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RADAR MEASUREMENT OF SOIL MOISTURE CONTENT

Fawwaz T. Ulaby
University of Konsas Center for Research, Inc.
Lawrence, Kansas 656044

ABSTRACT

The effect of soil moisture on the radar backscattering coefficient was
investigated by measuring the 4-8 GHz spectral response from two types of bare-
soil fields: slightly rough and very rough, in terms of the wavelength, An FM-CW
radar system mounted atop o 75~foot truck-mounted boom was used to measure the
return at 10 frequency points across the 4-8 GHz band, at 8 different look angles
(0° through 70°), and for all polarization combinations, A total of 17 sels of data
were collected covering the range 4-36% soil moisture content by weight. The
results indicate that the radar response to soil moisture content is highly dependent
on the surface roughness, microwave frequency, and lock angle. The response seems
to be linear, however,over the range 15%-30% moisture content for all angles,

frequencies, polarizations and surface conditions,
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1. INTRODUCTION

Remote sensing of soil moisture is of primary concern to the hydrologist
involved in the large-scale water resource management of farming regions [1].

Such information is also needed for flood forecasting [2] and trafficability purposes
and for the location of engineering construction materials [3]. Several investigators
have examined the capabilities of remote sensors operating in the optical and thermal
infrared region in mapping soil moisture content [4-7]. Though some of the results
indicate that the moisture content of bare soil does affect the surface response,
microwave sensors have two potential advantages over optical and infrared sensors:
1) at the lower microwave frequencies, microwave sensors are not hampered by
clouds, and 2) the skin depth at microwave frequencies will enable us to gather
information about the near sub—surface as well as the surface moisture conditions,
whereas at optical ond infrared frequencies the sensor response contains information
about a very thin layer at the air=soil interface.

Experimental work has been performed using passive microwave radiometers
for the determination of soil moisture content, both under laboratory and natural
conditions {8-10]. The resolution of passive microwave radiometers, however, is
beamwidth limited, thereby making their potential use in soil moisture discrimination
from satellite altitudes limited to gross spatial differences. At aircraft altitudes, the
finer possible resolution is restricted to reloti;lely narrow swaths, Radar, on the other
hand, is copable of producing fine resolution imagery from any altitude (the theoretical
resolution of a fully-focussed synthetic aperture radar is independent of range).

The effects of soil moisture on the radar return have been examined in the
laboratory [11] and through the interpretation of airborne scatterometer data [12] and
uncalibrated side~looking airborne radar imagery [13] supported by limited qualitative
estimates of ground truth information on soil moisture content. The in-between phase,
namely thot of measuring the radar return under natural conditions end with quonti-
tative soil moisture and configuration information, was lacking. The purpose of this
paper is to present some recent results an the dependency of the radar backscattering
coefficient on soil moisture and surface geometry as a function of the various sensor

parameters,



Rodar return from terrain is governed by two sets of parameters: 1) the radar
parameters: frequency, look angle and polarization, and 2) the terrain parameters:
complex dielectric properties and surface ond sub-surfoce geometry. For terrain
surfaces such os soil, the dielectric properties are strongly dependent upon the free
water content in the soil; it has been shown by Lundien [11] that the effects
of soil type on the value of the dielectric constant are greatly overshadowed by
the effects of the free water content in the soil, particularly at the lower micro-
wave frequencies.

The reradiation pattern from an illuminated surfoce is governed by the
surface scale of roughness (and sub=surface if penetration and volume scattering
are involved) relative to the signal wavelength, Increcsing the dieleciric constant
of the target can cause a change in both the shape ond the relative magnitude of the
reradiation pattern due to changes in the mognitudes and phases of the reflected
signals from the differential facets in the illuminated cell. Thus, the radar back-
scatter exhibits a complex dependence on the surface geomelry and dielectric
properties. Only after extensive experimental data gathered under natural conditions
and supported by the necessary ground truth information is available, will we be
able to predict, with enough confidence, the characteristic behavior of the radar
response from natural surfaces. The experimental results presented in this paper

represent the first step in a series of long needed experiments,

2, OBSERVATIONS

2.1 Radar System Description

The radar system used in this investigation is the radar section of the University
of Kansas 4-8 GHz MAPS (Microwave Active ond Passive Spectrometer) system [14};
a simplified block diagram is shown in Figure 1. The rader utilizes two parabolic
dish antennas mounted paralle! on the same platform, which in turn is mounted onto
an antenna positioner. The two antennas have been aligned (both mechanically
and electromagnetically) on an antenna range, for maximum overlap of their main
beams over the 4-8 GHz range. Both transmitting (2.5' diameter) and receiving

(3' diameter) antennas are equipped with ridged waveguide dual-polarized feeds.
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Figure 1. MAPS (Microwave Active and Passive Spectrometer) System,



The antennas and some of the RF components are mounted atop a 75' truck~mounted
boom. Figure 2 is a photograph of the truck and the van housing the electronic
control equipment. The operator can point at the target of interest at any incident
angle between 0° {(normal) ond about 75° and ot ony azimuth angle. The FM-CW
radar produces a return averaged over 400 MHz for each of two orthogonal received
polarizations, one of which is the same as that transmitted. By properly switching
the two polarization ports at the antenna feed of each of the two antennas, the
scattering coefficient can be measured for all four linear polarization combinations.
All switching modes are remotely controlled from the van; this copability insures that
the multi-polarization and multi-frequency data gathered ot a given look angle is
indeed fromthe some target area. The radar system parameters are summarized in
Table 1.

The choice of the 400 MHz FM sweep-width was based on a compromise
between spectral resolution ond signal fading statistics. If the target area is assumed
to be represented by a random collection of discrete independent scatterers, then
the envelope of the received signal is a random variable with its amplitude described
by a Rayleigh distribution [15]. Under these conditions the spacing between independent
frequency samples is given by [16, 171: ‘

AFS = J-SD—{)- MHz m
where D is the distance between the closest and farthest points (measured radially
from the rader ontenna) on that part of the illuminated cell contributing to the
measured return, For an FM-CW radar system , D can be determined from geometrical

considerations:

D=R2-R]=h(sec 8, - sec 8]) (2)

where h is the height of the antenna cbove the ground, 8 is the look angle, and
6778y = B, the antenna beamwidth. At normal incidence only half the beamwidth
should be comsidered. The above equation is valid as long as D is smaller then the

range resolution of the system, AR, given by:
. AF

AR = Rt @a)
IF
where R is the range, FIF is the IF frequency and M:IF is the IF bandwidth. R can be

determined fromthe system parameters and the recorded modulation frequency [14].
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Figure 2. Photograph of the MAPS System During Operation.




TABLE 1.

Type: FM-CW

Modulating Wave Form: Triengular

Frequency: 4-8 GHz

FM Sweep: AF 400 MHz

Transmitter Power: 5 watts

Noise Figure: 18 dB

IF Frequency: FIF 87 KHz

IF Bandwidth: AFIF 5 KHz

Antennas:
Height above ground 67 feet
Transmitting antenna diameter 2.5 feet
Receiving antenna diameter 3.0 feet
Feeds ridged waveguide, dual polarized

Beomwidths of the patterns product
(G(6,¢) - Gp(e, ¢ )

. Elevation: 4°-3.1%over 4-8 GHz)
Azimuth: 3.8%-2.9° (over 4-8 GHz)



Moreover, Eq.(2) does not take into occount contributions to D by either the surface
roughness or by sub-surface scatterers. At the larger look angles both effects may
be neglected since D is considerably larger than the surface height variations and
the depth of penetration, but at normal incidence the value of D from Eq. (2) may
be smaller than either of these two effects. If we assume an average antenna
beamwidth (refer to Table 1)8 =3.5° and h =22 m, then D= 1.1 cm at normal
incidence which corresponds to a frequency spacing between independent samples ,
L\Fs = 13.63 GHz! An estimate of D based on surface height variations and
penetration depth, on the other hand, can be as much as 5-20 cm for bare soils
(depending on the degree of roughness and the skin depth) and as much as 1,26 m
(system range resolution) for tall agricultural crops such s com and sorghum.
Increasing the look angle, 6 , couses a rapid decrease in  AF resulting in
an increase in the number of independent samples, N, over the 400 MHz sweep-width
At 6= 70°, for example, aF, = 40 MHz and hence N= 10, This clearly indicates
that special care should be observed in the dota analysis with regard to measurement

precision. This is discussed further in section 3,

2.2 Calibration Procedure

Two types of calibration procedures were incorporated in this investigation:

(o) Delay Line Calibration: As shown in Figure 1, o 100' delay line cable
is used to bypass the antennas via a pair of switches at the transmitter (port 3 of
switch #2) and receiver (port 2 of switch #3) fines. This, in effect, allowed us to
internaily calibrate the system in a ciosed~loop form independent of the antennas or
the outside world; any slow, but acceptable, variations in the system performance
would be calibrated out. The procedure was repeated before and after each data set
(section 2.3}, which corresponds to approximately 20 minutes.

(b) Luneberg Lens Calibration: An Emerson and Cuming Model 2B-109
Type 140 Luneberg Lens was used to convert the data gathered from relative to
absolute values. The lens has a spherical cap reflective metallic surface subtending
a spherical angle of 140°, thereby producing a reflectivity pattern which is a constan
over a wide angular (conical) range; the 3 dB points are at about + 65°. The

theoretical backscattering cross section of the Ecco Lens is given by:



4 3r4
o= /7
A
where r is the radius of the lens and 3 is the wavelength. Cross section data measured

by the manufacturer indicate :very close agreement with theory over the 4-8 GHz

(4)

bond. This calibration procedure was repeated approximately every two weeks.

in addition to using the lens as an "absolute” calibratar , any misalignments in the
two antennas occurring during any two-week interval would have been observed.
Fortunately, no such problems occurred.

Though metal spheres have been traditionally used to provide absolute cross
section reference data,the Luneberg Lens has one main advantage: larger backscattering
cross section. The lens used in this investigation is 9" in diometer; its cross section at
& GHz is about 200 (23 dB) times larger than the cross section of a 9" diomefer metal

sphere (o x Trr2 for i/%~2). The lens was hung from o long red attached

to o wind::il;r;rerhree strings tied to the outside dielectric frame around the lens
are used to keep it in place. The stability of the measured return wos observed to
be better than + 0.2 dB. Upon moving the lens out of the antennas' main beam by
the attached string, the signal level dropped by more than 40 dB. This assured

us that the windmill structure had no effect on the calibration data.

2.3 Measurements

Two bare ground fields having very different surface textures were the subject
of this investigation, Photographs of the two fields are shown in Figure 3. In
terms of the wavelength (3.75-7.5 cm), the field in Figure 3a can be considered
"slightly rough” while the field in Figure 3b is "very rough"; their respective RMS
surface heights were 2.5 cm and 5.5 e¢m.

Spectral response data were obtained from the fwo fields over a period of
one month (August 72) ot 2-3 day intervals. Each "set" of dota consisted of measuring
the rador return at 10 frequency points (each representing a 400 MHz average)
across the 48 GHz band ot incident angles of 0°-70° in 10° steps for all polari-
zation combinations: HH, HV, VV and VH. After the raw data was processed to
determine the backscattering coefficient, o, the HV and VH components were
averaged together and, from there on, referred to os the "cross polarization”
component. A total of 17 data sets were collected: 9 from the "slightly rough"

field and 8 from the "very rough" field.
8



Figure 3a. Photograph of the "Slightly Rough" Field. Soil Type:
Pawnee Clay Loam, RMS Surface Roughness = 5 cm.

Figure 3b. Photograph of the "Very Rough" Field. Soil Type: Kimo
Silty Clay Loam, RMS Surface Roughness = 11 cm.

9



2.4 Ground Truth Data

Both, the “slightly rough" and the "very rough” fields belong to the some
family in terms of soil type; the former is classified as "Pawnee clay Jloom" while
the later is classified as "Kimo silty clay loam". The "slightly rough" field had
been plowed-over and later cultivated to breck up the clods. The "very rough”
field on the otherhand, was plowed-over while wet which caused its surface texture
to lock very coarse and "blobby" in shape. From surface height profiles taken with
a surface~copying rod and photographs like those shown in Figure 3, the RMS surface
heights were estimated to be about 2.5 cm for the field shown in Figure 3a (peck to
peak amplitudes between 6~% cm) and 5.5 cm for the field shown in Figure 3b (peak
to peck amplitudes between 16-20 cm).

These estimates are based on relatively dry soil conditions; after each rain
the surface texture of the slightly rough field was observed to smooth out while the
texture of the very rough field was almest unaffected due to its high clay content.

Before each data set was recorded, two soil somples were usually collected
from the field, one taken af a distance of about 10 feet from the road (near range)
and another sample taken at o distance of cbout 100 feet from the road (far range).
Each soil sample consisted of samples taken ot each of four depth layers: 0-2 cm,
2-5 cm, 5~9 cm ond 9-15 cm. The 8 samples were placed in plestic bags, taken
to the lcboratory and analyzed for their moisture content by weight. Analysis of
the moisture profiles indicated a good correlation between the time history of the
moisture contents measured in the far range ond the recorded precipitation time
history. The differences in moisture content between the near and far range samples
were within 10% of one another in all cases except 2 (out of 9), In general, the
moisture content in the near range samples wes consistently smaller than the content
in the far range samples; the cause is attributed to the location of the ditch between
the road and the near-range sampling spot. Since the distance from the road to the
0° (norma! incidence) cell seen by the antenncs is approximately 26 feet, we decided
to use only the far range moisture profile data as a measure of the moisture content
in the field.

Measurements of the dielectric properties of several soil types as a function
of moisture content by weight at 9 GHz by Wiebe [18] and at 5.87 GHz and 9.375
GHz by Lundien [11] were used to estimate the skin depth over the 4-8 GHz region.

10



At 4 GHz the skin depth was calculated for 5% and 10% moisture content by weight
to be about 8 cm and 4 cm respectively. Since the skin depth decreases with
frequency and moisture content, it was decided fo use the average moisture content
in the top 5 c¢m of the soi! as @ measure of the moisture content parameter. Using
this definition, the range of moisture contents observed extends from 4.3% to 36%
for the "slightly rough" field and 7.4% to 30.3% for the "very rough" field os shown
in Table 2,

3. ANALYSIS OF THE RESULTS

3.1 Precision of Measurement

If the instantaneous distribution for the fading signal voltage is assumed to
be Rayleigh, then the average output voltage (ofter square-law detection) from N
independent samples is described by a chi=square distribution with 2N degrees of
freedom. The total number of samples, N is the product of the number of mecsurements
{or data sets) averaged, N j, and the number of independent samples obtained by

frequency averaging within each measurement, N:

NT=Nd'N 5)
N=2E (6)
5

where AF is the measurement bandwidth and AF, is the required frequency spacing
between independent somples. In terms of the 400 MHz sweep-width employed in
making the measurements reported in this paper,N hes been calculated for each of
the 8 look angles used and is shown in Table 3. At normal incidence D wes assumed
equal to twice the RMS surface heights; this appears to be a reasonable assumption
in view of the discussion made in section 2.1, Between 100-400, Eq.(2) was used
while for the 50%-70° range Eq.(3) was used instead since in this range the IF
bandwidth becomes the limiting factor on the range resolution of the system rather
than the geometrical considerations expressed in Eq.(2)}. The total number of
independent samples for o given moisture state and look cngle,NT, con now be
obtained from the values of Nd in Table 2 and N (Table 3).

11



TABLE 2. Distribution of measured data sets over moisture
states. Moisture content is in % by weight over
the top 5 cm of the soil surface, and N, = nymber
of data sets, d

Slightly Rough Field Very Rough Field
Moisture| 4.3 15.8 24,0 30.2 36.3 |7.4 10.3 17.1 30.3
Ny 3 3 1 1 1 3 1 | 3
TABLE 3. Colculated values of D, AF, (Eq. 1), and N (Eq. 6) as
o function of look angle for AF = 400 MHz and 1200
MHz .
, N
Look Angle D oF AF = 400 MHz AF =1200 MHz
0° -Slightly Rough S5cm 3 GHz 1 ]
0° -Very Rough 11 cm 1.36 GHz 1 1
10°  22em 680 MHz 1 2
20° 50 em 300 MHz ] 4
30° 77 cm 195 MHz 2 6
40° 125 em 120 MHz 3 10
50° 196 c¢m 77 MHz 5 16
&0° 252 em 60 MHz 7 20
70° 370 cm 40 MHz 10 30

12



By applying the method of confidence intervals, confidence limits around
the estimated {measured) value of the scattering coefficient can be determined such
that the probability that the true value is situated between these limits is equal to
the confidence coefficient [19].

Following the procedure outlined by Fisz {19], upper and lower confidence
limits (relative to the estimated value) corresponding to + 25% probability intervals
around the mean have been calculated (Figure 4) for each value of NT shown in Table
3 from tabulated chi=square distributions with 2N degrees of freedom. The AF =
1200 MHz entry in Table 3 will be discussed in the next section.

The measured scattering coefficient is a function of five variables: 1) soil
type and surface roughness , 2) moisture content, 3) frequency, 4) look angle, and
5) polarization. The objective of this study is to determine the dependence of the
scattering coefficient on the target parameters {1 and 2) as o function of the

sensor parameters (3-3).

3.2 Frequency Response

Though the effect of frequency on the radar response to moisture content is
discussed in section 3.4, it was felt necessary to include in this section somples of
the frequency response over the 4-8 GHz range in order to illustrate the effect of
fading on the measured scattering coefficient. In Figure 5, the magnitudes of the
measured scattering coefficients for two extreme cases are shown: 1) 0° data from
the 24% moisture field for which NT='| (Figure 5a) and 2) 70° data from the 15.8%
moisture field for which Ny= 30 {Figure 5b). With a probability of 50%, the true
spectral responses fall within the region between the dashed curves. For the N.=
30 case shown in Figure 5b, the confidence [imits extend about + .5 dB. The solid
curve represents one possible solution; without the guidance of some physical model
which can predict the general behavior of the scattering coefficient as a function of
frequency, the only possible assumption that can be made is that the slope of the
spectral response would not be expected to very rapidly with frequency. In any
event, the 1dB width of the confidence region makes it possible to use the data to
establish some general trends since it is comparable in magnitude to the expected
accuracy of airborne or high resolution spaceborne systems. For the one independent-

somple case shown in Figure 5a, on the other hand, the 50% confidence intervals

13
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extends from +3.3 dB above to 3.2 dB below the measured estimate, thereby making
it very difficult to utilize the duta effectively.
In an effort to reduce the variability, particularly at the smaller look angles,
AF was increased from 400 MHz to 1.2 GHz (refer to Table 3); the new center
frequencies are 4.7 GHz, 5.9 GHz and 7.1 GHz. Note that no improvement in
terms of the number of independent samples is gained at normal incidence, but

considerable improvement is achieved at the larger look angles.

3.3 Look Angle Response

3.3.1 Slightly Rough Field
Two moisture states (4.3% and 30.2%) have been chosen to illustrate the

angular response of the scattering coefficient at 4.7 GHz and 7.1 GHz os shown in
Figures 6a=6d, Within the 50% confidence intervals ossociated with the measured
data points, smooth curves have been drawn. The following major observations cen be
made. Whereas the HH and VV angular responses of the 4.3% moisture content

state (Figures éa and 6b) exhibit slow exponential decays (total dynamic range
between 0% and 70°‘is less than 12 dB), the angular responses of the 30% moisture
content states (Figures 6¢ and 6d) appear to exponentially decrease very fast between
normal incidence and about 30° and to level off at the higher angles. Furthermore,
the total range has increased to more than 20 dB. The increase in moisture

content not only influences the dielectric properties of the soil, but is also causes
the surface texture to appear smoother to the incident wave. The unexpectedly
small magnitudes of the measured 0°~7.1 GHz scattering coefficients in Figure éb
(relative to 10°) are probably attributed to a smaller moisture content and different
soil structure due to the proximity of the ditch (refer to section 2.4). Though this
effect is not as pronounced at 4.7 GHz (Figure 6a), the fact that the magnitudes ot

0° and 10° are comparable supports the above explanation.

3.3.2 Very Rough Field

The surface texture of the very rough field is very coarse (twice the RMS
surface roughness = 11 cm) in terms of the wavelength even at the lower end of the
4-8 GHz band (7.5-3.75 cm in wavelength). Unlike the Pawnee clay loam soil
discussed in the previous section, the addition of water to the Kimo silty clay loam
(1.18" of rain were recorded a few hours prior to recording the 30% moisture data

set) did not smooth-out the surface texture due to its higher clay content.

16



oF
.2 *® HA POLARIZATION 2k & HH POLARIZATION
® V¥ POLARIZATION & vV POLARIZATION
s A CROSS POLARIZATION i a CROSS
-4 - -4
CYN| o
- -8
z z
- '
u -8 - E -8
s | [Z]
ra
E-IB = __’ g-lo
S ~.
2. X : R
-12 =12 :
= E 21" MOISTURE CONTENT - 4.3% BY WEIGHT
= I CENTER FREQUENCY - 7.1 GHz
ﬁ-m - |  MOISTURE CONTENT - 4.3% BY WEIGHT ey BANDWIDTH —1.2 GHz
L CENTER FREQUENCY - 4.7 GHz
BANDWIDTH - .2 GHz
-5 — -6 r\h‘\\ /J
L Ny 3 ~ ‘i
.r T4 8 TH - /4/
— -8
L * r “--L___+ L | T
ol 1 A N TP T P9 AR TR, S SO B TP S
0 10 20 30 40 80 70 ) ) i 30 40 %0 70
LOOK ANGLE IN DEGREES LOOK ANGLE IN DEGREES
ba éb
2 . ® HH POLARIZATION 00 * HH POLARIZATION
u YV POLARIZATION - ® VV POLARIZATION
v & ChOSS. POLARIZATION L o & CROSS POLARIZATION
‘ 12
o gﬁgﬁtﬁ:&m&g :??sz: WEIGHT MOISTURE CONTENT - 30% BY WEIGHT
BANDWIDTH -1.2 GHz 2 ap CENTER FREQUENCY - T.| GHz
z z BANDWIDTH - 1.2 GHz
z i
- W
=] S
E -
8
2 S
3-ef \{\ e B
L -
12 \+\.___*____,J-—""'*-'
Ty
P PR TR R EPU P ROV B [P IR S T SR SR PR B
() o 20 30 40 B0 6 70 0 ¥ 20 30 40 8 s T
LDDK ANGLE IN DEGREES LOOK AMGLE IN DEGREES

6d

Figure 6. Scattering coefficient a8 a function of lock angle. Soil
= Pawnee Clay Loam, RMS surfoce height = 2,5 e¢m,
a) 4.7 GHz, 4.3% moisture, b) 7.1 GHz, 4.3% moisture,
¢) 4.7 GHz, 30% moisture, and d) 7.1 GHz, 30% moisture.

17

ORIGINAL PAGE IS
OF POOR QUALITY



Figures 7a-7d present the same type of information shown eorlier in Figure 6,
except now, no 0° data is reported. The presence of a power line between the rood
and the very rough field did not permit us to park the truck as close to the edge of
the field as we did with the slightly rough field. Hence, the illuminated cell ot
normal incidence was very close to the ditch between the field and the road. As
suspected, the 0¥ data exhibited wild variations {in comparison to the rest of the data
including 0% data from the slightly rough field) between different data sets taken
under the same conditions but from different illuminated cells. This is due to the
nonuniform influence of the ditch on the edge of the field (in terms of moisture

confent).

3.4 Moisture Content Response

3.4.1 Slightly Rough Field

Figures 8a, 8b and 8c show plots of the HH scattering coefficient as a function

of soil moisture content by weight at 4.7 GHz, 5.9 GHz ond 7.1 GHz, respectively.
The points shown were extracted from "best fit angular response curves" similar to
those shown in Figures 6 and 7. Each figure includes plots as four look angles, 10°
through 70% in 20° sf'eps. Two major observations are apparent. First, the linear-
portion of the family of curves seems to be between obout 15% and 30% moisture
content; at low levels of moisture content, the response is "slow" and at very high
moisture levels, there is a tendency for "slope reversal". Second, as the microwave
frequency is increased from 4.7 GHz to 7.1 GHz, the moisture range of the linear
portion of the curves increases. At 4,7 GHz the 10° curve continues to increcse
(though slowly) as the moisture content is increased beyond 30%, the 30° and 50°
curves reverse slopes and the 70° curve appears to saturate. At 7.1 GHz the 10°
curve assumes a relatively sharp slope and the 30°, 50%, and 70° curves have
recovered their 4.7 GHz slope reversal effect but their overall slope between

15% and 36% moisture has decreased.

A possible explanation for the decrease in the magnitude of the scattering
coefficient as the moisture content increased beyond 30°% is that the effect of rain
on the soil caused the surface to appear "smooth” in terms of the wavelength. The
36% moisture data was collected a few hours after a reported 2.83" of rain and the
30% moisture data wes collected three days later. The smoothing effect of rain

caused the backscatter return to decrease at 4.7 GHz, but as the frequency was
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increased to 5.9 GHz and 7.1 GHz, the surface roughness increased enough to make
the surface look "rough" again. We should also keep in mind that increasing the
look angle is equivalent to smoothing the surface which explains the apparent
successive disappearance of the slope reversal effect os the frequency increased
from4.7 GHz to 7.1 GHz.

3.4.2 Very Rough Field

The measurements obtained from the 5.5 cm RMS surface roughness field

cover a narrow range of moisture contents (7.4%-30.3%) in comparison to the
slightly rough field described above. Figure 9 shows plots similar to those shown
earlier in Figure 8. Before describing the character of the moisture response, it
should be noted that the analysis is based on only 4 moisture states; hence all
conclusions drawn will be of a general and comparative nature .

Several inferesting patterns are apparent in Figure 9. At 4.7 GHz a dip
appears to develop in the mid-moisture range as the look angle is increased from
10° to 70°, at 5.9 GHz the dip exists at all the look angles, and at 7.1 GHz the
dip has become very pronounced. The presence of such a dip is completely
unexpected if we adopt the simplistic argument that the addition of water to the
soil increases the real and imaginary parts of the dielectric constant which in turn
increase the magnitude of the reflection coefficient and likewise the magnitude of
the scattering coefficient. Obviously, the answer lies in the complex scattering
mechanisms governing the wave interaction with the clay "blobs" and the back-
ground surface. Furthermore, accoerding to measured values of the complex
dielectric constant as a function of moisture content of soil types {clay fomily)
similar to those used in this investigation by Wiebe [18] at aslightly higher frequency,
9 GHz, the calculated increase in the power reflection coefficient (Figure 10) due
to increase in moisture content from 16% to 30% is cbout 3.2 dB at normal incidence.
The sfightly rough surface mode! proposed by Peake [20] predicts a comparable
figure over the range of dielectric constant values considered above. Qver the
same moisture content range, the data reported in this paper indicates an increase
at a look angle of 10° as small as 4 dB (at 4.7 GHz) for the very rough field to os
large as 9.8 dB (ot 4.7 GHz) for the slightly rough field. This is a clear example
of the interdependence of moisture and surface and sub-surface roughness.,

The position of the dip shown in Figure 9 appears to move toward lower
moisture content levels as the frequency is increesed, thereby increasing the moisture

range of the linear portion of the curves.
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4. PRELIMINARY DESIGN CRITERIA

Since the radar return responds to both surface and sub-surface roughness
ond to moisture content, different design criteria con be postulated depending on
the objectives and the sophistication level of the remote sensing pockage . If,
for example, the objective is to determine temporal change in soil moisture through
repetitive covercgé of a given areqa, then soil type would not be a variable any
more and therefore the choice of the radar parameters would be made on the basis
of maximum sfope { 20%/A moisture). On the other hand, if the objective is to
map soil moisture content from a single mission, and no colfaborative data on soil
type or condition is available (such os from photography), then it is imperative that
the choice of sensor parameters be made such that the difference in the scattering
coefficient due fo soil type and surface roughness is minimized. In this section the
major trends will be discussed.

Figures 11a, 11 b and 1lc contain plots of the soil moisture response expressed
in terms of the siope of the linear portion of the curves shown in Figures 8 and 9
(about 16% to 30%) as a function of look angle ot 4.7 GHz, 5.9 GHz, and 7.1
GHz,respectively. We may first observe that the slightly rough field is more
frequency sensitive than its counterpart, the very rough field, not so much in terms
of the slope of the moisture response curves as a function of angle but more so in
terms of the magnitude (compare for example HH 4.7 GHz and HH 5.9 GHz curves for
the two fields), Over the mid-range of look angle 300"*500, the HH response indicates
a minimum for the slightly rough field while it indicates @ maximum for the very
rough field; the difference between the two responses is minimal at 4,7 GHz but it
grows rapidly with frequency.

The two fields appear very similar in terms of their moisture responses (though
their absolute scattering coefficients at a given moisture level may be very different)
in the 20°-30° and 50°-60° angular ranges for HH polarization and in the 15°~30°

range for VV polarization.

5. CONCLUDING REMARKS

The results presented in the preceding sections represent a small step towards

a quantitative understanding of the complex mechanisms governing the radar response
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from bare ground as a function of surface roughness and moisture content., For the
most part, this paper has posed more questions that it has answered which offirms
the need for more analytical studies and experimental measurements of the radar
response over a wide range of the various sensors (particulerly frequency) and target

parameters, under natural conditions, and supported by adequate ground truth infor-

mation.
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