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ABSTRACT.
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With standing wave ultrasonic techniques, small changes in phase velocity which result from

changes in some external parameter (e.g., temperature ar magnetic field) have traditionally been determined by

observing shifts in the mechanical resonance frequency of a composite resonator.

Some previous investigators

have assumed that the fractional change in velocity Av/v is equal to the fractional change in frequency Av/v. ‘e

dfscuss quantitatively the errors involved in such an approach.

We show that using the relation Av/v = av/v

results in substantial. fnaccuracies when the loading effect of the transducer(s) cannot be neglected. -Substan-
tially improved formulas for determining the dispersion are presented and one of these is shown to bé much more

accurate than all previous approximations.
dispersion av/v,
the errors inherent in the various approximations.

I. iIntroduction

: In a variety of ultrasonic experiments one
monitors changes in acoustic phase velocity in & speci-
men that result from variations in some external para-
meter, e.g,, magnetic field, pressure, or temperature,
Standing wave ultrasonic techniques are well sufted to
measurements of this sort.!™® Fractional changes Av/v
in phase velocity can be determined from measursments
of the shifts in frequency of a standing wave mechani-
cal resonance. To analyze the data, the relation
Av/y = &v/v is commonly used, where Av/v is the frac-
tional change in mechanical resonance frequency.
Because measurements are usually made on composite
resonators consisting of a specimen plus one or two
transducers, this “uncorrected formula" is only approxi-
mate. The uncorrected formula results in substantial
errors in the estimation of the ultrasonic dispersion
av/v for a variety of cases of experimental interest.
In this paper, we present substantially more
accurate formulas for determining the dispersion Av/v
from standing wave ultrasonic measurements. Using nu-
merical simulations we compare quantitatively the
errors resuiting from use of the new approximations

with those resulting from use of the uncorrected formula.

In order to demonstrate the significance of the new
dispersion formulas, experimental data are analyzed
using the conventional and the improved formutas, and
the resulting values for the dispersion are compared.

I1. Theory
A. Reflection Case {One Transducer)

We consider an ultrasonic resonator consisting -

of 2 specimen (properties labeled with subscript s) and

one transducer {subscript t). The velocity of sound

Vs is given by .
a n

_ Vg ° 2£s vs/n '

where §_"1s the 1ength of the sample and v" is the

frequeniy of the nth (sample only) mechani®al resonance.

In the Vimit that the transducer has no effect an_the

mechanical resonance frequencies of the sample, vg 13

equal to v, the measured mechanical resonance frequen-

cy. Thus,

(2)

Limiting the discussion to cases where the last term in
Eg. (2) can be neglected, one obtains the "uncorrected
formula" for the dispersion

« a2l o
Avs/vs Avc/vc + AESIZS

(3)

o LA
Avs/vs u Avclvc
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(1)

The resuTts of simulated and actual experiments over wide ranges of
transducer Toading parameter 6 = ptlt/psls, and freguency are analyzed in order to compare

Equations {2) and (3) ignore the loading
effects of the transducer. For the case where the
transducer lpading parameter & = pyly/pche s not too
large, a more accurate expression ¥or tﬁe mechanicaiq
resonance frequency vE of the composite resonator is

n_.n _h
Vo =g+ 8lv, - v) (4)
where vy is the (unloaded) transducer resonance fre-
quency. Using Eqs. (1)-{4} and restricting tn the case

where vI is not too far from vy, one obtains after
some maﬁipu]ation the “{1+§) formuia" faor the disper-
ston, '

{5)

Anticipating the results of Sectien III, Eqs. (3) and
{5) typically exhibit errors substantially larger than
thaese resulting from experimental inaccuracies.

In order to develop a more accurate formula
for the dispersion Av. /vg, we begin with the one trans-
ducer resonance condi%‘ion5

27E v
tan vs £l=
5

av /v, = (Av2/v2}(1+6) .

oLV
(B,
Ps¥e

(6)

‘Here T = tan{mv./vg), and py and p. are the densities

of the transducer and sample, respectively. For con-
venience we have suppressed the superscript n which
specifies the particular mechanical resonance which is
being monitored. After a change in the external para-
meter {e.g., magnetic field), the same resonance egua-
tion relates the new velocity v to the new composite
resonance frequency vi,

2nd_v* PV
s°¢ t't

tan = | = - ™ (N
{ Vs } PsVs

where T* = tan(m%/vy).
changes “in 2.)
We seek the value of v&, given the values of
V& Ve Vo, and the remaining parameters. Subtracting
(%) from Eq. (7) and simplifying, one obtains

(We are assuming negligible

2
can | 20 BE.- 22_ . X cos (Znﬂs uc/vs) .
e VE v - X .- (8)
s s 1+ §-s1n(4w£s vC/vs)
. PyV *
where X = - —E—E({; - -I—- . The argument of the tan-
$ S s

gent function on the left side of £q. (8) is small over
a8 wide range of parameters, so we keep only the first
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term in the series expansion. The resulting equation

1s quadratic in v3,

M2 +Bvrsc=0, (92)
where A= v, + Téu M, {9b)
B = -T*‘vsﬁvtM - NT - vsug. {9c)
C= NT*\Js {sd)
and where
s ¢
M v, sin(4w£suc/vs)
+ L cosP(om v i), (102)
N= 2.8vy vE sin(4n£svcfvs) (pr)

The resulting one transducer formulas for vZ and the
dispersion Lvg/vg are given by

/2 anc
w - B R (11a)

* .
Avs/vs z (vs vs)/vs (11b)
(The plus sign in Eq. (11a) s required.)

In Section IIl, we investigate the behavior of
the uncorrected formula [Eq. (3)], the {1+4) formula
[Eq. {5)], and the present result [Eq. (11)] using both
numerical simulations and experimental data.

B. Transmission Case {Twg Transducers)

For a composite resonator consisting of a
sample and two transducers, the appropriate resenance
equation is®

r-1
tan es -2 [—r':n-] tan Bt
2 _
- %i}) tanzet tan 8, = 0, (12)
where n
Bs = Zwlsvc/vs '
8, = ™'/
t ¢t :
r=logvg « pen ) loove + pev,).
This equation can be factored into two simpler reso-
nance equations which are individually quite similar to

the resonance equation for the one transducer case

{Eq. (7}1:

i _v
tan[—vs_c.. E -
s

cnt["'s"c]g 't .

Pe¥e

PsVs.

Ve PsVs

The salutions to Eq. (13) (the "tangent set" of reso-
nances) describe only alternate members of the full set
of resonances impiicitly defined by .Eq. (12).
tions of Eq. (14) (the "cotangent set” of resonances)
represent the other half of the full set of resonances.
Using Eq. (13) and analytical techniques simi-
lar to those outlined for the one transducer case, an
improved dispersion formula for the tangent set of
resonances 1s obtained. The result 15 identical in

form with Egs. (9} and {11), but requires the following
redefinitions of M and N,.replacing Eq. {10):

zsvc
M= v, sin(ansvc/vs)
2 2 :
+ < cos (nzsvc/vs) {15a)
N = L 80 vt sin(anSvc/vs) (150)
The dispersion formula defined by Eqs (9},

(11), and (15) does not apply to the cotangent set of

resonances. The corresponding formula for det: rminir
the dispersion from transmission measurements «n a cr -
tangent rescnance [Eq. (14)1 is given by Ens. (3) anu

(11? with a second redefinition of M and N:

-zsuc .
M= v s1n(2wlsucfvs)
2 .2

+ = sin (wzsvc/vs) {16a)

N = -256vtvg sin(ZnLSvc/vs) (16b)

In order to analyze data in the two transducer
case, one must determine whether the mechanical raso-
nance being monitored is a member of the tangert cr the
cotangent set. One first calculates the number C,
given by

€= ut/Aus » {17)

where Avs = VS/ZES. Let C' = [C], the greatest intecer

less than or equal torf'. If C' is odd, the first
resonance v. above vy is a tangent resonance. [f C' is
even, the f?rst resonance v. above vy is a cotanoent
resohance. This allows an unequivocal determination of
whether dispersion monitered with any particular mechan-
1cal resonance should be calculated usina Egs. (9), (11}
and (15), or using Egqs. (9), {11), and (i6). 1n Section
ITI we investigate the behavior of the various apnrexi-
mations to Avslvs over a wide range of conditions.

III. Discussion

In this section, we examine the behavicr of the
uncorrected formula [Eq. {3)] , the {1+3) formula
[Eg. (5)] , and the present result [Eqs. (9)-(11}]. A
numerical simulation technique is used to fnvesticate
the errors that result from the use of each of the three
approximations to Avg/ve. Data from an actual disper-
sion experiment are also analyzed. Since the dispersion
formulas for the transmission case {Eqs. (9}, (11}, ard
(15} or {16)] exhibit a hehavior very similar to that

(13) for the reflection case, only the results of the analy-

5is of the reflection case {Eqs. {9)-(11)] are presented.
In order to study analytically the errors re-
sulting from the various approximations,. we used compu-

(14) ter iteration to find to 5 parts in 10!® the solutions

ve of Eq. (6) with assumed values for vg, pg, L5, vt,
Pty and vy, An assumed value of dispersion Avg/vs =
{v: - vg)/vg defines the shifted phase velocity vE,
Repeating tﬁe iteration-process with this new value

The solu- for the phase velocity yields values for the shifted

mechanical resonance frequencies v*, The approximate
fermulas [Eqs. (3}, (S), and {9)-(?1)] were used to
obtain estimates of Avg/vg for each ve. vi pair. The
percent error for each approximation is defined with
respect to the assumed value of Avg/vg. . The para-

meters were chosen so that the errors of the various



approximations could be studied as functiaons of the
magnitude of the dispersion Av./vg, the size of &, and
the distance in frequency of tﬁe mechanical resonance

\Jc from vi.

. fn Figures 1 and 2 we present the results of
our analysis of Egqs. {3), (5), and {9}-(11), with the
magnifude of the dispersion Avg/vg as the independent
variable. Figure 1 treats the case where ve is close
to wy. (In this case vg was chosen to be the first
mechanical resonance above vy.) Results for two
values of & are presented: & small (0.005), a value
typical of experiments in solids, and & large (0.2), a
value typical of liquid experiments. In any specific
experiment, & is constant, so the three curves for
each value of & are to be viewed as a group.
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Figure 1. Absolute value of the percent errar in

Avg/vs versus Avg/ve for each of the three approximate
formuias and for two values of & = ptit/pghg, USing
the first mechanical resonance v, above vi.

For & large or small, the uncorrected formula
[Eq. (3)) and the (1+8) formula [Eq. (5)] exhibit
errors that are essentially constant over a wide range
of Avg/ve. This result is discussed below. For
g = 0.00E, use of the uncorrected formuia results in
errors of approximately 0.5%, while use of the (1+6)
formula results in errors of about 0.01%. By contrast,
the present result [Eqs. (9)-(11)] is far superior,
yielding errors from 3 to at least 6 orders of magni-
tude smaller than either of the other approximations.
Since data for v and vi accurate to parts in 10° or
107 are available from experiments,® the increased
accuracy provided by Eaqs. (9-11) is required. (Since
the final accuracy of our double-precision computer
calculations 1s limited to about 10-%%, we plot a
dashed line where the error becomes less than this
value. In this region, we can only establish an upper
bound for the error.} For the larger value of § = 0.2,
the errors for all three approximations increase, but
the qualitative features of the curves are maintained.

In Figure 2 we present the percent error as a
function of Avg/vg using a resonance v; that is far
from v¢. {(The 6th mechanical resonance above vy was
chosén.) The shapes of the various error curves are
similar to those presented in Figure 1, with the

resuTts of the present work offering a dramatic improve-
ment gver previsus approximations.

loz - L] v T L
10 \ UNGORRECTED FORMULA £at3)
oL e A

I

—_ )

<o {1 +5) FORMUL A EQ(5)

Y

a sl i

Z 0

& 6> | v far from 1y _ g

& & large {Q.2) . X

W 1G*F [ 6 small (0005) — B

2 lohdy r -

5 PRESENT WORK .~

= 16°F EQ.(9)-(1 . 1
07 .
|0'3. ‘_--—:::,:"‘, -
i5°

'l " 1 i 1
0% 305 10 30t 10 30 w0?
Avy /v, {dimensionless units)

Figure 2. Absolute value of the percent error in
Avg/vg versus Avg/vg, with vg chosen to be the sixth
mechanical resonance above vg.

The calculations reguired for the use of the
improved formula for the dispersiocn are more complex
than those required for the use of previous apnproxi-
mations. An examination of the behavior of the un-
corrected formula [Eq. (3) and Figs. 1 and 2], however,
indicates that under a variety of conditions Eas., (9)-
{11) need only be applied once for any given experiment.
One selects data corresponding to a small value of
dispersion and uses Eqs. (9)-{(11} to compute an approxi-
mate value of Ave/ve. The nearly exact value for
4veg/vg provided Ey Zhis single application of Eas. (9)-
{]i) yields a simpte multiplicative factor which can be
applied to the mechanical resonance frequency shifts
{Av/v) to obtain the dispersion. (This is analogous to
the use of the (1+8) formuia, with an "effective §"
obtained using Egs. {9)-{11) for a particular set of
experimental parameters.)

In Figures 3 and 4 are presented the percent
errors of the various approximations as functions of
the transducer loading parameter & for two discrete
choices of Avs/vsz Avg/vg large (1072}, and aAv Ivg
small (5 x 10%%)7 As can be anticipated from the
horizoental curves in Figures 1 and 2, the behavior of
the uncorrected formula and the (1+8) formula is
independent of tha size of Ave/vg. The mechanical
resonances were chosen to be the 1st and 6th above vy
in Figures 3 and 4, respectively. (The cusp-like
tehavior near & = 0.04 in Figure 4 is due to a change
in sign of the error.)
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presented for small dispersion with small and large

values of 6 in Figure 5, and for Targe dispersion with

Ly connsc'rzov close to ¥ 8§ = 0.005 in Figure 6 and with § = 0.2 in Figure 7.

0 -FOEMULA £Q.3) The results of the present work are seen to represent

tavsv lar substantial improvements in accuracy for all choices
ge or smoll)

L b of parameters,

102 ey T v

4 02

Figure 3. Absolute value of the percent error in
Avg/vs versus 8 = pelefogle for Avg/vg large {10°2) 0%k
and small (5 x 10~%]. ve close to vg. :
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The absolute values of the percent errors for ! 40 45 S0 35 6.0
the several approximations are plotted in Figures 5, 6, v {MHz}
and 7 as functions of the frequency vc relative-to the
unloaded transducer resonance frequency vt (taken as Figure 6. Absolute value of the percent error in

5 MHz here). (Although smooth curves are shown, in a Avg /v, versus mechanical resonance frequency ve with
particular experiment only discrete values of ve occur, Avg/vg large {(10-2) and & small (0.005).
corresponding to peaks of mechanical resonances. The

resonances are spaced at 200 kHz intervals for the

barameters used in Figures 5, 6, and 7.) Results are
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Figure 7. Absolute value of the percent error in
Avg/vg versus frequency ve with Avg/ve targe (1072)
anﬁ ¢ large (0.2).

As an example of the use of the present wark
to analyze the results of an actual experiment, we
consider magnetoelastic dispersion measurements in
single crystal Ni.” The specimen under study 1s a
disk of length 0.1887 cm with a diameter to thickness
ratio of about 10:1. The resulting & for a 10.00 Mz
quartz transducer is 0.031%1. Crystalline axes [001],
<111>, and [170], and an external magnetic field Hg
lie in the plane of the disk. We define 8, as the
angle between Hy and the [007] direction. Transverse
ultrasonic waves of frequency ~8.9 MHz were propagated
along the [110] axis perpendicular to the plane of the
disk. The frequency v¢ of a particular mechanical
resonance was measured as a function of Ho and 9.

The ultrasonic dispersion dvg/vg was calculated using
8g = 90°, Hg = 10 kOe as the uncoupled magnetic field
orientation. In Fiqure 8, the data have been reduced
using the uncorrected formula and the present work.
Even on this lipear plot, the improvement provided by
the present work 1s evident,

— ~— v
ot ® o @ @ d © @ & <
® 8,=30°
2o}
I * UNCORRECTED FORMULA EQJ3)
O PRESENT WORK EQ.(}-(H)
~ 0T
h
o -
% eol . 0
£ « D
S = O
£ g=0" . ©
= .80}p . 0
3 ¢ o
> x
< o X
‘- 5 Ni ]
0o ] T=300%K
o knnol 4
x £lfoo])
-2of o ({fast shear)
¥~B.9 MH2
.
-kpF  ©
0o 20 40 6.0 8O 0.0
Hy (kOe}
Figure 8. Ultrasonic dispersion (Avg/vs) in bulk

single crystal Mi versus magnetic field Hq4 for
8y = 0° and 84 = 90°. Dispersion determined using the
uncorrected formula and the present work.
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