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EFFECT OF WALL EDGE SUCTION ON THE PERFORMANCE OF A SHORT

ANNULAR DUMP DIFFUSER WITH EXIT PASSAGE FLOW RESISTANCE

by Albert J. Juhasz

Lewis Research Center

SUMMARY

The performance of a short annular dump diffuser equipped with the capability of

applying suction (i.e., bleed) at both the inner and. outer wall edges was evaluated with

each of two perforated plates placed at three different positions downstream of the plane

of abrupt area change. These plates, with a nominal solidity of 60 percent, were in-

tended to simulate the effect of blockage presented by typical swirl can combustor ar-

rays proposed for gas turbine engines.

The diffuser had an inlet flow area of 304 square centimeters (47.12 in. 2) followed

by a dump approach section with an included divergence angle of 70 . The overall dif-

fuser exit-to-inlet area ratio was 4.0. The (variable) diffuser length was determined

by the location of the perforated plates which were successively positioned downstream

of the plane of abrupt area change at distances equal to 0.5, 1.0, and 2.0 times inlet

passage height. Velocity profile and diffuser pressure recovery measurements were

taken downstream of the perforated plates at a distance of 0.5 times inlet passage

height. These measurements were made at diffuser inlet Mach numbers of 0.18 and

0.27 with suction (bleed) rates ranging from zero to 13.5 percent of inlet mass flow

rate. All testing was conducted with air at near ambient pressure and temperature.

Test results show that the jet flow type profiles obtained downstream of the plates

without suction could be flattened considerably at 10 to 13.5 percent total suction by

proper balancing of the suction flows such that about 42 percent of the total suction was

applied at the inner wall and 58 percent on the outer wall. Hub biased profiles were ob-

tained if more than 42 percent of the total suction was applied at the inner wall and tip

biased profiles resulted if more than 58 percent of the total suction was applied at the

outer wall.

The diffuser pressure recovery performance was also improved by suction as indi-

cated by a maximum increase in diffuser effectiveness of about 70 percent and a reduc-

tion in total pressure loss by about one third.



INTRODUCTION

An investigation was conducted to determine the effect of wall suction on the exit

velocity profile and pressure recovery of a short annular dump diffuser with exit pas-

sage flow resistance simulating the flow resistance of a modular, swirl can type, gas

turbine combustor. The advantages of short diffuser-combustor systems in gas turbine

applications, such as reduced engine length and weight, are discussed in reference 1.

A drawback of short diffusers is that they usually incur severe performance losses,

caused by flow separation. Reference 2 proposed and reported on the use of diffuser

bleed (suction) to reduce performance losses and to control the exit velocity profile of a

short annular diffuser with circular arc wall contours. A more simple design for a

short diffuser is one having an abrupt area change between its inlet and exit flow pas-

sages. This device is usually referred to as a dump diffuser. This type of diffuser has

been used in full-scale swirl can combustor tests as discussed, for example, in ref-

erence 3. However, no diffuser wall suction (i.e., bleed) was used during these tests

and data on diffuser performance per se were not obtained. A simple dump diffuser

consisting of a two-dimensional duct with a variable step area change on its lower wall

followed by a suction slot was tested in reference 4. It is interesting to note that these

tests were motivated by the pioneering work of Ringleb (ref. 5) concerning observations

of mountain ridge vortex flows which lead to the formation of snow cornices.

Results of reference 4 showed that smooth expansion of the flow downstream of the

step area change could be obtained when sufficient suction per unit wall span was applied.

In reference 6 similar conclusions were reached from an investigation on the effect of

suction on flow in a pipe with a sudden enlargement. The required suction flow was

found to vary with the suction slot design. For the design yielding maximum pressure

recovery the required suction flow was about 7 percent. The work of reference 6 was

extended from a tubular to an annular geometry with an area ratio of 4.0 in reference 7.

Inner and outer wall suction was applied at the downstream edges of the walls, that is,

at the plane of sudden area change, through circumferentially continuous slots. The de-

sign of the suction slots was arrived at by extrapolating the results of reference 6. Test

results showed that the diffuser exit velocity profile could be controlled from a hub bi-

ased profile to a tip biased one by varying the ratio of outer-to-inner wall suction rate.

Although the diffuser effectiveness was also raised significantly by using suction, the

maximum effectiveness was limited to approximately 52 percent, a level below that de-

sirable for gas turbine combustor applications, where diffuser performance is further

penalized by the combustor dome pressure loss.

Hence, in projecting the performance of gas turbine combustor diffusers from sim-

ple rig tests the effect of blockage presented by the combustor snout and dome must be

taken into account. This blockage in the diffuser exit passage, although imposing a

pressure loss penalty on diffuser performance, helps to distribute the flow and thus
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improves the exit velocity profile. This so-called "filling effect" caused by diffuser

exit blockage was first studied quantitatively by McClellan and Nichols using bell-shaped
diffusers with screens in the exit passage (ref. 8). The authors showed that the filling
effect was real and that high diffuser efficiencies could be obtained. Reference 9 docu-
ments an investigation directed at explaining the mechanics of the filling process for

flow through bell-shaped diffusers with screens. With decreasing porosity (i.e., in-
creasing solidity) the screens were found to behave more nearly like a solid wall with
an axisymmetric jet impinging on it. The resulting axisymmetric stagnation flow pat-
tern, with the highest static pressure along the flow axis, bent the streamlines sharply
toward the wall thus preventing flow separation. A similar filling process is assumed
to occur in swirl can combustors of the type tested in reference 3. In these combustors
about 90 percent of the diffuser inlet flow passes through the swirl module array into
the combustor primary zone. Hence the downstream airflow distribution and total pres-
sure loss caused by a typical swirl module array can be approximated by the airflow
distribution and pressure loss caused by a simple perforated plate when located in the
diffuser exit passage. Of course the plate should have a solidity and distribution of
blockage areas as close to that of the swirl module array as possible.

In an effort to simulate the flow through a typical swirl can combustor having an up-
stream dump diffuser with suction capability, the diffuser of reference 7 was retested in
the present investigation with two different perforated plates successively mounted in the
diffuser exit passage. Both plates had the same solidity of 60 percent but different hole
sizes and hole spacings. The inlet passage of the diffuser with a flow area of 304 square
centimeters (47.12 in. 2) was followed by a dump approach section with an included angle
of 7 . The area ratio of the approach section was 1.15 and the overall diffuser area

ratio was 4.0. Velocity profiles, diffuser effectiveness, and total pressure loss data
were obtained with each of two perforated plates at three different positions downstream
of the plane of abrupt area change. Tests were made at nominal inlet Mach numbers of

0. 18 and 0. 27 with suction rates ranging from zero to 13. 5 percent of total inlet flow.

All testing was conducted with air at near ambient temperature and pressure.

SYMBOLS

AR diffuser area ratio

B suction flow fraction of total flow rate

b wall suction fraction of total suction

d hole diameter

gc dimensional constant
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H diffuser inlet passage height

L length between plane of abrupt area change and blockage plate

M average Mach number at an axial station

MR mass flow ratio = mass flow computed from profiles

mass flow computed from air orifice data

m mass flow rate

P average pressure at an axial station

p local pressure at a radial position

q dynamic pressure

R gas constant for air

S suction rate, percent of total flow rate

T temperature

V average velocity at an axial station

v local velocity at a radial position

X downstream distance

y specific heat ratio

E diffuser efficiency (eq. (5)), that is, efficiency of diffuser and flow resistance

combination

diffuser effectiveness (eq. (3)), that is, effectiveness of diffuser and flow resist-

ance combination

a perforated plate solidity, percent

Subscripts:

i inner wall

m maximum

o outer wall

r local value at a given radial position

t total

0 stagnation condition

1 diffuser inlet station

2 diffuser exit station, downstream of flow resistance
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APPARATUS AND INSTRUMENTATION

Flow System

The investigation was conducted in the test facility described in reference 2. A

schematic of the facility flow system is shown in figure 1. Pressurized air at ambient

temperature is supplied to the facility by a remotely located compressor station. This

air feeds the three branches of the flow system.

The center branch (identified as "main air line") is the source of airflow through

the test diffuser. The air flowing through this branch is metered by a square-edged ori-

fice installed with flange taps according to ASME standards. The air is then throttled to

near atmospheric pressure by a flow control valve before entering a mixing chamber

from which it flows through the test diffuser. The air discharging from the diffuser is

exhausted to the atmosphere through a noise absorbing duct.

The two other branches of the flow system supply the two air ejectors which produce

the required vacuum for the inner and outer wall diffuser bleed flows. The ejectors are

designed for a supply air pressure of 68 newtons per square centimeter (100 psia) and

are capable of producing absolute pressures down to 2.38 newtons per square centimeter

(7.0 in. Hg).

The inner and outer diffuser wall bleed flows are also metered by square-edged ori-

fices. These orifices are also installed with flange taps according to ASME specifica-

tions in the suction flow lines that connect the inner and outer diffuser wall bleed cham-

bers to their respective ejector vacuum sources.

Diffuser Test Apparatus

The apparatus used in this investigation was essentially that of reference 7 but for a

few modifications. A cross section including pertinent dimensions is shown in figure 2.

As in reference 7 the centerbody that forms the inner annular surface is cantilevered

from support struts located 30 centimeters (12 in.) upstream of the diffuser inlet pas-

sage. This construction minimized the possibility of strut flow separation having an un-

desirable effect on the circumferential profile of inlet velocity.

Diffuser Walls and Exit Passage Blockage

The removable walls forming the dump approach passage were positioned in the test

apparatus as shown in figure 2. The wall geometry and suction slot details are shown in

figure 3. Also shown in this figure are the inlet and exit instrumentation stations and the
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three test positions of the perforated blockage plates in the diffuser exit passage. To

prevent flow separation, upstream of the suction slots, the annular dump approach pas-

sage was designed with a conservative value of included divergence angle of 70, resulting
in a dump approach passage area ratio of 1.15 at a length-to-inlet height ratio of 1.25.

The overall diffuser area ratio was 4.0 with the overall diffuser length being variable,
as defined by the three test positions of the perforated blockage plate. The suction slot

geometry was designed for maximum pressure recovery at suction rates of 3 to 5 per-

cent on each wall by extrapolating the results of reference 6. The inner and outer suc-

tion chambers were formed by the void spaces of the hollow toroidal wall geometry.

The geometric details of the two perforated blockage plates used in the test program

are given in table I. Although both plates had the same solidity (60 percent), the hole

diameters on plate A were twice those of plate B. Consequently the hole discharge co-

efficients differed significantly for the two plates. Tests were conducted with each of

the two plates successively positioned in the diffuser exit passage downstream of the

dump (plane of abrupt area change) at L/H distances of 0. 5, 1.0, and 2.0.

Diffuser Instrumentation

The essential diffuser instrumentation is indicated in figures 2 and 3. Diffuser inlet

total pressure was obtained from three five-point total pressure rakes equally spaced

around the annular circumference. Inlet static pressure was measured using wall taps

in the vicinity of the inlet rakes.

Diffuser exit total and static pressures were obtained by using three nine-point pitot

static rakes that could be rotated in a circumferential direction and translated axially.
For this investigation these rakes were positioned a distance equal to the inlet passage

height downstream of the perforated plate location. All rake pressures were measured

using three Scanivalves, each ducting pressures from a maximum of 48 ports to a flush

mounted ±0.69-newton-per-square-centimeter (±l.0-psid) strain gage transducer. The

valve dwell time at each port was 0. 2 second, or over three times the interval required

to reach steady state. Continuous calibration of the Scanivalve system was provided by

ducting known pressures to several ports. Visual display of pressure profiles was made

available by also connecting all inlet rakes and two exit rakes to common-well manom-
eters. The manometer fluid was dibutyl phthalate (specific gravity, 1.04).

All other pressure data such as orifice line pressures for the main air line and the

subatmospheric bleed-air lines were obtained by use of individual strain gage pressure
transducers. The temperatures of the various flows were measured with copper con-

stantan thermocouples.

All data were remotely recorded on magnetic tape for subsequent processing with a
digital data reduction program. In addition any test parameter could be displayed in the
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facility control room by means of a digital voltmeter.

PROCEDURE

Performance Calculations

Using the digital data reduction program mentioned previously, the overall diffuser

performance was evaluated in terms of the radial profile of exit velocity, diffuser effec-

tiveness, total pressure loss, and diffuser efficiency. The values of the latter three

figures of merit were expressed in percentages.

Intermediate computations included average static and total pressures, local and

average Mach numbers and local- to average-Mach number ratios; that is, the equiva-

lent of the local- to average-velocity ratios. The average pressures and Mach numbers

at the diffuser exit, P 2 , P02, and M 2 , were computed by trapezoidal integration using

area ratio weighed pressures at the various radial positions. At the diffuser inlet,
straight arithmetic averages were computed. Local Mach numbers for each pitot tube

were computed from the compressible flow relation

2
Mr -1 (1)

r  p

where p0 and p represent the measured local total and static pressures and y repre-

sents the specific heat ratio, set equal to 1.4 for the near ambient conditions of this in-

vestigation.

Diffuser and bleed airflow rates were computed from the respective orifice pres-

sures and temperatures. As a check on the arithmetically averaged inlet Mach number

a mean effective inlet Mach number was also computed by iteration from inlet airflow

rate, total pressure, temperature, and area data from the identity

m__ RT 0 1  - 1 M2 (y+ ) / 2 ( y-1)
1 -- 1+ M (2)

P01A1 V c M

As a check on data validity, a rearranged form of equation (2) was also used to compute

the mass flow ratios MR 1 and MR 2 at the inlet and exit stations, respectively. The

velocity ratios at each radial position, needed to generate velocity profiles, were ob-

tained from the circumferential averages of the local- to average-Mach number ratios.

A plotting routine was used to generate the velocity profiles by computer with output on

microfilm.
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Diffuser effectiveness was computed from the following relation:

P2 - 1
1 = x 100 (3)

(P 01 - P1) (1 - AR

Equation (3) is an approximation expressing the ratio of actual to ideal conversion of in-

let dynamic pressure to exit static pressure for the case of compressible flows through

a diffuser with wall bleed for M 1 5 0. 5 and AR - 2. For the conditions of the present

study the use of equation (3) introduced an approximation error of less than 0. 5 percent.

A derivation of equation (3) and its limitations is shown in reference 10.

The total pressure loss was defined as

AP0 P01 - P02- x 100 (4)

P0 1  P 01

Diffuser efficiency was computed from the relation

+ M PO 2 (  -  1

01

2 1

Equation (5) was derived in reference 11 for the case where the diffuser exit velocity is

negligible. This restriction can be removed from equation (5), as shown in reference 10

by making a minor change in the definition and subsequent derivation of the diffuser ef-
ficiency parameter. Hence equation (5), as used in this report, relates the total energy

level available at the exit of a diffuser, to the upstream total energy level with the inlet

static enthalpy being the reference.
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Test Conditions

Typical diffuser inlet conditions were the following:

Total pressure, N/cm 2 abs (psia) . ............. 9.9 to 10.66 (14.4 to 15.5)

Static pressure, N/cm abs (psia) . ............. 9.6 to 10.14 (13.9 to 14.7)

Temperature, K (oF) ......................... 276 to 282 (36 to 47)

Mach number ................... ............. 0. 178 to 0.269

Velocity, m/sec (ft/sec) ....................... 60 to 89 (196 to 293)

Reynolds number (based on inlet passage height) . . . . . . . . . 2.13x10 5 to 3.25x10 5

Bleed rate, percent of total flow ........................ 0 to 13.5

Units

The U.S. Customary system of units was used for primary measurements and cal-

.culations. Conversion to SI units (Systeme International d'Unites) is done for reporting

purposes only. In making the conversion, consideration is given to implied accuracy,
which may result in rounding off the values expressed in SI units.

RESULTS AND DISCUSSION

The effect of wall edge suction on the performance of an annular dump diffuser with

exit passage flow blockage was evaluated in terms of radial profiles of velocity, diffuser

effectiveness, and total pressure loss. Tests were conducted at nominal inlet Mach

numbers of 0.18 and 0.27 and suction rates ranging from zero to 13 percent with each of

two perforated plates successively positioned downstream of the dump plane at L/H

values of 0.5, 1.0, and 2.0. The perforated plate details are shown in table I. Although

the solidity and thickness of the two plates was the same, the hole diameters and hole

spacings of plate A were twice those of plate B. The resulting differences in hole dis-

charge coefficients and downstream turbulent mixing phenomena are reflected in the

performance results which will be discussed subsequently. A summary of diffuser per-

formance data is given in table II.

Radial Profiles of Velocity

The inlet and exit velocity profiles shown in figures 4 and 5 were generated by plot-

ting the ratio of local velocity at a radial position to the average velocity in a particular
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plane (inlet or exit) as a function of increasing radial span position. The local velocity

at a given radial span position was obtained by taking the arithmetic average of local ve-

locities at three circumferential locations. Circumferential variations from these aver-

aged profiles were about ±2 percent at the diffuser inlet and about ±30 percent at the dif-

fuser exit plane. The profile measurement errors as indicated by the mass flow ratios

MR 1 and MR 2 ranged from ±2 percent at the diffuser inlet station to ±8 percent at the

exit station.

Because of the high degree of similarity between profiles obtained at comparable

suction rates and inner-to-outer wall suction flow ratios, only a few typical profiles are

shown. However some pertinent profile information such as exit profile peak position

and exit profile peak values vm 2 /V 2 and vm 2 /V 1 are shown for each data point in ta-

ble II. The first of these values expresses the ratio of maximum exit velocity to aver-

age exit velocity. The second value shows the ratio of maximum exit velocity to average

inlet velocity and as such gives an indication of the velocity reduction for the highest ve-

locity streamline. Hence this value is also shown in the figure captions for each of the

profiles shown. Dividing the second by the first value gives the average velocity ratio

V2/V 1 which ranges from 0.20 to 0.26 as expected for the diffuser geometry and flow

conditions tested. For profiles with suction on both walls the fraction of total suction,

bi and bo, applied on the inner and the outer wall is also shown on each profile figure.

The inlet and exit radial profiles of velocity for perforated plate A (large holes) at

the L/H = 1.0 position are shown in figure 4 for a nominal inlet Mach number of 0.18

with various combinations of inner and outer wall suction.

Figure 4(a) shows the inlet and exit velocity profiles obtained without the use of suc-

tion. The measuring station was at an L/H = 2 downstream of the dump plane, that is,

at an L/H = 1 downstream of the plate. Also shown for comparison is the exit velocity

profile obtained in reference 7 without a flow blockage device in the diffuser exit pas-

sage. This profile was determined at an L/H = 0.75 downstream of the dump plane. A

comparison of the two profiles indicates that the blockage plate alters the original jet-

type profile to one that is less peaked and fills a greater portion of the exit passage.

The flat, slightly hub-biased inlet velocity profile was not affected by exit passage flow

restriction and, as will be shown in succeeding figures, it was also unaffected by inlet

Mach number, plate blockage, or suction rate.

The effect of inner wall suction is shown in figure 4(b). It is significant to note that

despite the presence of the flow blockage plate, the exit velocity profile downstream of

the blockage shows a pronounced hub bias with only 3. 25 percent suction on the inner

wall. To produce a similar degree of tip bias, approximately 4.9 percent suction was

required on the outer wall as shown in figure 4(c). Use of about 6.7 percent suction on

the outer wall increased the tip bias as shown in figure 4(d).

With suction applied on both the inner and the outer wall the exit velocity profiles

tended towards symmetry about the midregion of the diffuser exit passage, provided that
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the inner and outer wall suction rates were applied in the proper ratio. With 2.75 per-

cent inner and 6.6 percent outer wall suction rate (i.e., with an inner to outer wall suc-

tion flow split of 29.5 percent to 70.5 percent), the exit velocity profile (fig. 4(e)) was

not changed much from that of figure 4(d). This indicated that the inner wall suction

rate had to be increased to obtain a symmetric profile. With 4.7 percent inner and

6.6 percent outer wall suction rate, figure 4(f), a considerably flattened and practically

unbiased profile was obtained. This suggests that the suction flow split between the

inner and outer wall should be 42 and 58 percent, respectively, if a symmetric exit ve-

locity profile is desired. This flow split is approximately equal to the area split be-

tween the inner annulus of the exit passage, bounded by the inner wall and the passage

centerline, and the outer annulus, bounded by the passage centerline and the outer wall.

It should also be noted that the exit profiles were stable with suction applied on both

walls in the ratio required for symmetric exit profiles. This is a significant improve-

ment over the oscillating profiles obtained during the open diffuser tests of reference 7.

Profiles are not shown for the inlet Mach number of 0.27 or a plate L/H position

of 2.0 because the profiles were quite similar at comparable suction rates to those of

figure 4. At the L/H = 0. 5 position the flow spreading was inadequate and jet flow ex-

isted downstream of the plate for all wall suction combinations.

The velocity profiles obtained with perforated plate B (smaller holes) at the L/H =

2.0 position are shown in figure 5, with the inlet Mach numbers as indicated. With this

plate the flow spreading effect for the L/H = 0. 5 and 1.0 plate positions was small and

hence no profiles are shown for these positions. Figure 5(a) shows the inlet and exit

velocity profiles obtained for the case of no wall suction. The profile measurements

were made at an L/H = 3 downstream of the dump plane thus maintaining the separation

between the plate and the exit instrumentation at an L/H = 1. Also shown (dashed curve)

is the exit velocity profile obtained in reference 7 without blockage in the diffuser exit

passage. As mentioned previously, the profile measurements in reference 7 were made

at an L/H = 0.75 downstream of the diffuser dump plane. Comparison of the inlet ve-

locity profiles shown in figure 5 with those of figure 4 shows that the inlet velocity pro-

file was not altered by downstream plate blockage.

Moreover the high degree of similarity between the solid and dashed exit velocity

profiles (fig. 5(a)) indicates that the flow filling effect obtained with perforated plate B

was small. In both cases a jet-type flow profile was observed. Figure 5(b) shows the

hub biased exit velocity profile obtained with 4. 15 percent suction on the inner wall.

The tip biased profile resulting from an outer wall suction rate of about 4.25 percent is

shown in figure 5(c). As with plate A, the exit velocity profiles with suction on both

walls tended to be symmetric about the centerline of the diffuser exit passage provided

the inner and outer wall suction rates are properly adjusted. Profile flattening also oc-

curs if the wall suction rates are sufficient. Figure 5(d), for example, illustrates a

flow condition for which the wall suction rates, although almost in the correct ratio for
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a symmetric profile, are inadequate for a flat exit velocity profile. Figure 5(e), on the

other hand, does show a symmetric and flattened exit velocity profile obtained with suc-

tion rates of 5. 5 and 8. 5 percent respectively on the inner and outer diffuser wall. As

in figure 4(f) the symmetric exit profile was also stable. However, the degree of profile

flatness is somewhat less than that shown in figure 4(f) obtained with plate A even though

the total suction in figure 5(e) is greater than in figure 4(f). A logical conclusion is that

plate B (small holes) presented less resistance to the flow than did plate A (large holes).

Since the solidity was the same for both plates the variation in flow resistance can only

be explained by the difference in hole sizes and hole spacing. The same conclusion is

reached by comparing the profiles of figures 4(a) and 5(a), both obtained without suction.

In summary, the results depicted in figures 4 and 5 show that the airflow distribu-

tion in a diffuser exit passage, downstream of a flow resistance device, such as a per-

forated plate or a swirl can combustor module array can be controlled by application of

diffuser wall suction upstream of the flow restriction. Also, solidity alone is not a suf-

ficient indicator of flow resistance, that is, plate pressure loss. Besides solidity the

hole size and spacing are also significant factors in estimating the flow resistance of a

perforated plate. For the two plates tested the one with the coarser hole pattern (larger

holes and wider spacing) produced the higher flow resistance. With quantitative data on

the effect of hole pattern on plate AP /q not available, simulation of combustor flow

resistance by simple perforated plates can only be approximated by matching the total

pressure loss of the diffuser-plate combination to the total pressure loss of the combus-

tor being simulated. Of course, this may be an iterative procedure requiring the testing

of more than one perforated plate before sufficiently close pressure drop matching is

obtained. The pressure drop matching obtained with the perforated plates tested here

will be discussed in a later section.

Diffuser Effectiveness

Diffuser effectiveness as defined in equation (3) is a measure of the static pressure

recovery downstream of the flow resistance. For a combustor this parameter permits

computation of primary zone static pressure which must be maximized for good ignition

and flame-holding performance.

Figure 6 shows several crossplots summarizing diffuser effectiveness results,

shown in table II, as a function of plate position with suction rate as a parameter. The

rapid rise in effectiveness as either plate is moved from the L/H = 0. 5 to the L/H =

1.0 position is readily apparent. Moving the plate further downstream to the L/H = 2

position leads to only a small increase in diffuser effectiveness without suction or with

5 percent suction. A small decrease in diffuser effectiveness occurs at 10 percent suc-

tion. Therefore the L/H = 1 plate position is considered to represent an overall
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optimum diffuser exit flow blockage location particularly for applications where the

diffuser-combustor length must be minimized.

The higher effectiveness values obtained with plate B corroborate the conclusions

drawn from the exit velocity profile results (figs. 4 and 5), namely that plate B offered

a lower resistance to the flow than did plate A. The results shown in table II for per-

forated plate A at the L/H = 1 position show that the effectiveness parameter increased

from about -11.4 percent without suction to about 48.9 percent at a total suction rate of

about 11. 5 percent. For perforated plate B the effectiveness parameter increased from

about 5.6 percent without suction to 52.6 percent at a total suction rate of 13.24 percent.

Diffuser Total Pressure Loss

The decrease of diffuser total pressure loss with suction rate is shown in figure 7(a)

for perforated plate A and in figure 7(b) for perforated plate B. The inlet Mach number

was approximately 0. 26 for the data points plotted. The lower pressure loss levels

shown for perforated plate B with its finer hole pattern (smaller holes at closer spacing)

may be explained by the smaller scale of turbulence existing downstream of the plate re-

sulting in lower levels of turbulent energy dissipation. These lower pressure loss data

for plate B are also in agreement with previously discussed velocity profile and effec-

tiveness results. For both plates there is a significant decrease in total pressure loss

level as the plate position downstream of the dump is changed from L/H = 0. 5 to L/H =

1. This may be due to the establishment of a trapped vortex upstream of the plate which

aids the flow spreading process. As predicted by the previously discussed effectiveness

results, the additional reduction in pressure loss obtained by moving either plate further

downstream is negligible.

The pressure loss value obtained without suction for plate B at the L/H = 1 position

is in reasonable agreement with the cold flow pressure loss measured for the swirl can

combustor of reference 3. Isothermal pressure loss values for other, that is, nonswirl

can-type combustors quoted in the literature were in close agreement with the pressure

loss values obtained with plate A. This implies that the total pressure loss caused by

typical combustor dome blockages can be simulated by perforated plates such as used

here. However, to simulate primary zone and inner and outer annulus flow splits of

nonswirl can-type combustors, a more accurate replica of the combustor is required

than can be provided by simple perforated plates.
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Diffuser Efficiency

The isentropic diffuser efficiency, as defined by equation (5), is a measure of the

degree of total flow energy conservation between the diffuser inlet and exit stations.

The relation between diffuser efficiency, diffuser effectiveness and total pressure loss

is discussed in detail in reference 10. Values of diffuser efficiency for the test readings

of this study are given in table II. These values are seen to be within 5 percent of the

diffuser effectiveness values for the readings tabulated, indicating reasonable agreement

between two methods of flow energy accounting.

Pertinence of Results to Combustor Design

This investigation was conducted to determine the combined effects of wall edge suc-

tion and exit passage flow resistance on the performance of an annular high area ratio

dump diffuser. The flow resistance devices, consisting of perforated plates, were in-

tended to simulate the flow obstruction of a gas turbine combustor dome. The diffuser

was tested with each of two plates in three separate positions downstream of the dump

plane and the results were compared to those of reference 7 wherein the same diffuser

geometry was tested without exit passage flow resistance.

A swirl can combustor-type flow obstruction was found to aid the flow spreading

process in the diffuser exit passage. The optimum position for the combustor flow ob-

struction downstream of the dump plane was found to be equal to one diffuser inlet pas-

sage height in installations where the minimum suction rate is expected to exceed about

6 percent. Below this total suction level the best performance is obtained with the com-

bustor dome at the L/H = 2 position.

Of particular importance in combustor design is the result that the velocity profile

or airflow distribution downstream of a flow resistance device can be controlled by using

suction on the diffuser walls. Qualitatively this result suggests that the air flow distri-

bution in a combustor can be tailored as in a variable geometry combustor to suit the

requirements of a particular engine operating condition by using diffuser wall suction.

Quantitative measurements of the actual airflow distribution in the primary zone and

the hub and tip annuli would have to be performed using a more detailed replica of the

combustor dome in model testing.

The pressure loss of the diffuser-combustor system was found to decrease with in-

creasing suction rate. At total suction rates above 10 percent the performance of the

diffuser-combustor system, including the perforated plate pressure loss penalty, was

found to equal or exceed the performance of the open diffuser tested in reference 7. It

is conceivable that the performance levels of the dump diffuser-combustor system could

be raised by improvements in suction slot design. Hence, the suction rates required

14



for control of the combustor airflow distribution may be compatible with the turbine

cooling requirements of high performance gas turbine engines.

SUMMARY OF RESULTS

The performance of a short annular dump diffuser with variable position exit pas-
sage flow resistance was evaluated. The diffuser was equipped with suction capability
through peripheral edge slots on both the inner and the outer wall. The flow resistance

devices consisted of two simple perforated plates, both of 60 percent solidity but of dif-
fering hole diameters and hole spacings. Tests were conducted with each of the two
plates successively positioned at three different locations (L/H = 0.5, 1.0, and 2.0)
downstream of the plane of abrupt area change. The performance results (effectiveness,

pressure loss, and downstream velocity profiles) of the diffuser and flow resistance
combination were as follows:

1. The optimum plate position for achieving the highest performance levels by the
use of suction was determined to be the L/H = 1 position.

2. A significant drop in performance occurred with either plate at the L/IH = 0. 5
position.

3. With either plate at the L/H = 2 location performance levels at suction rates
above 6 percent were only slightly below those obtained for the optimum L/H = 1 posi-
tion. Below 6 percent total suction rate performance was slightly higher at the L/H = 2
position than at the L/H = 1 position.

4. Performance was independent of inlet Mach number but increased with suction

rate for all plate positions.

5. For perforated plate A (larger holes with coarser spacing) at the optimum (L/H =
1) position, the overall system effectiveness increased from -11 percent without suction
to 49 percent at a total suction rate of 11.5 percent.

6. The corresponding system total pressure loss at a nominal inlet Mach number

of 0. 26 was reduced from 5. 1 percent at no suction to 3. 1 percent at a total suction rate
of 8.6 percent.

7. Performance levels were somewhat higher with perforated plate B (smaller holes
with finer spacing) suggesting that the finer scale of turbulence occurring downstream of
the plate resulted in a lower level of turbulent energy dissipation.

8. The velocity profiles downstream of the perforated plates could be made hub

biased by applying more than 42 percent of the total suction on the inner wall and tip
biased by applying more than 58 percent of the total suction on the outer wall of the

diffuser.
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9. Considerably flattened, symmetric and stable downstream velocity profiles were

obtained at total suction rates of 10 percent or more, distributed between the inner and

outer walls in the ratio of 0.42 to 0.58.

10. In simulating the airflow distribution and isothermal pressure loss of a swirl

can combustor by a simple perforated plate, hole size, and spacing must be taken into

account in addition to plate solidity.

11. Although the isothermal pressure loss of a non swirl-can-type combustor can

be simulated by a perforated plate of the proper geometry, to simulate primary zone

and annulus flow splits a detailed model of the combustor should be used.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, December 17, 1974,
505-03.
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TABLE I. - PERFORATED PLATE DIMENSIONS

Perforated Percent solidity, Hole diameter, Plate thickness, Hole pattern

plate a d, cm (in.)

cm (in.)

1. 5d

A 60 0. 633 0. 32 600

(0. 25) (0. 125) -( 1.5d

1. 5d

B 60 0.32 0.32 40 Q
(0. 125) (0. 125) 1. 5d

600
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TABLE II. - DIFFUSER PERFORMANCE DATA

Reading Diffuser Airflow rate Inlet pressure Inlet total Suction rate, Exit profile Diffuser Diffuser Total

inlet temperature percent (peak) effectiveness, efficiency, pressure

Mach kg/sec lb/sec Total Static percent percent loss,
numberK F Inner Outer Total Position, Value, Value, p/p,

N/cmall wall percent of vm 2 /V 2 Vm2/V1 percent
annular

span

Perforated plate A at 2.5 cm (1 in.);. L/H = 1.0

529 0.261 3.33 7.34 10.44 15.14 9.92 14.38 278 41 0 0 0 60 2.02 0.45 -11.2 -10.4 5.1

530 .261 3.33 7.34 10.45 15.15 9.92 14.39 0 0 60 2.02 .44 -11.7 -11.1 5.1

531 .260 3.32 7.33 10.37 15.04 9.85 14.28 2.36 2.36 40 1.78 .40 7.07 6.43 4.4

532 .263 3.33 7.34 10.37 15.04 9.85 14.28 2.37 2.37 1.76 .40 6.88 6.65 4.4

533 .264 3.33 7.34 10.34 15.00 9.82 14.24 3.43 3.43 1.83 .42 13.33 12.97 4.2

534 .265 3.34 7.37 10.34 15.00 9.82 14.25 3.41 3.41 1.83 .42 12.52 13.50 4.1

535 .265 3.34 7.36 10.33 14.98 9.81 14.23 3.96 3.96 1.80 .41 15.88 16.69 4.0

537 .264 3.33 7.34 10.32 14.97 9.81 14.22 4.37 4.37 1.86 .43 17.30 17.59 3.9

538 .263 3.32 7.32 10.32 14.97 9.81 14.22 4.38 4.38 1.86 .42 17.70 17.23 3.9

539 .262 3.32 7.32 10.38 15.05 9.86 14.29 2.11 2.11 60 1.76 .40 5.84 5.42 4.4

540 .263 3.33 7.35 10.37 15.05 9.86 14.30 2.10 2.10 40 1.77 .40 4.83 6.58 4.4

541 .265 3.32 7.33 10.28 14.91 9.76 14.16 1.33 4.45 5.78 60 1.61 .35 29.0 26.5 3.5

542 .265 3.32 7.33 10.08 14.91 9.76 14.16 1.34 4.44 5.78 30 1.60 .34 28.8 25.9 3.5

543 .266 3.33 7.35 10.26 14.89 9.74 14.13 2.06 4.49 6.55 30 1.62 .34 32.3 29.6 3.4

544 .265 3.32 7.32 10.26 14.88 9.74 14.13 2.07 4.50 6.58 30 1.65 .34 32.5 29.2 3.4

545 .264 3.30 7.28 10.25 14.86 9.74 14.12 2.43 4.50 6.95 60 1.64 .33 35.5 32.2 3.2

546 .266 3.32 7.32 10.24 14.86 9.73 14.12 2.83 4.50 7.33 60 1.66 .33 35.3 32.9 3.2

547 .264 3.30 7.27 10.23 14.84 9.73 14.11 279 3.44 4.58 8.02 50 1.58 .32 36.8 34.3 3.1

548 .263 3.29 7.25 10.23 14.84 9.72 14.10 278 3.42 4.60 8.01 60 1.58 .32 37.0 32.8 3.2

549 .265 3.31 7.30 10.24 14.85 9.74 14.12 279 42 3.42 4.57 7.82 60 1.58 .32 36.0 34.1 3.2

550 .263 3.29 7.26 10.24 14.85 9.73 14.11 41 2.81 4.58 7.39 30 1.57 .32 36.7 33.7 3.1

551 .267 3.34 7.35 10.25 14.87 14.12 42 2.95 4.52 7.46 60 1.60 .33 35.4 32.7 3.3

552 .267 3.33 7.35 10.25 14.86 14.11 2.94 4.50 7.45 60 1.60 .33 35.6 32.8 3.26

553 .266 3.32 7.32 10.24 14.85 14.111 4.09 4.57 8.67 50 1.58 .32 37.7 34.9 3.14

554 .266 3.32 7.32 10.24 14.85 1 14.11 4.00 4.58 8.57 60 1.57 .31 37.8 35.1 3.13

555 .179 2.28 5.03 10.16 14.74 9.92 14.39 276 37 0 0 0 60 2.12 .44 -10.7 -10.9 2.45

556 .180 2.29 5.05 10.16 14.74 9.92 14.39 276 37 0 0 0 60 2.04 .43 -11.4 -9.90 2.45

557 .179 2.26 4.98 10.06 14.59 9.83 14.25 277 38 2.13 5.90 8.04 40 1.86 .31 37.9 32.8 1.49

558 .179 2.26 4.98 10.06 14.59 9.82 14.24 39 2.14 5.92 8.06 1.83 .31 37.4 31.3 1.53

559 .183 2.30 5.06 10.05 14.58 9.81 14.23 3.18 6.50 9.76 1.66 .30 43.9 38.7 1.70

560 .183 2.30 5.08 10.05 14.58 9.81 14.23 2.84 6.60 9.45 1.63 .31 42.5 39.6 1.40

561 .181 2.27 5.00 10.04 14.56 9.80 14.22 4.72 6.76 11.48 60 1.51 .30 48.9 44.0 1.27

562 .182 2.29 5.04 10.04 14.56 9.80 14.22 4.69 6.60 11.29 50 1.51 .29 46.8 42.7 1.31

563 .182 2.29 5.05 10.06 14.59 9.82 14.25 0 6.67 6.67 50 1.61 .34 37.0 35.1 1.49

564 .181 2.29 5.04 10.09 14.63 9.84 14.27 0 6.54 6.54 40 1.90 .42 26.3 24.1 1.72

565 .183 2.30 5.06 10.06 14.59 9.82 14.24 2.75 6.59 9.34 50 1.55 .30 43.3 38.8 1.41

566 .183 2.30 5.08 10.10 14.64 9.85 14.29 0 5.64 5.64 30 1.87 .44 22.2 22.8 1.78

567 .182 2.30 5.06 10.10 14.65 9.86 14.30 4.89 4.89 40 1.75 .41 19.0 19.51 1.84

568 .182 2.30 5.07 10.12 14.68 9.87 14.32 3.16 3.16 40 1.91 .44 11.2 12.2 2.01

569 .182 2.30 5.08 10.13 14.69 9.89 14.34 1.89 1.89 40 1.98 .43 5.29 7.33 2.12

570 .181 2.29 5.05 10.12 14.67 9.87 14.32 1 3.25 0 3.25 60 1.80 .38 . 12.4 11.2 2.01



TABLE n. - Continued. DIFFUSER PERFORMANCE DATA

Reading Diffuser Airflow rate Inlet pressure Inlet total Suction rate, Exit profile Diffuser, Diffuser Total
inlet temperature percent (peak) effectiveness, efficiency, pressure
Mach kg/sec lb/sec Total Static percent percent loss,

numberK OF Inner Outer Total Position, Value, Value, pP/Pnumber N/cm
2 

psia N/cni psia wall wall percent of 2 /V 2  m2 1  percent

annular

span

Perforated plate A at 5 cm (2 in.); L/H = 2.0

571 0.259 3.33 7.34 10.45 15.16 9.94 14.42 276 36 0 0 0 60 1.93 0.41 -0.87 0.45 4.55

572 .260 3.33 7.35 10.45 15.15 9.94 14.42 276 36 1.95 .40 -1.19 .83 4.54
573 .261 3.34 7.37 10.45 15.16 9.95 14.42 276 37 2.01 .48 -1.14 3.47 4.5

574 .260 3.33 7.35 10.45 15.16 9.94 14.42 1.96 .47 -.99 2.91 4.4

575 .261 3.31 7.31 10.35 15.02 9.85 14.21 3.60 3.60 40 1.85 .45 20.7 22.5 3.6
576 .260 3.31 7.30 10.35 15.02 9.85 14.29 3.93 3.93 1.87 .45 21.3 22.3 3.6
577 .261 3.32 7.32 10.39 15.07 9.88 14.33 1.99 1.99 1.94 .47 14.3 15.6 3.9

578 .260 3.31 7.31 10.39 15.07 9.88 14.33 1.97 1.97 1.96 .47 14.3 15.1 3.9
579 .260 3.30 7.28 10.34 15.00 9.84 14.27 0 4.35 4.35 1.73 .39 23.9 22.6 3.6
580 .261 3.31 7.30 10.34 15.00 9.84 14.27 0 4.43 4.43 1.74 .38 24.0 22.7 3.6
581 .262 3.31 7.30 10.32 14.97 9.82 14.25 2.83 4.53 7.36 1.55 .33 29.4 27.8 3.4
582 .262 3.32 7.32 10.32 14.97 9.82 14.25 2.82 4.61 7.43 1.51 .33 29.2 28.2 3.4
583 .262 3.31 7.31 10.33 14.99 9.83 14.26 1.99 3.84 5.83 1.53 .33 25.9 24.3 3.5
584 .262 3.32 7.32 10.34 14.99 9.83 14.26 1.98 3.90 5.88 60 1.56 .32 25.2 23.2 3.6
585 .261 3.31 7.31 10.34 15.00 9.84 14.27 1.35 3.05 4.40 40 1.68 .38 24.1 23.7 3.6
586 .261 3.32 7.31 10.34 15.00 9.84 14.27 1.36 3.05 4.40 1.68 .38 23.6 22.4 3.6
587 .261 3.32 7.32 10.36 15.02 9.85 14.28 .94 2.47 3.41 1.78 .40 22.1 22.1 3.7
588 .259 3.30 7.27 10.36 15.03 9.86 14.30 .95 1.93 2.88 1.82 .42 20.0 20.0 3.7
607 .185 2.33 5.13 10.13 14.69 9.87 14.32 280 43 0 0 0 50 2.02 .41 -.92 -1.86 2.4
612 .184 2.31 5.10 10.10 14.64 9.85 14.28 278 41 2.48 0 2.48 50 1.97 .39 18.4 15.6 2.0
613 .183 2.31 5.09 10.08 14.63 9.83 14.26 278 41 4.63 0 4.63 50 1.80 .38 23.5 21.1 1.8

Perforated plate A at 1.3 cm (0.5 in.); L/H = 0.5

591 0.254 3.33 7.35 10.66 15.46 10.14 14.71 277 38 0 0 0 40 2.36 0.67 -49.5 -43.7 6.3

592 .255 3.34 7.37 10.66 15.46 10.14 14.71 0 0 40 2.36 .67 -49.5 -42.5 6.3
593 .257 3.32 7.33 10.54 15.28 10.02 14.53 3.88 3.88 60 2.02 .50 -20.5 -18.9 5.3

594 .258 3.34 7.36 10.54 15.28 10.02 14.54 3.85 3.85 60 1.98 .50 -21.1 -17.5 5.3

595 .259 3.34 7.37 10.53 15.28 10.02 14.53 0 4.20 4.20 40 2.27 .61 -20.4 -14.5 5.2
596 .258 3.34 7.36 10.54 15.28 10.01 14.52 0 4.14 4.14 2.25 .61 -20.2 -15.5 5.2
597 .261 3.34 7.36 10.44 15.14 9.92 14.39 2.31 4.12 6.43 2.04 .50 1.90 3.46 4.5
598 .184 2.33 5.13 10.14 14.70 9.89 14.34 3.99 6.33 10.32 1.84 .39 22.3 21.0 1.8
599 .183 2.32 5. 12 10.13 14.70 9.89 14.34 3.96 6.37 10.33 1.72 .36 20.8 20.8 1.8
600 .260 3.33 7.34 10.44 15.14 9.92 14.38 2.69 4.14 6.83 2.03 .50 1.90 1.35 4.5
601 .259 3.33 7.34 10.48 15.20 9.96 14.44 1.93 3.50 5.43 2.14 .55 -8.56 -6.36 4.8
602 .260 3.34 7.34 10.48 15.20 9.95 14.43 1.94 3.53 5.47 2.15 .55 -7.13 -5.65 4.8
603 .182 2.31 5.09 10.16 14.74 9.91 14.38 2.85 5.30 8.16 2.08 .48 7.89 7.49 2.1
604 .182 2.31 5.09 10.16 14.73 9.91 14.38 2.85 5.37 8.22 2.06 .48 7.97 9.10 2.1
605 .183 2.32 5.12 10.15 14.73 9.91 14.37 3.30 5.35 8.65 1.99 .44 11.8 13.4 2.0
606 .182 2.31 5.09 10.16 14.73 9.91 14.37 3.34 5.45 8.79 1.99 .44 12.2 10.9 2.0



TABLE II. - Continued. DIFFUSER PERFORMANCE DATA

Reading Diffuser Airflow rate Inlet pressure Inlet total Suction rate, Exit profile Diffuser Diffuser Total
inlet - Total Static temperature percent (peak) effectiveness, efficiency, pressure

Mach kg/sec lb/sec Total Static percent percent loss,
number K OF Inner Outer Total Position, Value, Value, percent percent loss,

numberN/cm psa N/cm
2 

psia wall wall percent of vm2/V2 Vm 2/V1 percentannular
span

Perforated plate B at 2.5 cm (1 in.); L/H = 1.0

614 0.265 3.33 7.35 10.31 14.95 9.78 14.18 279 41 0 0 0 50 2.62 0.65 5.92 9.44 4.3
615 .266 3.34 7.37 10.31 14.95 9.78 14.18 279 0 0 2.58 .64 5.35 9.68 4.3
616 .267 3.33 7.35 10.22 14.82 9.69 14.06 278 4.19 4.19 2.46 .56 25.8 26.9 3.6
617 .266 3.32 7.33 10.23 14.84 9.70 14.07 3.01 3.01 2.49 .59 22.2 22.5 3.7
618 .267 3.33 7.35 10.23 14.84 9.70 14.07 40 2.99 V 2.99 1 2.47 .59 21.3 23.0 3.7
619 .269 3.35 7.38 10.20 14.79 9.66 14.02 0 4.31 4.31 2.34 .56 31.0 31.6 3.4
620 .268 3.34 7.35 10.19 14.78 9.66 14.02 0 4.33 4.33 2.36 .57 30.3 31.0 3.4
621 .267 3.34 7.37 10.24 14.86 9.71 14.09 0 1.88 1.88 2.46 .60 19.7 21.6 3.8
622 .264 3.30 7.28 10.25 14.86 9.73 14.11 1.68 0 1.68 2.45 .61- 16.6 19.3 3.8
623 .263 3.27 7.21 10.18 14.76 9.67 14.03 1.72 2.21 3.93 2.36 .56 30.9 31.8 3.2
624 .267 3.33 7.34 10.19 14.78 9.67 14.02 1.68 2.15 3.83 2.40 .56 30.9 31.6 3.3
625 .267 3.31 7.30 10.17 14.76 9.66 14.00 2.19 2.64 4.82 2.30 .54 34.6 34.8 3.2
626 .268 3.32 7.33 10.18 14.76 9.65 14.00 2.17 2.63 4.81 2.34 .54 34.3 34.7 3.2
627 .185 2.30 5.07 10.96 14.44 9.71 14.09 41 3.18 3.86 7.03 ' 2.20 .50 42.4 42.2. 1.4
628 .267 3.30 7.28 10.12 14.68 9.60 13.93 2.82 4.30 7.12 2.25 .50 42.2 40.7 2.9
629 .186 2.30 5.07 9.93 14.40 9.68 14.04 4.12 6.41 10.53 40 2.07 .43 50.3 47.3 1.3
630 .186 2.30 5.07 9.92 14.39 9.67 14.03 6.47 6.77 13.24 40 2.03 .43 52.6 49.1 1.2
631 .267 3.29 7.25 10.12 14.66 9.59 13.92 4.40 4.56 8.96 50 2.17 .49 44.4 43.1 2.8
632 .266 3.29 7.25 10.10 14.65 9.56 13.90 4.39 4.55 8.94 2.21 .49 45.3 43.0 2.8
633 .267 3.30 7.28 10.14 14.70 9.62 13.95 2.54 3.22 5.76 2.30 .53 37.9 32.0 3.1
634 .267 3.30 7.27 10.13 14.69 9.61 13.93 2.55 3.45 6.00 2.27 .52 38.5 36.9 3.06
635 .186 2.30 5.07 9.95 14.42 9.70 14.06 0 6.42 6.42 2.39 .54 37.5 36.7 1.51
636 .185 2.29 5.06 9.94 14.4 9.70 14.06 0 6.44 6.44 V 2.36 .55 37.3 36.7 1.50



TABLE II. - Continued. DIFFUSER PERFORMANCE DATA

Reading Diffuser Airflow rate Inlet pressure Inlet total Suction rate, Exit profile Diffuser Diffuser Total

inlet - I :temperature percent (peak) effectiveness, efficiency, pressure

Mach kg/sec lb/sec Total Static I percent percent loss,

K OF Inner Outer Total Position, Value, Value, Ap/p,
number N/cm

2 
psia N/cm

2 
psia wall wall percent of Vm 2 /V 2 Vm2 /V 1  percent

annular

span

Perforated plate B at 5 cm (2 in.); L/H = 2.0

637 0.267 3.38 7.44 10.38 15.06 9.84 14.28 279 42 0 0 0 50 2.49 0.59 12.4 14.3 4.1

638 .266 3.37 7.42 10.38 15.06 9.84 14.28 41 0 0 2.48 .59 12.4 13.6 4.2

639 .266 3.35 7.39 10.33 14.98 9.80 14.21 42 2.00 2.00 2.39 .53 23.7 24.0 3.7

640 .267 3.36 7.40 10.33 14.98 9.80 14.21 42 2.02 2.02 2.37 .54 23.8 24.1 3.7

641 .267 3.35 7.39 10.30 14.94 9.77 14.18 278 41 3.54 3.54 40 2.26 .52 30.1 30.0 3.4

642 .266 3.35 7.38 10.30 14.94 9.77 14.18 4.15 4.15 40 2.23 .52 30.1 30.2 3.8

643 .266 3.34 7.36 10.29 14.93 9.77 14.17 0 2.89 2.89 50 2.31 .55 29.9 30.5 3.3

644 .267 3.35 7.38 10.27 14.90 9.75 14.14 0 4.24 4.24 2.18 .52 34.5 34.3 3.2

645 .268 3.37 7.42 10.29 14.93 9.76 14.16 1.02 1.84 2.86 2.23 .53 29.9 30.4 3.4

646 .266 3.34 7.37 10.29 14.92 9.76 14.16 1.02 1.88 2.90 2.23 .53 30.2 30.5 3.4

647 .266 3.33 7.35 10.27 14.89 9.74 14.13 2.20 2.80 5.00 40 2.20 .50 34.2 32.8 3.2

648 .267 3.34 7.37 10.27 14.89 9.74 14.13 2.20 2.72 4.92 2.14 .50 34.4 33.5 3.2

649 .181 2.27 5.00 10.05 14.58 9.82 14.24 3.27 4.17 7.44 2.07 .46 38.0 37.8 1.4

650 .180 2.26 4.98 14.58 9.82 14.84 3.29 4.15 7.44 2.11 .47 38.1 37.4 1.4

651- .181 2.26 4.99 14.57 9.81 14.23 3.18 4.58 8.03 1.77 .41 41.6 40.9 1.3

652 .180 2.26 4.98 14.57 9.81 14.23 279 1 3.19 4.82 8.01 1.81 .41 41.0 34.8 1.4

653 .267 3.33 7.34 10.25 14.86 9.72 14.09 42 3.53 4.60 8.13 1.99 .45 38.7 36.0 3.1

654 .267 3.33 7.34 14.86 9.72 14.10 42 3.54 4.52 8.06 1.96 .46 39.1 37.8 3.0

655 .266 3.32 7.33 14.87 9.73 14.12 43 4.38 4.66 9.04 2.06 .47 38.0 36.0 3.1

656 .267 3.33 7.34 14.87 9.72 14.10 280 43 4.36 4.68 9.04 2.01 .47 38.7 36.6 3.1

657 .166 2.08 4.58 10.02 14.53 9.82 14.25 281 45 5.50 7.50 13.0 50 1.62 .34 50.3 47.3 1.0

658 .182 2.27 5.00 10.04 14.57 9.81 14.73 281 45 5.08 6.86 11.94 50 1.60 .35 47.4 45.7 1.2

659 .181 2.25 4.96 10.05 14.57 9.81 14.22 282 47 4.41 5.68 10.09 40 1.97 .45 44.4 42.2 1.3

660 .181 2.26 4.97 10.05 14.57 9.81 14.23 281 46 4.35 5.63 9.99 40 1.87 .40 44.2 42.7 1.3



TABLE II. - Concluded. DIFFUSER PERFORMANCE DATA

Reading Diffuser Airflow rate Inlet pressure Inlet total Suction rate, Exit profile Diffuser Diffuser Total
inlet temperature percent (peak) effectiveness, efficiency, pressure

Mach kg/sec lb/sec Total Static I percent percent loss,percent percent loss,
number ON/cm2F Inner Outer Total Position, Value, Value, pnumberN/cm ps psia I ap/pnN/c psia wall wall percent of V2/V2 Vm2/V 1  percent

annular

span

Perforated plate B at 1. 3 cm (0. 5 in. ); L/H = 0. 5

661 0.263 3.36 7.40 10.47 15.19 9.94 14.41 279 42 0 0 0 50 2.77 0.71 -16.8 -9.60 5.1
662 3.36 7.40 10.47 15.18 9.94 14.42 0 0 2.76 .71 -17.1 -9.16 5.1
663 3.35 7.38 10.42 15.11 9.90 14.36' 2.12 2.12 2.67 .66 -4.02 2.03 4.6
664 3.35 7.38 10.42 15.12 9.90 14.35 2.11 2. 11 2.67 .66 -3.96 2.46 4.6
665 3.33 7.34 10.36 15.03 9.84 14.27 3.83 3.83 2.66 .63 8.35 11.43 4.2
666 3.32 7.33 10.36 15.03 9.84 14.27 4.36 V 4.36 2.65 .62 8.67 11.7 4.1
667 3.33 7.33 10.37 15.04 9.86 14.30 0 2.89 2.89 2.59 .64 4.32 10.0 4.2
668 .264 3.34 7.36 10.37 15.05 9.86 14.291 2.92 2.92 2.64 .63 4.98 9.71 4.3
669 .262 3.31 7.30 10.34 15.00 9.83 14.26 4.11 4.11 2.50 .61 11.5 15.7 3.9
670 .263 3.31 7.30 10.34 15.00 9.82 14.24 4.18 4.18 2.63 .61 12.0 14.7 4.0
671 .181 2.28 5.02 10.07 14.61 9.83 14.26 43 6.42 6.42 2.44 .57 21.5 23.1 1.7
672 .181 2.27 5.00 10.08 14.62 9.84 14.27 43 6.71 0 6.71 2.35 .60 17.6 20.8 1.8
673 .262 3.31 7.29 10.37 15.03 9.85 14.29 280 45 1.14 1.95 3.09 2.58 .63 6.64 11.25 4.1
674 .261 3.30 7.27 10.36 15.03 9.85 14.29 280 1.15 1.99 3.14 2.67 .63 6.93 10.85 4.1
675 .264 3.31 7.31 10.31 14.95 9.80 14.21 281 2.19 3.26 5.45 2.50 .58 19.9 23.3 3.7
676 .263 3.30 7.28 10.31 14.95 9.79 14.20 2.25 3.24 5.49 2.45 .58 20.9 22.4 3.7
677 .178 2.23 4.91 10.06 14.60 9.83 14.25 3.26 4.99 8.25 2.42 .54 33.9 31.6 1.5
678 .178 2.23 4.92 10.06 14.59 9.82 14.24 I 3.35 5.02 8.36 2.33 .53 33.7 32.6 1.5
679 .266 3.31 7.30 10.26 14.88 9.75 14.13 46 3.76 4.26 8.02 2.46 .53 34.1 34.5 3.2
680 .265 3.31 7.29 10.26 14.88 9.74 14.13 3.67 4.31 7.99 2.50 .53 34.6 34.4 3.2
681 .179 2.23 4.92 10.03 14.55 9.79 14.21 j 5.62 6.66 12.29 2.19 .46 51.2 47.8 1.2
682 .180 2.24 4.93 10.03 14.55 14.21 5.67 6.71 12.38 2.26 .47 49.9 47.0 1.2
683 .180 2.24 4.93 10.03 14.54 14.19 6.83 6.71 13.54 2.19 .46 53.9 . 49.3 1.1
684 .181 2.25 4.97 10.02 14.54 14.19 1 6.84 6.69 13.5 2.22 .46 53.5 49.5 1.1
685 .266 3.32 7.31 10.24 14.85 9.72 14.10 280 44 4.45 4.32 8.77 2.38 .52 37.7 37.2 3.0
686 .266 3.32 7.32 10.24 14.85 9.72 14.10 4.44 4.23 8.67 2.38 .52 37.3 36.9 3.1
687 .180 2.25 4.96 10.04 14.56 9.80 14.22 4.42 5.78 10.20 2.27 .49 44.2 42.2 1.3
688 .180 2.25 4.96 10.04 14.56 9.80 14.22 4.47 5.80 10.28 2.28 .49 44.0 41.8 1.3
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Air supply

Ejector 1 Noise absorber

-Suction flow line

Orifice (inner wall)

F Diffuser test

Flow control valve I apparatus, H I -- r-- i-

Orifice -
Mixing chamber

IJ Removable noise- I Exhaustfl
absorbing duct

L -- - -- - -- - -- -- J
Main air line

SAir supply line Orifice ,-Suction flow line
(outer wall)

SEjector 2 Noise absorber

*Figure 1. - Flow system.



To ejector 2

r-Outer-wall suction manifold

r Three five-point

Eight support struts inlet pitot rakes

(equally spaced) ' 0. 63(0 25) /-Perforated plate

. Three nine-point exit
r re pitot-static rakes

Diam, 40.6 (16) - J

Diam, 35.6 (14)

Inner-wall
Airflow -- - Centerbody- - -- - -suction

plenum

Diam, 28 (111)

To ejector 1

Diam, 48.3 (19)
4(10. 2) \

, 2Lucite housing -Three plate
Mixing chamber- 302) support brackets

Mixing chamber- -3012)- L Removable walls
: (see fig. 3)

' Mounting flange

Figure 2. - Cross section of asymmetric annular diffuser test apparatus. (Dimensions are in cm (in. ). )
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Perforated plate

-- Diam, 48. 3 (19)

Outer wall 0,
Suction flow chamber Exit pitot

Wall static pressure 0'/ probe positions
ports ISuction

O \-Diam, 40.6(16) slot 0
H Dump 3. 5o 0.075 (0. 030)Air flow O Inlet passage- approach -  

- -- Exit passage
0 passage 3.5

r-Diam, 35.6 (14) 450

I-lnlet total pressure Suction
probe positions slot O

300 0
Suction flow Inner wall I(typ.

chamber 0

P Diam, 28 (11)

2. 25 H 1. 25 H UH
0.5,1.0,2.0

Diffuser inlet (Variable) Diffuser exit
station station

Figure 3. - Diffuser passage details. Inlet passage height, H, 2. 54 centimeters (1.0 in. ). (Dimensions are in cm (in. ) unless
otherwise indicated. )
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100 -

Profile location

--- Inlet
-- Exit

.--- Exit profile without plate
(ref. 7)

60

20

40

(a) No suction; m2/V1 = 0. 43.

100-

80

60

40

20-

I I I I I I I I I -I I I
0 .4 .8 1.2 1.6 2.0 2.4 2.8 0 .4 .8 1.2 1.6 2.0

Velocity ratio, vlV

(b) Inner wall suction rate Si = 3. 25; vm2/Vl = 0.38. (c) Outer wall suction rate So = 4.90; Vm2/V1  0.41.

Figure 4. - Radial profiles of diffuser inlet and exit velocity at various suction rates with perforated plate A at UH = 1.0.
Inlet Mach number M1 = 0.180.
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100

Profile location

80 -- C - Inlet
-Exit

69

40

20

S (d) Outer wall suction rate So 6.67; vm2V 1 = 0.34.

100-

80

60

40 -

20

0 .4 .8 1.2 1.6 2.0 0 .4 .8 1.2 1.6 2.0
Velocity ratio, vlV

(e) Inner wall suction rate Si * 2.75; outer wall (f) Inner wall suction rate Si = 4.69; outer wall
suction rate So = 6.59; total suction rate suction rate So = 6.60; total suction rate
St 9.34; bi* 0.295; bo= 0.705; vm2 V1 - 0.30. St. 11.29; bi 0.42; bo = 0.58; vm2 V1 0. 29 .

Figure 4. - Concluded.
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100

Profile location
--- Inlet

80 0-0 Exit
--- Exit profile without plate

(ref. 7)

60 -

40

~o (a) No suction. Inlet Mach number M1 = 0.266; vm2V 1 = 0.59.
8 100-

80

60

40

20

1 11I ,I I . I
0 .4 .8 1.2 1.6 2.0 2.4 2.8 0 .4 .8 1.2 1.6 2.0 2.4

Velocity ratio, vlV

(b) Inner wall suction rate Si = 4.15; inlet Mach number M = 0. 266; (c) Outer wall suction rate So = 4. 24; inlet Mach number
Vm2/V1 0.52. M1 = 0.267; vm2 V1 0.52.

Figure 5. - Radial profiles of diffuser inlet and exit velocity at various suction rates with perforated plate B at UH = 2.0. inlet Mach
number M1 as indicated.
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100
Profile
location

SInlet
SExit

80

60

40

20-

CI I I I I I

0 .4 .8 1.2 1.6 2.0 0 .4 .8 1.2 1.6 2.0
Velocity ratio, vlV

(d) Inner wall suction rate Si = 3.18; outer wall (e) Inner wall suction rate S = 5.5; outer wall
suction rate S = 4. 85; total suction rate suction rate 5 7. 5; total suction rate
S = 8.03, b i =. 40; bo = 0.40; bo = 0.60; in- St = 13.0; bi = 8.42; bo = 0.58; inlet Mach num-
let Mach number M1 = 0. 181; v2 mlV1 = 0.41. ber M = 0.166; 2mlV 0. 34.

Figure 5. - Concluded.
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40 8 Plate
o location,

UH
30 0.5

S(a) 1.0
CL 0 2.0

0 (a) Perforated plate A.

1 10

-30 Suction rate, -

Open symbols indicate data 2 0 2 4 6 8 10
for perforated plate A Suction rate, percent

Solid symbols indicate data
for perforated plate B (b) Perforated plate B.

Figure 7. - Effect of suction on diffuser total pressure
I I loss for perforated plates A and B at three locations.

.5 1.0 1.5 2.0 Inlet Mach number, MI, 0.26.
Plate position, UH

Figure 6. - Effect of perforated plate geometry and plate
position on diffuser effectiveness.
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