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ABSTRACT

The primary objective of this program was to demonstrate the feasibility
of replacing existing state-of-the-art analog gyro compensation loops with
digital computations. This objective was realized during the course of the
program.

A breadboard design was established in which one axis of a Teledyne tuned-
gimbal TDF gyro was caged digitally while the other was caged using con-
ventional analog electronics. The digital loop was designed analytically to -~
closely resemble the analog loop in performance. The breadboard was subjected
to various static and dynamic tests in order to establish the relative stability
characteristics and frequency responses of the digital and analog loops. Several |
- variations of the digital loop configuration were evaluated. The results were very
favorable - it appears that digital caging is indeed a practical approach,
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I. INTRODUCTION

Background

In January 1974 Teledyne Systems Company completed under contract to
NASA Langley Research Center an 'Investigation of the Application of Two-
Degree-of-Freedom Dry Tuned-Gimbal Gyroscopes to Strapdown Navigation
Systems''s, During the course of that study an entirely new approach to the
control and compensation of the TDF gyro, as well as accelerometers, was.
suggested and studied. This technique was based upon the use of "all-digital"
sensor compensation loops and control functions.

An analysis of the hardware content and costs of present day inertial
navigation systems showed that a significant portion, on the order of 30%,
of the system, consists of analog and computer interface electronics. The
advent of newly available, versatile, digital microcomputers and high-speed
analog-to-digital and digital-to-analog converters now makes it practical to
replace essentially all of the analog electronics by functionally equivalent
digital computations. . :

Figure 1 shows a functional block diagram of a conventional strapdown
inertial navigation system mechanization, Both the sensor compensation
functions and the spin motor and pickoff excitations are generated by analog
electronics which operate independently of the digital processor. The sensor
torquing currents are fed through precision resistances to develop voltages
which are proportional to angular rates and accelerations. These voltages
are then converted into digital numbers for use in the navigation and attitude
equations which must be solved by the computer.

Figure 2 shows the corresponding block diagram for a strapdown system
employing digital sensor control and compensation. Here all of the compen- :
sation loop servo functions are mechanized as digital computations in the proc--
essor. The basic inputs to the A/D converter are the sensor pickoff signals
rather than the restoring signals. The torquing signals are computed as digital
numbers, converted to analog signals and, after power amplification, used to
restore the sensors. These same digital torquing quantities may be used di-
rectly in the strapdown attitude and navigation computations as well. (In an
optional configuration the actual torquing signals are also passed through the
A/D converter for use in the attitude and navigation equations. )

#The final report of this study was published as NASA CR-132419
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What is gained by such an "all-digital" approach is that the presently
cumbersome and necessarily specialized analog and digital interface elec-
tronics can be virtually eliminated, being replaced by digital computations
(software) performed in the computer hardware which is, in any case,
required for the attitude and navigation computations, This results in sub-
stantial savings in cost, size, weight, and power consumption while simul-
taneously increasing the reliability of the system by reducing the component
count.

Objective

The objective of this program was to determine the feasibility of replacing
present state-of-the-art analog circuits in strapdown tuned-gimbal gyro com-
pensation circuits with their digital counterparts. This was accomplished by
designing appropriate compensation loops for the dry tuned TDF gyro, select-
ing appropriate data coaversion and processing techniques and algorithms, and,
using existing laboratory equipment, breadboarding the design for laboratory
evaluation. '

The principal area of engineering design involved in the program was the
determination of the specific software requirements for closing the instrument
loops and performing the required compensation. Specific requirements rel-
ative to processing rate, word length, computer time and memory utilization
were established in order that corresponding requirements for a full comple-
ment of strapdown sensors may be readily extrapolated. Additionally, appro-
priate analog-to-digital and digital-to-analog conversion designs were estab-
lished and techniques selected which were capable of meeting these requirements.

An available dry tuned-gimbal two-degree-of-freedom gyroscope was util-
ized together with an electronic circuit breadboard and existing laboratory
hardware to implement the digital control loop. Selection.of hardware and
techniques was based on the anticipated availability of proven hardware in the
late 1370's. The breadboard design was evaluated using standard test and
evaluation procedures. :

This final report summarizes the test configuration and I:he program
results which were obtained.



II. ANALYSIS

The breadboard design which was established for this study, consisted of
a dry-tuned two-degree-of-freedom (TDF) gyroscope with one axis being
caged in a conventional manner using simplified existing ''state-of-the~-art"
analog compensation. The second axis was caged using a digital compensation
loop designed to emulate the performance of the analog compensation, Figure
3 shows a simplified block diagram of the breadboard design. An analysis of
the two caging techniques employed in the design is presented in the following
paragraphs.

Analog Compensation Design

The general Teledyne gyro caging loop configuration for conventional
analog compensation is shown in the simplified block diagram of Figure 4,
Observe that both direct and cross axis compensation is employed in this
design in order to increase the loop bandwidth and reduce the rotor hangoff
during acceleration inputs. In this block diagram 6 and f#y represent the
gyro pickoff angles, Ty and TY the gyro torques Py and Py the pre-.
cessional torques resulting from rate inputs wy and Wy, and My and My the
rebalance torques provided by the compensation loops.

A more detailed block diagram of the compensation portions of the loop
for the current Teledyne design is shown in Figure 5. This block diagram
shows the actual transfer functions which are implemented in the analog
electronics as well as the pickoff and torquer transfer characteristics. A
derivation and analysis of this compensation design is included in NASA
CR-132419. The pole-zero locations for the compensation electronics using
this design are shown in Figure 6.

Concurrently with the digital loop demonstration program Teledyne has
been involved in an extensive reédesign effort on its conventional analog
compensation electronics. This effort has as its goals improved loop per -
formance and simpler loop design.,  Although work is continuing in this area,
it has been found that excellent performance can be obtained with relatively
simple analog transfer functions, The pole-zero configuration for one such
simple loop is shown in Figure 7. This configuration provides a baseline for
much of the digital loop design work which was performed during the program,
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Digital Compensation Analysis

Figure 8 shows a simplified block diagram of the digital gyro caging
loop. This figure should be compared with Figure 4. One of the primary
objectives of the program was to design digital filters which would emulate
the performance of the existing analog filter design.

The study of digital filters and digital servos has progréssed rapidly in
the past decade and an extensive literature now exists with regard to ‘these
subjects, Rabiner and Rader®, for example, provides both theoretical and
practical coverage of digital filtering as well as extensive bibliographies.

The large variety of digital filters and the subtleties (e.g., the aliasing effect)
which arise in their implementation, however, serve to maintain digital
filtering as more of an art than a science.

~Some ''cookbook' approaches exist for obtaining digital equivalents to
analog filters. Some of these have been analyzed, aided where required by
simulation, in order to determine their applicability to the digital compen-
sation loop design. In selecting a practical approach, particular attention was
paid to the impact on the computer with regard to memory and time utiliza-
tion. As an example, it was desirable to synthesize digital filters whose
coefficients are integer powers of two, since this allows the replacement of
multiply instructions with less time consuming shift instructions,

As one simple example of using the cookbook approaches, consider the
bilinear transformation approach using the transformation

l-zul
§ —» ]
1+=z
The transfer function
s
+1
. 79N
(s = DN
(==+1
(35+D)
appearing in Figure 5 is seen to have a zero ath' = .T9N = 496 rad/sec
and a double pole at w, = 3N = 1884 rad/sec. In order to synthesize a

digital filter with these characteristics we first derive an analog filter with -

a Zzero at

*Rabiner, L.R. and C,M, Rader, Digital Signal Processing, IEEE Press,
New York, 1972.

10



AS

2NA

2NA

AS

i

D/A .
CONVERTER

'y

A(S2+ 4ND)

2N

AS(52+ 4N?)

I
A2+ 4ND)

2N

AS(52 +4N2)

COMNVERTER

By |6y

G

1

LD_iGrrAL FILTERS -

s m— — —

F-1 _____ _t

J .

Figure 8. Block Diagram of Digital Compensation Loop

11

T73735A




| wl‘r
w o =tan —5—
1 2

and a double pole at
1

w2=tan >

sz

where T is the computer iteration interval, Assuming, for example, an

iteration rate of 200 Hz, T is 5 milliseconds and

t
W = tan 4260.005) o
1 2
.
w, = tan (1884)2('005) = 418,59

so that the 'dummy'' analog transfer function is

s

2.91

5 2
(418. 59+1)

Finally, the digital transfer function is found by introducing the transformation

+1

H'(s) =

1. -1
5 —» 1 so that
14z
1 (l-z-l)+1
H(z) = 2,91 (147 -1) -
1 (1-z ),

12



1Y, -1 1\ -2
(1+2.91)+2Z N (1 5 2.91)z

1
2 1 +2 1 - 1 2
(1 ¥ 418.59 T (418.59)2) | ( (318.59)° )

ot e )
(418,59}  (418.59)

The bracketed groups in this expression are fixed constants. Thus an
exact mechnaization of this filter requires 6 multiplies and 4 adds per iteration
of the computer., Observe, however, that one of these multiplications is by
the number two. Thus for this operation a shift may replace a multiply instruc-
tion resulting in a substantial saving in computer time since a simple shift
requires only a small fraction of the time needed for execution of a multiply
instruction, '

Further simplifications may be possible in this transfer function, For.
example, consider approximating the factor (1 + 1/2.91) = 1,34 by
101

1.375 =1 +E? 3

Then the multiplication {of the current input) by this factor may be accom-
plished by a double shift, a single shift, and two additions, again effects
ing a substantial saving in computer time. Such approximations must be
carefully analyzed, however. Working 'backward' through the preceding
derivation it is seen that this approximation has the effect of shifting the
zero of the transfer function from &, = 496 rad/sec to

1
2 -1
w = = tan T (2,67)
= —2_(1.21) = 485 =24

. 005 sec

In this case the effect on the filter response is probably negligible,
This is not the case for all approximations which appear on the surface to
- be reasonable, however. '

13



Initial efforts in designing the digital compensation filters concentrated
on emulating existing ''old design''analog filters as used in previous strapdown
systems, The transfer functions of these analog filters are shown in the block

diagram of Figure 4 and their pole~zero locations in Figure 5.

Consider first the cross axis transfer function relating MY to GX., i. e,
the y-axis torquer output to the x-axis pickoff angle. The analog transfer
function is

2
5 5 W |
My(s) _ 1.01 K, K, K (.79N' +1)(.35N +1) (NZ )

Y = Sa " po
6. {s) 5 s 4 )
X s (16N+1) (3N +1) -

Since the pickoff and torquer transfer functions will exist in the digital

loop in any case, they do not have to be implemented digitaly, The gain
factor (1.01 K ) may also be neglected in the digital design as the gain may
be provided by the power amplifier. Thus the digital transfer function to be
mechanized should be equivalent to

2
5 s 5
(3n¢+J(JMN*1)(§?+J

8 4
N +71)

H({s)

S(

Using the bilinear transformation technique and assuming now an 800 Hz
update rate, the dummy analog breakpoints are computed

L @2m) (35)
iy = tan T3T800)

. 13832
(21) (79) -

> al (2) (800) . 32058

tan (2m) (100)::

3 (2) (800) 41421

2
1l

(21) (300) _

4 an 2) (800) 2,41421
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Making the substitution
-1

1 -=
5 —»

1 +z-1 i

the digital transfer function is found (after much arithmetic manipulation)
to be
3

4 5

1 -1.68566z’1 +.50190z'2 +1.3653%42
1 +.65685z'1 3

+3,8945z"
-.02944z'5

-1,43278z
1

H(z) = 57, 8787 5 _ -
- 627422 7 -,745172 ° -.25483%z

In order to obtain a rough estimate of computer timing requirements for
implementation of the digital loop, the numerator of H(z) was considered. The

numerator was first approximated in order to eliminate the need for multiplica-
tions, Thus

1.68566:=1+z“1+2‘3+2'4 = 1.6875

. 50190=2""1 = . 500

1.36534 = 1 +272A+2"3 = 1,375

1,43278= 142'2 +2'3 +z'4 =1,4375

. 38945 = z“2+2'3+2'6 =, 390625

so that the numerator is implemented as
- - -4 ‘ - - -
Bx(k) - (1+2 1+2 3+2 ) GX(k-l) + (2 l)GX(k-Z) + (142 2'+2 3) B (k-3)
’ X

-(1+2"2+z'3+zf4) ex;k-4)-+(z'2+2'3+2'6) Bxfk~5)

(Working '"backward'' as before, these approximations resulted in analog
breakpoints of .519N, .749N and . 711N 4j. 706N, a reasonable agreement with
the original transfer function.) Using the TDY-52B/IMP-16 instructions, a

simple program was written to implement the equation above. The instruction
breakdown was as follows '

15



Time Per Time
Instruction Number Instruction ' (4 sec)
Load 6 7.7 46.20
Store 5 9.1 45,50
Reg. Copy 1 8.75 8.75
Reg. Add 10 4,55 45,50
Add/Sub 5 7.7 38.50
Shift Rt, 1 3 10.1 30. 30
Shift Rt, 2 5 14,3 71.50
Shift Rt. 3 1 17.5 17.50

203,75 usec

Assuming that each transfer function numerator and denominator is of
roughly the same complexity, the total time required to impement the four
transfer functions is

(303.75) x2 x4 = 2.43 msec

which is approximately twice the available time for an 800 Hz update rate.
Since this estimate does not include I/O processing, scaling, executive, con-
trol, etc. it was clear that much simpler processing would be required if the
digital compensation loop were to be successfully implemented with the
TDY-52B computer,

Fortunately, as described in Sectionll, efforts were underway concurrent
to the digital loop program to simplify and improve analog compensation
techniques. This work resulted in the designs described in the preceeding
section, and showed that very simple analog transfer functions could be used
to obtain the desired servo loop response characteristics., Furthermore, it
was decided to mechanize one axis of the gyro in an analog loop in order to
more accurately compare the analog loop and digital loop responses, thus
reducing the digital computations which were required. These two factors
resulted in a digital loop design which could be implemented with a TDY-~52B
even though the update rate was increased to 1200 Hz,

The "first cut' at implementing the new transfer functions started with
the analog functions whose pole-zero locations are shown in Fignre 7.

: s + N
File) = TN

s+ N

F.8) = Z673m

16



where F;(s) is the direct axis transfer function and F»(s) is the cross axis
transfer function. Using a 1200 Hz update, the dummy breakpoint frequen-
cies were computed to be :

. (2m) (100) _
w 1= tan————-——(z) (12.00) L.26795

. (2m) (300)
wz = tan——-“———(z) (1200) - 1.00_00

so that

(z-1)

— + .26795
(Z+1) - 1.26795Z ".73205 = .63398(1—.57735Z-1)
(z=1) , 2z . A

~——= 4+ 1,000
=) 0

FI(Z)

(z-1)

(z+1)+ - 26795 _ ‘.63398 1+ .42265z__

(z-1) [z-1 -1
(z+1) [z-l-l +1'000] (1-z )

2

1. .577352z )

F(z)

Since the constant gain term can be readily implemented in the analog
portion of the loop, it may be neglected. The transfer functions were further
simplified to

G,(z) = (1-.527)
-1 -2
GZ(Z) _ (1+.SZ -.1_57_, )
(1-z71)

for easier digital implementation. This has the effect of changing
_w'l to .333 and wl (the analog loop zero) to 1.23N instead of N,

The comparison of analog and digital frequency responses is shown
in Figures 9a and 9b for this configuration. It is seen that the breakpoints
and low_ - frequency asymptotics are identical, with variations occurring at
intermediate points, The high frequency performance of the digital loop is,
of course, different from the analog response due to the "fold-over' effect,
For this reason, the filter update rate must be sufficiently high that the
deleterious effects of this phenomenon are countered by attenuation in the
analog portions of the loop, (Test results indicate that 1200 Hz is the min-
- imum update frequency required to obtain the desired re sponse and tha
higher frequencies are desirable.) '

17
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Several variations of parameters were tested within the constraints
of the basic filter configurations described by Gj{z) and G, (z) above.
It was found that the transfer functions

15 -1
Gl(z)—(l-—léz

1 -1 15 -2
G()_1+-I6—Z - 18 2
2'% T T -1

I-=

provided reasonably optimal performance for the digital loop*. Most
~of the results described in the report reflect this configuration, Thus the
equations which were mechanized in the computer were

4) Bx(k—l) - (1~2‘4) 8 (k-2)

n

M (k)= M (k-1)+ 8 (k) + (2"
X X = X

4

M (k B8 (k) - (1-2 )6 (k-1
Y() Y()( )Y( )

M(k) = M (k) - M (k)
x v

h iteration.

where M(k) is the computed gyro torque at the Kt
The digital number M(k) is converted by the digital-to-analog

converter and, after power amplification, used to torque the gyro. In

the absense of errors, M(k) represents the true torque input and is, therefore,

proportional to the angular rate of the gyro case. This is precisely the

information which is desired for attitude computation in a strapdown navigator,

Any errors introduced by the D/A converter therefore propagate directly

into attitude errors, For this reason it is necessary to use an accurate D/A

converter in the digital loop.

*This corresponds to moving the zero locations in Figure 6 from 100 Hz
to approximately 12.7 Hgz,

20



The analog-to-digital conversion requirements are much less stringent,
Due to the closed-loop nature of the digital compensator, errors in the A/D
converter are of relatively minor importance to the accuracy of rate measure-
ment (just as pickoff measurement errors are unimportant in a conventional
analog loop mechanization).

The test results indicate that a 16 bit computer word length is sufficient
for mechanization of the digital loop. The D/A converter should be an accurate
device with excellent (or, at least, well compensatable) bias and scale factor
characteristics, The A/D converter can be less accurate without seriously
compromising torque measurement accuracy. The digital loop was mechanized
using a 12 bit A/D converter and a 13 bit D/A converter. These resolutions
are not critical, however, for the reasons outlined above. As long as the
analog torque applied accurately represents the (quantized) digital torque, no

net error will result in the computation of attitude due to the D/A converter
resolution. ‘

21



i1, COMPUTER

The computer used in the breadboard is an IMP-16F (National Semi=~
conductor), which is electrically and functionally interchangeable with the
TSC hybrid packaged TDY-52B. Although these two machines are function-
ally the same, they are vastly different physically. The CPU of each con-
sists of four 4-bit NS (National Semiconductor) GPC/P RALU slices, The
microprogram of each is contained in a set of two Control Read Only Memories
(CROMs) that implement the NS IMP-16 computer repertoire. Input/Output
and other hardware details are also similar. The IMP-16F and TDY-52B
are thus, basically, the same machine. '

The most obvious difference between the IMP-16P and TDY-52B is one
of size, Teledyne has packaged the heart of the IMP-16P into a small hybrid
unit that is only two inches on a side and .2" thick, The IMP-16P computer,
~including a convenient control panel and 4K of 16-bit RAM memory, occupies
a box with a frontal dimension of about 10 1/2" x 17" and a depth of about 24",

The IMP-16P was selected for the digital loop demonstration pri-
marily because its control panel feature facilitated the operation and
modification of the breadboard. The results which were obtained are,
however, equally applicable to the TDY-52B. '

22



Table 1. TDY-52B/IMP-16 Instruction Repertoire (Sheet 1 of 2)

. EXECUTION TIME
MMNEMONIC INS TRUCTION MAME FUNCTION FORMAT IN MICRCSECONDS
LOAD AND STORE _ 7.0,9.8
LD LOAD {EA) ~ (ACe),IF INDIRECT ((EA})— {ACH 2 IF.INDIRECT
LD3 LOAD BYTE {1/2 EA)=({ACO LESS SIGMIFICANT BYTE) 5 14.8 TO 28.0
LI LOAD IMMEDIATE D~ (ACH 48 4.2
ST STORE {ACN)~ (EA), IF IMDIRECT (ACH = ((EAD) 2 B.4,11.2 IF iNDIRECT
578 STORE BYTE {ACD LESS SIGMNIFICAMT BYTE) — (1/2 EA) 5 23.8 TG 32.2
, 0—~(SEL) :
RXCH REGISTER EXCHANGE SR~ (OR),  (DR—{SR) é 1.2
RCPY REGISTER COPY {5R) —(DR) 6 8.4
LOGICAL ,
RXQR REGISTER EXCLUSIVE OR (SRICD(DR) ~(DR) & 8.4
RAND REGISTER AND (SR "AND" (DR)— (DR} 6 8.4
AND AND {ROT} "AND" (EA)}—(RO1) 3 7.0.
OR OR (ROT} "OR" (EA)— {RO1) 3 7.0
ARITHMETIC _
RADD REGISTER ADD (SR} + (DR}—(DR) av, Cy 6 4.2
ADD - ADD (ACKH) + (EA}~ (ACH) OV, C¥ 2 -7.0
SUB © SUBTRACT (ACH) - (EA)— (ACH) OV, CY. 2 7.0
MPY MULTIPLY (EA) * [AC])—«{ {ACD, rAcn} Tl 0-=(SEL) 5 148.4 10 170.8
DIV DIVIDE (ACO), (ACI){"—(EA)-%ACD) QUOTIENT 5 177.870 2226
) 0-(SEL) OV, L “(ACI) REMAINDER -
DADD DOUBLE PRECISION ADD [(ACO), wen)e {(EA), (EA+]}]—~1(ACO), (Acn] 5 16.8
. 0—{SEL) OV, CY .
DSUB DOUBLE PRECISION SUBIRACT | Jiaco), rAcn}- {(EAJ, (EA + 1)}-[(Aco), (Acu} 5 6.8
0 -~ {SEL} OV, C¥ 4B 4.2
CAl COMPLEMENT AND ADD ~ (ACH + D— (ACH .- '
SHIFT IMMED IATE -
ROL ROTATE LEFT 2 (ACr) —~ (ACY) 48 5.6+4.2D
IF SEL = 0, (BIT 15)~=(BIT O} D TIMES , :
IF SEL =1, (BIT 15)=(L), (L}~ (BIT O)
‘ROR ROTATE RIGHT 172 (ACH — (ACH) T 5.4+4.2D
CIF SEL <0, (8IT 01— (8IT 15) D TIMES
IF SEL =T, (BIT 0)~iL), (L}~ (BIT 15) _
SHL SHIFT LEFT 2 (AC) —{ACH) 4B 5.6+4.2D
: 0—~(BIT 0) D FIMES
IF SEL =1, (BIT 15)—= (1) ,
SHR SHIFT RIGHT 1/2 (ACH) — (ACr) 4B 5.6 +4.2D
IF SEL = 0, 0—(BIT 15) D TIMES '
_ IF.SEL =1, (L)=(BIT 15), O—L) -
SINGLE BIT
SETST SET STATUS BIT 1= {STATUS FLAG M) 9 18.2 TO 44.8
CLRST CLEAR §TATUS 81T 0—{STATUS FLAG N) 9 18.2 Ty 44.8
SETBIT SET BIT b (ACD BIT N) 9 18.2 TC 44.8
CLRBIT CLEAR BIT O (ACO BIT M) g 18.2 TCQ 44.8 -
CMPBIT COMPLEMENT BIT {ACD BIT N} ={4C0 BIT N) 9 18.2 TC 44.8
‘ Top170-1A
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Table 1. TDY-52B/IMP-16 Instruction Repertoire {Sheet 2 of 2)
EXECUTION TIME
MINEMOMNIC INSTRUCTION NAME FUNCTION FORMAT IN MICROSECONDS
Jump .
Inap Jump EA—{PC}, IF INDIRECT (EA)— {ACH) 4A 4,2,7.0IF INDIRECT
IMPP JUMP THROUGH POINTER {100, #} = (PC) ¢ 9.8
JNT JUMP INDIRECT TO LEVEL O (PC)—(STK), O—(IEF) ¢ 9.8
(120, +1} = PC )
BOC BRANCH ON CONDITION IF CONDITION €C IS TRUE, 1 5.6,7.01F BRANCH
(PC) +D - (PC)
J5R JUMP TO SUBRCUTINE (PC)—~ (3TK) 4A 5.6,B.4 |F INDIRECT
EA--({PC}, IF IMDIRECT /EA)—{PC)
J5RI JUMP TC SUBROUTINE [MPLIED (PC) —~ (STK) B 5.4
FFBO,, +C - (PC)
- JSRP JUMP TG SUBROUTINE THROUGH | PC)=(5TK) 8 1.2
POINTER (100, +C)—(PC)
RTS RETURN FROM SUBRQUTIME {5TK}) +C—(PC) 5.6
RTI RETURN FROM [MTERRUPT GTK} +C— (PC) 8 7.0
1+ (IEF)
SKIP
AISZ ADD IMMED]ATE AND (ACr) + D~ [ACH) OV, CY 4B | 5.6,7.0IF 5XIP
SKLP {F ZERC IF{ACr} =0, (FC) + 1= (PC)
SKAZ SKIP IF "AND" 15 ZERQ IF (ROD) "AND" (EA) =@, (PC) + 1= (PC) 3 B.4,9.8 IF 5KIP
152 IMCREMEMNT AND SKIP IF ZERO (EA} + 1—(EA) 4B 9.8, 11.2 IFSKIP
: . IF (EA) =0, (PC) +1-+(PC})
D57 DECREMEMT AND SKIP IF ZERO (EA) - 1= (EA) 4B 11.2,12.6 IF 5KIP
IF (EA) =0, (PC) +1 - (PC) :
SKG SKIP IF GREATER THAN IF (ACr) >(EA}, (PC) + 1 (PC) 2 1.2 TO 14,0
SKNE SKIP IF NOT EQUAL IF (ACH # (EA), (PC) + 1~ (PC) 2 8.4 ‘
SKSTF SKIP IF STATLS FLAG TRUE IF (STATUS FLAG N) =1, (PC} + 1—{PC) 9 18.2 10 44,8
‘ 0 (SEL) .
SKBIT SKIP [F BIT TRUE IF (ACO BIT N} =1, (PC) + 1—(PC) 9 18.2TQ 44,8
0 (SEL} .
STACK
PUSHF PUSH STATUS FLAGS (SF) —(5T&} ) 5.6
ONTQ STACK
PULLF PULL STATUS FLAGS FROM (STK)—~ (ACr} 8 7.0
STACK INTO FLAG REGISTER
'PUSH PUSH ONTO STACK {(ACH—(5TK) 4B 4.7
PULL . PULL FROM STACK (STK) = (ACr) 4p 4,2
XCHRS EXCHANGE REGISTER (ACH) =(5TK} 4B 7.0
) AND STACK (5TK}~ (ACP
INPUT/CQUTPUT
RIM REGISTER INPUT {AC3) +C~ (1O ADDR) 8 9.8
(10 DATA) - {ACO} _
ROUT REGISTER QUTPUT {(AC3) + C -(ICADDR) 8 9.8
{ACD)~ (10 DATA)
SFLG SET FLAG C—fIOADDR), 1~ {CONTROL FLAG FC) 7 5.4
PFLG PULSE FLAG C—{{OADDR), T~(CONTROL FLAG FC) 5.6
® ISCAN INTERRUPT SCAN 1/2 (AC1}—(AC1) UNTIL 1 SHIFTED QUT 9 8.4 TO 100.8
(AC2) + NUMBER OF SHIFTS—(AC2)
HALT RALT PROCESSOR HALTS 8 —
T92170-2A
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Notation Used in Instruction Descriptions

Notation Meaning

ACr Denotes a specific working register (ACO, AC1, AC2, or AC3), where r is the number of the accumula.
tor referenced in the instruction.

AR Denotes the address register used for addressing memory or peripheral devices.

cc Denotes the 4-bit condition code value for conditional branch instructions.

ctl Denotes the 7-bit contral-field value for flag, input/output, and miscellaneous instructions.

cYy Indicates that the Carry flag is set if there is a carry due to the instruction (either an addition or a
subtraction).

disp Stands for- displacement value and it represents an operand in a nonmemory reference instruction or an
address field in a memory reference instruction. It is an 8-bit, signed twos. complement number except
when base page is referenced; in the latter case, it is unsigned,

dr Denoctes the number of a destination working register that is specified in the instruction-word field.
The working register is limited to one of four: ACO, AC1, AC2, or AC3.

EA Denotes the effective address specified by the instruction directly, indirectly, or by indexing. The
contents of the effective address are used during execution of an instruction. See table 3-1.

fc Denotes the number of the referenced flag (see table 3—20 under 3. 6 10 Input/Output, tHalt, and
Flag Instructions). :

INTEN Denotes the Interrupt Enable control flag,

IOREG Denotes an input/output register in a peripheral device.

L Denotes 1-bit link (L) flag.

ov Indicates that the overflow flag is set if there is an overflow due to the instruction (either an addition
or a subtraction).

PC Denotes the program counter. Durmg address formation, it is incremented by I to contain an address
1 greater than that of the instruction being executed.

T Denotes the number of a working register that is specified in the instruction-word field. The working
register is limited to one of four: ACO, AC1, AC2, or AC3.

SEL Denotes the Sclect control flag. It is used to select the carry ot overflow for output on the carry and
overflow (CYOV) line of the CPU, and to include the link bit (L) in shift operations,

st Denotes the number of a source working register that is specified in the instruction-word field. The.
working register is limited to one of four: ACO, AC1, AC2, or AC3,

xr When not zero, this value designates the number of the register to be used in the indexed and relatwe

memory-addressing modes. -
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Notation Used in Instruction Descriptions {(Continued)

Notation Meaning
{) Denotes the contents of the item within the parentheses. (ACr) is read as “the contents of ACr.™
{EA} is read as “'the contents of EA.”
[ ] Denotes “the result of
~ Indicates the logical complement (ones complement) of the value on the right-hand side of ~.
- Means “replaces.”
- Means “is replaced by."
@ Appearing in the operand field of an instructio.n. denotes indirect addressing.
A Denotes an AND operation.
v Denotes an OR operation.
? Denotes an exciusive OR operation.
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IV. SOFTWARE

Introduction

The intent of this study was not to demonstrate the particular processor
which was used but rather to demonstrate how the program was mechanized
for this particular computer in such a manner that the software could be |
mechanized for any given computer with equivalent characteristics. The
reader should have some knowledge, however, of the computer in which the
- equation set was mechanized in order to fully understand the work performed.
An example of how the flow charts reflect the instruction repertoire of the
processor is in the handling of negative quantities. The TDY-52B /IMP-16
" has a logical shift only, so that when a multiplication by 1/16 is to be per-
formed it is necessary to handle negative quantities in a different manner than
positive quantities where the multiplication can be performed by a shift of 4
_ bit p051t10ns. '

In order to give a better understanding of the digital computer used in
this study a summary of instructions was included in Section IFl. Should the
reader have further interest in this processor including the interrupt system,
push-pull stack operation, logic mechanization,etc,, complete descriptive
manuals can be obtained from Teledyne Systemé Company.

Power On Processing

Upon recognition of Power being applied to the unit, coding is performed
to disregard the initial multiplexer interrupt. This is done to allow the pro-

- gram to become synchronized with the timing base of the multiplexer so that
after the initial interrupt the timing base of approximately 104 microseconds
between interrupts is established for the remaining processing. The next task
is to.initialize a pointer within the processor so that whenever data is gener-
ated for storage the starting point for this storage is established.

The interrupts are then enabled so that the processor is ready to recog-
nize interrupts from the multiplexer. Finally a transfer is made to the Main
. Processing Loop. As the processor used in this study turns on with Random
~Access Memory (RAM) set to an all one's condition, the initial iterations of
'} the Main Processing do not have the proper data for use as a priori iteration
data. so that the data generated for the first two iterations of the Main Process-
mg Loop is not precise,
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POWER ON INITIALIZATION

START

DISRE GARD
FIRST
{NTERRUPT

Y

INITIALIZE
POINTER FOR
DATA STORAGE

v

ENABLE
iNTERRUPTS

w 98824

Main Programming Loop

The Main Programming Loop is where the majority of calculations are
performed. This routine is coded to run continuously, i.e. from FPower On
the calculation process is repeatedly performed with the only interruptions
being the X peak and Y peak Interrupts where data from the analog to digital
converter is input. Once the data has been input within either of these
interrupt routines, program control is transfered back to the Main Program-
ing Loop at the point the program was interrupted.

Essentially the processing within this software module consists of solving
the equations below:

M, (K) = My (K-1) + U (K) + 1/16 U, (K-1) - 15/16 U_(K-2)
M () = U _(K) - 15/16 U (K-1)
M (K) = Uy (K) - U (K)

28



where:

M, = filtered digital quantity from X axis pickoff
IMy = filtered digital quantity from Y axis pickoif
M = total digital torque output to D/A

Index (k) designates quantity input or calculated on current program
iterations,

Index (k-1) designates quantity input or calculated on previous iteration
Index (k-2) designates 'quantity input or calculated two iterations previous
The other calculations performed in this loop and shown on the flow
diagrams for the Main Processing Loop is the interrogation of two software
flags, X peak flag and Y peak flag, to properly correlate the data from the
storage buffers and to transform the data from its 2's complement form for

the sign magnitude digital to analog convertor.

Following is the flow chart for the Main Processing Loop. (Figure 10.)
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PAGE 1 OF 2

MAIN PRO GRAMMING LOOP

1§

YES X PEAK NO
v FLAG=1 W FIAG=0 ¢
. READ: READ:
UX {K-2) FROM UX (K=2) FROM
BUFFER A BUFFER B
COMPUTE: COMPUTE;
15716 UX (K-2) ~15716 UX (K-2)
COMPUTE: COMPUTE:

MY (K) = MY (K-T) + UX (K) + 1/16
UX (K=1) - 15/16 VX (K-2)
WHERE UX (K) AND 1/16 UX (K-1) ARE FROM

MY (K) = MY {K=T) + UX (K} + 1116
UX {K=1) - 15/16 UX (K-2)
WHERE UX (K) AND 1/16 UX (K-1} ARE

BUFFER A ‘ " FROA BUFFER B

STORE: STORE:

MX (K . WX {K)

NO 15 MX YES
I <G POSITIVE s ]
COMPLEMENT: o LEFT SHIFT
X : :

POSITION

LEFT SHIFT i5
COMPLEMENTED MX SHIFTED
1BIT PCSITION MX POSHIVE
2

. NO
YES STORE:

15
SHIFTED

MX POSITIVE + 1/2 INTO MX
2
NC ' o
STCRE:
-1/2 INTC MX
L Y .
A
MP
2

T98822

Figure 10. Main Programming Loop
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MAIN PROGRAMMING LOCP

IS
YES Y PEAK NO .
= TAG=1 ~ =
COMPUTE: | _ COMPUTE:

MY (K)=UY(K)-15/16 UY{K-1
WHERE UY (K) AND - 15/16 UY
(K - 1) ARE FROM BUFFER A

MY (K) = UY (K} - 15/16 UY (K - 1)
WHERE LY (K) AND UY (K -1) ARE
FROM BUFFER B

T

COMPUTE:
MT=MX (K) = MY (K)

VES IS MT
NE GATIVE NO
o ? MT20
PRODUCES COMPLEMENT
A SIGN MT
MA GNITUDE .
QUANTITY < l
COMPLE
QUANTITY SION BT
~ L

e

STORE: -
MT

I

OUTPUT:

MT

T98823

Figure 10, Main Programming Loop (Continued)

31




X Peak Interrupt Servicing

Upon recognition by the processor that sample data from the X axis pickoiff
is available, the Main Processing Loop is interrupted at the end of the instruc-
tion it is performing and the program is transferred to the X Peak Interrupt
Servicing routine. The purpose of this routine is to accept the digitized X
axis pickoff data for the computation to be performed by the Main Processing
Loop. In order to keep the data being computed in the Main Programming
Loop correlated it was necessary to mechanize two buffer areas which are
merely memory cells set aside for temporary data storage and retrieval.

At any given point of time one of the buffer areas is set for reading by the
Main Processing Loop and the other buffer area is set for writing or storage
by the X Peak Interrupt Servicing routine. The purpose of these buffers is

to ensure that the data being computed is indeed from successive iterations.
A memory cell is used as a flag (X Peak Flag in flow charts) to indicate how
the buffers are currently being utilized. This same flag is again interrogated
in the Main Processing Loop for the same purpose. A pgraphic illustration
of the storage areas referred to as 'swinging buffers' will perhaps clarify
this coding concept. At the time the X Peak Interrupt is entered by the
program assume that the two buffers are as shown below

A ‘ - -
Buffer UX(K) UX(K 1) UX(K 2)

Buffer B Uy ) | Uy (K-1) | U_(K-2)

and further assume that the flag (X Peak Flag) indicates that Buffer A is the
area that should be used to store data. The cell from Buffer B containing
Ux{(K-1) must first be moved to Buffer A as it now becomes two iterations

old, 1i.e. UX(K-Z). In the same manner the Buffer B cell containing Ux(K) is
moved to Buffer A and is now one iteration old, i.e. UX(K-I).‘ The digitized -
X axis pickoff data input during the current iteration is then stored in Buffer A
as Uyx(K). Buffer A then contains data from three successive inputs. The
process is reversed the next iteration such that Buffer B contains current data.
The last task of the X Peak Interrupt processing is to divide the data from the
previous iteration by 16 (accomplished by a right shift of 4 places) before
storing to relieve the Main Processing Loop of this computational burden.
Once these tasks are performed the program is returned to the Main Process-
ing Loop.to the point at which the interrupt cccurred. ‘ '

Following is the flow charts for the X Peak Interrupt Processing,
(Figure 11.) '
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X PEAK INTERRUPT SERVICING FLOWS

START

STORE NEW CONVERTED s
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L FLAG = 1 FLAG=0
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MOVE: : MOVE:
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READ: READ:

K VALUE K VALUE
FROM BUFFER B FROM BUFFER A

15
QUANTITY

15
QUANTITY

POSITIVE NE GATIVE POS;TIVE NEGATIVE
2 2
YES | POSITIVE YES | POSITIVE
3 i
STORE: COMPLEMENT STORE: - COMPLEMENT
1/% K VALUE K VALUE DATA - 1/16 K VALUE F
FROM BUFFER B VALUE DAT (6 K VALUE | K VALUE DATA
INTO K-1 IN BUFFER A | T . INTO K-1 IN BUFFER A 7
SHIFT RIGHT 4 SHIFT RIGHT 4
PLACES = 1/16 UX (K) PLACES = 1/16 UX (K)
REPLACE REPLACE
SIGM BIT SIGN BIT
STORE: STORE;
INTOK-1IN INTO K-T IN
BUFFER B _ BUFFER A
STORE NEW CONVERTED STORE NEW CONVERTED
DATA INTO UX (K} OF DATA INTO UX (K} OF
BUFFER B BUFFER A

RETURMN TO POINT

WHERE INTERRUFTED |N
MAIN PROCESSING LOQP

78821

Figure 11, X Peak Interrupt Servicing Flow
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Y Peak Interrupt Servicing

Upon recognition by the processor that sample data from the Y axis
pickoff is available the Main Processing Loop is interrupted at the end of
the instruction it is performing and the program is transferred to the Y Peak
Interrupt Servicing routine. The purpose of this routine is to accept the
digitized Y axis pickoff data for the computation to be performed by the Main
Processing Loop. This data is correlated in much the same manner as
previously explained in the X Peak Interrupt Servicing in that a flag (Y Peak
Flag) is used to determine which data is time correlated and buffers are
used to deterrine read and write areas. In this process the last iteration
Y axis pickoff data Uy(K-1) is multiplied by 15/16 as a time saving step to
the Main Processing Loop. Again, as in the X Peak Interrupt Processing, a
return is made to the point in the Main Processing Loop where proces sing
was interrupted.

Following is the flow charts for the Y Peak Interrupt Processing.
{Figure 12,)
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Y PEAK INTERRUPT SERVICING FLOWS

START

STORE NEW CONVERTED
DATA TEMPORARILY

. YES IS . NO ‘
Y PEAK FLAG
; FLAcH \Io/ e ‘
SET: Y PEAK SET: Y PEAK
FLAG =0 FLAG = ]
" READ: K VALUE READ: K VALUE
IN BUFFER B IN BUFFER A

IS . IS
QUANTITY __NO QUANTITY NO
POSITIVE NEGATIVE POSITIVE NEGATIVE .
. %
. POSITIVE POSITIVE '
STORE: STORE: STORE: STORE;
-15/16 K VALUE -15/16 K VALUE -15/16 K VALUE -15/16 K VALUE
IN-BUFFER A IN BUFFER A 1N BUFFER B IN BUFFER B
(K1) VALUE {K-1) VALUE (K-1) VALUE (K-1) VALUE -
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~ Figure 12. Y Peak Interrupt Servicing Flow

35



V., ANALOG INTERFACE

The analog interface for the IMP 16 computer consists of an A/D
converter, a D/A converter, and the conirol logic for the two converters.
A block diagram of the interface is shown in Figure 13.

The A/D converter section, shown in Figure 14, consists of an input ‘
multiplex switch, a sample and hold, a 1Z2-bit converter, and a tri-state
buffer register. The input multiplex selects an input channel which may be
a peak, zero, or ground input from one of the gyros. This input depends on
which channel is selected by the computer and logic decode. The input is
applied to the sample and hold circuit, which will hold the input signal value
until the A/D performs a conversion. The A/D start command and clock are
supplied by the centrol logic. The tri-state buffer holds the A/D conversion
and outputs it to the CPU until the next input enable allows the data to update.

‘ The D/A converter accepts a 13~bit sign~magnitude word from the CPU
and converts it to a + or - DC output to drive the gyro torquer amplifier.
This converter consists of 2 + DC reference, a 12-bit ladder network, plus
+ output buffer amplifiers. The control logic decodes the input data word
and outputs a sign bit so that the proper polarity is applied to the ladder
network., The control logic also applies a 12-bit word to the ladder network
to determine amplitude. The signal from the ladder network is applied to
output buffer amplifiers. The control logic enables either a + or - sample
switch which applies the respective output signal to the hold capacitor located
on the torquer amplifier on the platform.

The control logic of the analog interface receives the 5,72 MHz CPU
clock and divides it by 10 and 12 successively to provide basic square waves
“of 572 KHz and approximately 48 KHz, The 48 KHz clock is used to generate
periodically four sequential analog select signals, each spanning an interval
of 32 clock periods. Two successive analog-to-digital conversions are made
during an analog select interval, one in the first half-interval and one in the
second half-interval, The 48 KHz bit times of each half-interval are
designated T through T;s. Anpalog sampling signals are enabled during 'Tl
of each half-interval such that an analog peak signal is sampled in the first
half-interval and an anlaog zero crossing is sampled in the second half-
interval. Analog to digital conversion is accomplished during T, and Ty of
each half cycle. An interrupt request is then sent to the CPU at T4. The
converted 1Z2-bit analog data may be input to the computer by the command,
Ry (0070);4+. The analog data is identified by a three-bit code which is
inputted to the computer by the command, Ryp (0078)16.
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The CPU outputs a 13-<bit word in sign~magnitude format for conversion
to analog by the command, RoyT (0078)14. The data word is latched in a 1st
rank buffer from which it is transferred to a 2nd rank buffer at bit time Ty of
a continuous 8-bit cycle of the 48 KHz square wave. The conversion is

accomplished during each T. Also, sampling of the converted output is
digabled during Ty l
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VI. TEST RESULTS

Test Description

Figures 15 through 17 illustrate the general test setup. In this test
configuration, the gyro was mounted on the rate table such that the input
rates would be about the gyro x axis.

The x and y gyro pickoff signals were fed to both the digital servo and
the analog servo. The digital servo controlled only the y torquer, and the
analog servo controlled only the x torquer,

The rate table was driven by the oscillator portion of the wave analyzer
with a constant voltage applied to the rate table,

The wave analyzer was used to measure the torquer signals and
pickoff signals., The x axis (direct) pickoff signal was also measured in the
open loop condition. The open loop and closed loop measurements were
used to calculate the gains that are plotted in Figures 18 and 19.

WAVE
ANALYZER
l > OSCILLATOR
Ty % Ay
o o o o
Y
oy >
L .
POWER X DIGITAL -
AMPLIFIER GYRO — Ty CONTROL
— Ty — g
. RATE
TABLE
- .
N ANALOG
bt CONTROL
97308

Figure 15, Block Diagram, Test Set Up
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Figure 16, Test Set-Up for Digital Compensation Loop Feasibility Study
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The rate table drive frequency was varied from 10 Hz to 1 KHz with 3
‘to 5 measurements taken per decade depending on how rapidly the data was
changing with frequency. ' '

The integral gain time constant in the digital servo was meodified
(software modification) and the test repeated. There were no modifications
to the analog servo.

Discussion of Test Results

The test setup described above provided a means for one-to-one
comparison of the performance of the digital and analog caging loops. In
order to obtain such a comparison, however, it was necessary to match the
gains of the two loops since the digital computations, as described in Section 2,
assumed that the gain would be adjusted on the analog level, i.e., in'the power
amplifier. The criterion used to match the gain (applied torque vs pickoff
angle) of the digital loop to that of the analog loop was to operate each servo
6 db below its marginal stability level. Using this criterion it was found that
the digital loop gain was approximately 10 db below that of the analog loop.

Frequency response data was taken for both the digital and analog loops.
Figure 20 shows the output signal (i. e., the torquer voltage) response versus
frequency. Figure 21 shows the error signal (i.e., pickoff angle) versus
frequency. These figures are actually families of responses showing varia-
tions resulting from adjusting the "integral gain time constant'' in the digital
loop. This time constant is directly related to the location of the zero of the
digital transfer functions described in Section 2. The range or variation
corresponds to varying this zero location between 123 Hz and 12. 7 Hz.

It is apparent from Figure 18 that the closed loop response of the
digital loop compares very favorably with that of the analog loop in terms of.
the torquer output versus frequency. This quantity is, of course, of primary
interest as it is the ultimate measure of gyro rate.

Figure 19 indicates that the gyro pickoff angles are substantially larger
for the digital loop than for the analog loop for low frequency inputs. This
is attributable to the lower gain in the digital loop which was established by.
the gain matching criterion described above.
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The primary reason that the marginal stability gain for the digital loop
is lower than for the analog loop is the effective phase shift introducted by
the finite computer iteration rate. Thus as the computational frequency is
increased it is expected that the digital loop gain established by the gain
matching procedure would be increased and the pickoff angle versus frequency
response of the digital loop would more closely approximate the corresponding
analog response. Unfortunately this conclusion could not readily be verified
due to computer timing limitations.

The primary ramifications of the lower loop gain in the digital loop is
a lowering of the bandwidth of the caging loop which would occur in a gyro with
both axes mechanized digitally. Subsequent analysis indicates that the effec-
tive bandwidth of such an .all-digital gyro would be approximately 25 Hz for
the configuration which was tested (i.e., 1200 Hz digital processing). This
corresponds closely with the 30 Hz bandwidth used in Teledyne's current
analog caging loops. This bandwidth can be further increased by increasing
the computational frequency and can be expected to approach the 100 Hz of
the pew analog design with very high speed processing.

In summary, then, the test results were in general concert with
expectations and the feasibility of using digital filtering in place of conven-
tional analog caging loops for the TDF tuned-gimbal gyroscope was demon-
strated. ' ‘
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VIil. SUMMARY AND CONCLUSIONS

The primary objective of this program was to demonstrate the feasibility
of replacing existing state-of-the-art analog gyro compensation loops with
digital computations. This objective was realized during the course of the
program.

A breadboard design was established in which one axis of a Teledyne
tuned-gimbal TDF gyro was caged digitally while the other was caged using
conventional analog electronics. The digital loop was designed analytically
to closely resemble the analog loop in performance. The breadboard was
subjected to various static and dynamic tests in order to establish the relative
stability characteristics and frequency responses of the digital and analog
loops. Several variations of the digital loop configuration were evaluated,
The results were very favorable - it appears that digital caging is indeed a
practical approach. '

The primary limitation to the digital compensation loop approach appears
to be the requirement for high processing rates. The tests which were per-
formed indicate that the minimum processing rate for acceptable loop per-
formance is approximately 1200 Hz. Using the general purpose IMP-16 on
TDY-52B computers essentially all of the available computer time was re-
quired to perform the digital caging loop functions for a single gyro axis
at this rate. (These functions include all timing, control, sampling, etc.,
as well as the implementation of the actual digital filters.) For this reason
it appears desirable to consider a special purpose digital processor for the
digital caging loop task. Such a processor could be quite simple in concept
since the only arithmetic functions required to implement the digital filters
which were derived during the program are adds, subtracts, and shifts.

The primary advantages of using digital caging loops in place of conven-
tional analog loops are reduction of cost, size, weight, and power, increased
reliability, and simplified maintenance, resulting from the elimination. of
a substantial amount of hardware from the IMU Electronics. The electronics
which are eliminated using the digital technique include pickoff demodulators,
caging electronics, spin supplies, clock and timing functions, and pickoff
excitation generation. New functions which must be performed with the digital
loop are digital-to-analog conversion and, optionally, the special purpose
digital processing. Since both of these functions may be multiplexed to handle
all sensor axes, the hardware required is minimal. A preliminary design
analysis has indicated the hardware requirement to perform these two .
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functions is of the order of 5 to 20% of that required for the analog functions

which they replace depending upon the level of redundancy which is employed
in the system. The resulting savings in direct acquisition cost for a fail-op/
fail-op redundant strapdown navigator is projected to be approximately $4000
per system in quantities of 150 systems.

The performance of a system using digital caging loops is expected to be
virtually identical to that using conventional analog technology. This is
particularly true if a special purpose processor is employed, since the
processing rate can be increased beyond the 1200 Hz which was used in the
demonstration. Higher rates will provide digital loop performance which
matches the analog loop performance even more closely than described in
this report.

Other than the limitations imposed by computational speed, the digital
loop which was breadboarded during the program appears to be suitable for
use in a practical system design without any significant modifications. The
general design philosophy, filtering algorithms, computer word length, A/D
and D/A converter accuracies and resolutions, etc., which were employed
in the breadboard design are all suitable for use in a production design.



APPENDIX A

PROGRAM LISTING

This is the assembly language gyro program as assembled on Teledyne
unspecialized assemblér TUMPA. Assembled code was punched out in special
loading format on mylar teletype tape for loading via teletype into the IMP-16P.
This program will also run on the TDY-52B.
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Cla4 3,1F,2.00T/7

C545 §,5P0T,NCY/.

CH46  $,MCVEL3,002000/
€367 $,wDRN,1/

{948 $,RET/

CL5a% $,1F,2,4%pp=/
C550C $,5E7C,4,120/7
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CSA5 . MOVE,L1,0,20,0/
CH&L $,n0R0,1/

C567 $,RET/

(868 $.5PCT,A/
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C572 $.POyFEL%5,0510,0/
€373 $.wGR2, Y7

5% 3% ,RET/

575 8,5PCT.pR/

£378 $,5EYC,620/

L5377 $,.5UB2ba404/
C378 ¢,8PCT,B/
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LBTO SLFOVE, 3042410/
581 $.MOvES4sDs10,0/
C382 $,w0aN, 1/

C5R83 $,RET/

CS5Pk $,SPCT.C/

CS5BS $,MOGFa,0a6512/7
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586 S.RET/.
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£390 $,MNvESSs3aby L4/
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APPENDIX B

LIST OF SYMBOLS

A ' Gyro rotor moment of inertia normal to spin axis
Fl(s), Fz(s) Direct-axis and cross-axis analog transfer functions
Fl(z), FZ(Z) Direct-axis and cross-axis digital transfer functicns
Gl(z), Gz(z)' Mechanized direct-axis and cross-axis digital transfer
functions

H(s) General analog transfer function

H(z) General digital transfer function
‘ H'(s) ‘ Dummy analog transfer function

k, K ' Iteration index

KPO Pickoff gain factor

K. Compensation gain factor

SA 7 ,

KT : Torguer gain factor

M(k) Total digital torque

M'x y M v . Components of computer digital torque resulting from

X- and Y- pickoff signals

: Ana

MX MY nalog rebalance torgues

N Gyro spin speed

PX’ PY . Precessional torques

8, S Laplace Operator .

TX’ TY Tatal torques

UX-, UY Digitized gyro pickoff angles
peak Sampled IF-ax1s pickoff angle

Y | o
peak Sampled Y-axis pickoff angle



Delay operator

Digitized gyro pickoff angles
Gyro pickoff angles

Iteration period

Angular rate inputs
Analog filter break frequencies

Dummy analog filter break frequencies
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