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1. INTRODUCTION

It has been discovered experimentally that a so-called "plateau"

region exists in the vortex system which trails from a lifting wing.

The decay of the vortex due to viscous or turbulent shear is very slow

in the plateau so that the maximum tangential speed in the vortices

remains very nearly constant for some distance downstream of roll-up and

then begins to decrease, becoming inversely proportional to the square

root of the distance far downstream.

It is possible that the delay in vortex decay, exemplified by the

plateau region, is due, at least in part, to nonequilibrium turbulence

in which the magnitude of turbulent shear stress takes a significant

period of time to catch up with turbulent energy. It is shown here,

however, that the existence of the plateau region can be explained merely

by the necessity for the vortex tangential speed profile to change from

an inviscid profile (inviscid except for the core) to the similarity

profile far downstream. The inviscid profile is a function of span

2$3
loading calculated a la Betz ,so the extent of the plateau region is

also a function of span loading.

It is assumed in the following analysis that the flow in the trailing

vortex is approximately analogous to the time-dependent flow of an infinitely

long vortex, so the radial and axial momentum equations are not used. This

assumption usually results in good qualitative agreement in the near field

just downstream of roll-up and should be close to a three-dimensional

solution in the far field flow. Solutions have been obtained for both

constant and variable eddy viscosity models.
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2. VORTEX DECAY - CONSTANT EDDY VISCOSITY

The equation for an axisymmetric, infinite vortex assuming a constant

eddy viscosity is

t a 2 r ar

To facilitate solution of this equation, the independent variables are

changed:

T = t/t0

N = r2 /4Tt

and the equation becomes

2N N2

b - N = 2 (2)

subject to the boundary conditions y(l,No) = Yi(r 2/4VTto), y(T,o) = 0, and

(T,-) = Yo" This is, of course, a linear differential equation

solvable by separation of variables:

y = G(N)T(T)

T + X T = 0 (3)

dG dG 2
N -2 + N + X G = 0 (4)
dN2  dN

where X2 represents one or more constants.
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The solution to Eq. (3) is

2-X
T = Ci 7 (5)

it

and a solution to Eq. (4), which is a special case of Kummer's equation

is given by

X-l 2
d 1 (N2-N (6)

G=- 2 (N e ) (6)

dN

Thus, a solution of Eq. (2) which satisfies the boundary conditions is

-N 2 X -l 2
Y= - +2 dN' 1  (N e) (7)
Y 7X2 dN2

A A
-N 1 -N 2 2 -N

= - e + -- Ne + -- ( 2 N - N)e + etc.
T 2

The first two terms of this equation represent Lamb's solution for decay

of an infinite line vortex.

The relationship between vortex radius and circulation for elliptic

loading is given according to the Betz theory2 by

1 -2 1/2
r/b = ([C/8 - (1/4) sin- 1 (l - y 2)/]/y - (1 - y2 1/2

(8)

The variable N at completion of roll-up (7=1) is an unknown constant

times (r/b)2 . Thus, when fitting the solution Eq. (7) to the inviscid



Eq. (8), the coefficient of N in the exponent must be solved for as well

as the coefficients A 2. Since the resulting set of algebraic equations

is nonlinear, the procedure for solving for the unknown coefficients is

necessarily iterative. An example of the solution Eq. (7) for elliptic

loading is

YO 2

+ [7.4890 10 r/b 2  5.9912 10 r/b

+ [-15.1114 (10 r/b)2 + 24.1782 (10 r/b 4  6.4475 10 r/b)6

[22.6172 (10 r/b 2  54.2813 (10 r/b)4  28.9500 (10 r/b 6

3 T 2 7 7 7

3.860 0 rb) ] + [ -18.2540 10 r/b + 58.4129 10 r/b4

46.7302 10 r/b 6 12.4614 10 /b 8 - 0.9969 10 r/b 10

T2 ( r T T

+ [7.4438 (10 r/b 2  29.7751 (10 r/b 4 + 31.7601 10 r/b 6

12.7035 (10 r/b 8 + 2.0326 10 r/b10 0.1084 (10 r/b 12 ]

(9)
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This equation fits the inviscid solution fairly well, as shown in Fig. 1,

except for the viscous core region. That the actual experimental profile

corresponds to the inviscid Betz solution (except for the viscous core)

has been shown to be true by Rossow5

A previous solution for a constant viscosity, non-potential vortex

was obtained by Kirde . He obtained a solution involving confluent

hypergeometric functions for which the initial tangential velocity varies

as r-1/2 , as does the inviscid Betz solution for small radius for elliptic

loading. However, Kirde's solution is not valid for large radius as the

1/2
circulation in his initial vortex varies as r for large r rather than

approaching a constant value as does the solution Eq. (9).

The tangential velocity profiles in the vortex for various values of

time following roll-up (AT = T - 1) are shown in Fig. 2. For large values

of time AT, the profile approaches the Lamb solution. The maximum tangential

speed as a function of time (or downstream distance) is shown in Fig. 3,

along with experimental data from water channel, wind tunnel, and flight

tests. For low Reynolds number, the distance data has been modified by

a function of Reynolds number, as described in Ref. 7. Although the

constant viscosity assumption results in a profile that does not match

experiment far downstream, still the maximum velocity curve seems to match

the data very well, showing both the near field plateau and the similarity

decay region far downstream. Thus, although nonequilibrium turbulence may

have a hand in shaping the plateau region, it has been shown here that the

existence of the plateau can be attributed at least primarily to the

adjustment of the vortex profile from the inviscid to the viscous similar

solution.

Solutions for constant eddy viscosity were also obtained for two other

span loadings. The circulation profile for triangular loading, for which
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Fig. 2. Tangential speed profiles as a function of time, elliptic loading.
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Fig. 3. Maximum tangential speed vs. downstream distance, elliptic loading.
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the inviscid solution is given by

y = 4 r/b, r/b < 0.25 (10)

is shown in Fig. 4. The solution of Eq. (2) in this case is

-16(10 r/b) 2 /T + r/b) 2  2.4317 5.2262
y= 1 + e -1 + 1.6(10 r/b) 1 2 3

6.0462 4.16664 - 1.40244 0.42408 + (16)2(10 4  2.6131

4 5 6 + T7 2 T

+ 6.0462 6.24996 + 2.80488 1.0602 + (1 3 (10 r/b) 6  10077

5 6 7 T T 6

2.08332 1.40244 0.7068 4 (0 r/b) 0.17361
+ 8 + + (1.6) (10 r /b)7 8 9 8

0.23374 0.17671 + 5 10 0.011687 0.01767 I
+ + (1.6) (10 r/b) +9 10 10 11

+ (1.6) 6(10 r/b)12 120.0005891 (11)

The velocity profiles corresponding to Eq. (11) are shown in Fig. 5. For

a span loading such that

S - ( 2y/ 3 (12)
Y = [1 - (2y/b) ] , (12)



1.20

INITIAL CIRCULATION PROFILE
CONSTANT EDDY VISCOSITY

1.00- TRIANGULAR LOADING

,>0.80

0.60

- INVISCID, EQ' N. 10

0 SOLUTION, EQ'N. 11

0 0.40 
0

0.20

0.00 0 I I I I
0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

VORTEX RADIUS, r/b

Fig. 4. Initial circulation profile, triangular loading.
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Fig. 5. Tangential speed profiles as a function of time, triangular loading.
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-1.6(10 r/b)2/ 2 0.58294 -0.2961
y + Te 1 + 1.6(10 r/b) 2 3

1.7457 2.90808 + 2.33412 0.8496 + (1.6)2(10 rb)4  0.14805

4 5 6 7 4

1.7457 4.36212 4.66824 2.124 + (1.6) r/b)6 0.29095
-+ 6 T 1 + (1.6) (10 [/b)
5 6 7 8-1 6

1.45404 + 2.33412 1.416 + (1.6)4 8 [0.12117 0.38902
- 7 8 9 + (1.6(10 r/b) 8 9

3.54 + (16)10 10 0.019451 0.0354
+ 10 + (1.6) (1 rib) 0 11

+ (1.6)6(10 r/b) 1 2  12 (13)

The circulation and velocity profiles for this case are depicted in

Figs. 6 and 7, respectively.

The effect of span loading on the initial maximum tangential velocity

level and duration of the plateau is shown in Fig. 8. The triangular

loading results in a maximum tangential speed immediately after roll-up

which is less than half- that for elliptic loading. This result has also

been shown experimentally . Thus, the hazard to trailing aircraft would

be reduced for generating aircraft which exhibit this type of span loading.

Far downstream, the solutions merge and the hazard far downstream, which

is less than in the plateau, becomes independent of span loading.
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Fig. 6. Initial circulation profile, intermediate loading.
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Fig. 8. Maximum tangential speed vs. downstream distance, loading comparison.
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3. VORTEX DECAY - VARIABLE EDDY VISCOSITY

As in Ref. 7, in order to simulate the variation of turbulent

shear stress with vortex radius, the eddy viscosity is approximated,

using the mixing length concept,as

VT = a2 r21 r r (-) (14)

With this eddy viscosity model and changing variables from t, r to

2 2
7 t/t , and N = r /4 a yo t, Eq. (3) of Ref. 7 becomes

S_ 2~

T = 4N - + /2 N + N . (15)

Equation (15) was solved using a Crank-Nicholson finite difference

scheme. The velocity profiles for a vortex trailing from an elliptically

loaded wing for various times following roll-up are shown in Fig. 9.

Figure 10 illustrates the maximum tangential speed in the vortex as a

function of time or downstream distance. Because of the fact that the

initial profile [Eq. (8)] was completely inviscid in this case, the

plateau does not appear, and the initial decay in the vortex is approxi-

mately X 1/3 , substantiating C. E. Brown's theory8 for elliptic span

load profiles. Far downstream, however, the effect of span load gradually

disappears, and the maximum tangential speed eventually decays as AX-1/2

as shown.

Also shown in Fig. 10 are the results of a calculation in which the

initial inviscid profile was modified to incorporate solid body rotation
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Fig. 9. Tangential speed profiles as a function of time, elliptic loading, variable eddy
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Fig. 10. Maximum tangential speed vs. downstream distance, elliptic loading, variable eddy
viscosity.
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in the core (illustrated in Fig. 11). For this example, the core radius

chosen is quite small so the extent of the plateau is short. The end of

the plateau region is illustrated by the dotted line in Fig. 10. Experi-

mental data for approximately elliptic span loads (Fig. 3) show relatively

larger core sizes, a longer plateau, and a very much shorter region in

-1/3
which the maximum speed varies as AX /3

Velocity profiles for a triangular span loading [Eq. (10)] are

illustrated for various distances downstream in Fig. 12. The inviscid

Betz solution for this case results in a tangential speed which is constant

from the center of the vortex out to one-fourth the span. Viscosity and

turbulent shear quickly round the corners of the initial profile, but the

maximum tangential speed stays nearly constant out to AT = 0.5, as shown

-1/2in Fig. 13 by the extensive plateau. Similarity and the AX /2 decay

follow the plateau very quickly, in contrast to Fig. 10 and in harmony

with the data of Ref. 1.

Figures 14 and 15 exhibit the core radius and circulation values as

functions of downstream distance for the three calculated cases. The

existence and relative extent of the plateau is also clearly shown by

the elliptic viscous core and triangular loading curves for core radius

in Fig. 14. The core radius for the inviscid elliptic case initially

0.6
grows as X06, which is slightly different from Brown's expectation of

AX2/3 . The difference is probably due to the fact that the profile shape

continually changes and therefore does not satisfy.the criterion of

1/2similarity. Far downstream the radius grows as AX / . The difference

in core radius circulation between elliptic and triangular span loading

as evidenced in Fig. 15 is striking. The circulation ratio, F /F , for

the elliptic case would increase in the plateau region with increase in
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Fig. 13. Maximum tangential speed vs. downstream distance, triangular loading, variable

eddy viscosity.
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Fig. 15. Core radius circulation vs. downstream distance, loading comparison, variable eddy
viscosity.
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initial core size, but would usually be less than the far downstream

value of 0.41 which results from the turbulent eddy viscosity model

used here. The effect of the span loading in the near field and of

variable eddy viscosity in the far field is to keep the value of core

radius circulation far below that predicted by the Lamb solution for

a potential vortex (FI/ o = 0.715). Therefore, previous reports9 of

puzzlingly low values of circulation ratio are easily explained.

4. CONCLUSIONS

The existence of a plateau region in which the trailing vortices

exhibit a very slow decay of maximum tangential speed has been verified

by the use of both constant and variable eddy viscosity models. While

the shape of the plateau is probably influenced by the effects of axial

flow and nonequilibrium turbulence, it has been shown that the existence

of the plateau can be explained by the presence of the viscous core and

by the necessity for the initial, nearly inviscid tangential velocity

profile to undergo transformation to a turbulent similarity profile far

downstream.

Variation in span loading is shown to affect the initial maximum

tangential speed in the vortex as well as the duration of the plateau.

Triangular span loading would reduce the hazard to trailing aircraft from

that due to more conventional loading since the initial tangential speed

is much lower. This can be explained by the fact that the inviscid profile

for triangular loading exhibits a finite tangential speed at the vortex

centerline and an extensive plateau results even without an initial

solid body core. Elliptic span loading, however, results in an inviscid



26

profile having an infinite speed at the centerline of the vortex, and

a viscous core is thus necessary for the existence of a plateau.
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APPENDIX

In order to match the variable eddy viscosity profiles with experiment,

it will be necessary to adjust coefficients used in the calculation of

initial profiles. For elliptic loading, the relationship2 between

circulation y and independent variable N is

N = K1- 1 n 12 (Al)

where

r/b = N (A2)

Vb/o = (V7rT)3 /1trW (A3)

o o 1 (A4)

Ub b 8K (A)

the initial core size will also need to be adjusted. For triangular loading

~2
N = K2 y (r/b < 0.25) (A5)

r/b = (1/4 22) V-N (A6)

Vb/ro = (2 'r/ ) Y/^"N (A7)

P x
a bo = / 3 2K2  (A8)

the values of K1 and K2 used in the examples were 755 and 3.4346 respectively.


