@ https://ntrs.nasa.gov/search.jsp?R=19750011939 2020-03-23T00:06:02+00:00Z

NASA CR-

s/ FL T
DETATLED REQUIREMENTS DOCUMENT
FOR
COMMON SOFTWARE
of
Shuttle Program Information Managﬁment System
Job Order' 88-019
| (NASA=CR-141709) DETEELEDWEEQﬁiééﬁ'"" ’

. 1ENTS - 1
DOCOMENT FOR COMMON SOFTWARE OF -SHUTTLE N75-2001
?iosigﬁ INFORMATION MANAGEMENT SYSTEM

ockheed I
Electronics Co.) Unclas
431y

- Prepared By

Lockheed .Electronics Company, Inc.
Aerospace Systems Division '
Houston, Texas
Contract NAS 5-12200

For

INSTITUTIONAL DATA SYSTEMS DIVISION;

PRICES SUBJECT 10 (Hives

National Aeronautics and Space Administration

' wmw B. JOHNSON SPACE CENTER

Houston, Texas
February 1975

Reproguced by

| NATIONAL TECHNICAL
" INFORMATION SERVICE

i U5 Dapardmeni of Commerca
1 Spnngfleld VA, 22151

e e e

LEC-5479

J15¢ Form 2025% (Rev Apr 13)
NASA-JSC

NOTTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

DETAILED REQUIREMENTS DOCUMENT JSC-09380

'COMMON SOFTWARE

- FOR

Oof

Shuttle Program Information Management System

Job

Qf/é/m

Order 88 019

PREPARED BY

Egerette, Sci

entlflc Programming Sp861allst

2a.0 7y

L. D. Bradfle}d D

S oo

ata System Programmlng Analyst

. Horton, Dat

a System Programmlng Analyst

APPROVED RY

2093 PCrs0herss

vl

W. B. Hopkins, Supervisor
SPIMS, System Design and
Integration Section

@ ?R/Qx\/

4 = ot - .
B. L. Brady# IDSD Project Manager
Shuttle Program Information
Management System

Institutional Data System Division

. b-”Reddy, Man ﬁ%r
Shuttle Informat;dn Management
Department

;aﬁ;fwA;l;ﬁmdﬁbrwx,/"

. R. Reggelbrugpe,” Chietf/FD
Data Systems Development Branch

H., F. Thompson, Director

Appllcatloné Branch

aRue W. Burbank, Project Manager -
huttle Program Information
Management System
Data Systems § Analysis Directorate

C. R. THuss, Chle%' T

Institutional Data Systems Division

Produced By: -
LOCKHEED ELECTRONICS COMPANY, INC,.

For

Institutional Data Systems Division
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LYNDON B.

JOIHNSON SPACE CENTER

HOUSTON, TEXAS

f LEC-5479

FOREWORD

Common software vas conceived as a method for
minimizing development and malntenance cost of the Shuttle'
Program Information Management System (SPIMNS) applications
¥hile reducing the time-frame of their development. This
docunment jdentifies those requirements satisfying these
criteria and also describes those stand-alone modules which

'maY be used directly by applications.

The SPINS applicatioﬁs operétinq on the CYBER 74
computer, are Specialized information'manaqement Systems_
WblCh use System 2000 as a data base manager. Commomn
software will provide the features to support user
interactions on a CRT terminal using form input and command .
response capabilities. These Eeatureb w111 be avallablc as
subroutlnes to the appllcatlons.

Ciii

- Pregeding page blank

Section

CONTENTS

1.0 SYSTEM OVERVIEW

IDENTIFICATION

BACKGROUND

GENERAL DESCRIPTION
ASSUMNPTIONS AND CONSTRAINTS

1.1
1.2
1.3
1.4
1.5

SPINMS
1.5.1_

1.5.2

SYSTEM DESCRIPTION

Hardware Configuration

CYBER 74 EBEquipment List

Software Conflquratlon

1.5.3.1 Operating System

1.5.3.2 Communications Systen

1.5.3.3 "bata Base Hanaqement
System

1.5.3.4 Applications Software

"145.3.5 Common Software

2.0 FUNCTIONAL REQUIREHENTS
' REQUIREMENT SOURCES
COMMON SOFTWARE FUNCTIGNAL REQUIREBENTS

2.1
2.2

2.2.1

Communications Interface

Requirenments

2.2.1.1 Slmpllflcatlon of I/0

2.2.1.2 Utilization of Terminal
—Capabllltles

2.2.1.3 - Terminal Independence

Input/Output Processing

2.2.2.1 ifo Translation

2.2.2.2 I/0 Conversion

2.2.2.3 Input Validation
2.2.2.4 Parameter Editinq -

iv

S1=14

1-15
1-16

Sectiop

) 3-“

3.3.3.6 Real Number Validation
3.3.3.7 Alphabetic Vvalidation
3.3.3.8 Date Validation

3.3.4 Table Processing Routines

3.3.4.1 Table Retrieval
3.3.4.2 pata Base Load
3.3.5 Input/Output Editing
3.3.5.1 Limited Editing Function
3.3.5.2 Input Editing. Routine
3.3.5.3 Output Editing Routiné
3.3.6 Construct String Arquments

"BTILITY PROCESSING

3.4.1 String Manipulation Functions

'3.4.2 TFile Input/Output

3.4.3 Foras Conetructlon Otility
3.4.4 Table Handllnq Utility

3.4.5 Characte: Set Translation Routine =

4.0 TESTING
' ‘4.1 TEST DATA SOURCES
4.2 GENERAL TEST APPROACH
) 4.3 ACCEPTANCE CRITERIA
5.0 PRODUCTIOK THMPLENMENTATION
5.1 SUBROUTINE PRIORITIES
5.2 OPERATIONAL STAGES
5.3 OPERATIONAL RoQUIRE&ENTS
5.3.1 General Operational Aspects
5.3.2 ?e:formance Considerations
5.3.3 Resource Utilization Assumptions
APPENDIX A

vi

&= ;o Ao
]

Pa@e-

3-15
3-15

3-186
3-16

‘3-16

3-17
3-17
3-17
3-18
3-138

3-19

3-19
3-20
3-20

-3-21

3-21
3-22

s B oF
S T I
-t el

|]
-l W ONY R BD b e

Section

2.2.14

2.2.5

2.2.2.5 Limited Text Editing

of Input Data

Terminal Interface Support Routines

Support Programs for Generating

Forms

Common Software Utility Routines

3.0 DESIGN REQUIREMENTS
COMMUNICATIONS INTERFACE ROUTINES

3.1

3.2

3.3

3.1.1

Input Processor

Outpﬁt Processor .-

TERMINAL INTERFACE SUPPORT ROUTINES

23.2.1

3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8

©3.2.9
3.2.1%0
3-2:11

Page

Retrieve Page

Store Page

Get Block

Store Block

Ynitialize Pornm

Initialize Form Function
Convert to Word-Boundary Format
Convert to Matrix Format
Advisory Message Handler

Special Message Routine

INPUT,OQUTPUT PROCESSING ROUTINES

3.3.1
3.3.2
3.3"3

Translation

Conversion ,
Input Validation Routines
3.3.3.1 Table validation

©3.3.3.2 Limits Validation

3.3.3.3 S2K Table Look Up
3.3.3.4 Inteqet Validation
3.3.3.5 Exponential Vvalidation

Page

2=7
2-1

2-10

FIGURES .

Fiqﬁre o : o Page
1-1 Hardvare required to support SPINS. C1-7
1-2 Software configuration for SPIMS. . 1-13

vii

ABBREVIATIONS AND ACRONYNS

ASCII hmericaﬁ Standard Code for Information Interchange

(94110 Control Data Corporation
CHA Confiquration Manaqement Accounting

COSHOS Communications-Oriented Switching Maonitor and

Operatinq System

CrU- Central Processing Unit

- CRT Cathode Ray Tube

cs Common Software _

CTH - Communication Terminal Module ‘
cTMC Communication Terminal Modular Controller
"DBMS . Data Base Management System

DHS Data Mahagement System

DRD Detailed Requirements Document

ECS Extended Core Storage ‘

FDS Functional Design Specification
GDSD ¢round Data Systems Division

HS High Speed

H2K Hazeltine 2000 Terminal

H4K Hazeltine 4000 Terminal

ICE Interface Control Executive

IDSD Institutional Data Systems Division
I/0 Input/Output

Jsc Johnson Space Center

Kbs Kilobits per second

LDP Logiéal Data Path

LEC Lockheed Electronics Corporation-

LEC/ASD Lockheed Electronics Corporation/Aerospace Systens

Division
L5 Low Speed
MML Master Measurement List

viii

NOPS
MRI
NASA
PDS
PICRS
PLI
PPy

RG
RSPI
SIS
SLAHTS
SPINS
S5PQ
S2K
TCS
TTY

Mission Operational Planning System

"MRI Systems Incorporated .

National Aeronautics-and Space hdminist;atibn
Problem Data System

Program Information Coordination and’Beview Service
Programming Langunage Interface

Peripheral Processing Unit |

Repeating Group

- Resources, Scheduling and Précurement Integration

Shuttle Information Service

‘Stowage List and Hardware Tracking Systen

Shuttle Program Informaﬁidn Management System
Space Shuttle Program Office '

Systen 2000

Teérminal Control System

Teletype

ix

1.

2.

6.

T i e e Y Ty . i s M e 1o Sy o g T M i ek Sl e

Inplementation_Feasibility sStudy_ for Space Shuttle

s e e Sy e . - o

Prograp_Mapagement Systems_Application Final Repoxrt,

LEC-1787, Lockheed Electronics Company, Inc.,
March 1974, ’ '

- e W S ke A B o -4 e s W A s S M T S S . S S S Ry L T T e i AR . v

Revision_2, SP-378-77, Sperry UNIVAC Systenms

. AR Sy v T o— T

Programming, November 1, 1973.

Bk A . e S W . W — r SSA W m, e. —— ——

—— e i e s ok S

——— e o S . y a —a ag L LDt il e s e iy il e i g i o e R e e D e i e e T s s e il g i e o e e

Description and _Programming_In

Manual, Vol. 1-3, Revision F,

——— Y e sy T A . i e - TP Sy WA e i T Pt el T o e e —

Systems Support Division, Revision 2, June, 1972.

System_2000_Reference_Hanual, MRI Systems Corporation,

o i e T i . e e e W W L . T YA T s S T

Revision A, July, 1973.

“"#inutes of CYBER/494 I/F Software Meeting of 18

December 1974", Memorandum T74CLKA-668, Control Data
Corporation, December 30. 1974.

A v i i o g g A e S A e e . S i I e T e

To Be Published.

T et e S i i BT . ey e e e o b =

9. ICE_Functional_Design Specification, 90CLKA0020-1, .
Control Data Corporaticpn, To Be Published.

el e . W W L - Wt i i Mg e A e S b —— =%

$1-09637, E0 030E, Philco-Ford Corporation,
October ‘29, 1971.

10. CRT_Terminal, System_Software Interface_Specification,

11. Hazeltine 2000 Ogerating'ﬂanual,‘HI?OOQ. Hazeltine‘

L i e R o By . b e e s . e Ml W W e W o i ol e A S i e

T e T M o e ek et e, ekl g S R Y TR s M ke B i ot e i i e i g R vy

12, Detailed Requirsments_Document for Stowage List and

T N it A T 0] e B e T e S e o

Electronics Company, Janunary 1975.

3. Detailed Reguirements_Document for Problem_Data Systemn,

i . e o s s . . S A e i, S o e i e s e i e i

Lockheed Electronics Cowmpany, Inc., To Be Published.

14. Detailed Reguirzments Document _for Shuttle Information

e e T o e e e, e i b et e e e e TR L DN S e M 2

Service, Lockheed Electronics Company, Inc., To Be
Published.

15, Detailed Requirements_Docunent

el e S Ly . s e e i el W T W L i VL ks Yy e i i g . o e P R e i, M ety e e i i S g o R e A 2S

ik . e S S, S it S S i S8 S e

" Coppany, YInc., To Be Published.

16. SPIMS/CYBER Interface Control Docmment, Control Data

Corporation, To Be Published.

xi

1.0 SYSTEM OVERVIEYW

1.1 IDENTIFICATION

_The'Cqmmon Software for the Shuttle Program Information.
;ﬂanaqementrSystém‘(SPIMS) is being developed in response to-
Job Otdér‘ée—oig, injtiated by the Data Systems Development
Branch of the Instithtional Data Systems Division, Johnson

- Space Center. Mr. B. L. Brady is the Job Order Technical

Monitor. Project nusber 6400 has been assigned to the task
for the fiscal year 1975. |

s

1.2 BACKGRGUND

_ The long~term, multi-organizational nature of the Space
Shuttle Program has presented the Space. Shuttle Program -
- Dffice (SSPO) with a monumental information management
problem. Numerous areas of responsibility have been defined
by SSP0 for the management of information. To date, JSC has
been assigned responsibility to support the following
application areas: loose equipment tracking, reliability,
gquality assurance, problem tracking, configuration
accounting, documentation accession, and requirements
traceability. . The SPIMS project was established in order to
automate the storage and retrieval of the massive volumes of

data needed to fulfill these management responsibilities.

SPINS is the ocutgrowth of a feasibility study performed
during the second quarter of fiscal year 1974. The results

o i, e e e e i e e o

et o e i Ry i Y " et i e e T - S A ——— . T L D i ey

e i A i O i e g Sy S e e ek i i W W Y

concluded that an automated data manaqgemnent systel could be
implemented at JSC. SPIMS was formally inaugurated in July
of 1974u.

Six {6}{specific-applications are being addressed by
SPINS to date: '

pProblem Data System (PD3)

‘e Configuration Managenent Accounting {CMA)

e Shuttle Information service {51I5) .
e . Stowage List and Hardware Tracking Systen (SLAHTS)
+ Master Measurenants Data Base (MMHDB)

e. Resopources, Schedullnq, and Procurement Inteqratlon
(RSFI) .

Preliminary tequlrements surveys of four (u) of these
applications {PD5, CHMA, SIS, SLAHTS) revealed that a number
of functional capabilities were required by two or more of
the applicatlons. The aggregate of these shared functional
requirements came to be known as the Common Software for
spIMS applications. The premisa on yhich the Conmon
Software concept was based was that a single developmeﬁt of
softwvare to fulfill the common requirenents vould permit its
cost to be amortized over all of the utilizing applications,
yielding a. 51qn1f1cant overall cost-savings for the SPINS.
application software. Further, the development cost of
additional applxcatlons that are anticipated in the future
yould be greatly reduced.

This Conmpon Software Requirenents Document ideﬁtifies
those applicatiomns reguirements which -have been firmly

established as peing comnon to multiple applications.

1.3 GENERAL DESCRIPTION
'The principal source of all SPIHS requirements is the
~applications: PDS, CMA, SIS and SLAHTS. The PICRS
feasibility study sinthesized a system, both hardware and
-software, to satisfy the different applications. Different =
‘function51Werejdllqcated to the systenm compbnents. One of
these components is conmon sof tware.

The current SPIMS development effort consists of only
four of the six original applications. These are PDS, CHa,
SLAHTS and SIS. This requirements development effort
further refines the PICRS feasibility study definition of
common software. The study indicates that the primary need
for conmon. software is to facilitate terminal
communications.

.When using forms (see section 2.2 for a description of
forms) it is necessary to transmit large quantities of data
to and from the terminal in a single transmission. This
capability is not supported by KRONOS/TELEX; therefore, it
¥ill be accomplished via common software. Functions common

to several applications will be supplied by comnmon software.

The PICRS feasiblity study rated System 2000 weak in
such areas as input validation and input/output translation.
Coﬁmon softvare will provide these and other input/outpﬁt_
processing capabilities. T

1.4 ASSUMPTIONS AND CONSTRAINTS

The follow1nq list enumerates those assumptions and
'constzalnts that currently gquide the implementation -of

common software as it is described in this document:

e Tt 15 assumed that a multi-thread version of System
'~2000 ulll be dellvered to the JSC CYBER 74 '
1nsta11at10n_by June 15, 1975.

= It is assumed that the CYBER 74/TCS interface will
be operational by August 19, 1375 and that testing
of that interface will begin approximately August 1,

- 1975. 1) ' ‘

. The implementation of common software.is-constraihed
to the development of a sub-program library from
which each application can extract those functional
units that are applicable to its own needs.

e The implementation of common software input ang
output processing functions; validation,
translation, editing, etc. is constrained to be
subroutines which operate on only one parameter anﬁ
perform one function. '

e The implementation of common software is constrained
from providing responses to the terminal when an '
error is reccgnized except as indicated in paragraph
3.2.10. Error indicators will be returned to the
applications program.

e Certain of the fuhttionai capabilities of common
software are required earlier than others. The
development is constrained to deliver these items in
accordance with the need dates negqgotiated with the
applications developers. (Section 5 outlines the
current priorities for the common softvare

a

developnent.)

-4

The requirements and priorities contained in this

document are based on current knowledge of the

applications listed in paragraph 1.2, Addition of
nev applications or major changes in the

requirements of the initital applications may cause

‘impact to be experienced in the common software

development effort.

. It is assumed that the communications node described

in references 7 and 8 exists in that form. (This
mode prescribes the use of mass storage files for
passing terminal input/output messages to

applications programs.)

" Subroutine calls, common software table formats, and

other interface procedures between applications
programs and common software will be defined in the

Common Sofiware Design Document.

1«5 SPIBS SYSTEM DESCRIPTION

SPINS is a multi-dimensional development effort

involving many facets of classic system development:

Hardware procurement)

Special hardware desiqn and fabrication
Communications and message switching
Operating system mod;fication and extension
Applications development

In addition, SPIMS encompasses two additional software

items:

a data base management system, and common software.

The sections that follow present an overview of the nature

and function of all of the components with special emphasis
on the common softﬁare..

1.5.1 Hardware Confiquration

'Figure'1-1 illustrates - the hardwarge compénents regquired
to support SPINMS. SPINS is primarily a terminal oriented
system. The end—ﬁser will normally have access to one ox
both of two types of terminal devices: a Hazeltine 2000 CRT
or a Hazeltine uoooe CRT. Both types are capable of
buffered operation, that‘is, local screen editing can be
performed without computer intervention. When a complete
display has beesn prepared, the user may transmit the
buffered data to the computer. Some users may access SPINS
via TTY compatible terminals operating in line mode. TCS
{described below) will be configured fo‘handle such
terminals.

Communications and message switching capabilities are
provided through the facilities of the Terminal Control
System ({TCS). Terminals may be located at JSC or at sites
remote from the Center. Communications are transmitted over
standard telephone lines in some cases and over dedicated
comnunications circuits in others. TCS comprises a UNIVAC
494 conputer and all qf the communications lines and
associated egquipment required to effect terminal input and
output. As cﬁrrently confiqured, TCS will support up to 64
SpIMS interactive terminals logically connected to the SPIMS
application computer in addition to providing computér to
computer, computer to terminal, and terminal to terminal

comnunication functions. (TCS is capable of supporting nore

1-6

TO 424 TCS

2.0

CYBER 74-1&COMPUTER SYSTEM

. 500K
NORDS
EXTUNDED
CORL
] a STURAGE
CENTRAL PROCESSUR 3030, 4
CENTRAL MEMORY l
|
gészé?;ﬁﬁi; 14 PERIPHERAL PROCESSOR CONTROLLER
B DDORNRDNC SRR
SERIAL
INTERFACE
UNIT
HMASS 5
STORACT:
CONT. ;kGE
L .
MASS
STURAGL
CONT,
DATA
CIHANNEL
CORVERTER
144
DISK
STOR.
8
DATA '
. . . LINE CARD
. 1AM
E:Jﬁvg;#n PRINTER PUNCH
. CONT, CONT,
MAG. TAPE
CONT. B
e
~n--nll‘) N

Figure 1-1 Cont.
SPIMS Hardware Configuration

LINE CARD
.:F.{‘l::l;k_ PUNCH

d A0

VD d00.

ALl

A
1
) _— BTLL " : peLt | TP
N : SYSTEM SYSTEM
¢ TR =T s. PATC _ 1.5.
MINAL oD - BAY MONEM
'.‘1 [
Q : DEDI - . :
P 1 - ' . CATED ’
s MY's, MOTEM T - ‘ : MODEM)
T E[lis—u_ ——‘UHIV\'ERS I'ATOH . NRIVERS) CTMC 1
3 R B ‘ 30 {{IGH SPELD CIRCUITS
R ' 2 LOw SPEED CIRCUITS
it nEnt -
1 CATED ; .
N MO] .
A TL.H~
é— MINAL
lﬁqnw----n-un-uunun-sn L LT L - L] LT L LY
: nint-
PICR FELL vE o BELL CATLD MOPS cMe 2
o TRe [svsny PATCH SYSTEM TERMINAL 28 HIGH SPLED CIRCUITS B 7 :
MINAL H.,s, Ay .S, SYSTEM - |4 LOW SPLED CIRCUITS
fL5. MM : MODIM DIGITAL
PATCH
‘ BAYS
PICR - ' : PATON-
. -, | Low o VF LoW "
o 28 zlffiu 1 cpppp LONSITE/OTF-STTE DEDICATED) porey EotED |AJLE
1 Lo] b mopes MODEM LINES BAY MODEM
-~ ¢ el ' , |
- | : = CTHC 3
o > e ! PATGH- 28 HIGH SPEED CIRCUITS
. a b o Vo wereons VE LOW ANLE 4 LOW SPEED CIRCUITS
A My i SPEED e CENTREX PATCH SPLTD - ,
- - -y .) 1
A Sl B ST l BAY .} MoDEM
M . l 1
I .
) |
A PICR . : PATC-
: | , : VI Low ;
5 o "‘{i‘ coustic [DIAL NETHORK 1 dorooy PATCH SPEED jrms :
oy I COUPLER : BAY HODEM > CTHC 4
\ ‘ ' 18 HIGH SPELD CIRCUITS :
, 14 LOW SPEED CIRCUITS '
= | ! :
=5/ P [! ‘ PATQI-
= 1 LR‘_‘ Uvapem ONSITE DEDICATED PAYAS ﬁ";m{ MODEM | ASLE
=) 27 v [Y|ortvers » i BAY DRIVERS
CE H.S, i i
t?: ! A VOICE FROM VDICK/DATA CLCUITS FOR PICRS
} e e COMMUNICATTONS
S, — o e 0 i e e e = | SWITCHBOARD
E‘.’) RTSehom TIRCOITS TOK ONSI1TE USERS
&=
[]
o

Figure 1-1
SPIMS Hardware Conflguratlon

‘ CTHC
\ 3

CIMC

CTHE

CTHC

FOUR-WAY
TRANSFER

CTMC
T1

CTMC
T2

FH &80 .
DRUM

* [}
Fii 880 FH43Z
CONTROL CONTROL
CONTROL
CONSOLE | | [
. 494 CENTRAL
PROCESSOR P10 S1Y
STANDARD 5YSTEM
100¢ CARD COMINL CATON CONFIGURATION WINE-BAND BELL COMPUTER
PROCESSOR i UNIT DATA SYSTEM © (BLDG 12)
STE TRANSFER MODEM
t0 otER (™ SWITCH (303)
‘ 454°s {'“
* | uNISERVO VITIC -
CONTROLLER
s S e, S
TO OTHIR
494'5

§ YIYI TAPE UNITS

Figure 1-1 Cont.
SPIMS Hardware Configuration

than 64 terminals but the communications software in the
~ CYBER 74 is being developed with that limit.))

. L. o . ' : .
The TCS message switching computer is linked to the

SPINS application computer, a Control Data Corporation,
CfBER 74, by means of an 871.6 Kbs bi-directional, full-
duplex,-éynchronous line. The CYBER 74 has an adapter which
cqnverts the TCS transmissions into 12~-bit parallel signals
that may be transmitted to its Peripheral Piocessing Unit
(PPU}. Each of these 12-bit ppPU bytes will contain t=-1,/2 8~
bit TCS characters. Each character consists of 7 data bits
and a parity bit. ' '
| The CYBER 74 is the host compyter.for most of the SPIMS
- applications. It is a distributive p:ocessinq‘machiﬁemin ;
which user proqrams perform their proéeésinq in méinframe
memory; This particular CYBER 74 is a uﬁit-processor,:i.e.,
it is confiqured with only one.Central Processing Unit.
However, it contains 14 Peripheral Processing Units (PPU's)
which perform a myriad of functions such as disc and tape
access, communications interface and ugit record.device
interface. Each of the PPU's is in essence a mini-computer
slaved to the user's mainframe program, performing such
peripheral service functions as it might be called upon to
do.

Tﬁe peripheral eguipment on the CYBER 74 includes:

.e Card reader/punch

¢ Line printer .

o HMass storage - 16 disc units (110 million characters

each)

-
]

10

» Extended core storage (503,000 words) _
* Magnetic tape drives (four 9-track, two 7-track)
_ . .
A complete equipment list is contained in section 1.5.2 of

this document.

For additional detail reqarding the Terminal Control
System, References 2 and 3 should be consulted. Reference i
provides a more detailed description of the CBC CYBER 74
computer system. |

1.5.2 CYBER 74 Equipment List

The following list identifies the hardware components
designated For SPIMS use of the CYBER 74. Starred (*) itens
are currehtly leased. Purchase of these.pay occur at some
future date., ' |

Description . hogel Quantity
Central Processor 74-16
Hemory Option - | 10265-3
PPU and I/0 Extension 10269-1
ECS ({503K) 7030-4
Data Channel Converter . 6681
Line Printer Controller 3555~1
Card Reader Controller T 3447~1
Hagnetic Tape Controller . 3528-3
Line Printer ' 512-1
'Card Reader 405
Magnetic Tape Unit - 9 Track 659~4
Magnetic Tape Unit - 7 Track 657-4
Disk Controller 7054-2

1-11

Disk Unit : - 8442

Card Punch antroiier ' 3846 .
Card Punch:. : - 415
Interface Control Unit - . 10276

Print Train Cartridge = . 595=1
1;5.3 _Software-Confiquration

The software confiquration of concern is the CYBER 74
resident software. The Terminal Control Systemn computer
operates under the COSNOS operating systenm and i¢ mentioned
here only for completeness. (See Reference 5 for a
description of COSMOS.) PFigure 1?2 is a‘diaqram of the
" software confiquration for SPINMS. -

1«5.3.1 O0Operating_System. The CYBER 74 operating
'systen to be used for SPINS is KRONOS. KRONOS is a product
of the Control Data Corporation., It is a time-sharing
system and is oriented toward interactive terminal
"operations. However, it also supports local and remote
batch processing concurrent with terminal users. It
provides facilities for hiﬁh—level programming language
programs to be created as well as an assembly language.
Langquages iﬁclude FORTRAN, COBOL, BASIC, ALGOL, and COMPASS
{assembly). (Not all of these are currently installed at
the JSC.) i ‘

1.5.3.2 Communications System. Control Data
Corporation is developing a communications processor for the
CYBER 74/TCS interface. This processor éonsists of a PPU
program called 1CE and a mainframe program called the

Interface Contrel Executive (ICE). ICE and 1CE working in

1-12

CYBER 74

¢/

- AIITYN® "00d J0

§1 AHYA TYNIDINO

RESTDENT
SOFTWARE
. ~UNIVAC 494 L ‘ :
RESIDENT - N KRONOS OPERATING SYSTEM
SOFTWARE . : .
. . . N‘ A.))
v . | //* INTERFACE CONTROL EXECUTIVE
OPERATING: . SN
SYSTEM -+ TELEX
. SYSTEM 2000 MULTI-THREAD
TS "c -
C o Y COMMON SOFTWARE
S F g o | APPLICATION #1
3 e R e COMMON SOFTWARE
A | - APPLICATION #2
R I
E /
. .. F o
c
@
o -
Q@ |
COMMON SOFTWARE
APPLICATION 4N
‘Figure 1-2. — SPIMS softwarc configuration.,

concert will suﬁporp all of the Terminal Cbntrol,System
protocol fequired to accomplish the tonHay communications
between terminals and the CYBER 74. 1CE is responsible for
interfacing with the CYBER Adaptor in order to read and
vrite TCS transmissions ovar the 81.6 Kbs line. ICE is
responsible for_acceptinq data from {or sendinq data fo)
1CE. ICE nust pass input data to the requesting application
and obtain output data from an application. ICE also has
responsibilities in the area of message logging. ICE must
interface with the data base nanagement system and those
applications running under control of the DBMS and it must
interface with normal time-sharing runs. The latter may be
- KRONOS products such as compilers, or a user program that

does not operate undsr the control 'of the DBMS.

o v s -

product‘of MRI Systems Corporation, will function as the
Data Base Hanagement System for SPIMS. System 2000 was
reconmnended as the DBHS in the feasibility study final
report. A dévelppment effort is in progress by MRI Systens
Corporatién to provide extensions to the functional
capabilities of the system. Also, a multi-thread version, a
single copy of which will support concurrent updates on a
data base, of System 2000 is scheduled to-be delivered to
+he JSC CYBER 74 facility.

Systen 2000 will be responsible for all data base
activity for SPIMS. It provides a self¥contained ¥atural
Language that permits a terminal or batch user to interact
wvith a data base without the necessity for generating source
lanquage programs. It also provides a FORTRAN or COEBOL

Programming Lanquage Interface which permits a user program

by

to manipulate the data in a more conventicnal manner.
~(Actual data base Treferences are made via calls to Systenm
2000 entry POlntS whxch permit it to exercise the required
_controls on the data base.)

Reference 6 provides a detalled descrzptlon of Systen
2000 andg -’ 1ts functional capabilities.
| 1.5.3.4 RApplications Software. Applications may be -
configured in several different ways:
o System 2000 Natural Langquage with no user code
invoked | _
* System 2000 Programming Language Interface with user
code _
= System 2000 Natural Lanquage and/or PLI with user
code and Common Software

Note that a requested extensidn to System 2000 is an
-interface between a user program and the Natural Lanquage -
capability of System 2000. It is currently anticipated that
‘no application will operate in a pure Natural Language mode
although that option remains open should it be reguired by
some future application.

An application may have need for mulﬁiple users to
interact with the same data base concurreﬁtly. Two
considerations supporting this likelihood are: 1) an
extension to System 2000 has been identified {called the
pulti-user capability); 2) multiple copies of an application
may be resident and processing in the CYBER 74 concurrently.

System 2000 has the responsibility to resolve any data base

deadlocks that might result fronm pulti-user access {(in
. particular update access) to a data base. Fach application

can function as though it were the only user of that data
hase. '

applied to application software used by more than one
application system. For example, all of the SPINS
applications must have the ability to read and write a user
terminal. Since the nature of the terminals to be used by
SPINS requires the introduction of a variety of control
sequences intd a data transmission, a simple FORTRAN or

. COBOL read function is not sufficient to interpret the data
stream. Hence, it falls to the common software to perform
the interface to terminal input and output. In this manner,
the software to-perform a given function can be generated
once, tested, and then integrated into the various

applications requiring the capability.

Just_as use of a data base management system reduces
the development costs of the applications, common software
reduces costs. Instead of designing, coding, and testing a
piece of software several times for several applications,
those functions are performed only once and the cost is

amortized over the several applications.

Connon software requirements are presented in detail in
sections 2.0 and 3.0 of this document.

v o e v s e sy, . S S iy e e e

2.1 REQUIREMENT SOURCES

The SPIMS applications PDS {see reference 13), SLAHTS
{see reference 12), CHMA {see reference 15}, and SIS {see
reference 14) were the principal sources for the derivation
of common software requirements. An analvsis of the
applications led to the identification of certain common
functions. A system was synthesized to identify the
components of the different applications which weuld be

conmona.

This system included the Terminal Control System, the
CYBER using- KRCNOS as the operating system and System 2000
as the DHS, a set of common software,'and.the SPIMS
applications. The Terminal Control SyStem} the operating
system, and the DMS satisfied many common application
requirements. Common software was identified to satisfy
conmon regquirements not handled by other systems software.

This'seétion defines the common functional requirenents
vhich were deemed to be more economically satisfied with the
development of common software rather théq by independent
development of each application.

Common software not being an operational system, has no
operational requirements itself; but it must be constructed
in such a mannér that the application's operational
requirements can be satisfied. Section 5.3 discusses

operational reguirem2nts considerations.

2.2 COMHON SOFTHAEE_PUNCTIONAL REQUIREH?NTS
The four currently identified SPINS applications to be
run on the CYRER are eoriented toward iarqe da ta baées using
Systenm 2000.as a data base manager. All systems ,
applications are reguired to provide a simple user interface
- geared to their specific users. The interface selected was

that of form mode input.

A form will consist of headings, titles; and other .
labeling and tutorialldata, and of‘paraméter areas into
which the user enters those data needed to describe his
guery or update. Use of the foreﬁround/bacquound intensity
capabilities of the Hazeltine 2000 and 40006 terminals will
enhaﬁce the'ﬁsability 6f form mode input. The‘paramétric
areas of the form can be displayed in'fopeqround while the
tutoriﬁl data are displayed in_bacquoundL Under this.
.configuration, the TAB key oh the terminal keyboard can be
used to position the cursor to the beginning of the néxt4
parametric area on the form, thus eliminating the necessity
. for manually moving the cursor character by character until
the desired position is achieved.

Many of the common softvare requirements are either
indirectly or directly intrbduced by the need of forms.
TELEX/ICE, the KRONOS Communications Softwvare Subsysten,
suffices for transmitting one line of data at a time to the.
conputer, but additional software is.needed to support full
page transmissions and allow for the use of specific
capabilities of the MOPS and Hazeltine 2000 terminals which

are needed for forms.

Common software requlrements have heen grouped for

-

~discussion in the follcwlnq cateqorles-
‘ a
. thmunicatioﬁs'interface
i. Input/Output processing
® ,Te;minal Interface‘Sppport
¢ Programmer support programs for consfructing forns
» Utility routines

The following subsections discuss these requirements.

‘26241 Communications Interface Requirenments

The common software communications interface

' requirements are to:

. simplify I/0 for applications, reduce it to a fornm
conparable to FORTRAN or COBOL I/0;
~e allow utilization of specific terminal capabilities;

. provide terminal independence for applications.

2.2.1.1 gimplification of I/0. In order to simplify

I/0 for applications, common software must make transparent
the following: '

e TCS conventions - PC5 blocks all data into 360
character or less blocks which contain control data.
This interface is described in detail in references
2 and 3.

« TELEX/ICE System 2000 interface conventions -
Terminal data comnunications between ICE and

applications, when using System 2000, are via an

interface file. The Normal INPUT and QUTPUT files
are used to communicate information with'ICEATELEX
concerning when and how much déta is being
transmitted. The details of TELEX/ICE interface
requirements are described in the SPIMS/CYBER
Interface_Control_Document {(reference 16), to be
published. | .

* Terminal contrel information - Both the MOPS and

Hazeltine 2000 terminals have control characters to
indicate the beginning and ending of information,
headers, foreground indicators, and background
indicators as well as normal text data which is in a
-modified ASCII character set. In addition, the MOPS
terminal distinguishes between a normal and
seléctive transmit by control indicator.. Position
data exists to indicate locations for character
sequences. Function keys may also be transmitted
from MOPS terminals.

Common software must process the control information
on both input and output, making them transparent to
applications, except as noted in the remainder of
this section. References 10 and 11 describe the
detailed characteristics of the HOPS and Hazeltine
2000 terminalsﬂ

——] i o s e i s e iy e o i

order to allow utilization of specific MOBS and Hazeltine-

2000 terminals capabilities, common software is required to
provide for an applicafion to distinquish whether data is
foreground or backqround. It also is reguired to provide
for transmnitting selected data to and from a terminal.

_Also,icommon:software must identify function key data on a
. MOPS terminal, ° '

0

| 2.2.1.3 E.e.zﬁi_agll;lgggg.eﬂésggg-- Some applications
require the ability to interface with more than one type of
terminal. Common software #ill be reguired to support
terminal‘indépendénqe by obtaining the type'df terminal from
ICE and:pfo;essing control information in the form necessary -
for that terminal. In addition, a blocking convention will
be defined for multiple page displays. '

ThiSAblockinq convention will be defined to allow
optimal breaking of dispiay data depending on the size. of
thé terminal, Applications will identifyAﬁo common software
the specific lines in a block and the organization of blocks
“on specific pages.)

Current requirements specify only the use of the MOPS
and Hazeltine 2000 terwninals. But, common software must be
. be constructed to incorporate other types of terminals with
minimal effort at a later date.

- 2.2.2 Inputs/Output Processing

This section identifies specific input and output
processing requirements which are needed to enhance the data

- management capabilities of System 2000.

2.2.2.1 I/0 Trapslation. This is the requirement to
provide the capability to replace on input and/or output a
corresponding table value for the specified input or output

value. -

2.2.2.2 1I/0 ggnfergion. This requirement is similar
to thé’translation process except that the replaéemegt is to.
be from a specific row in an N.dimension table. an example
of usage would be to convert from different center
termlnology to that used at JSC on input and -to perform the
converse operation on cutput.

2.2.2.3 ;ggggmggléggg;gﬂ. System 2000 performs
certain types of input validation. Common software is

reguired to perform these validations to provide better
control of error proc9551nq and prov1de addit ional input

validation. The requirements are:

e Linits validation - The determination if value is
between a pair of specified values. .

+ Table validation - The determinétion if a‘value is

- in a specific table. B -

s Date validation - The determination if a value is a
legal date. _ '

'p Integer validation =~ The determination if a value is
an integqer. _

* Alphabetic validation - The determination if a value
contains only alphabetic or blank characters.

° Real/Exponential validation - The-determination if
the value is a leqal floating point arlthmetlc
value. - o

2.2.2.4 ggggmg;g;_ﬁ@;g;gg. FORTRAN perfornms xnput and
output parameter editing via format statements in
conjunction with Read and Write statements. FORTRAN also
has BEncode and Decode statements which function like core to

core Read and Write statements. The parameter editing

requirements could be satisfied with .the Encode and becode
statement except their use requires considerable core
overhead. '

in order to eliminate thlS core overhead, it is
requlred that paramater edi t. routlnes ‘he develcped' they

will perform the following conversions for parameters:

. Display Code to real
= Display Code to integer
#« . Display Code in scientific notation to real
#» Real to Display Code
e Tnteger to Display Code.

» Real to Display Code via scientific notation

2 2.2.5 Limited Text Editing og-Inggt Data. The

ability to perform a specific text editing operation on
input data is required. This operation requires elimination
of more than one contiguous blank except at the end of
lines. Sufficient blanks would be insesrted at the end of
the line to cause the next line to start with a complete

vord rather than splitting a word between lines.
2.2.3 Terminal Interface Support Routines

The SPIMS applicationé share requirements for several.
functional capabilities in the area of terminal interface.
Commorn software will provide support routines to assist in
the fulfillment of these reguirements. The functional areas
are listed below and are followed by a brief discussion of
each:

. Preparation’ for form processing

s Page storage and retrieval

- Biock storage and'retriéval _

. Happinq_of external and internal formats to one
another ' ‘

» Advisory messége handling

e Command interpretation

Whgn a user references a given form fof the first time, the
application may not be prepared to process the data
contained on the form. In particular, the variolds tables
describing the form and its contents are not likely to be
loaded into core. The Initialize Form routine will permit
the application to load those data 'required to recoghize angd

properly process the form.

Terhinal users will be péqe-oriehted when using a SPIMNS
-application. Their operations will in general be restricted
to & single displaved paqeron the terminal. The
‘applications, however, will orient their processing 'to a
subset of a display page (that subset known as a block).-
Display blocks have been identified to simplify the
requirenent for interactinq uith two types of terminals
{Hazeltine 2000 and 4000G). AA page displayed at the user
terminal might consist of several blocks; for example, a
heading block, followed by-one orzmore user paraﬁetéf
blocks. #®When considering input from the terminal, the user
transmission mighf include all or parts of several blocks,
-although the user thinks in terms of transmitting a "“page®
to the application. Support routines will exist to aid the
applicafion_in manipulating terminal data in its two

formats. PRoutines to store and retrieve blocks and pagés

will be provided- . In addition, the capability to combine
ﬂblock5‘together to-form a page will be provided.’

G

7 Parametric data associated with a form uill nbrmally be
tranSmitted to the atplication in the form of a string of.
characters. In general, this string will not be directly
ﬁsable-by é'PLI-appliéaticn program because parameters sent
to System 2000 PLI ﬁust be properly oriented on word
houndaries. :Conversely. data to be displayed to the user
ierminql needs to be restructured as a character string.
Routines will be provided as part of conmon softyare to

facilitate these mapping processes.

Support routines to aid in the construction and display
- of advisory.messages will be included in the common software
‘library. One such rcutine would cause an advisory t¢ be
displayed from a table of messages. It would also permit
object-time parameters to be inserted into an advisory prior
- to display. Anrother routine would provide an interface to
.permit a message formatted independent of the advisory
tables to be displayed. (Such a message would already
conform to all of the communications standards and
conventions.,)

Finally, conmon software support in the area of command
interpretation will be provided,

2.2.4 Support Programs for Generating Forms
In order to facilitate development of applications, a

program is reguired to be developed to store new blank forms

(a form with tutorial data but po parameter data) on

permanent file for later access. This prbqram will fill out
certain table data to describe where parameters éxist on the
form. This table data is used«by common software in the m
processing of the form.

A1l tables used by common software may be maintained by
-~ the KRONOS Text Editer.

2.2.5 Comnon Software Utility Routines

211l common softudre are required to be developed in a
modular method. All levels of routines will be made
available-to applications proqram§ for their tse. Lower
level routines will include a string package for _
manipulating character strings, a table handling package for
manipulatinq data tables, a character set conversion)
routine, file I/0 routines, and error diéblay routines. The
~availability of these modules will facilitate ap#lication
developnent. The need for file I/0 routines arises hécause

of the overhead resulting from FORTRAN and/or COBOL .I/O.

2-10

3.0 DESIGN_REQUIBEMENTS

—
L

, This seéﬁion identifies specific, required bommon
software subroutines. The identification of these
subroutines wvas performed in conjdnction with SPINS
applicatidns'represéntativesqfrom both IDSD and LEC.

The intent of the subroutine definitions is to allow
application development to proceed concurrently with the
development of common software,

The Foutines in this section are grouped into the
following .logical groups:

= Cobnnunjications Interface Routines

e« Terminal Interface Support Routines

#« Input/Output Processing Routines

e« Utility Reoutines

A1l subroutines will be regquired to return error

indicator. Appendix A contains a description of the -
ntables" referenced in this section.

3.1 . COMMUNICATIONS INTERFACE ROUT INES

There will be two sets of communications interface

routines. These routines perform the following functions:

e Receive data from a terminal.

e Transmit data to a terminal.

A1l terminal I/0 will conform to the interface
conventions described in reference 16. '

¥4

3.1.1 Input Processor

The Input Processor will cause transfer of an entire
terminal transmission into the applications buffer. It is
analoqous to a PORTRAN binary read. '

Inputs |
Terminal input{'-(1) 'Communicationé data frow TELEX/
ICE. '
- {2y Terminal data from ICE. _
Program input: {1) Form Description Table (descrip-
tion of foreground and back-
ground usage). ')
(2} Terminal Description Table {type
of términal, length of command
"line, lenath of display aréa),
{3} Command Interpretation Table.
Processing. In order to input terminalrdata, a read
‘request will ke sent to TELEX. When a response is receivéd

from TELEX, data will be transferred from a mass storage
file., Then this routine will process the input data
according to the MOPS or Hazeltine 2000 terminal conventions
depending on the type of terminal in use. . TCS, Terminal,
and TELEX/ICE control information will bhe eliminated. The
terminal characters will be converted to CYBER 74 Display
Code and stored in a specified buffer. '

Data will be placed in the coﬁmand buffer or the data
buffer corresponding to the location of the information on
the terminal screen., The locations of the fifst and last
display characters transmitted are stored. A function key
conmand transmitted from a MOPS terminal is placed-in_a
function kéy buffer. If a command has been transmitted,
command interpretation will take place using the Coamand
Interpretation Table. An advisory will be transmitted to
the terminal for invalid commands. Control then will be
passad to the applica;ion. '

&

Qutputs

(1) Charaétér patrix corresponding to the display
terminal.

{(2) Begin and End Transmit locations.

{(3) Command/Data Indicator

{4) <Compand Type.

{5y Command line buffer.

{6) Invalid conmand Advisory (to terminal).

{7} Error Status Indicator.

3.1.2 Output Processor

The Output Processor moves data to a display terminal
in foreqround or background mode as specified.

e g o v St

terminal.

{2) Form Description Table ({description of foreground
and background usage}. Y

{3) Fornm Description Override table: .
{4) - Begin and end location of characters to beg trans-
ferred from character matrix.
{S) Transfer location to terminal.
{6) Terminal Description Table (Type of terminal,
| command line length, display area length,
advisory area length) . . |
{7} Type of Transfer (foreground only;Abaékground
only, both foreground and background, or no
character conversion). |
Processing. Information to be transferred is selected
from the data buffer and converted to the terminal display
code. Cotitrol information conforming to terminal and TCS
conventions is supplied. Data is transferred to the
terminal according to TELEX/ICYE and Sjstem'zooe interface
conventions. The program will use either MOPS or Hazeltine
2000 terminal conventions depending on the type of receiving
terminal.

During the tranSfer process characters are convérted
from 6 to 8 bits code, skipped, or moved directly as 8 bit
characters depending on the type of transfer code and the
‘description of foreground information‘whigh is contained in
the Form Deécription‘Table.' The items -indicated in the Porm
Deécription Override Table are treated as if they were
indicated as background data in the Form Description Table,

Data is sent to ICE b? first'writinq the data to a mass
storage file, then writing a message to the Output File (to
TELEX} indicating to ICE that the data file is ready.

Dutput. -

{1 'Teqpinal display characters to terminal. .

[

(2) Error status indicator.
‘3.2- TERMINAL INTERFACE SUPPORT ROUTINES

Thié éectién dééqtibes those routines currently defined
to support terminal input and output. Availability of these
routines allow for mést application code to be developed
independent of the terminal type. TFor exanple, application
code may be block oriented despite that the blocking of a
terminal is terminal type dependent, The first six of these
routines facilitate translating from blocks to pages and
pages to blocks. |

3.2.1 Page

This function displays a specified page on the
terminal. It pmay be used for responding to an application
' pageing command and/or displaying the results of a quetv
type commangd. A

Input. Paging instruction, number forvard, number
backward or specific page number, Block Description Table.

Processing. The page number is determined and the
‘specific blocks comprising the page are retrieved using the
Retrieve Page routine, then it is displayed using the Output

Proceassor.

output. Specific page to display area on the terminal,

A R e

+

3.2.2 Retrieve Page
This function retrieves tie blocks for a specified
page. This routine is used by the Page routine.

Input. Page Identification, Block Description Table
{table describing blecking for page, blocks, and address of
blocks for form), and buffer to hold page.

Brocessing. This program determines the blocks used

for a specified page and retrieves thenm using the GET Block
Routine.

Qutput. Page data in buffer..
3.2.3 Store Page

This function stores the blocks comprising a page of

data on mass ‘storaqge.

Inputs. Block Description Table {table desctibinq
blocking for page, describing blocks, and identifying
address for storing blocks on mass storaqge), buffer

containing page of data.

Processing. This brdﬁram determines the data for each
specific block of the page; then writes the block on mass
.storage using the Put Block routine.

Cutput. Specific page blocks to mass storage.

3.2.4 GET Block

. This function retrieves a specified block. This
routine will be used by the retrieve page and. application
routines.

Input. Block ID, Block Description Table} location for
block. '

Processing. The address of the specified block is
determined, the block is read into core.

Qutput. Contents of block.
3.2.5 STORE Block

This function stores a specified.block on mass storage.
This routine provides for applications to store blocks of
data which may later be retrieved by the retrieve page
routine or application routines.

lgggg. Block identification, Block Description Table,
" block of data.

Processing. If a mass storage location exists for the
specified block, the block is stored at that location.
Otherwise, a block nass storage address is determined, the
block is storéd at that address, and the Block Description
Table is updated to reflect the address.

gutput. Content of block is stored on mass storage.

3.2.6 Initialize Form

tuils runceion establishes the specified form as the
current active form and displays the first page of the blank
form.

Input. Fornm 1dent1f1cat10n from application, table
contalnlnq mass storage address for forms and Form
Description Tahle. '

Processing. The specified form is copied from

permanent files to temporary files using the Initialize Form
Function in order that the form may be updated. , The first
page of the form is displayed using the Page routine. Also,

-the Form Description and Block Description Tables are

retrieved.
Qutput. Display of first page of form, Block
Descrlptlon Tables, and Fornm Description Table.

3.2.7 Initialize Form Function
This functlon copies a blank form and makes it
available for processing. This routine is a subroutlne for

Initialize Forn.

nput. Form identification, table contaxnlnq mass

lH

storage address for forms and Form Descrlptxon Table.

Processing. The specified form is copied from
. permanent storaqe to temporary storage. The Forn
Description tables are retrieved. The Block Description

tables are updated to reflect the block addresses,

——— g d e

Cr

' output.: Form Description Table, Block Description

3.2.8 Convé;t to Word-Boundary Format

It is the purpose of this routine to facilitate the

- transformation of an input character string from the display
matrix fotmat to a Hbrd-boundary format. It can he called
to convert only one or-‘a series of contiquous parameter

fields.during an entry into the routine.

Inputs.

1. Input matrix containing terminal display
character string.

2. -Item number of first parameter to be converted.

3. Item number of last pavameter to be coanverted.

4, Address {core) of first word'in the word-
boundary list to be generated.

5. Forn Desaription‘Tablé for the form.

6. Block Description Table.

Processing. The Porm Description Table is used té
extract the location {in the display matrix) and length of
the first and each succeeding parameter (Fhrough the last
item specified in (3)). Each parameter in turn is extracted
from the display matrix and placed in the next avaiiahle
word in the word~bourndary list. The transfer is treated as
a'éhéracter transfer with left justification resulting in
the output list. Cognizance is maintained of the position
of the next available word ir the output iist and
termination of a paramater fiéld causes a polnter into that

list to be incremented unless the transfer ended at the.

right hand bounéatv'of a word. (In that case, tpe pointer
"~ yould already have been incremented.)

a o .

o s —

1. Word-boundary list with the converted input
" .. parameters stored. ‘

3.2.9 Convert to Matrix Format

This routine ‘is required to move character strings fronm
a list into the proper parametric display areas of a formn.

. Inputs.

u
i« Core address of a list. of character strings to
" be converted.

2. Core address of the display matrix to receive
converted strings.

3. Item number of first parameter to receive a
string.

4. Item number of last parameter to receive a
string.

5. Form Description Table for the form.

Form Description Table for the form. The length of the
parameter field is used initially to determine how many
chéracters (and by implication how many words) in the input
iist are to be used while noving that parameter. Each
change of parameter field will cause the routine to proceed
to the next word-boundary in the list. Any excess of

character space in the precedihg word will be ignored. All

succeeding parameters will be handled in an ideptical
fashion until the last parameter {specified in iu) above)
has been converted into the matrix format.

— . e sa s

i. Display matrix with the requested'parameter
fidlds entered. '

3.2.10 Advisory Message Handler

The Advisory Message Handler routine displays the
indicated error message. ‘ '

Input. Error ndmber, Advisory Message Table.
Processing. This routine retrieves the indicated error

message from the Advisory Messaqge Table, then using the

output processor sends it to the advisory area of the user's
terminal. '

Qutput. Advisory message to the terminal.
3.2.11 Special Message Routine
This routine provides for "bit strings” to be
transmitted to the uscer's “terminal. Its purpose is to allow
special cursor positioning and ringing the terminal bell.
Inputs.
1

. Core address of the "bi't string".
2. Length of the "bit string®.

3-11

for the "bit string™ via a call to the Output Processor,

which also routes the message on to the desired terminal.

3.1 INPUT/QUTPUT PROCESSING ROUTINES

This section defines subroutines which perform input

and output processing functions on the Display Area.

3.3.1 Translation
The Translation Routine performs translation of input
and output parameters using a table. -

Input. Value, translation table, flag indicating
whether input or'output translation is to be perforned.

Processing. The routine performs a table look-up on
the translation table using the input value, translates the
input value, if it is in the table, and sets the error

indicator if the input value is not found.
gutput. .Translatéd value, error indicator.
3.3.2‘ Conje;sion
The Conversioh Rbutine pertforms input and output

conversion for parametric values using a two dimensional
conversion table.

Input. Value, column indices for conversion table.

-

-

—— e Ay

Procesgigg.' The routine performs a table "look-up"™ on

"the conversion table for the given parameter usiné the
colunmn indices specifiad. The error indicator is set if
input value is not found. '

Qutput. Convefted‘value, error indicator.-

3.3.3 Input Validation Routines.
~ The following sot of validation routines will be
- developed.

3.3.3.1 Table validation. The Table Validation

Routine determines if the input value matches any of the

values in the table.

b~

nput. Value, validation Table.

Progessing. The routine matches the input value
against the values in the table and sets an indicator

showing the results.

Output. Success/failure indicator.

3.3.3.2 Limits _Validation. The Limits Validation

s e ot . . s s S T s

thae

Routine determines if the input value is within the limits.

Input. Value, Limits.

3-13

Processing. The routine determines if the input value

is equal to or greater than the lower limit and equal to or.
less than the upper limit. “d

3.3.3.3 S2K_Table Logk Up. The S2K Table Look Up

Routine determines if an input value is defined in am S2K
table. '

Input. Value, S2K File. A ‘

M T . i i e S e

defined in the S2K file and sets a’ success,/ failure
indicator.

Qutput. Success/failure indicator.

3.3.3.4 lnggggg_ggl;gggigg. The Integer Validation

Routine examines a string of characters to determine if they
represent an integer. '

Input. Character array.

Processing. The routine checks the array for numeric

characters; any alphahetié'characﬁer~or'special character

except a leading minus siqn is considered an error.

Qutput. Success/failure indicator.

e ke e A —

3-14

3.3.3.5 Exponential Yalidation. The Exponential

s_Validation Routine examines an array of characters to
determine if”they represent a valid exponential expression.

Input. -Character atra?.

e v v o i B S

exponential expression as defined by ASCII FORTRAN; any

Processing. The routine checks the array for a valiad
other combination of characters is considéred anl error.
Qggpg;. Success/failure indicatot. .

3.3.3.6 Beal Number_Yalidation. The Real Number

Validation Routine examines an array of characters to

determine if they represent a valid real number exXpression.
lﬁgg;. Character array.

rocessing. The routine checks the array for a valid

Iy

real number expression as defined by ASCII FORTRAN; any
other combination of characters is considered an error.

Qutput. Success/failure indicator.

3.3.3.7 Alphabetic_Validation. The alphabetic

validation routine examines an array of characters to

determine if they are all alphabetic characters.
Input. Character array.

Processing. The routine checks each character in the

array; any non-alphabetic character is considered an error.

i s e B e g

Outgut._ Success/failuré indicator.
3 3 3 8“gg§§_!glégg§;gg. The Date Validation Routine

:examlnes an array of characters to determine if they form a

valid date.
ng _ Character array.

o _Erggggaigg. Tﬁe.routine checks the characters of the
&rray for a one or two digit month not greater than twelve,
2 one or two d1q1t day of maximum magnitude detepmlned by
the month and a two or four digit year. Any other

combination of characters is'considered an error.
Qutput. Success/failure indicator.
3.3.4 Table Processing Routines
The following routines will be available for
initializing ECS tables and retrieving tables from ECS. The
ECS tables will include such tables as validation tables

which are maintained as part of the Applications System 2000 -

data base.

i R S i iy s W i o o

3.3.4.1 ZTable Retrieval. The Table Retrieval Routine

moves a specified table from ECS files to core.
Input. File name, Table name, core address.

Processing. The routine locates the table in the file

and moves it to core.

3-16

———— -

Qutput. Table.

3.3.4.2 Data_Base Load. The Data Base ‘Load Routine
- moves tables from S2K Files and permanent mass storage files
to temporary files {(on ECS) to be accessed by the

applications.
Input. S2K Files and permanent file.

Processing. The routine moves the tables in the S2K
files and permanent files to ECS files. A table), used for
locating the particular tables, is constructed in the
process. HNote: Application must supply subroutines or S2K

conmands for retrieving the application unique tables.

Oﬁtgut.‘ Tahle location of the various tables, all

e e e sl o

files on temporary files (on ECS) .
3.3.% Inputs/Output Editing

ThisISECtion defines functions for editing parameter
data. One of the functions performs limited text editing on
input. The other two capabilities are similar to those of
the FORTRAN Format statements for input and output.

3.3.5.1 Limited Edi

iting Function. This function
performs a text edit on th

e specified text string.
Input. Text string, display line length.

Processing. The text string is processed one character

i W A W e . ——

at a time from the first character to the last. Hultiple

contiguous blanks are eliminated except when the last word
on a diéplay line would be split between two lines. _¥hen a
word would'be split between tw7 lines during processinq, o
enouqgh blanks are inserted to cause the entire wofd to be
noved to the next line. A word is defined here as any
string of non~blank characters breceded-and followed by
blank characters. (Note that the end character-on a line is
defined to be the last character of a word if it is non-
blank.) ' '

3.3.5.2 ;ggg;ﬂzait;ng Routire. This routine provides
editing capabilities similar to those of a FORTRAN formatted
read statement. '

Input.- (1) character data to be edited, (2) location
for edited data, (3) type of edit ({mo editing, convert to

integer form, convert to real or exponential form).

Processing. The specified conversion is performéd.r If
an error is found in conversion, the error flag is set. The
no editing function may be used to place data on word

‘boundaries.

Qutput. (1) converted data item, {(2) error status

3.3.5.3 Output Editing Routine. This routine provides

editing capabilities similar to a FORTRAN formatted write
statement. |

3-18

“Input. (1) data iten to be edited, {(2) type of edit
~ (no edlt, convert from inteqger, convert from realj, -(3)
location ﬁor resulting characters.

Ezggg§§;gg. The specified conversion is performed. If
. .an error occurs, a blank is substituted and an error flag is.
set. I |

— e s e s iy

Outgut. Edited data characters.
3.3.6 .Construct String Arguments “*

This. function censtructs arquments for a System 2000
string reference.

;gpy;. Argument valuye, S#stem 2000 parameter number,
.System 2000 String. '

Processing. The S#stem 2000 string is searched for the
- location where the argument is to be inserted. The location
in the string is identified by a parameter identifier. The
-parameter identifier is replaced by the input arqunent
value.

Output. Updated System 2000 s=tring.

3.4 UTILITY PROCESSING

B requirement of comnon software is to provide the
appllcatlons developers with a package of subroutines that
perform utility functions. The components of this utility
package are described below. * . i

3-1¢%

3.4.1 String Manipulation Functions,.

A large portion of the dat¥a to be processed by the
SPINS applications and common software can be represented by
character strings. A family of string handling routines
will be provided to accomplish the following:

e Locate the first occurfence of a specified string
within andther string. o
* Insert one string into another strinﬁ.
e Delete one string from within another strfing.
¢ Replace one string with another string.
- Convert a string from one character Set to another
character set. ' - |
« Slide a subset of a string to the right or left.

e Extract one or more characters from a string.

Each of these functions must be capable of operating on
characters of varving size with the size to be specified by

the reoutine reguesting the fnnction.'
"3.4.2 File Input/Output

It is expected that normal FORTRAN input and output
commands will prove to be‘too_expensive in core utilization
to be used in the SPINS aﬁblicatidns.' (Such statements call
a large Control Data Product, the Record Manager, into
play.) Instead, file input/output Operaiions will be
performed in the COMEASS assembly lanquaqge using the KRONOS
RA+1 mechanism., A utility routine will be provided to the

applications to accomzplish such I/0 needs as:

3-20

'_- _Sequential feads and writes
® Random reads and writes ..
e SUBMITting of batch rums

——

e SAVE, GET, APPEND, ATTACH, etc. {permanent files)
3.4.3 Forms Construction Utility

An:independent‘éommon software program will be brovided
to assist'the applicétions aeveloper in the construction of
the forms required for his application. This program will
aid in the constructidn of the tables needed to flescribe the
form and will provide for permanent storage of the form.

‘The prcqrammer‘will construct - a new form on a MOPS or
Hazeltine 2000 terminal, A1l headings, titles, and other
tutorial information are positioned in the desiread ‘
-locations. Parametric fields are delimited (by special
characters on Hazeltine 2000, by "selective transnpits" on
MOPS5). The form would then be transmitted to the program in
block~sized segments, each of which requires a block-
identification. The program will reassenmble these blocks
into the form, construct the Form Description and Blocking
Tables, and provide permanent storage for the blocks and
tables. (Note that the terminal dependent aspects, i.e.,
which blocks are combined to display the form to a
particular type of terminal, must be supplied in a separate

operation.)
3.4.4 Table Handling Utility

This feature of the cowmmon software will provide the
application developer with tool's to manipulate the various

tables required. These tools may be called directly by the
application program. They will provide the capability to
search the N x M dimensional matrices that comprise the
tables..

3.4.5 Character Set Translation Routine

This routine converts a string of data in a given
character set to ancother specified character set. This
requirement will be =atisfied with "off the shelf" CDC

L

supplied software if possible.

Input. Translation table, character string,
translation type indicator. '

Processing. Depending on the types of translation to be

A e S e W et i iy

performed, each character is translated from display code or

from the specified code to display code.

Qutput. Translated character string.

3-22

4.0 TESTING

o .

~ Individual subroutines will be developed and tested as
a unit. When a subroutine has been tested as a unit, it
¥will be made available to applications for development.

u.j--TEST DATA SGURCES

‘Subroutines will be tested using 1) trivial input
{counts of G, etc;1, 2} input known to be in error {neqgative
counts, counts less than specified minimums, counts greater
than specified maximum, invalid formats where applicable,
etc.) to verify that such errors are detected and 3) input
known to be valid. The results will be verified to show

thﬁt the unit perfores as projected.
4.2 GENERAL TEST APPROACH

Drivers will be writtan to exercise each subroutine and
'print out the results of the exercise. Memory dumps may be

required in some cases.
.3 ACCEPTANCE CRITERIA

The developed drivers and their test results shall be
made available to IDSD for inspection. Successful exercise
o£ subroutines on an individual basis shall constitute

criteria for acceptance'of the individyal subroutine.

A Type 1 test report document will be published for
TELEX/ICE and conmon software interface testinge.

L]

. T e T e o Sl e S, . B

This section identifies ccdsiderations for implementihd
an operational set of comnon software. First, priorities
for individual routines are defined, then the different |
stages of impleqentation are -discussed, and finally

operational requirements are discussed.
5.1 SUBROUTINE PRIORITIES

Routines defined 'in Section 3 have been grouped in
terns of priority for implementation. There are t¥wo groups,
wvhere group 1 is the hiqheSt priority. The groups and the

routines conprising the groups are ‘as follows:

PRIORITY GROUP_1 =~ This priority group includes those
routines necessary to perform‘terminal input and output, and
' to-manipulaté ECS tables. The existenée of these routines
are essential to checkout bf-any application. They'afe as
follows: ' ' '

« Tnput ptoCessot

» Qutput processor

e Table Retrieval Routine

« pata Base Load Program

PRIORITY GROUP_2 - This priority group contains the

remainder of common software.

The gqroup priority reflects the iamportance of a
- specific routine in terms of early SPINS application
development. The order of implementation should consider

the priorities.

5.2 OPERATIONAL STAGES
Thete will he only one official reléase.of common
software. It will contain all of the subroutines identified
in Section 3. Tt is scheduled to be released on September

19, 1975, contingent upon assumptions identified in Section
1. ’

As unit testing is completed on individﬂal‘subroutines,‘
they will be made available to applications for
developmental purposés. During the period prior‘to the
official release, error correction wiil be made on an
informal basis without the necessity of formal Discrepancy
Reports., ' '

5.3 OPERATIONAL'REQUIREHENTS
53. % General Operational Aspects

Connon software will be used with System 2000 in both
batch and online nodes to maintain data bases. The
frequency of utilization of cdmmon seftware is -expected to.
be very high because all SPIMS CYBER applications are
currently expected to use common software. 2Applications
will require tape uUsage. Because of System 2000 multi-
thread limitations for tapéquage,’they nay require'staqiuq
to disc. A

Because applications qovern'the use of counon software,
connon software has no real operational requirements.
Common software must not prevent applications fron
satisfying their own requirements. The following sections

discuss performance considerations and resource utilization
assumptions. . .

5.3.2 vperformance Considerations

The following performance information should be

considered during the development of common software:

. Response time - applications will require veary rapid
response, generally from 5 to 30 seconds. Common
Software should be developed in such a manner as to

have minimal impact on applications response tine,

= Accuracy - common software 'should provide exact
answers, except for conversions involving real
numbers where common software is restricted to

machine accuracy.

» Reliability - in order to maximize system
reliability common software will use disc files to
back up ECS files. '

« File security - security is a function of the
| applicafion. System 2000 security features will

also be available to the application.
5.3.3 Resource Utilization Assumptions
A crude system nmodeling effort was performed as part of

the PICRS*s feasibility study. This effort indicated system
utilization as follows:

- wwiw - Very high
@ Disk Accesses - high
* Storage (on M.S. devices) - hlqh

. Computation - very low

The order of criticality of the above rescurces are
assumed to be: ' (1) core, (2) disc atcessability,.{J).mass
storage, (4) CPU computation. This order of criticality
should be assumed in desiqgn trade-offs. - But the systen
should also bhe constructed in a manner that optimization
based on real data may be easily accomplished. -

APPENDIX A
This appendix describes the tables identified during
the development of the SPINS common software reguirements.

L s e e g Sl v . e sy . i R Thie Wy Nl i M SR e, iy i o

types of terminals which may interface the applicaﬁion
defining the table. It describes the standards for dividing
the viewing area of the.terminal into the Command Atea,
Display Area, and Advisory Area. At present, two types of
terminals have been defined for SPIMS support: Hazeltine
2000, and Hazeltine 90008 (also known as MOPS). The data in
these tables are used by common software t¢ determine the
.tYpe of data included in a transmission from a user.
Conpand_Interpretation Table. This table contains a
list of all legal commands that may he executed by a user of
the application. VWhen command data are received from the
terminal, this table is referenced to determine the nature.
of the command. In addition, MOPS terminals may utilize
function keys to identify a command and this table would
contain entries to establish the type of command based on
the function key value.
Forms. A fornm represents a pseudo-table for the

system; that is, forms are treated as a table for the
purposes of stbraqe'and retrieval, hut they do not contain
.the normal tabular data. Rather, a form contains the
skeleton of a user display. Conventionally, a form will
consist of a set of structured tutorial informatioh such as
titles, headings, and conmentary, and of “fill-in-the-blank"

fields for the entry of parametric data._ There may be as

mahy forms defined for the application as Tequired to
support all of the application functions. Forms‘may.be
defined to be more than one display (page) long. ({Note that
page size is partially dependent on the type of terminal
being used.} Finally, forms are used for output as well as
input. The response to a user guery may be displayed on a
form. That samé form might then be modified and
retransmnitted as an update request.

Form Descriptiop_Table. This table describes the
structure of a given form the system to facilitate
processing of'thelform. There must exist a form description
table for every form known to the system. Such a table

defines the location of parametric .data fields on the form.

Blocking_Tables. Because forms may be nmulti-paged and
because at least two different types of terminals nust be
interfaced, a given form may be divided into small units
called blocks. Upon output of the form, these blocks must
be conbined in a predefined sequence to create a page for
display. This table describes the make-up of a form in
terms of the size and composition of individual blocks, the
order in which the blocks are to be displayed, and the
combination of blocks comprising a display on a particular

terminalrtype.

:
Advisory _Table. This table contains a list of

application user advisory messages that might be issued
during the course of a run. These are messages that are
normally displayed in the Advisory Area of a user's

terminal.

A-2

Taglgngggg;gg_EgQ;g. " This table serves as a master
[4d1rector7 for all of the tables known to the svstem. . It
) -,-‘ S

3.1 o

* ‘the table can be retrieved. There will be a single

be used to locate a specific table when regquired so

. COPY of this table for each application.

