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APPLICATION OF BOUNDARY INTEGRAL EQUATIONS
TO ELASTOPLASTIC PROBLEMS

A, Mendelson and L, U, Albers
NABA Lewis Research Center
Cleveland, Ohio

ABBTRACT

The application of Boundury Integral Equations to elastoplastic problems is re-
viewed. Details of the analysis as applied to torsion problems and to plane problems
is discussed. Results are prescnted for the clostoplastic torsion of a square cross
scction bar and for the plane problem of notched beams. A comparison of different
formulations as well a8 comparisons with experimental results are presented,

INFRODUCTION

Methods of analysis in clasticity and plasticity, as in most other sclentific and
engineering fields, have been revolutionized by the advent of the modern digital com-
puter. Thus the availability of the computer made it possible to implement practically
purely numerical methods such as [inite difference and finite clements, as well as
analytical methods such as complex variable methods.

8imilarly the boundary integral equution (BIE) methods, while having their origin
in classical elasticity, have only in recent years begun to play a significant role in
solid mechanies, Solutions Lo problems in clasticity by these BIE methods have been
obtained by various investigntors using different formulations, as for example in Reis.
(L,2). A review o’ wach of the literature is given in Ref, (3).

The extension of the BIE method to elastoplastic problems has rececived much less
attention, The basic theorics and equations have been formulated in Refs. (3,4) but
few applications have been reported. The present puper reviews some of these appll~
cations and presents details of the analyses as applied to elastoplastic torsion prob-
lems, and to the planc elastoplastic problem, with particular reference to edge-notched
beams in bending. Comparisons of different formulations as well as comparisons with
experimental results are presented,
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ELASTOPLABTIC TORSION

The elultnplm:\uc torsion problem can be formulated in several ways (Ret. (3)). For
example, using the Prandtl stross function, I, the basic differential equation becomes

P P
ﬁF:-aca-zc(ﬁ_e’E.’.‘.-_ﬂ) = f{x, v) ()
oy ax

where G is the shear modulus, o, the lingar coefficient of thermal expansion and
are the plastic shear struins, The corresponding BIE is

#F(p) = f f fiQ)n L) dx dy + / IE-‘(ln rm); » F'1n rpq]dq (2)
R c

where primes denote derivatives with respect to the cutward normal and where the
coordinate system and the associated notation are shown in Figs. 1 and 2, For an in-
terior point P, the multiplicr of F(p) in Eq. (2) ecomes 2r instead of .

As an {llustration of the usc of Eq. {2) and its ability to solve the clastoplastic
torsion problem, consider the case of a circular shaft of radius a. The radial coor-
dinate will be designated by 5, to distinguish it from r, the distance between the
fixed point and the variable point appearing in EqQ. (2). In polar coordinates, because
of symmetry, the function { appearing in Eq. (2) becomes

P P
tzx"::y

_ 2G ¢ p
f=-2CGo +222 L [he 3)
p dp (' zo)
For linear strain hardening
tgﬂ =Ap +B “
where
A= Ja

m
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v is Poigson's ratio, €, is the vield strain, and m is the strain hardening parameter
(slope of strain hardening curve divided hy the modulus).

On the boundary [f(a) = 0 and because of axial symmetry F'Yn) = constant, Eq. (2)
then becomes
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which upon solving for F'a) gives
F'{a) = G{a2A « o) +2B] ©)

Hence for any interior point

. A B
2 = 2 A - = - P
2 F(p) GH(A o+ p)ln rpQ dx dy - F (n)‘(: in rml dg {7y

R
or

Fip) = % EzA - a)(n2 - a?') + 4Bip - nl] £9)

and the shear stress 7 is given by

r=-2F_ 20[(5- A)(p -~ B
up 2

which agrees with the solution obtained in a entirely different fashion in Ref, (5). Note
thiat this solution is valid only in the plastic vegion, that is, for p <p o where P
the elastic plastic boundary, 18 given by

. 2(1 + Ve,

Vie

The formulation given by Eq. (2) can of course be used to obtain the elastoplastic
solution for almost any shape cross section and any type of strain hardening, In gon-
eral, however, it would scem that a lormulation in terms of the warping function (axial
displacement) should be preferable, since the warping function is physically more
meaningful than the stress function and more imporiantly, the distinction between sim-
ply connected and multiply connected reglons disuppears, We will therefore formulate
the problem in terms of the warping [unction and show in some detail how the solution
is obtained for a bar with a square vross section.

The BIE in terms of the warping function w is {Ref. (8)

P (8)

o]

) t
™W(p) = f f BRI T dA j; wig(ln rm)q dq - _/; w'@)ln 1o dq (10
R

where
Altp '-Jtp,
PO, 1 Y& (an
IX Jy

Note that Egs. (1) and (10) imply the use of the deformation theory of plasticity. How-
ever, a8 whown by Prager (Hef. (7)), both the total and incremental theories of plas-
ticity furnish the same solution to the torsion problem provided either the ¢russ soction
Is circulur or the materiyl is perlecily plastic. 1t is reasonable io assume, therefore,
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that this will be approximately true for most practical problems, Indeed, it has bosn
shown in Ref, (8) that for the case of a square cross section with strain hardoning
there is little difference between incremental and deformation theories, The use of
inc remental theory does not appreciably complicate the problem and can be wsed tn a
stopwise manner as for the plane problems to be discuisod subsequently.

The boundary condition (o be satisfied by the warping function is (Rel, (@)

:—: 2w aaily - mx) + 2(“22 + me";a 12)

where £, m are the direction cosines of the cutward normal, and where for n rectangular
bounidary segment paraliel to one of the coordinate axes, the s¢cond term on the right
side of Eq. (12) always vanishes. ‘The normal derivative of the warping function appear-
ing in Eq. (10) is thus known from Eq. {12) and the only unknown in Fq. (10} is w(p).

Numerjcal Procedure

To solve Eq. (10} for the unknown function wip), the straightforward procedure of
replacing the integrals by summations can e used. The boundary is divided into n
intervals with a nodal point taken at the center of cach interval. The unknown function
is nssumed congtant over ench interval, Similarly, the region R is divided into a
number of cells and the function [ assumed constant over each cell, Eq. (10) is then
written for wach nodel point as follows:

n n
;(u” - 61;"’“’3 aZbuwj + “i i<1,2,, .., 10 {13
=1 3=1
The coelficients B bl , und R arve given in Appendix A, We thus have n cquations
for the n unknowns, Wy This set of equations can readily be solved by any standard
procedure.

Once the w, are known on the boundury, Eq. (10) can be used to caleulate w at

any imerior point, with 7 replaced by 2r. However, in order to calculate the strains

the derivatives of w are needed. ‘These can be obtained by differentiating Eq. (10)
under the integral sign Lo give

e X -
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For sw(P)/0y we interchange x and y.
Again the imtegrals are replaced by sums resulting in

aw(x, v} g‘
__:_:__L = % [ (wkg kAi’k + Vlkm.kBuk - *kcﬂk) + ;'kf Dim] {15)
= : N

where the coefficients Aijk' Bljk’ Cijk' and Dtjkﬂ are listod in Appendix A. kzl ie

the sum for all the plastic cells in the region. '
From the derivatives of w the total strains are computed as

1 ( aw)
S oY For—
XE 9 ax

) 1 Hw
[ Se= [ X + cme
yx 2( 0y)

The plastic strains appearing in the definition of the function f(x,y) are of course
in turn nonlinear functions of the warping iucction w. They can be determined from

(18)

[}
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where
2
Cot “ = gf ) * (6,07 (18)
Vs
and
(p = fte ) {18)
£q. (19) represents the uniaxial stress-strain curve in terms of equivalent plastic
strain agninst equivalent total stmin; that is,
ae 17
ﬁ.p ot o (20}

where ¢, the oquivalent stress, represents the stress on the uniaxial stross-strain
cuvve and ¢ the plastic strain on tnat curve. Thus, for a given stress-strain curve,
the relation Behmen ¢ and ¢ ot represented by Eq. (19) can be determined using
Eq. (20), For the case of linear strain hardening, the relation (19) can be writien as

2
Get_;(l e,
¢, = : 21
P o
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8ince as noted the function { is implicitly a nonlinear function of the warping funo-
tion w, the solution is obtained iteratively by starting with { =0 and calculating im-
proved values via Eqs. (13), (15), (16}, {17), (11}, and back to (13), etc. ‘This Is the
method of successive clastic solutions or methoed of initial strains. The tangent modu-
lus method could be used equally well and may save on computer time. Complete de=
tails of the calculations porformed hereln are given in Ref, (§).

Results

Caleculations were performed by this technique for a bar of square crosi section as
shown in Fig. 3. The dimensionless angle of twist per unit length 3, defined a8 oa/e of
where a 18 1/2 the side of tho aquare, was increased in steps of one from =1 to
3= 4. Linear strain hardening was assumned with values of the strain hardening param-
eter taken as 0 (porfect plasticity), 0,056, 0.1, and 0.2. Poisson's ratio was assumed
as 0.3 in all calculations.

For 3 =1, the bar is elastic and o comparison was made between the analytical
solution as given, for example, in Ref. (9) as well as with the finite difference solution
of Ref. (10). The results are shown in Tubles 1 to II. Table I shows the warping func-
tion as computed on the boundary of the bar cross section, The comparison with the
analytical solution of Ref. {9} shows very good agreement with just four unknowns to
solve for in the boundary integral method.

Table [1 shows the comparison for the maximum sheur stress (at the center of the
edge of the square) and the moment with the analytical solution of Rel. (8} and the finite
difference solution of Refl. (10). Agnin it is secn that with just four unknowns in the
boundary integral method very gouod results are obtained, as good as the results ob-
tained for the finite difference method using 55 unknowns,

Table Il presents the dimensionless shear stress distribution in the x-direction
(-rxzfzﬁe o) throughout the cross section using 10 unknowns for the boundary integral
mothod and 56 unknowns for the finite difference method. Again excellent agreement
was obtained. Actually, the results with four unknowns using the boundary integral
method are almost a8 good, but the results with 10 unknowns are presented to match the
actual (x,y) values of the finite difference results without having to cross plot.

The dimensionleas anglo of twist per unit length 3 was then inereased in unit stops
to a maximum value of 8 =6 for each value of the strain hardening parameter m. The
total boundary was divided into 80 intervals resulting in 10 equations for 10 unknowns,
Several test calculations were made with fewer intervals, and the results indicated that
uging 48 intervals (six unknowns) changed the moment and maximum stress by at most
one in the third significant figure and changed the maximum plastic strain by about3per-
cent. All the subscquent resulls are therefore shown for 80 intervals (10 unknowns},
although from an engincering viewpoint 48 or even 32 intervals would be sufficient.

The results of the caleulations avre summarized in Table IV and Figs., 4 to 6.

Fig. 4 shows the dimensionless moment defined as M* = M/2Ge 0{13 for varicus values
of B ahd m. Fig. 5 shows the corresponding dimensionless maximum shear stresses
defined as 1, = T/2Ge o 4nd Fig. 6 shows the spread of the plastic zones with an in-
crease of the angle of twist ;.

The degree of convergence of the iterative process was determined from a relation
of the form

e TR
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where M I8 the total number of points P, flowing plastically and k-1 and k are two
successive iterations. The convergence criterion K cnm be made as small as desired.
In all the ralculations the convergénce number K was taken either as 0, 0001 or
0.00001. In many of the calculations both numibers were used in turn, ‘The differonces
in the results were found to be Insignificant. For cxample, the number of iterntions
for convergence for the cake of maximum plastic {low, which occurred for 3 =6 and
m =0, was 39 for K=0.0001 and 53 for K =0.00001, and the results were all the
same to at least throe significant figures., For the vase 8 =5 and M =0, the number
of iterations for K = 0.0001 was 33. For the same cage using finlte differences,

203 iterations wore required.

The boundary integral method is thus acen to be very suitable for the elnstoplastic
analysis of the torsion of prismatic burs. Vory good dcecuracy can be obtained by using
relatively small sets of linear algebraic equations.

A comparison with the finitc diffcrence mceihod indicates a great savings In the
number of unknowns that have Lo be determined and alse a much faster convergence rate
using the mothod of successive elartic golutions for both formulations. This should be
reflected in apprecinble savings in computer time, although computer time is not a
limiting factor in nny case for the torsion problem.

The boundan integiv- nethod can readily be programmed in o straightforward
manner for a digital computer. The use of the wurping function to formulate the prob
lcm permits applying the method witi oqual ease to both simply connected and multiply
connected bodies.

THE PLANE PROBLEM

As for the torsion problem, the plane problem can be formulated in several ways,
as a nhonhomogencous biharmonic problem for the stress function (Ref. (3, orin
terms of the Navier equations of equilibrium for the displacements (Refs. 3,4). Both
methods will be applied herein to the problem of an edge-notched beam in pure bending,

The Biharmonice Formulation

The problem of determining the state of stress and strain ir. a plane elastoplastic
problem czn be reduced to solving the following inhomogencov:. biharmonic equation {or
the Airy stress function, ¢, as shown in Rel. (5)

vho < ux, ) 23
o ) g ad)- 2
BiX, y) =~ ~ —((x'AE£ ‘-’—((‘.-{»A(?_,z i tp .;Atp‘)
s ~ 4} ; — P
t-u? [y % iy ¥
|1N53\‘3((2+M£+(2+A{!:) (24)
-v
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for the plane strain case, and

R

m.yn-n[—-(" +m") QPHVP) somy(f’ +ml’)] (26)

for the plane .ress case, where J:, P, and m'; ropresent the acoumulation of plas-
tic strain increments from the begianing of the loading history up to, bul not incduding

the current increment of the lond, and AcF, Axg, and AcP_ are the incremonts of

plastic strain due to the current increment of load, e

The stress [unction  Mmust satisfy app roprinte boundary conditions. For the

problem under consideration (Fig. 7), ®(X,y) and its outward norma} derivative 9¢/on

must satisfy the following boundary conditions (Ref. (11}

wx, V=0 %f =0 along boundary OA and OA' 7
@ix,y) = 0; -f)l:-:-’ = along boundary AB and A'B!
g
P{X, ¥} = -g-"i&(';ﬁ v ax® valx e -]';_‘) + “mnx(é +0x +“?2)‘-
%‘f along boundary BC and B'."
, Ll'muxwz 9y
ex, = —6---, -5-;; =0 along boundary CD and CtD

To solve Eq. (23) by means of the boundary integral method, usc is made of

(26)

Green's seoond thoorem to reduce this equation to coupled integral equations, as shown

in Refs. (3) and (11). The result is

Jn on

Bre(x, ¥) -ff pEE,MdE dy = [w-(V u)-—EV J+0-'32-—p]dq for PC R
R c

on on

27)

4w(x.y)-ffpg(£.n)d£ dn = lzﬂd—‘; n)—‘w’-‘ﬂvzj +¢-f--""'n]dq for PC C
R C

and

2nd (X, ¥) -ff glé,min v df dny = [oi nr) -2 r]dq for PC R
Jn Jn

-

(28)

29
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rh(X,y) - ffﬁ(i.n)ln rdtodn = [0 < (I r) -8, r]dq for PCC {10) ;
R on an b

where *.
f

s = Vo :

pe inr l

and r(x,y; £,n) is the distance batween any two points P(x,y) and q(£,n) in the Te-
gion R bounded by the curve C, such that PC R+ C and q<C C (Fig. 8).

Eq. {27) would, for a known function gix,y), give us diroctly a solutlon to the
biharmonic EQ. (23) provided the functions @(x,¥), Jaw(x, y)/on, Vch(x,y), amd i
a[vzwtx, y)}/on were known ~a the boundary C. I

Howeover, only the stress function w and ity outward normal derivative de/on
are specified (Eq. (26)). The values of v"m =& and a(vzw)/on = 58 /on on the |
boundary must be compatible with the given values of ¢ and 9v/8n. To nssure this i
compatibility, we have to solve the system of coupled integral Egqs. (28) and (30), i
which contain the unknown functions & and o#/un,

Once the values of & and 08/0n oh the boundary C of region R are known we
can proceed with the caleulation of the stress field in the region R utilizing Eq, (27) i

A T

and the oquations which define o, namely, ‘
t 4
'i 2 2 2 i
Ll Uy 4.8 ;n' ay =09 ::' rxy = - ._.s’;‘a (a1 .
% d)’ Ux dx 3)’ -I
;[ The calculation of the function g(x,y), which is obtained {teratively, will be dis-
| cussed subsoquently. 1
| .
j Solution of the Integrnl Equations ¥
] .
§ To solve the system of coupled integral equations analytically, a numerical method
f s uliljzed in which the integral Egs. (28) and (30) are reploced by a system of simul-

tancous algebraic equations.

For simplicity of notation the normal derivatives are denoted by prime super-
scripts. ‘The boundary is divided into n inlervals, not necessarily equnl, numbered
consecutively in the direction of increasing q. The center of cach interval I8 desig-
nated a8 o node. The values of & and &' are assumed constant on each interval and
equal to the values calculated at the node,

In similar manner the interior of region R is covered by a grid, containing m
cells. The cells do not have to have equal areas. Thejr nodel points are located at the
conirolds. The value of g,n) I8 assumed consiant over cach cell and egual to the
value calewlaiced at the centroid,  The arrangement of boundary and interior subdivisions
is shown in Figs. 9 and 10. :

Using these ussumptions, Eqs. (28) and (30} can be replaced by a system of 2n
simultancous algebrale equations with 2n unknowns, that is, L and bi.
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whore i=1,2,3,. . ., n, r, I the distance from 1 node to the centrold of the ki
cell, A, is the aren of the ku‘ eell, and _
. 5‘:
T -/j- n "ij" dq ﬂ
B
iy == f 1y do
Ll‘
l'ij = /j.flh (kl ‘i
> (23) i;
dy== J oy !
i i
i
3, us t
%) _/J-(vzﬂij} dy £
;
f:j“’j;v”x}‘k’ f
“ ;
where integration 18 taken over the jm interval, and r,. is the distance {rom ith
th i '
node to any point in the J= interval, ‘The normal derivatives in Eqs. (33) are tnken

on the J"h interval,
For curved boundaries the coefficients given by Egs. (33) can be evaluated, if nec-
essary, by Simpson's rule for § #J. For 1= ], because of the singular nature of the H

integrand, the integrals for the coefficients must be evalunied by n limiting process. ;
For boundary intervals, such ns lor the proidem treated herein, which can be repre«
sented by straight lines a closed form solution cun be obtained for these cocificients.
Boundary Egs. (32) expresscd in matrix form become
- 5 7 - 11 . A
I“;j - 5ij“'J lbijl [.j] jin rik] : [9] [9] l"‘y\)kl
n-n n-nf ns1 nm n-n nx=n|l}mxl j
< = - (34) iz
[e};) Ld511 | 1951 loged Loy =sgtm Uyl < Loyl L §
nxn nxn tl«l n-m n-n n<n|| nx1 4
- -l - - y
]
w!
\ nx IJ 4
1t




Thus, the problem ls reduced to the solution of the [ollowing matrix system:
[B){X} = (R} (38

whore |B) Is 2n x 2n matrix and {X} and {R; are 2n x1 column matrices,

Matrix [B] i4 depondont only on geomotry, that 18, numbor of nodes and their dis-
tribution on the boundary. Since the matrix {R} comtains the nonl ‘near function gi£,n),
which dopends on the stress feld and thorefore on matrix {X}, an iterative process will
bo used to oblain the solution.

To calculate sirosscs, at any nodal point In the region R, from the stross function
¥, we heed not perform any numerical differontintion. Eq. (27) can bo differentintod
under the integral ségn and once & and &' are known on the boundary the stresses
can be obtained hy the samu type of numerical Idogration as in Egs. (32). Applying
Eqa, (31) to Eq. (27) yivlds for tho case of a rectangular grid the following stross
oquations:

m -
82+82\ 2. _ 8 2
870, (x,y); = ln-"—41 *?Ymn -65-1 (BAY ¢ 'n[{x-E) +(y-n)’]
: Y j=k k=1

. 2 -
+ 33 =) >t 1} (BAY, + Z (Ajjey + Byol + Ci b, + Dy
(x=£"+ty-m

ik =1
i£k
m
2,2 Z
Gy *6 &, i
Sm,ry(x,y}l= In ot S 4 s tan~! X1 (BA) 1 {n[()(-“2 + ty-m"] > (38)
4 6). oy
i=k k=1

, 2 n

2x-£) - EETRTIN &
. 2 % A Z; Aoy Byep t Byt Fy®y
(x= 5 +iy -

ik
i#K

m

n
2{X - -7 G
~Hr ), § ,[ 2 3} A1+ 3 (Cugoy o) + 1y K
x=8)"+y-ml, J=1
k=1 itk -

wherenow 1=1,2,8,. . ., m refers to the centroid of the ilh cell, L ind 6,

represent, respéctively, s-directional and y-directional dimension of the cell. The
coefficients Aij' Bij‘ Clj' Dij' I-JU, Fij' th' Wp Ly and K, are obtatned by ap-
propriate differentiation under the integral sign of the coefficients given by Egs. (373)
and ure listed in Appendix B.



The siress function ¢ I8 not consiant on the loaded houndnries BC amd B'C'.
The nesumption that '* {s pluce=wise constant may lsad to apprecinble errors in tho
mumericnl resulta. To eliminnie this source of error, the summations given in
Eqs. {32) and (36) for intervals lying on the loaded boundaries and involving the stress
function are roplaced by direet Integtion,

Boundary Interval and Interior Grid Size

‘The number of aodal points prescribed for the boundary is theorotically unlimited.
Howevar, computer storage capucity for the computer used and difficulties associated
with Inversion of large matrices limited the order of the coefficient matrix [B] of
Eq. (35) used herein to 140,

Pecause of geometric and londing symmelry about the x=-uxis, it is possible to re-
duce the number of unknowns. For 2n total number of nodal points the number oi
equations and unknowns G and &, is reduced from 4n to 2n.  Additional reduction
in the number of unknewns {s necomplished by tuking into consideration 8. Venant's
effect at the londed boundaries (Ref. (12)).

Since the vicinity of the crack tip is of greatest interest, a fine nodal spacing along
the noteh was chosen, To reduce the error intruduced by the change in the interval
size (Ref. (13) around boundury points A and A' and ot the same time to oblain fine
resolution at the tip of the notch, the boundary along tho notch was divided into n number
w' Lhiesals progressively decroasing in length, The rate of change in the interval
forrth und the resulting length of the smallest interval was feund to have a groat influ-
ance on i stress fleld in the vieinity of the tip of the notch, The rate of change in the
interval's length along theso boundarics was optimized by the muthod presented in
Ref. (14). For the cases considored optimmum ratios of the lengths of two consecutive
boundary intervals wero found to be in the range of 1,08 to 1,10, The resulting small-
cst dimensionless boumdary interval lengih varied from 0.0001 to 0.0002. A set of
140 oquations containing 140 unkngwns was used. Note that the corner points are al-
ways designuted as interval points, never as nodal points, thus eliminating discon-
tinuous functions from nmunerical analysis.

The cheice of the sizo of the grid, which hus to cover the reglon where plastic
flow is expected to oceur, 5 of uimost importance, A oo coarse grid will not detect
changes in the values of plastic-sirain for small loading increments. A too fine mesh
size muy result in distorted values of second-order derivatives of plastic strains,
which appear in the function gix,y). The loading increment and the grid size are re-
lnted to each other. A Bxd cholee of either of them could result in the divergence of the
iterative process.  To allow the maximum of grid points to be within the expected plas-
tic zone, o variable grid spucing was chesen.  The grid used for plane strain conditions
was finer, in penorel, than the one used for plane stress cises.

The interior reglon, where plastic flow is expected, was divided into ra s ree-
tunpular cells, Due to symmetry about the x-iuxis, the number of unknown functions g,
appenring in the bound »y kEgs. (32) and stress Eqs, (38), was reduced from r» s to
m =¥ (5 +1}/2, where sow the coelficients of these functions represent the sum of
the effect of left-hand and right<hand sides of the plastic field. Because of computation
tir.e limitations, the grid was arranged in a 27 x 23 cell pattern, resulting in the nume-
ber of unknowns g to be equal to 324, By increasing the number of unknuwns to 400,




the computation time for one iteration almost doubled, The smallest cells, located in
the vicinity of the tp of the notch, have dimensions Gx,"w =0,004; 6§ /w=0.008 for
planc strain cases, and bx/\v = 0.004, év/w =0.016 for planc streXs cancs.

The solution to the problem was obtained by the method of successive elastic solu-
tione us discussed for the torsion problem and described in detail in Refs. (3) and (15).
The computations were porformed on s digital computer using a FORTRAN 1V program
with single=precision arithmetlc. The matrix system given by Eq. (35) was solved
using the modified Geruss eliminaticn method, which utilizes pivoting and forward and
hackward substitutions,

Resulis

A number of beam problems were solved for both plane strain and plane stress
cases. ‘These included notch depth to benm deptl: ratios of 0.3 and 0, 5, notch angles of
1% and 10°, etrain hardening purameter values of 0,905 and 0.10. In addition, calcula-
tions were performed using the nctual Biress-stirain curve of a 5083-0 aluminum alloy.
For all cases Poisscn's ratio was set at 0.7°,

The load increment size used was necessarily a compromise between the accuracy
desired and computational time required for convergence. For strain hardening param-
eler m=0.05 the load increment size A4 defined as Ay /7, was taken equal to
0.05; while for m = 0.10, AQ=0.10. For tho cas: of a 5083-0 aluminum alloy, where
the actual stress-strain curve was used, the load was incremented by AH =0, 025,

For the beam with dimensionless notch depth 3 = 0.5 the minimum load required
to produce plastic flow at the most highly stressed grid points was found to be q=0.30,
and for 4 = 0.3 the initinl load was found to be q = 0.50. The maximum load consid=
ered was E: 0.7 forthe a=0.5 cases, and ?1 =0.9 for the a =0.3 cases. In the
process of solving the aforementioned problems, the case with strain hardening param-
eler m = 0,0l required approximately 50 iterations for cach increment of load ¢.e.,
;ﬁ = 0.06) fur the relatively fine convergince parameter used. For cases where the
gtrain hwlening parameter m = ¢, 10 the average number of fterations neoded for sach
increment of load (. e., A§ = 0.10) was reduced to 40, while use of the actual stress-
sirain curve resulted in convergence in approximately 10 iterations for the plane strain
case and in 20 itorations for the plane stress case.

Typical results of the computativns are presented in Figs. 11 to 18 and Tables Vv
and VI. Complete detailed results are given in Ref. (11).

The growth of the plastic zone with load is shown in Figs, 11 to 14. It is sc¢en that
the shapes of the elastoplastic boundaries remain similur Lo cach other as the load in-
creases. As expected, plastic flow starts around the tip of the notch and as the load
increases appears ulso ati the boundxry opposile the notch, Comparison of Figs. 11
and 12 with Figs. 13 and 14 shows that for the same loads the size of the plastic zones
for plane strain are considerably smaller than for planc stress.

In the case of an clastoplastic problem the stress intensity factor K[ must be
generalized ti the form

L ORI lri_t.r:) Ver r“uy(r.m oo (37)

where the exponent n s a functioh of the applied load, o For lincar clastic

max’




bohavior K[ is identical with K; and n = 1/2. For the elastoplastic case the varia-
tion of n with load is shown in Tables V and V1. In the case of plane strain the streids
singularity n decreascs slowly as the toad incronses. For the plane siress case, |
there is a sudden drop in n from its elastic valuc as plastic flow nppears, Subsge !
quently n slowly increases approaching a limit as the load increases. :

variation of the dimensionless generalized stress intensity faclor with load is
shown in Fig. 15 for the case of a specimen with notch depth of 3= 0.5 and o= 10°,
under plane atrain condition and two values of strain hardening parnmeter m. The
stress intensity factor shows no significant increase over the linear clustic value up to 1
an applied load of § = 0.40. Above this lond K} increnses progrossively for both f
m's, at the faster rate for the lower strain hardening parameter,

The products of yedlrectionnl stress and total strain were also calculated for var-
fous cases. The order of singularity of that product was determined by plotting
ln(urye )y against ln ¢ and by making a least aquares fit of a straight line through the
plotteg points, It was found to be very cloée to unity for all cases considered,

The y-dircectional noteh opening displacemont was obtained for cach casc by numor-
icr | integration of the relation € (1/2)(u1' i tu g along straight line paths. For
each case a number of paths were choson through the plastic region near the notch, and
the resulting displacements were averaged. In general, the notch opening displacement

i varies lincarly with the load until the plastic zone is establighed at the boundn:y oppo-
aite the notch. Then it increnses rapialy, roaching values scoveral times that which
would be calculated from the elastic solution,

In order to verify in part the accuracy of the mothod used, a comparison of notch

opening displacements was made with experimental resulte oblained by Bubsey and
Jones (private communication frem R, T. Bubscy and M. H. Jones of NASA Lewis
Research Centery. The specimen uged in this experiment, made of aluminum 5083-0
with a length to width ratio of 4 and & crack length @ = 0.5, was subjected to three-
point bending. The stress~-sirain curve for this specimen is shown in Fig. 16. The ex-
perimental results as shown in Fig. 17 arce in guod agreement with numerical rosults
obtatned heroin,

Finally, the ¢ integral was evaluated for several cases. As in notch opening dis-
placement culeulations, straight line prths were chosen through the plastic zone near
the tip of the notch. The integral was ¢valuated using values of stresses, strains, and
displacements at cell centroids for a number of paths, The path independence of J was
not conclusive, since the results viaried up to 16 percent from the averaged value., It {8
possible that the results obtained herein do not indicate that the path independent prop-
erty is lost but rather that the field values of the displocements are not caleulated with
sufficient nccuracy.

Tho average valucs of the dimensionless T intopral as a function of load are
plotted in Fig. 18 for a case of u specimen with a 10° edge noteh, 3 = 0.5, m = 0.05,
and plane strain condition. A! the start of plastic flow J Increases rapidly with load,
This is followed by ulmost linear - riation with additionul lead.

From the nbove results it , ;. curs that the BIE method applied to the plane problem
and formulated in terms of the i 7 stress function is capable of giving detailed results
such as stress and stradn distributions around the tip of the notch and, related to them,
the shapes of plastic zones. This wus aceomplished using a relatively smull number of
unknowns.
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The presence of a singularity at the tip of the noich makes accurate answers very
difficult to obtain, Neverthecless good agreement was oblained between the calculated
resulis and experimentally measured notch opening displacement as shown in Fig. 17,
Some improvement in the solution techniques and further investigation of the influonce
of the boundary nodal spacing and interlor grid size on the resulting stross and strain
fields, und therefore, on the notch opening displacements and J integrals, is still
desirable.

THE DISPLACEMENT FORMULATION

Although the biharmonic formulation previously described uppears as a viable
approach in solving the planc clastoplastic problem, some difficulties are encountered
in ealculating displacements since numerical differentiations are required in the proo-
cess which can lead to appreciable errors and inconsistency of results. - A more direct
formulation of the problem is given in terms of the llavier equilibrium equations for the
displacements. The general oquations are given in Ref. (4) and several problems using
these relations are reported in Ref. (16).

As shown in Ref, (3) the Navier equations with plastic flow can be converted to the
BIE

Au(P) = _/(: (Ul = Tyjupdq + -/1; Tixi (‘?k + aef Jar (38)

where u, and P, are the boundary displacoments and boundary loads, respectiively,
and the usual tensor notation is used. The tensors Ui]' Tij' and ij are given by

Uij = Cl(é ijC2 ln ol l‘, ir' j) (39)
C3lar
Tij =T on (dijc4 +2r,r, j) + Cylr, b Sl lnj) (40)
q
C
_“3
i = Cal 1oy *Oiley = Py + 210 (% §0k) “n
with
1
C S ——— C ='3-4p
1" " amG-p) 2
{42)
1
Cozmambe— C,=1- 24
3 aa-m 4

and r is the distance from the fixed point P to the variable point of integration, g.
The above equations are for the case of planc strain, For plane stress one replaces p
by p/(1 +4). The coefficient A is equal to 1, if P is an interior point and i8 equal to
1/2, if P=p is a boundary point.

The solution is now obiained by replacing the integrals by sums as before, result-
ing in 2n simultaneous equations for the case of n boundary scgments. These can be
written as the matrix equation
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where A, B, A', and B' are n <n matrices of known coclflicients, v amd v are the
x and y displucement vectors for the boundary nodal points. y and 6 are veclors
given by

A ﬂ’y
(44)
& = a'px 1 B'p}'

where o, 8, o', and B8' arc known n - n matrices and Pl Py arethe x and y :
boundary force vectors at the nodnl points. The vectors € and D are functions of !
the accumulated plastic Mow and are known at the beginning of each load increment,
The vectors AC and AD depend on the plastic flow increments during the current
load increment and are obtained by iteration. All the terms appearing in Egs. (43)

" and (44) are listed in Appendix C.

For the first boundary value problem where the loads are specified over the com-
plete boundary, Eq. (43) is solved directly for the unknown displacements at the bound-
ary nades. For a mixed boundary value problem, where the displacements at some of
the nodes are specified and the loads are unknown at thede nodes an obvious interchange
of the appropriate columns of the cocfficient matrices must be made.

Unce Eg. (43) 18 solved for the unknown displacements (and loads if any), the total
strains are computed at any interior point by differentiating Eq. (38) with A =1. At an
interior point pij = P(xl,yj) we ¢an write

i n

: 3\
|

‘f Py = E , PemEijm * PymFigm = YmCiym = Ymtlym! * Ly * &1
\[ m=1

n

, €p(Pyp = zl CemElim * PymFljm = YmOijm = Valljm! * 5 72 > s \
‘ m= |

n
B = D BBl * Py Pl = U Gt = vl + 1) + Al
m=1

J i

All the cocfficients are given in Appendix C.  The plastic strain incremoents are then
computed from the plastic strain-totel straln relations and the stress-strain curve as
given in Rels. (3,5), the mothod of successive clastic solutions being used to obtain
these sirain increments {leratively:

It is shown in Ref, (16), that greater accuraey can be oblained for the sume number i
of nodal points by assuming linear varfations of the unknowns on the boundary intervals,
This of course complicates to some extent the ealeulation of the coelficient matrices.
Furthermore the nodul peints can no lonper be taken ot the midpoints of the intervals,
but must be taken at the end points.  This introduces some further complication when a




nodal point occurs at a comer, since firsdy, the boundary load may be discontinuous at
a comer and secondly, the jump in the boundary integral at a corner is no ionger 1/2,
but depends on the corner angie.

Although these additional complications cun be taken care of ag was done in
Ref. (16), a somowhat different but approximately equivalent approach was attempted
herein. The nodal points were kept al the centers of the intervals, Each interval was
divided into a number of subintervals and the integral for each subinterval was welighted
linearly acoording to its distance from the nodal point. This approximatces a linear var-
jation of the unknowns over the intervals. :

This approach did indeed give improved resulis. For example, forthe beam of i
Fig. 7, with a/w = 0.5, L/w =1.2, the plane strain elastic maximum crack opening is
Ev/6M = 5,67, The value oblained using 90 nodal points was 4, 92 assuming constant t
values over each interval, and was 5.62 using the linear welghting technigue, i

Results

Calculations were made by the above tochnique for the same problem as was solved
by the biharmonie formulation previously described. Some preliminary results are
shown in Figs. 17 and 19, Fig. 17 crapares both the biharmonic fomulation and the i
displacement formulation with experi-:ental results for the maximum notch opening.

The beharmonic and displacement formulations give results which are in very good
agreement. The same is seen in Fig, 19 where the stress o, at a value of x very
close to the notch tip is plotted against the distance from the notch centerline, ¥. The
agreement between the two formulations is again very good. The calculations for larger
load increments using the displacement formulation have not yet been carried out.
These are presently under way.

A preliminary comparison of the convergence rale of the two formulations indicates
that the plastic flow computations converge more rapidly using the displacement formu-
lation. A comparison of the computer times, however, could not be made, since the
two types of calculation were carried out on different computers,

CONCLUDING REMARKS

This preliminary survey of the use of BIE methods for elastoplastic problems indi-
cates thatthey form a viable and worthwhile approach for solving such problems, The
forsion problem in particular can casily be solved for almost any geometry cross
section. |

The plane c¢lastoplastic problem can be solved by using either a blharmonic formu- ‘
lation or a displacement formulation. DBoth appear to give good results with relatively
small sets of equations, even for problems with singularities, such as beams with [
notches. !

Although no comparison was made herein with the finite element method, such com-
parisons werc made in Ref. (16). It is indicated in Ref. (16) that the computer times ‘ i
for the finite element method and BIE method (using the displacement formulation) are
comparable. Fincr reselution can however be obtained by the BIE method,

The applicntion of the BIE method to clastoplastic problems is still in its early sta-
ges. Much work remuins to be done in refining the techniques for optimum application.




APPENDIX A
BOUNDARY INTEGRAL COEFFICIENTS FOR TORSION PROBLEM

The division of the boundary into intervals with their corresponding nodnl points is
shown in Fig. 20. The x ond y coordinutes of a boundaty nodal point p; are desig-
nated as (X, ¥, ‘The coordinates ut the beginning and end of an interval (suy intar-
val j) are designated by (£ ., n,) at the beginning of the interval and by (Ejﬂ' Nyyq) At
the end of the interval. The interval lengths h, need not be equal. The coordinates of
the centroid of an interior cell where plaatic flow oceurs are desipnated by (%, ¥p)e

The coefficients in Eg. (13) are then given by

1H1/2) 9
5 = Z,T,; s 1
U-(1/2)

\ {46)

(%= X * Yy = Y™
!

“n‘"‘; 2k
k#l W,

‘The last relation follows from the Gaussian conditlon, that is,

]
—inr _dg==
on M

c 19

To evaluate the bl cocfficients Simpson's rule is used for the case 1 #§ and
closed form integration is used for the case i=j since the integrand is singular for
I=j. Tho resultis

5
by == ‘"["i.i-uf:h tlarg, vl ’i.jﬂl/?-;] 1#)

n
(hl )
b, =h lln—=-~1
TR
| .
Ri=-2 E:‘kc In vy, 84 (48)

where 2 is the sum for all the plastic colls in the region and AA., is the area of

k, ¢
the coll with coordinntes (X ¥p)e
| The coefficients Aijk’ Bijk' Cijk' and Dijkl? are given as follows using Simpson's
rule: ‘
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APPENDIX B

COEFFICIENTS OF TRE STRESE FQUATIONS (18)

‘The coefficients appearing in stress Eqs. (38) are given by the following relations:

\
2
2 , (X = E)" = {y; -
Ay -2 oy =4 2, .
oy an

x - &0 + - mz]z

2 2
2 (¥ =m" = (%, = £)

1) g ' ij 2 e
oy j [ixi - & *‘h""T

2
=0 - 0
Cy=—3 = Pt

-£) +yy- n?
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The evaluation of these integrals is given in Ref. (11).
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APPENDIX C
COEFFICIENTS OF DISPLACEMENT FORMULATION EQUATIONS
The coefficients lppearl_ng in Fqs. (43) to (45) are given an follows:
Lot | |
- ;

m+l
Ep =8in @ cos ¢

\
m 1:%
ES = 8in™0

m+1 i
l-:5 =Inr
m

4 m+l
EG = cOB 0

m 9 (54)
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where kb represents an interlor cell.
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If the nodal point i and the integration interval j are on the samo straight seg-
ment of the boundary, then D=0 and ¢ - 12/2, where the plug sign is used when § is
ahead of i, and the minus sign is usvd when | s behind i, This leads to ¢ % » in the
calculation of B“ and Hij' A simple Limiting process shows that for this case, with

i#j,
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TABLE I. - COMPARISON OF VALUES OF DIMENSIONLESE WARPING FUNCTION ON POUNDARY

OF ELASTIC BQUARE PLATE WITH EXACT ELASTIC SOLUTION

Poundary| Exact Value of warping function by | Boundary{ Exact Value of warping function by
valus, | warping boundary integral method velue, | warping boundary integral method
y function, ¥y function,
w Intervals, n w Intervals, n
4 B 12 16 4 8 12 16
0. 03125 | 0.01095 0.01005)| 0.4313 § 0.1424 0. 1424
L04167 | . 01459 0. 01450 L5417 . 1433 0.1433
. 0625 . 02185 0.02184 5625 L1448 0. 1448
L0838 | . 03264 . 03284 .0p38 . 1461 . 1460
. 1250 . 04328 | 0. 04311 . 04328 . 6250 L1461 10,1446 . 1481
. 1568 05374 . 06372 .6563 L1449 . 1449
L1876 . 06880 .NB3BE . 6878 . 1422 L1419
L2083 L1060 07051 . 7083 . 1386 13985
.2108 . 07380 L073TT|| .7188 . 1380 . 1380
2813 09235 .00234f .7813 L1244 L1244
PN 09527 . 09525 LT L1214 L1212
L3125 L1008 1009 L8125 L1148 L1140
L3438 L1080 . 1080 ,B438 . 1028 L1027
L3750 . 1166 . 1159 L1164 . 8750 . 08864 | .0BBZ28 LOBBILL
. 4063 L1288 . 1232 . 9063 . 07166 .07129
L4375 1203 1202 L9376 .05180 L08142
. 4583 L1329 L1329 L9588 L3644 . 03621
. 4688 . 1348 . 1348 . 9688 UuB0B . 02706
TABLE II. - COMPARISON OF ELASTIC SOLUTIONS FOR MAXIMUM
DIMENSIONLESS SHEAR STRESS AND DIMENSIONLESS
MOMENT FOR SQUARE BAR
Exact solutlon ] Finite diffesence | Boundary lntegral mothud
tmethod
{55 eqs. ) Intervals, n
4 8
Dimensioniess mument, M* 1.125 1.122 1.128 1.127
Dimensionless maximum L0754 , 8725 6724 L8747
shear stross, Tmax

|
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TABLE V. - ORDER OF 8TRESS SINCULARITY n AT THE TIP OF THE NOTCH
FOR A SPECIMEN WITH A SINGLE EDGE NOTCH SUIWECTED TO
PURE BENDING - PLANE STRAIN

(Poisson's ratt o - 0.33)

Dimension-| Nuteh | Strawm bard- | Elasue Mmenstunless load,

less noteh | aingle, Clitg (¥ - )
depth. . [ 04 0.% 0.6 0.1 0.8 (V']
a dog m
0.3 3 Q.10 0.4080 | -+--- 0. 403 O 480 j0. 487 | 0. 473} 0. 478
.3 10 v eeren | 4BG L _4UT | 492 . 480 487
B 10 .05 0.499 [ . 498 480 LY R IR IR
.5 10 .10 . 496 48| 480 ATB]evcae] -rne-

TABLE V1. - ORDER OF STRESS SINGULARITY n
AT THE TIP OF THE NOTCH FOR A SPECIMEN
WITH A SINGLE EDGE ROTCH SUBJECTED
TO PURE BENDINC, - PLANE STRENS

[unensionless noteh depth 3 - 030 aoteh angle
- 10Y stramn lardening pavameter m - 0, 10;
Potsson's Fatte o - 0.33.)

Elastie Dimensionless load, q

0.4 [\ N 0.7 0.8 0.9

0.4909 | 0.419 | 0.434 | 0.448 | 0.451 | 0. 458

Figure 1. - Prismatic bar subject to twisting coujle.




Figure 2. - Region R, boundary curve ¢, and / N\ *
geametric quantities entering into boundary // N\ i
integrals. AN |

F G H

Figure 3. - Square cross section,
4.8, . /

4.0 Strain-hardening 3‘
paramater,
m 1.0

|
32~ |

2'4)'-_ ,..-———'/'1 ‘i\

1.6L—

Dimensioniess moment, M’

] I [ 1 J
0 1 2 3 4 56

Dimensionless of angle of twist per unit tength, B

Figure 4, - Variation of dimensionless moment with dimensionless
angle of twist per unit length for several values of strain- hardening
parameter for square cross section,
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Figure 7. - Single-edge V-notched beam subject to
pure bending load.
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Figure 9. - Boundary and interior region sub-
divisions for P{x,y} € C.
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Figure 8 -Sign convention for simply connected region R.
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Figure 10, - Boundary and interior region sub-
divisions for Pi{x,y!lCR.
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Figure 11. - Growth of plastic zone size with load for specimen with single edge nolch subjected to pure
bending, Plane strain; dimensionless notch depth @ = 0.3 nolch angle o = 10%; strain hardening
parameter m =0, 10; Poisson's ratio p=0.33.
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less load,

075

125
2

Figure 12, - Growth of plastic zone size with toad in vicinity of nolch for specimen
with singie edge notch subjected to pure bending, Plane strain; dimensionless
notch depth 3 +0.3; nolch angle a = 10P; strain hardening parameter
m = 0.10; Poisson's ratio p = 0. 33,
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Figure 13, - Growth of plastic zone size with lcad for specimen with single edge notch subjected to pure

tending. Plane stress; dimensionless notch depth ¥ = 0.3; notch angle a = 109; strain hardening
parameter m = 0, 10; Polsson's ratio y = 0,33,
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Figure 14. - Growth of plastic zone size with load in vicinity of notch for a specimen
with single edge notch subjected to pure bending. Plane stress; dimensionless

notch depth @ =0.3; nolch angle o » 10%; strain hardening parameter m « 0, 10;
Poisson's ratio p=0.33,
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Figure 15, - Variation of dimensionless generalized stress intensity factor with load for
specimen with single edge notch subjected to pure bending, Plane strain; dimensionless
notch depth ¥ = 0,5; nolch angle a = 10°%; Poisson's ratio u « 0,33,
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Figure 16. - Stress-strain curve for aluminum 5083-0 used in test (private communication from
R. T. Bubsey and M. H, Jones of NASA Lewis Research Center). Young's modulus of elas-
ticity E = 7.79x100 newtons per square centimeter (11, 3x100 Ibfin, 1 Polsson's ratio
u=0,33
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™ /
—— = = Tes| data obtained for three-point bending of /
edge cracked specimen with length to width /
b— ratio of 4, dimensioniess crack depth of
0.5, and Poisson’s ratio of 0, 33 (private /
communication from R. T, Bubsey and /4
M. H, Jones of NASA Lewls Research
El oo Center} :
———— = =— Elastic f
Reference (11) i
o Displacement Formulation t
4 P 4 -~ |
q1%
k- 5
i
|
|
—
}:
| | | l { | 1 |
0 1 .2 3 4 ] .6 N .8 :
B Dimensionless foad, §

Figure 17. - Dimensionless plane strain y-directional nolch opening displacement for
specimen with single edge notch subjected to pure bending, Dimensionless notch
depth & « 0.5; notch angle a » 10°; Poisson's ratio u « 0. 33; stress-strain curve
given by figure 16.
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Figure 18. - Dimensionless plane strain T integral for specimen with single edge natch
subjected to pure bending. Dimensionless notch depth @ « 0.5 notch angle o 10%
strain hardening parameter m «0,05; Poisson's ratio p=0,33,
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Figure 19, - Dimensionless y-
direclional stress at a function of
distance from notch centerline,

g A £ Figure 20. - Boundary and inferior i -
G 00074 Be 0.5 3004 q y interior netation for computing co

efficients glven in Appendix A.
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