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SECTION I

INTRODUCTION

The understanding of the failure mechanism of a structural material
is basic to design. Static design techniques are assumed to be adequate
for structural application; which includes advanced fiber composites. The
failure surface concept assumes failure occurs when the Jload which
produces combined stresses falls outside the defined envelope. The stress
envelope is produced from simple static test results. The prediction of
fatigue failure using a static stress envelope is questionable. Actual
failure is established by test of structural components.

The typical structural failure will be induced from stress fields
created by discontinuities. Most structural components are subjected to
cyclic loading during service. Fatigue cracks, originating from flaws
within the composite, are propagatad to fracture under cyclic loading
conditions. The fatigue or cyclic loading best fits structural design.

Three approaches used in fatigue analysis include: (1) cumulative

damage, (2) finite time to crack nuclestion, and (3) presence of internal

flaws (Fracture Mechanics). Fracture mechanics assumes all materials contain

internal flaws with unspecified geometry and distribution. The geometry
and distribution of these internal flaws must be established by NDT. Flaws
grow in length when the lammate is subjected to load, static or cyclic,
until instability occurs. At this point, fast crack propagation occurs and

the end result is fracture.



i er e A v < o

LT L S

Since the geometry and distribution of internal flaws may not be
determined accurately, a flaw of known geometry, is placed in the test
specimen to establish failure criteria. Cracks are used as the flaw
and the critical strestc intensity factor (Kc) determined by experiment.

The stress concentration at the tip of the cracks is not defined and

makes reproducibility difficult. Slits with known stress concentrations

at the tips are used as standards. A simple flaw geometry would be a
circular hole in the center of the test specimen. The circular hole

allows calculation of the stress concentration distribution and establishes

a basis for a generalized failure theory. The stress concentration
distribution arcund the periphery of the hole can be established for

static and cyclic loading conditions and varies with composite system,

fiber orientation, specimen geometry, diameter of hole, etc. The maximum
stress concentration should be the point of crack initiation when considering
isotropic materials. The crack will propagate in the field of the smallest
strain energy intensity gradient. This would suggest that the crack can propa-
gate in more than one direction (also form more than one crack). Crack
instability, however, does not necessarily mean structural failure.

A generalized failure theory should consider as many design variables
as possible. These variables would include composite system, fiber
orientation (laminate mechanical propurties), type of loading, loading
conditions (static or cyclic), strain rate or loading frequency, specimen
geometry, and flaw size.

Many investigators have outlined failure models for advanced fiber
composites considering a specific composite system, a specific loading

condition, or extension of metallic (isotropic) failure theories.

A
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An outline of this research 1is discussed.

1. Theory of Failure

Microscopic fracture analysis has been the subject of a large number
of publications since the introduction of the classical theory by Griff  * ™).
Irwin (2), Cherepanoe (3), and Kostrov and ¥!lkitin (4) improved thro:
their analyses, the understanding of the stress state in the vicinity of the
crack. Dynamic crack propagation and related phenomena have been reported
by such researchers as Goldshtein (5), Cotterell (6), and Daniel (7).

The microscopic stress state in a fibrous composite has been studied by
Koufopoulos and Theocaris (8), Leissa et al (9), and MacLaughlin (10).

Research, attempting to establish bulk composite strength, has led to the
publication of various statistical strength models. Two of these are
due to Scop (11) and Friedman (12). Halpin (13) presented an empirical
model relating failure loads and time effects statistically.

Macroscopic failure theories have been developed to apply to a given
system or application. In general, the theories of failure for isotropic
materials have been extended to include anisotropic materials. Most research
treats the composite as quasi-homogeneous or as a two-phase system (fiber
and matrix). Arbitrary parameters are included in the -aalyses to produce
a failure surface. The Maximum Distortional Energy Theory (Von Mises)
is the basis of most analyses. Hill (14) extended the Von Mises theory
to include anisotropic materials. Hill produced a failure surface. Azzi
and Tsal (15) modified the Hill's criterion to better fit test data. Chamis
(16) makes several assumptions and modiffes the Von Mises theory to include

both tensile and compressive loading condition. Tsai and Wu (17) considers

tensile and compressive loadingand assumes failure will exist in a stress space.

PR
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This produces a modified failure surface. These models are essentially
generalizations of the Von Mises criterion adapted to orthotropic plates
in plane stress. The models do not specify the mode of failure and does
not distinguish between interfacial bond failure, delamination (fracture

within the matrix), and simple fiber fracture.

2. Fracture Mechanics Applied to Composites

Fracturc mechanics was developed to fill the need within 1sotropic
pressure vessels. Wu (18) found that under specific conditions isotropic
fracture mechanics can be applied to anisotropic materials. These conditions
include: (1) definite orientation of the flaw with respect to the principal
asix, (2) stress intensity factors consistant with isotropic materials,
and (3) critical crack orientation coincident with the elastic symmetry.

These conditions satisfy the unidirectional fiber orientation only.
Unfortunately, conventional isotropci fracture mechan’ -s do not apply in
the majority of anisotropic structural applications.

Tetelman (19) outlined the potential fracture mechanisms within fiber
crmposites and related the type of failure to its constituent characteristics.
The fiber, matrix, and interfacial behavior under load generate the fracture
condition. Zweben (2) presents an analysis of composite tensile strength.
Fibers demonstrate strength and length effects leading to at least three modes
of composite failure. These modes are: (1) =crack propagation in the matrix
with few fiber breaks, (2) fiber break propagation, and (3) cumulative damage.

Waddoups, Eisenmann, and Kaminski (21) apply classical fracture mechanics
to laminated composites. A circular hole with flaws transverse to the princiral
axis ecstablishes the point of maximum stress concentration and defines the

crack propagation direction. This model ingures fulfillment of the specific




conditions required to utilize isotropic fracture mechanics. The
model simplifies the analytical approach but is questionable for real
application.

Sih et al. (22) investigated the application of fraciure mechanics
to fiber composite systems using crack models. Existing theory agrees
well with glass fiber composite data but graphite fiber compcsites
require a more elaborate model.

Phillips (23) investigated the fracture mechanics of carbon fiber
composites. Crack models produced stress intensity factors which agreed
well with experimental data. Results differed using natural cracks and

"ag-cut" cracks.

3. Fatigue

Fatigi 2 failure in metals has been investigated successfully by assuming
that a portion of the total strain encrgy is plastic even at stresses
below the proportional limit. Fatigue failure occurs following the application
of cyclic loads over a period of time. Saklind (24) reviewed the literature
covering fatigue of composites and existing experimental data. Composites
are compared to metal fatigue criteria and composites differ in low cycle
fatigue. In fact, compsites demonstrate a high cycle fatigue strength
greater than predicted from metals criteria. Low cycle fatizjue is predicted
as a critical design factor for composites.

Holmes and Wright (25) tested several angle-ply graphite-epoxy specimens
in fatigue and concluded that the observed secondary failure. Primary
failure was ty tension at the reduced cross-section.

Severdl strength criteria have been postulated for composit s. In most
cases these criteria are assumed to be valid for static as well as dynamic

loading. Many investigators have modified the Von Migses yield criterion for
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orthotropic materials. Sendeckyj (26) has reviewed these and other strength
criteria for composites.

Hashin and Rotem (27) present a simple failure criterion involving a fiber
failure mode and a matrix failure mode. The failure criterion agrees well

with glass fiber composite fatigue data.




SECTION II

TECHNICAL APPROACH

The investigation of the fatigue strength of multilayer advanced
fiber composites should consider all possible variables. These variables
include composite system, fiber orientation, specimen geometry, hole
size, type of loading, fatigue loading conditions and loading frequcncy.
To observe the effect of individual variables, as many of the remaining
parameters must be held constant as possible. In this manner, the primary
parameters are defined and incorporated into a generalized failure theory.

The composite system considered was the graphite-epoxy (Thornel 300/
5208) system. Other systems should be investigated to establish primary
failure modes.

Two test specimen coniigurations were used in the research. The
static specimen was 6.5-inch x l-inch and eight (8) plies in thickness.
These specimens contained no circular holes. The fatigue specimen was of
similar geometry containing a 3/16-inch diameter hole in the center position.
Aluminum grips were bonded on the ends of the specimens. These specimens
are shown in Figure 1.

All specimens contained a general fiber orientation of [O/jﬁ/O]s.
The angle 8 is measured between the longitudinal axis and the oriented
fibers. The fiber orientations considered were:

[0]8 unidirectional
[o/;+_15/01s
[0/i_30/0]s
[0/145/0]s
[Oﬁt60/0]s
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Figure 1. Composite Test Specimen Configuration
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The specimen configuration and the hole size are fixed with varying
fiber orientations.

The static test specimens (no hole) are required to establish the
elastic constants necessary for analysis. The fatigue specimens (with hole)
are used to investigate the fatigue strength and failure modes. A
sinusoidal loading function of basically tension-zero-tension was applied
axially to the specimens. A small tensile load was applied at the minimum
stress to insure against compressive loads. The maximum stresses used were
70%, 62.5%, and 557 of the ultimate tensile stress of the static specimen.
Two loading frequencies, 3 and 25 Hertz, were investigated to examine low-
frequency and high-frequency tensile fatigue effects.

The static and fatigue test specimens were modeled and analyzed.
Analytical characterization of the following anisotropic plates were
considered. Included were:

static - no hole
dynamic - no hole

static - hole infinite plate
dynamic - hole infinite plate

static - hole finite plate
dynamic - hole finite plate

These analytical models consider all possibilities of tensile loading

for the static and fatigue test specimens.




SECTION III

ANALYTICAL CHARACTERIZATION

The analytical characterization of the load and deformation distributions
within a multilayer fiber composite plate was examined for static and
dynamic loading conditions. The generalized anisotropic plate analysis
for static loading conditions without a flaw (circular hole) was
developed to define the field equations and boundary conditions necessary
for further analytical development. The analysis considers the linearly
exact relations resulting in the equilibrium equations. The constitutive
equations are outlined for a laminated medium. The field equations and
boundary conditions are based on the Kirchhoff hypothesis. The constitutive
equation coefficients are defined for the composite system [O[tQ/O]s.

This composite system is basic to this research. These equations are basic
for the static loading condition.

The field equations and boundary conditions were derived for a
dynami~ally loaded anisotropic plate with and without a circular hole. The
hole in an infinite plate or a hole in a finite plate becomes a matter of
definition and application of the appropriate boundary conditions. All
systems, whether static or dynamic loading or with or without circular
hole, shouid relate to the generalized anisotropic plate analysis when the
prover boundary conditions are used.

The generalized anigsotropic plate analysis defines the field equations
and boundary conditions for the static loaded anisotropic plate (no hole).
The homogeneous set of equations was analyzed using the finite difference
method. The dynamic stress field in the composite considered one-~dimensional
loading.

10
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A finite difference method was used in an effort to solve the field
equations for the static and dynamic models containing a circular hole.
The boundary conditions around the periphery of the hole were difficult

to specify

1. Nomenclature

b * *
11° P12
C

b.,, = elastic constants

22

11° ClZ’ C66 - elastic constants
h -~ thickness

k k2, k3 - constant

1°
L - length

M - stress moment

N - applied moment

P - applied tractions

R - radius of hole

t - time

T - stress resultant

u,v ~ displacements in x and y direction
X,yY,2 -~ coordinates

a,B -~ constants

exx’ Eyy - in-plane strains
w- frequency

p- mass density

o- applied stress

8,% - angles

v- Poisson's ratio

11
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2. Generalized Anisotropic Plate Analysis
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2.1 Elastic Constants

The generalized anisotropic plate analysis is generated for a plate
of thickness "h" and the reference surface is at the mid plane. The
linearly exact relations are defined in terms of stress resultants [28].
The stress resultants are defined in terms of stresses. The equilibrium and
compatibility relations are defined at the reference surface. Hooke's law
is written for an orthotropic material. The rotational transformation law
for elastic constants has been reported by Tsai [29].

The constitutive equations are congidered for a layered medium. The
field equations and boundary conditions for off angle layers symmetrically
layed-up are identified from the analysis. The field equations can be
derived for the static as well as the dynamic case.

The equations for the determination of the elastic constants by axial
test can now be considered. For purposes of determining the elastic con-
stants, bll*’ b12*’ b22*’ two types of tensile specimens are required.

The first will have all fibers longitudinal to the load (0°) and the other

will have the fibers transverse to the load (90°). A sketch of the coupon

with dimensions and coordinate axis is shown as follows.

z P T
z yz
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The strain expressions which satisfy the field equations and boundary

conditions are given as follows.

. 2
xX 2 b
(€11C997645)
(2-1)
e = “12__p
Yo o(,.c,-c.h P
11°227%12
For the 0° direction
b *
e 22 p°
XX * * * 8bh
(byy by = byy)
(2-2)
_b *
. [ ] - 12 RO
yy * % % Bbh
(b)) byy = by5)
For the 90° direction
*
co__ 'u p?°
XX L *_ 8bh
(b,, b,, = b,.)
11 P22 ~ P12
L " (2-3)
. 90 _ P12 P
yy o 8bh
(b7 Byy = byy)

Solving for elastic coustants, the result becomes the following.

90
Exx
b * 90
11 —E 3
€ ° 90 1 F €..90 7
8bh [ ( o)( -7 T
P
P
€ -]
XX
b2; = P (2-4)
Ex; exx90 1 € ° 52190 2
8bh [( o)( 90)-Z(po+ pgo)]
13
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2.2 Governing Equations for a Laminate with Hole and Symmetrically Loaded

The field equations and boundary conditions are outlined for a dynamically
loaded 8-ply symmetrically layed-up composite plate. The lay-up for the
half thickness is [0/+46/0]. A circular hole of radius "R" is assumed to
exist in the plate and a uniaxial membrane excitation is imposed on cne
end of the piate. Thermal effects, bending, body forces and surface

tractions are neglected. A diagram of the plate is shown as follows.

BETELEC
-

R
y L
b

!

o = o(t)

The field equations, assuming ''equivalent homogeniety' through the thickness,

become:2 ) ) )
‘n i;% * Cee 3;% + (Cpp ¥ Cop) %E%;‘ = 8oh ?:%
2 2 2 2 (2-2)
(€15 * Cep) ?&%y + Cesz—x% *Co %;‘zi = 8oh 3':2"
14
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The hnundary conditions are:

(1) Stress conditions at edges

lor

Tyy(x’-t 2° t) =0 Tl‘t(R’ ¢, t) =0
T (x+l3- t) = 0 T, (R, ¢, t) =0
Xy RO ré s P

L
Txy (i a0 y, t) =0

L
T, G5 ¥ t) = 8ho(t)

(2) The stress boundary conditions in terms of displacements are:

du v
[C + C = (
2 3y
12 5% 22 3y (x,+ g’ t)
du
[— +-——] =0
3y ax (x, +%’ t)
ETE JRL
(__ 2’ y9 t)
[C., — + A = 8ho(t)
1 L
11 x 12 y (-t'f’ v,t)

2
[(C]1 cos“¢ + C12

(C sin $ + C12

2 2 du
[C66(cos ¢ sin"9) 3y - (C11 12

2 2., 09
C66(cos ¢ = sin"¢) 3% + (C

) cosd sin¢-—— +

(2-6)

(2-7)

2 u Ju
sin“¢) + (zc66cos¢ sin¢ ) 3y +

cos ¢) + (2C cos¢ sin¢)—-ﬂ
(R, ¢,t)

) cos@sin&——]
22712 Y (R,6,1)

3 S M s 27 ¢ e )

The boundary conditions consider a free outside boundary and the expressions

are the same with or without a c¢ircular hole.
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3, Dynamic Plate Model -~ No Hole

The homogeneous set of equation (2-5) was expressed in finite difference
form and was solved by iteration. The finite difference form of equation

(2-5) is as follows:

011 ) 3 ;0 1) . cﬁ6(u2 - 2ug + uQ)
ax Ay
v, +v -V -V
6 10 12 8, .
+ (€5 * Cgg) ( 4bxby ) =0
u +u,,.-u,-u v, - 2v,, + v
6 10 12 7 3 0 1
(€1 + Cee)  Zaxdy ) + Cge 2 )
vV, - 2v_ + v
2 0 4y
+Cpy ) = 0 (3-1)

dy
where the general fourth order finite difference representation molecule used

for internal points is as follows.

Calculation of displacements was considered for the upper-right (+,+)

quadrant of the following coupon diagram.




o~

The boundary conditions used were:

(1)

(2)

(3

(4)

(5)

u displacements are symmetric across x axis and antisymmetric

across y axis.

v displacements arc symmetric across y axis and antisymmetric across
x axis.

u displacements on the y centerline are zero; v displacements on the
x centerline and at x = L/2 are zero.

applied displacement at x = L/2 is u = u, + k sin(ut +¢1)

where u, is initial displacement, u, = 0,01000 inches, kl is a
suitable constant (0.00050 inches), 1is the circular forcing
frequency, t is time, and ¢1 is a phase angle (0 radians).

the free boundary of the quadrant was taken as

v = [k2 + k, sin(ut + ¢2)]eax -8t (3-2)

3
where kz, k3, as8 are constants and %9 is a phase angle (0 radians).
This boundary condition was calculated to match the magnitude of
displacements observed at the y centerline of the static tensile

tests. Displacement u on the free boundary was determined using

euation 2-7. The equation is:

Ju v

X 3;] Lb ., 0
"2"9'2"9 t)
x \1/2
The displacements were assumed to vary as f7§ from a value of

zero at x = 0 to a maximum given by the boundary conditions evaluated

at x = L/2. For u displacements, the following equation was used.

L

- o5 ~ B

3 sin(wt + ¢2) (e** B-e 2 ) +
2x,1/2

uy + kl sinut + ¢( L)

[~
|
e

+
(k2 k
(3-3)
Values of the constauts used were:

a = -1.5000

g = 6.000

1?7



L
'

k, = 1.000

2

k3 = 0,5000
(6) the v displacements along the y centerline were taken as a
linear function of "y" and the u displacements werc assumed
to be linear functions of "x" along the x centerline. Along
the x centerline, the u displacements were
2x
u = [uo + kl sin(wt + ¢l)]
Along the y centerline, v displacements were:

- -8
v Y [k2 + k., sin(wt + ¢2)] e

3
The homogeneous set of field equations correspondin, .o the static
case was solved by advancing time to achieve required boundary displacements
and then iterating for the displacement field. Calculatirns were made

at the nodes of a 4x4 grid in the upper right quadrant (25 points).
Convergence giving three significant figures occurred in 20 iteratioms.
Approximately 10 seconds of computer time was required per static field.
In order to solve the nonhomogeneous set of field equations (2-5)
corresponding to time dependency, the inertia terms of the right hand

side of the equations were taken as:
2

du
8oh 52 fl(t) fl(x’y)
t .
2 (3"‘4)
v,
8oh atz fz(t) fz(x.y)
azv '2v
By solving the first of the field equations for 33 and g—i- and sub-
X y

stituting into the second equation, the following results.,

2 2 4
[c66+(c12+c)— 4 C..9 u

66) ~ C11%2) 54, st
2,2 C,, 3y
x C11 C66 ax 3y 11
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v -

cC_+¢C c 2
12 66 66 )
) | ——) =2 (F, () F (x,y)) +
11 Ces C1p ¥ G > 171 (3-5)
C 2 2@F,(t)F,(x,y)
22 3 a°v2 2
=) 52 (F (OF, (x,y)) - 1=0
Cip * Ceg M2 1071 2 dy
azu qu
By solving the second equation for — and J—EQnd substituting into
ax Iy
the first, the following results.
2 2 _
by Cee T ©p* %6 ~ 2 | ot
axé 011066 axzayz (3-6)
Cpy 4 (Clz + C66) y 11 )a_z (Fy(0)F (x,y)
‘11 9" C11%6  C12 * Ce6
C 2
66 3 )
(=) —, (F,(t) F (x,¥) = 55 F,(t)F, (x,y)] = O
C12 + C66 ayz 2 2 Ixdy 1 1
The following substitutions were made into equations 3-5 and 3-6.
- ‘ s al o _ 21y
Fl(t) Fl(x,y) ksphm cos(mnt) sin(L x) cos( b b x)
n (3-7)
Fz(t) Fz(x,y) = ksohm2 coscnnt) sin(E% cos(f x)

n
The natural frequency of the coupon is Wy and ks is equal to 80.00.
Orthotropic plate velocity was used by Reuter [30] to determine displacement
fields.

Time dependent boundary conditions of the forc’ng function were applied.
A time increment is Ax = Eﬁ-- lQ!QZEXSLE . Addition of the inertia

terms required further iteration to establish dispalcements in the quadrant.

Strain energy densities were calculated for the one quadrant.
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The strain energy density fields for the static loading (t=0) of
the [0/i£/0}s graphite-epoxy composite systems are shown in Figures 2-6.
The graphite-epoxy specimens deform approximately 10,000 u—inch (at x =
2 inch) prior to fracture. The ox,oy. and cxy stress fields were also
determined but not included in this report.

The dynamic strain energy density fields for the graphite-epoxy
composite systems were determined for a loading frequency of 50 Hertz,
considering time steps of 0.005, 0.010, and 0.015 seconds. The static

displacement (t=0) of 10,000u-inch at x = 2-inch was deformed in the

following manner. , =

10,500
~ 10,000
(9]
[ =]
-l
1
=
% 9,500

2 [} — 1
u. —— [ ] -
g 0 0.005 0.01 0.015
g
3 time (second)
L] Time Step (seconds) Displacement (u inch)
Q.
a2 0.005 10,500
o 0.010 10,000
0.015 9,500

The strain energy density fields for the three (3) time steps are shown in
Figures 7-21. The change in the strain energy density contours with time
notes the microscopic variance which relates to fatigue characteristics.

A failure criterion was proposed correlating the strain energy release
rate (G) and the strain energy density. It is assumed that the strain energy

release rate is proportional to the strain energy density,
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4, Static and Dynamic Plate Model With Hole

The field equations (2-5) were converted into finite difference form.
There are seven (7) groups of equations that must be considered to solve the
problem. They are:

(1) general field equations

(2) right boundary conditions

(3) top boundary conditions

(4) bottom boundary conditions

(5) left boundary conditions

(6) circular hole boundary conditions

(7) points have close relation with circular boundary
For the explicit method, (%%)2 is required to be gmall enough in order to
generate a finite difference solution. Time steps of 2:(10“5 seconds were
required to achieve a reasonable solution.

The grid pattern for the upper right quadrant of the plate is shown
in Figure 22. The small grid around the hole was for best definition of the
circular boundary conditions. The complication of defining the grid points
at the boundary made it difficult to define the strain energy density field
or stress concentrations around the hole.

The development of the analysis proved frustrating as the program
generated unreasonable data for the gird pattern and boundary conditionms
used. Another approach is being investigated to minimize the problems

generated by the finite difference method.
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SECTION 1V

EXPERIMENTAL DATA

The graphite-epoxy system, with general fiber orientation [0/19/0]8,
was subjected to tensile static fatigue. The test specimen geometries
were shown in Figure 1. The static specimens were strain gaged with EA-09-
062TT~120 gages. Thes. gages provide the monitoring of both longitudinal
and transverse deformations. The strain gaged specimens were placed in
an Instron test machine and deformed at 0.02 inch/minute. The constant
crosshead movement provides determination and comparison of elastic behavior.
The graphite-epoxy fatigue specimens, with 3/16-inch diameter hole,
were subjected to tensile cyclic loading. A Gilmore Universal Testing
System was used to apply a sinusoldal load function to the specimens under
constant load conditions. The tensile fatigue tests were tension (Smax)
- 0 - tension (Smax)' The minimum tensile stress (Smin) ~7as not zero but
slightly in tensicn to avoid microbuckling from compressive loading.
The value of R was equal to 0.005 in all tests (R = Smin/smax)’ The fatigue
specimens were subjected to 3 loading conditions (55%,62.5%, and 70% of

static ultimate tensile stress) and 2 frequencies (3 and 25 Hertz). The

loading conditions were based on static specimen geometry. The 3/16-inch

diameter holes were not considered when calculating the cross-sectional areas.

The specimens were allowed to be tested until failure occured or 106 cycles
were attained. The tensile fatigue data provided an insight to the failure
mechanism.

The test specimens, tensile static and fatigue, were examined following

fracture in order to note the failure surfaces.
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1. Graphite-Epoxy Composite

The tensile static and dynamic test specimens were supplied by the
Air Force Flight Dynamics Laboratory. Thornel 300 graphite yarn was the
fiber combined with 5208 epoxy resin. The properties of Thornell 30 [31]

are contained in Table 1. The Thornel 300/5208 composite flat plate

Table 1. Properties of Thornel 300 Graphite Yarn

PYroperty Unit Value
tensile strength 1b/1n2 360,000
tensile modulus 1b/1n° 34 x 10°
density gl/ce 1.76
elongation at break % 1

specimens were autoclave cured (Whittacker Corp. specification) and post
cured for 4 hours at 400°F. The individual constituents within the laminates

are summarized in Table 2.

Table 2. Content of Thornel 300/5208 Laminates

orfenoer sz::t:i“ v/0 Fiber  v/0 Resin  v/0 Void
[0/+0/0] _ A 68.3 30.4 1.3
[0/415/0] B 65.1 33.8 1.1
[0/+30/0] c 66.8 32.1 1.1
[0/+45/0] D 66.9 31.5 1.6
[0/1_60/0]s E 65.2 33.3 1.5

The laminates vary from 65.1 to 68.3 in fiber volume percent.
This variation is small so the test results of the laminates can be
compared.

The fabrication of theThornel 300/5208 laminates was of high quality;

which is basic to a test program.
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2, Static Test Results
Two each of the [0]8 (A) and [0/_-:;15/0]s (B) static test specimens

were subjected to uniaxial tensile loading. Strain gages were placed on

each flat surface of the test specimen. Differentials in strain guge
readings would indicated bending in the specimen. The average of the two
gages on each specimen was used to produce the stress-strain curve.
The stress-strain relationships for these fiber orientations are shown in
Figures 23 and 24.

Two each of the [0/+30/0]  (C), [0/+45/0]_ (D), and [0/+60/0]
(E) static test specimens were subjected to uniaxial tensile loading.
One strain gage was placed on the flat surface of each test specimcn for
monitoring longitudinal and transverse deformations. The stress-strain
relationships for these fiber orientations are shown in Figures 25, 26 and
27.

The mechanical properties of the [0/19/0]s Thornel 300/5208 composite

specimens are summarized in Table 3. The data recorded are

Table 3. Mechanical Properties of Thornel 300/5208 Composite Specimens

Property (014 [0/115/0]s [0[130/0]8 [0/+45/0] [0/160/0]S
A B C D E

Ftu(pSi) 227,000 155,480 139,910 116,790 100,360

etu(p-in/in) 9830 7711 9610 8710 8540

E,(10% ps1) 21.9 19.3 15.4 12.5 11.8

v 0.29 0.64 0.98 0.65 0.27

FPz(psi) 96,500 82,000

the average of two specimens per fiber orientation.
The mechanical properties generatedwith the static test specimens

were used in tensile fatigue testing.

3. Tensile Fatigue Results

Tensile fatigue data were generated for the Thornel 300/5208 composites
using a sinusoidal loading function under constant load conditions.
Three loading conditions and two frequencies were used. The Smax used
wae 55%, 62.5%, and 70% of tensile ultimate stress determined by static

test and these static test specimens were used as control specimens.
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The applied stress considered the plate without a circular hole. The
maximum alternating stresses for the various geometries arce given in

Table 4. The siresses were obtained from no hole specimens and applied

to specimens with hole. The value of R was equal to 0.005. The specimens

were submitted to

Table 4. Maximum Alternating Stresses Used in Tensile Fatigue Testing (No Hole)

Property  [0/+0/0]_  [0/415/01_  [0/+30/0] [0/+45/0]_  [0/+60/0]
A B C D E

Ftu(psi) 227,000 155,480 139,910 116,790 100,360
Smax(psi)

70%F 157,000 108,000 96,500 82,000 68,000
62.52F 141,300 97,200 86,850 73,800 61,200
55%F 125,600 86,400 77,200 65,600 54,400

constant load conditions at 3 and 25 Hertz. The results of the tensile
fatigue testing are shown in Figures 28 through 32. The ultimate
tensile strength of the static specimen without holes is rated on the
plots. The test was completed when either failure occurred or 106 cycles
were obtained. Two (2) specimens were tested per condition. As a result,
no statistical evaluation of the data is possible. However, the limited
data do indicate trends.

The damage indicated by cyclic loading, as compared to static leading
is less for the D and E configurations. This relates directly to the
stress concentrations present at the periphery of the hole. The life (number
of cycles to fallure) was less for low-frequency fatigue specimens /3 Hertz)
than the high-frequency fatigue specimens (25 Hertz). All high-frequency

fatigue specimens attained 106 cycles with a Smax of SSZFtu. The low-frequency
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fatigue specimens all failed, even under the low Smax'
The damage mechanisms occurring within the conposites appear to be
related to frequency (time) and level of loading. However, the mechanisms

appear to be of similar type.

4, Test Specimen Failure

The tensile static and fatigue test specimens were observed during
test and following fracture to note mode of failure. Test specimen
notation was used for identification by AFFDL. Fractured static test
specimens are shown in Figures 33 through 35. The tensile fatigue
specimens are shown in Figures 36-45.

The static specimens reacrhed a maximum load or deformation and
fractured suddenly. The unidirectional specimens splintered while fibers
broke. The B specimens fractured along the +15° fiber orientation.

The specimens containing +30° and +45° plies fractured almost in a straight
line across the width. The specimen with +60° plies fractured near the grip at
the +60° angle.

The tensile fatigue specimens exhibited secondary as well as
primary modes of failure. Fiber breakage was observed in all tensile
fatigue tests. Separation of portions of the specimen from the grips
was noted in many cases. Delamination of portions of the surface
plies was observed in C,D, and E specimens. This is related to Poisson's
effect. Fiber breakage and delamination was observed on the edge of

all specimens. All o. these failure modes are considered secondary.

57



Tr——

Figure 33. Static Test Specimens:
(a) Static Specimen, (b) A-1-30, (c) B-1-11.

§
()
(b)
()

Figure 34. Static Test Specimens:
(a) c-1-17, (b) D-1-7, (c) E-1-34.
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Figure 35.

Static Test Specimens:
(a) Fatigue Specimen, (b) A-1-26 (with hole),
(c) B-1-2 (with hole).
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Figure 36. Tensile Fatigue Specimens A (25 Hertz);
(a) 70% Ftu’ (b) 62.5% Ftu’ (c) 55% Ftu'

()

(e)

Figure 37. Tensile Fatigue Specimens A (3 Hertz);
(a) 70% Ffu‘ (b) 62.5 Fey? (c) 55¢ Ftu'
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Figure 38. Tensile Fatigue Specimens B (25 Hertz);

(a) 70% Ftu’ (b) 62.5% Ffu, (c) 55% Feu

Figure 39, Tensile Fatigue Specimens B (3 Hertz);
(a) 70% Fy,, (b) 62.5% F, , (c) 55% F
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Figure 40. Tensile raligue Specimens C (25 Hertz);
(a) 70% Fy ., (b) 62.5% Fy . (c) 55% Fy .
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Figure 41, Tensile Fatig ¢« 'cormens C (3 Hertz);
tu’

(a) 70% F (b) 62.5" Ftu’ (c) 55% Ftu'




Figure 42. Tensile Fatigue Specimens D (25 Hertz);
(a) 70% Ftu’ (b) 62.5% Ftu’ (c) 55% rtu'
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Figure 43, Tensile Fatigue Specimens D (3 Hertz);
(a) 70% Fy . (b) 62.5% F

(c) 55% F
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Figure 44. Tensile Fatigue Specimens E (25 Hertz):
(a) 70% Ftu’ (b) 62.5% Ftu' (c) 55% Ft 2

u
| . &
()
(b)
(e)

Figure 45. Tensile Fatigue Specimens E (3 Hertz);
(a) 70% F» (b) 62.5% Fy , (c) 55% F,, .
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SECTION V

DISCUSSION

The analytical characterization of the load and deformation
distributions within a multilayer fiber composite plate, with and without
a circular hole, under both static and dynamic loading conditions was
initiated. The generalized anisotropic plate analysis for static
loading conditions without flaw (circular hole) was developed to derive
the field equations and boundary conditions necessary forfurther
analytical development. This generalized anisotropic plate analysis
has been reported in various forms in the technical literature.

The field equations derived were used in the analytical development
of the dynamic plate model (no hole). The field equations were expressed
in finite difference form. A homogeneous set of field equations corresponding
to the static case was solved by incrementing time to achieve required
boundary displacements and then iterating for the displacement field. The
strain energy density fields for both static and dynamic loadings of
a unidirectional graphite-epoxy were developed for several initial displacements.
The correlation of strain energy density with 1 strain energy release rate
(G) would be a basis for a theory of failure in . future study.

The generalized anisotropic plate analysis produced field equations
which were converted into finite difference form in order to develop
the static and dynamic plate model with a circular hole. Specification
of the boundary conditions at the circular hole was not properly modeled.
As a result, the strain energy density fields and stress concentrations
around the hole were not calcula.ced.

The Thornel 300/5208 static and tensile fatigue test specimens were

provided by the Air Force Flight Dynamics Laboratory. Sendeckyj, et al
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[32] stated that the tensile modulus of the unidirectional composite
was 23-25x10° psi. This was slightly higher than 21.9x10% psi. Also
noted were a shear modulus (G) of 0.77x106 psi and tensile modulus of
90° fiber oriented composite of 1.6x106 psi. The fiber orientations
containing +30° and +45° plies demonstrated tensile proportional limits.
The other static specimens demonstrate a stiffening effect rather than
a proportional limit.

The tensile fatigue data were generated for five fiber orientations,
three loading conditions, and two frequencies. The Smax used was 55%,
62.5%, and 70% of tensile ultimate stress determined by static test.
The applied stress considered the plate without a circular hole. For
all fiber orientations tested at 25 Hertz, the 55% Ftu specimen did not

fail at 106 cycles. For 70% Ftu’ the specimens failed after a few

thousand cycles. Testing at 3 Hertz produced lower fatigue lines. At

707% Ftu’ failure occurred after a few hundred cycles for all fiber orientatioms.

The 557 Ftu specimens failed between 200,000 to 300,000 cycles except
[O[tﬁSIO]S which failed around 450,000 cycles. The low frequency fatigue
specimens have lower lives than the high-frequency fatigue specimens.

The damage mechanisms occurring within the composites appear to be related
to frequency (time) and level of loading. The mechanisms appear to be of
a similar type.

The unidirectional (A) Thornel 300/5208 cowposites failed under
maximum strain conditions in static and tensile fatigue loadings.
Secondary effects included fiber breakage and pullout from the grips.

The degree of fragmentation was related to loading conditions and frequency.
The static specimen the least fragmentation, followed by low-cycle then
high-cycle fatigue specimens. Static specimen C failed by the +30° plies

fracturing causing the 0° plies to fail. The tensile fatigue specimens
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failed in a similar manner with the crack originating at the center hole.

Static specimen D failed cleanly across the width. Secondary failure effects

were noted in the tensile fatigue specimens. These included delamination

(due to Poissons effect), fiber breakage, and edge fiber delamination.

The crack was initiated at the center hole and propagated between the +45°

and the -45° plies longitudinally until fracture occurred. Static specimen E

failed in the +60° direction. The tensile fatigue specimens failed similar

to the D specimens with the same secondary effects and longitudinal delamination.
This research has outlined several variables which influence the

failure of graphite-epoxy composites. The data indicates trends not

specifics to establish a definite theory of failure.
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SECTION VI

CONCLUSIONS

The analytical characterization of the load and deformation distributions
within a multilayer fiber composite plate (witiiout hole) under both static
and dynamic loading conditions was accomplished using the finite difference
method.

Static and tensile fatigue testing of Thornel 300/5208 composites
with and without holes, was accomplished. Tensile fatigue testing involved
five fiber orientations, three loaling conditions, and two frequencies. Speci-
mens tested at 3 Hertz had lower tensile fatigue properties than those
tested at 25 Hertz.

The failure surfaces of the specimens demonstrated the effect of
testing conditions. Secondary failure mechanisms such as: delamination,
fiber breakage, and edge fiber delamination, were present in D and E specimens.
Longitudinal delamination of the D and E specimens was unexpected. The
static, low-frequency fatigue, and high frequency fatigue failures were

generally similar, differing only in degree.
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