General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

```
(NASA-CR-142303) DIRECT RECOVERY OF MEAN

Reports of the Department of Geodetic Seience
Report No. 218

\title{
DIRECT RECOVERY OF MEAN GRAVITY ANOMALIES FROM SATELLITE TO SATELLITE TRACKING
}

\author{
by \\ D. P. Hajela
}

Prepared for
National Aeronautics and Space Administration Goddard Space Flight Center
Greenbelt, Maryland 20770

Grant No. NGR 36-008-161
OSURF Project No. 3210


\title{
Reports of the Department of Geodetic Science
} Report No. 218

\title{
Direct Recovery of Mean Gravity Anomalies
}

From Satellite to Satellite Tracking
by
D. P. Hajela

Prepared for
National Aeronautics and Space Administration
Goddard Space Flight Center
Greonbelt, Maryland 20770
Grant No. NGR 36-008-161 OSURF Project No. 3210

The Ohio State University Research Foundation Columbus, Ohio 43212

December, 1974

This report was prepared by Dr. D. P. Hajela, Research Associate, Department of Geodetic Science, The Ohio State University, under NASA Grant NGR 36-008-161, The Ohio State University Research Foundation Project No. 3210. The contract covering this research is administered through the Goddard Space Flight Center, Greenbelt, Maryland, Mr. James Marsh, Technical Officer.

This report has been slightly condensed from a dissertation presented to the Graduate School of The Ohio State University in partial fulfillment of the requirements for the \(\mathrm{Ph} . \mathrm{D}\). degree.

\section*{ACKNOWLEDGEMENTS}

I am grateful to my Adviser, Professor Richard H. Rapp for suggesting this study and for his guidance and support throughout this work. Fifis continued intereet ensured timely clarifications and a steady progress of work. I also thank Professor Rapp for the opportunity of associating me with some of his research projects, which helped to prepare me for this study.

I thank the Faculty of the Department of Geodetic Science of The Ohio State University, particularly Professor Urho A. Uotila and Professor Ivan I. Mueller, for the education I have received here. My thanks are also due to the Department of the Survey of India for permitting me leave to undertake these studies.

I wish to acknowledge the availability in this study of the Geodyn program prepared by Mr. T.V. Martin and his colleagues at the Wolf Research and Development Corporation. The credit for incorporating the gravity anomalies as parameters in this program largely goes to Mr. Pentti A. Karki, and I wish to acknowledge this contribution. I also recognize the earlier studles (1970) by Dr. C. R. Schwarz on the Gravity Field Refinement by Satellite to Satellite Doppler Tracking. I am also grateful to Professor W. M. Kaula for kindly supplying the computer programs used in his Error Analysis of Earth Physies Satellite Systems.

Extensive computer support was provided for this study by the Instruction and Research Computer Center of The Ohio State University, The get-up of this report has been greatly improved by the careful typing of Miss Janet I. Wancho. She painstakingly rearranged the material for a better presentation.

Finally, I am deeply indebted to my family for their understanding and fortitude.

This study investigates the direct recovery of mean gravity anomalies from summed range rate ( \(\dot{\mathrm{R}}_{\mathrm{s}}\) ) observations, the signal path being ground station to a geosynchronous relay satellite to a close satellite significantly perturbed by the short wave features of the earth's gravitational field. To ensure realistic observations, these were simulated with the nominal orbital elements for the relay satellite corresponding to ATS-6, and for two different close satellites one at about 250 km height, and the other at about 900 km height corresponding to the nominal values for Geos-C. The earth's gravitational field was represented by a reference set of potential coeffieients up to degree and order 12, considered as known values, and by residual gravity anomalies obtained by subtracting the anomalies, implied by the potential coefficients, from their terrestrial estimates. The Geodyn orbit generation and parameter estimation program was used after modifying it to accept gravity anomalies as parameters. The standard deviation (std. devn.) of \(\dot{R}_{\mathrm{g}}\) observations was assumed as 0.08 \(\mathrm{cm} / \mathrm{sec}\). based on an integration interval of 10 seconds.

The recovery of mean gravity anomalies over \(10^{\circ}\) and \(5^{\circ}\) equal area blocks from \(\dot{R}_{\mathrm{B}}\) observations to close satellites at heights of about 900 and 250 km respectively were classified as recovery from strong signal. The recovery of \(5^{\circ}\) and \(2^{\circ} .5\) equal area mean anomalies using the same close satellites were classified as recovery from weak signal. The anomaly recovery was considered over local or regional areas. The satellite state vectors could not be recovered from short individual arcs of 4 to 20 minutes duration, and were held fixed in this study to a-priori known values.

It was found that gravity anomalies could be recovered from strong signal without using any a-priori terrestrial information, i.e. considering their initial values as zero and also assigning them a zero weight matrix. However, while recovering them from weak signal, it was necessary to use the a-priori estimate of the std. devn, of the anomalies to form their a-priori diagonal weight matrix. Without this a-priori information, the solutions from weak signal were unstable and not meaningful.

The optimum density of observations was achieved by considering ascending and descending satellite arcs with spacing between adjacent arcs roughly half the size of anomaly block being recovered. If the observations along an arc were more closely spaced than the spacing between adjacent arcs, the std. devn. of the recovered anomalies was required to be multiplied by a scaling factor.

The density of observations should be nearly uniform over the area. If the orbital inclination of the close satellite is about \(45^{\circ}\), the area of investigation needs to be located in the form of a rhombus with its diagonals in the
east-west and the north-south directions. A latitudinal extent up to \(40^{\circ}\) is advisable, and the area should lie either in the mid-latitudes or the equatorial region. The observations should not extend beyond the limits of the area of investigation, and one anomaly block all around the area should be included in the estimation process. These latter anomalies not covered by observations cannot be recovered but these ensure the optimum recovery of the gravity anomalies inside the area of investigation. For small mean anomaly blocks like \(2^{\circ} .5\), anomalies in two blocks all around the area need to be included in the estimation process.

The criteria for examining the 'goodness' of anomaly recovery have been described. The std. devn. of recovered anomalies from strong signal was found to be about 2 mgais for \(10^{\circ}\) and about 6 mgals for \(5^{\circ}\) equal area mean anomalies. These results have been compared with those obtained by Schwarz in 1970.

\section*{TABLE OF CONTENTS}
Foreword ..... i
Acknowledgements ..... ii
Abstract ..... iii
List of Tables ..... viii
List of Figures ..... xi
List of Notations ..... xiii
List of Abbreviations ..... xvi
1. INTRODUCTION ..... 1
1.1 Satellite to Satellite Tracking ..... 2
1.2 Gravity Anomalies ..... 3
1.3 Brief Description of Study ..... 4
2. MATHEMATICAL MODEL AND PROCEDURE OF RECOVERY ..... 7
2.1 Computation of the Misclosure Vector and the Partial Deriv- ..... 8 atives Matrix
2.1.1 The Misclosure Vector ..... 8
2.1.2 The Partial Derivatives Matrix ..... 10
2.2 The Adjustment Scheme ..... 16
2.2. 1 The Correction Vector ..... 16
2.2.2 Weight Matrix ..... 19
2.2.3 Constraints for Harmonic Coefficients ..... 19
2.3 Procedure of Computations ..... 21
2.3.1 Orbital Parameters of the Close Satellite ..... 21
2.3.2 Simulation of Observations ..... 24
2.3.3 Reduction and Adjustment of Data ..... 26
3. GRAVITY ANOMALIES FOR DATA SIMULATION ..... 28
\(3.1 \quad 10^{\circ}, 5^{\circ}\) and \(2^{\circ} .5\) Equal Aroa Blocks ..... 28
3.2 Reference Potontial Cocfficients Set and \(10^{\circ}\) Equal Area ..... 30 Residual Anomalies
\(3.32^{\circ} .5,5^{\circ}\) and \(10^{\circ}\) Equal Area Residual Anomuiょes ..... 34
3.4 Extent of Anomalies for Simulation of Observations ..... 37
4. RECOVERY OF GRAVITY ANOMALIES EROM STRONG SIGNAL ..... 41
4.1 Recovery of \(10^{\circ}\) Equal Area Mean Anomalies from Close ..... 41 Satellite at Height of 900 km
4.1.1 Area of Investigation ..... 41
4.1.2 Satellite Arcs ..... 42
4.1.3 Time Interval of Observations along an Arc ..... 44
4.1.4 Constraints for Low Degree Harmonic Coeffic ients ..... 48
4.1.5 Summed Range Observations vs. Summed Range ..... 50 Rate Observations
4.1.6 Spacing of Arcs ..... 51
4.1.7 Effect of Aliasing in Anomaly Recovery ..... 53
4.1.8 Relative Location of Anomalies and Ares ..... 54
4.1.9 Recovery Model for \(10^{\circ}\) Equal Area Mean Anom- alies
4.2 Recovery of \(5^{\circ}\) Equal Area Mean Anomalies from Close ..... 69
Satellite at Height of 250 km
4.2.1 Area of Investigation and Satellite Arcs ..... 69
4.2.2 Relative Location of Anomalies and Ares ..... 73
4.2.3 Recovery Model for \(5^{\circ}\) Equal Area Mean Anomalies ..... 78
4.3 Recovery of Gravity Anomalies from Strong Signal ..... 81
5. RECOVERY OF GRAVITY ANOMALIES FROM WEAK SIGNAI, ..... 83
5.1 Recovery of \(5^{\circ}\) Equal Area Mean Anomalies from Close ..... 83
Satcllite at Height of 900 km
5.1.1 Area of Investigation and Satellite Arcs ..... 83
5.1.2 Relative Location of Anomalies and Ares ..... 85
5.1.3 Satellite Arcs Over the Peripheral Anomalies ..... 87
5.1.4 Increased Density of Satellite Arcs ..... 91
5.2 Recovery of \(2^{\circ}\). 5 Equal Area Mean Anomalies from Close ..... 96 Satellite at Height of 250 km
5.2.1 Area of Investigation and Satellite Arcs ..... 96
5.2.2 Relative Location of Anomalies and Ares ..... 98
5.:.3 Solution Using A-priori Variance of Residual ..... 102 Anomalies
5.2.4 Iteration Solution ..... 104
5.2.5 Recovery Model for \(2^{\circ} .5\) Equal Area Mean Anom- ..... 106 alies
5.3 Recovery Model for \(5^{\circ}\) Equal Area Mean Anomalies ..... 109
6. USE OF REAL DATA AND CONCLUSIONS ..... 112
6.1 Use of Real Data ..... 112
6.2 Computer Run Timings ..... 113
6.3 Summary of Results ..... 114
6.4 Suggestions for Further Study ..... 119
BIBLIOGRAPHY ..... 122

\section*{LIST OF TABLES}
Table Title Page
3.1 Statistics for \(10^{\circ}\) Terrestrial and Residual Anomalies ..... 32
3.2 Statistics for \(10^{\circ}\) Residual Anomalies and Terrestrial Anomalies ..... 33 Adjusted for Potential Coefficients
\(3.3 \quad 10^{\circ}\) Residual Anomalies Difference for Direct Computation Minus ..... 34 Meaned Value
3.4 Covariance Function for \(1^{\circ}\) Terrestrial and Residual Anomalies ..... 37
3.5 Effect of Replacing \(5^{\circ}\) Component Anomalies by \(10^{\circ}\) Anomalies ..... 39 in Border
4.1 Satellite Arcs Used for Recovery of \(10^{\circ}\) Anomalies ..... 44
4.2 Anomaly Discrepancies and Ratio of Standard Deviation with In- ..... 47 creased Along-Arc Observations
4.3 Effect of Constraints on Anomaly Recovery ..... 49
4. 4 Statistics for Solutions with and without Constraints ..... 50
4.5 Statistics for Anomaly Recovery with Arc Spacing of 2,1 and 1/2 ..... 51 times Anomaly Block Size
4.6 Standard Deviation of Anomalies for Arc Spacing of 2 times ..... 53 Anomaly Block Size
4.7 Discrepancies in Recovered Anomalies Unaffected by Aliasing ..... 54
4.8 Effect of Reduction in Number of Recovered Anomalies ..... 55
4.9 Anomaly Discrepancies and Standard Deviation for Anomalies ..... 58 Covered or not Covered by Observations
4.10 Effect of Solving for More Anomalies than Covered by Observations ..... 69
4.11 Statistics for Anomaly Recovery for \(10^{\circ}\) Anomalies ..... 61
4.12 Effect of Reduction in Spacing of Ares for Solution 10-2 ..... 64
4.13 Variation in Standard Deviation of Anomalies in Solution 10-2 ..... 66
Table Title Page
4. 14 Satellite Arcs Used for Recovery of \(5^{\circ}\) Anomalies ..... 71
4.15 Relative Location of Anomaly Eiucks and Arcs ..... 75
4. 16 Solution 250-5-2. Observations for 12 Arcs ..... 78
4.17 Statistics for \(5^{\circ}\) Anomaly Recovery in Solution 250-5-2 ..... 80
4.18 Recovery of \(10^{\circ}\) and \(5^{\prime \prime}\) Anomalies from Strong Signai ..... 82
5.1 Satellite Arcs Used for Recovery of \(5^{\circ}\) Anomalies ..... 85
5.2 Anomaly Discrepancius and Standard Deviations Usiny 13 Ares ..... 86
5.3 Effect on Anomaly Discrepancies Using 15 Arcs ..... 87
5.4 Effect on Anomaly Discrepancies Using 17 Arcs ..... 88
5.5 Anomaly Discrepancies and Standard Deviations Using: \(\pm 5\) and ..... 89 17 Arcs
5.6 Statistics for \(5^{\circ}\) Anomaly Recovery in Solution 900-5-2A ..... 90
5.7 Additional Satellite Arcs Used for Recovery of \(5^{\circ}\) Anomalies ..... 92
5.8 Anomaly Discrepancies and Standard Deviations Using: 13 ..... 93 Additional Ares
5.9 Anomaly Discrepancies and Standard Deviations for Are ..... 94 Spacing 1/4 Anomaly Block Size
5. 10 Satellite Arcs Used for Recovery of \(2^{\circ} .5\) Anomalies ..... 98
5.11 Anomaly Discrepancies for Various Arcs ..... 99
5.12 R. M.S. Value of Anomaly Discrepancies for Various Ares ..... 100
5.13 Anomaly Discrepancies and Standard Deriations for Arc Spacing ..... 101 Roughly Same and Falf Anomaly Block Size
5.14 Anomaly Discrepancies and Standard Deviations Using A-priori ..... 103 Variance of Anomalies
5.15 R. M.S. Value of Misclosure with and without Residual Anomalies ..... 105
Table Title ..... Page
5.16 Anomaly Discrepancies for Iteration Solution ..... 106
5. 17 Anomaly Discrepancies and Standard Deviations Using A-priori ..... 107 Variance of Anomalies
5.18 Statistics for \(2^{\circ}\). 5 Anomaly Recovery in Solution 2. 5-3C ..... 108
5.19 Anomaly Discrepancies and Standard Deviations Using A-priori ..... 110 Variance of Anomalies
5.20 Statistics for \(5^{\circ}\) Anomaly Recovery in Solution 900-5-2C ..... 111
6.1 Summary of Results for Anomaly Recovery from Strong Signal ..... 115
6.2 Summary of Results for Anomaly Recovery from Weak Sigral ..... 116

\section*{LIST OF FIGURES}
Figure Title Page
2.1 Geometry for Satellite to Satellite Tracking ..... 9
3.1 Scheme of Subdivision of \(10^{\circ}\) Equal Area Blocks into \(5^{\circ}\) and ..... 29 2.5 Equal Area Blocks
\(3.255^{\circ}\) Anoma. 'es Surrounded by \(5^{\circ}\) Anomalies, or by \(10^{\circ}\) Anomalies ..... 38
3.3 Extent of \(2^{\circ} .5,5^{\circ}\) and \(10^{\circ}\) Residual Anomalies for Simulating Ob- ..... 40 servations
4.1 Satellite Arcs for Recovery of \(10^{\circ}\) Anomalies ..... 43
4.2 Typical Spacing of Observations over \(10^{\circ}\) Blocks ..... 45
4.3 Along-Arc Spacing of Observations ..... 46
4.4 Spacing of Arcs at 2 times Anomaly Block Size ..... 52
4.5 Relative Location of Anomaly Blocks and 7 Ascending Arcs ..... 56
4.6 Relative Location of Anomaly Blocks and 7 Descending Arcs ..... 57
4. 7 Layout of Anomalies for Solutions \(10-1,10-2,10-3\) ..... 60
4.8 Reduced Set of Observations ..... 62
4.9 Correlation Coefficients in Solution 10-2 ..... 65
4.10 Satellite Arcs for Recovery of \(5^{\circ}\) Anomalies ..... 70
4.11 Typical Spacing of Observations over \(5^{\circ}\) Blocks ..... 72
4. 12 Layout of Anomalies for Solutions 250-5-1, 250-5-2, 250-5-3 ..... 73
4. 13 Relative Location of Anomaly Blocks and 6 Arcs ..... 74
4.14 Relation of Anomalies in Solution 250-5-3 with those Used for ..... 77 Simulating Observations
4.15 Correlation Coefficients in Solution 250-5-2 ..... 79
5. 1 Satellite Aros for Recovery of \(5^{\circ}\) Anomalies. Arc Spacing \(1 / 2\) ..... 84 Anomaly Block Size
5. 2 Satellite Arcs for Recovery of \(5^{\circ}\) Anomalies. Arc Spacing \(1 / 4\) ..... 91 Anomaly Block Size
5.3 Satellite Arcs for Recovery of \(2^{\circ} .5\) Anomalies ..... 96
5.4 Limits of 20, 36 and \(56 \quad 2^{\circ} .5\) Anomalies ..... 97

First Used in Equation
\begin{tabular}{|c|c|c|}
\hline \(a_{0}\) & Semi-major axis of reference ellipsoid & (2.20) \\
\hline a, (a) & Semi-major axis of satellite orbit, (optim- & (1.2) \\
\hline & ized value) & (2.53) \\
\hline a & Subscript for adjusted value & (2.37) \\
\hline a & Subseript for are parameters & (2.43) \\
\hline \(\overline{a_{n 5}}, a_{\text {nu }}\) & Fully normalized and couventional coefficients & (3.10) \\
\hline ( \(\overline{\mathrm{a}_{\text {a }}}{ }^{\prime}\) ) & in the spherical harmonic expansion of gravity anomaly, (residual gravity anomaly) & (2.50) \\
\hline A & Partial derivatives matrix & (2.1) \\
\hline A & Area of anomaly block & (3.2) \\
\hline \(\alpha\) & Azimuth & (2.29) \\
\hline \(\stackrel{\rightharpoonup}{\mathrm{b}_{n t}}, \mathrm{~b}_{n \pm}\) & Fully normalized and conventional coefficients & (3.10) \\
\hline ( \(\overline{\mathrm{b}_{\text {ma }}}{ }^{\prime}\) ) & in the spherical harmonic expansion of gravity anomaly, (residual gravity anomaly) & (2.50) \\
\hline B & Partial derivatives matrix & (2.39) \\
\hline \(\beta\) & Unknown parameters & (2.10) \\
\hline C( \(\psi\) ) & Covariance function of gravity anomalies & (3.15) \\
\hline \(C^{\prime}(\psi)\) & Covariance function of residual gravity anomalies & (3.19) \\
\hline C & Covariance matrix of residual gravity anomalies & (3.13) \\
\hline \(\mathrm{c}_{\mathrm{n}}\) & Degree variances of gravity anomalies & (3.15) \\
\hline \(\overline{C_{n F}}, C_{\text {n }}\) & Fully normalized and conventional coefficients in the spherical harmonic expension of earth's gravitational potential & (2.20) \\
\hline \(\overline{\mathrm{C}}_{\mathrm{n}}{ }^{*}\) \% & Fully normalized coefficients, after subtraction of \(C_{a, 0}, C_{4,0}\) for the reference ellipsoid & (3.3) \\
\hline \(\overline{\mathrm{C}_{\text {nim }}}{ }^{\prime}\) & Fully normalized coefficients developed from residual gravity anomalies & (2.50) \\
\hline d & Subscript for downward, down-link & (2.3) \\
\hline D & Diagonal matrix of (std. devn.) \({ }^{\text {a }}\) of residual gravity anomalies & (3.13) \\
\hline \(\Delta \mathrm{g},\left(\Delta_{\mathrm{g}}\right)\) & Gravity anomalies, (terrestrial gravity anomalies) & (2.22) \\
\hline \(\Delta g_{0}\) & Average value of gravity anomaly over the enrth & (3.3) \\
\hline \(\Delta \mathrm{g}^{\prime}\) & Residual gravity anomalies & (2.21) \\
\hline \(\Delta \mathrm{g}^{\prime}, \Delta \mathrm{g}^{\prime}\) & Recovered and expected vulue of residual gravity anomalios & (4, 1) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\Delta g^{*}\) & Predicted value of mesidual gravity anomaly & (3.13) \\
\hline \(\Delta \mathrm{gip}\) & Gravity anomaly implied by potential coefficients & (2.22) \\
\hline e & First eccentricity of satellite orbit & (1.2) \\
\hline 1 & Flattening of reference ellipsoid & (3.7) \\
\hline F, G & Functions & (2.37), (2.38) \\
\hline \(\gamma, \gamma\) & Average value of gravity over earth sphere, & (2.50) \\
\hline & equatorial value of gravity & (3.7) \\
\hline i & Inclination of satellite orbit & (1.2) \\
\hline I & Identity matrix & \((4,2)\) \\
\hline ()\(^{-1}\) & Inverse of matrix in parentheses & (2.1) \\
\hline \(k\) & Suloscript for giavity anomaly parameters & (2.43) \\
\hline K & Lagrange multipliers & (2.40) \\
\hline kM & Gravitational constant times earth's mass & (2.20) \\
\hline L & Vector of misclosures & (2.1) \\
\hline \(L_{F} ; L_{x}\) & Vector of observations & (2.37) \\
\hline \(\lambda\) & Geodetic longitude & (2.20) \\
\hline m & Order of harmonic coefficients & (2.20) \\
\hline M & Mean anomaly of satellite & (2,54) \\
\hline \(\square\) & Mean motion of satellite & (2,53) \\
\hline n & Degree of harmonic coefficients & (2.20) \\
\hline \(\mathrm{N}_{\text {tuax }}\) & Maximum degree & (2.20) \\
\hline N & Nowmals matrix & (2,1) \\
\hline \(\omega\) & Rotational velocity of earth & (3.6) \\
\hline \(\omega\) & Argument of perigee of satellite orbit & (2,51) \\
\hline \(\Omega\) & Right ascension of the ascending node of satellite orbit & (2.52) \\
\hline P & Weight matrix & (2.1) \\
\hline \(\overline{P_{\text {пim }}}, P_{\text {nt }}\) & Associated Legendre functions; fully normalized, conventional & , (2.20) \\
\hline \(\varphi\) & Geodetic latitude & (2.51) \\
\hline \(\varphi^{\prime}\) & Geocentric latitude & (2.20) \\
\hline \(\stackrel{\mathrm{r}}{ }\) & Geocentric radius vector (magnitude) & (2.20) \\
\hline \(\overrightarrow{\mathrm{R}}\) & Geocentric radius vector & (2.4) \\
\hline R & Radius of earth sphere & (2.21) \\
\hline \(\mathrm{R}_{\mathrm{a}}\) & Summed range & (2.3) \\
\hline \(\mathrm{R}_{\square}\) & Summed rango rato & (2.8) \\
\hline \(\rho\) & Comrelition cootfiai ont & (4, 1) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 5 & Size of anomaly block & (2.52) \\
\hline S, \(\mathrm{S}(\psi)\) & Stokes \({ }^{1}\) function & (2.24) \\
\hline \(S(\mathrm{r}, \notin)\) & Extended Stokes' function & (2.21) \\
\hline \(\overline{S_{n m}}, S_{\text {nm }}\) & Fully normalized and conventional coefficients in the spherical harmonic expansion of earth's gravitational potential & (2.20) \\
\hline \(\overline{S_{n n}^{\prime}}\) & Fully normalized coefficients developed from residual gravity anomalies & (2.50) \\
\hline \(\psi\) & Spherical distance & (2.21) \\
\hline \(\sigma\) & Earth's surface & (2.21) \\
\hline \(\sigma, \sigma^{2}, \sigma_{a}^{3}\) & Standard deviation, variance; variance of unit weight & Sec. 2.2.2 \\
\hline \(\sum\) & Summation & (2.20) \\
\hline \(\Sigma\). & Variance-covariance matrix & (2.43) \\
\hline t & Time & (2.4) \\
\hline T & Earth's anomalous potential & (2.19) \\
\hline \% & Superseript for transpose of matrix & (2.1) \\
\hline \(\theta\) & Greenwich siderial time & (2.52) \\
\hline u & Subscript for upward, up-link & (2.3) \\
\hline U & Earth's normal potential & (2.19) \\
\hline U & Constant vector in normal equations & (2.1) \\
\hline V & Earth's gravitational potential & (2.19) \\
\hline V & Correction vector, residual vector & (2.39) \\
\hline W & Vector of misclosures & (2.39) \\
\hline X & Solution vector & (2.1) \\
\hline \(\mathrm{X}_{1}, \dot{X}_{4}, \ddot{\mathrm{X}}_{1}\) & Inertial position and velocity coordinates, acceleration components & \[
\begin{aligned}
& (2.10) \\
& (2.19)
\end{aligned}
\] \\
\hline X, Y, Z & Inertial position coordinates & (1.1) \\
\hline  & Inertial velocity coordinates & (1.1) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Anom. & Anomaly \\
\hline Anom. Discrep. & Anomaly Discrepancy \\
\hline Approx. & Approximately \\
\hline Appx. & Appendix \\
\hline cm & centimeter \\
\hline col. & Column \\
\hline Correln. coeff. & Correlation coefficient \\
\hline E. & East \\
\hline e.g. & exempli gratia, for instance \\
\hline hr. & hour \\
\hline ibid. & ibidem, in the same place \\
\hline i.e. & id est, that is \\
\hline Inter-se & Among, or between, themselves \\
\hline km & kilometer \\
\hline m & meter \\
\hline max. & maximum \\
\hline min. & minimum \\
\hline min. & minute \\
\hline N. & North \\
\hline NE & north-east \\
\hline NW & north-west \\
\hline No. & number \\
\hline Obsns. & Observations \\
\hline \[
\begin{aligned}
& \text { P.C. } \\
& \text { pts. }
\end{aligned}
\] & Potential Coefficients points \\
\hline p., pp. & page, pages \\
\hline rad & radians \\
\hline R.M.S. & Root Mean Square \\
\hline S. & South \\
\hline SE & south-east \\
\hline SW & south-west \\
\hline Sat & Satelifte \\
\hline sec & seconds \\
\hline Sec. & Section \\
\hline Soln. & Solution \\
\hline Std, Devn. & Standard Deviation(s) \\
\hline
\end{tabular}
VS.
viz.
Vol.
versus
videlicet, namely
Volume
W.
w/o
West without
YYMMDD Year, Month, Day

\section*{1. INTRODUCTION}

The concept of a geostationary satellite tracking a close satellite, significantly perturbed by the short wave feaiures of the earth's gravitational field, was discussed at the Williamstown concerence (Kaula, 1969). The measurement of the range rate of the close satellite from the geostationary satellite, relayed to a ground tracking station, would then permit the evaluation of those short wave features of the earth's gravitational field, whose effect is discernible at the altitude of the close satellite. Schwarz (1970) considered the short wave features of the earth's gravitational field represented by a surface density layer residual to sherical harmonic potential coefficients field up to degree 12. He studied the size of blocks \(2^{\circ} \times 2^{\circ}\) and \(5^{\circ} \times 5^{\circ}\) on the earth's suriace, over which the density of surîace layer was assumed constant, which could be resolved in iocal areas from satellite to satellite range rate measurements. Kaula (1972) considered these measurements for determining the local variations in the earth's gravitational field in terms of point masses over various sized blocks, \(2^{\circ} .5 \times 2^{\circ} .5\), \(5^{\circ} \times 5^{\circ}\) and \(10^{\circ} \times 10^{\circ}\), residual to spherical harmonic potential coefficients field up to degree 12.

Several global solutions for the short wave features of the earth's gravitational field have also been made using other types of satellite data. Koch and Morrison (1970) determined 48 surface density values in \(30^{\circ} \times 30^{\circ}\) blocks, residual to potential coefficients field up to degree 4 using optical satellite observations. Koch and Witte (1971) extended this determination to \(104,20^{\circ} \times 20^{\circ}\) surface density elements, using ranga rate measurements from ground stations to satelliter. Arnold (1972) describes the solution of 52 gravity anomalies in \(20^{\circ}\) blocks in selected areas using optical satellite observations. Obenson (1970) proposed a method for the recovery of 184 gravity anomalies in \(15^{\circ}\) blocks from opitcal satellite data. Rapp (1971a) described another approach for the recovery of gravity anomalies from such data; and elaborated on the procedures (1971c) for their determination, and the combination with existing gravity material.

The Geodyn program (Martin, February 1972b) performs numerical integration of the equations of motion of the satellites; and simultaneously evaluates the variational partials by the numerical integration of the variational equations. This program was modified by Karki (1973) to accept gravity anomalies as unknown parameters. Rapp (1973b) describes the recovery of \(18415^{\circ}\) equal area gravity anomalies, utilizing the modified Geodyn program, from optical satellite observations, and in combination with terrestrial gravity observations.

Vonbun (1971), Kahn et al (1972) have described the Geos-C/ATS-F satellite to satellite tracking and gravimetry experiment. With the launch of ATS-6 in May, 1974 and the proposed launch of Geos-C in March, 1975, it was timely to study the recovery of gravity anomal ies from satellite to satellite tracking data. Similar data may also be available during Apollo-Soyuz-Link flight in July, 1975.

The Geodyn program was enlarged (Martin, February, 1972a) to accept satellite to satellite range and range rate measurements. This revised version (November, 1972) of Geodyn program was accordingly modified by Hajela (1974) to accept gravity anomalies as unknown parameters, generally following Karki (1973). The purpose of the present study is to investigate the recovery of mean gravity anomalies over \(2^{\circ} .5,5^{\circ}\) and \(10^{\circ}\) equal area blocks in regional or local areas, from \(60^{\circ}\) by \(60^{\circ}\) down to \(20^{\circ}\) by \(20^{\circ}\) or less. To explore the capability of satellite to satellite range rate, and range, observations in recoviring gravity anomalies, utilizing close satellites at height of 900 km , or 250 km , combination solutions were not attempted. No use was thus made of a-priori information about gravity anomalies from terrestrial observations, except in Sec. 5.2 and 5.3 , where the value of a-priori variance of anomalies in \(2^{\circ} .5\) and \(5^{\circ}\) blocks was utilized to form their weight matrix. The present study otherwise follows the approach outlined by Rapp (1971a, 1971c).

\subsection*{1.1 Satellite to Satellite Tracking}

This term will be used in this study to indicate a geostationary satellite of the ATS-6 type, generally referred to as the relay satellite, tracking at satellite close to earth. The close satellite would either be the Geos-C type satellite at a height of about 900 km , or a lower drag-free type satellite (Lange, DeBra, Kaula, 1969) or any other satellite, e.g. Apollo-Soyuz-Link flight, at a height of about 250 km . The case of one close satellite tracking another close satellite in the same nominal orbit (Comfort, 1973; Schwarz, 1970) will not be considered in this study.

The cartesian position and velocity coordinates of the relay satellite used in this study, were kindly supplied by Mr. J. G. Marsh of NASA, and were as follows:
\[
\begin{array}{ll}
\mathrm{X}=13,848.503 \ldots \mathrm{~km} & \dot{\mathrm{X}}=2.905 \ldots \mathrm{~km} / \mathrm{sec} \\
\mathrm{Y}=-39,803.422 \ldots \mathrm{~km} & \dot{\mathrm{Y}}=1.006 \ldots \mathrm{~km} / \mathrm{sec} \\
\mathrm{Z}=\quad 380.053 \ldots \mathrm{~km} & \dot{\mathrm{Z}}=7.928 . \ldots \mathrm{km} / \mathrm{sec},
\end{array}
\]
at time 20 Sep. 196923 hour 55 min .0 sec . This however, gave a nominal geostationary longiturde of \(63^{\circ} .2 \mathrm{~W}\). The coordinates of the relay satellite in equation (1.1) were then assumed to refer to time 21 Sep .196901 hour 33 min .36 .3 sec ., which gave a nominal geostationar: longitude of \(93^{\circ} .95 \mathrm{~W}\)., which was close to the planned value of \(94^{\circ} \mathrm{W}\). for ATS-6. The inertial coordinate system used in this study was assumed to be the true of date coordinate system at 690921.0 (YYMMDD), with the \(Z\) axis defined by the instantareous rotation axis of the earth, \(X\) axis by the true equinox of date and \(Y\) axis forming a right handed orthogonal system. The velocity coordinates in the same rlinections were defined by \(\dot{Z}, \dot{X}, \dot{Y}\). The inertial position and velocity coordinates of the relay satellite were then defined to be in this sytem, and expressed by equation (1.1) at the time 690921 (YYMMDD) 01 hour 33 min .36 .3 sec . The coordhates of tho close satellite were then also reforred to this initial epoch (seo Sec. 2.3.1).

The nominal value of the Keplerian elements for the Geos-C type of satellite was taken from Kahn et al (1972) as:
\[
\begin{align*}
& \mathrm{a}=7214 \mathrm{~km} \\
& \mathrm{e}=0.006  \tag{1.2}\\
& \mathrm{i}=115^{\circ}
\end{align*}
\]

The nominal value of the Keplerian elements of the close satellite at height of about 250 km was taken as:
\[
\begin{align*}
& \mathrm{a}=6626 \mathrm{~km} \\
& \mathrm{e}=0.0005  \tag{1.3}\\
& \mathrm{i}=115^{\circ}
\end{align*}
\]

The inclination of the 250 km high satellite was kept the same as that of the Geos-C type satellite, so that the pattern of satellite arcs would have the same geometry over the area of investigation. The actual orbital parameters of the close satellites were optimized, as described in Sec. 2.3.1, so that the subsatellite points, in subsequent passes of the close satellite, cover the area of investigation in an optimum manner. The optimized values of the Keplerian elements for the two satellites will be given in equations (2.54) and (2.56).

The satellite to satellite observations considered were the range from the ground tracking station to the relay satellite, plus the range from the relay satellite to the close satellite. This will be referred to as the summed range. The summed range rate would be the time derivative of the summed range, i.e. the time rate change of the range from the ground station to the relay satellite to the close satellite. The anticipated standard deviation (NASA, 1974, p. 4-65) of the summed range rate observations in the proposed Geos-C/ATS-6 tracking experiment is \(.07 \mathrm{~cm} / \mathrm{sec}\). with an integration interval of 10 seconds. This is expected to improve to \(.04 \mathrm{~cm} / \mathrm{sec}\), and \(.03 \mathrm{~cm} / \mathrm{sec}\)., if the integration interval for determining summed range rate is 30 seconds and 1 minute respectively. As the time interval of observations in most of the investigations in the present study was kept as 10 seconds, a slightly conservative estimate of \(.08 \mathrm{~cm} / \mathrm{sec}\). was used for the standard deviation of the summed range rate observations not only for the close satellite at height of 900 km , but also for the close satellite at height of 250 km .

\subsection*{1.2 Gravity Anomalies}

Mean gravity anomalies were considered in this study over \(10^{\circ}\) equal area blocks, according to the generalized division proposed by Rapp (1971b). Further subdivision into \(5^{\circ}\) equal area blocks was aceording to Hajela (1973). These, and the further subdivision into \(2^{\circ} .5\) equal aroa blocks, will be deseribed in Sec. 3.1. The limits of all blocks were in integer number of degrees, to enable the determination of mean gravity ansinalies over large size blocks from the available free air gravity anomalies in \(i^{\circ} \times 1^{\circ}\) equiangular blocks. This led to
the \(2^{\circ} .5\) blocks being considerably unequal in area, but the word 'equal area' was retained to differentiate it from equiangular blocks.

The initial values for the free air mean gravity anomalies over \(10^{\circ}\) equal area blocks were taken from Hajela (1973). The gravity formula and the constants used for the reference ellipsoid will be given in Sec. 3.2, equations (3.7) and (3.8). The gravity anomalies actually used, however, referred to a set of spherical harmonic potential coefficients up to degree and order 12, i.e. from the free air terrestrial gravity anomalies, the gravity anomaly implied by the set of potential coefficients, was subtracted out, as described in Sec. 3.2. The resulting value will be referred to as the residual gravity anomalies.

The set of potential coefficients used as a reference to describe the earth's gravitational field were those obtained by least squares collocation by Rapp (1973a). As their value was considered to be known and held fixed, the anomaly implied by these potential coefficients was also a fixed constant value. After the residual anomaly is recovered from the adjustment procedure described in Chapter 2, the anomaly implied by the potential coefficients may be added to it, to get the recovered gravity anomaly referred to the specified gravity formula. We thus concern ourselves in this study with the recovery of residual anomalies. These will, in general, be referred to as anomalies, unless it is necessary to specifically distinguish between terrestrial anomalies, anomalies implied by the potential coefficients, and residual anomalies. The residual anomalies recovered from the adjustment scheme would be referred to as the 'recovered anomalies'; and the residual anomalies used to simulate satellite to satellite observations would be referred to as the 'expected anonialies'. The difference of recovered anomaly minus the expected anomaly would be referred to as the tanomaly discrepancy' and would be used as one of the measures to examine the recovery model.

The formation of the mean residual anomalies over \(2^{\circ} .5,5^{\circ}\) and \(10^{\circ}\) equal area blocks will be described in Chapter 3.

\subsection*{1.3 Brief Description of Study}

The investigations in this study have been grouped under four main problems. These are firstly, the recovery of \(10^{\circ}\) equal area mean anomalies from close satellite at height of about 900 km , and the recovery of \(5^{\circ}\) equal area mean anomalies from close satellite at height of about 250 km . These two problems will be discussed in Chapter 4. As the effect of anomalies over \(10^{\circ}\) blocks would be felt more strongly on the summed range rate, and range, observations at the height of close satellite of 900 km , as compared to the effect of anomalies over \(5^{\circ}\) blocks; and similarly, the \(5^{\circ}\) anomalies would be more discernible at the height of close satellite of 250 km as compared to \(2^{\circ} .5\) anomalies, the discussion in Chapter 4 is categorized as the recovery of gravity anomalies from strong signal. This also enables us to test various considerations, which may then be applied with greater confidence to the recovery of gravity anomalies from weak signal. The latter category comprises of the investigations for the recovery
of \(5^{\circ}\) equal area mean anomalies from close satellite at height of 900 km , and the recovery of \(2^{\circ} .5\) equal area mean anomalies from close satellite at height of 250 km ; and these have been grouped in Chapter 5 .

As already mentioned, we will consider in this study only the satellite to satellite tracking observations. Preliminary investigations showed that summed range observations were not very sensitive for the recovery of gravity anomalies. This has been discussed in Sec. 4.1.5. In all subsequent investigations, only the summed range rate observations were utilized. The gravity anomalies were the only unlmowns considered. The only arc parameters considered were the constants of integration, i.e. the position and velocity coordinates at the start of integrating the orbits, which were eliminated from the normals, as the observations in that arc were processed, according to Sec. 2.2.1. A satellite arc consisted of a single pass of the close satellite, as the trajectory of the subsatellite point of the close satellite moved over the area of investigation from one edge to the other. The word 'satellite arc', or 'arc', has been used to indicate both the trajectory of the subsatellite points, as well as the summed range rate observations along that arc, and the usage is clear according to the context. As the duration of individual satellite arcs was short, from 4 to 20 ninutes depending upon the area of investigation, the arc parameters were not recovered in this study, and were held fixed, as discussed in Sec. 2.2.1.

The geodetic coordinates of the ground tracking station were taken as:
\[
\begin{array}{lr}
\text { Latitude } & 35^{\circ}-12^{\prime}-7^{\prime}: 28 \mathrm{~N} ., \\
\text { Longitude } & 277^{\circ}-07^{\prime}-41^{\prime}!16 \mathrm{E} .,  \tag{1.4}\\
\text { Height } & 850 \text { meters. }
\end{array}
\]

The ground tracking station was intended to be Rosman, North Carolina, but as the reference ellipsoid (equation 3.7) used in this study was different from the reference ellipsoid on which the coordinates in equation (1.4) were given, these coordinates now refer to a hypothetical station in its vicinity.

We begin by discussing in Chapter 2 the mathematical model and thr prom cedure of recovery. The gravity anomalies for data simulation will be described in Chapter 3. The main investigations of this study will be reported in Chapters 4 and 5. Discussion about the use of real data, a summary of main results, and suggestions for further study will be presented in Chapter 6. The results obtained by Schwarz (1970) will also be compared with the results of this study at the end of Sec. 6.3.

The standard deviation of range rate observations of . \(05 \mathrm{~mm} / \mathrm{sec}\). assumed by Schwarz was ahout 16 times more optimistic than what is likely to be achieved in currently proposed satellite to satellite tracking experiments like ATS-6/Geos-C and Apollo/Soyuz flight. The results of the present study are more realistic in terms of the precision of observations und the helght of close satellites. We have
now also the advantage of better orbit generation and parameter estimation computer programs, including gravity anomalies as parameters. The main contribution of this study, however, lies in the systematic investigation of the recovery of gravity anomalies in local and regional areas, and in establishing the optimum design of observations and the optimum mathematical model for the recovery.

\section*{2. MATHEMATICAL MODEL AND PROCEDURE OF RECOVERY}

We will consider the observations during this study to be only the summed range rate, or the summed range. The unknowns to be recovered by the usual least squares procedure would be the residual gravity anomalies and the starting coordinates of the relay and close satellite at the epoch of starting the integration of the orbits of these satellites. We later find that the siarting coordinates could not be recovered satisfactorily because of using observations over very short periods of satellite arcs from 4 to 20 minutes, and the starting coordinates were thus considered. in this study to be well determined a-priori say, with other tracking data, and these values were then held 'fixed' in the estimation process by assigning them a very low variance. This is described in more detail later in Sec. 2.3.3. (Also see Sec. 6.1).

The initial or 'approximate' value of the residual gravity anomalies were considered to be zero. The computed value of the summed range rate or summed range was then obtained with respect to the position of the relay and close satellites obtained by integrating their crbits in the gravity field described onij by the reference set of potential coefficients with the residual anomalies as zero. This misclosures between the 'observed' values (Sec. 2.3.2) and the computed values of the summed range rate or summed range, along with the mairix of partial derivatives of these observatirns with respect to the unknowns, were then used to recover the correction to the 'approximate' value of the residual anomalies, which was also the 'solution vector' as the approximate value of residual anomalies were zero. Following the notation of Uotila (1967), the solution vector X is obtained by:
\[
\begin{equation*}
X=-N^{-1} U=-\left(A^{\prime} P A\right)^{-1} A^{\prime} P L \tag{2.1}
\end{equation*}
\]
where \(A\) is the matrix of partial derivatives of the observations with respect to the unknowns, \(P\) is the weight matrix of observations, \(L\) is the vector of misclosures, \(N\) is the normals matrix and \(U\) is the 'constant' vector of the normal equations:
\[
\begin{equation*}
\mathrm{NX}+\mathrm{U}=0 \tag{2.2}
\end{equation*}
\]

Though the adjustment may essentially be described by equation (2.1), the actual scheme used allowed the possibility of treating the unknown parameters also as observations, and constraining their adjusted values to fulfill certain corditions. The actual scheme also allowed the elimination of arc parameters after processing observations in each arc, so that the unknowns actually solved for were the residual gravity anomalies. This scheme is described more fully in Sec. 2.2.1.

\subsection*{2.1 Computation of the Misclosure Vector and the Tartial Derivatives Matrix}

\subsection*{2.1.1 The Misclosure Vector}

Following the treatment of Chin, Goad and Martin (1972), the geometry for obtaining the summed range or summed range rate is shown in Figure 2.1, where \(\vec{R}_{2}, \overrightarrow{\mathrm{R}}_{2}\) and \(\overrightarrow{\mathrm{R}}_{\mathrm{s}}\) are the geocentric radius vectors to the relay and close satellites and the ground tracking station respectively at a specified time. Denoting the relay and close satellites by subscripts 1 and 2 , and the upward and downward range by the subscripts \(u\) and \(d\), we may represent the 4 ranges, i.e., from the ground tracking station to the relay satellite, from the relay satellite to the close satellite, and the 2 ranges on the return path to the ground tracking station, by \(\mathrm{R}_{1 \mathrm{l}}\), \(R_{2 d}, R_{z u}, R_{1 d}\) respectively. Then, representing the summed range from the ground tracking station to the relay satellite and then to the close satellite as \(R_{s}\), we have:
\[
\begin{equation*}
R_{a}=\frac{\frac{1}{2}}{2}\left(R_{1 u}+R_{e_{d}}+R_{e_{\mathrm{eu}}}+R_{1 d}\right) \tag{2.3}
\end{equation*}
\]

The ranges on the right hand side of equation (2.3) may be expressed in terms of the geocentric radius vectors \(\vec{R}_{1}, \vec{R}_{2}, \vec{R}_{5}\), but we have to specify the times at which these radius vectors are to be so expressed. If we denote the time at which the signal is received back at the ground tracking station by \(t\), and the transit time along the 4 ranges by \(\Delta t\) with appropriate subscripts, we have:
\[
\begin{align*}
& R_{\mathbb{I d}^{d}}=\left|\vec{R}_{1}\left(t-\Delta t_{1 d}\right)-\vec{R}_{\mathrm{g}}(t)\right|  \tag{2.4}\\
& R_{z u}=\left|\vec{R}_{z}\left(t-\Delta t_{1 d}-\Delta t_{z u}\right)-\vec{R}_{2}\left(t-\Delta t_{\text {dd }}\right)\right|  \tag{2.5}\\
& R_{2 d}=\left|\vec{R}_{1}\left(t-\Delta t_{1 d}-\Delta t_{2 u}-\Delta t_{2 d}\right)-\vec{R}_{a}\left(t-\Delta t_{1 d}-\Delta t_{2 u}\right)\right|  \tag{2.6}\\
& R_{1 u}=\left|\vec{R}_{g}\left(t-\Delta t_{\text {Pd }}-\Delta t_{2 u}-\Delta t_{z d}-\Delta t_{2 u}\right)-\vec{R}_{1}\left(t-\Delta t_{\text {ld }}-\Delta t_{2 u}-\Delta t_{\text {Pd }}\right)\right| \tag{2.7}
\end{align*}
\]

Wre have assumed in equations (2.4) to (2.7) that there are no transponder delays at the 2 satellites. A comparatively large transponder delay of \(4 \mu \mathrm{sec}\). would affect the summed range of about \(78,000 \mathrm{~km}\) by only 1 cm ; but in practice the actual transponder delays of the satellites could also be taken into account.

The radius vectors at the required times in equations (2.4) to (2.7) can be computed knowing the inertial coordinates of the satellites and the ground tracking station at those times, and we may thus compute the summed range \(\mathrm{R}_{\mathrm{s}}\) at any particular time, say \(t\), from equation (2.3). The summed range rate, \(\dot{\mathrm{R}}_{\mathrm{n}}\), would be its time derivative, to be denoted by a dot on the top, and expressed in terms of the time derivatives of the 4 ranges, i.e.,
and, we can readily see from equation (2.4) that


Figure 2.1 Geometry for Satellite-Satellite Tracking
\[
\begin{align*}
& \dot{R}_{2 d}=\frac{d}{d t}\left|\vec{R}_{1}\left(t-\Delta t_{2 d}\right)-\vec{R}_{8}(t)\right| \\
& =\frac{\left.\left[\dot{\vec{R}}_{1}\left(t-\Delta t_{1 d}\right)-\dot{\vec{R}}_{g}(t)\right) \cdot\left(\vec{R}_{1}\left(t-\Delta t_{I_{d d}}\right)-\vec{R}_{\varepsilon}(t)\right)\right]}{\left\{\left[\left(\vec{R}_{1}\left(t-\Delta t_{1 d}\right)-\vec{R}_{E}(t)\right) \cdot\left(\vec{R}_{1}\left(t-\Delta t_{1 d}\right)-\vec{R}_{g}(t)\right)\right]\right\}^{\frac{3}{2}}} \tag{2.9}
\end{align*}
\]
with similar expressions for \(\dot{\mathrm{R}}_{2 \mathrm{u}}, \dot{\mathrm{R}}_{2 \mathrm{~d}}, \dot{\mathrm{R}}_{\mathrm{lu}}\) from equations (2.5) to (2.7). The dot between expressions inside square brackets denotes the scalar dot product.

The summed range rate \(\dot{R}_{s}\) at any particular time, say \(t\), may then be computed knowing the inertial velocities of the satellites and the ground tracking station at the required times in equation (2.4) to (2.7), in addition to their inertial coordinates at those times. The summed range observations are thus a function of the inertial coordinates, while the summed range rate ohservations are a function of both the inertial coordinates and inertial velocities of the relay and close satellites and the ground tracking station at the required times.

The simulation of 'observations' will be described in Sec. 2.3.2. The integration of orbits of the relay and close satellites to obtain their inertial coordinates and velocities, will also be discussed in Sec. 2.3.2. The inertial coordinates of the ground tracking station are obtained by a rotational transformation of its cartesian coordinates about the earth's rotation axis by the Greenwich hour angle of the true equinox of date, and by applying precession and nutation for the period of time from 0.0 hr . of the reference day. This has been described in detail in Volume I Sections 3 to 5 of Geodyn System Description (1972) and has not been repeated here. The computed value of \(R_{6}\) or \(\dot{R}_{8}\), at the time of observation may then be obtained from equations (2.3) and (2.8), and the vector of misclosures, \(L\) of equation (2.1), computed. We may now discuss the computation of the partial derivatives matrix A.

\subsection*{2.1.2 The Partial Derivatives Matrix}

If we represent the unknown parameters, whose values are to be recovered from the adjustment process, by \(\beta\), then we have to form the partial derivatives of the observations, \(\mathrm{R}_{\mathrm{B}}\) or \(\dot{\mathrm{R}}_{\mathrm{B}}\), with respect to these parameters. From equation (2.3), we have:
\[
\begin{align*}
& \frac{\partial \mathrm{R}_{\mathrm{s}}}{\partial \beta}=\frac{1}{2}\left(\frac{\partial \mathrm{IR}_{1.4}}{\partial \mathrm{X}_{11}}+\frac{\partial \mathrm{R}_{8 \mathrm{~d}}}{\partial \mathrm{X}_{11}}+\frac{\partial \mathrm{R}_{\mathrm{R} u}}{\partial \mathrm{X}_{11}}+\frac{\partial \mathrm{R}_{1 \mathrm{~d}}}{\partial \mathrm{X}_{14}}\right) \frac{\partial \mathrm{X}_{11}}{\partial \beta}  \tag{2.10}\\
& +\frac{1}{2}\left(\frac{\partial R_{2 d}}{\partial X_{21}}+\frac{\partial R_{2 u}}{\partial X_{f 1}}\right) \frac{\partial X_{f 1}}{\partial \beta}
\end{align*}
\]
where \(\mathrm{X}_{11}, \mathrm{X}_{21}\) are the inertial coordinates of the relay and close satellites respectively, and summation over \(i\) from 1 to 3 is implied. This summation convention for a repeated subscript would also be understood to apply in subsequent expressions.

Though the ranges in equations (2.4) to (2.7) refer to coordinates of the satellites at slightly different times, we may ignore these differences while computing the partials in equation (2.10). It may then be further simplified by putting:
\[
\begin{equation*}
\frac{\partial R_{1 u}}{\partial X_{11}} \approx \frac{\partial R_{1 d}}{\partial X_{11}} ; \frac{\partial R_{2 d}}{\partial X_{1 i}}=\frac{\partial R_{2 u}}{\partial X_{11}} \tag{2.11}
\end{equation*}
\]

We also note that:
\[
\begin{equation*}
\frac{\partial R_{2 \mathrm{ad}}}{\partial \mathrm{X}_{\mathrm{el}}}=-\frac{\partial \mathrm{R}_{\mathrm{Rd}}}{\partial \mathrm{X}_{11}} ; \frac{\partial \mathrm{R}_{\mathrm{au}}}{\partial \mathrm{X}_{\mathrm{Pt}}}=-\frac{\partial \mathrm{R}_{2 \mathrm{lu}}}{\partial \mathrm{X}_{1!}} \tag{2,12}
\end{equation*}
\]

The expression for the partials \(\frac{\partial R_{s}}{\partial B}\) may then be simplified by substituting equations (2.11) and (2.12) in equations (2.10) as:
\[
\begin{equation*}
\frac{\partial R_{\mathrm{B}}}{\partial \beta}=\frac{\partial \mathrm{R}_{2 d}}{\partial \mathrm{X}_{14}} \frac{\partial \mathrm{X}_{14}}{\partial \beta}+\frac{\partial \mathrm{R}_{2 \mathrm{u}}}{\partial \mathrm{X}_{11}}\left(\frac{\partial \mathrm{X}_{11}}{\partial R}-\frac{\partial \mathrm{X}_{21}}{\partial R}\right) \tag{2.13}
\end{equation*}
\]

We may similarly compute the partials of the summed range rate from equation (2.8), where we note from equation (2.9) that both the inertial coordinates and the inertial velocities of the satellites are involved. We may again use the analogous simplification to equation (2.11) that partials of upward range rate with respect to inertial coordinates and velocities are approximately equal to the corresponding partials of the downward range rate, when we get:
\[
\begin{align*}
& +\frac{\partial \dot{R}_{a u}}{\partial X_{\text {at }}} \frac{\partial X_{e t}}{\partial \beta}+\frac{\partial \dot{R}_{\mathrm{au}}}{\lambda \dot{X}_{91}} \frac{\partial \dot{\mathrm{X}}_{\mathrm{at}}}{\dot{\lambda} \beta} \tag{2.14}
\end{align*}
\]

It is easy to see from equation (2.9) that analogous relations to equation (2.12) also hold for the partials of the range rate with respect to inertial coordinates and velocities, which simplifies equation (2.14) as:
\[
\begin{align*}
\frac{\partial \dot{\mathrm{R}}_{\mathrm{s}}}{\partial \beta} & =\frac{\partial \dot{\mathrm{R}}_{14}}{\partial \mathrm{X}_{11}} \frac{\partial \mathrm{X}_{1!}}{\partial \beta}+\frac{\partial \dot{R}_{3 u}}{\partial \mathrm{X}_{11}}\left(\frac{\partial \mathrm{X}_{11}}{\partial \beta}-\frac{\partial \mathrm{X}_{\mathrm{at}}}{\partial \beta}\right)  \tag{2,15}\\
& +\frac{\partial \dot{\mathrm{R}}_{14}}{\partial \dot{X}_{11}} \frac{\partial \dot{\mathrm{X}}_{11}}{\partial \beta}+\frac{\partial \dot{\mathrm{R}}_{3 u}}{\partial \dot{\mathrm{X}}_{11}}\left(\frac{\partial \dot{\mathrm{X}}_{11}}{\partial \beta}-\frac{\partial \dot{\mathrm{X}}_{21}}{\partial \beta}\right)
\end{align*}
\]

Finally, it may be verified from equations (2.9) and (2.4), and similar expressions, that
\[
\begin{equation*}
\frac{\partial \dot{\mathrm{R}}_{1 \mathrm{~d}}}{\partial \dot{\mathrm{X}}_{11}}=\frac{\partial \mathrm{R}_{1 \mathrm{~d}}}{\partial \mathrm{X}_{1!}} ; \frac{\partial \dot{\mathrm{R}}_{2 \mathrm{~L}}}{\partial \dot{\mathrm{X}}_{11}}=\frac{\partial \mathrm{R}_{\mathrm{au}}}{\partial \mathrm{X}_{11}} \tag{2.16}
\end{equation*}
\]
so that equation (2.15) becomes:
\[
\begin{align*}
\frac{\partial \dot{R}_{\mathrm{s}}}{\partial \beta} & \approx \frac{\partial \dot{R}_{14}}{\partial \mathrm{X}_{11}} \frac{\partial \mathrm{X}_{11}}{\partial \beta}+\frac{\partial \dot{R}_{\mathrm{au}}}{\partial \mathrm{X}_{11}}\left(\frac{\partial \mathrm{X}_{11}}{\partial \beta}-\frac{\partial \mathrm{X}_{\mathfrak{1}}}{\partial \beta}\right) \\
& +\frac{\partial \mathrm{R}_{2 d}}{\partial \mathrm{X}_{11}} \frac{\partial \dot{\mathrm{X}}_{11}}{\partial \beta}+\frac{\partial \mathrm{R}_{\mathrm{au}}}{\partial \mathrm{X}_{1 ;}}\left(\frac{\partial \dot{\mathrm{X}}_{11}}{\partial \beta}-\frac{\partial \dot{\mathrm{X}}_{91}}{\partial \beta}\right) \tag{2.17}
\end{align*}
\]
where, as before, the summation over i from 1 to 3 is implied.
In equation (2.17), the value of the partials of range rate and range, with respect to the inertial coordinates, i. e. expressions of the type
\[
\frac{\partial \dot{\mathrm{R}}_{3 d}}{\partial \mathrm{X}_{11}}, \frac{\partial \mathrm{R}_{1 \mathrm{l}}}{\partial \mathrm{X}_{11}}
\]
are easily computed from geometrical expressions given in equations (2.9) and (2.4). We may thus confine our remarks to the evaluation of the variational partials
\[
\begin{equation*}
\frac{\partial X_{11}}{\partial \beta}, \frac{\partial X_{21}}{\partial \beta} \tag{2.18}
\end{equation*}
\]
which are obtained by the integration of the variational equations, as referred to either of the two satellites, by:
\[
\begin{equation*}
\frac{\partial \ddot{\mathrm{X}}_{1}}{\partial \beta}=\frac{\partial}{\partial \beta}\left(\frac{\partial V}{\partial \mathrm{X}_{1}}\right)=\frac{\partial}{\partial \beta}\left(\frac{\partial U}{\partial \mathrm{X}_{1}}+\frac{\partial \mathrm{T}}{\partial \mathrm{X}_{1}}\right) \tag{2.19}
\end{equation*}
\]
where \(V\) is the earth's gravitational potential comprising of the normal potential \(U\) defined by a set of fully normalized spherical harmonic coefficients, \(\overline{\mathrm{C}_{\mathrm{ur}}}, \overline{\bar{S}_{\mathrm{na}}}\) up to degree \(\mathrm{N}_{\max }\) and the disturbing potentiai T due to a set of residual gravity anomalies \(\Delta g^{\prime}\), i.e.,
\[
\begin{equation*}
U=\frac{k M}{r}\left[1+\sum_{n=\theta}^{N_{\max }^{*}}\left(\frac{a_{n}}{\mathrm{r}}\right)^{n} \sum_{n=0}^{n}\left(\overline{\mathrm{C}_{n u}} \cos m \lambda+\overline{S_{n 凶}} \sin m \lambda\right) \overline{\mathrm{P}_{n m}}\left(\sin \varphi^{\prime}\right)\right] \tag{2.20}
\end{equation*}
\]
and
\[
\begin{equation*}
T=\frac{F_{i}}{4 \pi} \iint \Delta g^{\prime} S(r, \psi) d \sigma \tag{2.21}
\end{equation*}
\]

In equation (2.20), kN is the gravitational constant times the earth's mass; \(a_{b}\) is the equatorial radius of the reference ellipsoid; \(r\) is the geocentric radius vector of the satellite of geocentric Iatitude \(\varphi^{\prime}\) and longitude \(\lambda\), and \(\bar{P}_{n \pi}\left(s i n \varphi^{\prime}\right)\) are the fully normalized associated Legendre functions. In equation (2.21), \(R\) is the radius of the mean earth sphere, \(\mathrm{S}(\mathrm{r}, \psi)\) is the extended Stokes function (Heiskanen and Moritz, 1967, page 235), \(\psi\) is the spherical distance between the sub-satellite point and the surface area \(d \sigma\), over which \(\Delta g^{\prime}\) is the residual gravity anomaly, and is given by:
\[
\begin{equation*}
\Delta \mathrm{g}^{\prime}=\Delta \mathrm{g}_{\mathrm{T}}-\Delta \mathrm{gip} \tag{2.22}
\end{equation*}
\]
where \(\Delta \mathrm{gr}_{\mathrm{r}}\) is the free air gravity anomaly and \(\Delta \mathrm{g}_{\mathrm{pc}}\) is the gravity anomaly implied by the potential coefficients used in equation (2.20). Equation \((2,22)\) will be discussed further in Sec. 3.1 to 3.3.

The first term on the right hand side of equation (2.19) may be put as:
\[
\begin{equation*}
\frac{\partial}{\partial \beta}\left(\frac{\partial U}{\partial X_{1}}\right)=\frac{\partial^{2} U}{\partial X_{1} \partial X_{1}} \quad \frac{\partial X_{1}}{\partial \beta} ; i, j=1,2,3 \tag{2.23}
\end{equation*}
\]
and as we are taking the reference set of potential coelficients to be known constants, there are no direct partials of \(U\) with respect to \(\beta\). The expressions for evaluating \(\partial^{2} \mathrm{U} / \partial \mathrm{X}_{1} \lambda \mathrm{X}_{1}\) are given in detail in Volume I Sec. 8.3.1 of the Geodyn System Description (1972).

While considering the second term on the right hand side of equation (2.19) we need only consider the evaluation of direct partials with respect to a particular gravity anomaly \(\Delta \mathrm{g}_{k}^{\prime}\) given by:
\[
\begin{aligned}
& \frac{\partial}{\partial \Delta g_{k}^{\prime}}\left(\frac{\partial T}{\partial X_{1}}\right)=\frac{\partial}{\partial \Delta \mathrm{g}_{k}^{\prime}}\left(\frac{\partial T}{\partial r} \frac{\partial r}{\partial \mathrm{X}_{1}}+\frac{\partial T}{\partial \varphi^{\prime}} \frac{\partial \varphi^{\prime}}{\partial \mathrm{X}_{1}}+\frac{\partial T}{\partial \lambda} \frac{\partial \lambda}{\partial \mathrm{X}_{1}}\right) \\
& =\frac{R}{4 \pi} \frac{\partial}{\partial \Delta_{\mathrm{g}_{k}}^{\prime}}\left(\left.\frac{\partial \mathrm{r}}{\partial \mathrm{X}_{1}} \sum_{k} \Delta \mathrm{~g}_{k}^{\prime} \frac{\partial \mathrm{S}}{\partial \mathrm{r}}\right|_{k} d \sigma_{k}+\left.\frac{\partial \varphi^{\prime}}{\partial \mathrm{X}_{1}} \sum_{k} \Delta \mathrm{~g}_{k}^{\prime} \frac{\partial S}{\partial \varphi^{\prime}}\right|_{k} d \sigma_{k}\right. \\
& \\
& \left.+\left.\frac{\partial \lambda}{\partial \mathrm{X}_{1}} \sum_{\frac{}{k}} \Delta \mathrm{~g}_{k}^{\prime} \frac{\partial \mathrm{S}}{\partial \lambda}\right|_{k} d \sigma_{k}\right)
\end{aligned}
\]
\[
\begin{equation*}
=\frac{R}{4 \pi}\left(\left.\frac{\partial r}{\partial X_{1}} \frac{\partial S}{\partial r}\right|_{k}+\left.\left.\frac{\lambda 0^{\prime}}{\partial X_{k}} \frac{\partial S}{\lambda}\right|^{\prime}\right|_{k}+\left.\frac{\partial \lambda}{\partial X_{1}} \frac{\partial S}{\partial \lambda}\right|_{k}\right) d \sigma_{k} \tag{2.24}
\end{equation*}
\]

In equation (2.24), we have approximated the integral in equation (2.21) by a summation and have expressed the derivatives of the anomalous potential \(T\) in terms of the derivatives of the extended stokes function \(S(r, \psi)\). We then carry out the differentiation with respect to a particular mean gravity anomaly \(\Delta \mathrm{g}_{k}^{\prime}\) given over a block of area do \({ }_{k}\). The derivatives of \(r, \varphi^{\prime}, \lambda\) with respect to \(X_{1}\left(X_{1}, X_{2}, X_{3}\right)\) can easily be shown to be given by:
\[
\begin{align*}
& \frac{\partial r}{\partial X_{1}}=\frac{X_{1}}{r}  \tag{2.25}\\
& \frac{\partial \varphi^{\prime}}{\partial X_{1}}=\frac{1}{\left(X_{1}^{a}+X_{a}^{a}\right)^{\frac{1}{2}}}\left(-\frac{X_{3} X_{1}}{r^{a}}+\frac{\partial X_{1}}{\partial X_{1}}\right)  \tag{2.26}\\
& \frac{\partial \lambda}{\partial X_{1}}=\frac{X_{1}}{X_{1}^{a}} \div X_{2}^{a} \tag{2.27}
\end{align*}\left(\frac{\partial X_{Q}}{\partial X_{1}}-\frac{X_{2}}{X_{1}} \frac{\partial X_{1}}{\partial X_{1}}\right) \quad, ~ l
\]
while the derivatives of the extended Stokes function with respect to \(r\), \(\psi\), are given in Heiskanen and Moritz (1967, pages 234, 235), as:
\[
\begin{align*}
& \begin{aligned}
&\left.\frac{\partial S}{\partial r}\right|_{k}=-\frac{t^{2}}{R}\left(\frac{1-t^{2}}{D_{k}^{3}}+\frac{4}{D_{k}} \cdot 1-6 D_{k}\right. \\
&\left.-t \cos \psi_{k}\left(13+6 \ln \frac{1-t \cos \psi_{k}+D_{k}}{2}\right)\right) \\
&\left.\frac{\partial S}{\partial \varphi^{\prime}}\right|_{k}= \frac{\partial S(r, \psi)}{\partial \psi} \frac{\partial \psi}{\partial \varphi^{\prime}}=-\left.\frac{\partial S}{\partial \psi}\right|_{k} \cos \alpha_{k} \\
&\left.\frac{\partial S}{\partial \lambda}\right|_{k}=\frac{\partial S(r, \psi)}{\partial \psi} \frac{\partial \psi}{\partial \lambda}=-\left.\frac{\partial S}{\partial \psi}\right|_{k} \cos \varphi^{\prime} \sin \alpha_{k} \\
&\left.\frac{\partial S}{\partial \psi}\right|_{k}=-t^{3} \sin \psi_{k}\left(\frac{2}{D_{k}^{a}}+\frac{6}{D_{k}}-8-3 \frac{1-t \cos \psi_{k}-D_{k}}{D_{k} \sin \psi_{k}^{2}}\right. \\
&\left.-32 n \frac{1-t \cos \psi_{k}+D_{k}}{2}\right)
\end{aligned} \tag{2.28}
\end{align*}
\]
where
\[
\begin{align*}
t & =R / r  \tag{2.32}\\
D_{k} & =\ell_{k} / r=\left(r^{B}+R^{2}-2 R r \cos \psi_{k}\right)^{\frac{1}{2}} / r=\left(1-2 t \cos \psi_{k}+t^{a}\right)^{\frac{1}{2}} \tag{2.33}
\end{align*}
\]
and \(\ell_{k}\) is the distance of the satellite from the gravity anomaly \(\Delta g_{k}^{\prime}\) of geocentric latitude \(\varphi_{k}^{\prime}\) and longitude \(\lambda_{k} ; \psi_{k}\) is the spherical distance of the gravity anomaly \(\Delta \mathrm{g}_{k}^{\prime}\) from the subsatellite point \(\left(\varphi^{\prime}, \lambda\right)\); and \(\alpha_{k}\) is the azimuth of the gravity anomaly \(\Delta \mathrm{g}_{k}^{\prime}\) from the subsatellite point. \(\psi_{k}\), and \(\alpha_{k}\) are given by:
\[
\begin{equation*}
\cos \psi_{k}=\sin \varphi^{\prime} \sin \varphi_{k}^{\prime}+\cos \varphi^{\prime} \cos \varphi_{k} \cos \left(\lambda_{k}-\lambda\right) \tag{2.34}
\end{equation*}
\]
and
\[
\begin{equation*}
\tan \alpha_{k}=\frac{\cos \varphi_{k}^{\prime} \sin \left(\lambda_{k}-\lambda\right)}{\cos \varphi^{\prime} \sin \varphi_{k}^{\prime}-\sin \varphi^{\prime} \cos \varphi_{k}^{\prime} \cos \left(\lambda_{k}-\lambda\right)} \tag{2.35}
\end{equation*}
\]

For mean gravity anomalies at a sufficient distance from the subsatellite point, say \(\psi_{k}>35^{\circ}\), we may compute the value of \(\frac{\partial}{\partial \Delta g_{k}^{\prime}}\left(\partial T / \lambda X_{1}\right)\) at the center of the anomaly block, but for gravity anomalies close \({ }^{\mathrm{g}_{k}}\) to the subsatellite point, we need to subdivide the anomaly block into \(\ell\) sub-blocks to minimize quadrature errors, and compute it as:
\[
\begin{aligned}
& \frac{\partial}{\partial \Delta \mathrm{g}_{k}^{\prime}}\left(\frac{\partial \mathrm{T}}{\partial \mathrm{X}_{1}}\right)=\frac{\mathrm{R}}{4 \pi}\left(\left.\frac{\partial \mathrm{r}}{\partial \mathrm{X}_{1}} \Gamma_{\bar{\ell}} \frac{\partial S}{\partial \mathrm{r}}\right|_{\ell .} \mathrm{d} \mathrm{\sigma}_{\ell}+\left.\frac{\partial \varphi^{\prime}}{\partial \mathrm{X}_{1}} \sum_{\ell} \frac{\partial S}{\partial \varphi^{\prime}}\right|_{\ell} d \sigma_{\ell}\right. \\
&\left.+\left.\frac{\partial \lambda}{\partial \mathrm{X}_{1}} \sum_{\ell} \frac{\partial S}{\partial \lambda}\right|_{\ell} \mathrm{d} \mathrm{\sigma}_{\ell}\right)
\end{aligned}
\]

The anomaly blocks were subdivided into 4,9 , or 16 sub-blocks when \(35^{\circ}>\psi_{k}>20^{\circ}, 20^{\circ}>\psi_{k}>12^{\circ} .5\) and \(12^{\circ} .5>\psi_{k}>0^{\circ}\) respectively, as per Hajela (1972).

Further discussion regarding the integration of the variational equations (2.19) may be seen in Rapp (1971a) and Geodyn System Description Volume I (1972).

\subsection*{2.2.1 The Correction Vector}

In elaboration of the remarks before Sec. 2.1, we may in general terms, describe the mathematical model, as:
\[
\begin{equation*}
F\left(L_{f_{a}}, L_{x_{a}}\right)=0, \tag{2.37}
\end{equation*}
\]
where \(I_{f_{\mathrm{a}}}\) is the vector of observations of summed range rate, or summed range, related through the function \(F\) to the vector \(\Sigma_{x_{a}}\) of unknown parameters being estimated, i, e. the arc parameters and the residual gravity anomalies, and the subscript ' \(a\) ' represents their adjusted values.

Further, if any constraints are to be imposed on the adjusted values of parameters to fulfill certain conditions, we may express these in the form:
\[
\begin{equation*}
G\left(L_{x_{\mathrm{a}}}\right)=0 \tag{2.38}
\end{equation*}
\]

The linearized form of the equations (2.37) and (2.38) is:
\[
\begin{align*}
& B_{F} V_{F}+B_{F X} V_{X}+W_{F}=0  \tag{2.39a}\\
& B_{G X} V_{X}+W_{G}=0 \tag{2.39b}
\end{align*}
\]
where \(B\) represents the partials matrix of the functions \(F\) and \(G\) with respect to the observed quantities ( \(\mathrm{B}_{\mathrm{F}}\) ) and the unknown parameters ( \(\mathrm{B}_{\mathrm{F}}, \mathrm{B}_{6 x}\) ); V represents the correction vectors ( \(V_{F}, V_{X}\) ); and \(W\) represents the misclosure vectors ( \(W_{F}\), \(W_{G}\) ) when the initial or 'epproximate' values of the observed quantities and unknown parameters are substituted in equations (2.37) and (2.38).

If we represent the weight matrices of the observed quantities by \(\mathrm{P}_{\mathrm{F}}\) and of the unknown parameters by \(\mathrm{P}_{\mathrm{x}}\), it may be shown (Mikhail, 1970), that for the usual least value of the sum of squares of the weighted residuals (or correction vectors) under the condition that the equations (2.39) are satisfied, i. e., for a mir : num value of \(\varphi\) given by:
\[
\begin{equation*}
\varphi=V_{F}^{\prime} P_{F} V_{F}+V_{X} P_{X} V_{X}-2 \mathrm{~K}_{\bar{F}}^{\prime}\left(B_{F} V_{F}+B_{F X} V_{X}+W_{F}\right)-2 K_{G^{\prime}}\left(B_{G X} V_{X}+W_{G}\right) \tag{2.40}
\end{equation*}
\]
where \(K_{F}\), \(\lambda_{s}\) are the Lagrange multipliers, the solution is obtained by:
\[
\left[\begin{array}{c}
\mathrm{V}_{x}  \tag{2.41}\\
-\mathrm{K}_{\mathrm{a}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbb{B}_{F x^{\prime}} \mathrm{P}_{\mathrm{F}} \mathrm{~B}_{\mathrm{fx}}+\mathrm{P}_{x} & \mathrm{~B}_{\mathrm{G}} x^{\prime} \\
\mathrm{B}_{\mathrm{ax}} & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
-\mathrm{B}_{\mathrm{Fx}} \prime \mathrm{P}_{\mathrm{F}} W_{F}+\mathrm{P}_{\mathrm{x}} W_{x} \\
-W_{a}
\end{array}\right]
\]
where \(W_{X}\) is the vector of difference between the observed value of parameters, and the approximate value used in computing the misclosures \(W_{F}\) and \(W_{G}\). This enables the a-priori estimates of residual gravity anomalies from terrestrial data to be used in a combination solution with satellite to satellite tracking data.

If there were no conditions to be satisfied by the adjusted values of the unknown parameters, i.e. if we delete equations (2.38), (2.39b) and the last term in equation (2.40), the correction vector \(V_{x}\) for the unknown parameters would be given by:
\[
\begin{equation*}
V_{X}=\left(B_{F X}{ }^{\prime} P_{F} B_{F X}+P_{X}\right)^{-1}\left(-B_{F X} P_{F} P_{F}+P_{X} W_{X}\right) \tag{2.42}
\end{equation*}
\]

The matrices \(B_{f x}\) and \(P_{x}\) may be partitioned according to the correction vector \(V_{x}\) referring to arc parameters and the residual gravity anomalies, represented by the subscripts 'a' and 'k' respectively, i.e.,
\[
\begin{align*}
& V_{x^{\prime}}=\left(V_{a}, V_{k}\right) \\
& B_{f_{x}}=\left(B_{a}, B_{k}\right) \\
& P_{x}=\left[\begin{array}{ll}
\Sigma_{a} & 0 \\
0 & \Sigma_{k}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
P_{a} & 0 \\
0 & P_{k}
\end{array}\right] \\
& W_{x^{\prime}}=\left(W_{a}, W_{k}\right) \tag{2.43}
\end{align*}
\]
where \(\Sigma_{a}, \Sigma_{k}\) are the a-priori variance-covariance matrices of the arc parameters and residual gravity anomalies respectively, and we have talsen the scalar variance of unit weight, \(\sigma_{o}^{2}\), as unity.

Equation (2.42) may then be represented by:
\[
\begin{align*}
& {\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a}} \\
\mathrm{~V}_{k}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{B}_{k}^{\prime} \Sigma_{F}^{-1} \mathrm{~B}_{\alpha}+\Sigma_{k}^{-1} & \mathrm{~B}_{k}^{\prime} \Sigma_{k}^{-1} \mathrm{~B}_{k} \\
\left(\mathrm{~B}_{\alpha^{\prime}} \Sigma_{F}^{-1} \mathrm{~B}_{k}\right)^{\prime} & \mathrm{B}_{k}^{\prime} \Sigma_{\mathrm{F}}^{-1} \mathrm{~B}_{k}+\Sigma_{\psi}^{-1}
\end{array}\right]^{-1} \text {. }} \\
& {\left[\begin{array}{ll}
-B_{a}^{\prime} \Sigma_{F}^{-1} W_{F}+\Sigma_{k}^{-1} & W_{k} \\
-B_{k}^{\prime} \Sigma_{F}^{-1} W_{F}+\Sigma_{k}^{-1} & W_{k}
\end{array}\right]} \\
& -\left[\begin{array}{ll}
N_{k} & N_{* k} \\
N_{k k}^{\prime} & N_{k}
\end{array}\right]^{-1}\left[\begin{array}{l}
-U_{k} \\
-U_{k}
\end{array}\right] \tag{2.44}
\end{align*}
\]

Equation (2.44) may be solved for \(V_{k}\) (Uotila, 1967) as:
\[
\begin{equation*}
V_{k}=\left(N_{k}-N_{a k}^{\prime} N_{a}^{-1} N_{a k}\right)^{-1}\left(-U_{k}+N_{a k}^{\prime} N_{a}^{-1} U_{a}\right) \tag{2.45}
\end{equation*}
\]

We may now consider the expressions for the arc parameters in equation \((2.44)\) to be partitioned according to individual arcs, i. e.
\[
\begin{align*}
& N_{Q}=\left[\begin{array}{llll}
N_{1} & & & 0 \\
& N_{2} \cdot & \\
0 & & &
\end{array}\right] \\
& N_{a k}^{\prime}=\left(N_{a_{2} k}^{\prime}, \quad N_{a_{2}}^{\prime}, \ldots\right) \\
& \mathrm{U}_{\mathrm{a}}^{\prime}=\left(\mathrm{U}_{\mathrm{a}_{\mathrm{I}}}, \mathrm{U}_{\mathrm{a}_{\mathrm{a}}}, \ldots . .\right) \\
& \Sigma_{a}=\left[\begin{array}{llll}
\Sigma_{R_{1}} & & & 0 \\
& \Sigma_{a_{2}} & \\
0 & & \ddots
\end{array}\right] \tag{2.46}
\end{align*}
\]
where we have assumed that firstly, there is no covariance between the arc parameters for different arcs; and secondly, that the observations in any given arc do not depend on the arc parameters of any other arcs. Then it may be shown (Geodyn Vol. I Sec. 10.2, 1972) that the terms referring to arc parameters in equation (2.45) are obtained as summations for individual arcs. Denoting the \(r^{\text {th }}\) arc with subscript \(r\), equation (2.45) may be represented by:
\[
\begin{equation*}
V_{k}=\left(N_{k}-\sum_{r} N_{r k}^{\prime} N_{r}^{-1} N_{r k}\right)^{-1}\left(-U_{k}+\sum_{r} N_{r k}^{\prime} N_{r}^{-1} U_{r}\right), \tag{2,47}
\end{equation*}
\]
which is the form in which individual arc parameters are successively eliminated, as observations in each arc are processed to give, say for the \(r^{\text {th }}\) arc, \(N_{r}, N_{r k}\), \(\mathrm{U}_{\mathrm{r}}\); and the contribution to \(\mathrm{N}_{\mathrm{k}}, \mathrm{U}_{\mathrm{k}}\) from the observations in the \(r^{\text {th }}\) arc.

The expressions for the correction vector \(V_{k}\) for the arc parameters, and for its partition according to individual arc \(V_{r}\), are given in Geodyn Vol. I Sec. 10.2 (1972), and have not been given here, as it was found that these could not be recovered from short arcs of 4 to 20 minutes duration. Accordingly the starting values of inertial coordinates and velocities for each arc were fixed by assigning them very low variances. This resulted in the summation terms for the arc parameters in equation (2.47) becoming much smaller than the terms for the residual anomalies, and the correction vector \(V_{k}\) could in effect be represented as;
\[
\mathrm{V}_{\mathrm{k}}=-\mathrm{N}_{\mathrm{k}}^{-1} \mathrm{U}_{\mathrm{k}} \text {, }
\]
which is essentially the same as equation (2.1).
Further, as mentioned in Chapter 1, the correction vector \(V_{k}\) was recovered in all the investigations throughout this study from satellite data only, i. e. summed range rate, or summed range, observations. Accordingly, the weight matrix for the residual gravity anomalies, \(P_{x}\) in equation (2.43), was always (except Sec. 5.2, 5.3) kept as 0.

\subsection*{2.2.2 Weight Matrix}

The standard deviation of all summed range rate observations was taken as \(0.08 \mathrm{~cm} / \mathrm{sec}\). based on an integration interval of 10 seconds. All covariances were assumed to be zero resulting in the variance-covariance matrix of observations, and hence the weight matrix \(P_{F}\), being diagonal (scalar variance of unit weight \(\sigma_{0}^{a}\) was kept as 1). The assumption of zer:o covariance is reasonable if all observations, say at 10 seconds interval, are used without converting them to 'synthetic' observations, say at 1 minute interval. The observations at 1 minute interval were used in Sec. 4. 1, but these could still be considered as independent observations, as all intervening observations at 10 seconds interval were ignored. However, the effect of using all independent observations, at 10 seconds interval, has been investigated in Sec. 4.1 and no observations were 'thrown away' in later sections.

The standard deviation of summed range observations was taken as 10 meters (NASA, 1974, p. 4-78), and all observations were considered to be independent. The summed range observations have been used in one test only in Sec. 4.1.5. As these gave very poor anomaly recovery, only summed range rate observations were used in all other investigations.

\subsection*{2.2.3 Constraints for IIarmonic Coefficients}

We may now specify if any constraints are to be imposed on the adjusted values of residual gravity anomalies to fulfill any conditions, as in equation (2.38). If the set of anomalies being recovered was a global one, then clearly the 6 coefficients of degree 0,1 and some of degree 2 ; i.e. \(a_{0,0}^{\prime} ; a_{1,0}^{\prime} ; a_{1,1}^{\prime} ; b_{1,1}^{\prime} ; a_{3,1}^{\prime}\); \(b_{a, 1}^{\prime}\) should be zero in the spherical hermonic expansion of the adjusted residual anomalies:
\[
\begin{equation*}
\Delta g_{k}^{\prime}=\sum_{n=0}^{\infty} \int_{m=0}^{n}\left(a_{n m}^{\prime} \cos m \lambda+b_{n a}^{\prime} \sin m \lambda\right) P_{n a}\left(\sin \varphi^{\prime}\right) \tag{2.48}
\end{equation*}
\]

This would correspond to the mean value of the residual gravity anomalies over the whole earth being zero，the origin of the coordinate system being at the cen－ ter of gravity of the earth，and the \(Z\) axis of the coordinates system coinciding with the mean rotation axis of the earth．The formation of these 6 condition equations has been described by Rapp（1971a）．

However，while these conditions may be held for anomalies over the whole earth，there is no clear justification for them to hold over regional areas，even as large as say \(1 / 8\) th of the globe，investigated in Sec．4．1．The contributions to the fully normalized harmonic coefficients \(\overline{\mathrm{a}}_{\mathrm{na}}^{\prime \prime},{\overline{万_{n!}}}^{\prime \prime}\) given by：
\[
\left\{\begin{array}{l}
\overline{a_{n m}^{\prime}}  \tag{2.49}\\
\overline{\bar{x}_{n g}^{\prime}}
\end{array}\right\}=\frac{1}{4 \pi} \iint \Delta \mathrm{~g}^{\prime} \overline{\mathrm{P}_{\mathrm{na}}}\left(\sin \varphi^{\prime}\right)\left\{\begin{array}{c}
\cos m \lambda \\
\sin m \lambda
\end{array}\right\} d \sigma
\]
from a regional area \(\sigma_{1}\) ，may be balanced by other regions \(\sigma_{2}, \sigma_{3}, \ldots\) ；so that if a harmonic coefficient is zero over the whole earth，it is not required to be zero separately over regional areas．

The effect of imposing the 6 conditions for low degree harmonic coef－ ficients of degree 0， 1 and some degree 2 being zero，was tested in Sec．4．1．4 over an area of latitudinal extent \(70^{\circ}\) and longitudinal extent of about \(60^{\circ}\) ．The anomaly recovery was found to become worse when these conditions were imposed as compared to the adjustment without imposing any conditions．

Again，if the residual gravity anomalies were recovered over the whole earth，it could be argued that as the gravity anomaly，\(\Delta \mathrm{g}_{\mathrm{pc}}\) ，equivalent to the effect of the potential coefficients up to degree \(N_{c} \times\) has been removed in equation（2．22），the values of \(\overline{\mathrm{C}}_{\mathrm{na}}{ }^{\prime}, \overline{\mathrm{S}}_{\mathrm{na}}{ }^{\prime}\)（see equation（2．20））up to degree \(\mathrm{N}_{\mathrm{max}}\) as obtained from the adjusted values of the residual gravity anomalies，\(\Delta \mathrm{ga}^{\prime}{ }^{\prime}\) ， should be zero，i．e．，
\[
\begin{align*}
& \left\{\begin{array}{c}
\overline{C_{n ⿷}} \\
\overline{S_{n a}}
\end{array}\right\}=\frac{1}{4 \pi \%(n-1)} \iint_{\sigma} \Delta g_{a}^{\prime} \overline{P_{n \pi}}\left(\sin \varphi^{\prime}\right)\left\{\begin{array}{l}
\cos m \lambda \\
\sin m \lambda
\end{array}\right\} \quad d \sigma \\
& =\frac{1}{\gamma(\mathrm{n}-1)}\left\{\frac{\overline{a_{n m}},}{\overline{\mathrm{~b}_{n \pm 1}^{\prime}}}\right\} \\
& =0 \text { for } \mathrm{m} \leq \mathrm{n} \leq \mathrm{N}_{\mathrm{max}} \text {, } \tag{2.50}
\end{align*}
\]
where \(\gamma\) is the average value of gravity over the earth, say 979.8 gats . Equation (2.50) corresponds to the coefficients up to degree \(N_{\text {axx }}\) in the spherical harmonic expansion of the adjusted residual gravity anomalies being zero, i.e, faly higher degree ( \(>\mathrm{N}_{\mathrm{nax}_{\mathrm{x}}}\) ) harmonics are present in the expansion of \(\Delta \mathrm{g}_{\mathrm{a}}^{\prime}\). Similar constraints in the case of residual surface densities are recommended in Geodyn Vol. 1, Sec. 8.3.2.4 (1972).

However, if we cannot justify constraints for low degree harmonic coefficients in regionc! sueas, in contrast to a global coverage, there is still less justificecion for higher degree ( \(2<\mathrm{n} \leq \mathrm{N}_{2} \mathrm{~s}_{\mathrm{x}}\) ) constraints. Hence, except for the test in Sec. 4.1.4, no constraints were imposed on the adjusted value of the residual gravity anomalies in regional or local areas in other investigations in this study.

\subsection*{2.3 Procedure of Computations}

\subsection*{2.3.1 Orbital Parameters of the Close Satellite}

The generation of resicual mean gravity anomalies over \(10^{\circ}, 5^{\circ}\) and \(2^{\circ} .5\) equal area blocks will be described in Sec. 3.2 and 3.3. After obtaining the value of the earth's gravitational potential by equations (2.20) and (2.21), we would like to choose the orbital \({ }_{j}\) arameters of the close satellites at a height of about 900 km and 250 km respectively, so that the trace of the subsatellite points 'samples' the area of investigation in an optimum manner. The choice of the orbital parameters for the relay satollite has been described in Sec. 1.1. We will now describe the choice of the orbital parameters at the same initial epoch, and in the same coordinate system, for the close satellite at a height of about 900 km . The orbital parameters for the close satellite at a height of about 250 km were chosen similarly.

The initial values used were inclination \(i=115^{\circ}\), eccentricity \(c=, 006\), and the nominal vaiue of the semi-major axis \(a=7214 \mathrm{~km}\). The argument of preigee, \(\omega\), was obtained so that perigee occurred when the latitude of the subsatellite point was the same as the south bounding latitude, \(\varphi_{s}\), of the area of investigation; i.e.,
\[
\begin{equation*}
\omega=\sin ^{-1}\left(\sin \varphi_{\theta} / \sin \mathrm{i}\right), \quad-\pi / 2<\omega<\pi / 2 \tag{2.51}
\end{equation*}
\]

The right ascension of the ascending node, \(\Omega\), was obtained so that at the initial epoch (Greenwich siderial time \(-\theta_{0}\) ), the longitude of the subsatellite point was \(\lambda_{H}: \mathrm{s} / 2\), where \(\lambda_{H}\) is the longitude of the western limit of the aroa of investigation and \(s^{\circ}\) is the size of the gravity anomaly blocks, say \(10^{\circ}\).
\[
\begin{align*}
& \alpha^{\prime}=\cos ^{-1}\left(\cos \omega / \cos \varphi_{\mathrm{B}}\right),-\pi / 2<\alpha^{*}<\pi / 2  \tag{2.52}\\
& \Omega=\lambda_{H}+s / 2+\theta_{0}-\alpha^{\prime}
\end{align*}
\]

The value of the semi-major axis was optimized so that when the subsatellite trace starts again over the area of investigation, after completing its trajectory in longitude around the earth, it is offset from the initial trace computed in equations (2.51) and (2.52) by \(s^{\circ}\). This is obtained by first computing the ratio \(\mathrm{k}^{\prime}\) of the mean motion \(n\) of the satellite, to the siderial rotation rate \(\theta\) of the earth. The mean motion is corrected for the perturbation in mean motion, \(\Delta n\), and the motion of perigee \(\dot{\omega}\) due to the second zonal harmonic \(C_{2,0}\) only. Lunisolar contributions are also included, but have not been shown in the equations given below. Tha ratio \(\mathrm{k}^{\prime}\) is rounded off to the nearest integer and \(s^{\circ} / 2 \pi\) is reduced from it. If we now multiply it by \(\dot{\theta}\) and remove \(\Delta n\) and \(\dot{\omega}\) terms, we get the new value of mean motion \(\bar{n}\), which will ensure the condition of the initial and next subsatellite traces starting over the area being offset by \(s^{\circ}\). The optimized value \(\bar{a}\) of the semi-major axis is then obtained from \(\bar{n}\) by Kepler's third law. The above algorithm may be represented by the following equations:
\[
\begin{align*}
& \mathrm{n}=(\mathrm{kM})^{\text {硰 }} \mathrm{a}^{-3 / 2} \\
& \Delta n=\frac{3 n C_{2,0} a_{e}^{a}}{4\left(1-\mathrm{e}^{2}\right)^{3 / 2} a^{2}}\left(3 \cos ^{2} i-1\right) \\
& \dot{\omega}=\frac{3 n C_{2,0} a_{b}^{B}}{4\left(1-e^{z}\right)^{2} a^{a}}\left(1-5 \cos ^{2} i\right) \\
& k^{\prime}=(\dot{n}+\Delta n+\dot{\omega}) /{ }_{\theta}^{n}  \tag{2.53}\\
& k^{\prime}=\text { integer part of }\left(\mathrm{k}^{\prime}+1 / 2\right)-\mathrm{s}^{0} / 2 \pi \\
& \overline{\mathrm{n}}=\mathrm{k}^{\prime} \dot{\theta}-\Delta \mathrm{n}-\dot{\omega} \\
& \overline{\mathrm{a}}=(\mathrm{kM})^{1 / 3}(\overline{\mathrm{n}})^{-2 / 3}
\end{align*}
\]

The algorithm represented by equations (2.51) to (2.53) has been described by Kaula ( 1972 , pages 25,26 ), and the initial orbital parameters for the close satellite in this study were computed using a shortened version of the subroutines kindly supplied by him, The optimized values of the Keplerian elements at the
initial epoch of 690921 (YYMMDD) 01 hr .33 min .36 .3 sec . were:
\[
\begin{array}{ll}
\mathrm{a}=7258.48 \ldots \mathrm{~km} & \mathrm{M}=0.0 \\
\mathrm{e}=0.006 & \omega=0.0  \tag{2.54}\\
\mathrm{i}=115^{\circ} & \Omega=238.59 . .
\end{array}
\]
with the latitude and longitude of the subsatellite point being \(0^{\circ}\) and \(215^{\circ}\) E. respectively.

The corresponding inertial coordinates and velocities, in terms of the inertial coordinate system defined by the true of date coordinates of the reference date 690921.0 , were:
\[
\begin{array}{ll}
X_{21}=-3759.56 \ldots \mathrm{~km} & \dot{X}_{21}=-2.689 \ldots \mathrm{~km} / \mathrm{sec} \\
X_{22}=-6157.99 \ldots \mathrm{~km} & \dot{X}_{22}=1.641 \ldots \mathrm{~km} / \mathrm{sec} \\
X_{23}=\quad 0.0 \ldots \mathrm{~km} & \dot{X}_{23}=0.675 \ldots \mathrm{~km} / \mathrm{sec}
\end{array}
\]

The period of orbit of this satellite was 102.4 minutes, the average altitude for ascending arcs was about 854 km and for the descending arcs, it was about 908 km . The observations pertaining to this close satellite have been used in Sec. 4.1 and Sec. 5. 1.

The initiai values for the close satellite at a height of about 250 km were \(i=115^{\circ}, \mathrm{e}=.0005\), nominal value for \(\mathrm{a}=6626 \mathrm{~km}\), and \(\mathrm{s}^{\circ}-2.5\). The optimized values of the Keplerian elements at the initial epoch were:
\[
\begin{array}{ll}
\mathrm{a}=6632.84, \ldots \mathrm{~km} & \mathrm{M}=0.0 \\
\mathrm{e}=0.0005 & \omega=0.0 \\
\mathrm{i}=115^{\circ} & \Omega=248^{\circ} 88 . . \tag{2.56}
\end{array}
\]
with the latitude and longitude of the subsatellite point being \(0^{\circ}\) and 261.25 E. respectively.

The corresponding inertial coordinates and velocities were:
\[
\begin{array}{ll}
\mathrm{X}_{21}=1702.63 \ldots \mathrm{~km} & \dot{X}_{21}=-3.167 \ldots \mathrm{~km} / \mathrm{sec} \\
\mathrm{X}_{22}=-6407.16 \ldots \mathrm{~km} & \dot{\mathrm{X}}_{22}=-0.841 \ldots \mathrm{~km} / \mathrm{sec} \\
\mathrm{X}_{23}=0.0 \ldots \mathrm{~km} & \dot{\mathrm{X}}_{23}=7.029 \ldots \mathrm{~km} / \mathrm{sec}
\end{array}
\]

The period of orbit of this satellite was 89.5 min , and the average altitude was about 255 km . The observations pertaining to this arc have been used in Sec. 4. 2 and See. 5.2.

\subsection*{2.3.2 Simulation of Observations}

Having obtained the inertial position and velocity vectors at the initial epoch in equations (2.55) and (2.57), the inertial position and velocity vectors of the satellite at any later time could be obtained by integrating the equations of motion:
\[
\begin{equation*}
\ddot{X}_{1}=\frac{\partial V}{\partial X_{1}}=\frac{\partial U}{\partial X_{1}}+\frac{\lambda T}{\partial X_{1}} \tag{2.58}
\end{equation*}
\]
where the symbols are the same as in equations (2.19) to (2.21). Initially, the purpose of this integration was to obtain the inertial position and velocity vectors over an extended period of time of 8 to 32 days, and to obtain the latitude and longitude of the subsatellite points at a specified interval, to determine the incidence of satellite trajectories over the area of investigation. After these trajectories were plotted, it was possible to choose the particular trajectories as in Chapters 4 and 5 , and the approximate duration for which the observational data need to be simulated. As each ascending or descending satellite trajectory in the area would later be used as an indiviclual arc, and the starting coordinates for these individual arcs would have no relation to each other, these starting coordinates need not be computed with full rigor. Accordingly, only the first term on the right hand side of equation (2.58) was used in this initial integration of the orbits of the close satellites, and also of the relay satellite, using the Cowell orbit generator program (Cigarski, Velez, 1967). As the gradient of the anomalous potential \(T\), due to the residual gravity anomalies, was not used in these computations, it resulted in a very considerable saving of computer time (Sec. 6.2).

The Cowell orbit generator program is fully described in the above referenced publication and does not need any elaboration here. The integration model was lsept as fixed order and fixed step. The order of integration for all the 3 satellites was kept as 11 (Velez, 1968, page 9), while the fixed step size was kept as 5, 1 and霊 minutes respectively (Robinson, 1970) for the relay satellite, and the close satellites at heights of about 900 and 250 km .

For the simulation of 'observations' for 4 to 20 minutes along the arcs chosen for investigation in Chapters 4 and 5 , the orbits of the satellites were integrated using the gradients of both the normal and anomalous potentials in equation (2.58), by the Geodyn program (Nov. 1972), which was modified to accept residual gravity anomalies. The expressions for \(\partial U / \partial X_{1}\) are deseribed in Geodyn Vol. I, Sec. 8.3.1 (1972). The expression for \(\partial \mathrm{T} / \lambda \mathrm{X}_{1}\) from equations (2.24), (2.29) and (2.30) is:
\[
\begin{gathered}
\frac{\partial T}{\partial X_{i}}=\left.\frac{R}{4 \pi} \frac{\partial r}{\partial X_{1}} \sum_{k} \Delta g_{k}^{\prime} \frac{\partial S}{\partial r}\right|_{k} d \sigma_{k}-\left.\frac{\partial \varphi^{\prime}}{\partial X_{i}} \sum_{k} \Delta \mathrm{~g}_{k}^{\prime} \frac{\partial S}{\partial \psi}\right|_{k} \cos \alpha_{k} d \sigma_{k} \\
- \\
-\left.\frac{\partial \lambda}{\partial X_{1}} \cos \varphi^{\prime} \sum_{k} \Delta \mathrm{~g}_{k}^{\prime} \frac{\partial S}{\partial \psi}\right|_{k} \sin \alpha_{k} d \sigma_{k}
\end{gathered}
\]
which may be evaluated using equations (2.25) to (2.28) and (2.31) to (2.35). Further, as in equation (2.36), the value of the derivatives of the Stokes' function in equation (2.59) were evaluated by quadrature by dividing the kth anomaly block into \(\ell\) sub-blocks ( 4,9 , or 16 as per limiting values of \(\psi_{k}\) given below equation (2.36)):
\[
\begin{align*}
& \left.\frac{\partial \mathrm{S}}{\partial \mathrm{r}}\right|_{k} \mathrm{~d} \sigma_{\mathrm{k}}=\left.\sum_{\ell} \frac{\lambda S}{\partial \mathrm{r}}\right|_{\ell} \mathrm{do}_{\ell}  \tag{2.60}\\
& \left.\frac{\partial S}{\partial \psi}\right|_{k}\left\{\begin{array}{c}
\cos \alpha_{k} \\
\sin \alpha_{k}
\end{array}\right\} \quad \mathrm{d} \sigma_{k}=\left.\sum_{\ell} \frac{\partial S}{\partial \psi}\right|_{\ell}\left\{\begin{array}{c}
\cos \alpha_{\ell} \\
\sin \alpha_{\ell}
\end{array}\right\} d \sigma_{\ell}
\end{align*}
\]

The gradient of the anomalous potential at a particular satellite position \(X_{i}\) in equation (2.59) should ideally be obtained by summation of the index \(k\) over the whole earth. However, the contribution of the distant gravity anomalies \(\left(\psi_{s}>30^{\circ}\right)\) is small, and it is optimal (Firvonen and Moritz, 1963) to include the anomalies up to spherical distance \(\psi_{k} \leq 30^{\circ}\) from the subsatellite point. Further, in the present study, the normal potential \(U\) in equation (2.58) includes the coefficients up to degree and order 12, and thus models the global effects. The summation in equation (2.59) using residual gravity anomalies \(\Delta g_{f}^{\prime}\) (equation (2.22)) could then be restricted to a still smaller value for \(\psi_{k}\). However, for all investigations in this study, the residual gravity anomalies were incladed up to a spherical distance \(30^{\circ}\) around the area of investigation. This will be further explained in Sec. 3.4.

The actual simulation of observations in the modified Geodyn program was done by first writing on a magnetic tape, in the Geos-2 data center format (Geodyn Systems Description Vol. III pages C-22 to C-26, 1972), zero value for observations of summed range rate, or summed range, for all times for which observations were required to be simulated. These zero observations were then used in the data reduction mode of the Geodyn program, with the earth's gravity field described by residual gravity anomalies up to \(30^{\circ}\) all around the area of investigation, besides the spherical harmonic potential coefficients up to dogree and order 12 (hereafter referred to as \((12,12)\) potential coefficients. The
orbits of the relay and close satellite were then generated in this grayity field using equations ( 2.58 ) to (2.60), and the computed values of summed range rate \(\dot{R}_{B}\), or summed range \(\mathrm{R}_{8}\), were obtained as in equation (2.8) and (2.3) corresponding to the times of the zero observations. The misclosures between the zero observations and the corresponding computed values were then written out on another tape, which was subsequently reformatted in the Geos-2 data center format to give the required simulated observations. A subset of the simulated observations could be prepared by deleting some observations near the beginning or ending of the 'satellite arc' for the subsatellite points to lie within specified bounding values.

\subsection*{2.3.3 Reduction and Adjustment of Data}

The simulated observations for the desired number of satellite arcs could then be processed in another Geodyn program in the data reduction mode, with the earth's gravity field now described only by the (12, 12) potential coefficients. The computed value of \(\dot{\mathrm{P}}_{\mathrm{B}}\), or \(\mathrm{R}_{\mathrm{B}}\), now refers to the approximate value of the residual gravity anomalies as zero, and the misclosure vector from the simulated observations is obtained as outlined in Sec. 2.1.1. The variational equations (2.19) for the arc parameters, and the desired number of residual gravity anomalies, are integrated along with the integration of the equations of motion for the satellite orbits. The order of integration for the variational equations was kept as 11 as in the equations of motion, but the step size was increased to 75 and 35 seconds, from 60 and 30 seconds for the equations of motion, for the close satellites at heights of about 900 and 250 km respectively.

The normals matrix and the constant vector of equation (2.47), are formed by a summation process by the contributions of observations from each arc, and the accumulated values are written out on magnetic tape after the processing of observations of each arc, starting from the first arc. It is therefore possible to separate out the contributions to the normals matrix and the constant vector for each are individually, and then, if so desired, to combine them in any order after deleting the contributions of the observations of any arc, if required.

After the normals and constant vector are finally formed for the desired number of arcs, we may invert the normals matrix and solve for the unknown parameters, the residual gravity anomalies in this study, as in equation (2.47). We may also like to solve for a smaller subset of anomalies. This is possible without having to form the normals and constant vector afresh. We may visualize it with refernce to equation (2.1), where if the k th paiameter is not required to be included in the solution, we may delete the \(\mathrm{k}^{\text {th }}\) element in the solution and constant vectors \(X\) and \(U\), and the \(\mathrm{K}^{\text {th }}\) row and column of the normals matrix N . The process may be repeated till all the required number of elements in \(X\) and U , and all the rows and columns of N , are deleted for all the parameters not required to be included in the solution. In actual practice, advantage is taken of the s: mmetry of the normals matrix in reducing the computer core storage, by storing column-wise only the lower triangular portion of the normals matrix in a 'packed' vector form. Gareful manipulation is then recpulred to ensure that
only the required elements of the rows and columns pertaining to the parameters being deleted from the solution, are removed from their respective locations from the packed vector form of the normals matrix; and after their removal the normals matrix is 'repacked' correctly.

\section*{3. GRAVITY ANOMALIES FOR DATA SIMULATION}

\section*{3.1 \(10^{\circ}, 5^{\circ}\) and \(2^{\circ} .5\) Equal Area Blocks}

The residual gravity anomaliks \(\Delta g^{\prime}\) used in this study were a set of terrestrial free air gravity anomalies \(\Delta g_{\mathrm{g}}\), from which we have subtracted the value of gravity anomaly \(\Delta_{\mathrm{g}}^{\mathrm{g}} \mathrm{implied}\) by a set of reference potential coefficients considered as known constant values, i.e.
\[
\begin{equation*}
\Delta \mathrm{g}^{\prime}=\Delta \mathrm{g}_{\mathrm{t}}-\Delta \mathrm{g}_{\mathrm{pc}} \tag{3.1}
\end{equation*}
\]

The set of terrestrial gravity anomalies were mean anomalies defined over equal area blocks. We first consider a \(10^{\circ}\) equal area block in terms of a \(10^{\circ} \times 10^{\circ}\) 'basic' block, as defined by Rapp (1971b). Its latitude limits were defined by the equator and \(\pm 10^{\circ}\) parallel of latitude, and longitudinal extent as \(10^{\circ}\) starting from the Greenwich meridian and proceeding east. The latitudinal extent of all other blocks was everywhere \(10^{\circ}\) starting from equator, and proceeding north or south. The longitudinal extent \(\Delta \lambda\) of a block was determined to meet 3 requirements, i.e. its area \(A_{s}\) will be nearly equal to the area of the basic block \(A_{B}\); there will be integer number of blocks \(n\) in each latitude zone; and starting from the Greenwich meridian and proceeding east, its eastern longitude \(\lambda_{\mathrm{E}}\) will be an integer number of degrees. Denoting the north and south limits of a block by \(\varphi_{N}\) and \(\varphi_{S}\) and its east and west limits by \(\lambda_{E}\) and \(\lambda_{W}\), the above requirements may be expressed as:
\[
\begin{align*}
A_{B}= & \int_{\varphi_{S}}^{\varphi_{N}} \int_{\lambda_{W}}^{\lambda_{E}} \cos \varphi d \varphi d \lambda=\Delta \lambda\left(\sin \varphi_{N}-\sin \varphi_{S}\right) \\
& =A_{B}=\frac{10^{\circ}}{\pi} \sin 10^{\circ}, \\
\Rightarrow \Delta \lambda & =A_{B} /\left(\sin \varphi_{N}-\sin \varphi_{S}\right) \\
n & =\text { integer part of }\left(360^{\circ} / \Delta \lambda^{\circ}+0.5\right)  \tag{3.2}\\
\Delta \lambda^{\circ} & =360^{\circ} / \mathrm{n} \\
\lambda_{E_{1}}^{\circ} & =\text { integer part of }\left(i \Delta \lambda^{\circ}+0.5\right), i=1, \mathrm{n}-1, \\
\lambda_{E_{n}}^{\circ} & =360^{\circ}
\end{align*}
\]

We next consider a \(5^{\circ}\) equal aron block. This was defined as in Hajela (1973), to be 4 component blocks of a \(10^{\circ}\) oqual area block. The latitudinal extent of all \(5^{\circ}\) equal area blocks was then \(5^{\circ}\) starting from the equator and proceeding north or south. The longitudinal extent was however fixed to ensure
that the extreme limits of the 4 component \(5^{\circ}\) equal area blocks, on the west and the east, were the same as that of the \(10^{\circ}\) equal area block; and the limit in the center of the \(10^{\circ}\) equal area block was obtained to be half of its longitudinal extent rounded off to the nearest integer degrees. Figure 3.1 clarifies these divisions.


Figure 3.1 Scheme of Subdivision of \(10^{\circ}\) Epual Area Blocks Into \(5^{\circ}\) and \(2^{\circ} .5\) Equal Area Blocks.

This scheme of obtaining \(5^{\circ}\) equal area blocks as 4 components of a. \(10^{\circ}\) equal area block does result in the area of several \(5^{\circ}\) blocks not closely fulfilling the equal area condition, as shown in the last column of Table 2B, page 7 of Hajela (1973). This scheme however, enables the gravity anomaly of \(45^{\circ}\) blocks to be meaned to give the gravity anomaly of a \(10^{\circ}\) block, which is very useful.

The \(2^{\circ} .5\) equal area blocks were similarly obtained as 4 component blocks of a \(5^{\circ}\) equal area block. The \(5^{\circ}\) equal area blocks had been subdivided into 25 \(1^{\circ}\) equal area blocks for the purpose of prediction of anomalies, as described in Sec. 3, page 4 of Rapp (1972). These \(251^{\circ}\) equal area blocks were then grouped into 9 blocks to give the north-west component \(2^{\circ} .5\) block, 6 blocks each to give the north-east and south-west component \(2^{\circ} .5\) block, and 4 blocks to give the south-east component \(2^{\circ} .5\) block. This scheme resulted in the \(2^{\circ} .5\) equal area blocks being considerably unequal in area, but the basic characteristic of being able to mean the gravity anomalies, after weighting according to area, from smaller blocks to successively larger blocks was maintained. Thus the values in \(1^{\circ} \times 1^{\circ}\) equiangular blocks could be meaned to give the value in a \(1^{\circ}\) equal area block, and latter values could be successively meaned to give the values for \(2^{\circ} .5,5^{\circ}\) and \(10^{\circ}\) equal area blocks. The scheme of subdivision into component blocks has been shown in Figure 3.1 illustrating \(410^{\circ}\) equal area blocks, 16 \(5^{\circ}\) equal area blocks and \(64 \quad 2^{\circ} .5\) equal area blocks. The word 'equal area' blocks has been retained to differentiate from equiangular blocks. However, as we shall be using throughout this study only the equal area blocks as per the scheme shown in Figure 3.1, we may also refer to them simply as \(10^{\circ}, 5^{\circ}\), and \(2^{\circ} .5\) blocks, unless the word 'equal area' adds clarity to the description.

\subsection*{3.2 Reference Potential Coefficients Set and \(10^{\circ}\) Equal Area Residual Anomalies}

The set of potertial coefficients used as a reference to describe the earth's gravitational field, were those obtained by least squares collocation by Rapp (1973a). The mean gravity anomaly \(\Delta \mathrm{g}_{\mathrm{pc}}\) of a block, bounded by geocentric latitudes \(\varphi_{N}^{\prime}, \varphi_{S}^{\prime}\) and longitudes \(\lambda_{E}, \lambda_{W}\), as implied by the potential coefficients up to degree \(N_{a n x}\), is given by (Desrochers, 1971, page 13):
\[
\Delta g_{p c}=\Delta g_{0}+\frac{\gamma}{\Delta \lambda\left(\sin \varphi_{N}^{\prime}-\sin \varphi_{s}^{\prime}\right)} \sum_{n=2}^{N_{\text {nax }}}(\mathrm{n}-1)\left[\Delta \lambda{\overline{C_{n}}, 0}_{*}^{\int_{\varphi_{S}^{\prime}}^{\varphi_{N}^{\prime}} \bar{P}_{n, 0}\left(\sin \varphi^{\prime}\right) \cos \varphi^{\prime} d \varphi^{\prime}}\right.
\]
\[
\begin{align*}
& +\sum_{\mathrm{a}=\mathrm{L}}^{\mathrm{n}} \frac{1}{\mathrm{~m}}\left\{\overline{\mathrm{C}}_{\mathrm{n}, \mathrm{n}}\left(\sin \mathrm{~m} \lambda_{E}-\sin \mathrm{m} \lambda_{\mathrm{H}}\right)-\overline{\mathrm{S}}_{\mathrm{n}, \mathbb{\mathbb { L }}}\left(\cos \mathrm{~m} \lambda_{\mathrm{E}}-\cos m \lambda_{W}\right)\right\} \\
& \left.\cdot \int_{\varphi_{S}^{\prime}}^{\varphi_{N}^{\prime}} \overline{\mathrm{P}}_{\mathrm{n}, \mathrm{a}}\left(\sin \varphi^{\prime}\right) \cos \varphi^{\prime} d \varphi^{\prime}\right] \tag{3.3}
\end{align*}
\]
where
\[
\Delta \lambda=\lambda_{\mathrm{E}}-\lambda_{W},
\]
other symbols have the same meaning as in equation (2.20); \(\Delta \mathrm{go}\) is the average value of the mean gravity anomaly for the block size over the whole earth, \(\overline{\mathrm{C}}_{\mathrm{n}}{ }^{*}\), are the fully normalized zonal harmonics from which \(\overline{\mathrm{C}}_{2,0}\) and \(\overline{\mathrm{C}}_{4}, 0\) have been subtracted for the reference ellipsoid, whose flattening \(f\), is the same as used in the gravity formula for the terrestrial gravity anomalies. These are given by (Mueller, 1964):
\[
\begin{align*}
& \bar{C}_{4,0}=-\frac{1}{\sqrt{5}}\left(\frac{2}{3} f-\frac{m}{3}+\frac{3}{7} f m-\frac{1}{3} f^{a}+\ldots\right)  \tag{3.4}\\
& \bar{C}_{4,0}=-\frac{1}{\sqrt{9}}\left(\frac{4}{7} f m-\frac{4}{5} f^{2}+\ldots\right) \tag{3.5}
\end{align*}
\]
where
\[
\begin{equation*}
\mathrm{m}=\frac{\omega^{2} \mathrm{a}_{\mathrm{e}}^{\mathrm{B}_{\mathrm{e}}}}{\mathrm{kM}} \tag{3.6}
\end{equation*}
\]
and \(\omega\) is the rotational velocity of the earth.
The constants used for the reference ellipsoid and the fravity formula were as used by Rapp (1972):
\[
\begin{align*}
& \mathrm{a}_{\mathrm{o}}=6,378,137.8 \mathrm{~m} \\
& \mathrm{f}=1 / 298.258 \\
& \mathrm{IEM}=3.986,013 \times 10^{\alpha 4} \mathrm{~m}^{4} / \mathrm{s}^{2} . \mathrm{ec}^{\mathrm{d}}  \tag{3.7}\\
& \omega=7.292,115,146,7 \times 10^{-5} \mathrm{rad} / \mathrm{sec} \\
& \gamma_{0}=974,033.51 \mathrm{mgals} \\
& \gamma=\gamma_{0}\left(1+.005,302,43 \sin ^{2} \varphi-.000,005,87 \sin ^{2} 2 \varphi\right) \tag{3.8}
\end{align*}
\]

We now consider the maximum degree \(N_{n a_{x}}\) up to which the potential coefficients should be used. \(\mathrm{N}_{\text {max }}\) should be large enough so that the R. M.S. value of \(\Delta g^{\prime}\) in equation (3.1) is as small as possible, so that when its approximate value is taken as zero in the adjustment scheme described in Sec. 2.2, the linearized form of equations \((2,39)\) is adequate to give a solution vector without requiring iteration. On the other hand, \(N_{\text {max }}\) should not be larger than the degree of well determined potential coefficients from satellite data, nor larger than \(146 / s^{\circ}\) (Rapp, 1973b), whore \(s^{\circ}\) is the size of the mean gravity anomaly block. From the above considerations \(N_{\text {anx }}\) should not exceed 14, as we would be using up to \(10^{\circ}\) blocks; and preferably not exceed 12, as from Rapp (1973a), we find that after degree 12 , the number of potential coefficients having larger standard deviations than their inagnitude increase rapidly.

The \(10^{\circ}\) terrestrial gravity anomalies, \(\mathrm{Ag}_{\mathrm{T}}\), were those described by Hajela (1973, Table 8, pages 20 to 23 ). The mean value \(\Delta \mathrm{g}_{0}\) for these anomalies was -1.4 mgals and R.M.S. value was 11.3 mgals (Table 7, ibid). If we subtract from these \(\Delta \mathrm{gt}_{\mathrm{t}}\), the values of \(\Delta \mathrm{g}_{\mathrm{gc}}\), computed as in equation (3.3) with potential coefficients up to degree and order 12 , we get the values of \(10^{\circ}\) residual anomalies \(\Delta \mathrm{g}^{\prime}\) as in equation (3.1). The minimum, maximum, range and the R.M.S. values of \(\Delta \mathrm{g}^{\prime}\) were reduced from the corresponding values of \(\Delta \mathrm{g}\) as shown in Table 3.1, but the reduction was not large.

Table 3.1

> Statistics for \(10^{\circ}\) Equal Area Mean Terrestrial and Residual Gravity Anomalies Using Potential Coefficients up to Degree and Order 12
\begin{tabular}{lcc}
\hline & \begin{tabular}{c} 
Terrestrial gravity anom. \\
\(\Delta \mathrm{g}_{\mathrm{T}}\) (mgals)
\end{tabular} & \begin{tabular}{c} 
Residual gravity anom. \\
\(\Delta g^{\prime}=-\Delta_{\mathrm{g} ~}-\Delta \mathrm{g}_{\mathrm{gc}}\) (mgals)
\end{tabular} \\
\hline Maximum value & 34 & 21 \\
Minimum value & -41 & -33 \\
Range & 75 & 54 \\
Mean value & -1.4 & 0 \\
R.M.S. value & 11.3 & 8.3 \\
\hline
\end{tabular}

It was then considered if in the formation of \(10^{\circ}\) terrestrial anomalies, we snould have imposed conditions that the low degree potential coefficients, as generated from the terrestrial anomalies, should be the same as the well determined values from satellite data. This was done according to Snowden and Rapp (1.968), which ensured:
\[
\frac{1}{4 \pi \gamma(n-1)} \cdot \iint_{\sigma} \Delta g_{\tau} \bar{P}_{n_{m}}\left(\sin \varphi^{\prime}\right)\left\{\begin{array}{c}
\cos m \lambda  \tag{3.9}\\
\sin m \lambda
\end{array}\right\} \quad d \sigma-\left\{\begin{array}{l}
\bar{C}_{n \pi}^{*} \\
\bar{S}_{n m}
\end{array}\right\}=0
\]
for \(m \leq n, 2 \leq n \leq N_{\max }, \overline{\mathrm{C}}_{2}^{*}, 0\) and \(\overline{\mathrm{C}}_{4,0}^{*}\) reduced for \(\overline{\mathrm{C}}_{3,0}\) and \(\overline{\mathrm{C}}_{4,0}\) as in equations (3.4) and (3.5), and
\[
\frac{1}{4 \pi} \iint_{\sigma} \Delta g_{T} \overline{\mathrm{P}}_{n}\left(\sin \varphi^{\prime}\right)\left\{\begin{array}{l}
\cos m \lambda  \tag{3.10}\\
\sin m \lambda
\end{array}\right\} d \sigma=\left\{\begin{array}{l}
\overline{\mathrm{a}}_{\mathrm{ng}} \\
\overline{\mathrm{~b}}_{n \mathrm{~m}}
\end{array}\right\}=0
\]
for \(\mathrm{n}=1, \mathrm{~m}=0,1\),
and
\[
\begin{equation*}
\frac{1}{4 \pi} \iint_{\sigma} \Delta g_{T} d \sigma-\Delta g_{o}=0 \tag{3.11}
\end{equation*}
\]

The adjustment of \(\Delta \mathrm{g}_{\mathrm{T}}\) was done for equations (3.9) to (3.11) for 3 values of \(\mathrm{N}_{\mathrm{na}} \mathrm{x}\), i.e. 4,8 and 12 , which we may refer to \(a s ~ \Delta g_{4,4}^{A}, \Delta g_{B, B}^{A}, \Delta g_{12,12}^{A}\) respectively. The value of residual gravity anomalies \(\Delta \mathrm{g}_{\mathrm{n}, \mathrm{n}}^{\prime}, \mathrm{n}=4,8\), 12 was then obtained from equation (3.1), where \(\Delta g_{g c}\) was computed from equation (3.3) using \((12,12)\) potential coefficients for all the 3 cases, i.e.,
\[
\Delta \mathrm{g}_{\mathrm{n}, \mathrm{n}}^{\prime}=\Delta \mathrm{g}_{\mathrm{n}, \mathrm{n}}^{A}-\Delta \mathrm{g}_{\mathrm{Pc}}(12,12), \mathrm{n}=4,8,12
\]

The statistics for \(\Delta g_{n, n}^{A}\) and \(\Delta g_{n, n}^{\prime}\) have been given in Table 3.2.

Table 3.2
Statistics for \(10^{\circ}\) Equal Area Mean Residual Gravity
Anomalies and Terrestrial Gravity Anomalies Adjusted
for \((4,4),(8,8)\) and \((12,12)\) Potential Coefficients
\begin{tabular}{lcccccc}
\hline & \(\Delta \mathrm{g}_{4,4}^{\mathrm{A}}\) & \(\Delta \mathrm{g}_{4,4}^{\prime}\) & \(\Delta \mathrm{g}_{\mathrm{a}, \mathrm{B}}^{\mathrm{A}}\) & \(\Delta \mathrm{g}_{\mathrm{B}, \mathrm{B}}^{\prime}\) & \(\Delta \mathrm{g}_{12,19}^{\mathrm{A}}\) & \(\Delta \mathrm{g}_{12,12}^{\prime}\) \\
\hline Maximum value & 35 & 22 & 40 & 19 & 38 & 26 \\
Minimum value & -42 & -32 & -45 & -27 & -60 & -25 \\
Range & 77 & 54 & 85 & 46 & 98 & 51 \\
Mean value & -1.4 & 0 & -1.4 & 0 & -1.4 & 0 \\
R.M.S. value & 12.4 & 7.8 & 14.0 & 7.17 & 15.4 & 7.11 \\
\hline
\end{tabular}

Units are mgals.
We note from Table 3.2 that the lowest R.M.S. value of \(7,1 \mathrm{mgals}\) occurs for \(\Delta g_{1 a, 2 n}^{\prime}, i, e\), when the terrestrial anomalies have been adjusted to (12,12) potential coefficients according to equations (3.9) to (3.11), though this is not very much lower than 8.3 mgals in Table 3.1 , when the terrestrial anomalies were computcd as in Hajela (1973) without imposing the conditions in equations (3.9) to (3.11). The residual anomalies used in Sec. 4.1 were howevor computed after imposing these conditions, as described later.

The vaiue of \(\int \overline{\mathrm{P}}_{\mathrm{na}}\left(\sin \varphi^{\prime}\right) \cos \varphi^{\prime} \mathrm{d} \varphi^{\prime}\) in equation (3.3) was computed using Gaussian quadrature formulas for 24 points, according to constants given in subroutine DQG24 in I. B. M. Scientific Subroutine Package (Version III, p. 302, 1970). To get the mean residual gravity anomaly in \(10^{\circ}\) blocks, say \(\Delta \mathrm{g}_{10^{\prime}}{ }^{\circ}(\mathrm{I})\), we may use \(\Delta \mathrm{gr}_{10}\) and subtract \(\Delta \mathrm{g}_{\mathrm{pc}} \mathrm{c}_{10}{ }^{\circ}\) computed for the \(10^{\circ}\) blocks using equation (3.3). This was done in Table 3.1. Alternatively, we may use terrestrial anomalies in the 4 component \(5^{\circ}\) blocks of a \(10^{\circ}\) block, say \(\Delta \mathrm{gr}_{5}{ }^{\circ}\); and sultract from these the
values of \(\Delta \mathrm{gec}_{5}\), computed for \(5^{\circ}\) blocks using equation (3.3), to obtain the residual gravity anomalies in \(5^{\circ}\) blocks, \(\Delta g_{5^{\prime}}^{\circ}\). We may then form \(\Delta g_{10^{\prime}}\) (II) using the residual anomalies \(\Delta g_{5}^{\prime}\) in the 4 component \(5^{\circ}\) biocks of area \(d \sigma_{5}^{\circ}\) by:
\[
\begin{equation*}
\Delta \mathrm{g}_{10}^{\prime} 0^{\circ}(\mathrm{II})=\sum_{1=1}^{4}\left(\Delta \mathrm{~g}_{\mathrm{S}_{1}^{\prime}}^{\prime o} \mathrm{~d} \sigma_{\Sigma_{1}}^{0}\right) / \sum_{\mathfrak{l}=1}^{4_{1}} d \sigma_{5_{1}}^{0} \tag{3.12}
\end{equation*}
\]

The difference \(\Delta \mathrm{g}_{10}^{\prime}{ }^{\circ}\) (I) \(-\Delta \mathrm{g}_{10}^{\prime}{ }^{\circ}\) (II) has been given in Table 3.3.

Table 3.3
\(10^{\circ}\) Equal Area Mean Residual Gravity Anomalies. Difference for Direct Computation Over \(10^{\circ}\) Block \(\Delta \mathrm{g}_{10} 0^{\circ}\) (I) Minus Meaned Value Over Component \(5^{\circ}\) Blocks, \(\Delta \mathrm{g}_{10}^{\prime} 0^{\circ}\) (II)
\begin{tabular}{lrl}
\hline Maximum value & 3.1 & mgals \\
Minimum value & -4.2 & " \\
Range & 7.3 & \("\) \\
Mean Value & 0.0 & \("\) \\
R. M. S. value & 0.6 & \("\) \\
No. of elements & 106 & \\
No. of 0 elements & 183 & \\
No. of - elements & 127 & \\
\hline
\end{tabular}

The differences in Table 3.3 indicate the advisability of computing \(\Delta \mathrm{grc}\) in equation ( 5.3 ) in \(5^{\circ}\) blocks, in contrast to \(10^{\circ}\) blocks. Accordingly, the global set of \(16645^{\circ}\) terrestrial anomalies was first computed as in Hajela (1973, Sec. 4). These \(5^{\circ}\) anomalies were then adjusted to satisfy equations (3.9) to (3.11) for the reference set of \((12,12)\) potential coefficients. The residual anomalies in \(5^{\circ}\) blocks, \(\Delta g_{s}^{\prime}{ }^{\prime}\), were obtained from these adjusted \(5^{\circ}\) terrestrial anomalies by subtracting \(\Delta \mathrm{gpc}_{5}{ }^{\circ}\), computed from equation (3.3). The global set of \(41610^{\circ}\) residual anomalies were finally obtained from \(\Delta g_{5}^{\prime}\), using equation (3.12). 130 \(10^{\circ}\) residual anomalies from this set will be used in Section 4.1.

\section*{\(3.3 \quad 2^{\circ} .5,5^{\circ}\) and \(10^{\circ}\) Equal Area Residual Anomalies}

The adjustment of terrestrial anomalies by equations (3.9) to (3.11) over the whole earth requires much computer time for small size blocks like \(2^{\circ} .5\), when \(4 \times 1664=6656\) anomalies have to be adjusted. We should then consider the formation and recovery of residual anomalies over regional areas. Also, as it is advisable to compute equation (3.3) over smaller blocks, it would be preferable to compute residual anomalies \(\Delta \mathrm{g}^{t}\) directly over \(\mathrm{I}^{\prime \prime}\) equal area blocks, by cons idering \(\Delta \mathrm{gr}_{\mathrm{f}}\) over these blocks as in Hajela (1973), and then using oquations (3.3) and (3.1). As later (Tscherning and Rapp, 1974, p. 5) terrestrial gravity
data was now available than used in Hajela (1973), fresh estimates of \(I^{\circ}\) equal area terrestrial gravity anomalies were formed using this later data. If we did not have terrestrial gravity observations over any \(1^{\circ}\) equal area block, say \(p\), we could then predict the residual anomaly \(\Delta g_{p}^{*}\) dinectly from other computed residual anomalies in a \(5^{\circ}\) equal area block, according to Moritz (1969), Rapp (1972), by:
\[
\begin{equation*}
\Delta g_{p}^{*}=C_{p}(C+D)^{-1} \Delta g^{\prime} \tag{3.13}
\end{equation*}
\]
where \(\Delta \mathrm{g}^{\prime}\) is the vector of already computed residual anomalies inside the \(5^{\circ}\) block. \(C_{p}\) is the vector of covariances of \(1^{\circ}\) equal area residual anomalies for the spherical distances between the \({ }^{\text {t }}\) th block, and the location of already computed residual anomalies inside the \(5^{\circ}\) block, \(C\) is the matrix of covariances of \(1^{\circ}\) equal area residual anomalies for spherical distances corresponding to the location of already computed residual anomalies. D is a diagonal matrix with the square of estimated standard deviation of already computed residual anomalies on the rliagonal. As \(\Delta \mathrm{g}_{\mathrm{p}}\) in equation (3.1) is computed from known constant values of the potential coefficients, the estimated standard deviation of \(1^{\circ}\) (qual area residual anomalies was kept the same as that of the corresponding terrestrial anomalies.

The computation of the res afual anomalies of \(5^{\circ}\) and \(10^{\circ}\) equal area blocks from the computed/predicted residual anomalies of \(1^{\circ}\) equal area blocks, was then done according to equations (9) and (12) of Hajela (1973). The computation of \(2^{\circ}\). 5 equal area residual anomalies, \(\Delta \mathrm{g}_{\mathrm{g}}\), was done from the \(1^{\circ}\) equal area residual anomalies \(\Delta g_{1}^{\prime o}\) by:
\[
\begin{equation*}
\Delta \mathrm{g}_{\mathrm{a}}^{\prime} \mathrm{O}_{5}=\frac{\sum_{j} \cos \omega_{\mathrm{aj}} \sum_{\mathrm{j}} \Delta \mathrm{~g}_{1}^{\prime} \mathrm{o}_{1}}{\sum_{\mathrm{j}} \cos \omega_{\mathrm{aj}}} \tag{3.14}
\end{equation*}
\]
where \(\varphi_{m j}\) was the mean latitude of the \(j^{\text {th }} 1^{\circ}\) belt; \(j=2\) or 3 , was the number of \(1^{\circ}\) latitude belts in a \(2^{\circ} .5\) equal area block; and \(i=2\) or 3 was the number of \(1^{\circ}\) equal area residual anomalies in the \(j^{\text {th }} 1^{\circ}\) belt of the \(2^{\circ} .5\) equal area block.

The computation of the covariance function for \(1^{\circ}\) equal area residual anomalies, which was needed in equation (3.13), may now be described. The covariance function for the \(1^{\circ}\) equal area terrestrial anomalies was provided by Tscherning and Rapp (1974, Table 15, p.73). If we represent it by \(C(\psi)\), where \(\psi\) is the spherical distance, we have (Heiskanen and Moritz, 1967, p. 256):
\[
\begin{equation*}
C(\psi)=\sum_{n=1}^{\infty} c_{n} P_{n}(\cos \psi), \tag{3.15}
\end{equation*}
\]
where \(c_{n}\) are the anomaly degree variances given (ibid, p. 259) by:
\[
\begin{align*}
c_{n} & =\sum_{n=0}^{n}\left(\bar{a}_{n \pm}^{a}+\bar{b}_{n a}^{a}\right)  \tag{3.16}\\
& =\gamma^{2}(n-1)^{a} \sum_{n=0}^{n}\left(\bar{C}_{x a}^{* a}+\bar{S}_{n u}^{a}\right),
\end{align*}
\]
where the symbols have been defined earifer in equation (2.20), (3.3) and (3.9). Finally, \(P_{n}(\cos \psi)\) are the Legendre's polynomials, which may be computed from the recursion formula (ibid, p. 23):
\[
\begin{equation*}
P_{n}(\cos \psi)=-\frac{n-1}{n} P_{n-a}(\cos \psi)+\frac{2 n-1}{n} \cos \psi P_{n-1}(\cos \psi) \tag{3.17}
\end{equation*}
\]
with starting values from
\[
\begin{equation*}
P_{0}(\cos \psi)=1, \quad P_{1}(\cos \psi)=\cos \psi \tag{3.18}
\end{equation*}
\]

As the residual anomalies have been obtained from the terrestrinl anomalies by subtracting the anomaly implied by \((12,12)\) potential coefficients, the covariance function for the residual anomalies \(C^{\prime}(\psi)\) is simply obtained by:
\[
\begin{align*}
C^{\prime}(\psi) & =\sum_{n=13}^{\infty} c_{n} P_{n}(\cos \psi)=C(\psi)-\sum_{n=a}^{1 a} c_{n} P_{n}(\cos \psi)  \tag{3.19}\\
& =C(\psi)-\gamma^{2} \sum_{n=a}^{12} P_{n}(\cos \psi) \cdot(n-1)^{2} \sum_{n=0}^{n}\left(\bar{C}_{n a}^{* a}+\bar{S}_{n a}^{2}\right)
\end{align*}
\]

The values of \(c_{n}, n=2,12\) computed from the potential coefficients were taken directly from Rapp (1973a). The values of the covariance function for the \(1^{\circ}\) equal area terrestrial and residual anomalies for spherical distance up to \(8^{\circ}\) have been given in Table 3.4.

Table 3.4
Covariance Function for \(1^{\circ}\) Equal Area Terrestrial and Residual Anomalies Using Potential Coefficients
up to Degree and Order 12
\begin{tabular}{ccc}
\hline Spherical Distance & \begin{tabular}{c} 
Covariance for \\
Terrestrial Anomalies \\
\(C(\psi)\) mgals \(^{\text {a }}\)
\end{tabular} & \begin{tabular}{c} 
Covariance for \\
Residual Anomalies \\
\(C^{\prime}(\psi)\) mgals \(^{2}\)
\end{tabular} \\
\hline\(\psi^{\circ}\) & 919.7 & 754.1 \\
0.0 & 671.6 & 506.2 \\
0.5 & 493.4 & 328.4 \\
1.0 & 368.2 & 204.0 \\
1.5 & 285.4 & 122.2 \\
2.0 & 236.1 & 74.3 \\
2.5 & 211.4 & 51.3 \\
3.0 & 200.7 & 42.6 \\
3.5 & 193.4 & 37.5 \\
4.0 & 176.9 & 23.5 \\
4.5 & 155.9 & 5.2 \\
5.0 & 146.4 & -1.3 \\
5.5 & 141.4 & -3.0 \\
6.0 & 133.4 & -7.6 \\
6.5 & 124.9 & -12.4 \\
7.0 & 119.9 & -13.6 \\
7.5 & 117.4 & -12.1 \\
8.0 & & \\
\hline
\end{tabular}

The value of \(\int \overline{\mathrm{P}}_{\mathrm{ng}}\left(\sin \varphi^{\prime}\right) \cos \varphi^{\prime} \mathrm{d} \varphi^{\prime}\) in equation (3.3) for latitudinal extent of \(1^{\circ}\) was now computed using Gaussian quadrature formulas with 4 points, according to constants given in subroutine DQG4 in I.B. M. Scientific Subroutine Package (Version III, p. 300, 1970). The values of residual anomalies for \(2^{\circ} .5\), \(5^{\circ}\) and \(10^{\circ}\) equal area blocks computed in this Section will be used in Sec. 4.2 and Chapter 5.

\subsection*{3.4 Extent of Anomalies for Simulation of Obrervations}

As mentioned in Sec. 2.3.2, all observations used in Chapters 4 and 5 were simulated using ( 12,12 ) potential coefficients, and residu:li gravity anomalies up to \(30^{\circ}\) spherical distance beyond the area of investigation. We may now examine the utility of subdividing a large size anomaly block into component blocks of smaller size. Summed range rate observations, with close salellite al height of abcut 900 km , were simulated for 2 satellite arcs, using ( 12,12 ) potential coefficients with \(1085^{\circ}\) residual anomalies. In chis case (Case 1), \(405^{\circ}\) residual anomalies covered the area of interest, traversed by subsatellite points of the
close satellite, and up to \(10^{\circ}\) spherical distance all around the area of interest. The balance \(685^{\circ}\) residual anomalies covered an area from \(10^{\circ}\) to \(20^{\circ}\) spherical distance all around the area of interest. In the second case (Case 2), the summed range rate observations were simulated for the same configuration, with (12,12) potential coefficients and \(40 \quad 5^{\circ}\) residual anomalies covering the area of interest and up to \(10^{\circ}\) spherical distance all around \(i t\). However, the \(685^{\circ}\) residual anomalies, \(10^{\circ}\) to \(20^{\circ}\) around the area of interest were replaced in Case 2 by 17 \(10^{\circ}\) residual anomalies, meaned from the \(685^{\circ}\) blocks. The residual anomalies in Cases 1 and 2 are shown in Figure 3.2. The difference in summed range rate observations (Case 1-Case 2) is shown in Table 3.5.


Figure \(3.2405^{\circ}\) Equal Area Residual Anomalies Surrounded by \(685^{\circ}\) Equal Area Residual Anomalies (Case 1), or by \(1710^{\circ}\) Equal Area Residual Anomalies (Case 2). Case 2 has been shown in the figure.

\section*{Table 3.5}

Effect of Replacing \(5^{\circ}\) Component Residual Anomalies by \(10^{\circ}\) Residual Anomalies in Border Around Area of Interest. Summed Raage Rate Differences, \(\Delta \dot{R}_{a}\), in \(\mathrm{cm} / \mathrm{sec}\). for 2 Arcs, Height of Close Satellite \(\approx 900 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ARC 1} & \multicolumn{3}{|c|}{ARC 2} \\
\hline Time in Orbit (min.) & \[
\begin{gathered}
\dot{\mathrm{R}}_{0} \\
(\mathrm{~cm} / \mathrm{sec} .)
\end{gathered}
\] & \[
\begin{gathered}
\Delta \dot{\mathrm{R}}_{\mathrm{s}} \\
(\mathrm{~cm} / \mathrm{sec} .)
\end{gathered}
\] & Time in Orbit (min.) & \[
\begin{gathered}
\dot{\mathrm{R}}_{\mathrm{s}} \\
(\mathrm{~cm} / \mathrm{sec},)
\end{gathered}
\] & \[
\begin{gathered}
\Delta \dot{\mathrm{R}}_{\mathrm{B}} \\
(\mathrm{~cm} / \mathrm{sec} .)
\end{gathered}
\] \\
\hline 0.0 & -429, 601.11 & 0.008 & 0.0 & 24^, 740.97 & -0.067 \\
\hline 0.5 & -406, 451.67 & 0.005 & 0.5 & 267, 327.63 & -0.069 \\
\hline 1.0 & -382,674.46 & 0.002 & 1.0 & 293,476.90 & -0.072 \\
\hline 1.5 & -358, 300.73 & -0.001 & 1.5 & 319, 147.67 & -0.075 \\
\hline 2.0 & -333, 363.75 & -0.002 & 2.0 & 344,300. 73 & -0.079 \\
\hline 2.5 & -307, 898.79 & -0.003 & 2.5 & 368, 89\%. 84 & -0.085 \\
\hline 3.0 & -281,943.08 & -0.004 & 3.0 & 392,906, 82 & -0.090 \\
\hline
\end{tabular}

As the differences in summed range rate in Table 3.5 are less or about the same as standard deviation ( \(\leq 10\) level), we may replace the outer-most component \(5^{\circ}\) residuat anomalies by the \(10^{\circ}\) residual anomalies. This reduced computer time from 1 min .30 .0 sec .100 min .52 .8 sec, , .0. , by about \(41 \%\), in the test reported in Trable 3.5. For simulating the summed range rate observations used in Sec. 4.2 and Soc. 5.1, in addition to the ( 12,12 ) potential coofficients, \(125^{\circ}\) residual anomalies coverod the arca of interest, surrounded by \(405^{\circ}\) residual anomalies up to \(10^{\circ}\) spherical distance arouncl the area of interest; and these were in turn surrounded by \(3710^{\circ}\) residual anomalios from \(10^{\circ}\) to \(30^{\circ}\) spherical distance around the area of interest. These limits have been shown later in Figures 4.12 and 4.14 in Sec. 4.2.

The summed range rate observailons used in Sec. 5.2 were similarly simulated using \((12,12)\) potential coefficicnts, and \(1042^{\circ} .5\) residual anomalies covering the area of interest, and an area of \(5^{\circ}\) spherical dis innce all around the area of interest. These were surrounded by \(265^{\circ}\) residual momalies covering the area from spherical distance \(5^{\circ}\) to \(10^{\circ}\) all around the area of interest; and finally, \(3710^{\circ}\) residual anomalies covered the aren from spherical distance \(10^{\circ}\) to \(30^{\circ}\) :all around the aron of interest. The limits of these \(2^{\circ}, 5\), \(5^{\circ}\) and \(10^{\circ}\) residual anomalies are shown in Figure 3.3.


Figure 3.3 Extent of \(2^{\circ} .5,5^{\circ}\) and \(10^{\circ}\) Equal Area Residual Anomalies for S mulating Observations in Sec. 5.2 Jp To \(30^{\circ}\) Spherical Radius All Around the Area of Investigation for the Recovery of \(2^{\circ} .5\) Equal Area Anomalies.

\section*{4. RECOVERY OF GRAVITY ANOMALIES FROM STRONG SIGNAL}

We discuss in this chapter the recovery of \(10^{\circ}\) and \(5^{\circ}\) equal area mean anomalies using the close satellite at heights of about 900 km and 250 km respectively. The recovery of \(5^{\circ}\) and \(2^{\circ} .5\) equal area mean anomalies from the close satellite at heights of about 900 km and 250 km will be discussed in Chapter 5. The effect of \(5^{\circ}\) equal aren mean anomalies on summed range rate, and summed range, observations will be stronger when the close satellite is at a height of 250 km , as compared to the case when the close satellite is at a height of about 900 km . We may therefore investigate various considerations and test procedures for anomaly recovery when the \(s\) ignal is strong, and apply these later to the case when the signal is comparatively weaker, maling further modifications, as necessary.

We start in Sec. 4.1 with the discussion of recovery of \(10^{\circ}\) equal area mean anomalies with the close satellite at a height of about 900 km . We will first investigate the effect on anomaly recovery in regional areas, if we constrain the recovered anomalies to give zero value for some low degree harmonic coefficients, as discussed in Sec. 2.2.3. We will then investigate how effective summed range observations are in comparison to the summed range rate observations for recovering anomalies. The conclusions with respect to these two points will be given in the end of Sec. 4.1.5.

We will next consider the design of 'arcs', or the spacing of observations in an arc, as the close satellite orbits over the area of thvestigation, and also consider the spacing between aros; and how these affect the anomaly recovery. We will then test various cases of anomaly recovery as affected by the relative location of observations and the anomalies being estimated; and arrive at the optimum model for recovery of \(10^{\circ}\) equal area mean anomalies. The conclusions reached in Sec. 4.1 would then be applied in Sec. 4.2 to the recovery of \(5^{\circ}\) equal area mean anomalies with the close satellite at a height of 250 km .

The summed range rate observations were used at 1 minute interval in Sec. 4. 1 for the recovery of \(10^{\circ}\) anomalies. The standard deviation of these observations may then have been considered as \(.03 \mathrm{~cm} / \mathrm{sec}\)., based on an interration interval of 1 min ., instead of. \(08 \mathrm{~cm} / \mathrm{sec}\). based on an integration interval of 10 sec . This has been later discussed at the end of Sec. 4.1.9, and would simply result in the standard deviation of all recovered \(10^{\circ}\) anomalies being reduced by a factor of \(3 / 8\).

\subsection*{4.1 Recovery of \(10^{\circ}\) Equal Area Mean Anomalies From Close Satellite at Height of 900 km}

\subsection*{4.1.1 Area of Investigation}

The area chosen for investigation was centered on latitude \(30^{\circ} \mathrm{N}\). and longitude \(270^{\circ} \mathrm{E}\). ( \(90^{\circ} \mathrm{W}\).) . Its latitudinal extent was \(70^{\circ}\) from \(10^{\circ} \mathrm{S}\). to \(60^{\circ} \mathrm{N}\)., and longitudinal extent about \(60^{\circ}\) from \(240^{\circ}\) to \(300^{\circ}\) E. The longitudinal limits
varied slightly in each \(10^{\circ}\) latitude zone, according to the actual limits of the \(10^{\circ}\) equal area anomaly blocks in accordance with the scheme described in Sec. 3.1. The total number of \(10^{\circ}\) anomalies in this area was 37 , and these were numbered from west to east in each latitude zone starting from the north-west of the area, and proceeding south. The limits of these anomalies, the center of the blocks and the numbering system have been shown in Figure 4.1. The figure also shows 'satellite arcs' described below.

\subsection*{4.1.2 Satellite Arcs}

A total of 14 arcs were selected so that these were positioned symmetrically in the area. There were 7 ascending arcs, with the subsatellite point moving from south-east to north-west; and 7 descending ares with the subsatellite point moving from north-east to south-west. The number of arcs selected gave a longitudinal spacing of about \(6^{\circ}\) between two adjacent ascending (or 2 adjacent descending) arcs in the center of the area, which was close to half the Iongitudinal extent of the \(10^{\circ}\) equal area anomaly blocks. If we consider all 14 ares, i, e. summed range rate, or summed range, observations at specified time intervals over all 14 aros, there would in general be portions of 2 ascending and 2 descending ares over each anomaly block in the central area, and portions of 2 ascending (or 2 descending) arcs over each anomaly block in the 4 corners. If we remove alternate ascending and descending arcs, and consider the remaining 8 arcs, the portions of arcs over any specific anomaly bleck would be halved when compared to the density obtained with 14 arcs. To enable convenient numbering of arcs for investigation of anomaly recovery with different arc spacing, the latter 8 arcs were numbered from 1 to 8 , and the balance 6 arcs out of the total of 14 arcs were numbered from 9 to 14 .

The 14 arcs with their numbers, and the direction of arrow to distinguish an ascending or descending are, are shown in Figure 4.1. The inter-se numbering in Arcs 1 to 8 and in Arcs 9 to 14 was according to the starting time of the arc. The arcs were chosen to be of 19 minutes duration or more, so that if the summed range rate, or summed range, observations (hereafter 'observations') were considered at 1 minute interval, there would be at least 20 observations in an arc. No arcs were thus selected west of Arc No. 2 and Arc No. 4, or east of Arc No. 5 and Arc No. 7. The reason for choosing 1 minute interval of observations will be clarified in Sec. 4.1.3. The starting time and duration of each arc, and the latitude and longitude of first and last subsatellite point in each arc, are given in Table 4.1.


Figure 4.1 Satellite Ares for Recovery of \(10^{\circ}\) Equal Area Mean Anomalies. Height of Close Satellite \(\approx 900 \mathrm{~km}\).

Table 4.1
Satellite Arcs Used for Recovery of \(10^{\circ}\) Equal Area Mean Anomalies
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Arc \\
No.
\end{tabular}} & \multirow[t]{2}{*}{Ascending/ Desceuding Arc} & \multicolumn{4}{|c|}{Starting Time*} & \multirow[t]{2}{*}{Duration of Arc in Min.} & \multicolumn{4}{|l|}{First \& Last Subsatellite Pts. for Close Sat.} \\
\hline & & Day & Hour & Min. & Sec. & & \(6^{\circ}\) & & & \(\lambda^{\circ}\) \\
\hline 1 & \(\checkmark\) & 0 & 09 & 05 & 0 & 21 & 55 & 301 & -8 & 251 \\
\hline 2 & \(\checkmark\) & 0 & 10 & 45 & 0 & 19 & 60 & \(\bigcirc \times 9\) & 6 & 233 \\
\hline 3 & k & 0 & 18 & 45 & 0 & 21 & -6 & 298 & 57 & 244 \\
\hline 4 & \(k\) & 0 & 20 & 25 & 0 & 19 & -14 & 277 & 46 & 238 \\
\hline 5 & \(\checkmark\) & 4 & 08 & 45 & 0 & 19 & 47 & 302 & -11 & 262 \\
\hline 6 & \(\checkmark\) & 4 & 10 & 25 & 0 & 20 & 54 & 286 & -6 & 239 \\
\hline 7 & \(k\) & 4 & 18 & 26 & 0 & 19 & 7 & 304 & 61 & 246 \\
\hline 8 & \(\lambda\) & 4 & 20 & 05 & 0 & 19 & -5 & 284 & 54 & 239 \\
\hline 9 & \(\checkmark\) & 2 & 08 & 55 & 0 & 20 & 51 & 301 & -10 & 256 \\
\hline 10 & \(\checkmark\) & 2 & 10 & 33 & 0 & 19 & 61 & 298 & 8 & 240 \\
\hline 11 & \(k\) & 2 & 18 & 35 & 0 & 21 & -1 & 302 & 60 & 242 \\
\hline 12 & k & 2 & 20 & 15 & 0 & 19 & -9 & 281 & 50 & 239 \\
\hline 13 & \(\checkmark\) & 6 & 10 & 12 & 0 & 22 & 57 & 300 & -8 & 244 \\
\hline 14 & * & 6 & 19 & 51 & 0 & 22 & -13 & 295 & 55 & 243 \\
\hline
\end{tabular}
* in elapsed time from 21 Sep .6901 hr .33 min .36 .3 sec . (see Sec. 1.1)

\subsection*{4.1.3 Time Interval of Observations along an Are}

We may also consider along with the question of spacing of ares roughly equal or half of the block size of anomaly being recovered, the question of spacing of observations or the time interval of observations along an are in relation to the block size of anomaly being recovered. In Figure 4.2 (a) to (d), the location of subsatellite points at intervals of 1 minute are shown over 4 anomaly blocks for the arcs selected in Figure 4.1. The longitudinal scale has been reduced in Figure 4.2 (a), (b) to achieve equal area representation. We notice that, in general, the spacing of observations at 1 minute interval is symmetrical over all the blocks considering both along the arc as well as across the arc observations, and this was the reason for choosing 1 minute interval of observations along the arc. The spacing of observations across the are is slightly less than the spacing of observations along the are in the north, but the former increases progressively as we go to the southern portion of area. If we were to consider the observations at 30 sec . interval for this case of \(10^{\circ}\) equal area anonaly recovery with are spacing about half the anomaly block si\%e, the observations would be closely spaced along the ares as compared to across the ares. The reverse


Figure 4.2 Typical Spacing of Observations over \(10^{\circ}\) Equail Area Mean Anomaly Blocks. Height of Close Satellite \(\approx 900 \mathrm{~km}\). Arc Spacing \(\approx 6^{\circ}\), Time Interval Along Arc \(=1 \mathrm{Min}\).
would be true if the observations were spaced at, say, 2 minutes interval.

To examine the effect of spacing of observations along the are on anomaly recovery, summed range rate observations along 2 arcs, viz. Arc 13 and Arc 14, at time intervals of \(30 \mathrm{sec} ., 60 \mathrm{sec}\)., and \(120 \mathrm{sec} .\), were used for recovery of 9 anomalies in the central area. The anomalies and subsatellite points for the close satellite at 2 minute intervals are shown in Figure 4.3.


Figure 4.3 Along-Arc Spacing of Observations (Time Interval-2 Min.)

From the figure, it is clear that the longitudinal spacing of arcs is much larger as compared to the spacing of observations along the arcs. Even at 2 minutes interval of observations along the arc, 2 more descending and 2 more ascending arcs would be needed (e.g. Arcs 9, 10, 11, 12 with reference to Figure 4.1) to achieve symmetry of observations. Because of this very sparse spacing of arcs, i. e. when about, say, \(6 \operatorname{arcs}\) (Arcs \(9-14\) ) should have been considered, only 2 \(\operatorname{arcs}\) (Arcs 13, 14) have been considered, no satisfactory anomaly recovery could be expected. Further, if on a-priori considerations the spacing of arcs is inadequate for satisfactory anomaly recovery, this inadequate spacing of arcs cannot be expected to be compensated by increasing along-arc observations.

The above considerations are confirmed by the results shown in Table 4.2, where the discrepancies in recovered anomalies remain about the same when observations along the arc for Arcs 13, 1.4 are increased from 2 min . to 1 min , and then to 30 sec . The standard deviations however, decrease with increase in along-arc observations. Here, and in all subsequent discussions, the standarcl deviations (std. devn. ) quoted are the square root of respective diagonal elements of the inverse normal matrix, without any modification for the size of residuals or degrees of freedom, i.e. the scalar variance of unit weight has been considered to be unity. The decrease in std. devn. may be explained by the partials for neighboring observations (with respect to anomalies being recovered) not bcing significantly different, when along-arc observations are arbitrarily increased without regard to adequate spacing of arcs. The ratio of std. devns., as along-are observations are increased, are also shown in Table 4.2, and are nearly \(1 / \sqrt{2}-0.71\).

\section*{Table 4.2}

Anomaly Discrepancies and Ratio of Stiundard neviation with Increased Along-Arc Observations


It is thus advisable to keep the time interval of observations along the arc, or along-arc spacing, roughly same as spacing between arcs considering the whole area, as was done in Figure 4.2. However, as we do not know a-priori what spacing between arcs would be adequate for anomaly recovery, we may keep a relatively close along-arc spacing, and after we have investigated the optimum spacing between arcs, the std. devas, of recovered anomalies may be mutitiplied by a factor of \(\sqrt{n}\), if \(n\) is the suerage ratio of alo: g-arc spacing to across-arc spacing of observations. This conclusion about std, devns. may be questioned as it is based on a test where the across-arc spacing was prima facie grossly inadequate. It was, however borne out again when 8 arcs were used, across-arc spacing roughly equal to anomaly block size, and along-arc spacing was varied from 1 minute to 30 sec . This test will be reported later at the end of Sec. 4.1.9.

\subsection*{4.1.4 Constraints for Low Degree Harmonic Coefficients}

We now report the results of the effect of impcsing six conditions to be satisfied by the recovered anomalies, as discussed in Sec. 2.2.3. All the 14 arcs in Figure 4.1 were used with summed range-rate observations and all 37 anomalies in Figure 4.1 were solved for. The expected value of anomalies, the recovered value of anomalies and their std. devns., with and without the conditions being imposed, are given in Table 4.3. The interval of observations for the case with conditions happened to be 30 sec ., while that for the case without conditions was 1 minute, hence the std. devn. for the case with conditions have been quoted after multiplying by \(\sqrt{2}\). The std. devn. for the range rate observations in both cases was kept as \(.08 \mathrm{~cm} / \mathrm{sec}\).

We find that though the std. devn. are about the same in both cases, the anomay discrepancy is much larger when the constraints are imposed than when these are not imposed, the Root Mean Square (R.M.S.) value of the discrepancies being 13.1 and 4.9 mgals respectively. The R.M.S. value of the recovered anomalies in both cases may also be compared with the R.M.S. value of the expected anomalies. We may also calculate the correlation coefficient ( \(\rho\) ) of the recovered values ( \(\Delta \mathrm{g}_{\mathrm{s}}^{\prime}\) ) with the expected values ( \(\Delta \mathrm{g}_{\mathrm{T}}^{\prime}\) ) from the relation;
\[
\begin{equation*}
\rho=\frac{\sum_{n} \Delta \mathrm{~g}_{\mathrm{g}}^{\prime} \Delta \mathrm{g}_{\mathrm{T}}^{\prime} / \mathrm{n}}{\sum_{\mathrm{n}} \Delta \mathrm{~g}_{s}^{\prime \mathrm{a}} / \mathrm{n}^{\frac{1}{2}} \sum_{\mathrm{n}} \Delta \mathrm{~g}_{T}^{\prime \mathrm{a}} / \mathrm{n}^{\frac{1}{2}}} \tag{4,1}
\end{equation*}
\]
n being the number of anomalies recovered. These statistics are shown in Table 4.4, from which it is clear that imposition of constraints for low degree harmonic coefficients for anomaly recovery in regional areas, as opposed to global coverago, worsens the solution and is thereforo not justifted. Wo will comment on the 'grodness' of solution withouteonstraints lator in see. 4.1.9.

Table 4.3
Effert of Low Degree Harmonic Coefficient Constraints on Anomaly Recovery
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Anom. No. \\
(1)
\end{tabular} & \begin{tabular}{l}
Expected Alom, \\
(2)
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Soln. with Constraints Anom. s.d. \\
(3) \\
(4)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Soln without Constraints Anom. s.d. \\
(5)
(6)
\end{tabular}} & Anom. (3)-(2) (7) & \begin{tabular}{l}
\[
(5)-(2)
\] \\
(8)
\end{tabular} \\
\hline 1 & -2. 2 & -21.2 & 2.7 & -1.6 & 3.2 & -19.0 & 0.6 \\
\hline 2 & 0.0 & 19.3 & 3.0 & -2.1 & 3.2 & 19.3 & -2.1 \\
\hline 3 & -5.9 & -27.3 & 2.5 & -6.9 & 2.7 & -21.4 & -1.0 \\
\hline 4 & -6.4 & 18.4 & 1.3 & 8.1 & 1.3 & 24.8 & 14.5 \\
\hline 5 & -0.6 & 19.8 & 3.1 & 0.4 & 3.6 & 20.4 & 1.0 \\
\hline 6 & 5.7 & -3.7 & 2.1 & 4.4 & 2.6 & -9.4 & -1.3 \\
\hline 7 & 1.3 & 17.4 & 2.1 & 6.2 & 2.3 & 16.1 & 4.9 \\
\hline 8 & 6.0 & -14.9 & 2.1 & -4.1 & 2.3 & -20.9 & -10.1 \\
\hline 9 & -3.8 & -2.9 & 1.6 & -4.9 & 1.6 & 0.9 & -1.1 \\
\hline 10 & 0.1 & -11.1 & 3.5 & -4.8 & 3.6 & -11.2 & -4.9 \\
\hline 11 & -5.3 & -4.6 & 2.4 & -2. 4 & 2.5 & 0.7 & 2.9 \\
\hline 12 & -6.0 & -6.9 & 2.3 & -10.5 & 2.3 & -0.9 & -4. 5 \\
\hline 13 & 3.1 & 4.7 & 2.4 & 11.5 & 2.4 & 1.6 & 8.4 \\
\hline 14 & -1.7 & 13.1 & 2.0 & -2.8 & 2.2 & 14.8 & -1.1 \\
\hline 15 & 3.1 & 7.6 & 4.2 & 3.5 & 4.4 & 4.5 & 0.4 \\
\hline 16 & 13.0 & 9.7 & 3.1 & 12.4 & 3.3 & -3.3 & -0.6 \\
\hline 17 & -6.0 & 1.9 & 2.8 & -4.6 & 2.9 & 7.9 & 1.4 \\
\hline 18 & 5.2 & 3.2 & 3.0 & -0.4 & 2.9 & -2.0 & -5.6 \\
\hline 19 & -9.8 & -28.6 & 3.1 & -8.8 & 3.4 & -18.8 & 1.0 \\
\hline 20 & -11.4 & -7.4 & 4.1 & -12.3 & 4.4 & 4.0 & -0.9 \\
\hline 21 & -8.2 & -11.4 & 4.1 & -6.4 & 4.2 & -3.2 & 1.8 \\
\hline 22 & 2.2 & 1.5 & 3.0 & 0.2 & 3.0 & -0.7 & -2.0 \\
\hline 23 & 4.0 & -5.0 & 2.5 & 4.2 & 2.6 & -9.0 & 0.2 \\
\hline 24 & -4.7 & 1.9 & 3.3 & 4.8 & 3.4 & 6.6 & 9.5 \\
\hline 25 & -4.8 & 19.3 & 3.0 & -8.8 & 3.4 & 24.1 & -4.0 \\
\hline 26 & 4.9 & 15.1 & 4.0 & 2.7 & 5.1 & 10.2 & -2.2 \\
\hline 27 & 2.4 & 1.3 & 4.2 & 3.7 & 4.5 & -1.1 & 1.3 \\
\hline 28 & -2.3 & 7.0 & 3.1 & -0.2 & 3.3 & 9.3 & 2.1 \\
\hline 29 & -8.0 & -5.0 & 2.4 & -7.3 & 2.3 & -3.0 & -5.3 \\
\hline 30 & 8.6 & 19.8 & 2.7 & 3.1 & 3.4 & 11.2 & -5. 5 \\
\hline 31 & 5.0 & \(-20.0\) & 2.4 & -0.5 & 2.6 & -25.0 & -5.5 \\
\hline 32 & 5.3 & -11.6 & 2.4 & 6.8 & 5.0 & -16.9 & 1.5 \\
\hline 33 & 3.4 & 12.2 & 4.0 & -4.8 & 4.6 & 8.8 & -8.2 \\
\hline 34 & -6.1 & -19.9 & 3.1 & -2. 7 & 3.5 & -13.8 & 3.4 \\
\hline 35 & 5.0 & 13.1 & 2.3 & 4.4 & 2.5 & 8.1 & -0.6 \\
\hline 36 & -3.6 & -15.9 & 3.3 & 4,5 & 4.0 & -12.3 & 8.1 \\
\hline 37 & -0.8 & 10.3 & 1.8 & 4.2 & 1.9 & 11.1 & 5.0 \\
\hline
\end{tabular}

Units of anomalies and standard deviations are mgals.

For convenience of reference, we will call this latter solution in columns 5 and 6 of Table 4.3 as Solution \(10-1,10^{\circ}\) being the block size of anomaly recovery and 1 being the first solution to be considered.

Table 4.4

Statistics for Solutions With and Without Constraints for Low Degree Harmonic Coefficients
\begin{tabular}{lcc}
\hline & \multicolumn{2}{c}{ Soln, with Constraints } \\
& Yes & No \\
\hline R.M.S. value of anomaly discrepancy (mgals) & 13.1 & 4.9 \\
R. M.S. value of recovered anomalies (mgals) & 13.9 & 5.9 \\
R. M.S. value of expected anomalies (mgals) & 5.4 & 5.4 \\
\begin{tabular}{l} 
Correln. coeff. (o) of recovered anom. with \\
expected anomalies
\end{tabular} & 0.33 & 0.63 \\
\hline
\end{tabular}

\subsection*{4.1.5 Summed Range Observations vs. Summed Range Rate Observations}

We may also briefly examine if anomaly recovery could be done using summed range obscrvations. For this test, 37 anomalies were solved for using summed range observations along 14 ares as in Figure 4.1. The std, devn. of observations was assumed as 10 meters (NASA, 1974, p. 4-78). The anomaly discrepancies ranged from -150 aggals to 180 mgals , with the R. M.S. value of 95 mgals. This test was conducted before the conclusions about not imposing constraints were reached, as described in the prtvious section, hence these discrepancies could be compared with column 7 in Table 4.3 for the constrained solution, and with the R. M.S. value of 13.1 mgals as per Table 4.4. As the anomaly discrepancies with summed range observations are so large as compared to summed range rate observations, it was not considered worthwhile to repeat the solution for the former without constraints.

The std. devn. of the recovered anomalies using summed range observations vary from 43 mgals to 475 mgals, with the RMS value of 225 mgals . The std. devn. of recovered anomalies would be reduced proportionately if the std. devn. of observations was reduced from 10 meters. However, as the observations were assumed to be independent with the same std. devn. for each observation, the weight matrix would be a diagonal matrix with al elements on the diagonal being the same number \(=1 /(\text { std. devn. })^{a}\), and hence the solution vector would be unaltered. With the usual notation of \(A\) as the partials matrix, \(P\) the weight matrix and I the unit matrix of corresponding size, \(L\) as the minelosure vector, the solution vector X would be unaffected in the relation:
\[
\begin{align*}
& X--N^{-1} U:-\left(A^{\prime} P A\right)^{-1} A^{\prime} P L=-\left(A^{\prime} \frac{1}{(\text { s.d. })^{2}} I A\right)^{-1} A^{\prime} \frac{1}{(\text { s.d. })^{2}} I L  \tag{4.2}\\
& =-\left(s . d_{1}\right)^{a}\left(A^{\prime} A\right)^{-1} \frac{1}{(\text { s.d. })^{2}} A^{\prime} L=-\left(A^{\prime} A\right)^{-1} A^{\prime} L
\end{align*}
\]

We may therefore conclude that the design of ares in Figure 4.1 is unable to recover anomalies with summed range observations in contrast to summed range rate observations. Further, as per remarks in the end of Sec. 4.1.4, we should not impose any constraints for low degree harmonic coefficients on the recovered anomalies in regional or localized areas. Accordingly, in all further tests we will use only summed range rate observations and not impose any constraints.

\subsection*{4.1.6 Spacing of Arcs}

It. is clear that the distribution of observations directly over an anomaly block will become more dense as the number of arcs is increased over the area, or in other words, the spacing between arcs is decreased. We may start with some suitable spacing of arcs in relation to the anomaly block size, e.g. same spacing as tie block size, which will result in one ascending (and/or one descending) are over each anomaly block. We may then examine the resulting anomaly recovery as we increase or decrease the spacing of ares. We have already reported the results for are spacing roughly half the anomaly size, i.e. 14 ares, in columns 5,6 , and 8 of Table 4.3, without specifying the rationale for this choice. We may now consider this Solution \(10-1\) in relation to anomaly recovery with are spacing roughly equal to the anomaly size, i. e. Arcs 1 to 8 ; and we may contrast it further with a rather unrealistic arc spacing of double the anomaly size, i.e. Arcs \(2,4,5\), and 7 . These 4 arcs and the 37 anomalies being recovered are shown in Figure 4.4.

The statistics described in Sec. 4.1.4 are given in Table 4.5 for these 3 cases. We may mention again that the observations were summed range rate at 1 min . interval with std. devn. of \(.54 \mathrm{~cm} / \mathrm{sec}\)., and 37 anomalies were solved for without imposing any constraints.

Table 4.5
Statistics for Anomaly Recovery with Arc Spacing of 2, 1 and \(1 / 2\) Times Anomaly Block Size
\begin{tabular}{lccc}
\hline Arc Spacing/Anomaly Block Size & 2 & 1 & \(1 / 2\) \\
No. of Arcs & \(2,4,5,7\) & 1 to 8 & 1 to 14 \\
R. M.S. value of anomaly discrepancy (mgals) & 26.0 & 7.4 & 4.9 \\
R. M.S. value of recovered anomalies (mgals) & 26.9 & 8.4 & 5.9 \\
R. M. S. value of expected anomalies (mgals) & 5.4 & 5.4 & 5.4 \\
Correln. coeff. ( \(\rho\) ) of recovered anom. with expected anom. & 0.26 & 0.50 & 0.63
\end{tabular}


Figure 4.4 Spacing of Arcs at 2 times Anomaly Block Slze.

It is obvious from Table 4.5 that arc spacing of twice the anomaly size, i.e. 4 Ares is totally inadequate. Further, the std. devns. of recovered anomalies are tabulated in Table 4.6 for this case. With reference to the location of the 4 ares in Figure 4.4, we find that the std. devns. of anomalies which are not covered by any of these arcs is much greater than for those anomal ies which are covered by the arcs. It therefore appears necessary that each anomaly block being recovered must be covered by satellite observations directly over it.

Table 4.6
Standard Deviation of Anomalies for Inadequate Arc Spacing Of 2 Times Anomaly Block Size
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Anom No. & Std. devn & \multicolumn{2}{|l|}{Anom Std. No. devn} & \multicolumn{2}{|l|}{Anom Std. No. devn} & Anom No. & Std. devn & Anom No. & Std. devn & Anon No. & Std. devn & Anom No. & Std. devn \\
\hline 1 & 44 & 5 & 13 & 10 & 17 & 15 & 28 & 20 & 67 & 26 & 366 & 32 & 722 \\
\hline 2 & 26 & 6 & 41 & 11 & 50 & 16 & 32 & 21 & 336 & 27 & 294 & 33 & 226 \\
\hline 3 & 28 & 7 & 33 & 12 & 309 & 17 & 431 & 22 & 97 & 28 & 85 & 34 & 60 \\
\hline 4 & 33 & 8 & 39 & 13 & 56 & 18 & 34 & 23 & 63 & 29 & 74 & 35 & 40 \\
\hline & & 9 & 20 & 14 & 24 & 19 & 22 & 24 & 155 & 30 & 292 & 36 & 111 \\
\hline & & & & & & & & 25 & 37 & 31 & 115 & 37 & 350 \\
\hline
\end{tabular}

Unit of standard deviation is mgals,

\subsection*{4.1.7 Effect of Aliasing in Anomaly Recovery}

From the discussion in the previous section, we now find that arc-spacing of roughly half the anomaly block size, i.e. Ares 1 to 14 (or Solution 10-1) is to be preferred over are-spacing roughly same as anomaly block size, i. e. Ares 1 to 8. However, we also find from columns 6 and 8 of Table 4.3 that there are several liurge anomaly discrepancies which are about 3 times or more, of the std. deva. of the recovered anomalies, e.g. Anomaly No. 4, 8, 13, 24, 36: and there are several others which are about 2 times the std. devn. As ther \(\geqslant\) are no 'observational' errors in the simulated observations, the anomaly disirepancies should have, in general, been smaller.

Though we cannot rule out the possibility at this stage that we have not yet reached the optimum spacing of arcs in Solution \(10-1\), and should consider closer arc spacing instead of \(1 / 2\) the block size, the slow improvement in going from are spacing roughly same as block size (hics 1 to 8) to half of block size (Ares 1 to 14) as shown in Table 4.5 indicates that wo ought to lirst investigate other reasons for the still unsatisfactory anomaly recovery. One such reason could be the inability of the anomalfes on the periphery of the area to be recovered satisfactorily due to their adjacent anomalies, which are out of the area,
being ignored in the estimation process; or in other words, the effect of 'aliasing.'

We may then consider this 'alias ing' to have affected the recovery of peripheral anomalies, which may be the outermost anomalies in the area (see Figure 4.1), i.e. the anomalies in the north and south latitude zones (Anomaly No. 1 to 4,32 to 37 ) and the anomalies on the west and east edge of other latitude zones (Anomaly No. 5,\(9 ; 10,14 ; 15,19 ; 20,25 ; 26,31\) ). Though the observations used were over the whole area covered by 37 anomalies, which were then solved for, it may be argued that the values obtained for the 20 anomalies on the periphery may have been vitiated by aliasing, and only the remaining 17 anomalies may be recovered satisfactorily. The anomaly discrepancies of these 17 anomalies have been extracted from columns 8 and 6 of Table 4.3 from Solution \(10-1\) and given in Table 4.7.

Table 4.7
Discrepancies in Recovered Anomalies Unaffected by Aliasing
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Anomaly} & \multicolumn{3}{|c|}{Anomaly} & \multicolumn{3}{|c|}{Anomaly} & \multicolumn{3}{|c|}{Anomaly} & \multicolumn{3}{|c|}{Anomaly} \\
\hline \multicolumn{15}{|l|}{No. Discr. s.d. No. Discr. s.d. No. Discr. s.d. No. Discr. s.d. No. Discr. s.d.} \\
\hline 6 & -1.3 & 2.6 & 11 & 2.9 & 2.5 & 16 & -0.6 & 3.3 & 21 & 1.8 & 4.2 & 27 & 1.3 & 4.5 \\
\hline 7 & 4.9 & 2.3 & 12 & -4. 5 & 2.3 & 17 & 1.4 & 2.9 & 22 & -2.0 & 3.0 & 28 & 2.1 & 3.3 \\
\hline 8 & -10.1 & 2.3 & 13 & 8.4 & 2.4 & 18 & -5.6 & 2.9 & 23 & 0.2 & 2.6 & 29 & \(-5.3\) & 2.3 \\
\hline & & & & & & & & & 24 & 9.5 & 3.4 & 30 & \(-5.5\) & 3.4 \\
\hline
\end{tabular}

Units of anomaly discrepancy and standard deviation are mgals.
In Table 4.7, we still find several large anomaly discrepancies, e.g. Anomaly No. \(8,13,24\), which are about 3 or more times the std. devn. If it is argued that not only the outermost but the next set of adjacent anomalies should also be rejected because of aliasing effect, we are left with Anomaly No. 12, 17, 22 and 23; but the anomoly discrepancy is still large for Anomaly No. 12. Further, when we consider that the anomaly discrepancies for many peripheral anomalies which may be supposed to have been affected by aliasing, is quite small (about \(1 / 2\) the s.d.) e. g. Anomaly No. \(1,3,5,14,15,19,20,27,32,35\) in Table 4.3, we have to conclude that aliasing, as defined above, does not appear to be the cause of the unsatisfactory anomaly recovery in Solution 10-1.

\subsection*{4.1.8 Relative Location of Anomalies and Arcs}

Another reason, which may be considered for the unsatisfactory anomaly recovery in Solution \(10-1\), could bo some weakness in anomaly recovory caused
by sparser distribution of observations in the corners of the area as compared to the central area. The anomaly blocks most densely covered by observations are No. 7, 11, 12, 13 and 17. We may, therefore recover only these 5 anomalies from the observations used in Solution 10-1, and compare the anomaly discrepancies of this solution with the discrepancies for the same 5 anomalies in Solution \(10-1\), where all 37 anomalies were estimated together. This has been done in Table 4.8.

\section*{Table 4.8}

Effect of Reduction in Number of Recovered Anomalies. Summed Range Rate Observations at 1 minute Interval for 14 Arcs
\begin{tabular}{rcccc}
\hline & No. of Anomalies Solved \(=5\) & No. of Anomalies Solved- 37 \\
\begin{tabular}{c} 
Anom. \\
No.
\end{tabular} & Anom. Discr. & Std. Devn. & Anom. Discr. & Std. Devn. \\
\hline 7 & -5.4 & 0.7 & 4.9 & 2.3 \\
11 & 1.5 & 0.7 & 2.9 & 2.5 \\
12 & 14.2 & 0.8 & -4.5 & 2.3 \\
13 & -15.0 & 0.4 & 8.4 & 2.4 \\
17 & 12.5 & 0.7 & 1.4 & 2.9 \\
\hline
\end{tabular}

Units of anomaly discrepancy and standard deviation are mals.

We first note that by including a large number of observations, which are not over the anomalies being recovered, the std. devns. of anomalies being recovered drop to unrealistically low values. The reason for the decrease in std. devn. in column 3 of Table 4.8, though the anomaly discrepancies are large in column 2, when we reduce the number of recovered anomalies, is not clear. This may be contrasted with increase in std. devns, though the anomaly discrepancies become lower, when a larger number of anomalies are solved for than what are covered by observations, and is discussed in remarks following Table 4.9. In any case, it is clear from Table 4.8 that the anomaly recovery has been worsened when we solve for a smaller number of anomalies than what are covered by observations, even if these were sjarse observations. We may ther run another test for the effect of relative localion of anomalies and ares by using all observations along 7 ascending arcs (and a separate test later by using 7 descendingares), andsolving for all 37 anomalies. The anomalios covered by the arcs should be recovered better than those not covered by them, as noted earlier in Table 4.6. The former anomalies may then be recovered by themselves alone using the same 7 ares, and compared with their values with the case when all 37 anomalies wore solved for. We would thus be interested only in the subset of anomalies covered by 7 ascending (or descending) ares, figures 4.5 and 4.6 respectively; and examining the effect of solving tor a larger set of anomalies. We would have however ensured in this test that not only the density
of observations was uniform ( \(1 / 2\) anomaly block size both across and along-arc) over all anomalies of interest, but that there were no extra observations not over the anomalies of interest.


Figure 4.5 Relative Location of Anomaly Blocks and 7 Ascending Arcs.


Figure 4.6 Relative Location of Anomaly Blocks and 7 Descending Arcs.

We first report in Table 4.9 results for all 37 anomalies, using either all ascending arcs or all descending arcs. The std. devn. has been given for all anomalies, whether they are covered by observations or not, to highlight the fact that the anomalies not covered by observations cannot be recovered. The anomaly discrepancy has however been shown only when it is not absurdly large, say when its absolute value is not greater than 10 mgals .

Table 4.9
Comparison of Anomaly Discrepancy and Standard Deviations for Anomalies Covered or Kot Covered by Observations. Summed Range Rate Observations at 1 Min. Interval for 7 Arcs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Anom } \\
& \text { No. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Ctr. of Anom Block}} & \multicolumn{3}{|l|}{7 Ascending Arcs (Fig.4.5)} & \multicolumn{3}{|l|}{7 Descending Arcs (Fig. 4.6)} \\
\hline & & & Anom. Covered & Anom. & Std. & Anom. Covered & Anom. & Std. \\
\hline & \(\varphi^{\circ}\) & \(\lambda^{\circ}\) & by Obsns. & Discrep & Devn & by Obsus. & Discrep & Devn \\
\hline 1 & 55.0 & 248.5 & Yes & 5.9 & 6.8 & No & 1.3* & 44.1 \\
\hline 2 & 5.0 & 265.5 & Partly & 2.5 & 10.2 & Partly & -2.2 & 19.7 \\
\hline 3 & " & 282.5
300.0 & No & & 51.8
160.7 & Yes & -5.1
-8.1 & 6.1
4.4 \\
\hline 5 & \multirow[t]{4}{*}{45, 0} & 242.0 & & \multirow[t]{2}{*}{\[
-2.3
\]} & 5.7 & \multicolumn{2}{|l|}{No} & \multirow[t]{2}{*}{47.6
18.2} \\
\hline 6 & & 256.0 & " & & 6.1 & & & \\
\hline 7 & & 270.0 & No & -4.7 & 5.6 & Yes & 3.2 & 6.6 \\
\hline 8 & & 284.0 & No & & 21.6
77.3 & " & -3.5
-3.4 & 5.4
4.0 \\
\hline 10 & \multicolumn{2}{|l|}{-35.0-246.0} & Pärtly & - -1.7 & -8.6 & No & - 2 & 20.3 \\
\hline 11 & & 258.0 & \multirow[t]{2}{*}{Yes} & -1. 5 & 6.3 & \multirow[t]{2}{*}{Yes} & \multirow[t]{2}{*}{1.2
-4.0} & 7.4 \\
\hline 12 & " & 270.0 & & 4.5 & \multirow[b]{2}{*}{6.9} & & & 8 \\
\hline 13 & " & \({ }^{282.0}\) & & -8.5 & & Partly & -1. 1 & 10.0 \\
\hline 15 & 25.0 & 245.5 & \multicolumn{2}{|l|}{No} & 64.1 & Yes & -2.2 & -7. 5 \\
\hline 16 & " & 256.5 & \multirow[t]{2}{*}{Yes} & -0. 5 & 12.1 & " & -0.7 & 7.0 \\
\hline 17 & " & 267.5 & & -1.7 & \multirow[t]{3}{*}{\[
\begin{gathered}
5.9 \\
5.5
\end{gathered}
\]} & \multirow[t]{2}{*}{,} & \multirow[t]{2}{*}{-1.8} & \multirow[t]{2}{*}{7.0
10.2} \\
\hline 18 & " & 278.5 & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{1.7
-1.7
-1.5} & & & & \\
\hline 19 & " & 289.5 & & & & No. & --- & 44.9 \\
\hline 20 & 15.0 & 242.0 & \multicolumn{2}{|l|}{No-------} & \multicolumn{2}{|l|}{506.0 -- Yes} & -3.7 & 7 \\
\hline 21 & & 252.0 & & & 71.5 & & 0.6 & 6.0 \\
\hline 22 & " & 262.0 & Yes & -0.7 & \multirow[t]{2}{*}{\(\begin{array}{r}14.4 \\ \hline .1\end{array}\)} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{-6.4
2.1} & 6.6
10.2 \\
\hline 23 & " & 272.5
283.0 & \multirow[t]{2}{*}{"} & -1.0 & & & & 10.2
77.0 \\
\hline 24
25 & " & 283.0
293.0 & & -2.1 & 5.9 & No & \multicolumn{2}{|r|}{77.0
351.2} \\
\hline \(2 \overline{6}\) & 5.0 & \(\overline{2} \overline{4} 5.0\) & \multicolumn{2}{|l|}{No} & \(\overline{9} 1 \overline{2} .9\) & Yes & -2.2- & \(\overline{6} .1\) \\
\hline 27 & 11 & 255.0 & \multirow[b]{2}{*}{Partly} & \multirow[b]{2}{*}{6.0} & 164.3 & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{0.3
0.5} & 6.5 \\
\hline 23 & " & 265.0 & & & \multirow[t]{2}{*}{20.4} & & & \multirow[t]{2}{*}{8.7
50.1
275.0} \\
\hline 29 & " & 275.0 &  & \multirow[t]{2}{*}{-1.8
0.2} & & \multirow[t]{2}{*}{No} & \multirow[b]{2}{*}{\(5.2 *\)} & \\
\hline 80 & " & 285.0 & \multirow[t]{2}{*}{} & & 6.6
3.4 & & & 275.0
285.5 \\
\hline \(\frac{31}{32}\) & - \({ }_{-1}\) & 295.0 & & \multicolumn{2}{|l|}{---- \(\mathbf{8}^{3} \overline{8} . \overline{9}\)} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& -\overline{8} . \overline{1} \\
& -5.2
\end{aligned}
\]} & \multirow[t]{2}{*}{7.6
8.0} \\
\hline 32
33 & -5.0 & 245.0
255.0 & No & \multicolumn{2}{|r|}{469.6} & Yes & & \\
\hline 34 & 1 & 265.0 & " & \multirow[b]{4}{*}{\[
\begin{array}{r}
-3.3 \\
-0.9 \\
6.8
\end{array}
\]} & 60.8 & Partly & \multirow[t]{3}{*}{-9.5} & \multirow[t]{4}{*}{\[
\begin{array}{r}
15.9 \\
115.9 \\
675.4 \\
791.6
\end{array}
\]} \\
\hline 35 & " & 275.0 & Yes & & 7.2 & No & & \\
\hline 36 & " & 285.0 & I' & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 6.8 \\
& 3.2
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 11 \\
& \text { it }
\end{aligned}
\]} & & \\
\hline 37 & " & 295.0 & \({ }^{11}\) & & & & & \\
\hline
\end{tabular}

Units of anomaly discrepancy and standard deviation are mgals. Anomaly discrepancy not tabulated if absurdly large, i.e. if absolute value greater than 10 mgals

We first consider the case when all 37 anomalies have been estimated though observations covered only a subset of these anomalies. Firstly, we find that the farther the location of anomaly from the observations (along the arcs), the larger is the std. devi., and the anomaly cannot be recovered when there are no observations directly over the anomaly block. Secondly, considering the std. devas. of anomalies covered by observations, these are all larger than the corresponding std. devns. in Solution \(10-1\) given in column 6 of Table 4.3. This appears to be due to solving for larger number of anomalies than covered by observations, and may be explained by the Normals matrix becoming ill-conditioned by their incorporation.

Next, we compare the anomaly recovery with the case when only the anomalies covered by observations are estimated, or what we may term as the anomalies of interest. There are 24 anomalies of interest in eithe: ase of 7 ascending and 7 descending arcs. The statistics for these 24 anomalies are given in Table 4. 10.

Table 4.10
Effect of Solving for More Anomalies than Covered by Observations. Summed Range Rate Observations at 1 min . Interval for 7 Arcs
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No. of Anomalies Solved for} & \multicolumn{2}{|l|}{7 Ascending Arcs} & \multicolumn{2}{|l|}{7 Descending Arcs} \\
\hline & 24 & 37 & 24. & 37 \\
\hline R. M.S. value of anom. discrepancy for 24 anomalies (mgals) & 5.1 & 3.9 & 7.2 & 4.1 \\
\hline R.M.S. value of 24 recovered anomalies (mgals) & 6.2 & 5.8 & 7.7 & 7.0 \\
\hline R.M.S. value of 24 expected anomalies (mgals) & 5.2 & 5.2 & 5.7 & 5.7 \\
\hline Correln. coeff. ( \(\rho\) ) of recovered anom. with expecter anom. & 0.62 & 0.75 & 0.46 & 0.81 \\
\hline
\end{tabular}

The results clearly point out that the anomaly recovery improves for anomalies covered by observations, if additional anomalies around the former anomalies of interest, are treated as unknowns and included in the estimation process. The latter cdditional anomalies are not covered by observations and cannot be recovered themselves, as evidenced by the very large std. devns. in Table 4.9, but their inclusion improves the model for recovery of anomalies of interest.

From Figares 4.5 and 4.6, we see that the additional anomalies were one or two anomaly blocks beyond the anomalies covered by observations, but they were not in a systematic pattern ara nd the anomalies of interest. Another 2 solutions were therefore tried, which we shall term is Solutions 10-2 and 10-3.

These had respectively one and two additional anomalies on the periphery all around the 37 anomalies leading to a total number of 64 and 92 anomalies respectively, which were then solved for. The details, as reported below, for 37 anomalies were extracted from these Solutions \(10-2\) and \(10-3\) for comparison with Solution \(10-1\). The layout of 37,64 and 92 anomalies for these 3 solutions is shown in Figure 4.7. Some statistics for these solutions are given in Table 4. 11 .


Figure 4.7 Layout of Anomalies for Solutions 10-1, 10-2, 10-3. No. of Anomalies Solved for were 37, 64, 92 respectively.

Statistics for Anomaly Recovery for \(3710^{\circ}\) Equal Area Mean Anomaliee Summed Range Rate Observations at 1 Min . Interval for 14 Arcs
\begin{tabular}{|c|c|c|c|}
\hline No. of anomalies solved for & \[
\begin{gathered}
\text { Soln. } 10-1 \\
37
\end{gathered}
\] & Soln. 10-2 64 & \[
\begin{gathered}
\text { SoIn. } 10-3 \\
92
\end{gathered}
\] \\
\hline R. M.S. value of anom. discrepancy for 37 anomalies (mgals) & 4.9 & 0.3 & 0.3 \\
\hline Meair value of anom. discrepancy for 37 anomalies (mgals) & 0.0 & -0.1 & 0.3 \\
\hline Minimum value of anom. discrepancy for 37 anomalies (mgals) & -10.1 & -0.7 & 0.1 \\
\hline Maximum value of anom. discrepancy for 37 anomalies (mgals) & 14.5 & 0.8 & 0.4 \\
\hline Sum of squares of anom. discrepancy for 37 anomalies (mgals \({ }^{2}\) ) & 891.1 & 4.3 & 2.7 \\
\hline T. M.S. value of 37 recovered anomalies (mgals) & 5.9 & 5.5 & 5.4 \\
\hline R.M.S. value of 37 expected anomalies (mgals) & 5.4 & 5.4 & 5.4 \\
\hline Correln. coeff. ( \(\rho\) ) of recovered anom. with expected anomalies & 0.63 & 0.9981 & 0.9988 \\
\hline
\end{tabular}

The improvement in anomaly recovery by including one additional anomaly block all around the periphery, is strikingly illustrated in the results of going from Solution 10-1 to 10-2. The further improvement in going to Solution 10-3 is very little. In fact, the latter appears to be an almost perfect anomaly recovery but for a constant anomaly discrepancy of about 0.3 mgals . The \(10^{\circ}\) equal area anomalios are however not recovered at all in Solution 10-3, as described later, and the close agreement is illusory, for it merely shows the repeatability of the results. The summed range rate 'observations' were simulated using 130 anomalies, i.e. \(310^{\circ}\) blocks all around the periphery of 37 anomalies of interest; and now when we use these observations to recover 92 anomalies, i.e. up to \(210^{\circ}\) blocks all around the anomalies of interest, the process is virtually repeated in reverse order. The small anonaly discrepancy is due to a smaller subset of anomalies being recovered that what were used to generate the simulated observations. The almost constant value with a small magnitude of 0.3 mgals does however show that firstly, partials of observations with respect to the unknown parameters ( \(10^{\circ}\) anomalies) have been computed accuratoly onough for the anomalies to be well recovered from the initial zero value in a non-linear model. Secondly, the density of observations with are spacing of about half anomaly block size is adequate for the anomaly recovery. Thirdly, we conclude that the effect of re-
sidual anomalies farther than 2 anomaly blocks, i.e. \(20^{\circ}\), is very small on the summed range rate observations.

To confirm the above conclusion, a reduced set of observations with latitudinal extent from \(10^{\circ} \mathrm{N}\), to \(50^{\circ} \mathrm{N}\) were extracted from the previous observations, covering the latitudinal extent from \(10^{\circ} \mathrm{S}\). to \(60^{\circ} \mathrm{N}\).

The longitudinal extent of this reduced set of observations was so kept that these observations covered only 16 anomalies numbered 6 to \(8 ; 10\) to \(13 ; 15\) to 19 ; and 21 to 24. These anomalies and arcs alongwhich observations were used are shown in Figure 4.8.


Figure 4.8 Reduced set of Observations-Arcs 1 to 8.

These extracted observations had thus been generated using anomalies up to a spherical distance of at least \(40^{\circ}\) beyond the limit of this area, and these observations were now used to recover 16 anomalies of interest along with 2 anomaly blocks all around the periphery. Observations were used only along 8 arcs, Arcs 1 to 8 , i.e. at arc spacing roughly same as the size of anomaly block, and therefore with this sparser density of observations, the anomaly recovery could not be expected to have as close agreement as reported in the last column of Table 4.11 for Solution 10-3. However, the R. M. S. value of anomaly discrepancy for the 16 anomalies of interest was only 0.9 mgals , and the correlation coefficient between the recovered value and the expected value of anomalies was 0.988 . As these results confirm the conclusion that the effect of residual anomalies farther than 2 anomaly blocks is negligibly small on the summed range rate observations, this test for 16 anomalies of interest was not repeated with 14 arcs.

We may now elaborate on the remark after Table 4.11 that anomalies were not recovered in Solution 10-3. Firstly, the correlation coefficients between the 37 recovered anomalies, as obtained from the variance covariance matrix of Solution \(10-3\), were very high. The average value of this correlation coefficient for anomalies in the same latitude zone between 2 adjacent anomalies and between 2 anomalies separated by 1, 2 and 3 anomaly blocks between them was about 0.9. Its value between two recovered anomalies in 2 adjacent latitude zones and between 2 anomalies separated by 1 and 2 Jatitude zones was also about 0.9 . In short, the different anomalies were not being recovered individually. Secondly, the std. devn. of the 37 recovered anomalies werc also large; the minimum, maximum and R.M.S. value being \(41.4,63.1\) and 52.8 mgals respectively. When we note that minimum, maximum and R. M.S. value of std. devn. for the 37 anomalies in Solution \(10-2\) were \(3.4,23.4\) and 7.5 mgals respectively, we have to conclude that Solution 10-3 has to be rejected, and Solution 10-2 accepted. Solution \(10-2\) will be examined in greater detail in the following Sec. 4.1.9.

\subsection*{4.1.9 Recovery Model for \(10^{\circ}\) Equal Area Mean Anomalies}

The statistics for Solution 10-2 have been presented in Table 4.11 for the 37 anomalies of interest covered by the observations. We may also record here the improvement in anomaly recovery, with the increase in density of observations from arc-spacing of roughly same as anomaly block size ( 8 Arcs) to arc spacing of roughly half of anomaly block size ( 14 Arcs). The number of recovered anomalies in both cases were 64, i.e. 37 anomalies of interest and an additional anomaly all around the area covered by observation; and the spacing of observations along the are was 1 min. The statisties for the 37 anomalies of intorest are given in Trable 4.12.

Table 4.12

Effect of Reduction in Spacing of Ares for Solution 10-2 for \(3710^{\circ}\) Equal Area Mean Anomalies
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
Soln. 10-2 \\
14 Arcs
\end{tabular} & 8 Arcs \\
\hline R.M.S. value of anomaly discrepancy (mgals) & 0.3 & 1.3 \\
\hline Mean value of anomaly discrepancy (mgals) & -0.1 & 0.2 \\
\hline Minimum value of anomaly discrepancy (mgals) & -0.7 & -2.4 \\
\hline Maximum value of anomaly discrepancy (mgals) & 0.8 & 6.3 \\
\hline Sum of Squares of anomaly discrepancy (mgals) \({ }^{2}\) & 4.3 & 59.9 \\
\hline R.M.S. value of recovered anomalies (mgals) & 5.5 & 5.5 \\
\hline R. M.S. value of expected anomalies (mgals) & 5.4 & 5.4 \\
\hline Correln. coeff. ( \(\rho\) ) of recovered anom. with expected anom. & 0.998 & 0.973 \\
\hline R. M.S. value of std. devn. of recovered anom. (mgals) & 7.5 & 43.0 \\
\hline
\end{tabular}

The correlation coefficients between the 37 recovered anomalies obtained from the variance-covariance matrix of Solution \(10-2\) are shown in Figure 4.9. The figure shows the correlation coefficients between adjacent anomalies both in the east-west direction in the same latitude zone, as well as in the northsouth direction between two adjacent anomalies in two adjacent latitude zones. We first note that the magnitude of the correlation coefficients is low; average value in the east-west direction is -0.32 , and average value in the north-south direction is -0.44 , which indicates that the individual \(10^{\circ}\) equal area anomalies are being recovered. Secondly, the correlation coefficients are lower in the center, where the density of observations is large because of the presence of both ascending and descending arcs. Thirdly, in the north half of the area, the magnitude of the east-west correlation coefficient is higher (average -. 40) than the magnitude of the north-south correlation coefficient (average -. 26); while in the south-half of area the east-west correlation coeffic ient is lower average-. 28) than the north-south correlation coefficient (average -0.61). This is due to larger spacing between ares in the south as compared to the north, as would be clear from Figure 4.2. A high correlation coefficient appears as a sign of weak anomaly recovery.


Figure 4.9 Correlation Coefficients between Recavered Anomalies in Solution 10-2.

We may now consider the std. devns. of the recovered anomalies for the 37 anomalies of interest in Solution 10-2. These have been tabulated in Table 4.13. We find that the std. devms. are lowest in the center of the area. Further, the std. devns. of anomalies in the north of the area are lower as compared to the anomalies in the south of the area; and finally, std. devns. of anomalies in the east \(f f\) area are lower than for the anomalies in the west of area in each latitude zone.

Table 4.13

Variation in Standard Deviation of
\(3710^{\circ}\) Equal Area Mean Anomalies in Solution 1G-2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Anomaly No. & Latitude Zone & \multicolumn{6}{|l|}{Std. Devn, of Anomalies Sequentially from W, to E. (mgals)} \\
\hline 1-4 & \(50^{\circ}-60^{\prime 2} \mathrm{~N}\). & 9.5, & 6.1 , & 4.6, & 6.1 & & \\
\hline 5-9 & \(40^{\circ}-50^{\circ} \mathrm{N}\) & 10.3, & 4.6, & 3.9 , & 4.3 , & 7.8 & \\
\hline 10-14 & \(30^{\circ}-40^{\circ} \mathrm{N}\) & 11.2, & 4.0, & 3.6, & 3.4, & 7.3 & \\
\hline 15-19 & \(20^{\circ}-30^{\circ} \mathrm{N}\). & 7.2, & 4.4 & 3.5 , & 3.9 , & 4.8 & \\
\hline 20-25 & \(10^{\circ}-20^{\circ} \mathrm{N}\). & 7.4, & 5.5, & 4.0 , & 3.5, & 4.8, & 5.4 \\
\hline 26-31 & \(0^{\circ}-10^{\circ} \mathrm{N}\) & 11.3, & 6.9 , & 4.8, & 4.3, & 6.0 , & 5.9 \\
\hline 32-37 & \(10^{\circ} \mathrm{S}-0^{\circ}\) & 23.4, & 15.6, & 10.4, & 5. 5, & 7.0* & 5.2 \\
\hline
\end{tabular}
*perhaps caused by Arc. No. 8 not going up to the edge of the area. See remarks before Table 4. 1.

The std. do.ns. decrease in the center of the area clearly because of the increased density of observations because of the presence of both ascending and descending ares. It may therefore be better to consider the recovery of anomalies in an area shaped like a rhombus with the diagonals roughly easi-west and north-south so that most of the area is covered by both ascending and descending arcs. This has been done in Sec. 4.2 and Chapter 5 . The increase in std. devns. in the south of area as compared to the north of area is due to the increase in the spacing of arcs as we go towards the equator as may be seen from Figure 4.2. It may thererore be appropriate, if it can be so arranged, to consider recovery in equatorial areas separately from mid-latitudes.

The reason for the increase in std. devn. from east to west in a latitude zone is due to the fixing of starting coordinates of each arc, as observations of about 20 minutes duration could not solve for the starting coordinates, as discussed in Sec. 2.3.3. The misclosures of 'observed value' - 'computad value' of summed range rate are therefore zero in the north-east for descending aros and in the south-east for ascending ares, and increase as we proceed along the ares to south-west and north-west respectively. As outlined later in Sec. 6.1, while working with aetual observational data over entire usable portion of the arc, say, 40 minutes, and in conjunction with other tracking data, it may be
possible to adjust the starting coordinates of the arc (or portions of the arc) to fit the whole data, and there may not then be any large change in std. devn. of anomalies in a latitude zone towards one edge.

We may now examine the question of 'goodness' of solution, as we have already considered this for Solution 10-2. For simulated observations, not burdened with observational errors, the anomaly discrepancies should be small \({ }_{8}\) about \(1 / 2\) to \(1 / 3\) of the R. M.S. value of the expected anomalies. The R. M.S. value of the recovered anomalies should be comparable to the R. M.S. value of the expected anomalies, with a high value, say 0.9 , of the correlation coefficient of recovered with expected anomalies, as definsd by \(\rho\) in equation (4.1). These statistics may be seen for solution 10-2 in Table 4.11.

The correlation coefficient between the recovered anomalies, as obtained from the variance-covariance matrix should be small, say about 0.5 or less; see Figure 4.9. The std. dem. of recovered anomalies should be comparable to, or less than, the std. devn. of the expected anomalies, which may be obtained as the R. M.S. value of the expected anomalies. We may note here that the std. devn. of recovered anomalies would be decreased by a factor by which the std. devn. of observations is reduced, as the observations were considered to be independent, and having the same std. devn. ; see equation (4.2) in Sec. 4.1.5. The std. devn. of summed range rate observations in Sec. 4.1 was taken as. \(08 \mathrm{~cm} / \mathrm{sec}\). , which is based on an integration interval of 10 sec . However, as we have used observations at 1 minute interval, we may consider their std. devn. as \(.03 \mathrm{~cm} / \mathrm{sec}\). based on an integration interval of 1 minute. The std. devn. of recovered anomalies in Solution \(10-2\) would thus become 2.8 mgals instead of 7.5 mgals. We have already discussed the increased std. devn. of recovered anomalies on the 'south and west edges of the area beatuse of reduced number of observations. If we then consider the remaining anomalies, i.e. except Anomaly No. \(5,10,26,32,33,34\) on the cdges of the area (see Tible 4.13 and Figures 4.1 and 4.2 ) having std, devn. larger than 10 mgals, the R. iM. S. value of 31 recovered anomalies in Solution \(10-2\) would become 5.2 mgals considering std. devn. of summed range rate observations as \(.08 \mathrm{~cm} / \mathrm{sec}\). This will be reduced to 2.0 mgals , if we consider the std. devn, of summed range rate observations as \(.03 \mathrm{~cm} / \mathrm{sec}\). This R, M.S. value of the std. devn. of recovered anomalies, 2.0 or 2.8 mgals, may then be compared for judging the 'goodness' of anomaly recovery with the std. devn. of expected anomalies of 5.4 mgals , obtained as the R.M.S. value of the 37 expected anomalies.

We may also recall the discussion in Sec. 4.1.3 about computing the std. devn. of recovered anomalies when the spacing of observations along the arc is about the same as spacing of observations between adjacent ares. W/e have onsured this in Solution 10-2, where the spacing of ares was about half anomaly block size by considering observations along the are at 1 minute intarval; see Figure 4. 2. However, if we had considered observations along the arc at oloser time interval, say \(n\) times the spacing of observations between the ares, then the
resulting std. devn. of the recovered anomalies need to be multiplied by \(\sqrt{n}\). This was demonstrated in Table 4.3, but those iesults were based on a recovery model which solved only for the anomalies covered by observations, and the observations were also grossly inadequate, as we considered only 2 arcs. Now that we have decided on the optimum recovery model by solving for an additional anomaly all around the border of area covered by observations, we may examine the change in std. devns. with increased along-arc observations for this model. We have already reported in Table 4.12 the results of recovering 37 anomalies of interest, using observations along 8 arcs at 1 minute interval to solve for 64 anomalies. Another solution was then obtained using the same model, but with observations at 30 sec . interval along 8 arcs. The difference between anomaly recovery for the 37 anomalies of interest between these 2 runs was nominal, the R.M.S. value of the difference being 1.4 mg . m . However, the std . devns. of recovered anomalies of the two solutions bore an almost constant ratio, whose mean value was 0.70 , which agrees with the factor \(1 / \sqrt{2}=0.71\). These results then confirm the conclusions of Sec. 4.1.3.

We have thus described the criteria for judging the 'goodness' of anomaly recovery and illustrated it with Solution \(10-2\) of \(3710^{\circ}\) equal area mean anomalies. We now describe in Sec. 4.2 the anomaly recovery of \(5^{\circ}\) equal area mean anomalies using a close satellite of height 250 km .

\subsection*{4.2 Recovery of \(5^{\circ}\) Equal Area Mean Anomalies from Close Satellite at Height of 250 km}

\subsection*{4.2.1 Area of Investigation and Satellite Arcs}

The area for the recovery of \(5^{\circ}\) equal area anomalies was also centered on latitude \(30^{\circ} \mathrm{N}\). and Iongitude \(265^{\circ} \mathrm{E}\). Two changes were, however, made in the shape and the extent of the area as per the discussion before Table 4.13 in Sec. 4.1.9. First, the shape of the area was changed from a roughly rectangular one, as in Figure 4.1 to nearly like a rhombus with the diagonals roughly east-west and north-south. This change resulted in most of the anomalies being covered by both ascending and descending arcs (see Figure 4.10), thereby increasing the density of observations and making it more uniform over a much larger portion of the area than what was possible with a rectangular shape of the area as in Figure 4.1. The second change was to reduce the latitudinal extent of the area so that the spacing between two adjacent arcs was more nearly the same over anomalies in the north edge of the area as compared to the spacing over anomalies in the south edge of the area (see Figure \(4.11 \mathrm{a}, \mathrm{b}\) ). The wide latitudinal extent of \(70^{\circ}\) for the area for the recovery of \(10^{\circ}\) anomalies had resulted in the spacing between the arcs to be nearly halved over anomalies in the south edge as compared to the north edge of the area, as may be seen from Figures 4.2 a and 4.2 d . However, the present latitudinal extent of \(20^{\circ}\) for the area for the recovery of \(5^{\circ}\) anomalies was merely for the computational convenience of having a smaller number of arcs to be simulated. This will become more apparent in Sec. 5.1, where the same area of investigation was retained to enable comparison, but we needed to consider up to 28 arcs. From the consideration of nearly uniform spacing between the arcs from the north edge to the south edge of the area, we may have as well increased the latitudinal extent to \(40^{\circ}\).

The area of investigation and the satellite arcs have been shown in Figure 4.10. As discussed, the anomalies to be recovered were chosen so that their location and extent would result in the shape of the area ibeing more nearly a rhombus. The total number of anomalies with these considerations came out to be 12. The satellite arcs were selected so that the spacing between adjacent arcs was roughly half of the longitudinal extent of the \(5^{\circ}\) anomaly block; and that all the arcs taken together were positioned symmetrically over the area of investigation. The total number of ares selected from these considerations were 12. The inter-se numbering of ares was according to the starting time of the arc. The starting time, the duration of arc and the coordinates for the first and last sub-satellite point for the close satellite are given in Table 4. 14.


Figure 4.10 Satellite Ares for Recovery of \(5^{\circ}\) Equal Area Mean Anomalies. Height of Close Satellite \(\approx 250 \mathrm{~km}\).

\section*{Satellite Arcs Used for Recovery of \(5^{\circ}\) Equal Area Mean Anomalies} Height of Close Satellite \(\approx 250 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Arc Ascending/ \\
No. Descending Arc
\end{tabular}} & \multicolumn{4}{|c|}{Starting Time*} & \multicolumn{2}{|l|}{Duration of Arc Min. Sec.} & \multicolumn{4}{|l|}{First \& Last Subsatellite Pts. for Close Sat.} \\
\hline 1 & \(\checkmark\) & 0 & 12 & 31 & 00 & 4 & 00 & 34.4 & 273.9 & 20.2 & 264.2 \\
\hline 2 & k & 0 & 22 & 29 & 40 & 3 & 40 & 27.5 & 272.8 & 40.2 & 262.8 \\
\hline 3 & \(\checkmark\) & 2 & 13 & 42 & 00 & 4 & 10 & 39.8 & 265.9 & 25.3 & 254.8 \\
\hline 4 & \(k\) & 2 & 23 & 40 & 10 & 4 & 10 & 20.1 & 265.0 & 34.8 & 254.9 \\
\hline 5 & \(\checkmark\) & 4 & 13 & 26 & 30 & 4 & 10 & 35.1 & 271.4 & 20.3 & 261.2 \\
\hline 6 & \(k\) & 4 & 23 & 24 & 40 & 4 & 20 & 25.0 & 271.5 & 40.1 & 259.9 \\
\hline 7 & 7 & 6 & 14 & 37 & 40 & 4 & 20 & 39.9 & 263.0 & 24.8 & 251.4 \\
\hline 8 & K & 7 & 00 & 35 & 50 & 4 & 10 & 19.9 & 262.0 & 34.7 & 252.0 \\
\hline 9 & \(\checkmark\) & 8 & 14 & 21 & 40 & 4 & 20 & 36.9 & 269.9 & 21.6 & 259.0 \\
\hline 10 & N & 9 & 00 & 20 & 30 & 3 & 50 & 25.5 & 268.1 & 38.9 & 258.0 \\
\hline 11 & * & 12 & 15 & 16 & 30 & 4 & 50 & 39.8 & 269.5 & 22.9 & 256.8 \\
\hline 12 & * & 13 & 01 & 15 & 00 & 4 & 00 & 21.2 & 267.8 & 35.4 & 258.0 \\
\hline
\end{tabular}
*in elapsed time from 21 Sept. \(6901 \mathrm{hr}, 33 \mathrm{~min} .36 .3 \mathrm{sec}\). (see Sec. 1.1)

The observations along each arc were simulated at a time interval of 10 seconds. The observations corresponding to the position of sub-satellite points of the close satellite over 4 anomaly blocks have been shown in Figures 4.11a to \(d\), the longitudinal scale having been reduced to achieve an equal area representation. The observations have been shown in Figure 4.11 at time interval of every 30 seconds only. We notice from Figure 4.11 that the spacing of alongare observations at 30 seconds time interval is slightly larger in anomaly block No. 1 at the north edge of the area, as compared to the spacing of observations between adjacent arcs. But, as we proceed to the south edge of the area through anomaly blocks No. 4, 9, 12, the along-arc spacing of observations becomes slightly smaller than the across-arc spacing of observations. However, considoring the whole area, if we achieve satisfactory anomaly recovery with 12 arcs giving across-are spacing of half anomaly block size, we ought to utilize the corresponding along-are spacing of observations as 30 sec . And; in that case, as we have used the observations at time interval of 10 seconds, we need to multiply the resulting std. devns. of the recovered anomalies by a factor of \(\sqrt{3}\). The std. devns. in Sec, 4.2 have been quoted throughout as obtained from the observations at 10 seconds the interval without multiplying by the factor of \(\sqrt{3}\), and this has been done only finally in the ond of section 4.2.3.


Figure 4.11 a

ANOMALY BLOCK NO. 4


Figure 4.11c


Figure 4.11b


Figure 4.11d

Figure 4.11 Typical Spacing of Observations over \(5^{\circ}\) Equal Aree Mean Anomaly Blocks.
Height of Close Satellite \(\approx 250 \mathrm{~km}\).
Arc Spacing \(\approx 3^{\circ}\), Time Interval Along Arc \(=30\) sec.

\subsection*{4.2.2 Relative Location of Anomalies and Ares}

We have already noticed in See. 4.1.8, particularly in the remarks following Table 4.11, that the anomaly recovery improves for the anomalies covered by observations if additional anomalies all around the anomalies of interest are included in the solution. We would thus discuss 3 solutions, Solutions 250-5-1, 250-5-2, 250-5-3 indicating the 3 solutions for \(5^{\circ}\) anomalies using close satellite at a height of about 250 km . The statistics will be quoted only for the 12 anomalies of interest, as in Figure 4.10, but the number of anomalies solved for in the 3 solutions would be 12, 24 and 40 respectively. The layout of these 12,24 and 40 anomalies has been shown in Figure 4.12.


Figure 4.12 Layout of Anomalies for Solutions 250-5-1, 250-5-2, 250-5-3. No. of Anomalies Sulved for Were 12, 24, 40 respectively.

Summed range rate observations with std. devn. of \(.08 \mathrm{~cm} / \mathrm{sec}\)., and time interval of 10 seconds along an arc, were used for 12 arcs as in Figure 4.10 for all the three solutions, \(250-5-1,2,3\).

We will first report the anomaly discrepancies using 6 arcs, i.e. arc spacing roughly same as anomaly block size. Two different sets of 6 arcs were used. The location of these two sets of arcs are shown in Pigures \(4.13 \mathrm{a}, \mathrm{b}\) respectively.


Figure 4.13a Case 1. Arcs 5 to 8, 11. 12.


Figure 4.13b Case 2. Arcs 1 to 4, 9, 10.
Figure 4.13 Relative Location of Anomaly Blacks and 6 Ares.

The spacing of arcs is the same in both cases, but in the first case the peripheral anomaly blocks on the west are better covered by observations as compared to the second case, while the reverse is true for the peripheral anomaly blocks on the east. However, as the misclosures of summed range rate are zero on the north-east and south-east edges because of fixing of the starting coordinates of each arc, as discussed in Sec. 2.3.3, and the misclosures increase as we proceed towards the west edge of the area, Case 2 is likely to give a worse anomaly recovery than Case 1. The anomaly discrepancies are given in Table 4.15 for Cases 1, 2 and also for their combination, i, e. using all the 12 arcs. To enable comparison of these cases, 40 anomalies, i.e. 2 additional anomalies all around the 12 anomalies of interest, were solved for in all the 3 cases, but anomaly discrepancies have been tabulated fur only the 12 anomalies of interest.

Table 4.15

Relative Location of Anomaly Blooks and Ares Summed l?ange Rate Observations at 10 sec . Time Interval
\begin{tabular}{|c|c|c|c|}
\hline Anom. No. & \begin{tabular}{l}
Anomaly Discr \\
Case 1.-6 Arcs Are No. 5 to 8, 11, 12
\end{tabular} & ancy in mgals Case 2.-6Arcs Arc No. 1 to 4, 9, 10 & \begin{tabular}{l}
12 Arcs \\
Solution 250-5-3
\end{tabular} \\
\hline 1 & -0.5 & 2.3 & 0.0 \\
\hline 2 & -0.1 & 1.3 & -0.2 \\
\hline 3 & 0.9 & 6.8 & 0.9 \\
\hline 4 & 0.4 & 2.1 & 0.2 \\
\hline 5 & 0.1 & 0.8 & 0.0 \\
\hline 6 & 1.8 & 1.0 & -0.5 \\
\hline 7 & 3.6 & 9.9 & 2.5 \\
\hline 8 & 1.4 & 0.3 & 0.9 \\
\hline 9 & 0.5 & 0.7 & 0.4 \\
\hline 10 & 1.0 & 0.7 & 0.1 \\
\hline 11 & 1.4 & -0.9 & 0.4 \\
\hline 12 & 0.5 & -0.3 & 0.4 \\
\hline R.M.S. Value & 1.4 & 3.6 & 0.8 \\
\hline
\end{tabular}

The largest change in anomaly discrepancies hetween Cases 1 and 2 occurs for Anomaly No. 3 and 7 on the wert edge of the area. With reference to Figure 4.13, we find that this change is only due to the observations in Case 1
being positioned centrally over these anomalies as compared to Case 2. The difference in anomaly discrepancies between Cases 1 and 2 for the other 10 anomalies is only marginal, the 1 .. M.S. value for these 10 anomaly discrepancies being 1.0 and 1.2 mgals respectively. If we now compare the anomaly discrepancies between Case 1 with Solution \(250-5-3\), we find that the anomaly discrepancies have been reduced for all anomalies because of decreased spacing of arcs. The reduction is noticeable not only for Anomalies No. 6, 10 on the east edge, but also for Anomalies No. 1, 7, 11 on the west edge. However, the anomaly discrepancy for Anomaly No. 7 continues to \(b\) c large in Solution \(250-5-3\) as compared to other anomalies, exceeding 3 times the R. M.S. value of the 12 anomaly discrepancies. In view of the sharp reduction in anomaly discrepancies for Anomaly No. 3 and 7 in going from Case 2 to Case 1, it appears likely that we may achieve a still better anomaly recovery if the density of observations over peripheral anomalies is increased still further over the design of ares in Figure 4.10, which we may recall, was already an improvement over the design of arcs in Figure 4.1 for \(10^{\circ}\) anomaly recovery. This aspect will be examined further in Sec. 5.1.3.

We may, however, emphasize as we discussed for Solution 10-3 in the end of Sec. 4.1.8, that Solution \(250-5-3\) does not fit as a suitab?e recovery model for \(5^{\circ}\) anomalies. As mentioned in Sec. 3.4 and shown in Figure 4.14, the summed range rate 'observations' were simulated using \(525^{\circ}\) anomalies, i, e. two \(5^{\circ}\) anomalies all around the area of investigation, and \(3710^{\circ}\) anomalies, i. e. two \(10^{\circ}\) anomaly all around the periphery of \(525^{\circ}\) anomalies, thus taking into account the contribution of residual anomalies up to \(30^{\circ}\) around the area of investigation besides the global gravity field defined by potential coefficients up to degree and order 12. In Solution 250-50-3, we have now used these 'observations' to solve for \(405^{\circ}\) anomalies, i.e. two \(5^{\circ}\) anomalies all around the 12 anomalies of interest, thereby virtually repeating the process in reverse order. In Solution 10-3, we found an almost constant anomaly discrepancy of 0.3 mgals due to the effect of residual anomalies beyond \(20^{\circ}\) from the area of investigation being very little. The anomaly discrepancies are slightly larger in Solution 250-5-3, as we have gone up to \(10^{\circ}\) only from the area of investigation. But, as pointed out in remarks after Table 4.11 in Sec. 4.1.8, these discrepancies are small enough to show the adequacy of the computations of the partials matrix of observations with respect :o unknown \(5^{\circ}\) anomalies, and the adequacy of the density of observations.

To elaborate further on Solution 250-5-3, the correlation coefficients between the 12 recovered anomalies as obtained from the variance-covariance matrix were very high. The average value of this correlation coeffic ient for anomalies in the same latitude zone between 2 adjacent anomalies was 0.78 , and even between 2 anomalies separated by one anomaly block between them, it was 0.61 . Its average value between two anomalies in adjacent latitude zones was 0.72 , and between 2 anomalies separated by 2 latitude zones, it was still 0.55 . The std. deva, of the 12 recovered anomalies were also large, the minimum, maximum and R. M.S. value being \(6.9,43.8,20.5 \mathrm{mgals}\) respectively.


Figure 4.14 Limit of \(405^{\circ}\) Anomalies Used in Solution 250-5-3 in Relation to Anomalies used for Simulating Observations.

The anomaly discrepancy and std. devns. for 12 anomalies of interest in Solution 250-5-2 are given in Table 4.16, though, as already mentioned, 24 anomalies were solved for. This solution has been discussed further in Sec. 4.2.3.

Table 4.16
Solution 250-5-2.
Summed Range Rate Observation at 10 sec . Time Interval for 12 Arcs
\begin{tabular}{|c|c|c|c|c|}
\hline Anom. No. & \begin{tabular}{l}
Expected \\
Anomaly
\end{tabular} & \begin{tabular}{l}
Solutio \\
Anomaly
\end{tabular} & \begin{tabular}{l}
250-5-2 \\
Std. devn.
\end{tabular} & Anom. Discrep. \\
\hline 1 & -21.8 & -24.1 & 2.7 & -2.3 \\
\hline 2 & -14.8 & -12.2 & 1.5 & 2.6 \\
\hline 3 & -1. 5 & -4.9 & 4.3 & -3.4 \\
\hline 4 & -12.9 & -12.5 & 1.7 & 0. 4 \\
\hline 5 & -9.6 & -9.7 & 1.5 & -0.1 \\
\hline 6 & 3.2 & -1.8 & 6.0 & -5.0 \\
\hline 7 & 16.8 & 17.7 & 5.0 & 0.9 \\
\hline 8 & 1.0 & 1.8 & 2.2 & 0.8 \\
\hline 9 & -20.4 & -20.6 & 1.4 & -0.2 \\
\hline 10 & -0.3 & 3.3 & 1.7 & 3.6 \\
\hline 11 & 22.4 & 22.2 & 5.2 & -0.2 \\
\hline 12 & -9.1 & -8.4 & 2.2 & 0.7 \\
\hline R.M.S. Value & 13.7 & 13.9 & 3.4 & 2.3 \\
\hline
\end{tabular}

Units are mgals.
In view of the discussion in Sec. 4.1, we need only mention that the minimum, maximum and the R. M.S. value of anomaly discrepancy in Solution 250-5-1, when only the 12 anomalies covered by observations were solved for, was -3.5 , 13.9 and 6.8 mgals, i. e. the anomaly recovery was worse than Solution 250-5-2. We will thus examine only the Solution \(250-5-2\) for how good the anomaly recovery has been with respect to the criteria discussed in Sec. 4.1.9.

\subsection*{4.2.3 Recovery Model for \(5^{\circ}\) Equal Area Mean Anomalies}

We again note that the std. devns. of the anomalies in Table 4.16, generally follow the same pattern as discussed before Table 4.13 in Sec. 4.1.9. The correlation coefficients between the 12 recovered anomalies obtained from the variance-covariance matrix of Solution 250-5-2 are shown in Figure 4. 15.


Figure 4.15 Correlation Coefficients Between Recovered Anomalies in Solution 250-5-2.

The correlation coefficients are shown between 2 adjacent anomalies both in the east-west and in the north-south direction. We note that the magnitude of the correlation coefficients is low; average value in the east-west direction is -.26 , and average value in the north-south direction is -.41 , which indicates that the individual \(5^{\circ}\) anomalies are being recovered.

We may now put together in Table 4.17 the statistics discussed in the end of Sec. 4.1.9 to examine the 'goodness' of anomaly recovery in Solution 250-5-2 for the 12 anomalies of interest.

Table 4.17
Statistics for \(5^{\circ}\) Anomaly Recovery in Solution 250-5-2 Summed Range Rate Observations at 10 sec . Time Interval for 12 Arcs
\begin{tabular}{lc} 
No. of anomalies recovered & 24 \\
No. of anomalies of interest & 12 \\
R.M.S. value of anomaly discrepancy (mgals) & 2.3 \\
R.M.S. value of expected anomalies (mgals) & 13.7 \\
R. M.S. value of recovered anomalies (mgals) & 13.9 \\
\begin{tabular}{l} 
Correln. coeff. ( \(\rho\) ) of recovered anom. with \\
\(\quad\) expected anom.
\end{tabular} & 0.986 \\
\begin{tabular}{l} 
Mean correln. coeff. of adjacent recovered \\
\(\quad\) anom. (E. W. direction)
\end{tabular} & -0.26 \\
\begin{tabular}{l} 
Mean correln. coeff. of adjacent recovered \\
\(\quad\) anom. (N.S. direction)
\end{tabular} & -0.41 \\
\begin{tabular}{l} 
R. M.S. value of std. devn. of recovered \\
anom. (mgals)
\end{tabular} & 3.4 \\
\begin{tabular}{c} 
Along-arc/Across-arc spacing of observations \\
R.M.S. value of std. devn. of recovered anom. \\
corrected for spacing of observations (mgals)
\end{tabular} & 3.9
\end{tabular}

We thus find that the anomaly recovery in Solution 250-5-2 is satisfactory, but the along-arc spacing of observations at 10 sec . time interval is about 3 times the across-arc spacing of observations with 12 arcs, as pointed out in the end of Sec. 4.2.1 after examination of Figure 4.11. The R.M.S. value of sta. devn. of recovered anomalies should then be increased by a factor of \(\sqrt{3}\) in view of the discussion in the end of Sec 4.1.9, and this has therefore been done in the last line of Table 4. 17.

\subsection*{4.3 Recovery of Gravity Anomalies from Strong Signal}

We will summarize here the recovery of \(10^{\circ}\) and \(5^{\circ}\) equal area mean anomalies, as obtained respectively in Solution 10-2 (Tables 4.11, 4.13, Figure 4.9) and Solution 250-5-2 (Tables 4.16, 4.17, Figure 4.15).

We have already summarized the criteria for examining the 'groodness' of anomaly recovery at the end of Sec. 4.1.9. To recapitulate briefly, for simulated observations not burdened with observational errors, the R. M.S. value of the anomaly discrepancy should be small, about \(1 / 2\) to \(1 / 3\) of the R.M.S. value of the expected anomalies. The R.M.S. value of the recovered anomalies should be comparable to the R.M.S. value of the expected anomalies, with a high value, say, about 0.9 , of the correlation coefficient between the recovered and expected anomalies. The correlation coefficients between adjacent recovered anomalies, as obtained from their variance-covariance matrix, should be small, say less than 0.5 , both in the east-west and in the north-south directions.

The R.M.S. value of the std. devn. of the recovered anomalies should be comparable to, or less than, the std. devn. of the expected anomalies, which may be obtained as the R.M.S. value of the expected anomalies. The std. devn. of the recovered anomalies should be computed for that spacing of along-arc observations, which is roughly equal to the spacing of observations between adjacent arcs. The optimum spacing of arcs was found to be half anomaly block size, i. e. roughly \(6^{\circ}\) and \(3^{\circ}\) respectively for the recovery of \(10^{\circ}\) and \(5^{\circ}\) equal area anomalies. The corresponding along-arc spacing is obtained when the time interval of ob : irvations along the are is 1 minute and 30 seconds respectively (Figures 4.2 and 4.11 ). If the along-arc observations are closer, e.g. every 10 seconds in Solution \(250-5-2\), which is 3 times closer than the desired across-arc spacing of observations, then the resulting std. devns, of the recovered anomalies should be multiplied by \(\sqrt{3}\) (Table 4.17 in Sec. 4.2.3).

The time interval of along-a \(\mathrm{a}_{\mathrm{c}} \mathrm{c}\) observations in Solution \(10-2\) was 1 minute, which was roughly the same as the across-arc spacing of observations of half anomaly block size, i.e. about \(6^{\circ}\). However, in this case, we should have used the std. devn. of summed range rate observations as \(.03 \mathrm{~cm} / \mathrm{sec}\) based on an integration interval of 1 minute, instead of \(.08 \mathrm{~cm} / \mathrm{sec}\) based on an integration interval of 10 seconds. As all observations were considered to be independent and with the same std. devn., the resulting std. dovn. of recovered anornal ies in Table 4.13 should then be multiplied by a factor of \(3 / 8\). This has been done in Table 4.18 below, which gives the statistics for the anomaly recovery of \(10^{\circ}\) and \(5^{\circ}\) equal area mean anomalies for Solutions \(10-2\) and 250-5-2 respectively.

Table 4.18
Statistics for Recovery of \(10^{\circ}\) and \(5^{\circ}\) Equal Area Mean Anomalies from Strong Signal


\footnotetext{
*R.M.S. value for 31 anomalies, after leaving out 6 anomalies on the south and west edges of the area, not well covered with observations (see remarks after Table 4.13 in Sec. 4.1.9).
}

\section*{5. RECOVERY OF GRAVITY ANOMALIES FROM WEAK SIGNAL}

We discuss in this Chapter the recovery of \(5^{\circ}\) equal area mean residual anomalies from the close satellite at a height of about 900 km , and the recovery of \(2^{\circ} .5\) equal area mean residual anomalies from the close satellite at a height of about 250 km . The effect of anomalies in \(5^{\circ}\) blocles will obviously be feit less than the effect of anomalies in \(10^{\circ}\) blocks, on the close satellite at height of 900 km , and similarly, the effect of \(2^{\circ} .5\) anomalies will be weaker than that of \(5^{\circ}\) anomalies on the close satellite at height of 250 km . The signal to be recovered from the summed range rate measurements is then weaker than the cases discussed in Sec. 4.1 and Sec. 4.2.

\subsection*{5.1 Recovery of \(5^{\circ}\) Equal Area Mean Anomalies from Cloie Satellite at Height of 900 km}

\subsection*{5.1.1 Area of Investigation and Satellite Arcs}

The area of investigation for the recovery of \(5^{\circ}\) anomalies from close satellite at height of 900 km , was retained to be the same as in Sec. 4.2. The location of the area, its shape, and the numbering of \(5^{\circ}\) anomalies to be recovered were also the same as in Sec. 4.2. The satellite arcs were selected to achieve symmetrical positioning over the area, and to achieve spacing of roughly \(1 / 2\) the anomaly block size. 13 ares were chosen initially as compared to 12 arcs in Sec. 4.2 (see Figure 4.10). However, as discussed in Sec. 4.2.2, 4 more arcs were also selected, one in each corner of the area, to examine the effect of progressively increasing the density of observations directly over the peripheral anomaly blocks.

The location of the aros with respect to the anomalies to be recovered is shown in Figure 5.1. The numbering of arcs from 1 to 13 was according to the starting time of the are. The numbering of the corner arcs was in accordance with the examination of the effect on the anomaly recovery made from 13 arcs, as the additional ares were added to the solution one at a time; and this order was arcs 14, 15, 14A and 15A respectively. Later, in Sec. 5.1.4, we will further investigate the effect of increasing the density of ares from \(1 / 2\) anomaly block size to \(1 / 4\) anomaly block size. Thes e arcs would be numbered 16 to 28. The particulars for Arcs 1 to 13, and for Arcs 14, 15, 14A, 15A, have been given in Table 5.1.


Figure 5.1 Satell ite Ares for Recovery of \(5^{\circ}\) Equal Area Mean Anomalies. Are Spacing \(\approx \frac{\text { 音 Anomaly Block Size. }}{}\) Height of Close Satellite \(\approx 900 \mathrm{~km}\).

Table 5.1
Satellite Arcs Used for Recovery of \(5^{\circ}\) Equal Area Mean Anomalies. Height of Close Satellite \(\approx 900 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Are \\
No.
\end{tabular} & Ascending/ Descending Arc & \multicolumn{4}{|l|}{Starting Time*} & \multicolumn{2}{|l|}{Duration of Arc Min. Sec.} & \begin{tabular}{l}
First \\
\(\varphi^{\circ}\)
\end{tabular} & \& Last for Clo \(\lambda^{\circ}\) & bsatel Sat. \(\varphi^{\circ}\) & te Pts. \(\lambda^{0}\) \\
\hline 1 & \(k\) & 1 & 20 & 29 & 50 & 4 & 30 & 20.0 & 261.4 & 34.1 & 251.7 \\
\hline 2 & \(\angle\) & 2 & 10 & 41 & 20 & 4 & 30 & 40.5 & 262.6 & 27.0 & 251.8 \\
\hline 3 & k & 2 & 20 & 24 & 00 & 5 & 00 & 19.7 & 264.7 & 35.3 & 253.8 \\
\hline 4 & \(\downarrow\) & 3 & 10 & 35 & 40 & 5 & 10 & 40.3 & 265.5 & 24.7 & 253.4 \\
\hline 5 & K & 3 & 20 & 18 & 20 & 4 & 50 & 20.0 & 267.7 & 35.1 & 257.2 \\
\hline 6 & 4 & 4 & 10 & 30 & 00 & 5 & 10 & 40.1 & :368.5 & 24.5 & 256.4 \\
\hline 7 & - & 4 & 20 & 13 & 50 & 4 & 40 & 23.9 & 268.3 & 38.3 & 257.6 \\
\hline 8 & \(\cdots\) & 5 & 10 & 24 & 40 & 6 & 10 & 38.9 & 270.5 & 20.2 & 256.8 \\
\hline 9 & k & 5 & 20 & 08 & 20 & 5 & 00 & 24.7 & 271.0 & 40.0 & 259.1 \\
\hline 10 & \(\downarrow\) & 6 & 10 & 20 & 00 & 5 & 10 & 35.7 & 270.9 & 19.9 & 259.8 \\
\hline 11 & \(k\) & 6 & 20 & 03 & 00 & 4 & 40 & 26.0 & 273.3 & 40.2 & 262.0 \\
\hline 12 & \(\downarrow\) & 7 & 10 & 14 & 20 & 5 & 10 & 35.5 & 273.8 & 19.6 & 262.7 \\
\hline 13 & * & 7 & 19 & 58 & 30 & 3 & 20 & 29.8 & 273.7 & 40.0 & 265.4 \\
\hline 14 & \(\checkmark\) & 0 & 09 & 12 & 40 & 4 & 30 & 33.7 & 275.9 & 19.9 & 266.5 \\
\hline 15 & * & 0 & 20 & 35 & 30 & 3 & 10 & 19.8 & 258.4 & 29.8 & 251.9 \\
\hline 14A & 7 & 1 & 10 & 47 & 00 & 3 & 20 & 40.7 & 259.7 & 30.8 & 251.4 \\
\hline 15A & \(k\) & 0 & 18 & 56 & 30 & 3 & 20 & 30.6 & 276.7 & 40.7 & 268.3 \\
\hline
\end{tabular}
* in elapsed time from 21 Sept. 6901 hr .33 min .36 .3 sec . (See Sec. 1.1)

The time interval between observations along an arc in Sec. 5. 1 was kept as 10 sec., as in Sec. 4.2. Hence, we would need to multiply the std. devns. of the recovered anomalies by \(\sqrt{3}\), when we finally obtain a solution using satellite arcs shown in Figure 5.1. This has thus been taken into account only in Table 5.6 at the end of Sec. 5.1.3.

\subsection*{5.1.2 Relative Location of Anomal ies and Arcs}

We have already seen in Chapter 4 that the anomaly recovery in the area of investigation covered by satellite arcs, is 'good', when we include in the estimation process an additional anomaly all around the anomalies of interest. If we include in the estimation process two additional anomalies all around the anomalies of interest, the solution get worse as evidenced by large atd. devns. and high correlation coefficients of the recovered anomalies. However, in this case, the anomaly discrepancies are much reduced due to a much larger sub-
set of anomalies being solved for, out of the total anomalie \(v\) ad in the simulation of 'observations'.

Hence, bcfore we examine in detail the 'goodness' of anomaly recovery with a particular design of ares, by the statistics discussed in the end of Sec. 4.1.9, it will be adequate, as an initial test, to examine the anomaly discrepancies for the 12 anomalies of interest in a solution, where 40 anomalies have been solved for. We will adopt this procedure in testing the improvement in anomaly recovery, as we consider the increase in density of observations over the area of investigation, and, in particular, over the peripheral anomalies. The std. devns. and anomaly discrepancies of the 12 anomalies of interest, will also be examined for the solutions, in which 24 anomalies, i.e. after inclusion of an additional anomaly all around the anomalies of interest, have been estimated. These two criteria of anomaly discrepancy, and std. devns. of the recovered anomalies, would be clarified when the results are presented.

We first present in Table 5.2 the anomaly discrepancies for the 12 anomalies of interest, both when 40 and 24 anomalies were solved for respectively, using Arcs 1 to 13 giving arc spacing of roughly half of anomaly block size. We may call these solutions as Solution \(900-5-3\) and Solution \(900-5-2,900 \mathrm{~km}\) being the height of close satellite, \(5^{\circ}\) being the anomaly block size, and suffixes 3 and 2 denote, as in Chapter 4, that respectively 2 or 1 additional anomalies all around the area of investigation have been included in the solution. The last column in Table 5.2 gives the std. devns. of the recovered anomalies in Solution 900-5-2.

Table 5.2
Anomaly Discrepancies and Std. Devns. for \(125^{\circ}\) Equal Area Mean Anomalies for Are Spacing Roughly Half Anomaly Block Size.
Summed Range Rate Observations at 10 sec. Time Interval for 13 Arce (Arcs 1 to 13). Height of Close Satellite \(\approx 900 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|}
\hline Anom. No. & \multicolumn{2}{|l|}{Anomaly Discrepancy in mgals} & Std. Devn. (mgals) Soln. 900-5-2 \\
\hline 1 & 6.0 & -3 & 72 \\
\hline 2 & 0.2 & -21 & 79 \\
\hline 3 & 3.4 & -11 & 86 \\
\hline 4 & -1.5 & 5 & 65 \\
\hline 5 & -1.8 & 12 & 69 \\
\hline 6 & 3.4 & -34 & 90 \\
\hline 7 & -0.8 & 10 & 88 \\
\hline 8 & -0.6 & 2 & 80 \\
\hline 9 & 3.0 & -16 & 63 \\
\hline 10 & -5.8 & 18 & 63 \\
\hline 11 & -4.8 & 0 & 121 \\
\hline 12 & 2.5 & 18 & 98 \\
\hline R. M.S. value & 3.4 & 15.6 & 83 \\
\hline
\end{tabular}

The anomaly discrepancy in column 2 of Table 5,2 is much hignes than the values in the last column of Table 4.15 , in See. 4.2, when \(5^{\circ}\) recovery was being attempted with close satellite at hoight of 250 km . We have thus not been able to recover the \(5^{\circ}\) anomalics with close satellite at height of 900 km . even when the spacing of ares was roughly half of anomaly block size. This is still more evident from columne 3 and 4 of Table 5.2.

\subsection*{5.1.3 Satellite Arcs Over Peripheral Anomalies}

Before we consider increasing the density of ares further to roughly \(1 / 4\) th of the anomaly block size, we would investigate the effect of considering greater density of observations over the peripheral anomalies. The arc spacing is still retained at roughly half anomaly block size, but we progressively add to the solution obtained with 13 arcs the observations of Ares \(14,15,14 \mathrm{~A}\) and 15A. The number of anomalies solved for was 40 in all these 4 solutions. We report in Table 5.3 the anomaly discrepancies, as we add the observations in Arc 14 and Are 15. The improvement or worsening of anomaly recovery, denoted by + and - signs respectively, has also been shown. The effect on the std. devns. of the recovered anomalies, as more arcs are included in the solution, will be examined later.

Table 5. 3
Effect of tncreasing the Density of Observations Over Peripheral Anomalies. Summed Range Rate Observations with Arc Spacing Roughly Half Anomaly Block Size. Height of Close Satellite \(\approx 900 \mathrm{~km}\)


If we now examine the location of the arc added to the solution, with respect to the improvement in anomaly discrepancies, we find that the pronounced changes are in the peripheral anomalies; those below the are show improvement, while those away from the arc get worse, but the latter's magnitude is slighly less than the improvement in the anomalies below the arc. When we consider the effect of additing both Arcs 14 and 15 to the solution obtained from 13 arcs, we find that almost all anomaly discrepancies improve with a mean value of 1.1 mgals. The single noticeable worscning by 2,0 mgals of anomaly No. 2 can perhaps be also overlooked as we find that the final anomaly discrepancy is still only 2.2 mgals compared to the R.M.S. value of 2.0 mgals .

It therefore appears that the increase in density of observations over the peripheral anomaly blocks improves the solution, even though small portions of Arcs 14 and 15 lie outside the area of investigation. It also appears that it is better to have symmetrical positioning of the Arcs i.e. with both Arcs 14 and 15 added to the 13 arcs.

We now present in Table 5.4 the effect on anomaly discrepancies of the 12 anomalies of interest, as we add Ares 14 A and 15 A to the solution obtained by 15 arcs. The layout of Table 5.4 follows that of 'Coble 5. 3, and 40 anomalies were solved for, as before.

Table 5.4
Effect of Anom. Discrep. by mereasing the Density of Obsns. Over Peripheral Anomalies. Summed Range Rate Obsns. Using 16 and 17 Arcs. Height of Close Satellite \(\approx 900 \mathrm{~km}\).


From the last row in columns 4 to 6 of Table 5.4 , we notice that the mean value of improvement of \(0.2,0.0,0.1 \mathrm{mgals}\), by the addition of Aros 14A and 15A is nearly zero; and is in any case less than the corresponding values of \(0.5,0.5\) and 1.1 mgals in Table 5.3, when Arcs 14 and 15 were added to the solution obtained from 13 arcs. This may be explained by the geometry of the arcs in relation to the area of investigation, as may be aeen from Figure 5.1. A much larger portion of Arcs 14 and 15 lie over the area, while only a smaller portion of arcs 14 A and 15 A lie over the area.

The reduction of std, devns. of the 12 anomalies of interest, with the addition of Ares 14, 15, 14A and 15A was also examined. It was found that the reduction primarily occurs for the anomalies directly covered by the observations. This is, however, also accompanied by a slight reduction in the std. devns. of all other anomalies. We will designate the solution using 15 (Ares 1 to 15) and 17 \(\operatorname{arcs}\) ( Arges 1 to 15, 14A and 15A), and solving for 24 anomalics, as Solution \(900-5-2 \mathrm{~A}\) and Solution \(900-5-2 \mathrm{~B}\) respectively. The anomaly discrepancies and the std. devns. of the 12 anomalies of interest in these solutions are given in Table 5.5.

Table 5.5
Anom. Discrep. and Std. Devn. for \(125^{\circ}\) Equal Area Mean Anomalier, for Arc Spacing Roughly Half Anomaly Block Size
Summed Range Rate Obsns at 10 sec . Time Interval for 15 and 17 Arcs. Height of Close Satellite \(\approx 900 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Anom. No. & Solution 900-5-2A & \begin{tabular}{l}
\[
-5-2 A
\] \\
Std. Devn.
\end{tabular} & Solution 900 Anom. Discrep. & \[
\begin{aligned}
& 5-2 B \\
& \text { itd. Devn. }
\end{aligned}
\] \\
\hline 1 & -2.3 & 69 & 0.6 & 49 \\
\hline 2 & -24.7 & 73 & -31.3 & 60 \\
\hline 5 & -13.3 & 77 & -9.8 & 53 \\
\hline 4 & 7.7 & 55 & 7.8 & 45 \\
\hline 5 & 11.2 & 57 & 13.8 & 52 \\
\hline 6 & -29.6 & 46 & -34.5 & 35 \\
\hline 7 & 7.8 & 77 & 6.5 & 67 \\
\hline 8 & 2.7 & 75 & 1.4 & 70 \\
\hline 9 & -19.5 & 57 & -20.9 & 53 \\
\hline 10 & 22.6 & 55 & 22.9 & 50 \\
\hline 11 & -8.9 & 93 & -12.4 & 86 \\
\hline 12 & 28.0 & 71 & 23.9 & 85 \\
\hline R. M.S. value & 17.5 & 68 & 18.8 & 59 \\
\hline
\end{tabular}

Units are mgals.

The results of Solutions \(900-5-2 \mathrm{~A}\) and \(900-5-2 \mathrm{~B}\) in Table 5.5 may be compared with the results of Solution 900-5-2 (13 Ares) in Table 5.2. The R.M.S. value of the std. devn. decreases as we consider the solution with 13,15 and 17 arcs to 83,68 and 59 mgals respectively. We expect this to occur, as the density of observations over peripheral anomalies is increased to be nearly the same as over the anomalics in the center of the area. The reduction is more pronounced as we go from 13 to 15 ares, but becomus less pronounced as we go from 15 to 17 arcs, which is als's what we expect, as a smaller portion of the Arcs 14A and 15A lies over the area of investigation as compared to Ares 14 and 15 (sce Figuce 5.1). However, when we consider the R.M.S. value of the anomaly discrepancies, it rises from 15.6 to 17.5 , and then to 18.8 mgals, as we consider the solution with 13,15 and 17 arcs , respectively. It is not clear why this should occur, except perhaps to indicate that \(5^{\circ}\) anomalies are not being recovered from the close satellite at height of 900 km . A greater density of observations increases the reliability, as evidenced from the reduction in std. devns. of the recovered anomalies. But as the R.M.S. value of the std. devns. is still so large, the anomaly discrepancies cannot be very meaningful.

We may now put together the statistics for examining the 'goodness' of recovery of the \(5^{\circ}\) ancmalies, as discussed at the end of Sec. 4.1.9. This has been done in Table 5.6 for Solution \(900-5-2 A\), using 15 arcs, which appears to be the optimum solution obtainable from arc spacing of half anomaly block size.

T'able 5.6
Statistics for \(5^{\circ}\) Anomaly Recovery in Solution 900-5-2A. Summed Range Rate Observations at 10 sec . Time Interval for 15 Arcs
\begin{tabular}{lc} 
No. of anomalies recovered & 24 \\
No. of anomalies of interest & 12 \\
R.M.S. value of anomaly discrepancy (mgals) & 17.5 \\
R.M.S. value of expected anomalies (mgals) \\
R.M.S. value of recovered anomalies (mgals) \\
Correln. coeff. ( \(\rho\) ) of recovered anom. with \\
\(\quad\) expected anom. & 13.7 \\
\begin{tabular}{l} 
Mean correln. coeff. of adjacent recovered \\
\(\quad\) anom. (E.W. direction)
\end{tabular} & 23.0 \\
\begin{tabular}{l} 
Mean correln. coeff. of adjacent recovered \\
\(\quad\) anom. (N.S. direction)
\end{tabular} & 0.65 \\
\begin{tabular}{l} 
R. M.S. value of std. devn. of recovered \\
\(\quad\) anom. (mgals)
\end{tabular} & -0.54 \\
\begin{tabular}{l} 
Along-arc/Across-arc spacing of observa- \\
tions
\end{tabular} & -0.60 \\
R. M.S. value of std. devn. of recovered \\
anom. corrected for spacing of obser- \\
vations (mgals)
\end{tabular}

When we compare Table 5.6 with Table 4.17 of Sce. 4.2 .3 for the recovery of \(5^{\circ}\) anomalies from close sateilite at height of 250 km ., it is obvious that we are not able to recover \(5^{\circ}\) anomalies from close satellite at height of 900 km with arc spacing of roughly half anomaly block size. In fact, all the criteria discussed at the ond of Soc. 4.1.9 for examining the 'goodness' of anomaly recovery fall for Solution \(900-5-2 \mathrm{~A}\) in Table 5.6. We may now only cheek whether the anomaly rocovery could be significantly improved by making the density of are-spacing to \(1 / 4\) th anoraaly block size. This will be examined in Sec. 5.1.4.

\subsection*{5.1.4 Increased Density of Satellite Arcs}

Thirteen additional satellite arcs were used in this investigation, which together with the 15 arcs in Sec. 5.1.1, gave the arc spacing as \(1 / 4\) th anomaly block size, i.e. the longitudinal spacing of roughly \(1 \frac{10}{2}\). These 13 additional arcs have beon shown by a dashed line in Figure 5.2, along with 15 arcs of Figure 5.1 which have been shown by a continuous line.


Figure 5. 2 Satellite Arcs for Recovery of \(5^{\circ}\) Equal Area Mean Anomalies. Arc Spacing :: \(1 / 4\) Anomaly Block Size. Height of Close Satellite \(\approx 900 \mathrm{~km}\).

The numbering of the additional arcs was from 16 to 28 according to the starting time of the arc. The particulars of these ares have been given in Table 5.7.

Table 5.7
Additional Satellite Arcs Used for Recovery of \(5^{\circ}\) Equal Area Mean Anomalies. Height of Close Satellite \(\approx 900 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Arc No. & Ascending/ Descending Are & \multicolumn{4}{|l|}{Starting Time \({ }^{+}\)} & \multicolumn{2}{|l|}{Duration of Arc Min. Sec.} & First \(\varphi^{\circ}\) &  & satell Sat. \(\varphi^{\circ}\) & e Pts. \(\lambda^{0}\) \\
\hline 16 & \(t\) & 25 & 23 & 19 & 20 & 3 & 50 & 19.7 & 260.2 & 31.7 & 252.2 \\
\hline 17 & K & 26 & 23 & 13 & 40 & 4 & 50 & 19.9 & 263.2 & 35.0 & 252.7 \\
\hline 18 & \(\downarrow\) & 27 & 13 & 25 & 20 & 5 & 00 & 40.3 & 264. 1 & 25.2 & 252.3 \\
\hline 19 & 5 & 27 & 23 & 08 & 00 & 4 & 50 & 20.1 & 266.2 & 35.2 & 255.7 \\
\hline 20 & \(\star\) & 28 & 13 & 19 & 40 & 5 & 00 & 40.1 & 267.0 & 25.0 & 255.3 \\
\hline 21 & k & 28 & 23 & 02 & 50 & 4 & 40 & 22.0 & 268.2 & 36.4 & 257.8 \\
\hline 22 & \(\checkmark\) & 29 & 13 & 14 & 00 & 5 & 40 & 39.9 & 270.0 & 22.7 & 257.0 \\
\hline 23 & N & 29 & 22 & 58 & 00 & 4 & 50 & 24.8 & 269.5 & 39.7 & 258.1 \\
\hline 24 & \(\star\) & 30 & 13 & 09 & 30 & 5 & 20 & 36.2 & 269.9 & 19.9 & 258.3 \\
\hline 25 & T & 30 & 22 & 52 & 20 & 4 & 50 & 25.1 & 272.5 & 39.9 & 261.0 \\
\hline 26 & \(\psi\) & 31 & 13 & 04 & 10 & 4 & 50 & 35.0 & 272.0 & 20.2 & 261.6 \\
\hline 27 & N & 31 & 22 & 47 & 50 & 3 & 40 & 28.9 & 273.0 & 40.1 & 263.9 \\
\hline 28 & \(\star\) & 32 & 12 & 58 & 30 & 4 & 50 & 34.8 & 274.9 & 20.0 & 264.4 \\
\hline
\end{tabular}
* in elapsed time from 21 Sep. 6901 hr. 33 min .36 .3 sec. (see Sec. 1.1)

The time interval between observations along an arc was again kept as 10 seconds. The arc spacing of \(1 / 4\) th anomaly block size is now very nearly equal to the along-arc spacing of observations, or at most 1.5 times. We thus need not change the std. devns. of the recovered anomalies with 10 seconds time interval between observations, or if we wish to take a conservative view, multiply them by a factor of \(\sqrt{1.5}=1.2\).

We first present in Table 5.8 the anomaly discrepancies for the 12 anomalies of interest using the 13 additional arcs, both when 40 and 24 anomalies were solved for, and the std. devns for the latter case. The information in Table 5.8 for Arcs 16-28, may then be compared to that given in Table 5.2 for Arcs 1-13.

Anom. Discrep, and Std. Devns, for \(125^{\circ}\) Equal Area Mean Anomalies for Arc Spacing Roughly Half Anomaly Block Size. Summed Range Rate Observations at 10 sec . Time Interval Using 13 Additional Ares (Arcs 16-28) Height of Close Satellite \(\approx 900 \mathrm{~km}\)
\begin{tabular}{cccc}
\hline \begin{tabular}{c} 
Anom. \\
No.
\end{tabular} & \multirow{2}{c}{ Anom. Discrep. in mgals } \\
\# Anom. Solved
\end{tabular}

The purpose of Table 5.8 was to assure ourselves that the normals and constant vector for the 13 additional arcs have been computed correctly, before we combine them with those obtained earlier to get a final solution with are spacing of \(1 / 4\) th anomaly block size, instead of the are spacing of \(1 / 2\) anomaly block size attempted so far. This purpose is roughly met as may be seen by comparing the last rows of Tables 5.8 and 5.2.

We now present in Table 5.9 the anomaly diserepancies and std. devns. for the 12 anomalies of interest, for are spacing of \(1 / 4\) th anomaly block size for both 28 and 26 arcs (i.e. without arcs 14 and 15). In both cases, the anomaly discrepancy has first been given for the solution in which 40 anomalies have been estimated. This is then followed by the anomaly discrepancy and std. devn. when 24 anomalies have been estimated.

Anom. Discrep. and Std. Devns, for \(125^{\circ}\) Equal Area Mean Anomalies for Arc Spacing \(1 / 4\) Anomaly Block Size.
Summed Range Rate Obsns. at 10 sec . Time Interval for 28 and 26 Arcs. Height of Close Satellite \(\approx 900 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\# Anom. Solve} & \multicolumn{3}{|c|}{Arcs 1 to 28} & \multicolumn{3}{|l|}{Ares 1 to 13, 16 to 28} \\
\hline & 40 & 24 & 24 & 40 & 24 & 24 \\
\hline Anom. No. & Anom. Discrep. & Anom. Discrep. & Std. Devn. & Anom. Discrep. & Anom. Discrep. & Std. Devn. \\
\hline 1 & -3.0 & 1.1 & 54 & -4.2 & 2.9 & 55 \\
\hline 2 & -2.9 & 28.2 & 52 & -2.7 & 24.4 & 55 \\
\hline 3 & -3.5 & 14.9 & 56 & -3.0 & 11.3 & 60 \\
\hline 4 & 1.5 & -6.1 & 43 & 1.7 & -2.3 & 46 \\
\hline 5 & 1.6 & -13.5 & 42 & 1.9 & -16.4 & 44 \\
\hline 6 & -1. 5 & 30.1 & 35 & -2.3 & 35.7 & 44 \\
\hline 7 & 0.0 & -7.0 & 58 & 0.4 & -8. 7 & 67 \\
\hline 8 & 0.8 & -6.3 & 56 & 0.5 & -4.7 & 58 \\
\hline 9 & -2.1 & 21.2 & 42 & -2.3 & 17.3 & 46 \\
\hline 10 & 2.9 & -21.9 & 41 & 3.7 & -17.0 & 47 \\
\hline 11 & 1.7 & 11.3 & 67 & 2.5 & 8.8 & 74 \\
\hline 12 & -1.1 & -28.7 & 54 & -1. 6 & -23.7 & 63 \\
\hline R.M.S. value & 2.1 & 18.5 & 51 & 2.5 & 17.3 & 56 \\
\hline
\end{tabular}

Units are mgals.
The effect of incorporating the 13 additional ares in the solution obtained from Arcs 1 to 15 or in the solution obtained from Arcs 1 to 13 may now be examined by comparing Table 5.9 with Tables 5.5 and 5.2 respectively. In going from the solution with 15 arcs to the solution with 28 ares, the R.M.S. value of the std. devn. falls from \(68 \sqrt{3}=118\) mgals to \(51 \sqrt{1.5}=62\) mgals, but the R. M. S. value of anomaly discrepaney goes up slightly from 17.5 mgals to 18.5 mgals. In the case of going from the solution with 13 Arcs to the solution with 26 Arcs, the R. M.S. value of std. devn. falls from \(83 \sqrt{3}=144\) mgals to \(56 \sqrt{1.5}=69\) mgals, but the R. M.S. value of anomaly discrepancy shows a slight rise from t.5. 6 mgals to 17.3 mgals. It may also be noticed that the difference between the solutions with 28 and 26 ares in Table 5.9 is loss mated than the difloronce between the solutions with 15 and 13 ares in 'rablos 5.5 and 5.2 .

It is however, clear that even by increasing the density of arcs to \(1 / 4\) th anomaly block size, the R.M.S. value of the anomaly discrepancy remains about 15 to 20 mgals and R.M.S. value of the std. devn. of the recovered anomalies remains about 50 to 70 mgals . These appear to be the limiting values obtainable in the recovery of \(5^{\circ}\) anomalies using a close satellite at height of about 900 km , without using any a-priori information from terrestrial gravity data.

The recovery model for \(5^{\circ}\) anomalies has therefore to be re-examined. This will E e done in Sec. 5.3, after investigating the recovery model for \(2^{\circ} .5\) anomalies from close satellite at height of 250 km .

\subsection*{5.2 Recovery of \(2^{\circ} .5\) Iqual Area Mean Anomalies from Close Satellite at Height of 250 km}

\subsection*{5.2.1 Area of Investigation and Satellite Arcs}

The area of investigation for the recovery of \(2^{\circ} .5\) anomalies from close satellite at height of 250 km , comprised of a total of \(202^{\circ} .5\) equal area blocks. A total of 20 satellite arcs were selected to achieve symmetric positioning over the area, adequate coverage of the peripheral anomalies, and to achieve an are spacing of about half anomaly block size, i, e, a longitudinal spacing of about \(\frac{1 z^{\circ}}{}\). The limits of the \(2^{\circ} .5\) anomaly blocks, and the satellite ares, have been shown in Figure 5.3.


Figure 5.3 Satellite Ares for Rocovery of 2.5 Equal Area Mern Anomalies. Are Spacing - Anomaly Block size. Height of close satellite : 250 km .
as anomaly block size, we may either take 9 ares shown by continuous lines in Figure 5.3, or else, we may take the 11 arcs shown by dashed lines. These 11 ares cover some of the peripheral anomalies better, but have comparatively a small number of observations over the area of investigation. If we wish to consider the are spacing of half anomaly block size, we may consider 16 arcs, i.e. exchuding the 4 corner ares. Or else, we may consider 18 arcs including the arcs No. 13 and 1 , which have slightly larger number of observations over the area than ares No. 8 and 15; finally we may consider all the 20 arcs shown in Figure 5.3. We will refer to the groups of arcs described above as \(9,11,16,18\) and 20 aros.

The number of \(2^{\circ} .5\) anomalies, which we are considering for recovery, is 20. If we consider 1 or 2 additional anomalies all around them during the estimation process, the total number of anomalies becomes 36 and 56 respectively. The limits of these 20, 36 and \(562^{\circ} .5\) anomalies have been shown in Figure 5.4.


Figure 5.4 Limits of 20, 36 and 562.5 Equal Area Mean Anomalies.

Alternate ares have been shown by a dashed line for convenience of reference, The numbering of the satellite ares from 1 to 20 was again according to the starting time of the arc. The particulars for these arcs have been given in Table 5.10. The time intorval between observations along an are was kept as 10 seconds. The along-are spacing of observations was then roughly equal to the across-are spaciug, when we consider it to be about half anomaly block size.

Table 5.10
Satellite Ares Used for Recovery of \(2^{\circ} .5\) Equal Area Mean Anomalies, Height of Close Satellite \(\approx 250 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Arc No.} & \multirow[t]{2}{*}{Ascending/ Descending Arc} & \multicolumn{4}{|l|}{Starting Time*} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Duration of Arc Min. Sec.}} & \multicolumn{4}{|l|}{First \& Last Subsatellite Pts, for Close Sat.} \\
\hline & & Day & Hour & Min. & Sec. & & & \(\varphi^{\circ}\) & \(\lambda^{\circ}\) & \(\varphi^{\circ}\) & \(\lambda^{0}\) \\
\hline 1 & \(k\) & 0 & 22 & 30 & 50 & 1 & 30 & 31.6 & 269.9 & 36.8 & 265.8 \\
\hline 2 & \(\angle\) & 2 & 13 & 42 & 50 & 2 & 30 & 37.0 & 263.4 & 28.2 & 256.8 \\
\hline 3 & \(k\) & 2 & 23 & 40 & 40 & 2 & 30 & 21.9 & 263.9 & 30.8 & 258.0 \\
\hline 4 & \(\alpha\) & 3 & 13 & 34 & 30 & 3 & 20 & 36.6 & 267.9 & 24.9 & 259.3 \\
\hline 5 & \(k\) & 3 & 23 & 33 & 10 & 2 & 50 & 25.2 & 266.5 & 35.2 & 259.4 \\
\hline 6 & \(\star\) & 4 & 13 & 27 & 00 & 3 & 10 & 33.3 & 270.0 & 22.1 & 262.4 \\
\hline 7 & K & 4 & 23 & 26 & 00 & 2 & 10 & 29.8 & 268.3 & 37.3 & 262.4 \\
\hline 8 & \(k\) & 7 & 00 & 36 & 20 & 1 & 40 & 21.7 & 260.9 & 27.7 & 257.1 \\
\hline 9 & \(\checkmark\) & 7 & 14 & 30 & 00 & 3 & 10 & 37.3 & 265.4 & 26.2 & 257.2 \\
\hline 10 & K & 8 & 00 & 28 & 00 & 3 & 10 & 22.1 & 265.5 & 33.4 & 257.8 \\
\hline 11 & \(\alpha\) & 8 & 14 & 22 & 10 & 3 & 20 & 35.2 & 268.5 & 23.4 & 260.2 \\
\hline 12 & * & 9 & 00 & 20 & 30 & 2 & 40 & 25.5 & 268.1 & 34.9 & 261.4 \\
\hline 13 & 4 & 9 & 14 & 15 & 00 & 2 & 30 & 30.7 & 269.9 & 21.8 & 264.0 \\
\hline 14 & k & 10 & 00 & 13 & 20 & 2 & 00 & 30.0 & 269.8 & 37.0 & 264.5 \\
\hline 15 & \(k\) & 11 & 15 & 25 & 50 & 1 & 30 & 36.8 & 262.0 & 31.6 & 257.9 \\
\hline 16 & \(k\) & 12 & 01 & 23 & 40 & 2 & 20 & 22.0 & 262.6 & 30.3 & 257.0 \\
\hline 17 & \(\angle\) & 12 & 15 & 17 & 20 & 3 & 30 & 37.0 & 267.0 & 24.7 & 258.0 \\
\hline 18 & \(k\) & 13 & 01 & 15 & 50 & 3 & 00 & 24.2 & 266.0 & 34.8 & 258.4 \\
\hline 19 & \(\nless\) & 13 & 15 & 09 & 30 & 3 & 40 & 34.9 & 270.0 & 21.9 & 261.0 \\
\hline 20 & k & 14 & 01 & 08 & 30 & 2 & 20 & 28.2 & 268.1 & 36.3 & 262.0 \\
\hline
\end{tabular}
* in elapsed time from 21 Sep. 6901 hr .33 min .36 .3 sec . (see Séc. 1.1)

\subsection*{5.2.2 Relative Location of Anomalies and Arcs}

We will first describe the groups of ares that may be considered for examining the anomaly recovery. If we consider arc spacing roughly the same

As per the discussion in Sec. 5.1.2, we will first examine the anomaly discrepancies for the 20 anomalies of interest when we have solved for 56 anomalies. This has been given in Table 5.11, when \(9,11,16,18\) and 20 ares were used in the solution. We will later consider the recovery of 20 anomalies from solution in which 36 anomalies have been solved for. We will use throughout Sec. 5.2 summed range rate observations with uniform std. devn. of . \(08 \mathrm{~cm} / \mathrm{sec}\), , based on an integration interval of 10 seconds.

\section*{Table 5. 11}

Anom. Discrep. for \(202^{\circ} .5\) Equal Area Mean Anomalies for \(9,11,16,18\) and 20 Arcs. 2 Additional Anomalies All Around the Area Included in the Solution. Height of Close Satellite \(\approx 250 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Anom.
No.} & \multirow[t]{2}{*}{Expected Anomaly} & \multicolumn{5}{|c|}{Anomaly Discrepancy in mgals} \\
\hline & & 9 Arcs & 11 Ares & 16 Arcs & 18 Arcs & 20 Ares \\
\hline 1 & \(-9.7\) & 22.6 & 4.2 & 21.0 & 30.8 & 4.4 \\
\hline 2 & -10.0 & -3.6 & 9.8 & -1.9 & -2.4 & 20.8 \\
\hline 3 & -31.0 & -1.1 & 16.1 & 4.8 & 5.3 & 3.9 \\
\hline 4 & 1.4 & -9.4 & 1.3 & -0.6 & -3.1 & 4.8 \\
\hline 5 & -9.2 & 7.6 & 4.2 & -0.3 & -2.6 & -5. 0 \\
\hline G & 3.8 & -30.3 & \(-3.5\) & 7.8 & 11.7 & 18.0 \\
\hline 7 & 2.1 & -1.8 & 14.2 & -0.3 & -1.2 & 7.6 \\
\hline 8 & -11.3 & 14.2 & 7.0 & 3.4 & 6.8 & 4.7 \\
\hline 9 & -21.2 & -0.9 & 9.8 & 4.1 & 3.2 & 7.1 \\
\hline 10 & -7. 4 & 9.7 & -0.1 & 6.1 & 0.9 & 1.6 \\
\hline 11 & 4.4 & -16.6 & -26.5 & 6.9 & 8.4 & -0.7 \\
\hline 12 & -17.3 & 12.2 & 11.7 & 1.2 & 5.6 & 11.2 \\
\hline 13 & -21.9 & -2.2 & 6.7 & 3. 5 & 0.8 & 1.7 \\
\hline 14 & 5.1 & 1.8 & 5.8 & -7.5 & 3.9 & 4.4 \\
\hline 15 & 28.1 & 20.5 & 85.9 & 10.4 & 3.2 & 2.5 \\
\hline 10 & -20.5 & -16.0 & -3.9 & 9.0 & 7.4 & 11.4 \\
\hline 17 & -33.0 & 10.4 & 10.8 & 5.1 & 11.6 & 11.5 \\
\hline 18 & -28.6 & -28.3 & -24.9 & -19.9 & -29.2 & -24.8 \\
\hline 19 & 10.6 & -5.6 & 85.1 & 20.5 & 17.0 & 20.5 \\
\hline 20 & -27.3 & -9.6 & -15.4 & -4.8 & -2.9 & -5.4 \\
\hline R.M.S. value & 18.3 & 14.2 & 29.4 & 9.4 & 11.5 & 11.1 \\
\hline
\end{tabular}

We notice that the anomaly discrepancies are large in all cases, and the solutions are unstable. The R. M.S. value of anomaly discrepancies for the 20 anomalies, would only get worse in the solutions when we solve for 36 anomalies. This was discussed in Sec. 5.1.2, and is again found in Table 5. 12.

Table 5.12
R.M.S. Value of Anomaly Discrepancies for \(202^{\circ} .5\) Equal Area Mean Anomalies for \(9,11,16,18\) and 20 Arcs.
1 Additional Anomaly All Around the Area Included in the Solution. Height of Close Satellite \(\approx 250 \mathrm{~km}\)
\begin{tabular}{cc}
\hline No, of Ares Used & \begin{tabular}{c} 
R. M.S. Value of \\
Anom. Discrep. (mgals)
\end{tabular} \\
\hline 9 & 17.8 \\
11 & 28.3 \\
16 & 32.3 \\
18 & 34.0 \\
20 & 26.7 \\
\hline
\end{tabular}

We notice, in particular, the small increase in the R.M.S. value of anomaly discrepancy in the solution using 9 arcs, when we solve for 56 anomalies and 36 anomalies, the value being 14.2 and 17.8 mgals respectively. However, the instability of the solution is apparent, when we compare the values in the last line of Table 5.11 with the corresponding values in Table 5.12. To examine this in greater detail, the anomaly discrepancies and std. devns. using 9 arcs and 20 arcs, and solving for 36 anomalies in each case, has been shown in Table 5.13.

\section*{Table 5.13}

Anom. Discrep. and Std. Devis. for 2020.5 Equal Area Mean Anomalies. Arc Spacing Rouglly Same and Half Anomaly Block Size ( \(9 \& 20\) Arcs respectively) Feight of Close Satellite \(\approx 250 \mathrm{~lm}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Anom. No. & Anom. Discrep. & Std, Devn. & Anom. Discrep. & Std. Detn. \\
\hline 1 & 25.5 & 120.7 & -38.3 & 31.1 \\
\hline 2 & -21.4 & 29.3 & 3.4 & 14.1 \\
\hline 3 & 7.8 & 38.7 & 6.3 & 15.3 \\
\hline 4 & -10.6 & 77.7 & -7.0 & 21.9 \\
\hline 5 & 9.8 & 41.8 & 7.6 & 9.8 \\
\hline 6 & -36.0 & 112.4 & -50.5 & 13.7 \\
\hline 7 & 12.6 & 58.9 & -13.1 & 19.2 \\
\hline 8 & -9.3 & 88.7 & 18.3 & 29.8 \\
\hline 9 & 0.7 & 34.3 & 1.4 & 14.2 \\
\hline 10 & -1.2 & 80.4 & -15.0 & 29.7 \\
\hline 11 & 9.2 & 59.9 & 4.3 & 23.7 \\
\hline 12 & -11.5 & 50.6 & 0.1 & 21.3 \\
\hline 13 & 7.9 & 25.3 & -5.7 & 10.8 \\
\hline 14 & -35.6 & 85.5 & 4.2 & 15.4 \\
\hline 15 & 24.7 & 128.7 & 2.1 & 39.2 \\
\hline 16 & -28.4 & 115.2 & 0.3 & 29.6 \\
\hline 17 & 14.6 & 49.5 & 25.9 & 15.7 \\
\hline 18 & -11.6 & 100.2 & -75.7 & 17.7 \\
\hline 19 & 7.8 & 112.2 & -53. 3 & 20.6 \\
\hline 20 & -13.0 & 28.3 & -7.7 & 12.0 \\
\hline R. M. S. value & 17.8 & 79.5 & 26.7 & 21.8 \\
\hline
\end{tabular}

Units are mgals.
The solution with 9 arcs, i.e. with are spacing roughly same as anomaly block size is obviously unaceeptable because of very large stt. devns, of the recovered anomalies. The solution with 20 arcs, i.e. with are spacing roughly \(1 / 2\) anomaly block size is also unaccoptable boentuse ol large anomaly discrepancies, particularly for anomalios No. 6, 18 and 19. The large anomaly diserepancies could be caused by the increasing non-lincarity of the mathematical model for the \(2^{\circ} .5\) anomaly reocvery, making it difficult to recover the anomalios from
the initial value of zero according to the procedure described in Chapter 2. We may then consider iterating the solution, and this will be discussed in Sec. 5.2.4. We may also consider using in the solution, the a-priori information about the varinnce of \(2^{\circ} .5\) residual anomalies. In all solutions considered so far, we had taken the weight matrix for the anomalies, \(P_{k}\) in equation (2.13), to be zero. This will now be re-examined in Sec. 5.2.3.

We may also remark on the relative magnitude of the sid. devas, of the resovered anomalies in the last column of Table 5.13. The scheme of subdivision of a \(5^{\circ}\) equal area block into 4 component \(2^{\circ} .5\) blocks shown in Figure 3.1 , results in the latter blocks being considerably unequal in area. From Figure 5.3, we then see that, for example, a larger number of observations fall over anomaly block No. 3 as compared to block No. 4 or 7. The number of observations over block No. 1 and 8 are still less. The std. devns. of anomalies No. 3, \(4,7,1\) and 8 reflect this variation in the number of observations, values being 15.3;21.9. 19.2; \(31.1,29.8\) mgals respectively. The same pattern of variation in std. devn. is noticed in the last column of Table 5.13 for other \(2^{\circ} .5\) blocks. It would be advisable, in future, to consider ether solhemes of formation of \(2^{\circ} .5\) blocks to reduce this inhomogeneity of observations over neighboring blocks, but this has not been done during this study.

\subsection*{5.2.3 Solution Using A-Priori Variance of Residual Anomalies}

The purpose of this study was to investigate the recovery of gravity anomalies from satellite to satellite tracking data alone, without using any terrestrial data. No a-priori information about terrestrial gravity anomalies and their std. devns. was thus used in any investigations reported so far. It would, however, be valid to use the a-priori information about the variance of the residual anomalies so long as it is kept the same for all anomalies being considered for recovery. We have discussed in Sec. 3.3 the formation of \(2^{\circ} .5\) equal area residual anomaites. The variance for these \(2^{\circ} .5\) anomalies, considering 104 anomalies in the area shown in Figure 3.4, was found to be \(308 \mathrm{mgals}^{3}\). We may thus take the weight matrix of the \(2^{\circ} .5\) residual anomalies to be a diagonal matrix with all elements on the diagonal being \(1 / 308\), instead of zero as considered so far. The initial value of all \(2^{\circ} .5\) anomalies was still kept as zero in the adjustme \(t\) scheme described in Sec. 2.2. This is therefore slightiy different from a combination solution, where the a-priori estimates of the value of all terrestrial gravity anomalics, and their std. devns., may be used along with satellite to satellite summed range rate observations, to get a revised estimate of the gravity anomalies to fit all available data. We may, however, call the present procedure of using the variance of residual anomalies to form their weight matrix, also as a 'combination' solution, to differentiate it from the solutions already reported in Sec. 5.2.2. The anomaly discrepancies and shl. devns. of the 20 anomalies of interest, from these 'combination' solutions using 9, 16, and 20 arcs, and solving for 36 anomalies is given in Table 5.14.

\section*{Anom. Discrep. and Std. Devas. of \(202^{\circ} .5\) Equal Area Mean Anomalies Using A-Priori Variance of Anomalies. Height of Close Satellite \(\approx 250 \mathrm{~km}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Anom } \\
& \text { No. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{9 Arcs} & \multicolumn{2}{|l|}{16 Ares} & \multicolumn{2}{|r|}{20 Arcs} \\
\hline & Anom Discr & Std Devn & Anom Discr & Std Devn & Anom Discr & Std Devn \\
\hline 1 & -13.5 & 15.5 & -30.1 & 13.9 & -22.7 & 13.1 \\
\hline 2 & 5.0 & 10.6 & 13.6 & 9.3 & 9.2 & 9.0 \\
\hline 3 & 2.6 & 9.2 & -0.1 & 8.4 & 2.1 & 7.9 \\
\hline 4 & -6.8 & 12.1 & -12.8 & 10.6 & \(-12.8\) & 10.5 \\
\hline 5 & -2.8 & 8.4 & 0.9 & 6.8 & 3.4 & 6.6 \\
\hline 6 & -3.6 & 14.2 & -16.3 & 11.2 & -33.9 & 8.4 \\
\hline 7 & -7.4 & 11.3 & -5.5 & 9.9 & -3.8 & 9.6 \\
\hline 8 & 12.2 & 14.2 & 17.8 & 12.5 & 10.8 & 12.4 \\
\hline 9 & 7.0 & 10.3 & 3.9 & 8.8 & 9.8 & 8.6 \\
\hline 10 & 4.1 & 15.0 & 7.7 & 14.4 & -6.9 & 13.4 \\
\hline 11 & 9.6 & 10.7 & 3.0 & 9.4 & -3.9 & 9.1 \\
\hline 12 & 8.2 & 11.9 & 9.1 & 10.2 & 14.7 & 10.1 \\
\hline 13 & -3.3 & 7.2 & -5.2 & 6.3 & -6.4 & 6.2 \\
\hline 14 & -18.8 & 11.2 & -16.7 & 9.6 & -18.3 & 9.3 \\
\hline 15 & -9.1 & 13.9 & -1.7 & 13.3 & -11.5 & 12.4 \\
\hline 16 & 23.1 & 14.7 & 1.5 & 13.1 & -6. 5 & 12.7 \\
\hline 17 & -9.6 & 11.4 & 4.7 & 9.4 & 15.7 & 9.1 \\
\hline 18 & 8.3 & 14.4 & 18.3 & 11.6 & -26.1 & 10.7 \\
\hline 19 & 3.1 & 12.1 & 3.1 & 11.6 & -25.4 & 10.1 \\
\hline 20 & 10.2 & 8.6 & 1.4 & 7.6 & -9.8 & 7.0 \\
\hline R.M.S. value & 9.9 & 12.1 & 11.6 & 10.6 & 15.2 & 10.0 \\
\hline
\end{tabular}

Units are mgals.
As the R.M.S. value of anomaly discrepancy in Table 5.14, using 20 arcs was larger than for both 16 arcs and 9 arcs, another 'combination' solution was tried for 20 arcs, in which the initial value for all 36 anomalies was retained as zero. The weight matrix was also kept as ditgonal, with weights for the 20 anomalies of intorest also retained as \(1 / 308\), to correspond to their std. devn. of \(17.5(=\sqrt{308})\) mgals. However, for the remaining 16
anomalies outside the area of investigation, the weights were reduced to \(1 / 900\), corresponding to their std. devn. as 30.0 mgals . The choice of 30 mgals was arbitrary, but we do know from the results of the previous investigations, that the std. devns. of the recovered anomalies is considerably higher for the anomalies not covered by observations, as compared to hose lying inside the area of investigation, and covered by observations. It may therefore be appropriate to reduce the weight in the 'combination' solution for the anomalies outside the area of investigation. However, the anomaly discrepancies in this test with 20 arcs remained large, with a R. M.S. value of 16.7 mgals . It may perhaps be argued that a 'combination' solution using 9 ares gives lower anomaly discrepancies, as the std. devn. of 17.5 mgals is much lower than the std. devn. of the recovered anomalies, without using a-priori variance of the anomalies (see column 3 of Table 5.13). The effect of a-priori variance in the weight matrix of anomalies, is thus strongly felt in the combination solution with 9 ares as compared to 20 arcs, as in the latter case the std. devn. of the recovered anomalies with zero weight matrix of anomalies, is already close to the value of 17.5 mgals (see last rolumn of Table 5.13).

We cannot however justify using 9 arcs giving are spacing roughly same as anomaly block size, in preference to 20 arcs giving arc spacing roughly half anomaly block size, in view of the experience gained so far from investigations in Chapter 4 and Sec. 5.1. We may therefore now consider a second iteration for the recovery of anomalies, in which we may use the initial value of anomalies different irom zero. For the purpose of this iteration only, we may use the recovered anomalies as obtained from the combination solution using 9 arcs, as initial values instead of a zero vector. This will be investigated in Ser. 5.2.4.

\subsection*{5.2.4 Iteration Solution}

The misclosures between 'coserved' summed range rate value and the computed value was so far obtained by generating the orbits of the satellites using ( 12,12 ) potential coefficients only, and treating the residual gravity anomalies as zero. For obtaining the iteration solution, the initiat value of the 20 residual gravity anomalies was taken to be as obtained from the combination solution using 9 arcs; and these were used for generating the crbits of the satellites besides the \((12,12)\) potential coefficients. The R. M.S. value of the misclosures of the summed range rate for the 20 arcs, when no rosidual gravity anomalies were used and when 20 residual gravity anomalies were used, are given in Table 5. 15.

Table 5. 15
R.M.S. Value of Misclosure Between Observed and Computed Value of Summed Range Rate ( \(\mathrm{K}_{s}\) ) With \& Without 202.5 Equal Area Residual Gravity Anoms. Height of Close Satellite \(\approx 250 \mathrm{~km}\)
\begin{tabular}{ccc}
\hline & \multicolumn{2}{c}{\begin{tabular}{c} 
Misclosure in \(\dot{R}_{\mathrm{S}}\) in em/sec \\
20 Anomalies
\end{tabular}} \\
\hline Arc No. & & \\
\hline 1 & 0.434 & 0.714 \\
2 & 1.007 & 0.710 \\
3 & 0.459 & 0.237 \\
4 & 0.717 & 0.207 \\
5 & 1.330 & 0.077 \\
6 & 0.501 & 0.416 \\
7 & 0.331 & 0.491 \\
8 & 0.871 & 1.090 \\
9 & 1.029 & 0.641 \\
10 & 0.971 & 0.229 \\
11 & 0.724 & 0.025 \\
12 & 0.815 & 0.106 \\
13 & 0.397 & 0.797 \\
14 & 0.206 & 0.519 \\
15 & 0.791 & 0.690 \\
16 & 0.041 & 0.382 \\
17 & 0.836 & 0.395 \\
18 & 1.321 & 0.175 \\
19 & 0.643 & 0.246 \\
20 & 0.556 & 0.332 \\
& & \\
\hline
\end{tabular}

We find that the misclosures were reduced in 14 out of 20 arcs. However, the reduction in the misclosure for 4 out of 14 ares is not large. It is also marginal for arcs No. 20 and 3 . The values of gravity anomalies in the iteration solution are therefore perhaps not much better as initial values, to ensure linearization of the nathematical model, as compared to the zero values used in the previous solutions in Sec. 5.2,2. The R.M.S. value of the anomaly discrepancy of 9.9 mgals (Table 5.14 ) for the anomalies used as initial values in the iteration solution is, in fact, slightly larger than half of the R. M.S. value of 17.5 mgalis for the \(2^{\circ} .5\) residual anomalies.

After obtaining the misclosure vector and the partial derivatives matrix as in Sec. 2.1, with initial values of gravity anomalies from 9 ares combination solution, the correction vector to these initial values was obtained with the weight matrix of the gravity anomalies kept as zero. The anomaly discrepaucy
for 20 anomalies of interest, using 9 ares, in this iteration solution is given in Table 5.16, which may be compared with column 2 of Table 5.13. The std. devns. of the recovered anomalies were the same as in column 3 of Table 5.13.

\section*{Table 5.16}

Anom. Discrep. for \(202^{\circ} .5\) Equal Area Mean Anomalies for 9 Ares Iteration Soln. Height of Close Satellite \(\approx 250 \mathrm{~km}\)
\begin{tabular}{cccc}
\hline \begin{tabular}{c} 
Anom. \\
No.
\end{tabular} & \begin{tabular}{c} 
Anom. Discrep \\
(mgals)
\end{tabular} & \begin{tabular}{c} 
Anom. \\
No.
\end{tabular} & \begin{tabular}{c} 
Anom. Discrep. \\
(mgals)
\end{tabular} \\
\hline 1 & 29.3 & 11 & 10.8 \\
2 & -21.9 & 12 & -12.0 \\
3 & 8.0 & 13 & 7.4 \\
4 & -10.9 & 14 & -34.8 \\
5 & 9.3 & 15 & 25.0 \\
6 & -34.7 & 16 & -30.2 \\
7 & 12.2 & 17 & 16.6 \\
8 & -8.0 & 18 & -13.8 \\
9 & 0.9 & 19 & 6.3 \\
10 & -2.6 & 20 & -13.9 \\
\hline
\end{tabular}

On comparing Tables 5.16 and 5.13 , we find that the anomaly discrepancies are almost the same in the original solution as in the iteration solution. We do not achieve any convergence from the iteration solution, as perhaps the initial values used in the iteration solution did not secure an improvement in the linearization of the mathematical model, over the zero values used in Sec. 5.2.2.

\subsection*{5.2.5 Recovery Model for \(2^{\circ}\). 5 Equal Area Mean Anomalies}

The improvement in anomaly recovery by estimating an additional anomaly all around the area of investigation, which was first discussed in Sec. 4.1.8 and confirmed in later investigations, may perhaps be explained because of significant correlation between adjacent anomalies. The correlation between two anomalies, separated by one anomaly block between them, is weaker; and it is thus adequate to consider only 1 additional anomaly all around the area of investigation. This is so for \(10^{\circ}\) and \(5^{\circ}\) equal area anomalies as seen in Chapter 4. However, as the size of anomaly block is reduced to \(2^{\circ} .5\) equal area, the correlation between two \(2^{\circ} .5\) anomalies, separated by one anomaly block between them, may become significant. If we then allow two additional anomalies all around the area of investigation to be estimated, this correlation between every third anomaly is also taken into account. We have, in fact, already reported such solution in Table 5.11, in which 56 anomalies were estimated, i.e. 20 anomalies of interest with 2 additional anomalies all around them. These solutions were,
however not stable. We could then incorporate the information of a-priori variance of \(2^{\circ} .5\) anomalies in a diagonal weight matrix, as in Sec. 5.2.3 instead of considering a zero weiglet matrix; and this 'combination' solution may make the solutions more stable. Again, as discussed after Table 5.14, the 36 anomalies outside the area of iavestigation may be given a lower weight as compared to the 20 anomalies of interest, lying inside the area of investigation.

The anomaly discrepancies and std. devms. determined on the above considerations, have been given for the 20 anomalies of interest in Table 5. 17.

Table 5.17
Anom. Discrep, and Std. Devns. of 202.5 Equal Area Nean Anomalies Using A-Priori Variance of Anomalies. 2 Additional Anomalies All Around the Area Included in the Soln. Arc Spacing Roughly Half Anomaly Block Size ( 20 Arcs) Height of Close Satellite \(\approx 250 \mathrm{~km}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Anom. No.} & \multicolumn{3}{|l|}{Expected Case 1. Uniform Weights} & \multicolumn{3}{|l|}{Case 2. Varying Weights} \\
\hline & Anomaly & Anom Discr & Std Devn & Recov Anom & Anom Discr & Std Devm. \\
\hline 1 & -9.7 & 4.2 & 9.9 & -4.2 & 5.5 & 14.9 \\
\hline 2 & -10.0 & 12.9 & 13.3 & -1.4 & 8.6 & 10.5 \\
\hline 3 & -31.0 & 22.3 & 10.7 & -20.9 & 10.1 & 9.4 \\
\hline 4 & 1.4 & -8.7 & 6.8 & -7.4 & -8.8 & 11.2 \\
\hline 5 & -9.2 & -8.7 & 9.9 & -9.8 & -0.6 & 7.0 \\
\hline 6 & 3. 6 & 28.7 & 9.6 & -14.2 & - -18.0 & 11.1. \\
\hline 7 & 2.1 & -5.8 & 12.7 & -4.6 & -6.7 & 10.2 \\
\hline 8 & -11.3 & -0.6 & 8.7 & -6.9 & 4.4 & 12.9 \\
\hline 9 & -21.2 & 9.0 & 13.5 & -10.9 & 10.3 & 8.8 \\
\hline 10 & -7. 4 & 35.8 & 11.7 & -13.8 & -6. 4 & 14. 2 \\
\hline 11 & 4.4 & -17.1 & 10.2 & 6.1 & 1.7 & 10.8 \\
\hline 12 & -17.3 & -7.6 & 6.3 & -13.1 & 4.2 & 10.5 \\
\hline 13 & -21.9 & 11.9 & 10.0 & -23.9 & -2.0 & 6.4 \\
\hline 14 & 5.1 & 7.1 & 8.7 & -9.3 & \(-14.4\) & 10.7 \\
\hline -15 & 28.1 & \(-42.0\) & 12.9 & -13.7 & -14.4 & 13.8 \\
\hline 16 & -20.5 & -7.2 & 9.3 & -11.0 & 9.5 & 13.1 \\
\hline 17 & -33.0 & -2.6 & 11.9 & -28.7 & 4.3 & 9.6 \\
\hline 18 & -28.6 & 31.2 & 11.4 & -27.2 & 1.4 & 13.0 \\
\hline 19 & \(1 \mathrm{D}_{0} .6\) & -41.8 & 7.4 & 4.2 & \(-8.8\) & 12. \(\overline{0}\) \\
\hline 20 & -27.3 & 11.9 & 11.5 & -29.8 & \(\underline{-2.5}\) & 8.1 \\
\hline R. M.S. value & 18.3 & 20.3 & 10.5 & 15.5 & 8.5 & 11.1 \\
\hline
\end{tabular}

Units are mgals.
The details of the solutions given in Table 5.17 , were us follows:

All the 20 ares were used in the solution. The initial value of all the 56 anomalies was taken as zero. The weight matrix of the anomalies was kept diagonal and two solutions were tried. In the first case, the weights for all the 56 anomalies was kept as \(1 /(17.5)^{2}\). In the second case, this weight was retained for the 20 anomalies of interest, but for the 36 anomalies outside the aroa of investigation, and thus not covered by observations, the weights were reduced to \(1 / 30^{\mathrm{m}}\). The expected value and the recovered value of anomalies in Case 2 hive also been shown in Table 5.17.

The improvement in anomaly discrepancies for the 20 anomalies of interest, by assigning a low weight in Case 2 for the outside anomalies not covered by observations, is apparent from columns 3 and 6 of Table 5.17. This is particularly so for the peripheral anomalies, e.g., anomalies No. 3, 6, 10, 15, 18 and 19. We also notice by comparing column 3 of Table 5.17 with the last but one column of Table 5.14, that there is no improvement in the combination solution using 56 anomalies over the combination solution using 36 anomalies, if the weights of all anomalies are kept the same; the R. M.S. value of the anomaly discrepancy being 20.3 and 15.2 mgals respectively. The combination solution with uniform weights for 56 anomalies in column 3 of Table 5.17, also does not show any improvement over the original solution with zero weights for the 56 anomalies, in the last column of Table 5.11 ; the R.M.S. value of the anomaly discrepancy in the latter solution being 11.1 mgals. The optimum recovery model for \(2^{\circ}\). 5 equal area anomalies is therefore obtained by solving for 2 additional \(2^{\circ} .5\) anomalies all around the area of investigation, and assigning lower weights to these outside anomalies not covered by observations. We will designate this solution as \(2.5-3 \mathrm{C} ; 2.5\) for the size of anomaly block, 3 to indicate the inclusion of 2 additional anomalies in the solution, and \(C\) for the 'combination' solution obtained by assigning non-zero weights to the anomalies.

The statistics for examining the 'goodness' of anomaly recovery for the \(2^{\circ} .5\) anomalies in the Solution \(2.5-3 \mathrm{C}\) are given in Table 5.18.

Table 5.18
Statistics for \(2^{\circ} .5\) Anomaly Recovery in Solution 2.5-3C. Summed Range Rate Obsns, at 10 sec . Time Interval for 20 Arcs
\begin{tabular}{lc}
\hline No. of anomalies recovered & 56 \\
No. of anomalies of interest & 20 \\
A-priori std. devn. cf anomalies of interest (mgals) & 17.5 \\
A-priori std. devn. of anomalies not covered by obsns. (mgals) & 30 \\
R.M.S. value of anomaly discrepancy (mgals) & 8.5 \\
R.M.S. value of expected anomalies (mgals) & 18.3 \\
R.M.S. value of recovered anomalies (mgals) & 15.5 \\
Correln. coeff. ( \(\rho\) ) of recovered anom. with oxpected anom. & 0.92 \\
Mean corroln. coeff. of adjacent rocovered anom. (E.W. direction) & -0.23 \\
Mcan corroln, coeff. of adjacont recovered anom. (N.S. direction) & \(\mathbf{- 0 . 3 9}\) \\
R.M.S. value of std. devn. of recovered anom. (mgals) & 11.1
\end{tabular}

\section*{5. 3 Recovery Model for \(5^{\circ}\) Equail Area Mean Anomalies}

We found in Sec. 5.1, with reference to the closing remarks in Sec. 5.1.4, that we could not recover \(5^{\circ}\) anomalies from close satellite at height of about 900 km , without using any a-priori information from terrestrial gravity data, i.e. when both the initial value and the weight matrix of the anomalies were considered to be zero. This was inspite of ensuring sufficient observations over the peripheral anomalies in Sec. 5.1.3, and inspite of increasing the density of satellite ares from roughly \(1 / 2\) anomaly block size to \(1 / 4\) anomaly block size in Sec. 5.1.4.

We may therefore utilize the a-priori variance of \(5^{\circ}\) residual anomalies to form their weif ht matrix, as has been done in the case of the recovely of \(2^{\circ} .5\) anomalies in the previous section. The investigalions for the recovery of \(5^{\circ}\) anomalies from close satellite at height of 250 km in Sec. 4.2 , show the optimum recovery with the inclusion of one additional anomaly all around the area of investigation in the estimation process. We may, however, also try the recovery with 2 additional anomalies all around the area of investigation, in view of the results of Sec. 5.2.5. Similarly, we may also experiment with the weights of anomalies outside the area of investigation, and thus not covered with observations, being lower than the weights for the anomalies covered by observations.

The variance of \(525^{\circ}\) equal area residual anomalies used in the simulation of observations in Sec. 3.4, was found to be \(108 \mathrm{mgals}{ }^{2}\). We may thus form the weight matrix of the anomalies as a diagonal matrix, with afl elements on the diagonal being \(1 / 108\), i.e. uniform weights corresponding to the std. devn. of 10.4 mgals. We may also obtain another solution using a similar weight matrix, but where the weights for the anomalies outside the area of investigation correspond to the std. devn. of 20 mgals, i. e. varying weights. We report in Table 5.19, 3 solution using 15 ares, and solving for 24 anonalies, i.e. one additional anomaly all around, with uniform weights (Case 1), and varying weights (Case 2). In Case 3, we still use 15 arcs, but solve for 40 anomalies, i.e. 2 additional anomalies all around, with varying weights. The initial value of all anomalies in all the 3 cases was keptas zero.

Anom. Discrep. and Std. Devns, of \(125^{\circ}\) Equal Area Mean Anomalies Using A-Priori Variance of Anomalies. Summed Range Rate Obsns, at 10 sec . Time Interval for 15 Ares With Arc Spacing Roughly Half Anomaly Block Size.

Height of Close Satellite \(\approx 900 \mathrm{~km}\)
Case 1.
Case 2.
Anom. 24 Anom Uniform Weight 24 Anom Varying Weight No. Anom Diser Sid Devn Anom Discr Std Devn
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & 7.2 & 8.4 & 10.0 & 9.1 & 10.8 & 9.1 \\
\hline 2 & 9.8 & 8.1 & 6.0 & 8.9 & 6.0 & 9.0 \\
\hline 3 & 2.2 & 8.2 & 2.1 & 9.0 & 1.7 & 9.1 \\
\hline 4 & -3.8 & 7.5 & -2.4 & 7.7 & -2.5 & 7.8 \\
\hline 5 & -11.0 & 7.3 & -9.5 & 7.6 & -7.0 & 7.7 \\
\hline 6 & 13.6 & 7.9 & 0.2 & 8.8 & -0.7 & 8.9 \\
\hline 7 & \(-6.3\) & 8.2 & -10.7 & 9.1 & -10.9 & 9.2 \\
\hline 8 & 2.9 & 8.2 & 1.3 & 8.3 & -0.8 & 8.3 \\
\hline 9 & 4.5 & 7.3 & 7.7 & 7.5 & 7.6 & 7.6 \\
\hline 10 & -3.1 & 8.2 & -3.8 & 8.9 & -2.8 & 9.0 \\
\hline 11 & -13.1 & 8.2 & -16.1 & 9.0 & -16.1 & 9.1 \\
\hline 12 & 6.8 & 7.4 & 7.7 & 8.5 & 8.1 & 8.7 \\
\hline
\end{tabular}
R.M.S.
value

Units are mgals.
The solutions in Cases 1 and 2 are comparable to Solution 900-5-2A reported in Tables 5.5 and 5.6 , where the F. M.S. value of anomaly discrepancy was 17.5 mgals. We therefore notice the improvement in anomaly recovery, when we use the a-priori variance of anomalies to form their weight matrix. Secondly, we find from Table 5.19 that there is no noticeable difference in the solutions in the 3 cases. The improvement in anomaly recovery thus results from the diagonal weight matrix not being zero, hut it is not material if the weights are uniform, or are lower for the anomalies not coverod with observitions. Also, unlike Sec. 5.2.5, it is adequate to consider one additional anomaly all around the area of investigation. This was also found when two other solutions were tried analogous to Cases 2 and 3 , but using 28 arcs, i.e. with arc spacing of \(1 / 4\) th anomaly blook size, the R.M.S. value of the anomaly discrepancy being 7.5 and 7.4 mgals respectively.

We may thus consider the optimum model for the recovery of \(5^{\circ}\) anomalies from close satellite at a height \(\mathcal{E}\) about 900 km , being Case 2 of Table 5.19 , where we utilize the a-priori variance of the anomalies. The arc spacing is then \(1 / 2\) anomaly block size, as more ares to give a spacing of \(1 / 4\) anomaly block size do not cause a proportionately large improvement. Only one additional anomaly all around the area of investigation is included in view of the investigations in Sec. 4.2; but lower weights are assigned to anomalies not covered by observations, in view of the investigations in Sec. 5.2.5.

We have to now recall that the along-are observations being at time interval of 10 seconds, were 3 times more closely spaced than the spacing between the ares, which was about half anomaly block size. If we were not considering combination solution, we would have multiplied the std. devns of the recovered anomalies by \(\sqrt{3}\). We could have also got the samo results if wh ind multiplied the weight matrix of observations by \(1 / 3\), and then we do not scale the std. devns. of recovered anomalies. Accordingly, when considering the combination solution, we may multiply the first term of the normals in equation (2.42) by \(1 / 3\) before adding the weight matrix \(P_{x}\) based on the a-priori variance of anomalies. Case 2 of Table 5.22 was then run again with this modification.

We will call this as Solution \(900-5-2 \mathrm{C}, 900 \mathrm{~km}\) being the height of the close satellite, 5 for size of anomaly blocks being recovered, 2 for including one additionill anomaly all around the area of investigation, and suffix \(C\) to indicate a 'combination' solution. The statistics for examining the 'goodness' of anomaly recovery in Solution \(900-5-2 \mathrm{C}\) are given in Table 5. 20.

Table 5.20
Statistics for \(5^{\circ}\) Anomaly Recovery in Solution 900-5-2C. Summed Range Rate Obsns, at 10 sec . Time Interval for 15 Ares
\begin{tabular}{lc}
\hline No. of anomalies recovered & 24 \\
No. of anomalies of interest & 12 \\
A-priori std. devs. of anomalies of interest (mgals) & 10.4 \\
A-priori std. devn. of anomalies not covered by obsns (mgals) & 20 \\
R. M.S. value of anomaly discrepancy (mgals) & 8.5 \\
R.M.S. value of expected anomalies (mgals) & 13.7 \\
R. M.S. value of recovered anomalies (mgals) & 8.5 \\
Correln. coeff. ( \(\rho\) ) of recovered anom. with expected anom. & 0.81 \\
Mean correln. coeff, of adjacent recovered anom. (I.W. direction) & \(\mathbf{- 0 . 1 8}\) \\
Mean correln. coeff. of adjacent recovered anom. (N.S. direction) & -0.18 \\
R. M.S. value of stcl. demn. of recovered anum. (mgals) & 9.0
\end{tabular}

\section*{6. USE OF REAL DATA AND CONCLUSIONS}

\subsection*{6.1 Use of Real Data}

An effort was made throughout this study to use data, which would be similar to the real data, likely to be available later. This is particularly true for the data in Sec. 4.1 and 5.1 , with the close satellite at height of about 900 km , which is likely to correspond closely to the Geos-C/ATS-6 configuration. The geometry, and the density of the across-arc and along-arc observations, and the nominal satellite Keplerian elements used in this study correspond closely to the proposed values.

The use of real data would obviously bypass the discussion in Sec. 3.4 about the extent of anomalies for simulation of observations, as it would sense the global effect of the gravity anomalies at the satellite altitude. The summed range rate measurements would, however, require preprocessing, primarily for the refraction effects for the ground ATS-6 tracking station to the ATS-6 relay satellite. As the relay satellite is nominally geostationary, and the signal path through the ionosphere and troposphere remains nearly the same for various observations in a satellite are, the refraction corrections are likely to be well determined. The transponder delays of the satollites are not likely to cause any significant errors within the range of their calibralion uncertainties of a few microseconds.

The initial state vector of the satellites for starling integration for individual ares could not be determined in this study, as the observations were simulated for periods of 5 to 20 minutes oniy. The starting coordinates have thus to be obtained for each are from an optimum combination of various tracking data (Martin, 1969; Martin, 1971; Kahn el al; 1972). It may be possible to refine these estimates further, by considering the summed range rate data over the entire usable period of the arc, over which the close satellite may be tracked by the relay satellite, say, over a 40 minutes arc. These final estimates may then be held fixed, as in this study, for the portion of the arc used over the area of investigation. This approach needs further investigation.

The subdivision of a \(10^{\circ}\) equal area block into component blocks of various sizes has been described in Sec. 3.1. In this study, the residual mean anomalies over a block of a given size, were estimated as a correction vector to an initial zero value vector. After obtaining these estimates of residual anomalies from the satellite to sateilite tracking data, it may be desired to combine these with the estimates obtained from the terrestrial gravity data. The combined estimate may be obtained directly as indioated in equation (2.41) in Soc. 2.2.1. The terrestrial ostimates of the rosidunl anomalios may be obla ined aceording to tho sehome doseribod in soc. 3.3. Finally to convert
the residual anomalies, \(\Delta \mathrm{g}^{\prime}\), into gravity anomalies, \(\Delta \mathrm{g}_{\mathrm{T}}\), with respect to a given reference ellipsoid through a specified gravity formula as in equations (3.7) and (3.8) in See. 3,2 , we may compute the gravity anomaiy \(\Delta g_{p c}\), implied by the accepted set of potential coefficients as in equation (3.3), and then obtain \(\Delta \mathrm{g}_{\mathrm{i}}\) from equation (3.1).

\section*{6. 2 Computer Run Timings}

The main computer program used in this study was the November, 1972 version of the Geodyn program (Chin, Goad and Martin, 1972), which was modified to accept gravity anomalies. These modifications have been described separately (Karki, 1973; Hajela, 1974). The Geodyn program was primarily used in data simulation mode for obtaining normals, and for the computation of the solution vector. A few supporting programs were also written separately, as deseribed in Sec. 2.3.3. All information in this Section pertains to the IBM 360/175 Computer.

The computer runs, which took the most time, were for simulating observations using gravity anomalies, in addition to the (12,12) potential coefficients. For the close satellite at height of 900 km , with integration step size of 1 minute, it took about 54 seconds per are of about 20 minutes duration, with data interval as 30 seconds. For the same satellite, it still took about \(43 \mathrm{sec}-\) onds per arc of about 5 minutes duration, with data interval as 10 seconds. For the close satellite at height of 250 km , with integration step size of 30 seconds, it took about 47 seconds per arc of about 5 minutes duration, with data interval as 10 seconds. If we were to simulate observations without using gravity anomalies, it took only about 8 seconds per arc of about 20 minutes duration for the close satellite at height of 900 km , in contrast to 54 seconds per arc, when gravity anomalies were also used.

The computer runs for obtaining the normal equations depended primarily on the number of anomalies to be estimated. For 92 and 40 anomalies to be estimatea, it was respectively about 32 and 22 seconds per arc. Other computer runs for obtaining individual are normals from summed normals for several arcs; or to combine nornials for several ares from individual are normals, would tale little time, about 5 seconds or less for the whole run. It would take similar time to reduce the number of unknowns from the summed normals. The inversion of normals and the computation of solution vector, were likew ise about 5 seconds or less, once the normals and constant vector were available on the magnetic tape.

The core storage requirement for the Geodyn program in the data reduction mode is about 360 KF , when no gravity anomalies are input to the program. Additional storage of about 1.5 K is required for each gravity anomaly input to the program. Further information may be seen in the Geodyn program documentation (1972).

\subsection*{6.3 Summary of Results}

The rusults of anomaly recovery for the preferred solutions in Chapters 4 and 5, have been summarized in Tables 6.1 and 6.2 respectively. The solutions for anomaly recovery extracted from Chapter 4, did not use any apriuri information about gravity anomalies, i.e. their initial value was taken as a zero vector, and their weight matrix was also taken as zero. The solutions for anomaly recovery extracted from Chapter 5 , assumed the initial value of gravity anomalies as a zero vector, but the woight matrix was taken as a diagonal matrix, with weights as the reciprocal of a-priori variance of the gravity anomalios. The weights wore the same for all anomalies covered with observations, and a lower weight for all anomalies not covered with observations.

\section*{Table 6.1}

Summary of Results for Anomaly Recovery from Strong Signal
Summed Range Rate Obsns. with Sta, Devn. \(0.08 \mathrm{~cm} / \mathrm{sec}\). for Integration Interval of 10 Sec . Simulated Obsns. without Observational Errors. Zero Weight Matrix fon Anomalies.

Approximate height of close satellite (km)
Size of equal area mean anomaly block
Latitudinal extent of the area of investigation
Longitudinal extent of the area of investigation (approx.)
No. of anomalies of interest, covered by obsns.
No. of anomalies estimated
No. of anomaly blocks all around the area of investigation, not covered by obsns.
Spacing of satellite ares in terms of anomaly block size
Longitudinal spacing of satellite arcs (approx.)
No. of satellite arcs used in the solution
R. M.S. value of expected anomalies (mgals)
R.M.S. value of recovered anomalies (mgals)

Correln. coeff. of recovered anom. with expected anom.
R.M.S. value of anomaly discrepancy (mgals)

Mean value of anomaly discrepancy (mgals)
Minimurn value of anomaly discrepancy (mgals)
Maximum value of anomaly discrepancy (mgals)
Time interval of observations along an are
R.M.S. value of std. clevn. of recovered anomalies (mgals)
R.M.S. value of std. devn., corrected for integration interval of observations
Ratio of along-arc to across-arc spacing of observations
R.M.S. value of std. devn. of recovered anoms., corrected for integration interval and along-arc spacing of obsns
Average correln, coeff. between adjacent recovered anom. (E.W. direction)

Average correln. coeff, between adjacent recovered anom. (N.S. direction)

Results tabulated in Chapter 4
\begin{tabular}{cc}
900 & 250 \\
\(10^{\circ}\) & \(5^{\circ}\) \\
\(70^{\circ}\) & \(20^{\circ}\) \\
\(10^{\circ} \mathrm{S}-60^{\circ} \mathrm{N}\) & \(20^{\circ} \mathrm{N}-40^{\circ} \mathrm{N}\) \\
\(60^{\circ}\) & \(25^{\circ}\) \\
\(240^{\circ}-300^{\circ} \mathrm{E}\) & \(250^{\circ}-275^{\circ} \mathrm{E}\) \\
37 & 12 \\
64 & 24 \\
1 & 1 \\
& \\
\(1 / 2\) & \(1 / 2\) \\
\(6{ }^{\circ}\) & 3 \\
14 & 12 \\
5.4 & 13.7 \\
5.5 & 13.9 \\
0.998 & 0.986 \\
0.3 & 2.3 \\
-0.1 & -0.2 \\
-0.7 & -5.0 \\
0.8 & 3.6 \\
1 min. & 10 sec. \\
\(5.2^{*}\) & 3.4 \\
2.0 & 3.4
\end{tabular}

13
\(2.0 \quad 5.9\)
\(-0.32 \quad-0.26\)
\(-0.44 \quad-0.41\)
Soln. 10-2 Soln, 250-5-2 Tables 4.11, 4.13; 4.16, 4.17 Figure 4.9 Figure 4.15

Also see Table 4.18

\footnotetext{
*R. M.S. value for 31 anomalies, after leaving out 6 anomalies on the south and west edges of the area, not well covered with observalions (see remarks after Table 4.13 in Sec. 4.1.9).
}

Summary of Results for Anomaly Recovery from Weak Signal Summed Range Rate Obsns. withStd. Devn. \(0.08 \mathrm{~cm} / \mathrm{sec}\) for Integration Interval of 10 Sec . Simulated Observations without Observational Errors.
Diagonal Weight Matrix for Anomalies Using A-Priori Variance
\begin{tabular}{|c|c|c|}
\hline Approximate height of close satellite (km) & 250 & 900 \\
\hline Size of equal area mean anomaly block & \(2^{\circ} .5\) & \(5^{\circ}\) \\
\hline Latitudinal extent of the area of investigation & \[
22^{\circ}-\frac{15^{\circ}}{}-37^{\circ} \mathrm{N}
\] & \[
\begin{gathered}
20^{\circ} \\
20^{\circ}-40^{\circ} \mathrm{N}
\end{gathered}
\] \\
\hline Longitudinal extent of the area of investigation (approx.) & \[
257^{\circ}-23^{\circ}-270^{\circ} \mathrm{E}
\] & \[
\begin{gathered}
25^{\circ} \\
250^{\circ}-275^{\circ} \mathrm{E}
\end{gathered}
\] \\
\hline No. of anomalies of interest, covered by obsns. & 20 & 12 \\
\hline No. of anomalies estimated & 56 & 24 \\
\hline No. of anomaly blocks all around the area of investigation, not covered by obsns. & 2 & 1 \\
\hline A-priori std. devn. for weight matrix, for anomalies covered with obsns. (mgals) & 17.5 & 10.4 \\
\hline A p: :iori std. devn. for weight matrix, for anomalies not covered with obsns. (mgals) & 30 & 20 \\
\hline Spacing of satellite ares in terms ol inomaly block size & 1/2 & 1/2 \\
\hline Longitudinal spacing of satellite ares (approx.) & \(\mathrm{I}^{10}\) & \(3^{0}\) \\
\hline No. of satellite arcs used in the solution & 20 & 15 \\
\hline R. M. S. value of expected anomalies (mgals) & 18.3 & 13. 7 \\
\hline R. M.S. value of recovered anomalios (mgals) & 15.5 & 8.5 \\
\hline Correln. coeff. of recovered anom. with expected anom. & 0.92 & 0.81 \\
\hline R.M.S. value of anomaly discrepancy (mgals) & 8.5 & 8. 5 \\
\hline Mean value of anomaly discrepancy (mgals) & -1.0 & -0.4 \\
\hline Minimum value of anomaly discrepancy (mgals) & \(-18.0\) & -17.9 \\
\hline Max:mum value of anomaly discrepancy (mgals) & 10.3 & 12.1 \\
\hline Time interval of observations along an arc & 10 sec. & 10 see \\
\hline Ratio of along-are to across-arc spacing of observations & 1 & 3 \\
\hline R. M.S. value of std. devn. of recovered anom. corrected for spacing of observations* & 11.1 & 9.0 \\
\hline Average correln. coeff. between adjacent recovered anom, (E.W. direction) & \(-0.23\) & -0.18 \\
\hline Average correln. cooff. between adjacent recovered anom. (N.S. diroction) & -0.39 & \(-0.18\) \\
\hline Results tabulated in Chapter 5 & Soln. 2.5-3C Tables 5. 16, 5, 17 & \begin{tabular}{l}
Soln. 900-5-20 \\
Table 5. 20
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
* Sec discussion before Table 5.20 in Sec. 5. 3.
}

We may recall here the criteria used for judging the 'goodness' of anomaly recovery. For simulated observations, not burdenef with observational errors, the R. M.S. value of anomaly discrepancy should be small, say \(1 / 2\) to \(1 / 3\) times the R.M.S. value of the expected anomalies. The R.M.S.value of recovered anomalies should be comparable to the R.M.S. value of the expected anomalies, with a high value, say, about 0.9 , of the correlation coefficient between the recovered and expected anomalies. The R.M.S. value of the std. devns. of the recovered anomalies should be comparable to, or less than, the std. devn. of the expected anomalies, which may be obtained as the R. M.S. value of the expected anomalies. The correlation coefficients between adjacent recovered anomalies, both in the east-west and in the north-south directions, should be small, say less than 0.5 .

We may also mention, in briel, the main conclusions about the observational data. The optimum number of satellite ares to be used in the solntion, are those, which achieve a spacing of about half of the anomaly block size desired to be recovered. This spacing refers to adjacent ascending, or descending, arcs. The satellite arcs should be uniformly spaced, and located symmetrically with respect to the area of investigation, considering both the ascending and desconding arcs. It is necessary that the peripheral anomaly blocks are aearly as well covered with observations, as the central anomilies. The optimv.m shape of the area of investigation would thus depend on the inclination of the satellite. For satelites with inclination between \(30^{\circ}-60^{\circ}\), the shape of the area of investigation should be nearly a rhombus, with its diagonals in the east-west and in the north-south direction. The latitudinal extent of the area should not exceed about \(40^{\circ}\), and should preferably lie wholly over either the equatorial region, or the mid-latitude region.

The observations should not extend beyond the area of investigation. If the spacing of observations along an arc is more dense than the spacing of observations between adjacent arcs, say \(n\) times, then the std. devns of the recovered anomalies should be multiplied by a factor of \(\sqrt{n}\). Alternatively, the scaling of the std. devns. of the recovered anomalies may also be achieved by multiplying the weight matrix of the observations by a factor of \(1 / n\).

An additional anomaly all around the area of investigation should be estimated along with the anomalies covered by observations. However these anomalies not covered with observations, would not be recovered; and information should be extracted from the solution for only those anomalies covered by the observations. Only one additional anomaly all around the area of investigation is to be included in the solution for the recovery of \(10^{\circ}\) and \(5^{\circ}\) anomalies; but for smaller blocks like \(2^{\circ} .5,2\) additional anomalies all around the area of investigation, are to be included in the solution.

The anomaly recovery improves, if instend of taking the weight matrix of anomalies to be zero, we use a diagonal weight matrix with the same weight for all anomalies covered by observations, as the reciprocal of a-priori variance of the gravity anomalies. The weight for all anomalies not covered with observations,
is also same, but is lower than the weight for the anomalies sovered by observations. The anomalies could not be recovered with weak signal, as discussed in Chapter 5 , without using this information about the a-priori variance of the gravity anomalies.

Summed range observations are not sensitive enough, as compared to the summed range rate observations, for the recovery of gravity anomalies. For the recovery of residual anomalies in regional, or local, areas, no constraints should be imposed on the recovered anomalies to satisfy any specified values of the spherical harmonic coefficients.

Finally, we may compare the results of Schwarz (1970) with those obtained in the present study. These results cannot be compared rigorously because of the differences in the configuration of satellites, in the recovered parameters and in the size of blocks. The 'uncertainties' in the recovered values of density parameters by Schwarz may however, be related to the std. devns. of the recovered anomalies in this study, by first multiplying by a factor of \(2 \pi\); and then by a factor of 16 to aecount for the std. devn, of summed range rate observations used by Schwarz being . \(005 \mathrm{~cm} / \mathrm{sec}\) as compared to \(.08 \mathrm{~cm} / \mathrm{sec}\) in this study for the integration interval of 10 seconds .

Schwarz (Solution 8.1) obtained an uncertainty of 0.6 to 1.8 mgals in the recovered vilues of \(2^{\circ} \times 2^{\circ}\) density parameters, with the close satellite at height of 200 km tracked by a geosynchronous relay satellite. This is then equivalent to 60 to 180 mgals ( \(=0.6\) to \(1.8 \times 2 \pi \times 16\) ) for compar ison with the std. devns. of recovered \(2^{\circ} .5\) equal area anomalies in this study from close satellite at height of 250 km . In Solution 5.1 , using 2 low satellites in nearly same orbit at height of about 200 km , his uncertainty is equivalent to 80 to 240 mgals. The correlation cuefficients in these 2 solutions were about -0.8 in the east-west direction and about -0.6 in the north-south direction. As the spacing between ares used by Schwarz was roughly the same as block size, instead of \(1 / 2\) block size, his results can be perhaps compared with the solution for 9 aros in Trable 5.13 in this study, with the R. M.S. value of std. devns. of recovered anomalies being \(80 \sqrt{2}=112 \mathrm{mgals}\). The final results obtained in Solution 2.5-30 in this study have been summarized in Table 6.2, which gives the R.M.S. value of std. devn. of recovered anomalies as 11 mgals, and the correlation coefficients in the east-west direction as -0.2 , and in the northsouth direction as -0.4. The spacing of arcs in this solution was \(1 / 2\) anomaly bluck size and the a-priori variance of anomalies was used in forming their weight matrix.

For \(5^{\circ} \times 5^{\circ}\) density parameters, using 2 low satellites at height of about 300 km , Schwarz's uncertainty (Solution 3.1) is equivalent to 10 to 30 mgals. The correlation coefficients were about -0.6 in the east-west direction and 0.4 in the north-south direction. Those results can be perhaps compared with the solution for 6 arcs in Sec. 4.2.2 for the recovery of \(5^{\circ}\)
equal area mean anomalies using a close satellite with height of 250 km . As this was considered inadequate spacing of ares, the R. M.S. value of the std. dovns. was not given but it was \(7.9 \sqrt{6} 19\) mgals. for 12 arcs, i. e, with are spacing of about \(1 / 2\) anomaly block 5 jzc , the particulars for Solution 250-5-2 have been summarized in Table 6.1, which gives the R. M.S. value of std. devn. of recovered anomalies as 6 mgals , and the correlation coefficients in the east-west direction as \(\mathbf{- 0 . 3}\), and in the north-south direction as \(\mathbf{- 0 . 4}\).

Again, for \(5^{\circ} \times 5^{0}\) density parameters, using 2 low satellites at height of about 700 km , Schwarz's uncortainty (Solution 1.4) is equivalent to 60 to 400 mgals. The correlation coefficients were about \(\mathbf{- 0 . 8}\) in the east-west \(\stackrel{3}{ }\) irection, and -0.2 to 0.2 in the north-south direction. These results are comparable with the solution for 8 arcs in Sec. 5.1.2 for the recovery of \(5^{\circ}\) anomalies using a cluse satellite with height of about 900 km . The R. M.S. value of the std. devns, was \(100 \sqrt{6}=465\) mgals. The final results obtained in Solution \(900-5-2 \mathrm{C}\) in this study have been summarized in Table 6. 2 , which gives the R. M. S. valuc of std , devn. of recovered anomalies as 9 mgals , and the correlation coefficients in the east-west and in the north-south directions as \(\mathbf{- 0 . 2}\) mgals. The spacing of arcs in this solution was \(1 / 2\) anomaly block size and the a-priori variance of anomalies was used in forming their weight matrix.

We thus find that there are 2 noticeable differences in this study and that of Schwarz. The spacing between the arcs considered by Schwarz was roughly the same as the size of block in which density parameters were being estimated, while the optimum spacing of arcs was found to be \(1 / 2\) block size in this study. Secondly, Schwarz does not allow for the possibility of using ?priori knowledge of the variance of the parameters being recovered, to form a weight matrix for them. It v/as found in this study that there was a remarkable improvement in the anomaly recovery of \(2^{\circ} .5\) anomalies from close satellite at height of 250 km , and of \(5^{\circ}\) anomalies from close satellite at height of 900 km , i. e. when the signal was weak, if the knowledge of the a-priori variance of anomalies was used to form their weight matrix.

\subsection*{6.4 Suggestions for Fulther Study}

During the recovery of anomalies discussed in Chapter 4, no tise was made of any a-priori information from the terrestrinl data for these gravity anomalies. The recovery of anomalies was entireis from the information in the signal from satellite data, i.e. the summed range rate observationfi. In Chapter 5, the signal from satellite data alone was not sufficient to recover the anomalies. We then utilized the a-priori information about variance of these anomalies to assign a non-zero weight matrix for them. This weight matrix was diagonal and the weights assigned were the same for a set of anomalies. The initial value of all the anomalies was still kept as a zero vector. We thus did not utilize the a-priori estimates of these gravity anom-
alies from terrestrial observations, nor did we assign different weights to the anomaly estimates. Further study should be made for the optimum utilization of these terrestrial estimates of anomalies, and their std. devns., for getting a revised estimate, incorporating all available information from satellite and terrestrial observations. Rapp (1973b) has already reported the results of recovering \(15^{\circ}\) anomalies using optical satellite data, and a-priori terrestrial estimates of \(15^{\circ}\) anomalies and their std. devns. A study may now be made for the recovery of anomalies in smaller size, say \(10^{\circ}\) and \(5^{\circ}\) equal area blocks, by utilizing summed range rate observations from the Geos-C/ATS-6 tracking, and a-priori terrestrial estimates of these \(10^{\circ}\) and \(5^{\circ}\) anomalies.

Further study is also needed to obtain the starting coordinates of the close and realy satellites, for a short arc of the close satellite of less than one revolution, to fit the observations over a short time span of 5 to 20 minutes. This has already been indicated in Sec. 6.1. The accuracy with which these starting coordinates can be determined, and the effect of the uncertainty in this determination on the computed value of \(t=s\) summed range rate, needs to be investigated. The uncertainty in this computed value would affect the misclosure from the observed value, and this erroneous value would be propogated into the correction vector of the parameters of interest.

We have considerd in this study the residual gravity anomalies referred to a set of potential coefficients complete up to degree and order 12. The purpose of using a potential field of higher order was to reduce the magnitude of the residual anomalies. However, as noted in Sec. 3.2 (Tahles 3.1 and 3.2), this reduction was not substantial. It may be investigated if it would be better to define the earth's normal gravitational potential by utilizing a still larger set of potential coefficients, or some other representation, which would still retain the computational convenience of potential coefficients in generating the orbits (Kaula, 1970; Lundquist and Giacaglia, 1972), and the residual anomalies are then defined with respect to this new representation.

The shape of the area of investigation was discussed in Sec. 4.2. However, the extent of the area of investigation for the recovery of \(5^{\circ}\) and \(2^{\circ} .5\) anomalies in Sec. 4.2 and Chapter 5, was chosen rather arbitrarily for the computational convenience of being covered by a limited number of satellite arcs. We did discuss in Sec. 4.1.9, the desirability of the area of investigation being separate for equatorial regions and mid-latitude regions, and accordingly limited to about \(40^{\circ}\) in latitudinal extent. It may further be investigated if there is any optimum extent of the area, which would yield a balance between computational effort and accuracy of anomaly recovery, for the case of summed range rate observations. This investigation may follow the report of Argentiero, Kahn and Garza-Robles (1974), where the discussion pertains to the recovery of gravity anomalies from altimeter data.

The formation of \(2^{\circ} .5\) and \(5^{\circ}\) equal area blocks, as component blocks of \(10^{\circ}\) equal area blocks, has been discussed in Sec. 3,1 , and the estimation of residual gravity anomalies in these blocks from terrestrial data in Sec. 3.3. We, however, note that this scheme results in the \(2^{\circ} .5\) blocks being considerably unequal in area. This then leads to a non-homogeneous distribution of the number of observations over neighboring \(2^{\circ} .5\) blocks, as discussed in the end of Sec. 5.2.2. The variation in the area of \(2^{\circ} .5\) blocks was a result of these being meaned from the \(251^{\circ}\) equal area blocks, which were the smallest blocks in which the gravity anomaly was estimated or predicted within a \(5^{\circ}\) blook, as dis. cussed in See. 3.3. A new subdivision scheme of \(5^{\circ}\) blocks into \(2^{\circ} .5\) and \(1^{\circ}\) blooks may be investigated, which would retain the advantages of the present scheme, but reduce the large variation in the area of neighoring \(2^{\circ} .5\) blocks.

\section*{BIBLIOGRAPHY}

Argentiero, P., Kahn, W.D., Garza-Robles, R. Strategies for Estimating the Marine Geoid from Altimeter Data, Goddard Space Flight Center, Greenbelt, Maryland. ApriI, 1974.

Arnold, K. Determination of Gravity Anomalies by Satellite Geodesy; in The Use of Artificial Satellites for Geodesy; AGU Monograph No. 15, 1972.

Chin, M. M., Goad, C.C., and Martin T.V. Geodyn System Description, Vol. I, II, III. Wolf Research and Development Corporation, Riverdale, Maryland. September, \(19,2\).

Cigarski, G. A., Velez, C.E. Cowell Orbit Generator Error and Time Anelysis Program. Goddard Space Flight Center, Maryland. August, 1967.

Comfort, G.C. Direct Mapping of Gravity Anomalies by Using Doppler Tracking Between A Satellite Pair. J. Geophys. Res., 78, 6845-6851, 1973.

Desrochers, G.A. A Study of the Aliasing Effect on Gravitational Potentiat Coefficients as Determined from Gravity Data. Department of Geodetic Science Report No. 160. The Ohio State University, Columbus. December, 1971.

Geodyn System Description, Volume I. (See Chin, Goad and Martin, 1972).
Hajela, D. P. Quadrature Errors in the Partial Derivatives Required for the Direct Recovery of Gravity Anomalies from Satellite Observations. Department of Geodetic Science Report No. 189, The Ohio State University, Columbus. December, 1972.

Hajela, D. P. The Computatin of \(15^{\circ}\) and \(10^{\circ}\) Equal Area Block Terrestrial Free Air Gravity Anomalies. Dopartment of Geodetic Science Report No. 194. The Ohio State University, Columbus. February, 1973.

Hajela, D. P. Modifications to Geodyn Program for Estimation of Gravity Anomalies. Unpublished. July, 1974.

Heiskanen, W.A. and Moritz, H. Physical Geodesy. W. H. Frueman and Company. San Francisco. 1967.

Hirvonen, R. A, and Moritz, H. Practical Computation of Gravity at High Altitudes. Report No. 27, Inst. Geod. Phot. Cart., The Ohio State University, Columbus, 1963.

Kahn, W.D., Bryan, J.W., Jrelsentreger, T.L., Wagner, C.A. Geos-C/ ATS-F Tracking and Gravimetry Experiment. Goddard Sjace Fhight Center, Maryland. November, 1972.

Karki, P. The Use of Geodyn Program for Gravity Anomaly Recovery. Unpublished. May, 1973.

Kaula, W. M. Theory of Satellite Geodesy. Blaisdell Publishing Company, Mass. 1966.

Kaula, W. M. (Editor). The 'l'errestrial Environment: Solid Earth and Ocean Physics. Report of a Study at Williamstown, Mass. August, 1969.

Kaula, W. M. The Appropriate Representation of the Gravity Field for Satellite Geodesy. Proceedings 4th Symposium on Mathematical Geodesy, pp. 57-65. Com. Geod. Ital., Bologna, 1970.

Kaula, W. M. Error Analysis of Earth Physics Satellite Systems, Final Report, Part I. University of California, Los Angeles. October, 1972.

Koch, K.R. and Morrison, F. A Simple Layer Model of the Geopotential from a Combination of Satellite and Gravity Data. J. Geuphys. Res., 75, 1483-1492, 1970.

Koch, K.R. and Witte, B.U. Earth's Gravity Field Represented by a Simple Layer Potential from Doppler Tracking of Satellites. J. Geophys. Res., 76, 84.71-8479, 1971.

Lange, B. O., DeBra, D.B., Kaula, W. M. Final Technical Report on a PreIiminary Design of a Drag-Free Satellite and its Application to Geodesy. Stanford University Center for Systems Research, (iuidance and Control Laboratory, May, 1969.

Lundquist, C.A. and Giacaglia, G. E.O. Geopotential Representation with Sampling Functions; in The Use of Artificial Satellites for Geodesy; AGU Monograph No. 15, 1972.

Martin, C. F. Accuracy of Satellite Orbits Obtainable by Synchronous Satellite Tracking-C.3.1. Wolf Research and Devcopment Corporation, Riverdale, Maryland. 1969.

Martin, C. Tr. Optimum Usaye of Ground Stations for Geos-C Orbit Determination. Wolf Research and Dovelopment Corporation, Riverdale, Maryland. October, 1971.

Martin, C.F. Geodyn Modifications for Satellite to Satellite Tracking and Surface Density Layer Estimation. Wolf Research and Development Corporation, Riverdale, Maryland, February, 1972a.

Martin, T.V. Geodyn System Operations Description, Volume III. Wolf Research and Development Corporation, Riverdale, Maryland. February, 1972b.

Mikhail, E.M. Paramaeter Constraints on Least Squares. Photogrammetric Engine ering, 36(12): 1277-91, 1970.

Moritz, H. A General Theory of Gravity Processing. Department of Geodetic Science Report No. 122. The Ohio State University, Columbus. May, 1969.

Mueller, I. I. Introduction to Satellite Geodesy. Frederick Ungar Publishing Company, New York. 1964.

Mueller I. I. Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publishing Company, New York. 1969.

NASA. Geos-C Mission Proposal Briefing Information, Wallops Island, Virginia. December, 1972.

NASA. Geos-C Mission Plan. Wallops Island, Virginia. May, 1974.
Obenson, G.T. Direct Evaluation of the Earth's Gravity Anomaly Field from Orbital Analysis of Artificial Earth Satellites. Department of Geodetic Science Report No. 129. The Ohio State University, Columbus, March, 1970.

Rapp, R.H. The Direct Combination of Satellite and Gravimetric Data for Mean Anomaly Determination. Department of Geodetic Science Report No. 131. The Ohio State University, Columbus. January, 197 ta .

Rapp, R. H. Equal Area Blocks. Bulletin Geodesique, No. 99, pp. 113-125, March, 1971b.

Rajp, R.H. Implementation Suggestions for the Direct Combination of SatelIIte and Gravimetric Data. Department of Geodetic Science Report No. 167. The Ohic State University, Columbus. December, 1971c.

Rapp, R. H. The Formation and Analysis of a \(5^{\circ}\) Equal Area Block Terrestrial Gravity Field. Department of Geodetic Science Report No. 178. The Ohio State University, Columbus. Junc, 197\%.

Rapp, R. H. Numerical Results from the Combination of Gravimetric and Satellite Data Using the Principles of Least Squares Collocation. Department of Geodetic Suience Report No. 200. The Ohio State University, Columbus. March, 1973a.

Rapp, R.H. Results from the Direat Combination of Satellite and Gravimetric Data. Paper presented at the First International Symposium in the Use of Artificial Satellites for Geodesy and Geodynamics. May 14-21, 1973b.

Rapp, R.H. Lectures on Advanced Gravimetric Geodesy. Unpublished Class Notes. The Ohio State University, Columbus. December, 1973c.

Robinson, J.V. Optimum Inlegration Interval for Use in Orbit Computations with the NWL-9 Gravitational Parameter Set. NWL Technical Report TR-2478. September, 1970 .

Schwarz, C.R. Gravity Field Refinement by Satellite to Satellite Doppler Tracking. Department of Geodetic Science Report No. 147. The Ohio State University, Columbus. December, 1970.

Snowden, J.M. and Rapp, R.E. Two Fortran IV Computer Prog.ams for the Combination of Gravimetric and Satellite Data. Department of Geodetic Science Report No. 116. The Ohio State University, Columbus. November, 1968.

T'scherning, C.C. and Rapp, R.H. Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Vir iance Models. Department of Geodetic Science Feport No. 208. The Ohio State University, Columlus. May, 1974.

Uotila, U. A. Introduction to Adjustment Computations with Matrices. Unpublished Notes. Department of Geodetic Science. The Ohio State University, Columbus. \(196 \%\).

Velez, C.E. Local Error Control and Its Effocts on the Oplimization of Orbital Integration. NASA Technical Note C-4542. June, 1968.

Vonbun, F.O. Geodetic Satellite Mission and Geos-C Spacecraft. Space Research XI, pp. 457-467, Akademie-Verlag, Berlin, 1971.```

