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DEVELOPMENT OF A METHOD FOR OPTIMAL MANEUVER

ANALYSIS OF COMPLEX SPACE MISSIONS

By Stewart F. McAdoo, Jr., Donald J. Jezewski, and G. S. Dawkins*
Lyndon B. Johnson Space Center

SUMMARY combined programs to find solutions to missions per-
formed by spacecraft having low thrust levels, for which
solutions were previously not possible. On the other

Several approaches have been applied to the problem hand, the o program is in itself sufficiently accurate for
of analyzing missions for spacecraft that have thrust a large number of applications, and the inverse-square
levels low enough that the impulsive thrusting approxi- program could be used to verify that accuracy when
mation is not valid. The principles of optimal control necessary.
were applied to the problem of multiple-burn spacecraft It is expected that the mission planner can estimate
trajectories, which resulted in a method (called herein with reasonable accuracy the array of engine switch
the inverse-square program) by which optimum times. On an optimal trajectory, the spacecraft thrust
multiple-burn trajectories could be found by determin- vector is alined with the first three components of the
ing the times at which the rocket engine should be costate vector (called the primer vector); so, with this in
switched on and off and by determining initial values for mind, the engineer can make some estimate of the
the differential equations describing the behavior of the direction of the primer vector. The last three
costate vector. An optimum impulsive solution to the components of the costate vector, which are called the
problem was computed and thrust arcs formed around primer vector derivative, cannot be estimated by associa-
the impulses. This program successfully found solutions tion with physical properties of the mission under
to problems, but it was of limited usefulness because consideration. In this study, a scheme is presented for
numerical integration of state, costate, and perturbation estimating the primer vector derivative. This scheme
differential equations, across thrust arcs required a .requires the planner to make some estimate of engine
significant amount of computer time for many problems switch times and estimate the approximate direction the
and because the scheme for determining starting iterates thrust vector should be oriented at the start of each
was not suitable for problems in which the spacecraft thrust arc. An initial costate vector based on these
thrust level was low. estimates will be generated and will be passed on to the

To reduce the time required for computing multi- optimization program, which is the previously described
burn trajectories, a second program (called herein the c combination of programs. As a result, a program that
program) was based on the assumption that, on thrust does not require the user to have knowledge of optimal
arcs, the gravitational acceleration vector varies linearly control principles is now available for optimal analysis of
with the radius vector. This assumption resulted in a multiple-burn space missions. Several examples of solu-
closed-form solution to the state and costate differential tions to missions of interest are presented to demon-
equations across the thrust arcs that greatly reduced the strate the versatility of the program. The optimal
trajectory computation time. controls for three different space missions are given.

The inverse-square and c programs are similarly
structured. A starting iterate for the inverse-square pro- INTRODUCTION
gram obtained from the o program would not have
limitations imposed by the thrust level; and, because it is
obtained from a finite thrust program, it would be more To reduce the high cost of space flight, thrusting
accurate than the method of forming thrust arcs around maneuvers and orbit parameters must be planned so that
impulses. The most obvious result of the increased missions are performed in an efficient manner. As mis-
accuracy would be the reduction in computer time sions become more complex and require more
required. Another advantage would be the ability of the maneuvers to accomplish the mission goals, and as

*University of Houston.



spacecraft thrust levels are reduced to lower vehicle cost, of limited usefulness because numerical integration of

it becomes increasingly difficult for mission planners to state, costate, and perturbation differential equations

determine an efficient mission plan. across thrust arcs required a significant amount of

Numerous computer programs have been developed computer time for many problems and because the

which, under various assumptions and restrictions, are scheme for determining starting iterates was not suitable

intended to aid the mission planner. In many of these for problems in which the spacecraft thrust level was

programs, the assumption is made that maneuvers to low.

change the shape and size of the spacecraft orbit are In an effort to reduce the time required for comput-

made impulsively (i.e., the maneuver is assumed to be an ing multiburn trajectories, Jezewski (ref. 7) recently

instantaneous change in velocity). The assumption of an produced a program based on the principles of optimal

impulsive maneuver is valid when the spacecraft thrust control similar to the Brown, Harrold, and Johnson

level is high enough that the actual time required to program except that he made the assumption that the

make the maneuver is small with respect to the total gravitational acceleration vector varies linearly with the

mission time. Perhaps the most general of these pro- radius vector. This assumption resulted in a closed-form

grams is the one described by Jezewski and Rozendaal solution to the state and costate differential equations

(ref. 1). This program, which requires only initial and across the thrust arcs, which greatly reduced the trajec-

final conditions, will produce a mission profile that gives tory computation time.

the optimum number, placements, directions, and sizes Tarbet's version of the Brown, Harrold, and Johnson

of the impulsive maneuvers. program and Jezewski's program, if combined, would

Various approaches have been applied to the problem complement each other. Jezewski's program can be used

of analyzing missions for spacecraft that have thrust to provide a starting iterate for Tarbet's program,
levels low enough that the impulsive-thrusting approxi- because the two programs are similarly structured. A

mation is not valid. One approach is to assume a near- starting iterate obtained from Jezewski's program would

optimum guidance algorithm and numerically integrate not have limitations imposed by the thrust level; and,

the equations of motion through thrusting maneuvers because it is obtained from a finite-thrust program, it

(e.g., ref. 2). Another approach is to assume a behavior would be more accurate than the method of forming

for the vehicle controls and directly optimize the param- thrust arcs around impulses. The most obvious result of

eters that describe that behavior (e.g., ref. 3). the increased accuracy would be the reduction in

Brown, Harrold, and Johnson (ref. 4) applied the computer time required. Another advantage would be

principles of optimal control to the problem of the ability of the combined programs to find solutions

multiple-burn spacecraft trajectories. The result was a to missions performed by spacecraft having low thrust

method by which optimum multiple-burn trajectories levels, for which solutions were previously not possible.

could be found by determining the times at which the On the other hand, Jezewski's program is in itself suf-

rocket engine should be switched on and off and by ficiently accurate for numerous applications, and

determining initial values for the differential equations Tarbet's program could be used to verify that accuracy

describing the behavior of the costate vector. The co- when necessary. Thus, the use of Jezewski's program

state vector is the vector of Lagrange multipliers that followed by verification of certain important solutions

adjoins the equations of motion of the state vector to with Tarbet's program would allow parametric studies

the performance functional and that describes the related to mission planning without entailing protracted

optimal thrust vector control through each maneuver. computer time. The development of such a combination

Tarbet (ref. 5) extended the versatility of the Brown, is described in this report.

Harrold, and Johnson program by applying a conjugate Because a requirement still exists to estimate the

gradient algorithm as the iteration scheme for determin- initial costate vector and the engine switch times, mis-

ing the optimal control. The control consists of an initial sion planners may have difficulty applying the program

costate vector and an engine-switch-time array. To assist successfully. It is expected that the mission planner can

mission planners in determining starting values for the estimate with reasonable accuracy the array of engine

costate and switch times for the iteration process, Tarbet switch times. The theory applied in references 5 and 7

first computed an optimum impulsive solution to the proves that on an optimal trajectory the spacecraft

problem by the method described in reference 1 and thrust vector is alined with the three-dimensional vector

formed thrust arcs around the impulses according to the of Lagrange multipliers associated with the velocity

technique described in reference 6. Although Tarbet's vector. This vector comprises the first three components

program successfully found solutions to problems, it was of the six-dimensional costate vector and is called the
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primer vector. With this in mind, the engineer can make M functional relationship for initial state vector
some estimate of the direction of the primer vector. The
last three components of the costate vector, which are m mass; number of components in a
called the primer vector derivative, cannot be estimated
by association with physical properties of the mission N functional relationship for final state vector
under consideration. In this study, a scheme will be
presented that is derived from Jezewski's work for n number of thrust arcs
estimating the primer vector derivative. This scheme will
require the planner to make some estimate of engine P primer vector, Lagrange multiplier for
switch times and estimate the approximate direction in acceleration constraint
which the thrust vector should be oriented at the start of
each thrust arc (e.g., along the velocity vector, normal to p magnitude of primer vector
the orbit plane, etc.). An initial costate vector based on
these estimates will be generated and will be passed on Q negative of primer vector derivative, Lagrange
to the optimization program, which is composed of multiplier for velocity constraint
Jezewski's and Tarbet's programs. To demonstrate the
versatility of the program, several examples of solutions R radius vector
to missions of interest will be presented. The optimal
control for three different space missions will be given, a S switch function
Shuttle abort-once-around mission and two- and three-
burn geosynchronous satellite-placement missions. T thrust magnitude

As an aid to the reader, where necessary the original
units of measure have been converted to the equivalent T/w I thrust-to-weight ratio
value in the Syste\me International d'Unites (SI). The SI
units are written first, and the original units are written t time
parenthetically thereafter.

V velocity vector

SYMBOLS W vector of thrust arc integrals; weighting matrix

w weight
A propagation matrix across burn-coast arc

X state vector, XT = (RT:VT)
C value of J'(a) from previous iteration

a control variable for thrust magnitude; vector of
c effective exhaust velocity control variable, aT = (pT, .QT, tl ...., t2n+l)

d penalty magnitude y number in equation (A12) chosen to ensure that
matrix is positive definite

f function
A incremental

G gravitational vector
6 variation

H Hamiltonian function
e Lagrange multiplier for mass

h transversality condition

77 Lagrange multiplier for thrust magnitude
I identity matrix constraint

J cost function X costate vector, XT = (pT :QT)

L thrust direction vector ii gravitational constant

3



v Lagrange multiplier for thrust direction constraint max maximum

I sum p penalty

7 time interval x independent variables

T coast arc state transition matrix y dependent variables

( coast arc costate transition matrix
Superscripts:

'I thrust arc transition matrix
* optimum

92 thrust arc transition matrix for thrust integrals
-1 inverse

w Schuler frequency, the constant in gravity
approximation [i] arc index for matrices

V gradient operator j variable

k any integer
Subscripts:

b burn T transpose

c coast Operators:

F final time derivative

I initial used to distinguish between cost functions

i arc index

FORMULATION OF THE MULTIBURN OPTIMIZATION PROBLEM

The multiburn space trajectory optimization problem subject to the differential constraints
is to find a set of thrusting and coasting arcs that mini-
mizes some performance functional while transferring
between two physical boundary conditions, it = v (3)

MI, 'Vt = 0 (1) V= G + L (4)

and (5)and n = - . (5)

N(RF,VF,tF) = 0 (2) where R, V, and m are the state variables and T and L
are the control variables. The symbols R and V are,
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respectively, radius and velocity vectors in Cartesian co- where Q, P, e, v, and r7 are Lagrange multipliers
ordinates. The constraint on thrust magnitude adjoining the constraints to the functional. The neces-

sary conditions for optimality with respect to the con-
trol L are given by

< T < Tma (6)

0 P -2pL (11)l= 0 =I pT - 2vL
T

is required as is the constraint on the thrust direction
vector L that

By solving the set of linear equations (11), the necessary
conditions are satisfied if

LTL = 1 (7)

L = (12)
P

References 4 and 7 base their solution to the n-burn
optimization problem on the functional

The choice of which sign to use in equation (12) is de-
termined by applying the Weierstrass E-condition (ref.

t F 8). It follows that

J - i dt (8)
tI

L = +-- (13)

that is to be minimized. It should be noted that mini-
mizing this functional is equivalent to minimizing mass Substituting equation (13) into equation
loss or, alternatively, maximizing final mass. The con- (10), -crh for T, and rearranging, the Hamiltonian func-
ditions needed for optimal control of a multiburn trajec- tion becomes
tory are developed in the literature (refs. 4, 5, and 7),
and the development is presented herein for the con-
venience of the reader.

The inequality constraint (eq. (6)) is first rewritten H= - (1 - + p S.) + Q TV + G + T(Tma - T) - a
2
] (14)

T(Tmx - - a
2 

= 0 (9) aH
The term a is a control variable, so - = 0 is a neces-
sary condition.

The constraints (eqs. (3), (4), (5), (7), and (9)) are
adjoined to equation (8) to form the variational
Hamiltonian function aa = -2a = (15)

.H _ + QV + PT(G + L) + h + v(1 - LTL) + [T(Tma - T) - a2] Either 17 or a must equal 0. The Lagrange multipli-

er ? cannot in general be assumed to be 0. From
(10) equation (9), for T = 0 and T = Tmax, a must equal

5



0. By making the assumption that the thrust can only where T and 4) are known 6-by-6 matrices.
take on values of 0 and Tmax, the quantity in brackets Thrust arcs.- Reference 4 assumes that the gravita-
becomes equal to 0, and the last term of equation (14) tional vector G is also given by equation (20). No solu-
then can be deleted so that the Hamiltonian function tion for the equations of motion in closed form exists
becomes assuming this gravitational vector. The solution across

thrust arcs is found by using numerical integration.
Reference 7 makes a different assumption for G on

H = -. l p + +QTV PTG (16) thrust arcs. To facilitate the solution of the differential
equations, the assumption that

The necessary conditions for optimality with respect to
the multipliers P, Q, and e are Gb =-w

2 R (23)

T = - = -_Q (17) is made so that equations (3), (4), (17), and (18) can be
solved in closed form. The term o in equation (23) is
defined by

QTa (pT)G (18)

= V .(24)

and

where IRI is evaluated only at the start of the thrust

-= = T --Z (19) arc. The solution for equations (3) and (4) is

Differential Equation Solution x(7) = 'X(O) + nw (25)

Equations (3) to (5) and (17) to (19) comprise a set
of differential equations that must be solved to find the and the solution for equations (17) and (18) is
optimal multiple-burn trajectory.

Coast arcs.- On coasting arcs, both references 4 and 7
assume that the gravitational vector G is given by the x() = x(0) (26)
inverse-square relation

where
Gc =- (20)

For an inverse-square gravitational field, the solutions =I sinn W I sin (27)
for the state and costate vectors are known in closed -I sinC Icos J
form (refs. 9 and 4) and may be expressed as

x(r)= Tx(o) (21) = fsin W7 -I cos .(28)

LIwcos w I sin Wr

x( ) = (o) (22)

6



where I is an identity matrix of dimension 3, and is required because of the homogeneous property of the
costate differential equations.

Equation (16) is rewritten

Mft7 COS WT

w = (29) H = -iS + h (32)

Ssin wr dT

where

Boundary Conditions
h = PTG + QTv (33)

To complete the solution to the multiburn optimiza-
tion problem, a set of initial values for the state vari-
ables R, V, m and the variables P, Q, e must be
obtained. In. addition, another set of variables, the set of
engine switch times tl, ..., t2n+l, where n is the
number of thrust arcs, must be determined. Indexing for
'the switch times is as follows: t o is the time at which s= - e+ (34)
the vehicle is in the initial state given by equation
(1); t2i-1 is the time of the start of the ith thrust
arc; t 2 i is the time of the termination of the ith thrust The term S is called the switch function because the
arc; and t2n+l is the time of termination of a final decision whether rm = 0 or rh = rnmax may be based
coast arc. on the sign of S. When S is negative, a value

Equation (1) gives values for the state vari- of rh equal to rmmax would reduce the value of H (it
ables R and V, and the initial value of m will be must be remembered that rhmax is a negative number),
specified according to the characteristics of the vehicle which is to be maximized. When S is negative,
performing the mission. The vari- then rh must equal 0. It follows, then, that at each en-
ables P, Q, e, tl, ... t2n+l (2n + 8 in all) must be de- gine switch time, S must equal 0. The following bound-
termined by satisfaction of boundary conditions. ary conditions result:

Six boundary conditions are obtained from equation
(2). Of the remaining 2n + 2 conditions, 2n + 1 are
obtained from conditions of optimality that are imposed
on the Hamiltonian function, equation (16). The condi- =  ...
tions of optimality on H are (1) H must be constant
across the trajectory; (2) H must be maximized; and (3),
for a time-open solution,

Equations (2), (30), (31), and (35) then define the
required 2n + 8 boundary conditions. Experience,
however, indicates that these conditions are

H = 0 (30) unsatisfactory because of the sensitivity of the switch
function and because of the requirement to integrate the
equation for e (eq. (19)). Manipulation of the con-
ditions of equation (35) along with the constancy

Finally, the condition of H will eliminate e from the solution and reduce the
number of unknown variables and of boundary con-
ditions required to 2n + 7.

Equations (5) and (19) show that, because T = 0 on
IT I= constant o (31) coast arcs, m and e are constant on coast arcs. Solving

7



the equation for S2 i for e and substituting the result Because S2 is forced to be equal to 0 by the condition of

into the equation for S2 i+1 gives equation (37), equation (40) can be rewritten

S( cp2i) 1 IhsI(h 2 - hl)= 0 (41)
$2i+1=0= -1 +M i= ... , n- 1 (36)

According to equation (39), h2 - hI = 0, so S1 must
Simplification of equation (36) gives the conditions equal 0. Similarly, because S2n-l = 0 by equation (37),

equation (38) can be rewritten for i = n,

P2
1 = P2i+l i = 1...n- 1 (37)

S2n+ (h2 -h 2n-1) = 0 (42)

which states that the magnitude of the primer vector at
the end of each interior coast arc is the same as at the
beginning of that coast arc. Equation (39) requires that (h2n - h2n-1) = 0; there-

As can be easily shown, on coast arcs, H is constant; fore, S2n must also equal 0. The boundary conditions

however, only on an optimum trajectory is H constant of equations (37) and (39) then satisfy the conditions

across the entire multiburn trajectory. On an optimum stated in equation (35). Equations (2), (30), (31), (37),

trajectory then, H must have the same value at the and (39) form a complete set of 2n + 7 boundary

beginning and end of each thrust arc to satisfy the conditions that may be used to determine

condition that H be a constant. the 2n + 7 variables P, Q, t 1, ..., t2n+l
When the gravity approximation (eq. (23)) is made

on thrust arcs, the switch function at the end of each
thrust arc must be modified to account for the dis-

H2i - H2i-1 = -rhS 2i + h2 1 + rS2i-1 - h2i-1 = 0 i = 1, ... , n (38) continuity in the gravitational vector, so

At the beginning and end of each thrust PT(Gb- Gc)
arc, S2i and S2i-l must be equal to 0; thus, equation s= 1+ .+ m( a (43)
(38) reduces to

h2i - h21-1 = 0 1 = 1, ... n (39) and the boundary condition (eq. (37)) becomes
-h

2  
M T1. n (39) (44)

Equation (37) satisfies the condition on the switch 0 = P2 1 - P2 1+I F P Gb - G (44)

function given in equation (35) for i = 2, ..., 2n - 1. To
verify the satisfaction of equation (35) for i= 1,
equation (38) should be examined for i = 1. In summary, the multiburn trajectory optimization

problem has been formulated as a boundary value
problem in the 2n + 7 unknown quanti-

- + h2 + hS1 - h1 = 0 (40) ties P, Q, tl, ... , t2n+l with the differential equations

(3) to (5), (17), and (18) and with the 2n+ 7

boundary conditions given in equations (2), (30), (31),
(37), and (39).

8



CONVERGENCE TO BOUNDARY CONDITIONS

After solutions to the differential equations have For the solution in which the inverse-square gravity
been obtained, what remains is a set of 2n + 7 non- model of equation (20) is assumed on all arcs, the matrix
linear equations in the 2n + 7 unknown param- of partial derivatives f is known (in the sense that dif-
eters P, Q, tl, ..., t2n+l. Evaluating these nonlinear 3a
equations requires the computation of a trajectory for ferential equations for 6) and ~X must be numerically
which a set of values for the unknowns is given. In integrated on thrust arcs) and is described in reference 4.
general, an initial estimate for the unknowns will not
yield the desired solution to the nonlinear equations. An Reference 7 gives the matrix, for the solution in

iterative convergence process is required to obtain a set which the gravity approximation of equation (23) is
of values for the 2n + 7 unknowns, which produces the made on thrust arcs. With this information, numerous
desired solution. One method of accomplishing this is to algorithms are applicable to this problem. Tarbet (ref. 5)
create a cost function and determine values of the applied a conjugate gradient algorithm to the full
parameters for which the cost function is minimized. inverse-square problem of reference 4 with good results.
One cost function is The algorithm described in reference 10 was used in

the program of reference 7, which will be referred to as
the w program. That algorithm has been modified as

J' = f(a)T(a) (45) shown in the appendix to increase the capability of the
program. This enhancement was motivated in part by
the requirement that the thrusting arcs and intermediate

where f(a) is the vector function of the unknown coasting arcs be nonnegative, which results in a param-

parameters eter inequality constraint. The constraint capability was
extended to initial and final coast arcs as mission re-
quirements dictated.

aT= (pT, _qr, tl, ... , t2n+l) (46)

STARTING ITERATES

To find a solution to the problem, an initial estimate programs are combined so that the co program is first
for a must be supplied. In the program described in used to obtain a starting iterate for the full inverse-
reference 5, an impulsive solution and finite thrust arcs square program, a very versatile optimal maneuver
created about each impulse comprise the starting iterate analysis program results. The o program can be used
for the multiburn optimization program. Because of the for preliminary mission studies and performance scans,
inaccuracies inherent in approximating an impulse with a because the rapid convergence allows such studies with-
finite thrust arc, this method is restricted to relatively out excessive computer time requirements. When more
high (greater than 0.3) thrust-to-weight ratios (T/'wI). accurate data or verification of data from the o pro-
However, because appreciable amounts of computer gram is required, then the inverse-square program can be
time are required to find a solution, particularly for used.
problems having long thrust arcs, an accurate estimate To initialize the iteration loop in the c program, an
for a must be obtained. The c program can be used estimate of costate X and the engine on and off times
to determine a starting value for a for the full inverse- must be provided. It is expected that a mission engineer,
square program because its closed-form . trajectory relying on experience and a knowledge of the desired
computation permits rapid convergence. When these two trajectory, can estimate the engine on and off times. The

9



costate is a six-dimensional vector comprised of a primer which another estimate for P can be made. For concise-

vector P and its derivative P. ness, define

S( (47). Ali]= ,l Iil (51)

on the ith burn-coast arc, and renumber X so that Xi is
the value at the beginning of the ith burn-coast arc,

where P =-Q. According to equation (13), the thrust
acceleration vector is alined with and has the same

direction as the primer vector P. Thus, knowing what is

to be accomplished in a particular maneuver, a mission Xi+1 = A (52)
engineer can estimate how the thrust vector should be

directed (e.g., posigrade or retrograde) and, therefore,
the direction of the primer vector P. If some estimate

for IPI at the start of each maneuver can be made, then and rewrite equation (52)
the primer derivative P is the only quantity for which
an estimate is not readily obtained. Reference 11 has a
scheme for the estimation of P for two-burn maneu- 1 A [iA
vers. The following is an extension of that scheme i+= 11 1 (53)
to n burns. A JL

According to equation (26), the costate X2 at
time t2 at the end of a burn may be computed in terms

of XI at t1 at the beginning of the burn by The derivative Pi, when i = 1, is the quantity to be

estimated. Two equations involving Pi can be written
from equation (53)

2 ='X 1  (48)

P i] P +Al] (54)

where 'I is a matrix that is a function of time only. Pi+1= A t Pi (4

Similarly, across coast arcs, X3 can be expressed in
terms of X2 as

and

x3 = 2  
(49)

SI1=A2 P +APi (55)
i+l 21 i 22 i

according to equation (22). Combining equations (48)

and (49) gives
Equation (54) can be solved directly for Pi:

x3= +x 1  (50)

Pi= Al1 1(P+1 - A[Pi) (56)

which is the solution for the costate at the beginning of
the second burn arc of a multiburn solution, the time at

10



which gives an estimate for Pi, for a two-burn problem, a vector of unit magnitude in the desired thrust direction
by setting i = 1. Solving equation (55) for Pi gives and P1 is chosen to be a unit vector in the gravity-

acceleration direction. Given P1 and P1 , a trajectory is
propagated and the state vectors, the costate vectors,
and the A[i ] matrices are computed and saved. The de-

=Pi
= A - 21i) (57) sired Pi vectors are computed based on the just-saved

state vectors and the mission engineer's estimate of the
required direction for the P vectors. These desired P
vectors are then compared with those actually computed

With proper indexing, equation (56) is a solution in the trajectory propagation. If any value of Pi is greater
for Pi+l; so substituting equation (56) into equation than a given tolerance in direction (about 0.6 radian), a
(57) yields new P 1 estimate is calculated from the equations de-

veloped previously using the A[i] matrices and the
desired Pi vectors. A new trajectory is then calculated by
starting the iterative loop again. A functional flow chart

ii -=A ' A2+2L 12  Ai+l1 -) A-P] (58) for the estimation scheme is given in figure 1.5i 22 12 (i+ 2 - " 1 21 ij

For i = 1, equation (58) provides an estimate for Pi for
a three-burn solution. Proceeding similarly, an estimate
for a four-burn problem can be obtained by substituting
equation (58) into equation (57):

Make first
P1' P1 guess

i A 22+1 i+21(i+3 - AI2]P 2  Propagate trajectory

- A21] +1] - A1 Pi, (59) save PI V. A'

Define desired
P vectors

Examination of equations (56), (58), and (59) indi-
cates that a form exists for a P 1 estimate in terms of P
the estimates for the P vectors at the start of each Return sat vectory

burn-coast arc and that the equations lend themselves to
a computer solution for P1 for a trajectory with a No
desired number of burn arcs. To implement this pro- Solve for P1
cedure, a trajectory must be calculated by using the time
estimates and some guess made for P1 and P 1 to
obtain the A[i ] matrices. Usually, P 1 is specified to be Figure 1.- Costate estimation flow chart.

EXAMPLE APPLICATIONS

The program (called OPBURN) described in the fore- scribing the initial and final conditions, the vehicle
going sections is very versatile. It allows mission planners characteristics, and an approximate idea of some of the
to determine optimal multiple-burn trajectories for a physical characteristics of the solution. To demonstrate
large class of orbital-transfer problems. The mission plan- ' the program capability, solutions to two types of
ners need to provide the program only with data de- example problems will be presented. The first type of

11



problem is a Shuttle abort-once-around (AOA) trajec- is achieved. For certain missions, this will be the nominal

tory from the suborbital tank-staging point to the entry- profile. One of the design missions for the Shuttle is a

interface conditions. The second type of problem for single-orbit mission in which the Shuttle is launched and

which solutions will be presented is a geosynchronous transfers to a suitable low-altitude circular orbit (e.g.,

satellite-placement mission that is initiated from a low- approximately 185.2 kilometers (100 nautical miles)

altitude circular orbit. altitude), dispenses a payload, deorbits, reenters, and
lands at its departure point. This mission is to be flown
from the Western Test Range, and the orbit will have an

Shuttle Abort-Once-Around Mission inclination of 1040.
The OPBURN program was used to analyze the OMS

Current plans for the launch of the Space Shuttle are propulsion requirements for this mission when the

to shut down the main engines before a safe orbit has suborbital-tank-staging launch scheme was devised. The

been attained, separate the external tank from the state vectors (R and V) were specified at the main

orbiter so that the tank will return to Earth without engine cutoff and at the reentry interface, the vehicle

needing a retrorocket, and then continue the injection of characteristics were defined, and the program OPBURN

the orbiter with the orbit maneuvering system (OMS) was used to determine a sequence of two burns to

engines. Should an abort become necessary at the tank- achieve a transfer between the two states. The state

separation point, the current plan is to make a circum- vectors and the vehicle characteristics for the example

navigation of the Earth by using OMS maneuvers to are given in table I. It should be noted that two final

ensure that the proper entry interface for a safe landing state vectors are given. The solution to the AOA mission

TABLE I.- EXAMPLE SHUTTLE AOA MISSION DATA

(a) State vectors

Final

Parameter Initial
Example 1 Example 2

Radius, m (ft) . ....... 6 470 763 (21 229 538) 6 388 721 (21 295 738) 6 388 721 (21 295 738)

Right ascension, deg ..... 13.2 258.5 261.5

Declination, deg ....... 0 0 0

Velocity, m/sec (ft/sec) . . . 7833 (25 700) 7818 (25 650) 7833 (25 700)

Flightpath angle, deg ..... .2 -. 715 -. 815

Azimuth, deg. . . . . . ... 90 90 90

(b) Vehicle characteristics

Parameter Value

Initial weight, kg (lb) .... 110 239 (243 031)

Thrust, N (lbf) ........ 53 378 (12 000)

Specific impulse, sec ..... 313.2

12



having the first given final state vector will include the the input initial and final state vectors. By determining
full inverse-square solution from the final phase of the the length of the coast arcs before the first burn and
program. To demonstrate the inequality constraint after the last burn while allowing their length to be
capability of OPBURN, solutions to the AOA mission
having the second given final state vector will be
presented with and without imposition of an inequality
constraint on the initial coast arc. Although the mission
has a 1040 orbital inclination, it is completely coplanar; Apogee altitude urn60 sec2
for simplicity, the problem was formulated for OPBURN 222 171.3 km 29.6 m/sec

(120) (92.5 n. mi.
in the equatorial plane. It should be noted that the vehi- (92.5 n. mi.) (97.2 ftisecl
cle T/w I ratio is very small (0.049). In addition to the E 148 - Coast 88 sec

data in table I, the thrust direction at the start of the Coast 2545 sec
first burn arc was specified to be posigrade, whereas the 74 Burn 9.1 sec oast 805 sec Entry
thrust direction at the start of the second burn arc was Z (40) 3 sec (126.5 ftsec interface

retrograde. Estimates of engine on and off times were < Launchain engine cutoff (MECO)

provided. 0 40 80 - 120 160 200 240 280
Table II gives data describing the solution to the first Angle from launch,*deg

AOA problem. The times shown in the "Initial estimate"
column are those provided the program as input data. (a) Example 1.
The costate vector in the "Initial estimate" column is
produced by the costate estimation routine, and the
orbital parameters that follow it describe the orbits and

Burn 2
thrust arcs that result from state propagation using that 222 45 sec
costate estimate. Using the solution described as the (120) Coast 2553.8 sec 22.2 misec
starting iterate, the c program converged in 13 itera- E 148 Apogeealtitude.8 ft/sec)

tions. Parameters describing that solution are given in 5 (80) ECO 202 km
the "ci approximation" column. It should be noted that (109.1 n. mi.) \Entry

74 _ -Coast 91 sec Coast 1034 sec interfacethe initial coast length was increased by approximately (40) 1 Burn 1 94.9 sec
87 seconds. The first thrust arc was decreased by 15 - 46.3 m/sec (151.9 ft/sec)
seconds, and the second thrust arc was delayed for Launch 1 12 1 I I I

0 40 80 120 160 200 240 280
approximately 300 seconds and increased 13 seconds in Angle from launch, deg
duration. The costate vector, however, was changed only
slightly in obtaining the converged solution. When the (b) Example 2, no constraint on initial coast.
converged solution from the w program was used as a
starting point, the inverse-square program converged in
11 iterations. Eleven iterations were required because
the conjugate gradient iterator was -forced to take as 222 Coast 2254

_ (1201 Coast 2254 sec-- 46.1 sec
many iterations as unknowns in the problem (in this 22.7 mlsec

E (74.6 ft/sec)case, the six costate components and the four times 148 MECO Apogee altitude
shown in table II plus the time of termination of a final k180 Aoe ali0Coast 1239 sec ntry
coast arc). Parameters describing that solution are also 74 (108.0 n. mi.) ntrface
listed in table II. The similarity of the o and inverse- I (4) Burn 1 95.5 secinterface

square solutions indicates that, at least for this class of Launch 46.6 misec (152.8 ft/sec)
problem, the c program has sufficient accuracy to 0 40 80 120 160 200 240 280
preclude the need of the inverse-square program for Angle from launch, deg
every desired solution. An altitude profile of this mission
is shown in figure 2(a). (c) Example 2, constrained initial coast.

The c program is formulated to determine the
optimum transfer between the two orbits specified by Figure 2.- Shuttle AOA mission profiles.

13



TABLE II.- SHUTTLE AOA SOLUTION SUMMARY

Initial w Inverse-square
Parameter estimate approximation solution

Engine-switch-time array, sec

to . . . . . . . . . . . . . . . . 0 0 0

t . . . .. . . . . . . . . . . . . 1 87.7 87.8

t2 ..... 95 166.8 166.9

t3 ...... . . ........... 2413 2711.6 2711.6

t4 . ....... .. 2460 2771.7 2771.8

Costate vector

1 . . . . . . . . . . . . . . . . . -0.226 -0.271 -0.271

2 . . . . . . . . . . . . . . .974 .854 .854

03 . . ....... 0 0

X4 . . . . . . . . . . . . . . . . . -.385 -.443 -.443

x5 . . . . . . . . . . . . . . .  -. 127 -. 033 -. 033

06 . . . . . . . . . . . . . . . . . O 0 0

Intermediate orbit

Perigee altitude, km (n. mi.). . . . 89.3 (48.2) 91.3 (49.3) 91.3 (49.3)

Apogee altitude, km (n. mi.) . . . . 197.8 (106.8) 171.1 (92.4) 171.3 (92.5)

AV 1 , m/sec (ft/sec) ......... . 45.8 (150.4) 38.5 (126.5) 38.5 (126.4)

AV 2 , m/sec (ft/sec) ......... . 23.1 (76.1) 29.6 (97.2) 29.7 (97.4)

z~V, m/sec (ft/sec) ......... . 69.0 (226.5) 68.2 (223.7) 68.2 (223.8)

either positive or negative, departure from the initial in a launch trajectory, making it impossible for the mis-
orbit and arrival at the final orbit at the optimum posi- sion designer to initiate the transfer at a position on the
tion are ensured. In certain instances, however, mission initial orbit previous to the input state vector. If the
considerations preclude the usefulness of solutions that final state vector in the previous problem is changed to
have negative initial or final coasts. For example, in the that in the last column of table I, a negative initial coast
foregoing description of the AOA mission, the initial of 91.0 seconds is required as indicated by the data in
state vector was given at the Shuttle main engine cutoff the "Unconstrained" column of table III. Imposing the

14



TABLE III. - INEQUALITY CONSTRAINT EXAMPLE

Parameter Unconstrained Constrained

Engine-switch-time array, see

to  . . . . . . . . . . 0 0

t 1  . . . . . . . . .. -90.9 1.03

t2  . . . . . . . . . . . . . . . 3.97 96.5

t3  ................ 2557.8 2350.2

t4  . . . . . . . . . . . . . . . . . 2602.8 2396.3

Costate vector

1 . . . . . . . . . . -0.184 -0.195

X2 . . . . . . . . . . . . . . . .. . .882 .888

3 . . . . . . . . . . . .  . . . . . . .. . 0 0

4 . . . . . . . . . . .. . . . . . . . -.427 -.413

.A5 . . . . . . . . . . . . . . . . . .  -.12 -.108

X6 . . . . . . . . . . . . ... . . . O 0

Intermediate orbit

Perigee altitude, km (n. mi.). . . . 86.5 (46.7) 89.3 (48.2)

Apogee altitude, km (n. mi.) . . . . 202.1 (109.1) 200.0 (108.0)

AV1, m/sec (ft/sec) . ....... . 46.3 (151.9) 46.6 (152.8)

6V 2 , m/sec (ft/sec) . . ....... . 22.1 (72.8) 22.7 (74.6)

AAV, m/sec (ft/sec) ......... . 68-5 (224.7) 69.3 (227.4)
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parameter inequality constraint developed in the ap- Synchronous-Orbit Missions
pendix on the initial time yields the solution indicated in
the last column. It should be noted that the initial coast A general-purpose rocket vehicle called a tug is being
time is now 1.03 second and that, as expected, .developed to provide the additional propulsion required
the AV required for the transfer is higher. The for satellite-placement missions. In an effort to save
constraint is stated such that the coast arc is only re- weight, sonie of the several designs being considered
quired to be nonnegative, and a 0-second coast arc can entail the use of a rather small engine, which results in a
be expected. The actual constraint as implemented in low thrust-to-weight ratio. This sometimes complicates
the appendix is "hard" only in the limit of k+", so the mission-planning efforts to ensure that the tug will be
program cannot satisfy the constraint precisely. A hard used as efficiently as possible. One particularly difficult
constraint is one in which the quantity being constrained mission, for which numerous payloads are possible, is
may take on a value equal to the value of the constraint. the placement of a satellite in a geosynchronous orbit.
In the example under discussion, the initial coast arc This mission is difficult because of the large altitude
would have a 0-second duration if the constraint were change and the large plane change (29') iequired be-
hard. tween the initial and final circular orbits. The altitude of

Altitude profiles for the unconstrained and con- a circular geosynchronous orbit is 35 786 kilometers
strained example AOA missions are illustrated in figures (19 323 nautical miles). As a further example of the
2(b) and 2(c). The profiles are very similar. It should be capability of OPBURN, this mission was chosen for solu-
noted that the second burn are occurs closer to apogee tions with vehicle thrust-to-weight ratios as low as 0.1.
in the constrained solution. Solutions for the mission will include two- and three-

burn profiles.

TABLE IV.- EXAMPLE GEOSYNCHRONOUS-ORBIT MISSION DATA

(a) State vectors

Parameter Initial Final

Radius, m (ft) . ........ 6 655 965 (21 837 155) 42 164 047 (138 333 497)

Right ascension, deg ...... -90 180

Declination, deg . . . . . ... 0 0

Velocity, m/sec (ft/sec) . . . 7738.64 (25 389.25) 3074.67 (10 087.52)

Flightpath angle, deg. ..... 0 0

Azimuth, deg .. ....... 90 61

(b) Vehicle characteristics

Parameter Value

Initial weight, kg (lb) . . . . 45 360 (100 000)

Thrust, N (lbf) . ...... . 133 447 (30 000)
88 964 (20 000)

44 482 (10 000)

Specific impulse, sec . . . . . 420
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The geosynchronous satellite-placement mission is - Burn arc Z
initiated in a low-altitude circular orbit sized according --- coast arc

to the capabilities of the Shuttle. For this example, a
circular orbit of 278 kilometers (150 nautical miles)
altitude was assumed. The initial state vector is given in
table IV. For ease of input, a coordinate system was
established so that the initial orbit was in the X-Y plane,
and the line of intersection (i.e., the line of nodes) of the
initial and final orbit planes was along the X-axis (fig. 3). I ti 
The final state vector, also given in table IV, corresponds
to a circular orbit with an altitude of 35 786 kilometers XFinal orbit

(19 323 nautical miles) and at an inclination of 290 from
the X-Y plane. Vehicle characteristics shown were
chosen to produce vehicle T/wI of 0.3, 0.2, and 0.1. The
specific impulse selected is that of a proposed oxygen
difluoride/methane propellant tug.

Z

Final orbit
X

Final orbit (b) Three-burn arc.

Figure 4.- Illustration of geosynchronous-orbit
mission profiles.

Figure 3.- Illustration of initial and final orbit geometry

of geosynchronous-orbit mission.
As in the previous example, estimates of the engine

The two-burn mission profile consists of two thrust switch times were provided and the costate estimation
arcs. The first, which is centered approximately on the routine was used to produce a costate vector estimate
line of nodes, places the spacecraft into an elliptical based on the knowledge that all the burns would be
transfer orbit with an apogee altitude approximately posigrade. These estimates for the control variables were
that of the desired final circular orbit. The second thrust then transferred to the o program for convergence to
arc, which occurs at the apogee of the transfer orbit, an estimate for the optimal control. The optimal control
circularizes the orbit at the desired altitude. Each estimate from the w program was used as a starting
thrust are concurrently performs a portion of the re- iterate for the inverse-square program in the two- and
quired plane change; in other words, the first thrust are three-burn cases.
achieves a small part of the required plane change, and Parameters describing optimal two- and three-burn
the second completes it. In the three-burn profile, the geosynchronous-orbit missions for vehicles with
function of the first thrust arc in the two-burn profile is a T/w I of 0.3 are listed in table V. The time arrays
achieved by the first two thrust arcs. These thrust arcs listed in the "initial estimate" columns were the es-
are separated by approximately one revolution in an timates provided the program; the costates in those
elliptical orbit and centered approximately on the same columns are produced by the costate estimation routine.
node. Each mission profile is illustrated in figure 4. The columns labeled "w solution" give the values of
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TABLE V.- GEOSYNCHRONOUS MISSION SOLUTION PARAMETERS, T/w = 0.3

Two thrust arcs Three thrust arcs

Parameter
Initial . Inverse-square Initial a Inverse-square

estimate solution solution estimate solution solution

Engine-switch-time array, see

to .. . ............... 0 0 0 0 0 0

11 ................. 900 956 1 005 1 180 1 180 1 175

12 .................. 1 650 1 591 1 67 1 520 1 518 1 514

t3 . ................. 20 320 20 252 20 250 10 660 10 662 10 654

t4 .... ............. 20 600 20 522 20 521 10 950 10 953 10 944

15.................- 29 600 29 656 29 756

t6 .................- 29 880 29 928 29 848

Costate vector

1 ... .............. 0.362 0.699 0.691 1.14 0.680 0.687

X2 . . . . . . . . . . . . . . . . .  
.227 .185 .202 -.064 .219 .211

3 . . . . . . . . . . . . . . .. . 
. 0 -.0007 .0021 .529 .00023 .00035

X4 . . . . . . . . .. . . . .  
. .452 .173 .189 -. 075 .205 .197

X5 ................. .736 .651 .647 .478 .638" .645

X6 . . . . . . . . . . . .. .  . . . .  
0 -. 168 -.165 -. 1 -. 172 -.169

Intermediate orbits

Perigee altitude, km (n. mi.) . . . 420 (227) 374 (202) 352 (190) 293 (158) 289 (156) 287 (155)

311 (168) 298 (161) 296 (160)

Apogee altitude, km (n. mi.) . . . . 126 725 (68 426) 35 784 (19 322) 35 784 (19 322) 6389 (3450) 6302 (3403) 6334 (3420)

36 527 (19 723) 35 786 (19 323) 35 786 (19 323)

A inclination, deg

Burn 1 . ..... .. .. .... 0 2.13 2.15 0.8 1.16 1.17

Burn 2 . ............. 0 26.87 26.85 .28 1.04 1.03

Burn 3 . ............ -- -- -- 3.5 26.8 26.8

AV, m/sec (ft/sec)

Burn 1 .............. 3163 (10 376) 2494 (8183) 2479 (8133) 1147 (3762) 1140 (3741) 1144 (3752)

Burn 2 .............. 2329 (7621) 1789 (5868) 1787 (5864) 1317 (4323) 1323 (4339) 1318 (4325)

Burn 3 . ............. -- - -- 1863 (6112) 1792 (5880) 1793 (5883)

EV, m/sec:.(ft/sec) . ........ . 5485 (17 997) 4283 (14 052) 4269 (14 007) 4327 (14 197) 4255 (13 960) 4255 (13 960)

parameters describing the solutions obtained from indicates that the gravity approximation in the c pro-
the c program. The values describing the solutions gram is accurate in this case. The w solution to the
obtained from the full inverse-square program are listed two-burn problem does not agree with the inverse-square
in the columns labeled "Inverse-square solution." The solution as well as the o solution does with the three-
two three-burn solutions are in close agreement, which burn problem. It should be noted that the AV require-
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TABLE VI.- GEOSYNCHRONOUS MISSION SOLUTION PARAMETERS. T/w = 0.2

Two thrust arcs Three thrust arcs
Parameter

Initial Inverse-square Initial . Inverse-square
estimate solution solution estimate solution solution

Engine-switch-time array, sec

t
o ................. .0 0 0 0 0 0

t1 
. . .. . . . . . . . . . . . . .  800 758 831 1 140 1 140 1 043

t
2  

................ * 1 800 1 723 1 788 1 725 1 726 1 618

1
3 ................. 20 320 20 238 20 233 10 920 11 868 11 793

t
4  ............ . 20 540 20 636 20 634 11 340 12 235 12 165

5  
..............-- 30 050 31 015 31 030

6 ................. -- 30 460 31 418 31 437

Costate vector

1 ................. 1.05 0.636 0.696 1.10 0.696 0.691

12 .. . .. . ..... . .. . .. -.053 .093 .190 -.064 .104 .202

3 ................. 0 0 0 0 .00006 - .000088

14 . .... ........... -.05 .087 .179 -.601 .098 .189

15 ................. 1.02 .742 .651 1.05 .686 .647

6 ................. 0 -. 167 -.16 0 -.151 -.165

Intermediate orbits

Perigee altitude, km (n. mi.) . . . 576 (311) 472 (255) 446 (241) 317 (171) 322 (174) 311 (168)

413 (223) 383 (207) 324 (175)

Apogee altitude, km (n. mi.) . . . . 44 818 (24 200) 35 784 (19 322) 35 784 (19 322) 6947 (3751) 8097 (4372) 7852 (4240)

37 281 (20 130) 35 784 (19 322) 35 792 (19 326)

A inclination, deg

Burn 1 .............. 0 2.03 2.08 0 1.33 1.29

Burn 2 ....... . ...... 0 26.97 26.92 0 .87 .88

Burn 3 . ............. - --.. 26.8 26.83

AV, m/sec (ft/sec)

Burn 1 .. ... ...... .. . . 2665 (8745) 2539 (8329) 2507 (8225) 1212 (3977) 1348 (4423) 1319 (4326)

Burn 2 . ............. . 920 (3017) 1785 (5857) 1786 (5858) 1288 (4226) 1145 (3756) 1152 (3779)

Burn 3 . ............. I -- 1 1827 (5995) 1787 (5864) 1792 (5879)

rAV, m/sec (ft/sec) . ..... . . 3585 (11 762) 4324 (14 186) 4292 (14 082) 4328 (14 198) 4280 (14 043) 4262 (13 984).

ment.for the w solution is 13.7 m/sec (45 ft/sec) higher the accuracy of the approximation on a thrust arc will
than that found by the inverse-square program. All the depend on the altitude excursion of the vehicle in that
increase is required in the first thrust arc, which indi- arc.
cates that the gravity approximation does not have suf- Data describing the same missions for vehicles with
ficient accuracy on that arc. Because the gravity a T/w I = 0.2 are given in table VI. Again, acceptable
approximation (eq. (23)) is a linear function of position, agreement exists between the co and inverse-square
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solutions. Because of the lower T/w I, longer thrust arcs (16)

are required to produce a given orbital change, so a

larger altitude excursion results and -the w approxi- 4800
mation is less accurate for these solutions than when (15750)

the T/w I was 0.3. This fact is evident by examining the o solution
for the two-burn 4724 O Inverse-square solution

characteristic velocity requirements for the two-burn (15 500) - Two burn
solution in table VI. The co program indicates -- Three burn

a AV requirement 31.4 m/sec (103 ft/sec) greater than 4648
the requirement found by the inverse-square program. 115 250)

All this increased cost is required to accomplish the first -
thrust arc. In the three-burn case, the cw solution re- 15

quires a total of 18 m/sec (59 ft/sec) more than in the
inverse-square solution. The increased cost cannot be E 4496
attributed as easily to any particular thrust arc because " (14750)

of the differences in the solutions. For example, the first
thrust arc required 29.6 m/sec (97 ft/sec) more in (14500)
the w solution than in the inverse-square solution; how-
ever, the apogee of the first intermediate orbit is 244 4343
kilometers (132 nautical miles) higher in the w solu- (14 250)

tion. The transfer to that orbit would require a larger
AV. 4268

Parameters describing two- and three-burn solutions
to the geosynchronous-orbit mission for vehicles with (19750)

a T/wl of 0.1 are listed in table VII. Data describing the .05 .10 .15 .20 .25 .30 .35

inverse-square solution are provided only for the Thrust-to-weightratio

two-burn case. No inverse-square solution is provided for
the three-bum case because the w solution proved Figure 5.- Performance comparison for various
to be unsatisfactory as a starting iterate for the geosynchronous-orbit transfers.
inverse-square program. The large difference between
the o and inverse-square solutions in the two-burn case
should be noted. The difference indicates that
the co program solution has little value because of the
inaccuracy of the gravity approximation, although m/sec (300 ft/sec) for reducing T/w I from 0.3 to 0.1.

the o program did converge given the time array shown Some of that penalty is caused by the gravity assump-

and the costate estimate produced by the costate estima- tion in the w program, as is- evident by comparing the
tion routine. Also, although the inverse-square solution penalties indicated for reducing T/wl from 0.3 to 0.2.

did converge, the w solution was not suitable as a start- The o solution curve shows a 25-m/sec (83 ft/sec)

ing iterate in the inverse-square program because the co penalty, whereas the inverse-square solution curve indi-

solution produced a large initial error in boundary condi- cates a penalty of only 7 m/sec (24 ft/sec). The

tion satisfaction in the inverse-square program and three w solutions for T/w I = 0.1 show that a definite

protracted computer time was required to attain though diminishing performance improvement is pos-

convergence. sible by increasing the number of thrust arcs.

The performance data for the geosynchronous-orbit In all cases investigated, the costate estimation rou-

missions were plotted as a function of T/w I (fig. 5) to tine produced estimates for the costate vector from

illustrate the effects of lower thrust-to-weight ratios and which the co program converged. A more accurate time

the benefits of increasing the number of thrust arcs used estimate was available in some cases than in others; this

to accomplish the mission. The graph indicates a 152 resulted in fewer iterations being required by

m/sec (500 ft/sec) penalty for reducing T/wl from 0.3 the co program. The time estimates given in tables V to

to 0.1 when a two-burn transfer is used. The w solution VII do not necessarily indicate the accuracy required by

curve for three-burn transfers indicates a penalty of 91 the program but were simply the best available.
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TABLE VII.- GEOSYNCHRONOUS MISSION SOLUTION PARAMETERS, T/w = 0.1

Two thrust arcs Three thrust arcs

Parameter
Initial S Inverse-square Initial

estimate solution solution estimate solution

Engine-switch-time array, sec

to0 ........... ...... 0 0 0 0 0

1 ................. 
425 -641 304 1 076 1 076

2 ................. 2 375 1 567 2 294 2 050 2 051

t3 ...... ........... .20 360 20 628 20 231 9 872 9 872

t4 ................. 21 150 21 313 21 001 10 850 10 850

t5 ....... .......... - - -- 29 162 29 163

t 6 . . . . . . - -- 29 947 29 948

Costate vector

1 . ................ 1.02 0.901 0.710 1.09 1.02

12 ....... .......... .-. 032 -.375 .148 -.063 -.012

X3 ................. 0 -.0007 .001 0 -.3 - 10
- 6

4 .......... ..... -.029 -.352 .139 -.059 -.0144

15 ......... ...... . 1.01 .962 .659 1.04 1.1

16 ................. 0 -.218 -.143 0 -.200

Intermediate orbits

Perigee altitude, km (n. mi.) . .. 1472 (795) 1606 (867) 963 (520) 430 (232) 407 (220)

733 (396) 648 (350)

5600 (3024) 5560 (3005)

Apogee altitude, km (n. mi.) . . . . 21 172 (11 432) 35 782 (19 321) 35 782 (19 321) 36 058 (19 470) 35 782 (19 321)

A inclination, deg

Burn 1 . ............. 0 1.48 1.84 0 0.98

Burn 2 . .. .................... 0 27.52 27.16 0 1.19

Burn 3 .. . . ... ......... - ..-- 0 26.83

AV, m/sec (ft/sec)

Burn 1 ..... ........... 2723 (8934) 3073 (10 081) - 2644 (8675) 1087 (3565) 1088 (3569)

Burn 2 . ... . . . ....... 1781 (5844) 1736 (5696) 1761 (5776) 1487 (4880) 1487 (4879)

Burn 3 .. .............- . . . . . 1770 (5804) 1771 (5810)

EAV, m/sec (ft/sec) . ........ . 4352 (14 278) 4809 (15 777) 4405 (14 451) 4344 (14 251) 4346 (14 259)

RI PAG s1
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CONCLUSIONS AND RECOMMENDATIONS

A program is now available for optimal analysis of the inaccuracies noted in the geosynchronous missions

multiple-burn space missions. The program does not re- that result from large altitude excursions on long thrust

quire that the user have knowledge of optimal control arcs. Through the use of a segmented solution, the range

principles. This new program is the result of the develop- of cases for which the W' solution would be a suitable
ment of the costate estimation subroutine that requires starting iterate should be increased (e.g., the three-burn
the user to input only physical quantities that can be geosynchronous mission with T/w I = 0.1).
identified and estimated. Through the use of 2. Parameter inequality constraints on the switch
the w/inverse-square combination, the author has be- times in the inverse-square program should be added.
come confident that the solutions produced by This addition would make the w/inverse-square com-
the co program are accurate, so that the inverse-square bination compatible for a wider range of cases.

phase of OPBURTN is not generally required. It is re- 3. An interactive program should be developed for
tained in OPBURN as a valuable program for solution mission planning. This program would accept input data,
verification of particular missions, especially when a new call the costate estimation program, and display the re-
class of solutions is being produced. sulting trajectory. With such a program, the mission

Although the program produces useful results, three planner could interactively determine thrust-arc place-

improvements and additions are suggested as follows. ment and size so that the resulting trajectory could be
1. The capability to segment thrust arcs in the o transferred to an execution of the OPBURN program

program should be added, reinitializing the gravity with a greater chance of convergence to the desired
approximation each time. This addition would increase answer.
the accuracy of the o program and reduce or eliminate

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration

Houston, Texas, September 20, 1974
986-16-20-00-72
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APPENDIX

PARAMETER INEQUALITY CONSTRAINTS

To restrict the o program so that coast and burn At a*,
arcs of negative time duration are prohibited, it is neces-
sary to implement an inequality constraint. The al-
gorithm provided in the o program (ref. 9) was Ji =
modified to include an inequality constraint by the a* a* * =o (A5)
penalty function approach. The penalty function de-
scribed in reference 12 was selected because it has the
property that it and all its derivatives are continuous. so that
The penalty function is given by

SJ(a)= J(a*)+ J (a*)+ (a - *)

Jp(a) = die1-(1+ad (Al)

i=1

(A6)

where a is the m component vector of parameters, d
is a positive penalty constant, and k is some positive

Using this J', find the gradientinteger.
Given the vector function f(a), we wish to find a

such that f(a) = 0, subject to the constraints that some
or all the parameters ai remain nonnegative. First, form 2 J
the function G'(a) = = a - ) a a (A7)

J'l(a) = ) + Jp(a) (A2)

It is now possible to solve for Aa by assuming that the

where second-order terms vary slowly i.e., a2 a*
where a2 a

82 )J(a) = f(a) Wyf(a) (A3) a 2  a

and expand it in a Taylor series to second-order terms a = - a = -1
a = a* - a = + )G'(.)" (A8)

about a*, the constrained solution to f(a)= 0: -'aG aA

J(a) = j(a*) J(a a* (a ) All that remains is to determine G'(a) and a 2 "

Differentiating equation (A2) yields a2

S  , - a * )  (A4)

7a. a~ a Ta T aJp T ' aJ
G'(-a) a + aW f + (A9)
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and differentiating equation (A3) twice gives a2J
ceeding to the second derivative --- , note that it is an

a2

m-by-m diagonal matrix with die i,ith element a func-
- w w y w (A10) tion of the ith parameter only.

ao In the w program, the vector a is composed of six
costate components and a 2n +1 array of times. Because
it is desired to constrain the times only, di= 0,

which contains the undesirable term To circum- i = 1, ... , 6. The value for the remaining di will be set to
which contains the undesirable term

vent the complex computation involved in the last term,
it is approximated by d - 10C (A13)

y 2 = 'wx  (A ll)Sl where C is the value of J'(a) of the previous iteration.
Initially, j = 2 with provision for its increase should the
constraint be violated. The value of k in equation (Al)

so that is nominally set to 2501, which produces a minimum arc
duration of less than 1 second for each time constrained.
The odd number 2501 is required to eliminate symmetry

(T af 
ta s 

aJ T) from equation (Al). If the penalty function is allowed
a - W + .wx wr (A12) to be symmetric, then the possibility exists for a solu-

a/ tion that violates the constraint but for which no
penaltv is assessed (i.e., ai < -2).

The symbol y is a positive number chosen so that the The two weighting matrices Wx and Wy will normally
matrix in the first set of parentheses of equation (A12) be identity matrices. However, they can be defined as
is positive definite. Note from equation (Al) that Jp(a) required for special situations so long as Wy
is a summation of terms each of which is a function of is positive definite. An algorithm exists in the o pro-
only one parameter. Because of this property, the gra- gram to modify Wy so that the tolerance to which

optimality conditions are satisfied is increased. This
dient P is a row vector with m terms, and each algorithm is provided because it may not be possible to

aa satisfy the optimality conditions completely in cases in

term -P is a function of the ith parameter only. Pro- which the first or the last or both coast arcs are

aa i  
constrained.
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