differing density. In this case, vorticity is generated

only at the interface between the layers, the remainder of

the flow remaining to be irrotational. It is convenient

here to integrate Eq. (11) across the interface to yield

an expression for the growth rate of the surface circulation

12



density a (circulation per unit length along the interface):

da 9<P+-Pj
dt p..

sine (12)

where p is the density to the right of the interface and p_ that

to the left, andL_e_is__the angle of inclination of the interface

(to the horizontal) .

The total circulation of a given (ith) fluid element

/"-F^ .= I z;^ dx'dy1 is determined by

g(p -p_

where Ay^ is the vertical separation between adjacent fluid

elements on the interface and n is the unit vector per-z

pendicular to the plane of motion.

A convenient numerical analysis of the evolution of

the fluid motion can be obtained by dividing up the inter-

face into a number of discrete fluid elements and approxi-

mating the circulation of each element as being concen-

trated into a line vortex having circulation T^. The quan-

tity Ay. is then to be interpreted as the vertical separation

between adjacent vortices. The evaluation of the fluid

motion then reduces to the problem of following the motion

of the individual discrete vortices. The velocity of the

13



itn vortex is a summation over contributions from all

other vortices:

N
dr . V" r. (r. - r.)

1 -*• \ 11 j- - "L - -L *" fTttdt

This equation of motion plus the relation determining the

circulation growth rate (Eq. 13) in which Ay^ is replaced

by h (y- , -y • i ) yields a direct deterministic procedure

for following the motion.

Equation (13) is the basis for calculating the

vorticity due to the buoyant exhaust and its subsequent

variation, and Eq. (14) is the conventional Green's function

formalism. In practice, Fast Fourier Transform techniques

are applied to solve Eq. (7) . From the distribution of the

discrete vortices, the continuous vorticity distribution
*

is obtained by cumulating the vorticity in each cell . From

these the vorticity field is obtained and the Fourier com-

ponents of the vorticity are then calculated. Fourier

components of the stream function can be obtained from the

Fourier transform of Eq. (7) ; that is

2 (15)

The velocity field can be obtained most accurately by simple

multiplication in Fourier space, rather than direct finite

For the purposes of this cunmlation, the vorticitv due to
each vortex is assumed to be smeared out uru.rcjrirt.Ly over
one mesh. This is a standard procedure for these types of
mixed Lagrangian-Eulerian techniques.



differencing in physical space. Thus,

(16)

Transforming back to physical space we find the velocity

of each discrete vortex by a bilinear interpolation from

the nearest four space mesh points . The position of the

vortices can then be advanced through the next time step.

15



II.3 Formulation of a Hybrid Vortex-in-Cell Method

The limitation of a purely FFT scheme, as presented

in Section II.2, is its small time step. This time is

essentially determined by the peak angular velocity of the

tip vortex. Since angular velocities exceeding 10 radians

per second are expected in some cases, the time step required

to follow this motion would be substantially less than 0.1

second. To cover an elapsed time of 100 seconds requires.more

than 1000 steps. This is excessive and it is desirable to

obtain a numerical scheme which can handle the same number

of vortices without the limitation of a small integration

time step.

For the present study, there is another reason that

a purely FFT scheme will not be adequate. In order to resolve

a vortex flow field which has a core radius of a few meters,

one must have a mesh smaller than the core radius. On the

other hand, one must cover an overall dimension determined by

the product of the wind speed and the total elapsed time of

interest (several hundred meters). The ratio of this dimension

to the core radius indicates that at least 100 mesh points in

each direction are required to resolve the flow field, and

this is large even for the CDC 7600. To achieve an economical

and accurate computation we introduce a hybrid method which

is capable of resolving the fine structure near the tip

vortex while maintaining a relatively coarse mesh.

16



We utilize the fact that the vortex sheet quickly

coagulates into two (or more) well defined localized

structures which maintain their identity for many rotations.

The total velocity field is taken to be a superposition of

two parts: one the contribution of the localized tip vortices

and the other due to the more distributed vorticity. The

velocity field of the tip vortex we construct from an axi-

symmetric model. This model in general requires values of

two quantities to be specified: the total vortex circulation

T(t), and a characteristic radius R (typically the core radius).

Both r and R can be functions of time. In the present simulation

we use the model constructed by Owen (1970) for a turbulent
•j i j,

vortex and for which R = — Art and o = — (v/T )4 where A is

a numerical value of order unity (and is set equal to 1 in

the present simulation). A simple laminar diffusion profile

is used for the radial distribution of circulation

<T ~ ro[l - exp(-r /R ) J > . As the core expands, the distributed

vortices may be captured and incorporated into the tip vortices.

The tip vortex locations are updated to the centroid of the

original vorticity distribution in this capture process. The

velocities due to the tip vortices and the wind shear are then

superposed.

In practice, one avoids the short time step problem

by superposing displacements rather than velocities. The

angular displacements directly induced by the tip vortices are

17



evaluated. This displacement is then added to that due to

the slowly varying background velocity field. By repeating

this process at each time step one follows accurately the

motion near the core even though a given point may rotate

several times about the tip vortex during one time step.
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II. 4 Calculation of the Circulation of the Vortex Sheet

By Prandtl's lifting line theory, the vorticity shed

from the high aspect ratio wings is parallel to the direction

of flight and the flow in the neighborhood of any one section

of the wing is approximately two dimensional and independent

of the neighboring sections. This seems to be valid for

most of the present day transport aircraft (excluding SST's).

For low aspect ratio wings, the framework laid out in this

study is still applicable except that a three-dimensional

formulation must be utilized to model the initial distri-

bution of circulation. Until practical application warrants

the complication, we shall assume the hypotheses in Prandtl's

theory applies.

By wing theory, the lift or wing loading is

linearly proportional to the circulation about the wing

cross section, and it is well known that for simple high aspect

wings the wing loading can be approximated by the elliptic

curve • ,„ „ , ' ••

S(x) =-\/1 _ [xf (.17)
S V I R j
O

where S is the maximum circulation at x = 0 and R is the wing

span (Figure 1). The circulation between the point x and

x+dx is decreased by the amount AS = S(x+dx) - S(x) and this

amount of circulation must be shed from the wing section
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between these two points. The cross section at AA1 (Figure 1)

indicates this variable strength vortex sheet. (This

shed vortex sheet should not be confused with the starting
N

vortex shed from a two-dimensional wing section. Section

BB ' in Figure 1 shows this starting vortex.) Thus,

the circulation of the trailing vortex sheet at Section AA1

is equal to the rate of change of S (x) , that is, - ,

along the wing.

To model this initial velocity field we divide the

vortex sheet into a number of strips in the z direction,

each segment of which has a circulation F . (x) given by

i) - S(xi+1)]/Ax (18)

where Ax =

20



S(x«W

R is the wing span

Figure 1. -Determination of the strength of the aircraft
trailing vortex.
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II.5 Simulation of the Turbulent Wind Shear Field

The wind profile near the ground in a neutrally-

stable atmosphere is known to exhibit a logarithmic depen-

dence upon the height y (Blackadar and Tennekes, 1968)

u
U = ̂£n (! + •*— | + constant (19)

yo,

where u is the friction velocity and is usually related to

the wind velocity by the relation UT = ^ u(at standard height)

The parameter K is the Karman constant and is equal to .42

(Hinze, 1959). The parameter y is the roughness height.

From Eq. (19) the vertical wind shear can be obtained

by taking the derivative with respect to y:

c(y) = ̂  . (20)

To describe the mean wind shear field, this circulation is

assigned to a uniform distribution of discrete vortices

as follows:

r o=^*n (l + t*^ Ax\ for j = 1

and
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t.+ Ay/2'
F = ̂  £n Y? _ A /2I Ax j=2,...17

•* 1 T t

(21)

where Ax, Ay .are the horizontal arid vertical mesh- sizes.

The present treatment is similar to that of Brashear and

Hallock (1973) except for the number of wind shear vortices

used to simulate the wind shear field. In the present

analysis, the introduction of the mixed Eulerian-Lagrangian

coordinates (a particle-in-cell method) allows a highly de-

tailed spatial resolution of the wind field at relatively

modest cost.

The mean wind profile is assumed prescribed at time

. t=0 and is independent of horizontal location. To simulate the

turbulence we seek a realization of the turbulent wind field

assuming the Kolmogoroff -5/3 law applies and the dissipation

rate is constant throughout the flow field. In essence, the tur-

bulence is assumed to be represented by constructing, at

time =0, a random field of vortices with the fluctuating

velocity field satisfying the Kolmogoroff law (in expectation) .

Let the fluctuating velocity component be represented
-•'W-U;

by a Fourier series,

oo

u(x) = / ) u
* * /., j

= '(k ,k )• x y
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where the u(£) is the Fourier component of the u(x). A

specific"realization can be determined from:

|u(k) | = - <,u(Jc)>

or / 3t+A 1/2_ _

ce
3 k 3C£ *— dk dk
2ir x y

\ k—o"

where r, is an equidistributed random number in (0,1) and

r=*y 2 "k = "Sj/K~ + ̂ v ' c — 1-52 and e is the dissipation rate.

Since u(k) is in general complex, a random phase must also

be introduced; this yields

it (It) =-

i -8.

-̂̂ — dk dk2ir x y

_Ak

1/2

exp(i2irr2)

where r» is also an equidistributed random number in (0,1).
£

Taking curl of this relation in x space, the vorticity

is obtained and the circulation strength of each vortex can bis

calculated by integrating.over the mesh Ax Ay

T(it) = F: i[u(ic)2i|u(k)kx - v(k)kyj ^
sin

(22)
x

where Ax, Ay are the mesh sizes and F represents the inverse

Fourier transform .
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This circulation is added to the time independent

wind shear given by Eq. (21) at initial time, the subse-

quent motion is then determined by the interactions among

the vortices .
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111.0 . SPECTRAL SIGNAL CHARACTERISTICS FOR COAXIAL LDV SYSTEMS

111.1 Signal-to-Noise Ratio

Coherent heterodyne laser detection - systems are

commonly operated in a shot noise limited condition; that

is, the noise is determined entirely by the number of scatter-

ed photons detected, not by the receiver electronics. The

performance of a general coherent laser system detecting the

radiation scattered from a continuously distributed aerosol

has been analyzed previously. In the special case of a

coaxial system (that is, the received scattered signal is

collected through the transmitting optics), the signal-to-

noise ratio is given by

°° on (L)
S/N = ™77 ( 7) ^9 o dL . (23)

(L-L*)2 + AL2

Here nfa is the differential backscat.tering crosssection

per unit range per steradian, n the overall loss factor

(atmospheric absorption, optics and electronics), P the

transmitter power that is scattered into the bandwidth

Au)(i.e., P Aw is proportional to the number of photons

transmitted which would be scattered into the frequency

interval Au in an ideal system). We have assumed that both

transmitter and receiver have a Gaussian apodization with

_2
radii R and R , respectively, at the e intensity points.
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The transmitted wave fronts are focused at a range f and

the receiver section is focused at f . The focal point

for the receiver is determined by locating the position

of the virtual image of the local oscillator. In terms

of these optics parameters, the various parameters in

Eq. (23) are given by the relations

and

-Vegeom -«diff

on, t)R /f

9diff

^ +R2
t • r

f2 f?r t

RtRr

1/2

L* = , A is the .wavelength
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AL =

RrRt

1/2

f2 '

When the atmospheric backscattering properties of the doppler

signal vary negligibly across the depth of field irAL, the

signal-to-noise ratio takes the form

S/N = f ASlr 7
(24)

In order that significant range resolution be achieved,

the aperture must be chosen so that AL is small compared to

L*, i.e., so that the scattering particles are well within
2

the near field (Xf/irR « 1) . In this limit, the signal-

to-noise is independent of range

S/N = n (25)

and the range resolution (the region from which comes half

2 2the scattered energy) is -rrAL = XL /R .

The signal-to-noise given in Eq. (23) represents a
,x""

mean value averaged over the band width Aw. When the

receiver channel width exceeds the doppler width of the

scattered signal, Aw is to be set equal to the receiver

28



channel bandwidth. When the doppler spread is large enough

to cover more than one receiver channel, Aw is to be set

equal to the doppler width of the incoming signal. In this

case, the signal-to-noise is independent of the individual

receiver channel bandwidths.

When the magnitude of the scattered power changes

only slightly in a time equal to the reciprocal of the

individual receiver channel bandwidths, further improve-

ment in the signal-to-noise ratio can be achieved by in-

coherent integration of the power level at the output of

the receiver channels. The increase is essentially equal

to /Aw T. , where T. is the allowed integration time
OX J.

and AID the receiver channel bandwidth,c

For optimum performance, the integration time should

be matched to the dwell time. In the current LDV system,

the receiver channel width is 100 kHz, and dwell times range

from L.to-10 milliseconds, yielding potential increases in

signal-to-noise of factors of 3 to 10.
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-2 Spectral- Response

A typical configuration for a single LDV system is

shown in Figure 2a. In the scan plane there are 21 beams

at 1.5 apart, each covering a range between 60 and 150 meters.

Superimposed in the same figure is the location of the trail-

ing vortex sheet. The parallel .velocities along each line of

sight, versus range, are presented in Figure 2b. These plots

would indicate the response of an LDV system which had in-

finitely high range resolution. At large lateral separations

from the vortices, that is, at the top and bottom of the

figure, only a very weak velocity perturbation is seen. As

the line of sight gets closer to the vortex, the velocity peaks

at the vortex location (C). However, if the line of sight passes

directly through the vortex only a small component of velocity

parallel to the line of sight is obtained (B). Lines of sight

which pass between the vortex pair sense both vortices (A). The

peak value of the parallel velocity changes sign as the line

of sight crosses the vortex center and maximizes at the edges

of the core.

The finite range resolution smears out this velocity

profile to a greater or lesser extent depending on range.

The LDV system senses the doppler spectrum as averaged over

the range response function of the instrument. Various moments

or mean properties of the velocity spectrum may be calculated

from the relation
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Figure 2b. r,0-Plot for the Parallel Velocity (V,,)
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oo

i,6) = If(s,9)=/ f(Vn) Ks^VJdV,, / / I(s,e,V.,)dVM (26)

where I(s,9,V,,) is the doppler spectral intensity. This inten-

sity in turn depends on the atmospheric backscattering proper-

ties and the range response function g (s,s'). For Gaussian

aperture apodization, the range response function has the form

a (8 s.) = 1 .
s r OT (27)

where As is the range resolution (between 3db points):

(As)gaussian = 2 (28)

Here s is the range to the focal point and R is the aperture

— 2radius (e intensity) . To account for finite truncation of

the telescope mirror in the simulation model, we simply

degrade the resolution by a fixed factor:

As = 2f (s/R)2 . (29)

Detailed propagation calculations have been carried out to <

examine the effects of finite apertures and blocking of the

mirror. For a Gaussian beam truncated at the

-2e radius, f is computed to be 2.1.

Two modes of operation are possible, in general:

one where the sign of the doppler shift is sensed and the

other where only the magnitude is used. All of the

32



calculations presented in this report assume the

latter mode although either or both modes can be implemented.

To demonstrate the nature of the output available,

three test examples of the simulation have been run, two

for large aircraft (B747, B720) and one for a DC-3.

The calculation of the spectrum begins with the

parallel velocity profile versus range. When the system

is focused at the range s the spectrum level in the velocity

channel V, is obtained from a finite difference representation

of

\ •

/

n0(s')g/vn(s') - VVJ ds'/As
aJ */ "£;..... (30)

r

Here g (6V) is the frequency response of the filter and is

taken to have the form

gv(6V) = ± (31)

where AV is the velocity resolution (0.545 meters/sec in the

current simulation) and p is a parameter. The value p = 1

gives a reasonable representation of the actual filter

function in the NASA/MSFC system whereas p ->• « gives the

square box filter. No great differences are expected between
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different values of p. The current demonstration calculations

have all assumed p = °°.

In Figure 3, we show typical distributions

of aerosol sizes in continental air. The signal-to-noise

for the heterodyne signal is proportional to the mean value

of the product na:

- J^180aT(a) If
nc » ni80°T<a> AS da C32)

V

where a_, is the total scattering cross section and Y^gg tne

backscattering efficiency.

The backscattering efficiency for particles is defined

as 4tr times the ratio of the scattered intensity per unit

solid angle at backscatter to the total scattered intensity.

Diermendjian has calculated the angular dependence of

scattering for haze at a wavelength of 0.7y (see Figure 4).

A backscattering efficiency of 0.15 has been evaluated from

these data by numerical integration. For rough estimates we

will estimate a by the approximate expression

2
a « 2ir a for a > X/2-n

a_ «* 0 for a < X/2ir . (33)
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In continental air the particle size distribution may be

12roughly represented in the form

dn ̂  3,4 -4
da"* noao /a cm

for a > 1000 A. Thus, the mean value of na is roughly given

by

na * 4TT2 yn0a0
3 A . (35)

From the Handbook of Geophysics model of continental air

n «* 2 particles/cm when a is chosen equal to 1 micron.

Thus,

na = 7.89X10"11 J/X cm

o
At 6000 A, na is 0.132y>per km and at 10.6y is 0.00744 y per

km. These values of the total scattering coefficient and

the inverse wavelength dependence are in good agreement with

the detailed calculations by McClatchey, et al. (1971), for

his clear air model (see Figure 5). For other atmospheric

conditions, na may be deduced from the value of the visual

range LV (visibility) which is defined as 3.9/naT. Thus,

at backscatter
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(na)vis * 3.9 Y/LV~ 0.6 LV . (36)

At 10.6y, the model clear air backscatter cross section

is (using y= 0.15 and into 4ir steradians)

na!0.6y = 1-12x10 8 cm'

= 0.0011 km"1

Per steradian, the model differential backscatter cross

section is at sea level for clear air

= 8.91X1Q-5 km'1 ster'1

Values of the signal-to-noise per joule of energy

transmitted are shown in Figure 6 . These values assume no

incoherent integration and the relevant energy for a CW system

is the energy transmitted in a time equal to the reciprocal

of the signal bandwidth. Thus, at short ranges the total

signal-to-noise ratio for a 10 watt laser with a 100 KHz band-

width, an overall efficiency (optics, detector, electronics,

atmospheric transmission, scattering losses) of 0.6% is

expected to be of the order of 103 (30db). With 10 milli-

seconds of incoherent integration this would be increased

to 40db. If the 'signal bandwidth (due to the velocity gradients)
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were spread over 20 channels, the signal-to-noise ratio

per channel would be reduced to 17db with no integration

and 27db with integration (summing the signal over all 20

channels would yield an additional 6 . 5db for a total signal

strength measurement ) .

Thus, the expected signal-to-noise ratios at short

range are high. Turbulence will degrade the signal quality
2 _i 3 _o /3

at long range. For values of C of order 3x10 m ' ,

significant degradation is expected (for a 30 cm aperture)

at ranges beyond 150 meters.

Centrifugal effects near the vortex core will reduce

the aerosol density within the core and enhance it in the

region surrounding the core. A simple analysis is carried

out in Appendix I to derive the aerosol density profiles-

expected. Here, at the time t, an expression is given for

the ratio of the density at a given radius from the vortex

center (r) to its initial value:

n(a,r,t) = J,( r _t _ \ (37)
n . (a) -PAR ' T(a) /
amb

where a is the particle radius, R the vortex radius and T (a)

the c.entrifuging time given by
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- 2 25- ^.25 2
a

Here T is the vortex circulation. The scattering cross

section according to Eq. (32) may be approximated by

CO

/ n.

a=X/2ir

no(r,t) = 2u / n.^ (a) £\$, t/T(a)| a2 da . (38)

Values of the backscattering cross section are plotted as a

function of radius from the vortex core for various times

in Figure 7 . Close to the axis it may be shown that

•^(r/R, t/T)

Thus, at r = 0,

a2t
00

a2T
n a ( 0 , t ) = 2TrnoaQ

3 / e ° ° da/a2f
X/2TT

3 4where we have taken n mv,(
a) = n a /a and T = T(a ) . In

other words,

2 2
no(0,t) = 27T n a' /=̂ - I e~u du/u . (39)

noao2^ J
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At early time (~ < 2irao/Xj

47T2 n a 3

~ ~"> i _ i T: i
(40)\ v "i y

where

P A

2 2
1.185X104 (̂ -) seconds = 1.176 T(a=2y)

The term t, is the time for centrifugal effects to substantially

alter the local backscattering cross section within the vortex

core.

For small high-velocity cores, these centrifuging

times are relatively short. (For a B707, t, is 10 seconds or

less for core diameters less than about 10 feet .- see Table

A-I.l in Appendix I.) Thus, small high speed cores may be visible
• f

as an enhancement of the scattering around the periphery of

the vortex.
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IV.0 LDV SIMULATION CODE

A model of the hydrodynamic and laser system described in

the preceding sections is formulated as a numerical computer

program. This program calculates as a function of time the

response of a pair of LDV scanning systems which view the

region below and near the aircraft track. Each system is

described by a prespecified number of equally-spaced lines

of sight which uniformly cover elevation angles between a given

maximum and minimum value. In the present formulation, the

program "tracks" the wake,,locates the elevation angle of the mid-

point between the two tip vortices and automatically centers the

elevation angle scan on., this point. At regularly spaced time

intervals, the simulated LDV system response is calculated as a

function of range (to some maximum range) for each elevation angle.

The output of the program is displayed in a series

of plots. The vortex sheet shed from the aircraft wing,

as well as the tip vortices are first presented on an x-y plot

along with the locations of all the distributed wind shear vortices.

This general orientation plot is complimented by a velocity

vector plot which shows the, overall velocity field. The LDV system

configuration is displayed by superposing individual lines of sight

of the two beams on a plot of the vortex sheet location.
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The LDV system response is calculated from the dis-

tribution of the parallel wind velocity component along

each line of sight. Before presenting simulations of the

system response, a high resolution 'three-dimensional1 plot

of this parallel velocity component is presented. This is

the basic quantity sensed by all doppler radar backscatter systems

(laser, acoustic or microwave). Here the velocity is plotted

versus range for each elevation angle and an entire scan frame is

presented in a single range-elevation angle plot. Curves for

different elevation angles are displaced in the vertical

direction by an amount proportional to the angle.

The doppler spectral intensity I(V) is then calcu-

lated (according to the prescription in Section III) at each

point in space. Because of the large amount of data, only

samples of these spectra at selected elevation angles are

presented-." •"'"- • • . ' " ^

After the spectrum is computed, a number of spectral

moments are determined. At present there are ten different

variables or moments that are calculated at each range-elevation

point. These are:

1. The parallel velocity U-j:- the actual component along the

line of sight as computed directly from the hydrodynamic

model.
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2. The (unrectifled) mean parallel velocity (V,): this is

the parallel velocity simply averaged over the theore-

tical range resolution function

00 00

V-^s) = / gs(s-s') u(l(s') ds'/ I gs(s-s')ds
1. (41)

3. fhe (rectified) mean parallel velocity V: this is the

parallel velocity as sensed by the LDV system with finite

range "resolution:

k' o

(42)

Here V, is the velocity of the kth channel, I (k) the
K.

computed intensity in this channel, I (k) a thresh-

hold intensity level (to be discussed subsequently) ,

and V a velocity threshhold. I is the total inten-
O SLlltl

sity in all channels (above threshhold) :

Isum = - (Kk)-Io(k)) . (43)

In all moment calculations, no contribution is included for

intensities below a given intensity threshold (i.e., only non-

zero contributions for I (k) =*• I (k) are allowed) .
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In this computation the system is assumed

incapable of distinguishing positive from negative

doppler frequencies.

4. The velocity variance a:

a = I
v, >v1 k' o

5. The skewness

(Kk) - I0(k))/Isum (44)

3 = (|vk|-V)
3 - I0(k))/isum (45)

6. The kurtosis K:

Z_

lVkl>Vo

- V)'4 (46)

7. The peak velocity (V , ) :peaK.

The velocity of the highest frequency channel having a spectral

intensity exceeding the threshhold value (and if V aic
>v
o^ •

8. The velocity of the maximum intensity (V. ):
IU3.X

The velocity of the channel having the highest value:

of I(k) - IQ(k) and for which Vk>VQ.
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9. The maximum intensity (I . ) :peak

The largest value of I(k) - I (k) for all velocities

greater than V .

10. Sum of intensity (I ):sum

The total signal strength above the intensity and velocity

thresholds:

. Ysum L—i - I0UO) . • (47)

All of these quantities are presented in the range-

elevation angle plots described previously. To illus-

trate the relationship between the variations of each

variable and the tip vortices, we have also superposed

on the plots the location >of the vortex sheet and the

tip vortices.
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V.O . SIMULATION CASE HISTORIES

V.I B747 'Simulation.

A simulation of the trailing vortex wake of a

Boeing 747 aircraft at a height of 61 meters (200 ft.)

above the runway using a 32x32 grid was carried out.

The vortex sheet was represented by 25 discrete vortices

distributed over half the wing span, each assigned a

circulation according to Eq. (18). The wind shear vor- ;

ticity is distributed over the flow domain on a 17x32

mesh, and the ground images are obtained by the symmetry

condition in the vertical direction. A single cylindrical

region under each wing is used to represent the engine

exhausts. Circulation may be ascribed to the 25 vortices

outlining this region to simulate the effect of buoyancy.

However, no buoyancy is actually present in any of the

simulations presented in this report.
s

Figure 8a shows a Boeing 747 trailing vortex sheet

and its exhausts at initial time. On each grid point,

there is a wind shear vortex with strength determined by Eqs. (21)

and (22). The four downward arrows indicate the reference

points of the initial geometry; all the dimensions are in

KMS units. Figure '8b shows the velocity vector plot,

including the trailing vortices, wind shear vortices, and

their images; the maximum flow speed is represented by the

length indicated on the upper left corner. There is a
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vertical downwash induced by the lift on the wing and the

wind profile is significantly altered by the presence

of the vortex sheet - notice the flow is opposite to the

wind direction under the upwind tip vortex. Figures ...,9

and 10 show the rolling up of the vortex sheet at elapsed

times of 6 and 12 seconds. The computation uses a 32x32

mesh over a physical dimension of 240mx240m and takes .426

seconds per time step (on a CDC 7600 computer); the time

step is At = .08 second. A complete run of the total elapsed

time of 60 seconds would require about 5 minutes CPU time.

1 In these calculations, no attempt was made to treat

the tip vortices as discrete entities. As a consequence,

even when the time step is as small as 0.08 seconds, sub-

stantial numerical noise is apparent by 12 seconds in the region

near the vortex cores. A simple calculation of the vortex sheet by

Westwater (1936) , which is confirmed in the present calcu- """"""

lation, shows that most of the vorticity is essentially con-

centrated into two well-defined tip vortices within a few seconds.

For this reason, the hybrid computation method was adopted

for all subsequent calculations. A repeat of this particu-

lar simulation with a 32x32 grid then allowed an integration

time step of one second with satisfactory results (see Figures

lla,b,c." This has greatly improved the computation effi-

ciency. Figure 11 shows the overall picture of the vortex
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system at times up to 50 seconds. At late time the wind

shear vortices near the ground where the vorticity is maximum

are swept up by the vortex wake and effects of the inter-

action between the wind shear and the tip vortices may be

expected to appear. In Figure lib, a tilting of the two

vortices becomes apparent at time t = 40 seconds. The

trailing vortices are transported nearly 300 meters to the

left from the original position, and the position of the

wind shear vortices delineate clearly the wind profile.

Notice that when vortices are swept out of the boundary of

the flow domain, the periodic condition implied by the Fourier

transform requires that the total vortices be replenished

but at one periodic length displaced from their original

position. One can always choose a domain large enough to

avoid the influence of the periodic images. The trajectories

of the tip vortices are given in Figure lie.

No LDV system responses were calculated for this B747

simulation. However, the two basic hydrodynamic quantities

which are essentially measured by the system are shown in

Figures 12 and 13, the local parallel component of the flow velocity

and its gradient along the line of sight. The latter

quantity is proportional to the doppler spectral width or

(square root of) the spectral variance for a backscatter

system having good spatial resolution.
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Vv 2 DC-3 _Simulation

Data were obtained from a DC-3 fly-by at NASA-MSFC in

January 1974. Although precise aircraft properties (parti-

cularly height and atmospheric wind properties) are not

available for this measurement, data were obtained

at relatively close range and clear signatures were observed

in the processed data. An approximate simulation for this

fly-by was constructed and the results are shown in

Figures -14 through 17. _„, „ _ _

The overall geometry of the simulation is shown in

Figure 14. The actual parallel velocities are shown in

Figure 15 for different elevation angles and a simulation

for selected lines of sight of the LDV response (with zero

thresholds) is shown in Figure 16. In .Figure 17, we compare

the mean velocity from the simulation at a computed time of

28 seconds with data observed at a time of 7 seconds after

penetration of the aircraft through the scan plane. No

particular significance is placed on the time difference since

the aircraft position and the ambient winds were imprecise.

In any case, the vortex structure changes little in the first

30 seconds. The simulation of the mean velocity shows a

number of interesting features: first, for the three lines

of sight that pass between the two vortices, both vortices

are discernible as separate peaks in the range profile. How-?.,,

ever, when a line of sight passes almost through one of the

vortices, that vortex is not visible and the other only gives

rise to a broad maximum.
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The flight data shown in Fgiure 17 were obtained by NASA-

MSFC and Lockheed-Huntsville personnel. No independent

knowledge of the vortex location is available and the data

shown were four successive elevation angles, the first one

selected arbitrarily because of the clear signals shown.

The signatures show several qualitative similarities to

the simulation, although the average velocity is consider-

ably higher. A more careful evaluation of the ambient wind

profile and aircraft parameters will be required to obtain

better comparison of the simulation with data.
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V. 3 B-720 Simulation

Figures 18 to 38 show simulations of the vortex wake

of a B720. The altitude at time zero was taken to be 55.3

2meters and the total circulation of one wing as 190 m /sec.

A light wind was assumed according to u . , = 0.5 in (l+y/2) m/sec,

Two LDV systems were assumed located on opposite sides of

the aircraft track. Figures 191 and 20 show the overall

geometry at an elapsed time of 18 seconds. In Figures 21 to

24. we show range-elevation plots of several variables; the

actual local parallel velocity along the line of sight, the

mean velocity averaged over the range resolution function,

the rectified mean velocity as determined from the simulated

spectra and the (square root of the) variance. In all cases

to be discussed, the intensity and velocity thresholds

were taken to be zero. In Figure 25 the peak velocity along

each line of sight is plotted versus elevation angle.

Four particular lines of sight are identified in each

plot and exhibit various characteristics of the signature.

In general, both vortices can be identified (at least

at this range) in all lines of sight which pass between the

two vortices. The line of sight C passes near the midpoint

and shows two comparable peaks. Lines of sight passing near

the edge of a vortex core (but not through the core) show

a strong peak (e.g., B); however when the line of sight

passes directly through a vortex core (e.g., D and A), only
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the broad maxima from the other vortex is discernible. These

features are particularly marked in the variance plots

(Figure 24), where the core edges are quite visible, whereas

the lines of sight passing through the center of the core

show no signature.

When plotted versus elevation angle, the peak velocity

identifies the core edges. However, the lateral spacing

between the lines of sight (1.5°) at this range (—120 m)

is considerably too large to define the structure of the

core.

Simulated spectra for the four lines of sight (A,B,C,D)

are displayed in Figures 2i6) to 2̂ 9? as a function of range.

A similar set of data for the second LDV system is

shown in Figures 30 to 37 - The features here are basically

similar except for the plot of V , versus elevation angle.peaK

Here only three peaks are identifiable rather than the four

in Figure 25 which were identified with the core edges.

In Figure ̂ 3-8 we display both V . plots together

with the lines of sight. It is clear from this view that,

for the second system, the top edge of the far vortex

appears directly behind the lower edge of the near vortex.

When this simulation was carried out, the skewness

and kurtosis calculations had not been incorporated into the

computation. The results of a more recent simulation under

similar but not identical conditions, are shown in Figures 39

72



ftT THE MKE= U.OO SECONDS

CRSE S1WU16T10N f O R L A S E R r ,YSTEn L U C A 1 E O
I- - \ 52 .00 Z- 0.0 ANGLE: .ZZ

ONO D I S T A N C E ALONG 1HE LINE OF i lGHT ! T - S

s = 75 m
• • • » » » » • * » • »

B-720

s = 97 m -

s = 109 m

s = 120 m

s = 143 m

i
t

s = 165 m

s = 1-99 m

-i 1.

0 0 0 00 —o o o O O O O O C k O O O

^ U ul Ul W U UJ
j, » O- in — OB «•

P A R A L L E L V E L O C I T Y I N M E T E R / S E C O N D ^
-V J

Figure 26. Simulated spectra for line of sight D (downwind site)

.73 -



*T THE TlHE= JB.OO SECONDS

CftSE S1HUL»TION FOR LASER SVStEH LOC»*EO <U
I- -151.00 1: 0.0 »NGIE= .10

UNO DISTANCE «LON6 THE LINE Of 5IG»f i'.= S

s = 86 m

s = 109 m

s = 127 m

s - 149 m

s = 172 m

s = 195 m

4 • «. «.-> >

o
o

O — tM

.— PU i-»

P A R A L L E L V E L O C I T Y I N M E T E R / S E C O N D

Figure 27. Simulated spectra for line of sight C (downwind site)
74



B

»T THE T I K E * \8 .00

C*SE s i m i L f t T i O N FOB LOSEH S ^ S T E * L O C M E D »T
X= -V5Z.OO Z= 0.0 *N5LE= .3i

»ND DISTANCE BLONG THE LINE OF S1SHT 11- S

s = 86 m

P A R f t L L E U V E L O C I T Y I N M E T . E R / S E C Q N O

Figure 28. Simulated spectra for line of sight B (downwind site)

75



A

AT THE T I H E = 18.00 S E C O N D S

CASE S I M U L A T I O N F O R L A S E B S Y S T E f l L O C A T E D A T
X = - J52 .00 Z= 0.0 A N S L E ^ .38

A N D D I S T A N C E A L O N G T H E L I N E O F S I G H T IS=S

s* = 86 m

s = 109 m

s = 127 m

s = 150 m

s = 172 m

s = 195 m

' -1 ' I L.
o o o o
0 0 0 0
* * * .*

o o o ^ " * " * — — * - - "••-"
o o o o o o o o o o * >

00 cp

P A R A L L E L V E L O C I T Y I N P l E T t R / S E C O N O

Figure 29. Simulated spectra for line of sight A (downwind site)
76



&.m»oi

3.TTE»01

1.88E»Ol

Ul

->3.TTE»Ol

-6.28E»OJ

4Tin« WHEN THE IDV SVSTEfl IS
«= TJ.« 7= o.o"inreic5 BCTMctH rm—BWTJ—3 or

>C TlHt^ U.Utt'ĝ î NDS
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Figure 36. Simulated spectra for line of sight F (upwind aite)
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Figure 37. Simulated spectra for line of sight E (upwind site)

84 :



CM
CD

o
ID
CM

o
O
<M

o
m

o
o

CM

CO
o
2
oa
CO

00

II
h-

o
IO
CJ

o

8

o
ID

o
O

oo vo
• •

00 CN vo

O)

<D

UJ
O

CO

fio
-H
-P

OJ
rH
OJ

o
•H
-P
O

05
(0

•H
-P
-H
O
O
.H
0)

fd

oo
ro

CT>

(U
rH
en
c
ro

(oas/ui) 85



to 42. Here it can be seen that both the skewness and

kurtosis exhibit a similar range sensitivity as the variance,

but are substantially more selective in angle. This pre-

sumably reflects their greater relative sensitivity to the

higher velocities.

Cursory examination of these simulations indicate

that the high moments (variance and, especially, skewness,

kurtosis) provide a high selectivity for the edges of the

vortex cores (but not the cores themselves). No conclusions

concerning the effects of thresholds can be drawn from these

results except to note that a high order moment such as

kurtosis highly favors large spreads in velocity, and there-

fore, with the fairly coarse range resolution of the system,

favors the high velocities. In this sense we would expect

the kurtosis to bear some similarity to the lower order

moments taken with a fairly high velocity threshold.
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far ranges(B-720 simulations at 8 seconds)
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VI. 0 CONCLUSIONS

Two vortex detection modes may be considered: a

local "hard target" mode in which a direct signal is obtained

from the vortex centers and a "soft target" mode in which

a portion of the flow field pattern is detected and the

location of the vortices deduced by some sort of pattern

recognition procedure. The former has the advantage of

being simple and unambiguous, but may be subject to missed

targets and/or false alarms. The latter requires a theo-

retical model for implementation and may be less able to

provide precise position information. However, in general

it tends to be less subject to misses or false alarms.

In order to be able to evaluate optimal detection

modes we have attempted first to generate a simulation of

the vortex-atmosphere hydrodynamics together with a simu-

lation of the response of the laser doppler sensor system.

Several conclusions may bedrawn from examination

of the simulation data and comparison with the flight data:

1) The vortex wake appears as a spatially-distributed

target, particularly for the low order moments. The

vortex center itself provides a null signal to the

LDV sensor and accurate location depends on locating

the core edges or establishing the origin of the

spatial pattern.
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2) The range resolution varies strongly with range and

the individual vortices are seen separately in the

simulation at short range (ranges less than 120 to 150

meters) but at long range (greater than 200 meters)

both vortices are merged.

3) At the longer ranges, high order moments give the

best range and angle location. The kurtosis appears

to yield the best localization of the technique con-

sidered.

4) The angular-spacing used in the present model (1.5°)

is inadequate to resolve the vortex at long range and

should be reduced.

5) The measured data exhibit an extensive spatial dis-

tributions for most moments. The skewness and kurtosis

are the most localized. Detailed interpretation of

these patterns in terms of the vortex structure has

not yet been made and requires careful comparison with

the simulation.

6) The measured data exhibit spatial irregularities or

noise, whose 'source has not been identified. Candidates

include turbulence, aerosol density variations, and

propagation degradations.
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APPENDIX,! :• Centrifugal Effects-on the Aerosol Density in
a Two-Dimensional Vortex

Consider a simple two dimensional vortex formed in an

atmosphere uniformly laden with aerosols at time t = 0. We

wish to calculate the aerosol density as a function of time for

the case of zero axial flow. Aerosol particles will centrifuge

outward radially at a velocity equal to the Stokes velocity

based on the local centripetal acceleration

V - 1 I I"*. \ •*» .iL , ,,vr 9 I :p I v r (A-I.17

where v is the kinematic viscosity and a the aerosol particle

radius. V is the tangential velocity at the radius r.

The aerosol number density obeys the continuity equation

H + F & (nr Vr) '

We prescribe a vortex profile of the form

Vt = (r/2irr) f ([r/R]2) (A-I.3)

If we define a characteristic time T according to

v

P

the continuity equation may be reduced to the form

A-I-1



3<fe . 3 /f2\ , f2

3? 3u V u/ u

where

and

= In (n/nQ) ,

u = (r/R)2 and T = t/T . (A-I.6)

This equation is easily solved by the method of characteristics,

We define a set of trajectories r (x , r ) by the relation

du _ f2(u) dr _ R3f2[gr/R)2']
~ ~5— @r dT ~ 3 (A-I.7)

for various initial values of % ' = r. .o

Along each of these trajectories .we have

d^ _ 9^ du ,31 _ 3^ f2(u) 3^ . T Ry
dT - 3u-dT + 3T - JZ —u~" + 3T (A 1.8)

or, from Equation (A-I.5),

This equation may be integrated along the trajectory defined

2
by Eqv;i --(A-I..7.) giving the result that nf (u)/u = constant

along the characteristicst.

The vortex profile that results for a uniform value of

the effective viscosity (molecular or turbulent) is given by

A-I-2



f (u) = 1 - e~u

or

vt = rir I1 ~ exp (-r2/R2)J • (A--I.IO)

For this profile, the characteristics (r = r(r ,T)) are defined

by

J (r/R)2

u du ,. _ n i .7- r-o . (A-I.ll)
/ ' \ £*

tro/R)2 V1 ' 6 /

Along each of these trajectories we have the relation

2 \ r 21] 2n(R/r) 1 - exp - <r/R) = constant along r = r(r ,T).

(A-I.12)

In Figure A-I71L we -show aerosol density profiles

at various dimensionless times.

The characteristic times (T) for 2 micron radius water

droplets are tabulated in Table I for a vortices characteristic

of large jet aircraft. Three models are shown: one correspond-

ing to the Spreiter-Sachs model of the vortex structure and

the others to hypothesized high velocity core vortices.

Reference to this table shows that 2y radius particles may be ,̂ -f

centrifuged out of small high speed vortex cores (when peak

tangential velocities exceed 100 feet/second) in a fraction

A-I-3
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TABLE A-I.I

Centrifuging Times for 2y Radius Water Droplets

Scales Inversely as (Particle Radius) I

B-737

AIRCRAFT

B-727 B-707 B-747 DC-3

Vortex Circulation 218 m2/sec 297.
(m?/sec)

en
.c
u
(d
CO
1 iH
H 0)
<U TJ <
•P O
•H S
a)
ft
CO

1
Q) rH
-P Q)

MS .
co en
= oCNJ nj

II
<

nH 4J
<U -H

o
S 0

a)
to to
a o
0) •=?
S II
O -P

Peak Tangential 10.2 m/sec 11.9
- Velocity (.203 T/2R)
(meters/second)

Core .Diameter (2R) 4.35 m 5.05
(meters)

^ Centrifuging 187 sec 185
Time (seconds) (T)

Peak Tangential 20.4 23.8
Velocity (.203 T/2R)
(meters/second)

Core Diameter (2R) 2.20 2.52
(meters)

.Centrifuging 11.7 11.6
Time (seconds) (T)

Peak Tangential 30.3 .36.1
Velocity (.203 T/2R)
(meters/second)

Core Diameter (2R) 1.46 1.67
(meters)

Centrifuging 2.30. 2.30
Time (seconds) (T)

414. 628. 73.9

12.2 13.8 3.45

6.90 9.29; 4.35

329 J66 1635

24.4 27.6 6.9

3.45 4.6;: 2.2

20.6 29.1 102

42.2 . 51.8 17.8

1.99 2.46 ' .843

2.30 2.30 2.30
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of a minute. However, for lower velocity cores, the time

required for substantial aerosol density increases la few

times T (in Eq. A-I.4) j is several minutes.
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APPENDIX III: Flow Chart of the LDV Simulation Program

The simulation program is composed mainly of three

parts: the main program INVFD, which integrates the basic

equations of motion with respect to time; the subroutine

STREAM, which solves for the velocity field at each time;

and the subroutine DISPLAY, which generates the LDV system

response plots, the subroutine TPVRTX, which generates the

linear displacements due to the tip vortices for all vortex

elements distributed on the mesh. This is also the central
f

theme of the hybrid VIC method which makes it (possible to

simulate the LDV system within reasonable limit of computer

time. In general, the execution sequence flows from the

INVFD to STREAM, KLMGRV, SEEDING, FOUR2, INTERP, VECTOR,

TRAIL, DISPLAY, CALCP, TRAIL, 3DPROFL, and back to the main

program INVFD. This process is repeated until the time t

is greater than the interested elapse.
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INVDAT
Input wind data
Input vortex sheet data
aircraft type, height,
locations of the LDV

t=0

KLMGRV

generate the
Kolmogoroff
spectrum for
the vorticity
field

SEEDING
Ispreading the
Lagrangian
vortices on an

! plane

CALL KLMGRV to set up
Kolmogoroff spectrum

•j CALL SEEDING to set up
. the vorticity field
I Stt) .

Eulerian mesh

F0UR2
transform the
vorticity field
to the Fourier
plane by FFT

Transform the
velocity field
back to the
^physical plane
iby FFT
i

*J

•j CALL F0UR2 to obtain
I the CJL>(£)

>(£)
kx + ky

CALL F0UR2 to obtain
the u(x)

CALL INTERP to obtain
the velocity for each
vortex element locatioi.
CALL VECTOR to con-
struct the velocity
vector plot

INTERP
Bilinear inter-
polation to
obtain the
velocity at
each vortex
position

CALL DISPLAY
for all other
plots ' .

VECT0R
generate the
vector plot

TRAIL
calculate
the velo-
city due
to the
tip
vortices

INVFD

CALL INVDAT to set up
input conditions

j to the buoyance & atmos- =-
[pheric stratification •

1
STREAM

2
solve V \l>=w on Fourier

t
i
!

Calculate the velocity
field by calling STREAM

CALL TPVRTX to calculate
displacements due to tip

i vortices .j
JMove the vortices according
'to u dt + displacements j

|CALL CALCP for the vortex !
jlocation plot j

t=t+At

CAPCP

generate the vortex
location plots

DISPLAY
generate LDV response
plots

generate fan beam confi-
guration and superpose the
vortex location
generate thp acoustic ray
path plot and the ground
anemometer data plot

TPVRTX
calcu-
late
the
dis-
place-
ments

| Generate the LDV response
function and the variables
vir» vpeak» vmax» variance,

j skewness, kurtosis, sum
i of intensity and peak in-
i tensity j
! CALL 3DPR0FL for R,9 plots5

3DPR0FL
generate R,9 plots
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