General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

NASA TECHNICAL MEMORANDUM

APPLICATION OF BOUNDARY INTEGRAL EQUATIONS TO ELASTOPLASTIC PROBLEMS

by A. Mendelson and L. U. Albers

Lewis Research Center
Cleveland, Ohio 44135

TECHNICAL PAPER to be presented at
Applied Mechanics Conference sponsored by the American Soristy of Mechanical Engineers
 Troy, New York, June 23-25, 1975

APPLICATION OF BOUNDA RY INTEGRAL EQUATIONS

TO ELASTOPLASTIC PRORLEMS

A. Mendelson and L. U. Albers
nasa Lowis Research Center
Cleveland, Ohio

ABBTRACT

The application of Boundary Integral Equations to elastoplastic problems is reviewed. Details of the analysis as applied to torsion problems and to plane problems is discussed. Results are presented for the elnstoplastic torsion of a square cross section bar and for the planc problem of notehed beams. A comparison of different formulations as well as comparisons with experimental results are presented.

INTRODUCTION

Methods of analysis in elasticity and plasticity, as in most other scientific and engineering fields, have been revolutionized by the ac'vent of the modern digital computer. Thus the availability of the computer made it possible to implement practically purely numerical methods such as finite difference and finite elements, as well as analytical methods such as complex variable methods.

Similarly the boundary integral equation (BIE) methods, while having their origin in classical elasticity, have only in recent years begun to play a significant role in solid mechanics. Solutions to problems in elasticity by these BIE methods have been obtained by various investigntors hsing different formulations, as for example in Refs. (1,2). A review 0 : mach of the literature is given in Ref. (3).

The extension of the BIE method to elastoplastic problems has received much less attention. The basic theories and equations have been formulated in Refs. (3,4) but few applications have been reported. The present paper reviews some of these applications and presents details of the analyses as applied to elastoplastic torsion problems, and to the plane elastoplastic problom, with particular reference to edge-notched beams in bending. Comparisons of different formulations as well as comparisons with experimental results are presented.

ELASTOPLAETIC TORSION

The clastoplantic torsion problem can be formulated in several ways (Rei. (3)). For example, using the Prandtl stress function, F, the basic differential equation becomes

$$
\begin{equation*}
\nabla^{2} F=-2 G \alpha-2 G\left(\frac{\partial \epsilon_{2 x}^{p}}{\partial y}-\frac{\partial \epsilon_{z y}^{p}}{\partial x}\right) \equiv f(x, y) \tag{1}
\end{equation*}
$$

where G is the shoar modulus, α_{3} the linear coefficient of thermal expansion and ${ }_{4} \mathbf{z x}^{\mathbf{p}}, \epsilon_{\mathrm{zy}}^{\mathrm{p}}$ are the plastic shear strains. The corresponding BIE is

$$
\begin{equation*}
\pi F(p)=\iint_{R} f(Q) \ln r_{p q} d x d y+\int_{C}\left[F\left(\ln r_{p q}\right)_{q}^{\prime} \cdot F^{\prime} \ln r_{p q}\right] d q \tag{2}
\end{equation*}
$$

where primes denote derivatives with respect to the outward normal and where the coordinate system and the associated notation are shown in Figs. 1 and 2. For an interior point P, the multiplicr of $F(p)$ in $E q$. (2) iecomes 2π instead of π.

As an illustration of the use of Eq. (2) and its ability to solve the elastoplastic torsion problem, consider the case of a circular shaft of radius a. The radial coordinate will be dosignated by ρ, to distinguish it from r, the distance between the fixed point and the variable point appearing in Eq. (2). In polar coordinaten, because of symmetry, the function f appearing in Eq. (2) becomes

$$
\begin{equation*}
\mathbf{f}=-2 \mathbf{G} \alpha+\frac{2 \mathbf{G}}{\rho} \frac{\partial}{\partial \rho}\left(\rho \epsilon_{\mathbf{z} 0}^{\mathbf{p}}\right) \tag{3}
\end{equation*}
$$

For linear strain hardening

$$
\begin{equation*}
\varepsilon_{z 0}^{p}=A \rho+B \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
A=\frac{3 \alpha}{2\left[3+2(1+\nu) \frac{m}{1-m}\right]} \\
B=\frac{-\sqrt{3}(1+1) \epsilon_{\mathrm{o}}}{3+2(1+\nu) \frac{\mathrm{m}}{1-\mathrm{m}}}
\end{gathered}
$$

v is Poisson's ratio, ϵ_{o} is the yield $s t r a i n$, and m is the strain hardening parameter (slope of strain hardening curve divided by the modulus).

On the boundary $F(a)=0$ and because of axial symmetry $F^{\prime}(a)=$ constant. Eq. (2) then becomes

$$
\begin{equation*}
0=2 G \iint_{R}\left(2 A-\alpha+\frac{B}{\rho}\right) \ln r_{P Q} d x d y-F^{\prime}(a) \int_{C} \ln r_{p q} d q \tag{5}
\end{equation*}
$$

which upon solving for $F^{\prime}(a)$ gives

$$
\begin{equation*}
F^{\prime}(a)=G[a(2 A-\alpha)+2 B] \tag{6}
\end{equation*}
$$

Hence for any interior point

$$
\begin{equation*}
2 \pi F(p)=2 G \iint_{R}\left(2 A-a+\frac{B}{p}\right) \ln r_{p Q} d x d y-F^{\prime}(a) \int_{C} \ln r_{p q} d q \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
F(\rho)=\frac{G}{2}\left[(2 A-\alpha)\left(\rho^{2}-a^{2}\right)+4 B(\rho-a)\right] \tag{5}
\end{equation*}
$$

and the shear stress T is given by

$$
T=-\frac{\partial F}{\partial p}=2 \mathrm{C}\left[\left(\frac{\alpha}{2}-A\right)(p-B)\right]
$$

which agrees with the solution obtained in a entirely different fashion in Ref. (5). Note that this solution is valid only in the plastic region, that is, for $\rho \leq \rho_{c}$, where ρ_{c}, the elastic plastic boundary. is given by

$$
\begin{equation*}
\rho_{\mathrm{c}}=\frac{2\left(1+r^{\prime}\right) \epsilon}{\sqrt{3} \alpha} \tag{9}
\end{equation*}
$$

The formulation given by Eq. (2) can of course be used to obtain the elastoplastic solution for almost any shape cross section and any type of strain hardening. In general, however, it would soem that a tormulation in terms of the warping function (axial displacement) should be preferable, since the warping function is physically more meaningful than the stress function and more importantly, the distinction between sim. ply connected and multiply connected tegions disappears. We will therefore formulate the problem in terms of the warping function and show in some detail how the solution is obtained for a bar with a square cross section.

The BIE in terms of the warping function w is (Ref. (6))

$$
\begin{equation*}
\pi w(p)=\iint_{\mathbf{R}} f(Q) \ln r_{p Q} d A+\int_{C} w(q)\left(\ln r_{p q}\right)_{q}^{t} d q-\int_{C} w^{\prime}(q) \ln r_{p q} d q \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\frac{h_{t} \underset{x}{p}}{\partial x}+\frac{\partial k{ }_{y z}}{\partial y}\right) \tag{11}
\end{equation*}
$$

Note that Eqs. (1) and (10) imply the use of the deformation theory of plasticity. However, as shown by Prager (Kef. (7)), both the total and incremental theories of plasticity furmith the same solution to the torston problem provided either the cross section is circular or the matertal is perfectly plastic. It is reasonable to assume, therefore,
that this will be approximately true for most practical problems, indoed, it has been shown in Ref. (8) that for the caye of a square cross section with strain hardoning there is little difference between ineremental and deformation theories. The use of incremental theory doos not approciably complicate the problem and san be used in a stepwise manner as for the plane problems to be discussed subsequently.

The boundary condition to be satisfied by the warping function is (Ref. (G))

$$
\begin{equation*}
\frac{\partial w}{\partial n}=w^{\prime}=\left(r(f y-m x)+2\left(k c_{x z}^{p}+m \varepsilon_{y z}^{p}\right)\right. \tag{12}
\end{equation*}
$$

where 1, w are the direction cowes of the cutward normal, and where for a rectangular boundary segment parallel to one of the coordinate axes, the second torm on the right side of Eq. (12) alway vanishes. The normal derivative of the warping function appearing in Eq. (10) is thus known from Eq. (12) and the only unknown in Eq. (10) is w(p).

Numerical Procedure

To solve Eq. (10) for the unknown function $w(p)$, the atraightforward procedure of roplacing the integrals by summations can be used. The boundary ia divided into n intervals with a nodal point taken at the center of each interval. The unknown function is assumed constant over each interval. Similarly, the region R is divided into a number of cells and the function (assumed constant over each cell. Eq. (10) Is then written for cach nodel point as follows:

$$
\begin{equation*}
\sum_{j=1}^{n}\left(a_{i j}-\delta_{i j}{ }^{\pi) w_{j}}=\sum_{j=1}^{n} b_{i j} w_{j}+R_{i} \quad i=1,2 \ldots . . n\right. \tag{13}
\end{equation*}
$$

The coefficients $a_{i j}, b_{i j}$, and l_{j} are given in Appendix A. We thus have n equations for the n unknowns, w_{j}. This set of equations can readily be solved by any standard procedure.

Once the w_{j} are known on the boundary, Ey. (10) can be used to calculate w nt any interior point, with π replaced by 2π. However, in order to calculate the strains the derivatives of w are needed. These can be obtained by differentiating Eq. (10) under the integral sign to give

$$
\begin{align*}
& \frac{\partial W_{i}(P)}{\partial x}=\frac{1}{2 \pi} \iint_{R} f(Q) \frac{x_{P}-x_{Q}}{r_{P Q Q}^{2}} d x d y \\
& +\frac{1}{2 \pi} \int_{C} w(q) \frac{\left[\left(x_{p}-x_{q}\right)^{2}-\left(y_{p}-y_{q}\right)^{2}\right] q_{q}+2\left(x_{p}-x_{q}\right)\left(y_{p}-y_{q}\right) m_{q}}{r_{p q}^{4}} d q \\
& -\frac{1}{2 \pi} \int_{C} w^{\prime}(q) \frac{x_{p},-x_{q}}{r_{p q}^{2}} d q \tag{14}
\end{align*}
$$

For $\partial w\left({ }^{2}\right) / \partial y$ we interchange x and y.
Again the integrals are replaced by sums resulting in

$$
\begin{equation*}
\frac{\partial w\left(x_{i 0} y_{j}\right)}{\partial x}=\frac{1}{2 \pi}\left[\sum_{k=1}^{n}\left(w_{k} l_{k} A_{i j k}+w_{k} m_{k} B_{i j k}-w_{k} C_{i j k}\right)+\sum_{k, i} i_{k i} D_{i j k i}\right] \tag{15}
\end{equation*}
$$

where the coefficiente $A_{i j k}, B_{i j k}, C_{i j k}$, and $D_{i j k \ell}$ are listed in Appendix $A . \sum_{k_{i}}$ ie the sum for all the plastic cells in the region.

From the derivatives of w the total strains are computed as

$$
\left.\begin{array}{l}
c_{x z}=\frac{1}{2}\left(-\alpha y+\frac{\partial w}{\partial x}\right) \tag{16}\\
{ }_{y y z}=\frac{1}{2}\left(\alpha x+\frac{\partial w}{\partial y}\right)
\end{array}\right\}
$$

The plastic strains appearing in the definition of the function $f(x, y)$ are of course in turn nonlinear functions of the warping isection w. They can be determined from

$$
\left.\begin{array}{l}
\epsilon_{x z}^{p}=\frac{{ }^{i} p}{\epsilon_{e t}} \epsilon_{x z} \\
c_{y z}^{p}=\frac{\epsilon_{p}}{\epsilon_{e t}} \epsilon_{y z} \tag{17}
\end{array}\right\}
$$

where

$$
\begin{equation*}
\epsilon_{\mathrm{et}}=\frac{2}{\sqrt{3}} \sqrt{\left(\epsilon_{\mathrm{x} z}\right)^{2}+\left(\epsilon_{\mathrm{yz}}\right)^{2}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{p}-\mathrm{f}(\epsilon \mathrm{et}) \tag{19}
\end{equation*}
$$

Eq. (19) represents the uniaxial stress-strain curve in terms of equivalent plastic strain against equivalent total strain; that is,

$$
\begin{equation*}
\epsilon_{p}=\epsilon_{e t}-\frac{1}{3} \frac{\sigma_{\mathrm{e}}}{\mathrm{G}} \tag{20}
\end{equation*}
$$

where $\sigma_{e^{\prime}}$ the equivalent stress, represents the stress on the uniaxial atress-strain $c v_{i} v e$ and ϵ_{p} the plastic strain on that curve. Thus, for a given atress-strain curve, the relation between c_{p} and $c_{e t}$ represented by Eq. (19) can be determined using Eq. (20). For the case of linear strain hardening, the relation (19) can be written as

$$
\begin{equation*}
c_{p}=\frac{\epsilon_{c t}-\frac{2}{3}(1+1) \epsilon_{o}}{1+\frac{2}{3}(1+1) \frac{\mathrm{m}}{1-\mathrm{m}}} \tag{21}
\end{equation*}
$$

Since as noted the function is implicitly a noelinear function of the warping function w, the solution is obtained iteratively by starting with $l=0$ and calculating improved values via Eqs. (13), (13), (16), (17), (11), and back to (13), etc. This is the method of successive clastic solutions or mothod of initial strains. The tangent modulus method could be used equally well and may save on computer time. Complete dotaila of the calculations porformed hereln are given in Rel. (6).

Results

Calculations were performed by this technique for a bar of aquare crons section as shown in Fig. 3. The dimensionless angle of twist per unit length β, defined as $\alpha a / \epsilon_{0}$; where a is $1 / 2$ the side of the square, was increased in steps of one from $1=1$ to 3 = 6. Linear strain hardening was assumed with values of the strain hardening parameter taken as 0 (perfect plasticity), $0.05,0.1$, and 0.2 . Poisson's ratio was assumed as 0.3 in all calculations.

For $3=1$, the bar is elastic and a comparison was made between the analytical solution as given, for example, in Ref. (9) as well as with the finite difference solution of Ref. (10). The results are shown in Tables 1 to III. Table 1 shows the warping function as computod on the boundary of the bar cross section. The comparison with the analytical solution of Ref. (9) shows very good agreement with just four unknowns to solve for in the boundary integral method.

Table II show's the comparison for the maximum shear stress (at the center of the edge of the square) and the moment with the analytical solution of Ref. (9) and the finite difference solution of Rel. (10). Again it is seen that with just four unknowns in the boundary integral method very good results are obtained, as good as the results obtained for the finite difference method using 55 unknowns,

Table III presents the dimensionless shear stress distribution in the x-direction ${ }^{(} \tau_{x z} / 2 G \epsilon_{0}$) throughout the cross section using 10 unknowns for the boundary integral method and 55 unknowns for the finite difference method. Again excellent agreement was obtained. Actually, the results with four unknowns using the boundary integral method are almost as good, but the results with 10 unknowns are presented to match the actual (x, y) values of the finite difference results without having to cross plot.

The dimensionless anglo of twist per unit length B was then increased in unit steps to a maximum value of $\beta=6$ for each value of the strain hardening parameter m . The total boundary was divided into 80 intervals resulting in 10 equations for 10 unknowns. Several test calculations were made with fewer intervals, and the results indicated that using 48 intervals (six unknowns) changed the moment and maximum stress by at most one in the third significant figure and chanzed the maximum plastic strain by about 3 percent. All the subsequent results are therefore shown for 80 intervals (10 unknowns), although from an engineering viewpoint 48 or even 32 intervals would be sufficient.

The results of the calculations are summarized in Table IV and Figs. 4 to 6. Fig. 4 shows the dimensionless moment defined as $M^{*}=M / 2 \mathrm{Gc}_{\mathrm{o}} \mathrm{a}^{3}$ for varicus values of β and m . Fig. 5 shows the corresponding dimensionless maximum shear stresses defined as $\tau_{\text {max }}=\tau / 2 \mathrm{G}_{0}$ and Fig. 6 shows the spread of the plastic zones with an increase of the angle of twist ;

The degree of convergence of the iterative process was determined from a relation of the form

$$
\begin{equation*}
\frac{1}{M} \sum_{i=1}^{M}\left|\epsilon_{x} P_{x}\left(p_{i}\right)_{k}-\epsilon_{X}^{p}\left(P_{i}\right)_{k-1}\right|<K \tag{22}
\end{equation*}
$$

where M is the total number of points p_{i} nowing plastically and $k-1$ and k are two successive iterations. The convergence criterion K can be made as small as denired. In all the calculations the convergence number K was taken either as 0.0001 or 0.00001 . In many of the calculations both numbers were used in turn. The differences in the rasulte were found to be insignificant. For example, the number of terations for convergence for the case of maximum plastic \sqrt{n} ow, which occurred for,$i=6$ and $\mathrm{m}=0$, was 39 for $K=0.0001$ and 53 for $K=0.00001$, and the results were all the same to at least throe sipnificant figures. For the sase $B=5$ and $M=0$, the number of iterations for $K=0.0001$ was 33 . For the same case using finite differences, 203 iterations were required.

The boundary integral method is thus seen to be very suitable for the clastoplastic analysis of the torsion of prismatic bars. Very good accuracy can be obtained by using relatively small sets of linear algebraic equations.

A comparison with the finite difference method indicates a great savings in the number of unknowns that have to be determined and also a much faster convergence rate using the method of succussive elastic solutions for both formulations. This should be reflected in appreciable savings in computer time, although computer time is not a limiting factor in rany case for the torsion problem.

The boundary integit:- nuthod can readily be programmed in a straightforward manner for a digital computer. The use of the warping function to formulate the problem permits applying the method witi expal ease to both simply connected and multiply connected bodies.

TIE PLANE PROBLEM

As for the torsion problem, the plane problem can be formulated in several ways, as a nonhomogeneous biharmonic problem for the stress function (Ref. (3)), or in terms of the Navier equations of equilibrlum for the displacements (Refs. 3, 4). Both methods will be applied herein to the problem of an edge-notched beam in pure bending.

The Biharmonic Formulation
The problem of determining the state of stress and strain ir a plane clastoplastic problem can be reduced to solving the following inhomogencor biharmonic equation for the Airy stross function, φ, as shown in Ret. (5)

$$
\begin{equation*}
\nabla^{4}=g(x, y) \tag{23}
\end{equation*}
$$

$g(x, y)=-\frac{E}{1-\mu^{2}}\left[\frac{y^{2}}{y^{2}}\left(\begin{array}{c}p \\ x\end{array}+\Delta \varepsilon_{x}^{p}\right)+\frac{\partial^{2}}{7 x^{2}}\left(c_{y}^{p}+\Delta r_{y}^{p}\right)-2 \frac{1^{2}}{1 x+y}\left(c_{x y}^{p}+\Delta x_{x y}^{p}\right)\right]$

$$
\begin{equation*}
\frac{\mu \mathrm{E}}{1-p^{2}} \nabla^{2}\left(e_{x}^{p}+\Delta C_{x}^{p}+\epsilon_{y}^{p}+\Delta c_{y}^{p}\right) \tag{24}
\end{equation*}
$$

for the plane atrain case, and

$$
g(x, y)=-E\left[\frac{\partial^{2}}{\partial y^{2}}\left(\begin{array}{l}
p \tag{25}\\
x
\end{array}+\Delta x_{x}^{p}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(c_{y}^{p}+\Delta y_{y}^{p}\right)-2 \frac{\partial^{2}}{\partial x \partial y}\left(c_{x y}^{p}+\Delta x_{x y}^{p}\right)\right]
$$

for the plane cross case, where $\epsilon_{x}^{p}, c_{y}^{p}$, and ${ }_{x y}^{p}$ reprosent the ncoumulation of plastic strain inenements from the bogianing of the loading history up to, but not including the current inerement of the load, and $\Delta e_{x}^{p}, \Delta x_{y}^{p}$, and $\Delta x_{x y}^{p}$ are the incroments of plastle strain due to the current inerement of load.

The intress function φ must satisfy approprinte boundary conditions. For this problem under consideration (Fig. 7), $\varphi(x, y)$ and its outward norma' derivative $\partial \varphi / 0 n$ must satisfy the following boundary conditions (Ref. (11):

$$
\left.\begin{array}{c}
\varphi(x, y)=0 ; \frac{\partial \varphi}{\partial n}=0 \quad \text { along boundary } O A \text { and } O A^{\prime} \\
\varphi(x, y)=0 ; \frac{\partial \varphi}{\partial n}=0 \quad \text { along boundary } A B \text { and } A^{\prime} B^{\prime} \tag{26}\\
\varphi(x, y)=-\frac{\sigma_{\max }}{w}\left(\frac{x^{3}}{3}+a x^{2}+a^{2} x+\frac{a^{\prime}}{3}\right)+\sigma_{\max }\left(\frac{x^{2}}{2}+a x+\frac{a^{2}}{2}\right) ; \\
\varphi(x, y)=\frac{\sigma_{\max }}{6} ; \frac{\partial \varphi w^{\prime}}{\partial n}=0 \quad \text { along boundary CD and } C^{\prime} D^{\prime}
\end{array}\right\}
$$

To solve Eq. (23) by means of the boundary integral method, use is made of Green's scoond theorem to reduce this equation to coupled integral equations, as shown in Refs. (3) and (11). The result is
$8 \pi \varphi(x, y)-\iint_{R} \rho g(\xi, \eta) d \xi d \eta=\int_{C}\left[\varphi \frac{\partial}{\partial n}\left(\nabla^{2} \rho\right)-\frac{\partial \varphi}{\partial n} \nabla^{2} p+\phi \frac{\partial \rho}{\partial n}-\frac{\partial \psi}{\partial n} \rho\right] d q \quad$ for $P=R$
$4 \pi \varphi(x, y)-\iint_{R} \rho(\xi, \eta) d, d \eta=\int_{C}\left[\varphi \frac{\partial}{\partial n}\left(\nabla^{2} p\right)-\frac{\partial \varphi}{\partial n} \nabla^{2} p+\phi \frac{\partial \rho}{\partial n}-\frac{\partial \phi}{\partial n} \rho\right] d q \quad$ for $p \in C$
and
$2 \pi \Phi(x, y)-\iint_{\mathbb{R}} g(\xi, \eta) \ln r d \xi d q=\int_{C}\left[\frac{\partial}{\partial n}(\ln r)-\frac{i \Phi}{\partial n} \ln r\right] d q \quad$ for $p \subset \mathbb{R}$

where

$$
\begin{gathered}
\phi \# \nabla^{2} \rho \\
\rho=r^{2} \ln r
\end{gathered}
$$

and $r(x, y ; \xi, \eta)$ is the distance batween any two points $P(x, y)$ and $q(\xi, \eta)$ in the rogion R bounded ty the curve C, such that $P \subset R+C$ and $q \subset C$ (Fig. 8).

Eq. (27) would, for a known function $g(x, y)$, give us directly a solution to the biharmonic Eq. (23) providod the functions $\varphi(x, y), \partial \varphi(x, y) / \partial n, \nabla^{2} \varphi(x, y)$, and $\partial\left[V^{2} \varphi(x, y)\right] / i$ an were known na the boundary C.

However, only the stress function φ and its outward normal derivative j $\varphi /$ an
 boundary must be compatible with the given values of φ and $\partial \varphi / \partial n$. To assure this compatiblity, we have to sulve the sywtem of coupled integral Eqs. (28) and (30), which contain the unknown functions and ap/on.

Once the values of $\$$ and \dot{d} / on on the boundary C of region R are known we can proceed with the calculation of the stress ficeld in the region \mathbf{R} utilizing Eq. (27) and the equations which define φ, namely,

$$
\begin{equation*}
\sigma_{x}=\frac{\partial^{2} \varphi}{\partial y^{2}}, \quad \sigma_{y}=\frac{\partial^{2} \varphi}{\partial x^{2}}, \quad{ }^{2} x y=-\frac{\partial^{2} \varphi}{\partial x \partial y} \tag{31}
\end{equation*}
$$

The calculation of the function $\mathrm{g}(\mathrm{x}, \mathrm{y})$, which is obtained tieratively, will be discussed subsoquently.

Solution of the integral Equations

To solve the system of coupled integral equations analytically, a numerical method is ulilized in which the integral Eqs. (28) and (30) are roplaced by a system of simultancous algebraic equations.

For simplicity of notation the normal derivatives are denoted by prime superscripts. The boundiary is divided into n intervals, not necessarily equal, numbered consecutively in the direction of increasing \mathbf{q}. The center of each interval is designated as a node. The values of and $\boldsymbol{\phi}^{\prime}$ are assumed constant on cach interval and equal to the values calculated at the node.

In similar manner the interiot of region R is covered by a grid, containing m cells. The cells do not have to have equal areas. Their nodel points are located at the controlds. The value of $g(\xi, \eta)$ is assumed constant over each cell and oqual to the value calculated at the centroid. The arrangement of boundary and interior subdivisions is shown in Figs. 9 and 10.

Using these assumptions, Eqs. (28) and (30) can be replaced by a system of $2 n$ simultancous algebraice equations with $2 n$ unknowns, that is, ϕ_{i} and $\boldsymbol{\phi}_{i}$.

$$
\begin{align*}
& \left.n \omega_{i}-\sum_{k=1}^{m} \ln r_{i k}(n A)_{k}=\sum_{j=1}^{n}\left(a_{1 j} \omega_{j}+b_{i j} f j\right) \quad\right\} \tag{32}\\
& \left.\left.4 \pi \varphi_{i}-\sum_{k=1}^{m} p_{i k}(j A)_{k} \sum_{j=1}^{n}\left(c_{i j}\right)+d_{i j} \varphi j+\theta_{i j} j_{j}+I_{1 j} \varphi j\right)\right\}
\end{align*}
$$

where $i=1,2,3, \ldots, n_{i} r_{i k}$ is the distance frum $i^{\text {th }}$ node to the centrodd of the $k^{\text {th }}$ cell, A_{k} is the area of the $k^{\text {th }}$ cell, and

$$
\begin{align*}
& a_{i j}=\int_{j}\left(\ln r_{i j}\right)^{\prime} d q \\
& b_{i j}=-\int_{j} \ln r_{i j} d q \\
& c_{i j}=\int_{j} p_{i j} d q \tag{33}\\
& d_{i j}=-\int_{j} \rho_{i j} d q \\
& a_{i j}=\int_{j}\left(\nabla^{2} \rho_{i j}\right)^{\prime} d q \\
& r_{i j}=-\int_{j} \nabla^{2} j_{i j} d q
\end{align*}
$$

where integration is taken over the $j^{\text {th }}$ interval, and $r_{i j}$ is the distance from $\mathfrak{i}^{\text {th }}$ node to any point in the $j^{\text {th }}$ interval. The normal derivatives in Eqs. (33) are taken on the $J^{\text {th }}$ interval.

For curved boundaries the coefficients given ly Eqs. (33) can be evaluated, if necessary, by simpson's rule for $i \neq \mathrm{j}$. For $\mathrm{i}=\mathrm{j}$, because of the singular nature of the integrand, the integrals for the coefficients must be evaluated by a limiting process. For boundary intervals, such as tor the problem treated herein, which can be represented by straight lines a closed form solution can be oltained for thene coerficients. Boundary Eqs. (:i2) expressed in matrix form become

Thus, the problem is reduced to the solution of the following matrix systom:

$$
\begin{equation*}
[B]\{X\rangle=\{\mathbf{R}\} \tag{354}
\end{equation*}
$$

where $[B]$ is $2 n \times 2 n$ matrix and $\{X\}$ and $\{R$; are $2 n \times 1$ column matrices.
Matrix [B] is dependont only on geomotry, that is, number of nodes and their distribution on the boundary. since the matrix $\{\mathrm{R}\}$ comtaine the nonl 'roar function $\mathrm{g}(\mathcal{E}, \eta)$, which doponds on the stross fleld and thorefore on matrix $\{\mathbf{X}\}$, an itorative process will bo used to obtain the solution.

To calculate stresses, at any nodal point in the requion R, from the strowe function φ, we need not perform any mumerical difforentiation. Eq. (97) can be differentiatod tuder the integral sign and once $\$$ and ϕ^{\prime} are known on the boundary the stresses can be obtained by the same type of numerical integration as in Eqs. (32). Applying Eqs. (31) to Eq. (27) yields for tho caso of a roctangular grid the following stress equations:

$$
\begin{align*}
& \dot{8} \pi y_{y}(x, y)_{i}=\left\{\left[\ln \left(\frac{0^{2} x^{2}+\delta_{y}^{2}}{4}\right), \frac{2 \delta_{x}}{\delta_{y}} \tan ^{-1} \frac{\delta_{y}}{\delta_{x}}-1\right](\delta A)\right\}_{i=k}^{m} \sum_{k=1}^{m}\left\{\ln \left[(x-\xi)^{2}+(y-\eta)^{i}\right]\right. \tag{36}\\
& \left.+\frac{2(x-\xi)^{2}}{(x-\xi)^{2}+(y-\eta)^{2}}+1\right\}_{i k}^{i \not k},(p A)_{k}+\sum_{j=1}^{n}\left(-A_{i j^{\varphi} j}-B_{i j} j^{\circ j}+E_{i j} \phi j+F_{i j} \Phi_{i}^{\prime}\right. \\
& \left.-8 \pi ; x y^{(x, y)_{i}} \sum_{k=1}^{m}\left[\frac{2(x-\xi)(y-n)}{(x-\xi)^{2}+(y-\eta)^{2}}\right]_{i k}^{i \neq k}(g A)_{k}+\sum_{j=1}^{n}\left(G_{i j} \varphi_{j}+H_{i j} \varphi j+1_{i j} \varphi_{j}+K_{i j} \phi j\right)\right]
\end{align*}
$$

where now $i=1,2,3, \ldots, m$ refers to the centroid of the $i^{\text {th }}$ cell, δ_{x} and δ_{y} represent, respectively, s-directional and y-directional dimension of the cell. The coefficients $A_{i j}, B_{i j}, C_{i j}, D_{i j}, E_{i j}, F_{i j}, G_{i j}, H_{i j}, I_{i j}$, and $K_{i j}$ are obtained by apm propriate differentiation under the integral sign of the coeffiekents given by Eqs. (33) and are listed in Apperdix B .

The stress function φ is not constant on the loaded boundaries BC and B'C'. The assumption that ': is plece-wise constant may lead to appreciable errors in the mumerical results. To climinate this source of error, the summations givon in Eqs. (32) and (30) for intervale lying on the loded boundariow and involving the strens function are replaced by direct integ.ation.

Ikoundary Interval and Interior Grid size

The number of nothl points proseribed for the boundary is theoretically unlimited Howevor, computer storage capueity for the computer uxed and difficulties associated with inversion of large matrices limited the order of the coefficient matrix [B] of Eq. (35) used herein to $\mathbf{1 4 0}$.

Because of geometric and londing wymmetry about the x-axis, it is possible to rem duce the number of unknowns. For $2 n$ total number of nodal points the number of equations and unknowns ϕ_{i} and $\phi[$, is reduced from in to $2 n$. Adaittonal reduction in the number of unknowns is necomplished by taking into consideration 8 si . Venant's effect at the loaded boundaries (Ref. (12)).

Since the vicinity of the crack tip is of greatest interest, a fine nodal spacing along the notch was chosen. To reduce the error introduced by the clange in the interval size (Ref. (13)) around boundary points A and A^{\prime} and at the same time to obtain fine resolution at the tip of the noteh, the boundary along the notch was divided into a number u^{\prime}. win als progressively decreasing in length. The rate of change in the interval *. .rath and the resulting length of the smallest interval was frund to have a groat infusnce on tive stress field in the vicinity of the tip of the notch. The rate of change in the interval's length along theso boundaries was optimized by the mothod presented in Ref. (14). For the cases considered optimum ratios of the lengths of two consecutive boundary intervals wore found to be in the range of 1.08 to 1.10 . The resulting smallest dimensionless boundary interval lengh varied from 0.0001 to 0.0002 . A set of 140 oquations containing 140 unknowns was used. Nole that the corner points are always designated as interval points, never as nodal points, thus eliminating discontinuous functions from nusierical amalysis.

The choice of the size of the grid, which has to cover the region where plastic How is expected to occur, is of utmost importance. A two course grid will not detect changes in the values of plastic-strain for small loading increments. A too fine mesh size may result in distorted values of second-order derivatives of plastic stralns, which appear in the function $g(x, y)$. The loading increment and the grid size are related to each other. A ixad choice of either of them could result in the divergence of the iterative process. To allow the maximum of rrid poivts to be within the expected plastie zone, a variable grid spacing wais chosen. The grid used for plane strain conditions was fincr, in general, than the one used for plane stress cases.

The interiot region, where plastic flow is expected, was divided into $r \times s$ rectangular cells. Due to symmetry about the x-axis, the number of unknown functions g, appearirg in the bound ry Eqs. (32) and stress Eqs. (36), was reduced from $r \times s$ to $m=r \times(s+1) / 2$, where now the coefficients of these functions represent the sum of the effect of left-hand and right-hand sfles of the plastic field. Because of computation tince limitations, the grid was arranged in a 23×23 cell pattern, resulting in the number of unknowns $\&$ to be equal to 324 . By inereasing the number of unknowns to 400 ,
the computation time for one iteration almost doubled. The amallest cells, located in the vieinity of the tip of the notel, have dimensions $\delta_{x}{ }^{\prime} w=0.004 ; \delta_{y} / w=0.008$ for plane atrain casen, and $\delta_{x} / w=0.004_{1} \delta_{v} / w=0.016$ for plane strefis casow.

The solution to the problem was obtained by the method of successive elastic solutione as discusened for the torsion problem and dencribed in detail in Refs. (5) and (15). The computations were porformed on a digital computer uining a FORTRAN IV program with single-precision arithmetic. The matrix system given by Eq. (35) was solved using the modified Gause elimination method, which utilixes pivoting and forward and backward aubetitutions.

Results

A number of beam problems were solved for both plane strain and plane strems cases. These included notch depth to beam depti ratios of 0.3 and 0.5 , notch antgles of 3° and 10^{r}. gtrain hardening parameter values of 0.05 and 0.10 . In addition, calculations were performed using the netual stress-strain curve of a 5083 -0 aluminum alloy. For all cases Poisson's ratio was set at $0 .{ }^{\circ}$?

The load increment size used was necessarily a compromise between the accuracy desired and computational time requirod for convergence. For straln hardening parametor $\mathrm{m}=0.05$ the load increment size $\Delta \hat{q}$ defined as $\Delta v_{\text {max }} / \sigma_{o}$ was taken equal to 0.05 ; while for $m=0.10, \Delta \tilde{q}=0.10$. For the cass of a $5083-0$ aluminum alloy, where the actual stress-strain curve was used, the load was incremented by $\tilde{\Delta q}=0.025$.

For the beam with dimensionless notch depth $\tilde{a}=0.5$ the minimum load required to produce plastic flow at the most highly stressed grid pointis was found to be $\tilde{\mathbf{q}}=\mathbf{0} .30$, and for $\mathfrak{a}=0.3$ the initial load was found to be $q=0.50$. The maximum load considered was $\tilde{q}=0.7$ for the $\tilde{a}=0.5$ cases, and $\tilde{q}=0.9$ for the $\tilde{a}=0.3$ cases. In the process of solving the aforementioned problems, the case with strain hardening parameter $m=0.06$ required approximately 50 iterations for cach inerement of load $\{i . e .$, $\Delta \tilde{q}=0.05$) thr the relatively fine convergence parameter used. For cases where the strain far fening parametor $m=0.10$ the average number of iterations needed for sach increment of load (i.e., $\Delta \widetilde{q}=0.10$) was rectreed to 40 , while use of the actual stressstrain curve resulted in convergence in approximately 10 iterations for the plane strain case and in 20 iterntions for the plane stress case.

Typical results of the computations are presented in Figs. 11 to 18 and Tables V and VI. Complete detailed results are given in Ref. (11).

The growth of the plastic zone with load is shown in Figs. 11 to 14. It is seen that the shapes of the elastoplastic boundaries remain similar to each other as the load increases. As expected, plastic flow starts around the tip of the noteh and as the load increases appears also at the boundaty opposite the notch. Comparison of Figs. 11 and 12 with Figs. 13 and 14 shows that for the same loads the size of the plastic zones for plane strain are considerably smaller than for plane stross.

In the case of an clastoplastic problem the stress intensity factor K_{I} must be generalized t) the form

$$
\begin{equation*}
\mathrm{K}_{\underline{i}}^{*}\left(\sigma_{\max }\right)=\left.\lim _{r \rightarrow 0} \sqrt{2 \pi} r^{n}{ }_{\theta_{y}}(r, \theta)\right|_{\theta=0} \tag{37}
\end{equation*}
$$

where the exponent n is a function of the applied load, $\sigma_{\text {max }}$. For lincar elastic
bohavior K_{l} is identical with K_{I} and $n=1 / 2$. For the elastoplastic case the variation of n with load is shown in Tables V and VI. In the case of plane strain the wiress singularity n decreaser slowly as the lond ineruasen. For the plane stress case, there is a sudden drop in n from ite clastic value as plastic llow appears, subsem quently n slowly incruases appronching a limit as the load increases.

Variation of the dimensionless generalized stress intensity factor with load is ghown in Fig. 15 for the case of a specimen w th notch depth of $\widetilde{a}=0.5$ and $\alpha=10^{\circ}$. under plane strain condition and two values of strain hardening parameter m . The strese intengity factor shows no significant increase over the linear elastic value up to an applied load of $\widetilde{\mathbf{q}}=\mathbf{0 . 4 0}$. Above this lond K_{f} increases progrossively for both m 's, at the faster rate for the lower strain hardening parameter.

The products of yedrectional stress and total strain were also calculated for various cases. The order of singularity of that product was determined by plotting $\ln \left(\sigma_{y^{\epsilon}} y^{\prime}\right)$ against $\ln r$ and by making a least squares fit of a straight line through the plotted points. It was found to be very close to unity for all cases considered.

The y-dircetiosal notch opening displacemont was obtained for each case by numerier lintegration of the relation $\epsilon_{i j}=(1 / 2)\left(u_{i, j}+u_{j, i}\right)$ along straight line pathe. For each caze a number of paths were chosen through the plastic region nenr the notch, and the resulting displacements were averaged. In general, the notch opening displacement varies linearly with the load until the plastic zone is established at the bounda:y oppogite the notch. Then it increases rapiaiy, rasching values several times that which would be calculated from the clastic solution.

In order to verify in part the accuracy of the method used, a comparison of notch opening displacements was made with experimental esults obtainod by Bubsey and Jones (private communication from R. T. Bubsey and M. H. Jones of NASA Lewis Research Center). The specimen used in this experiment, made of aluminum 5083-0 with a length to width ratio of 4 and a crack length $\tilde{a}=0.5$, was subjected to threepoint bending. The stress-strain curve for this specimen is shown in Fig. 16. The experimental results as shown in Fig. 17 are in good agreement with numerical results obtained herein.

Finally, the j integral was evalunted for several cases. As in notch opening displacement calculations, straight line paths were chosen through the plastic zone near the tip of the notch. The integral was evaluated using values of stresses, strains, and displacements at cell centroids for a number of patis. The path independence of J was not conclusive, since the results varied up to 15 percent from the averaged value. It is possible that the results obtained herein do not indicate that the path independent property is lost but rather that the field values of the displacements are not calculated with sufficient accuracy.

The average values of the dimensionless integral as a function of load are plotted in Fig. 18 for a case of a specimen with a 10° edge notch, $\tilde{a}=0.5, \mathrm{~m}=0.05$, and plane strain condition. A: the start of plastic flow \widehat{J} increases rapidly with load. This is followed by almost linear , riation with additional load.

From the above results it, s ears that the BIE method applied to the plane problem and formulated in terms of the ti: j stress function is capable of giving detailed results such as stress and strain distributions around the tip of the noteh and, related to them, the shapes of plastic zones. This wats accomplished using a relatively small number of unknowns.

The prosence of a mingularity at the tip of the notoh makes accurate answers very difficult to obtain. Nevertheless good agreement was obtained betwoen the calculated results and experimentally measured notch opening displacement as shown in Fig. 17. some improvement in the solution techniques and further investigation of the influence of the bourdary nodml upacing and interior grid size on the renulting stress and strain fields, and therefore, on the notch cpening displacements and J integrals, is still denirable.

TIIE DISPLACEMENT FORMULATION

Although the biharmonic formulation previously demcribed uppears as a viable approach in solving the plane elastoplastic problem, wome difficulties are encountered in calculating displacements since numerical differentiations are required in the proocess which can lend to appreciable errors and inconsistency of results, A more direct formulation of the problem is given in terms of the Navier equilibrium equations for the displacements. The general equations are given in Ref. (4) and several problems using these relations are reportod in Ref. (16).

As shown in Ref. (3) the Navier equations with plastic flow can be converted to the BIE

$$
\begin{equation*}
\lambda u_{i}(P)=\int_{C}\left(U_{i j} \mathbf{F}_{j}-T_{i j} u_{j}\right) d q+\int_{R} \Sigma_{j k i}\left({ }_{j k}^{p}+\Delta \varepsilon_{j k}^{p}\right) d \Lambda \tag{38}
\end{equation*}
$$

where u_{j} and p_{j} are the boundary displacements and boundary loads, respectively, and the usual tensor notation is used. The tensors $\mathrm{U}_{\mathrm{ij}}, \mathrm{T}_{\mathrm{ij}}$, and Σ_{jki} are given by

$$
\begin{gather*}
u_{i j}=C_{1}\left(\delta_{i j} C_{2} \ln r-r_{i} r_{i j}\right) \tag{39}\\
T_{i j}=\frac{C_{3}}{r}\left[\frac{\partial r}{\partial n_{q}}\left(\delta_{i j} c_{4}+2 r_{i j} r_{j}\right)+C_{4}\left(r_{i j} n_{i}-r_{i j} n_{j}\right)\right] \tag{40}\\
\Sigma_{j k i}=\frac{C_{3}}{r}\left[C_{4}\left(\delta_{i j} r_{i k}+\delta_{k i} r_{i j}-\delta_{j k} r_{i j}\right)+2 r_{i j} r_{i j} r_{i k}\right] \tag{41}
\end{gather*}
$$

with

$$
\left.\begin{array}{l}
C_{1}=-\frac{1}{8 \pi G(1-\mu)}, C_{2}=3-4 \mu \tag{42}\\
C_{3}=-\frac{1}{4 \pi(1-\mu)}, C_{4}=1-2 \mu
\end{array}\right\}
$$

and r is the distance from the fixed point P to the variable point of integration, q. The above equations are for the case of plane strain. For plane stress one replaces μ by $\mu /(1+\mu)$. The coefficient λ is equal to 1 , if \mathbf{P} is an interior point and is equal to $1 / 2$, if $\mathrm{P}=\mathrm{p}$ is a boundary point.

The solution is now obtained by replacing the integrals by sums as before, resulting in $2 n$ simultaneous equations for the case of n boundary segments. These can be written as the matrix equation

$$
\left[\begin{array}{cc}
A+\frac{1}{2}! & B \tag{43}\\
A^{\prime} & B^{\prime}+\frac{1}{3} y
\end{array}\right]\left[\begin{array}{l}
u
\end{array}\right]=\left[\begin{array}{l}
\gamma \\
\delta
\end{array}\right]+\left[\begin{array}{l}
C \\
D
\end{array}\right]+\left[\begin{array}{c}
\Delta C \\
\Delta D
\end{array}\right]
$$

where A, B, A^{\prime}, and B^{\prime} are $n \times n$ matrices of known coefficients, u and v are the x and y displacement vectors for the boundary nodnl points. y and δ are vectorn priven by

$$
\left.\begin{array}{r}
\gamma=\alpha \mathbf{P}_{x}+s p_{y} \tag{44}\\
\delta=a^{\prime} \mathbf{p}_{x}+\beta^{\prime} \mathbf{p}_{\mathbf{y}}
\end{array}\right\}
$$

where $\alpha, \beta, \alpha^{\prime}$, and β^{\prime} are known $n \cdot n$ matrices and P_{x}, P_{y} are the x and y boundary force vectors at the nodal points. The vectors C and D are functions of the accumulated plastic flow and are known at the beginning of each load inerement. The vectors ΔC and ΔD depend on the plastie flow increments during the current load increment and are obtained by iteration. All the terms appearing in Eq\%. (43) and (44) are listed in Appendix C.

For the first boundary value problem where the loads are speeified over the complete boundary, Eq. (43) is solved directly for the unknown displacements at the boundary nodes. For a mixed boundary value problem, where the displacements at some of the nodes are specified and the loads are unknown at these nodes an obvious interchange of the appropriate columns of the cocfficient matrices must be made.

Once Eq. (43) is solved for the unknown displacements (and loads if any), the total strains are computed at any interior point by differentiating Eq. (38) with $A=1$. At an interior point $P_{i j} \equiv P\left(x_{i}, y_{j}\right)$ we can write

$$
\begin{align*}
& c_{x}\left(P_{i j}\right)=\sum_{m=1}^{n}\left(P_{x m} E_{i j m}+P_{y m} F_{i j m}-u_{m} G_{i j m}-v_{m} H_{i j m}\right)+I_{i j}+\Delta I_{i j} \\
& \epsilon_{y}\left(P_{i j}\right)=\sum_{m=1}^{n}\left(P_{x m} E_{i j m}+P_{y m} F_{i j m}^{\prime}-u_{m} G_{i j m}^{\prime}-v_{m} H_{i j m}^{\prime}\right)+I_{i j}+\Delta I! \tag{45}\\
& \left.c_{x y}\left(P_{i j}\right)=\sum_{m=1}^{n}\left(P_{x m} E_{i j}^{\prime \prime}+P_{y m} F_{i j m}^{\prime \prime}-u_{m} G_{i j m}^{\prime \prime}-v_{m} H_{i j m}\right)+I I j+\Delta I j\right\}
\end{align*}
$$

All the coeffecients are given in Appendix C. The plastic strain increments are then computed from the plastie strain-total strain relations and the stress-strnin curve as given in Rels. ($\mathbf{3}, 5$), the method of suceessive elastic solutions being used to obtain these strain increments iteratively:

It is shown in Ref. (16), that greater accuracy can be obtained for the same number of nodal points by assuming linear variations of the unknowns on the boundary intervals. This of course complicates to some extent the calculation of the coefficient matrices. Furthermore the nodal points can no longer be taken at the midpoints of the intervals, but must be taken at the end points. This introduces some further complication when a
nodal point occurs at a corner, since firstly, the boundary load may be discontinuous at a comer and secondly, the jump in the boundary integral at a comer is no longer $1 / 2$. but depend on the corner angie.

Although these additional complications can be taken care of af was done in Ref. (16), a somowhat different but approximately equivalent approach was attempted herein. The nodal points were kept at the centers of the intervals. Each interval was divided into a number of subintervals and the integral for ench subinterval was weighted linearly according to its distance from the nodal point. This approximates a linoar variation of the unknowns over the intervals.

This approach did indeed give improvod results. For example, forthe beam of Fig. 7 , with $a / w=0.5, L / w=1.2$, the plane strain elastic maximum crack opening is $E v / 6 M=5.67$. The value obtained using 90 nodal points was 4.92 assuming constant values over each interval, and was 5.62 using the linear weighting technique.

Results

Calculations were made by the above technique for the same problem as was solved by the biharmonic formulation previously described. Some preliminary results are shown in Figs. 17 and 19. Fig. 17 cenpares both the biharmonic fomulation and the displacement formulation with experi ental results for the maximum notch opening. The beharmonic and displacemont formulations give results which are in very grod agreement. The same is seen in Fig. 19 where the stress σ_{y} at a value of x very close to the notch tip is plotted against the distance from the notch centerline, y. The agreement between the two formulations is again very good. The calculations for larger load increments using the displacement formulation have not yet been carried out. These are presently under way.

A preliminary comparison of the convergence rate of the two formulations indicates that the plastic flow computations converge more rapidly using the displacement formulation. A comparison of the computer times, however, could not be made, since the two types of calculation were carried out on different computers.

CONCLUDING REMARKS

This preliminary survey of the use of BIE methods for elastoplastic problems indicates that they form a viable and worthwhile approach for solving such problems. The torsion problem in particular can easily be solved for almost any geometry cross section.

The plane elastoplastic problem can be solved by using either a blharmonic formulation or a displacement formulation. Both appear to give good results with relatively small sets of equations, even for problems with singularitics, such as beams with notches.

Although no comparison was made herein with the finite element method, such comparisons were made in Ref. (16). It is indicated in Ref. (16) that the computer times for the finite element method and BIE method (using the displacement formulation) are comparable. Finer resolution can however be obtained by the BIE method.

The application of the BIE method to elastoplastie problems is still in its early stages. Much work remains to be done in refining the techniques for optimum application.

APPENDEX A

BOUNDARY INTEGRAL COEFFICIENTS FOR TORSION PROBLEM

The division of the boundary into intervals with their corrosponding nodal points is shown in Fig. 20. The x and y coordinntes of a boundaty nodal point p_{i} are denignated as ($\left.x_{b x}, y_{b i}\right)$. The coordinates at the begiming and end of an interval (eay interval j) are desimpated by $\left(\xi_{j}, \eta_{j}\right)$ at the beginninf of the interval and by $\left(\xi_{j+1} ; \eta_{j+1}\right)$ at the and of the interval. The interval lengths h_{j} noed not be equal. The coordinaten of the centrold of an interior cell where plastic flow occurs are denigated by ($\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{f}}$).

The coafficionts in Eq. (13) are then given by

$$
\left.\begin{array}{rl}
a_{i j} & =\int_{q_{j-(1 / 2)}}^{\left(q_{j}+(1 / 2)\right.} \frac{\partial}{\partial n_{q}}\left(\ln r_{p_{i} q} q^{\prime q}\right. \tag{46}\\
& =h_{j} \frac{\left(x_{b j}-x_{b j}\right) e_{j}+\left(y_{b j}-y_{b j}\right) n_{i j}}{r_{i j}^{2}} \quad j \neq 1 \\
a_{i i}=\pi-\sum_{k \neq 1} a_{i k}
\end{array}\right\}
$$

The last relation follows from the Gaussian condition, that is,

$$
\int_{C} \frac{\partial}{\partial n_{q}} \ln r_{p q} d q=\pi
$$

To evaluate the $b_{i j}$ coefficients simpson's rule is used for the case $i \neq j$ and closed form integration is used for the case $f=j$ since the integrand is singular for $\mathbf{l}=\mathbf{j}$. The result is

$$
\left.\begin{array}{c}
b_{i j}=\frac{h_{j}}{6} \ln \left[r_{i, j-(1 / 2)}+1 \ln r_{i j}+\ln r_{i, j+(1 / 2)}\right] \quad i \neq j \\
b_{i i}=h_{i}\left(\ln \frac{h_{i}}{2}-1\right) \tag{48}\\
R_{i}=-\frac{1}{4} \sum_{k, l} r_{k \ell} \ln r_{i k \ell} \Delta A_{k \ell}
\end{array}\right\}
$$

where $\sum_{k, i}$ is the sum for all the plastic cells in the region and $\Delta A_{k \ell}$ is the area of the cell with coordinates (x_{k}, y_{f}).

The coefficients $A_{i j k}, B_{i j k}, C_{i j k}$, and $D_{i j k \ell}$ are given as follows using simpson's rule:

$$
A_{i j k}=\frac{h_{k}}{6}\left\{\frac{\left(x_{1}-\xi_{k}\right)^{2}-\left(y_{i}-\eta_{k}\right)^{2}}{r_{i j, k-(1 / 2)}^{4}}+4 \frac{\left(x_{i}-x_{b j}\right)^{2}-\left(y_{j}-y_{b j}\right)^{2}}{r_{i j k}^{4}}+\frac{\left(x_{i}-\xi_{k+1}\right)^{2}-\left(y_{j}-\eta_{k+1}\right)^{2}}{r_{i j, k+(1 / 2)}^{4}}\right\}
$$

$$
\begin{equation*}
B_{i j k}=\frac{h_{k}}{3}\left\{\frac{\left(x_{1}-\xi_{k}\right)\left(y_{j}-\eta_{k}\right)}{r_{i j, k-(1 / 2)}^{4}}+4 \frac{\left(x_{i}-x_{i_{k}}\right)\left(y_{j}-y_{b j k}\right)}{r_{i j k}^{4}}+\frac{\left(x_{i}-\xi_{k+1}\right)\left(y_{j}-\eta_{k+1}\right)}{r_{i j, k+(1 / 2)}^{4}}\right\} \tag{50}
\end{equation*}
$$

$$
c_{i j k}=\frac{h_{k}}{6}\left[\frac{x_{i}-\xi_{k}}{r_{1 j, k-(1 / 2)}^{2}}+4 \frac{x_{i}-x_{b k}}{r_{i j k}^{2}}+\frac{x_{i}-\xi_{k+1}}{r_{i j, k+(1 / 2)}^{2}}\right]
$$

(51)

$$
\begin{equation*}
D_{i j k \ell}=\frac{x_{i}-x_{k}}{\left(x_{i}-x_{k}\right)^{2}+\left(y_{j}-y_{f}\right)^{2}} \Delta A_{k f} \tag{52}
\end{equation*}
$$

APPENDIX B

COEFFICIENTS OF THE ETREES EQUATIONS (36)

The coefficients appearing in stress Eqi. (36) are given by the following relations:

$$
\begin{align*}
& A_{i j}-\frac{\partial^{2}}{\partial y^{2}}\left(e_{i j}\right)=4 \int_{j} \frac{\partial}{\partial n}\left\{\frac{\left(x_{i}-\xi\right)^{2}-\left(y_{i}-\eta\right)^{2}}{\left[\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}\right]^{2}}\right\} d y \\
& B_{i j}=\frac{\partial^{2}}{\partial y^{2}}\left(i_{i j}\right)=4 \int_{j} \frac{\left(y_{i}-\eta\right)^{2}-\left(x_{i}-\xi\right)^{2}}{\left[\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}\right]^{2}} d q \\
& c_{i j}=\frac{\partial^{2}}{\partial y^{2}}\left(c_{i j}\right)=\int_{j} \frac{\partial}{\partial n}\left\{\ln \left[\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}\right]+\frac{2\left(y_{i}-\eta\right)^{2}}{\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}}\right\} \mathrm{doq} \\
& \left.D_{i j}=\frac{\partial^{2}}{\partial y^{2}}\left(d_{i j}\right)=-\iint_{j}\left[\ln \left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}\right]+\frac{2\left(y_{i}-\eta\right)^{2}}{\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}}+1\right\} d q \\
& \left.E_{i j}=\frac{\partial^{2}}{\partial x^{2}}\left(c_{i j}\right)=\int_{j} \frac{\partial}{\partial n}\left\{\ln \left[\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}\right]+\frac{2\left(x_{i}-\xi\right)^{2}}{\left(x_{i}-\xi\right)^{2}+\left(y_{1}-\eta\right)^{2}}\right\} d q\right\} \tag{53}\\
& F_{i j}=\frac{\partial^{2}}{\partial x^{2}}\left(d_{i j}\right)=-\int_{j}\left\{\ln \left[\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}\right]+\frac{2\left(x_{i}-\xi\right)^{2}}{\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}}+1\right\} d q \\
& G_{i j}=\frac{\partial^{2}}{\partial x \partial y}\left(c_{i j}\right)=-8 \int_{j} \frac{\partial}{\partial n}\left\{\frac{\left(x_{i}-\xi\right)(y-\eta)}{\left[\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}\right]^{2}}\right] d q \\
& \text { (continued) }
\end{align*}
$$

$$
\begin{align*}
& H_{i j}=\frac{\partial^{2}}{\partial x \partial y}\left(f_{i j}\right)=8 \int_{j} \frac{\left(x_{i}-\xi\right)\left(y_{i}-\eta\right)}{\left.\left[x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}\right]^{2}} d q \\
& I_{i j}=\frac{\partial^{2}}{\partial x \partial y}\left(c_{i j}\right)=2 \int_{j} \frac{\partial}{\partial n}\left[\frac{\left(x_{i}-\xi\right)\left(y_{i}-\eta\right)}{\left[\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}\right.}\right] d q \tag{53}\\
& K_{i j}=\frac{\partial^{2}}{\partial x \partial y}\left(d_{i j}\right)=-2 \int \frac{\left(x_{i}-\xi\right)\left(y_{i}-\eta\right)}{\left(x_{i}-\xi\right)^{2}+\left(y_{i}-\eta\right)^{2}} d q
\end{align*}
$$

The evaluation of these integrals is given in Ref. (11).

APPENDLX C

COEFFICIENTS OF DISPLACEMENT FORMULATION EQUATIONE

The coefficients appearing in Eqs. (43) to (45) are given an followa:
Let

$$
\begin{aligned}
& E_{1}=\left.\theta\right|_{m} ^{m+1} \\
& E_{2}=\left.\sin \theta \cos \theta\right|_{m} ^{m+1} \\
& E_{3}=\left.\sin ^{2} \theta\right|_{m} ^{m+1} \\
& E_{5}=\left.\ln r\right|_{m} ^{m+1} \\
& E_{6}=\left.\cos ^{4} \theta\right|_{m} ^{m+1} \\
& E_{7}=\left.\sin 4_{0}^{4}\right|_{m} ^{m+1} \\
& E_{8}=\left.\tan \theta \ln r\right|_{m} ^{m+1} \\
& E_{9}=\left.\tan 0\right|_{m} ^{m+1} \\
& D=r_{m} \cos \theta_{m}
\end{aligned}
$$

where

$$
o_{m}=\sin ^{-1}\left(\operatorname{in} \frac{y_{m}-y_{i}}{r_{i m}}-m_{m} \frac{x_{m}-x_{i}}{r_{i m}}\right)
$$

Then

$$
\begin{aligned}
& A_{i j}=C_{3}\left[\left(C_{4}+1\right) E_{1}+\left(\ell^{2}-m^{2}\right) x_{2}-2 \ell m x_{3}\right] \\
& B_{i j}=C_{3}\left[2\left(m E_{2}+\left(l^{2}-m^{2}\right) E_{3}+C_{4} E_{5}\right]\right. \\
& A_{i j}=C_{3}\left[2 \ell m E_{2}+\left(\ell^{2}-m^{2}\right) E_{3}-C_{4} E_{8}\right] \\
& \mathrm{B}_{1 \mathrm{j}}=\mathrm{C}_{3}\left[\left(\mathrm{C}_{4}+1\right) \mathrm{E}_{1}-\left(\mathrm{l}^{2}-\mathrm{m}^{2}\right) \mathrm{E}_{2}+2 \ell \mathrm{mE} \mathrm{E}_{3}\right] \\
& \alpha_{i j}=D C_{1}\left[\left(C_{2}-\left(l^{2}-m^{2}\right) E_{1}-\left(C_{2}+m^{2}\right) E_{9}+2 l m E_{5}+C_{2} E_{8}\right]\right. \\
& \beta_{1 j}=\alpha_{1 j}=D C_{1}\left[-2 \ell m E_{1}+\ell m E_{9}-\left(\mu^{2}-m^{2}\right) E_{5}\right] \\
& \left.a_{1 j}=C_{1} D\left[\left(C_{2}+\ell^{2}-m^{2}\right) E_{1}-\left(C_{2}+\ell^{2}\right) E_{9}-2 \ell m E_{5}+C_{2} E_{8}\right]\right] \\
& E_{i j m}=-C_{1}\left[\left(C_{2}-\left(l^{2}-m^{2}\right) \ell E_{1}+\left(l^{3}-3 \ell m^{2}\right) E_{2}\right.\right. \\
& \left.+\left(m^{3}-3 m l^{2}\right) E_{3}-m\left(C_{2}-2 \varepsilon^{2}\right) E_{5}\right] \\
& F_{i j m}=-C_{1}\left[-2 \ell^{2} m E_{1}-\left(m^{3}-3 \ell^{2} m\right) E_{2}+\left(\ell^{3}-3 \ell m^{2}\right) E_{3}-\ell\left(\ell^{2}-m^{2}\right) E_{5}\right] \\
& E_{l j m}=-C_{1}\left[-2 \ell m^{2} E_{1}-\left(\ell^{3}-3 \ell m^{2}\right) E_{2}-\left(m^{3}-3 \ell^{2} m\right) E_{3}-m\left(\ell^{2}-m^{2}\right) E_{5}\right] \\
& F_{l j m}=-C_{1}\left[\left(C_{2}+\ell^{2}-m^{2}\right) m E_{1}+\left(m^{3}-3 \ell^{2} m\right) E_{2}\right. \\
& \left.-\left(\ell^{3}-3 \ell m^{2}\right) E_{3}+\ell\left(C_{2}-2 m^{2}\right) E_{5}\right] \\
& E_{1] m}=-C_{1}\left[\left(C_{4}-\left(\ell^{2}-m^{2}\right)\right) m E_{1}-\left(m^{3}-3 \ell^{2} m\right) E_{2}\right. \\
& \left.+\left(\ell^{3}-3 \ell m^{2}\right) E_{3}+\ell\left(C_{4}+2 m^{2}\right) E_{5}\right] \\
& \mathrm{Fijm}_{\mathrm{ij}}=-\mathrm{C}_{1}\left[\left(\mathrm{C}_{4}+\ell^{2}-\mathrm{m}^{2}\right) \ell \mathrm{E}_{1}-\left(\ell^{3}-3 \mathrm{em}^{2}\right) \mathrm{E}_{2}\right. \\
& \left.+\left(m^{3}-3 l m^{2}\right) E_{3}-m\left(C_{4}+2 l^{2}\right) E_{5}\right] \\
& G_{1 j m}=-\frac{C_{3}}{D}\left[\left(4-6 \ell^{2}-C_{4}\right) \& E_{2}+\left(C_{4}-2+10 \ell^{2}\right) m E_{3}\right. \\
& \left.+2 f\left(4 i^{2}-3\right) E_{4}+2 m\left(4 m^{2}-3\right) E_{7}\right]
\end{aligned}
$$

$$
\begin{align*}
& H_{i j m}=-\frac{C_{3}}{D}\left[\left(2-6 R^{2}-C_{4}\right) m E_{2}+\left(-C_{4}-2+10 m^{2}\right) f E_{3}\right. \\
& \left.-2 m\left(4 m^{2}-3\right) E_{4}+2!\left(4 e^{2}-3\right) E_{7}\right] \\
& G_{l_{j}}=-\frac{C_{3}}{D}\left[(2 - 6 m ^ { 2 } - C _ { 4 }) \left(E_{2}-\left(-\mathrm{C}_{4}-2+10 \varepsilon^{2}\right) m E_{3}\right.\right. \tag{56}\\
& \left.-2 f\left(4 t^{2}-3\right) E_{4}+2 m\left(4 m^{2}-3\right) E_{7}\right] \\
& H_{1 j m}=-\frac{C_{3}}{D}\left[\left(4-6 m^{2}-C_{4}\right) m E_{2}-\left(C_{4}-2+10 m^{2}\right) \in E_{3}\right. \\
& \left.+2 m\left(4 m^{2}-3\right) E_{4}-2 f\left(4 e^{2}-3\right) E_{7}\right] \\
& G \|_{m}=-\frac{C_{3}}{D}\left[m\left(6 m^{2}-5\right) E_{2}+\ell\left(10 m^{2}-3\right) E_{3}-2 m\left(4 m^{2}-3\right) E_{4}+2 \ell\left(4 \ell^{2}-3\right) E_{1}\right] \\
& \left.H_{i j m}=-\frac{C_{3}}{D}\left[f\left(6 \ell^{2}-5\right) E_{2}+m\left(3-10 t^{2}\right) E_{3}-2 f\left(4 \ell^{2}-3\right) E_{4}-2 m\left(4 m^{2}-3\right) E_{7}\right]\right]
\end{align*}
$$

and

$$
\begin{align*}
& I_{i j}=\sum_{k l}\left[s_{1111}\left(P_{i j}, Q_{k \ell}\right) \epsilon_{x}^{P}\left(Q_{k l}\right)+s_{1122}\left(P_{i j}, Q_{k l}\right) \epsilon_{y}^{p}\left(Q_{k \ell}\right)\right. \\
& \left.+2 s_{1112}\left(P_{i j}, Q_{k \ell}\right) \in{ }_{x y}^{p}\left(Q_{k \ell}\right)\right] \Delta A_{k \ell} \\
& H_{i j}=\sum_{k \ell}\left(g_{2211^{\prime}} x_{x}^{p}+g_{2222^{6}}^{p}+2 s_{2212^{6}} \frac{p y}{}\right) \Delta A_{k \ell} \tag{57}\\
& I j=\sum_{k \ell}\left(s_{1211^{f}} x_{x}^{p}+S_{1222^{6}} f_{y}^{p}+2 s_{1212^{\epsilon}} \frac{p}{x y}\right) \Delta A_{k \ell}
\end{align*}
$$

and

$$
\begin{equation*}
s_{i j k \ell}=\frac{1}{2}\left[\frac{\partial}{\partial x_{j}} \int_{A_{k i}} \sum_{k \ell i}+\frac{\partial}{\partial x_{i}} \int_{A_{k i}} \sum_{k \ell j}\right] d A \tag{58}
\end{equation*}
$$

where k e represents an interior cell.
If the nodal point i and the integration interval j are on the same straight segment of the boundary, then $D=0$ and $0-1 \pi / 2$, where the plus sign is used when j is ahead of i, and the minus sipn is used when j is behind i. This leads to $0 x \infty$ in the calculation of β_{ij} and β_{ij}. A simple limiting process shows that for this case, with $\mathrm{i} \neq \mathrm{j}$,

$$
\left.\begin{array}{c}
\beta_{1 j}= \pm c_{1}{ }_{j} m_{j}\left(r_{j+1}-r_{j}\right) \tag{50}\\
m_{j}- \pm c_{j}\left[\left[_{2}\left(r_{j+1} \ln r_{j+1}-r_{j} \ln r_{j}\right)-\left(c_{2}+l_{j}^{2}\right)\left(r_{j+1}-r_{j}\right)\right]\right.
\end{array}\right\}
$$

and for $\mathrm{i}=\mathrm{j}$

$$
\left.\begin{array}{c}
a_{i j}=2 C_{1} i_{j} m_{j} r_{j+1} \\
\beta_{i j}=2 C_{1}\left[c_{2} r_{j+1} \ln r_{j+1}-\left(c_{2}+i_{j}^{2}\right) r_{j+1}\right]
\end{array}\right\}
$$

REFERENCES

1. Eymm, C. T., "Integral Equation Methods in Elauticity and Potantial Theory," Roport prepared for National Physice Lab., MA-51, 185 s.
2. Riano, F. J., "An Intogral Equation Appronch to Boradary Value Problems of Classical Elawtontatics, " Quart. Appl. Math. , Vol. 25, Apr. 1987, p. 83.
3. Mondelson, A. " Boundary-Integral Methodis in Elaticity and Plusticity," NABA TN D 7418, 1873.
4. Swedlow, J. L. and Cruse, T. A., "Formulation of Boundary Integral Equations for Three-Dimonsional Elawto-Plastic Flow, " Int. J. Solids gtructures, Vol. 7, 1971 1, p. 1673.
5. Mendeleon, A., Plasticity: Thoury and Application. Macmillan, New York, 1968.
B. Mendelson, A., "Solution of Elastoplastic Torsion Problem by Esoundary Integral Method, " NASA TN D $7872,1975$.
6. Pragor, W., "An Introduction to the Mathematical Thoory of Planticity, " J. Apol. Phys., Vol, 18, Apr, 1047, p. 375.
7. Huth, J. H., "A Note on Plastic Torsion," J. Apollod Mech., vol. 22, Sept. 1955, p. 432 .
8. Sokolnikoff, 1. s., Mathematical Theory of Elasticity, 2nd od., McGraw-lill, Now York, 12 mb .
9. Mendelson, A., "Elastic-Plastic Torsion Problems for Strain-Hardening Materials, ${ }^{1 /}$ NASA TN D 4301, 1968.
10. Rzasnicki, W., "Plane Elasto-Dlastic Analysis of V-notetied Plate Under Ixending by Boundary Integrul Equation Method, "Ph. D. Thesis, Univ. of Toledo, 1973.
11. Gross, B., "Some Plane Problem Elastostatic Solutions for Platew Ilaving a V-Notch, " Ph. D. Thesis, Case Western Heserve Univesisity, 1970.
12. Walker, G. E., Jr., "A study of ${ }^{\prime \cdots}$ Applicability of the Mothod of Potential to Inclustons of Various Shapes in Two- and Three-Dimensional Elastic and ThermoElastic Stress Fields," Ph. D. Thesis, Univ. of Washington, 1969.
13. Rzasnicki, W., Mendelson, A., and Albers, L. U., "Application of Boundary Integral Method to Elastic Analysis of V-Notehed Benms, " NASA TN D 7424, 1973.
14. Rzasnicki, W., Mendelson, A., Albers, L. U., and Raftopoulos, D. D. , "Application of Boundary Integmi Method to Elastoplastic Analysis of V-Notehed Beams, " NASA TN D 7637, 1974.
15. Ificcurdella, P. C., "An Implementation of the Boundary-Integral Technique for Planar Problems in Elasticity and Elasto-Placticity," Ph. D. Thesis, CarnegreMellon Univ., 1973.

TABLE I. - COMPARIDON OF VALUES OF DIMENEIONLEES WARPING FUNCTION ON BOUNDARY of elastic square plate with exact elastic solution

Poundary value, y	Exact warping function, W	Value of warping function by boundary integral mothod				$\begin{gathered} \text { Boundary } \\ \text { value, } \\ y \end{gathered}$	Exact warping function, \mathbf{w}	Value of warping function by boundary intogral method			
		Intervala, n							Interva	als, n	
		4	8	12	18			4	8	12	16
0.03125	0.01095				0.01095	0.4313	0.1424				0.1424
. 04167	. 01450			0.01450		. 5417	. 1433			0.1483	
. 0.625	. 02185		0.02184			. 5625	. 1448		0.1446		
. 09375	. 03264				. 03264	. 5038	. 1461				. 1460
. 1250	. 04328	0.04311		. 04328		. 6250	. 1461	0.1446		. 1481	
. 1563	. 05374				. 05372	. 6563	. 1449				. 1449
. 1875	. 06390		. 06386			. 6873	. 1422		. 1410		
. 2085	. 07050			. 07051		. 7083	. 1386			. 1385	
. 2188	. 07380				. 07377	. 7188	. 1380				. 1380
. 2815	. 09235				. 09234	. 7813	. 1244				. 1244
2217	. 09527			. 09525		. 7917	. 1214			. 1212	
. 3125	. 1009		. 1009			. 8125	. 1148		. 1140		
. 3438	. 1090				. 1090	. 8438	. 1029				. 1027
. 3756	. 1165	. 1159		. 1164		. 8750	. 08864	. 08828		. 08811	
. 4063	. 1233				. 1232	. 9063	. 07166				. 07129
. 4375	. 1293		. 1292			. 9375	. 05168		. 05142		
. 4583	. 1228			. 1329		. 9583	. 03644			. 08621	
. 4688	. 1346				. 1346	. 9688	. 48808				. 02798

table il. - COmparison of elastic solutions for maximum
DIMENSIONLESS SHEAR STRESS AND DIMENSIONLESS
MOMENT FOR SQUARE BAR

	Exact solution	Finite difference methud (55 eqn.)	Boundary lintegral metherd	
			Intervalis, n	
			4	8
Dimensiontess mument, M^{*} Dimensionless maximum shear stress. "max	$\begin{aligned} & 1.125 \\ & .6754 \end{aligned}$	$\begin{gathered} 1.122 \\ .6725 \end{gathered}$	$\begin{aligned} & 1.128 \\ & 6724 \end{aligned}$	$\begin{aligned} & 1.127 \\ & .6747 \end{aligned}$

table iII. - COMPARISON OF ELASTIC SOLUTIONS

FOR DIMENSIONLE:SS \times DIRECTIONAL SHEAR $\text { STRESS UISTRIBUTION - } x$ [First number, exict: second. boundary integral method: thi:d. finite difference method.]						
y	x					
	n	0.2	0.4	0.6	0.8	1.0
	Elastic solutions					
1.0	$\begin{array}{r} 0.675 \\ .675 \\ .671 \end{array}$	$\begin{array}{r} 0.658 \\ .658 \\ .654 \end{array}$	$\begin{array}{r} 0.605 \\ .605 \\ .60 n \end{array}$	$\begin{gathered} 0.507 \\ .506 \\ .500 \\ \hline \end{gathered}$	0.342 .339 .330	1
0.8	$\begin{array}{r} 0.492 \\ .492 \\ .492 \end{array}$	$\begin{array}{r} 0.476 \\ .476 \\ .476 \end{array}$	$\begin{gathered} 0.427 \\ .427 \\ .428 \end{gathered}$	$\begin{array}{r} 0.338 \\ .338 \\ .339 \end{array}$	$\begin{array}{r} 0.198 \\ .199 \\ .200 \end{array}$	$\stackrel{1}{1}$
0.6	$\begin{array}{r} 0.339 \\ .339 \\ .340 \end{array}$	$\begin{array}{r} 0.326 \\ .326 \\ .327 \end{array}$	$\begin{gathered} 0.287 \\ .287 \\ .288 \end{gathered}$	$\begin{array}{r} 0.219 \\ .220 \\ .220 \end{array}$	$\begin{array}{r} 0.121 \\ .122 \\ .123 \end{array}$	0
0.4	$\begin{array}{r} 0.212 \\ .212 \\ .212 \end{array}$	$\begin{array}{r} 0.203 \\ .203 \\ .203 \end{array}$	$\begin{array}{r} 0.176 \\ .177 \\ .177 \end{array}$	$\begin{array}{r} 0.132 \\ .132 \\ .133 \end{array}$	$\begin{array}{r} 0.0714 \\ .0717 \\ .0720 \end{array}$	$\stackrel{1}{1}$
0.2	$\begin{array}{r} 0.101 \\ .101 \\ .102 \end{array}$	$\begin{array}{r} 0.0971 \\ .0971 \\ .0973 \end{array}$	$\begin{array}{r\|} 0.0839 \\ .0840 \\ .0842 \end{array}$	$\begin{gathered} 0.0623 \\ .0624 \\ .0626 \end{gathered}$	$\begin{array}{r} 0.0333 \\ .0335 \\ .0336 \\ \hline \end{array}$	1

TABLE V. - ORDER OF ETRESS SINCULARITY n AT THE TIP OF THE NOTCH

FOR A BPECIMEN WITH A SIMGLE EDGE NOOCCH SULE ECTED TO
PURE BENDINU • PLANE STRAIN
[Pulsson's rathe s : 0.33]

Dithenston- loss nutch depth. \square	Nutch angle. ir. den	Stratn lint dr cilltá par ratimer. fl	E.bistle	Dimonntenters load, it					
				04	0.5	0.6	0.7	0.8	0.9
0.3	3	0.10	0.4099	\ldots	0. 418	0.490	0, 487	0.473	0.47 A
. 3	10	10		****	406	- 497	492	. 480	487
5	10	05		0. 499	. 498	480	472	* $\times \cdot \cdots$
5	10	. 10	1	406	403	460	478		

TABLE VI. - ORDER OF STRESS SINGULARITY n
AT THE TIP OF THE NOTCH FOH A SPECIMEN
WITH A SINGLE EDGE NOTCH SUH3ECCTED
TO PLAE BENDINT, - PLANE STRENS
 ar 10°, stran hardentine parameter $\mathbf{1 1 6}-\mathbf{0}$. 10 . polssun's rathe a 0.33.$]$

Ehatic\|	Dimenstunless luid. \bar{q}				
	0.5	0.6	0.7	0.8	0.9
0.4999	0.419	0.434	0.448	0.451	0.458

Figure 1. - Prismatic bar subject to twisting couple.

Figure 2. - Region R, boundary curve c , and geometric quantities entering into boundary integrals.

Figure 3. - Square cross section.

Figure 4. - Variation of dimensionless moment with dimensionless angle of twist per unit length for several values of strain-hardening parameter for square cross section.
F-7658

Figure 6. - Plastic zone boundaries in quadrant of square cross section as func-
tion of dimensionless angle of twist per unit length for strain-hardening pa-
rameter, 0.1.

Figure 7. - Single-edge V-notched beam subject to pure bending load.

Figure 9. - Boundary and interior region subdivisions for $P(x, y) \subset C$.

Figure 8. - Sign convention for simply connected region R.

Figure 10. - Boundary and interior region subdivisions for $P(x, y) \in R$.

Figure 11. - Growth of plastic zone size with load for specimen with single edge notch subjected to pure bending. Plane strain; dimensionless notch depth $\tilde{a}=0.3$; noth angle $a=10^{\circ}$; strain hardening parameter $m=0.10$; Poisson's ratio $\mu=0.33$.

Figure 12. - Growth of plastic zone size with load in vicinity of notch for specimen with single edge notch subjected to pure bending. Plane strain; dimensionless notch depth $\overline{\text { a }} \cdot 0.3$; notch angle $a=10^{\circ}$; strain hardening parameter $m=0.10$; Poisson's ratio $\mu=0.33$.

Figure 13. - Growth of plastic zone size with load for specimen with single edge notch subjected to pure bending. Plane stress; dimensionless notch depth $\boldsymbol{z}-0.3$; notch angle $a=10^{\circ}$; strain hardening parameter $m=0.10$; Poisson's ratio $\mu=0.33$.

Figure 14. - Growth of plastic zone size with load in vicinity of notch for a specimen with single edge notch subjected to pure bending. Plane stress; dimensionless notch depth $\widetilde{a}=0.3$; notch angle $\alpha=10^{\circ}$; strain hardening parameter $\mathrm{m}=0.10$; Poisson's ratio $\mu=0.33$.

Figure 15. - Variation of dimensionless generalized stress intensity factor with load for specimen with single edge notch subjected to pure bending. Plane strain; dimensionless notch depth $\tilde{\pi}=0.5$; notch angle $a=10^{\circ}$; Poisson's ratio $\mu=0.33$.

Figure 16. - Stress-strain curve for aluminum 5083-0 used in test (private communication from R. T. Bubsey and M. H. Jones of NASA Lewis Research Center). Young's matulus of elasticity $\mathrm{E}=7.79 \times 10^{6}$ newtons per square centimeter $\left(11.3 \times 10^{6} \mathrm{mb} / \mathrm{in}\right.$. ${ }^{2}$; Poisson's ratio $\mu=0.33$.

Figure 17. - Dimensionless plane strain y-directional notch opening displacement for specimen with single edge notch subjected to pure bending. Dimensionless notch depth ä -0.5 ; notch angle $a=10^{\circ}$; Poisson's ratio $\mu=0$. 33; stress-strain curve given by figure 16.

Figure 18. - Dimensioniess plane strain J integral for specimen with single edge notch subjected to pure bending. Dimensionless notch depth $\tilde{\mathbf{a}}=0.5$; notch angle a $=10^{\circ}$; strain hardening parameter $m=0.05$; Poisson's ratio $\mu=0.33$.

Figure 19. - Dimensionless ydirectional stress at a function of distance from notch centerline, $\tilde{x}=0.0074, \tilde{a} \cdot 0.5, \tilde{q}=0.4$.

Figure 20. - Boundary and interior notation for computing coelficlents given in Appendix A.

