FINAL REPORT
ON-BOARD DATA MANAGEMENT STUDY FOR EOPAP
NASA Contract NAS5-20569

1856 Elba Circle
Costa Mesa, California 92626

Report No. 75101
February 1975

Approved by:

ON-BOARD DATA MANAGEMENT STUDY FOR EOPAP

BY

L. D. DAVISSON

SYSTEMS ANALYSIS COMPANY COSTA MESA, CALIFORNIA

February 1975

TABLE OF CONTENTS

1. Summary 1
2. SEASAT Sensor Data Processing 3
2.1 Short Pulse Radar 3
2.2 Long Pulse Radar 4
2.3 Synthetic Aperture Radar 4
2.4 Passive Microwave Radiometer Facility 5
2.5 Very High Resolution Radiometer 5
3. Rate Distortion Theory 7
4. Short Pulse Radar Data Reduction. 13
4.1 Introduction 13
4.2 Simplified Theory of Wave Height and Wave Periodicity Estimation 16
4.3 Computer Programs Developed for the Analysis 19
4.3.1 Data Input Program 19
4.3.2 Fast Fourier Transform 19
4.3.3 Añalysis Program 20
5. VHRR Data Compression 22
6. On-Board Data Management System 27
REFERENCES 28
APPENDIX A Data Input Program 29
APPENDIX B Fast Fourier Transform 32
APPENDIX C Main Analysis Program 34
APPENDIX D Printout of Average Pulse and Spectrum 41
APPENDIX E Peak Histogram 50

ON-BOARD DATA MANAGEMENT STUDY FOR EOPAP

1. Summary

A study of the requirements, implementation techniques and mission analysis associated with on-board data management for EOPAP has been performed. SEASAT-A has been used as a baseline with reference [1] used as the primary source of information for the spacecraft configuration. The storage requirements, data rates, and information extraction requirements have been investigated for each of the following proposed SEASAT sensors: a short pulse 13.9 GHz radar, a long pulse 13.9 GHz radar, a synthetic aperture radar, a multispectral passive microwave radiometer facility and an infrared/visible very high resolution radiometer (VHRR). The short pulse radar is used for altimetry and the determination of wave height and wave directional spectra. Primary consideration in this study was given to this sensor based on data provided by the GSFC technical officer. The long pulse radar is used for measuring wind speeds by scatterometry. The synthetic aperture radar provides side-looking coherent imagery. The passive microwave sensors are radiometers at $5,13.9,18,22,36$, and 53 GHz which are used for correcting altimeter measurements, measuring surface roughness and sea ice. The VHRR sensor provides cloud cover maps and sea surface temperature information. Data management principles for the latter were included in the study based upon the results of the earlier study contract NAS5-21940 "ITOS VHRR On-Board Data Compression Study" (reference [2]) and extended to include the other SEASAT sensors.

Rate distortion theory was applied to determine theoretical minimum
data rates and compared with the rates required by practical techniques. It was concluded that practical techniques can be used which approach the theoretically optimum based upon an empirically determined source random process model.

Finally the results of the preceding investigations were used to recommend an on-board data management system. The purpose of the on-board đata management system is for (I) data compression through information extraction, optimal noiseless coding, source coding with distortion, data buffering and data selection under command or as a function of data activity, (2)for command handling, (3) for spacecraft operation and control, and (4) for experiment operation and monitoring. It was concluded that an on-board general purpose programmable computer should be used and that the advanced on-board processor (AOP) developed by NASA GSFC is suitable for the tasks required.

Section 2 is a review of the SEASAT sensors studied and their data rate requirements. Section 3 presents rate distortion theoretic considerations. Section 4 is a discussion of the data reduction and estimation techniques applied to aircraft samples of the short pulse radar type and the computer programs developed in this study for the analysis. Section 5 presents results for the VHRR data. Finally section 6 discusses an onboard data management system.

2. SEASAT Sensor Data Processing

2.1 Short Pulse Radar

The short pulse radar is used to measure the mean altitude of the spacecraft and the rms wave height in a nadir-looking mode with a .6 m dish. It also can be used with a 2 m dish in an off-nadir conical scan mode to measure wave directional spectra. The radar uses linear chirp FM transmission to attain the required resolution (≈ 3 nsec compressed pulse length) in altitude, wave height, and wave directional spectra. Onboard processing can be used to estimate and transmit these parameters at a low bit rate relative to the bit rate required for the unprocessed received radar data. The actual bit rate resulting depends on the number of read-outs per second of the processed estimates which can be controlled by the on-board data management system. The control can be through read-out rate selection under ground station control or under data control as a function of data activity. In either case, data compression can. be used for further bit rate reduction by sending encoded changes in the parameters rather than the parameters themselves. In this method noiseless coding is used to take advantage of the lowered entropy of the difference sequence.

Further details regarding the processing of the radar data for parameter estimation appears in section 4 based upon samples of aircraft data supplied by the NASA GSFC contract technical officer.

2.2 Long Pulse Radar

The long pulse 13.9 GHz radar is used as a scatterometer to measure wind speed and direction. The scatterometer shares the 2 m dish with the short pulse radar in a conical scan mode and operates on the principle that the radar cross section of the sea surface depends on the wind speed and direction. Atmospheric calibration is provided by the 13.9 GHz passive radiometer. As for the short pulse radar, on-board processing can be used to reduce the received radar data into estimates of wind speed and direction so that arbitrarily low bit transmission rates can be attained depending upon the read out rate desired, and/or the data activity and/or the use of data compression on the sequence of parameter estimates.

2.3 Synthetic Aperture Radar

A synthetic aperture radar is provided for side-looking coherent imaging. Waves on the ocean can be analyzed from the imagery to determine wave spacing and direction (except for a 180° ambiguity). From the wave periodicity the rms wave height can be found through the known deterministic relation between the two parameters. Furthermore information on icebergs, shoals, kelp beds, tides, oil slicks,etc. can be provided. The major drawback in the useage of this technique is the high data rate. This data rate can be reduced by selective coverage through the on-board processor and through prefilitering and buffering operations to 8 Mbps. Because of the high data rate and the inherent redundancy of images, particularly the synthetic aperture type, the signal is an ideal candidate for data compression. Using rate distortion theory (see section 3),
and empirical experience with images, it is estimated that the bit rate could be reduced to 1 Mbps with acceptable quality by using a combination of line-to-line and sample-to-sample compression techniques. If further degradation is allowed so that only the essential information is retained (wave locations, edges of land or iceberg or other significant formations, etc) a reduction to .5 Mbps or less may be possible.

2.4 Passive Microwave Radiometer Facility

The passive microwave radiometers provide atmospheric path length corrections for the short pulse radar altimeter, sea surface temperature measurements, surface wind speed measurements, and rain area and cloud water content determinations. The bit rate requirement for this data is 3.7 kbps. This can be substantially reduced by data compression using the inherent redundancy of the data (see section 3).

2.5 Very High Resolution Radiometer

A two channel very high resolution infrared/visible radiometer (VHRR) provides cloud cover pictures and surface temperature measurements in the 10.5 to 12.5 micrometer infrared band and in the 0.6 to 0.7 micrometer visible band. This instrument is essentially identical to that used for ITOS-D. The scan voltage is a 35 kHz low pass signal which requires on the order of 1 Mbps for full-resolution, uncoded transmission. However, undersampling, line deletion, data formatting, and data compression under control of the on-board processor can be used to substantially reduce the required bit rate. Detailed methods of compression for this source data appear in Systems Analysis report no. 75100, "ITOS VHRR On-

Board Data Compression" prepared under NASA GSFC contract NAS5-21940. A sumary of the essential results appears in section 5 of this report.

3. Rate Distortion Theory

The rate-distortion function of a source with a given probability distribution determines the minimum channel capacity required to transmit the source output (or the storage capacity required to store the source output per unit time) as a function of the desired maximum average distortion, where the distortion function (sometimes called fidelity criterion) is a measure of the agreement between the source output and the end user output as specified by the the user. The concept originated with Shannon who calculated the rate-distortion function for certain sources including in particular a Gaussian discrete time random process. This was later extended to more complicated sources and applied to performance bounding by other authors.

Figure 3.1 presents a highly simplified comunication system block diagram. The system designer is given a source and wishes to encode the source in such a way that the channel capacity (or storage) requirement is minimized. To make this minimum as small as possible, he is willing to tolerate some average distortion (typically average error power) between the source output and the decoder output. The problem addressed by rate distortion theory is the minimization of the channel capacity requirement while holding the average distortion at or below an acceptable level.

To be slightly more specific, in figure 3.1 let the average information transmitted from the source to the decoder output be denoted by the function $I(X, Y)$, more information corresponding to larger values of

FIGURE 3.1. A SIMPLIFIED COMMUNICATION BLOCK DIAGRAM
$I(X, Y)$. Let the analogous average information transmitted from the encoder output to the channel output be denoted $I(U, V)$. The channel capacity C is defined as the maximum of $I(U, V)$ over all possible input devices. It is obvious that in figure 3.1, the intervening nature of U and V implies $I(X, Y) \leq I(U, V) \leq C$ if the function $I(\cdot, *)$ is properly defined. Shannon defined the correct function for information and defined the rate distortion function $R(D)$ as the minimum value of $I(X, Y)$ for a given distortion level D. He also showed that $R(D)<C$ issures the possibility of attaining average distortion D by coding at rate C with a sufficiently complicated encoder.

To look at the problem from a different angle, the encoding and decoding can be separated into two parts-source coding and channel coding. The job of the source coder is to remove source redundancy, whereas the job of the channel coder is to insert controlled redundancy to combat noise. How well channel coding can perform is established by Shannon's noisy coding theorem which states that transmission without channel errors is possible if and only if the rate at which messages are presented to the channel coder from the source coder does not exceed channel capacity. With this constraint on the source coder, at a given channel capacity the source coding must result in a loss of quality-i.e. some distortion must result. The rate distortion function $R(D)$ is the minimum source coder rate (minimum required channel capacity) for an average distortion level D.

An analytically convenient source model to use is the Gaussian which frequently is a good model in practice, in particular for the image data found on SEASAT. Consider the problem of encoding a source which
generates a sequence of statistically independent Gaussian random variables with a squared error distortion measure. This source is characterized by a known mean (i.e. dc) value, which does not affect coding rate because it is a simple shift, and a variance (power) ${ }^{2}{ }^{2}$. Let the source output be the N values $\left\{x_{i}, i=1,2, \ldots . N\right\}$ and the decoder output be $\left\{y_{i}, i=1,2, \ldots \ldots N\right\}$. The distortion is taken as

$$
d(x, y)=\sum_{i=1}^{N}\left(x_{i}-y_{i}\right)^{2}
$$

so that the average distortion is the average mean square error (error power) :

$$
D=\frac{1}{N} \cdot \sum_{i=1}^{N} E\left(x_{i}-y_{i}\right)^{2}
$$

It can be shown that the rate distortion function is given by

$$
R(D)= \begin{cases}\frac{1}{2} \log \frac{\sigma^{2}}{D}=\log \sqrt{\frac{\sigma^{2}}{D}} & \sigma^{2}>D \tag{3.1}\\ 0 & \sigma^{2} \leq D\end{cases}
$$

That is, the rate distortion function is one-half the logarithm of the signal power-to-distortion(noise) ratio. It is achieved conceptually by encoding in such a way that the output error is Gaussian with variance D on each sample value and is sample-to-sample independent, but not necessarily signal independent. Actually there are no known practical methods for achieving a Gaussian error distribution or for achieving the rate distortion bound of (3.1). Instead one must be content with quantization methods which can be made to be within approximately . 25 of a bit or so of the bound by choosing the quantization levels properly and using variable length coding on the quantized values.

In terms of quantizing schemes the rate distortion function has the following rough intuitive justification. The noise standard deviation as a fraction of the signal amplitude is inversely proportional to the number of quantization levels. Therefore, the number of levels should be proportional to $\sigma / \sqrt{\mathrm{D}}$ and the number of information bits should therefore be the logarithm (base 2) of this quantity. This is what is stated in (3.1). If the allowed distortion is greater than the signal power, i.e. $D>\sigma^{2}$, the minimum transmission rate and hence rate distortion function must be zero since nothing need be transmitted at all to achieve error power equal to signal power. This is also stated in (3.1).

The preceding was for a source of independent values. Suppose now the source contains memory as in most physical sources. In particular, suppose the source output is Markov (which means roughly that the future depends only on present values and not the past) with correlation coefficient $\rho,|\rho|<1$. This is a model which has found good agreement in practice, in particular for video data of the VHRR and synthetic aperture radar type. The value ρ is the correlation between adjacent values on a scan line. If $\rho=1$, then each value is the same as the last. If $\rho=0$, the values are independent as before. For this model it can be shown that (3.1) for low distortion levels becomes

$$
\begin{equation*}
R(D)=\frac{3}{2} \log \frac{\sigma^{2}\left(1-p^{2}\right)}{D} \tag{3,2}
\end{equation*}
$$

The typical range of the parameter ρ is .95 to . 99. Thus the number of bits can be reduced by $\frac{1}{2} \log \left(1-\rho^{2}\right)$, or something up to 3 bits, for a given mean square error D over coding for independent values. This performance can be approached through differential coding methods whereby successive sample differences are encoded by a variable length code. For
image data further gains can be made by using line-to-line effects. Assuming the same correlation model between lines, another gain of up to 3 bits can be attained assuming sufficient rándom access storage is available to store one whole line of data. (in addition to the present line).

Rate distortion theory is most useful in practice in providing a bound on the performance of practical data compression methods. This is the primary way it has been used in this study. Consider for example differential variable length coding wherein the successive sample differences are quantized and encoded by a variable length code. Assuming fine quantization, the variance of the difference between the present quantized value and the next sample is approximately
$2(1-\rho) \approx(1+\rho)(1-\rho) \approx 1-\rho^{2}$
Allowing . 25 bit for the optimum quantized value code over the best that can be done as shown by (3.1) and (3.2), it is seen that the differential method comes within the .25 bit of the optimum up to the approximation of fine quantization and the approximations of (3.3)

4~ Short Pulse Radar Data Reduction

4.1 Introduction

Extensive studies were performed on the extraction of rms wave height and wave periodicity based on off-nadir looking aircraft radar measurements provided by the NASA GSFC contract technical officer on digital 9 track tape. Two aircraft runs were provided, the first being from the JONSWOP experiment with the NRL altimeter used in an off-nadir mode by banking the aircraft. In this experiment a 10 nsec pulse width was used with a 6° beamwidth antenna. The aircraft was banked so that the beam center pointed about 10° and 15° off-nadir on passes in various turning configurations. The aircraft was at an altitude of approximately 11,000 feet. Similar data - was provided by an NRL experiment in January 1974, the primary differences being a doubled sampling rate, a fixed bearing rather than a turning course by the aircraft, and less noisy data.

The sampled data provided in each of the experiments consisted of 6 digital tape files corresponding to each of 6 aircraft passes under different conditions. Each pass consisted of 8192 signal traces measured by sampling the pulse returns sequentially 160 times with increasing delay on each pulse across a total sampled time interval of one microsecond for the JONSWOP data and 500 nsec for the NRL data. A typical pulse appears in figure 4.1.1 and is seen to comprise the total returned energy from the sea surface plus noise with noise only preceding and following the return signal.

FIGURE 4.1.1. TYPICAL SIGNAL RETURN (JONSWOP DATA)

Computer programs were developed for the analysis of the sampled data and are included in listed form as a portion of this report. These are in Interdata assembly language and FORTRAN IV. The analysis programs include an Interdata assembly language program for inputting the data from the digital tape under a FORTRAN call and a master program with the ability under input control to print out individual signal traces or averages of signal traces, the ability to print out the Fourier transform amplitude spectra of the signal traces or their averages or the average of the Fourier amplitude spectra of the individual signal traces, using a fast Fourier transform routine writen for the Interdata in FORTRAN, the ability to print out correlation functions and cross-correlation functions of the signal traces, and the ability to print out histograms of the signal trace peaks subject to a threshold on the signal level, including the calculated mean and rms values of the histogram. Except for the assembly language digital data input routine, FORTRAN IV was used exclusively so that the programs could be compiled on any machine, except, possibly for some minor modifications to conform with the particular compiler conventions.

Extensive computer program outputs of the various types were provided to NASA GSFC during the course of the contract for the purposes of analyzing the various approaches to determining the wave heights and/or wave periodicities from off-nadir short pulse radar data. The results to date appear promising but inconclusive, partly due to the limited amount of data, the noisiness of the data, the lack of resolution of the data, the necessity to construct one pulse from 160 sampled pulses, and the lack of ground truth values.
4.2 Simplified Theory of Wave Height and Wave, Periodicity Estimation

Many papers have been written on the theory of wave height and wave period estimation from radar sea scatter measurements. Some of these are listed in the references. In this section a brief review of of the pertinent theory to off-nadir short pulse radar measurements is given in highly simplified form.

Consider a radar illuminating a periodic sea surface at an angle α from nadir as shown below:

Figure 4.2.1. Short Pulse Radar Geometry

The returned signal power is the radar cross section as a function of propagation path length across the illuminated surface. If one assumes that the returns move linearly across the surface in time, the returned signal power contains an amplitude modulation component of frequency $c /(2 \mathrm{~L}$ sin $\alpha)$. This conceptually can be extracted either directly from the returned power as a function of time or from the Fourier transform(spectrum) of the returned power by peak determination. Complicating the task, of course, is the non-pure periodicity of the sea surface, the nonlinearity of the range-time scale across the sea surface and the receiver noise. In the time domain the estimate could be extracted by a bank of
matched filters, incorporating the range-time base correction as a function of the off-nadir angle, α. Alternately the data could be sampled non-uniformly or interpolated to correct the time base followed by a Fourier transform of the squared envelope. The peak of the spectrum (away from D.C.) represents the estimated amplitude modulation frequency.

Given the wave period estimate, the rms wave height estimate can be determined from the deterministic relation between the two. Alternately the wave height can be estimated and used to estimate the wave period through the same relationship. The average power return over a number of pulses is just the convolution of the transmitted pulse with the probability density function of the wave height integrated over range. The spectrum is the product of the transform of these factors. Thus the rms wave height can be extracted from the returned signal by finding the rms value of the probability density imbedded in the averaged returns. Reference [1] proposes doing this from the leading edge of the return which should be more or less spread out depending on wave height (actually [1] proposes using nadir measurements although the same analysis can be applied to small off-nadir observations). Levine $[3,4]$ shows that the spectrum should be approximately proportional to

$$
I(v) \exp \left[-2\left(\frac{2 \pi \sigma_{z}}{c} \cos \alpha v\right)^{2}\right] \operatorname{sinc}\left(\frac{2 \pi \ell}{c} \sin \alpha\right)
$$

where:

$$
\begin{aligned}
v & =\text { frequency } \\
I(v) & =\text { Fourier transform of the transmitted pulse squared } \\
\sigma_{z} & =\text { rms wave height }
\end{aligned}
$$

$\alpha=$ off-nadir angle
$\ell=$ illuminated surface length.
This is just the product of the transforms of the above referred to factors assuming the wave height distribution is Gaussian. Thus σ_{z} can be estimated by the rate of exponential decay of the spectrum. Alternately, Levine $[3]$ has shown that σ_{z} can be estimated from a histogram of the locations of peaks in the returned signal. In particular, he found that
$\sigma_{z}^{2}=\sec \alpha\left[(c / 2)^{2} \overline{T_{n}^{2}}-\frac{(\ell \sin \alpha)^{2}}{12}\right]$
where $\overline{T_{n}^{2}}$ is the rms peak arrival time. Thus σ_{z} could be extracted from a peak histogram over several pulses.

Both of the preceding methods of extracting σ_{z} are theoretical
results from a 2 dimensional model and involve approximations. Thus experimental results are needed to confirm the theory or point to needed modifications.
4.3 Computer Programs Developed for the Analysis

4.3.1 Data Input Program

The data as supplied by the NASA GSFC technical officer is formatted on digital tape in 6 files of 257 records. The first record is a short header record for the file. Each succeeding record consists of 32 signal traces, formatted with 14 header bytes followed by 160 2-byte signal sample values. Thus one record consists of $32 \times 167=5344$ 2-byte (halfword) values. Each file of 256 data records comprises one aircraft pass.

The program written to read these values into a FORTRAN array is writen in Interdata assembly language and appears as appendix A. The program is called by:

CALL ECKERM (INP)
where INP (N) is a (2-byte) integer array of dimension not less than 5344. All 5344 values from the next record on tape are unpacked sequentially in the array INP, including the header values.

4.3.2 Fast Fourier Transform

A fast Fourier transform was used extensively for data analysis and is Iisted in Appendix B. It was written in Interdata FORTRAN IV and is a subroutine called by:

CALL FOURIT (DATA,N,S,ISIGN)
where:

```
DATA(I) = complex array of N values
S = table of sines of dimension not less than N/2 + l
```

ISIGN is used as follows:
sign(ISIGN) $=$ sign of the exponent in the Fourier transform
If \mid ISIGN| $\neq 1$, the sine tables are set up in S
If ISIGN $=0$, tables are set up only.
The quantity calculated is:

```
\(\sum_{k=1}^{N} \operatorname{DATA}(k) \exp \left(i \frac{2 \pi}{N}(k-1)(n-1) \operatorname{sign}(\right.\) ISIGN \(\left.)\right) \cdots n=1,2, \cdots, N\) \(\mathrm{k}=1\)
```

The results appear in DATA(n) in place of the original data. Note that no normalization by N occurs.

4.3.3 Analysis Program

The listing of the main analysis program appears in Appendix C as it is currently configured. Many modifications were made to the program as the contract progressed to conform to the various analytical approaches and data requests by NASA GSFC. Certain classes of outputs can be generated by an appropriate input to the program from the teletype keyboard as the program now stands. Others can be generated by simple program modifications and re-compilitation. The following outputs have been generated to date:
(1). A printout of individual signal traces squared (i.e. power) or the average of a number of signal traces squared, with the number under input control, and the centroid of the printed quantity. An example of this printout appears in Appendix D.
(2). A printout of the log of the spectrum of the average in (1). An example appears in Appendix D where a 1024 point spectrum
appears, generated by setting all values to zero outside. the return signal range. Fourier transform amplitude spectra can also be generated without the appended zeroes, in which case the values are windowed prior to transforming.
(3). The average of the Fourier transform amplitude spectra of individual pulses.
(4). Correlation functions of the signal traces and cross correlation functions between signal traces.
(5). Numbers (2)-(4) with the range-time base corrected by interpolation to be linear.
(6). Signal-to-noise ratio estimates.
(7). Histograms of peaks exceeding an input threshold, including the mean and rms values of the histograms. An example of this printout appears in Appendix E.

To date the efficacy of the various estimation techniques remains unproven, although the results are promising. Upon the attainment of further data, the programs developed under this contract will be available for the analysis and the developement of an optimal technique.

5. VHRR Data Compression

The VHRR signal appears as in figure 5.1 with the timing as indicated in table 5.1. The voltage range is 6 volts which is contained within a lowpass bandwidth of 35 kHz nominal. Using a sampling rate on the order of 100 kHz (1.43 times the Nyquist rate) and something like 8 bit sample quantization results in a bit rate on the order of 1 Mhz for a straightforward PCM transmission system. However, an examination of table 5.1 reveals that 40 of the data can be essentially eliminated by transmitting the temperature and calibration values as single digital values rather than as long repetitive steps and by synchronizing on and selecting out the earth scan data only. It is shown in the results of an earlier study [2] that another 3 bits can be removed from the 8 bit quantized values in the earth scan data by using variable length coding on the sample differences as described in section 3 of this report. Thus the compressed-buffered bit stream requires a channel capacity on the order of $(8-5)$ bits $\times 60 \% \times 100 \mathrm{kHz} \approx 300 \mathrm{kHz}$. Further details can be found in the reference [2].

As indicated in section 3 , a further reduction in bit rate can be achieved by using line-to-line effects, perhaps to as low as 100 kHz if enough storage is allocated to hold the last line. Still further reduction in the average rate can be attained by selecting out only the intervals of time of particular interest or by deleting samples and/or lines on a regular basis. In this case digital filtering should be used to prevent aliasing on reconstruction.

FIGURE 5.1. VHRR Signals

TABLE 5.1 VHRR TIMING

Function	After start of Counta*	IR Precuraor Time (msac)	Durat Count:	10n Time (mac)	Signal Charactaristice
Earth ecan	Not clock controlled	$82.27+$	Not clock controlled	45.32. \dagger	Amplitude varies over range of 0% to 100\%. (0\% Black, 100\% White). Period varies identically with IR channel.
1at Sub-Syuc merkar	27387	91.28	16	0.05	Same as IR aignal
2nd Sub-Sync markar	35579	118.58	16	0.05	Same as IR aignal
Space acan (post earth)	Not clock controlled	127.59	Not clock controlled	4.64+	Same at IR ifignal
Voltage calibration	39675	132.24	1792	3.97	Same as IR signal
Visible calib, target	41467.	138.22	256	0.85	Same as IR eignal
Radiance calibration $300^{\circ} \mathrm{K}$ target	41723	139.00	256	0.85	Bame as IR aignal
Temperature sensor $\left(+20 \text { to } 34^{\circ} \mathrm{C}\right)$	41979	139,93	256	0.85	Same as If aignal
Temperature mennor $\left(+7 \text { to }+21^{\circ} \mathrm{C}\right)$	42235	140.78	256	0.85	Sama as IR aignal
Temperature senaor $\left(-6 \text { to }+8^{\circ} \mathrm{C}\right)$	42491	141.64	256	0.85	Same at IR algnal
Post-earth Synchronication 81gnal					
Front Porch	42747	142.49	1024	3.41	8ame as IR eignal.
Sync Pulae	43771	145.90	256	0.85	Sama at IR ignal
Back Porch	44027	146.76	256	0.85	Same eo IR elgnal
Multiplex tolerance eafety zone	44283	147.61	--	~2.39	
End of Scan		150.00			

- A count is one eyele of $300-\mathrm{kH}$ equare wave.
+ Spacecraft at $790 \mathrm{n}, \mathrm{ml}$., 0° roll error, and nominal position for otart of precureor

TABLE . 5.1. (cont)
6. On-Board Data Management System

It is clear from the preceding that the on-board processing requires a great deal of flexibility and computation which can be best performed by an on-board programmable computer, the programs for which can be. loaded under ground station control. Such programs can be used to select and multiplex the sensors, to reduce the data to the desired parameter estimates, select sampling rates, encode the data and buffer it for transmission and/or storage at a constant rate from variable rate input values.

The primary considerations in the selection of an ormboard processor are the computation speed, instruction repertoire and storage capacity. Also important, of course, are the power consumption, weight and volume. An investigation of the NASA GSFC-developed advanced on-board processor (AOP) indicates that it is suitable for SEASAT. It is a 1 microsecond cycle time machine with 16 K 2 microsecond cycle time memory banks. There are 11 load/store and 9 arithmetic instructions plus various I/O, interrupt, branching, and test instructions.

REFERENCES

1. W.E. Scull, et al., "SEASAT Phase A Study Report," NASA GSFC, August 1973
2. R.M. Gray and L.D. Davisson,"ITOS VHRR On-Board Dàta Compression Study," Systems Analysis Report no. 75100, January 1975.
3. David M. Le Vine,"Monitoring the Sea Surface with a Short Pulse Radar,"
4. David M. Le Vine, "Spectrum of Power Scattered by a Short Pulse From a Stochastic Surface," NASA GSFC Report X-952-74-299, August 1974.
5. K. Tomiyasu, "Short Pulse Wide Band Scatterometer Ocean-Surface Signature," IEEE Trans. Geoscience Electronics, v. GE-9,1971, pp 175-177.
6. G.T. Ruck, D.E Barrick and T. Kaliszewski, "Bistatic Radar Sea State Monitoring," Batelle report, June 1972.

APPENDIX A

Data Input Program

READ ECKERMAN TAPE INTO FORTRAN 5/74
PAGE 1


```
    REGD ECKERMAN TAPE INTOFORTRAN 5ノP4 PAGE Z
-0050R 0030R
-005CR D1A0
0060R 4088R
* 0004
0064R E120
0068R E120
O0078R
O06CR E120
A: 0094R
0070R 4300
    0030R
0074R 0006
\because".0084F
0078R 000?
    000C
    4g2F
    4F20
    4558
0084R DEC0 MESS DS : 4
OOQ8R REG DS . N1E
0094R 0001 FAUSE NO DC . 1
0096R 4801
    0000
    0000
OOgER
    END
LM 10.REG :RETURN IF DOME !:
```

430 F 0004 E1c.

NOGO
B
syo
SVo
svo
B
LINPAK
BC
LIST
DC

PAUSE DC . 1
$0096 R \quad 4801$
0000 0000

QOBER 0000

END
6. MESS

7, 12, C:I/O ERR ,
PAGE 2

RETURN IF DONE !.

LHFACK \&
PRINT STAT
WATT
TRY AGAIN

ב
$\times, 4801,0,0,0$ LU 1 RD IN
$\because \because$ READ ECKERMAY TAFE INTOMFORTRAN 5/74 PAGE 3
NO ERRORS

* O. OD1ER* ECKERM 0000RGO 0030RINFUT 009 ERLIST 007ERLOOP : $0030 R$MESS 0084RMOGO 00G4ROK $0018 R$
FGUSE $0094 R$$0018 R$FAUSE $0094 R$REG 0088RUNPAK 0074R

Fast Fourier Transform
4. : S(I)=SIN(THETA)
!: \becauseJ=1
D=1
IF(I.GE.J) GO TO 己
TEMPR=DATA(J)
TEMPI=DATA(J+i)
DATA(J) = DATA(I)
DATA(J+1)=DATA(I+1)
DATA(I)=TEMPR
DATA(I+1)=TEMPI
M=N/E
IF(J.LE.M) GO'TO 5
I=J-M
M=M/己
IF(M,GE.2) GOTO 3
I= J+M
MABX=2
ISTEF = MMAX+MMAX
NMAX = N/MMAX
IO \& M=1,MMAX, 2
IND=((M-1)*NMAX)/己+1
IF(IND,GT.NNZ1) GO TO ?
WI=S(IND)
IND = NNOZ-IND.
UR=S(IND)
GO TO 9
IND = NNPE-IND
UI=S(IND)
IND=NHEZ-IND
WR=-S(IND)
CONTINUE
IF(ISIGN.LE,O) UI=-WI
DO \& I=M,N,ISTEP

```


\section*{APPENDIX C}

\section*{Main Analysis Program}
```

O THIS PROGRAM IS TO AMALYZE AND DISPLAY EOPAP SEASAT
C SHORT PILSE RADAR DATA. DEPENDING. ON THE PROGRAM
C MODE SELEOTED; FULSES, PLLLSE SPECTRA OR PEAK
HISTOGRAMS CAN BE DISPLAVED. EITHER THE AVERAGE
SPEOTRA OR THE AVERAGE OF THE SPEOTRA CAN BE
C SELECTED. MEAMS AMD RMS VALUES CAN BE EVALUATED.
DATA ARE ADIUSTED FOR POWER.
IMFLICIT INTEGER*E (I-N)
DIMENSION IPR(168)
DINENSION INP(5344), TEL(1024); DAT(50), FULSE(256)
Dimemsion XLablG), PLOT(101), PAV(256), WIND(E56)
COMPLEX Z(10Z4), OMPLX
EQUIVALENCE (z(i), INP(1))
DATA FI, N, NTUP, LO, IHI/3.141592?, 128;1024, 23, 150/

```

```

 Call FOURIT(Z, NTUP, TEL, 0)
 C READ IM MODE DESIRED
101 URITE $(0,100)$
100 FORMAT (11H ENTER MODE M:
READ (0,2) MODE
$\mathrm{Na}=\mathrm{iv} / \mathrm{E}$
$\mathrm{N} 21=\mathrm{NE}+1$
NTUPZ? = NTUF/2+1
$\mathrm{N} \mathrm{L}=\mathrm{N}+1$
$\mathrm{XN}=\mathrm{N}$
XM=PI XN
C CALOULATE IUINDOU WEIGHTS

```

```

C GET LABEL FOR SPECTRA
D0 $23 \quad k=1,6$
23 XLAE (K) =FLOAT (K-1)
C NOW GET IMPUT FARAMETERS
URITE (0.4)
4 FORMAT ('́h LaEEL)
READ (0,5) DAT
5. FORMAT(50G1)
URITE 0,30)
FORMAT (13H ANGLE, MICSEC)
READCO, 31.) ANGLE, DUP :-
FORMAT(8F5.1)
WRETE (3.6) DAT
FORMAT (1H1, 50A1).
$A N G=A N G L E$ 米 $1 / 180$.
DELTA $=160$. (DUR FFLOAT (NTUP))
WRITE (0,1)
FORMAT (7 H FILE = 2, ? HITHRESH)
READ (0,2) IFILE:ITHRSH
FORMAT(SIS)
WRITE (3, 3) IFILE, ANGLE, DUR
3 FORMAT ($6 H$ FILE ,I $3,5 X, F 5.1,8 \mathrm{H}$ DEGREES, $5 \%, F 6.2,7 \mathrm{H}$ MICSEC)

```
```

0053	0352 R
－ 0054	0372R
0055	038 ER
0056	03 AGR
0057	03 BCR
0058	03 E 4 R
0059	03 FER
0960	0432 R
0061.	
0062	044 AR
0063	0452 R
0064	045 AR
0065	047 AR
0065	048 CR
0067	0494 P
0068	$04 \hat{4} 4 \mathrm{P}$
0069	04 BER
0070	04 CAR
0071	
0072	$04 F Q R$
0073	04F8R
0074	0500 R
0075	0508 R
0076	0514 P
0077	0526 R
0078	
0079	0534 R
0080	0540 R
0081	054 AR
0082	$055 A R$
0083	DSEER
0084	$056 E R$
0085	0584 R
0086	$05 B C R$
0087	05008
0088	05 D 4 R
0089	$05 E 0 R$
0090	0 OFCR
0091	
0092	
0093	0608R
0094	063ER
0095	
0096	06508
0097	0658 R
0098	0564 R
0090	0680 R
0100	0 GFOR
0101	0702 R
0102	
0103	0706 R
0104	0714 R

```
```

99 FORMAT(I5H THRESHOLD = :, I5)

```
99 FORMAT(I5H THRESHOLD = :, I5)
    WRITE (0,7)
    WRITE (0,7)
    FORMAT(IEH ELOCKS,SIZES
    FORMAT(IEH ELOCKS,SIZES
    READ(D, 2)IBLKS,ISIZE
    READ(D, 2)IBLKS,ISIZE
    SIZE=ISTZE
    SIZE=ISTZE
8 FORMAT(IH, IS, ЭEH AVG SOLARED PULSES,LOG SPEOTRUM)
8 FORMAT(IH, IS, ЭEH AVG SOLARED PULSES,LOG SPEOTRUM)
    41. FORMAT (SIH SPEOTRA OF AVG=S,AVG SPECTRA=A:)
    41. FORMAT (SIH SPEOTRA OF AVG=S,AVG SPECTRA=A:)
    O BLOCKS ARE INPUT IN JZ TRACE ELOCKS
    O BLOCKS ARE INPUT IN JZ TRACE ELOCKS
    KOUNT=33
    KOUNT=33
    MO-9 IIII=1, IELKS
    MO-9 IIII=1, IELKS
    QRITE\3,10%IIIN
    QRITE\3,10%IIIN
    10 FORMAT(7H BLOCK., I4)
    10 FORMAT(7H BLOCK., I4)
    DO. 15 K=LO, IHI
    DO. 15 K=LO, IHI
    IL=K+1-LO
    IL=K+1-LO
    PAY(IL)=0.
    PAY(IL)=0.
    IFR(K)=0
    IFR(K)=0
    FULSE(K)=0.
    FULSE(K)=0.
    OS FIRITE(3, EC) XLAB
    OS FIRITE(3, EC) XLAB
    CALL EKS(1)
    CALL EKS(1)
    CAGL ECKERM(INP)
    CAGL ECKERM(INP)
    DO I己 I=1,ISIZE
    DO I己 I=1,ISIZE
    KOUNTT KOLNT +1
    KOUNTT KOLNT +1
    IFEKOUNT.LE.3E)GO TO 13
    IFEKOUNT.LE.3E)GO TO 13
    MLN=こ**14
    MLN=こ**14
O GET NEXT INFLUT BLOCK OF ЗZ TRACES
O GET NEXT INFLUT BLOCK OF ЗZ TRACES
    CALL ECKERM(INP)
    CALL ECKERM(INP)
    DO 11 III=1,3已
    DO 11 III=1,3已
    IJ=(III-1)w1E?
    IJ=(III-1)w1E?
    DO if K=LO, IHI
    DO if K=LO, IHI
    J=I.I+K
    J=I.I+K
    1I MIN=MINO(MIN,INP(J);
    1I MIN=MINO(MIN,INP(J);
    KOLNT=1
    KOLNT=1
    I I= (KOUNT-1)*167
    I I= (KOUNT-1)*167
    DO 14 K=LO,IHI
    DO 14 K=LO,IHI
    J=I J J K
    J=I J J K
    X}=INP(I)-MI
    X}=INP(I)-MI
    XX=义未采
    XX=义未采
C KL=K+1-LO
C KL=K+1-LO
C Z(KL)=CMPLX(XX,D,IWLIND(KL)
C Z(KL)=CMPLX(XX,D,IWLIND(KL)
14 PULSE(KJ=PULSE{K)+XX
14 PULSE(KJ=PULSE{K)+XX
    IF(MODE.NE. 1)GO TO 12
    IF(MODE.NE. 1)GO TO 12
    O GALCULATE FEAK:HISTOGRAM FOR VALUES AEOVE THRESHOLD
    O GALCULATE FEAK:HISTOGRAM FOR VALUES AEOVE THRESHOLD
    DO TO K=LO, IHI
    DO TO K=LO, IHI
    J=IJ+K
    J=IJ+K
    IF(INP(J).LT.ITHRSH) GO TO 70
    IF(INP(J).LT.ITHRSH) GO TO 70
    IF(INP(J),GT,INP(J-1),AND.INP(J),GT.INP(J+I))IPR(K)=IPR(K)+1
    IF(INP(J),GT,INP(J-1),AND.INP(J),GT.INP(J+I))IPR(K)=IPR(K)+1
70. CONTINLE
70. CONTINLE
    GO TO 1E
    GO TO 1E
C GET PULSE FOURIER TRANGFORM
C GET PULSE FOURIER TRANGFORM
    GALL FOUR1T(Z,N,TBL, 1)
    GALL FOUR1T(Z,N,TBL, 1)
    DO 40 K=1,N己1
```

 DO 40 K=1,N己1
    ```
\begin{tabular}{|c|c|}
\hline 0105 & 9716R \\
\hline 18106 & 07 GAR \\
\hline 0107 & 07708 \\
\hline 0108 & 0734 R \\
\hline 0189 & OTAAR \\
\hline 0113 & 0750 R \\
\hline 0111 & OPDCR \\
\hline 0112 & \\
\hline 0113 & \(07 F C R\) \\
\hline 0114 & 08048 \\
\hline 0115 & 0300 R \\
\hline 0116 & 0314 R \\
\hline 0117 & 0810 R \\
\hline 0118 & 0834 R \\
\hline 0119 & 982CR \\
\hline 0120 & 083AR \\
\hline 0121 & 0860 F \\
\hline 012 L & 088 ER \\
\hline 0123 & 089 ER \\
\hline 0124 & O8AFAR \\
\hline 0125 & 08BAR \\
\hline 012ら & DSOER \\
\hline 0127 & 08 EOR \\
\hline 0123 & Q8ECR \\
\hline 0129 & 98F8R \\
\hline 0130 & 0918 R \\
\hline 0131 & 9940 R \\
\hline 0.32 & 996AR \\
\hline 0133 & \(096 E R\) \\
\hline 0134 & 099ER \\
\hline 0135 & G9DER \\
\hline 0136 & QgFER \\
\hline 0137 & QA1CR \\
\hline 0138 & QA4ER \\
\hline 0139 & 0 A 58 R \\
\hline 0140 & 0458 R \\
\hline 0141 & DAEOR \\
\hline 0142 & 0f90R \\
\hline 0143 & 0 AA 4 E \\
\hline 0144 & OAE8R \\
\hline 0145 & OAFCR \\
\hline 0146 & OB10R \\
\hline 0147 & GE2こR \\
\hline 0148 & \\
\hline 0149 & OB26R \\
\hline 0150 & OEDER \\
\hline 0151 & 0 B 3 GR \\
\hline 0152 & OE3ER \\
\hline 0153 & 0846 P \\
\hline 0154 & 0 BEGR \\
\hline 0155 & OBTER \\
\hline 0156 & OBBER \\
\hline
\end{tabular}
\(40 \quad\) PAV \((K)=P A Y(K)+C A B S(Z(K))\)
12: CONTINUE
D0 \(52 \quad I=1,101\)
GE FLOT(I)=BLAMK
IF (MODE, IHE, 1)GOTO 72
WRITE (3, 74) ISI2E
74 FORMATGH, IS, \(15 H\) PEAK HISTOGRAM?
C CALCULATE MEANE RMS FOR HISTOGRAM
\(S U M H R M=0\).
CNTROD \(=0\).
- \(5 \mathrm{MmSo}=0\).

TMIN \(=5000\).
TMAX \(=0\).
DO 9 P-I =LO, IHI
\(X K=I\)
IF (IFR(I), GT.Q) TMIN=AMIN1 (TMIN, XK)
IF (IPR(I).GT.D) TMAX=AMAXI (TMAX, XK ;
\(x=I P R(I)\)
SUMARM = SUMNRM \(+X\)
CNTROD \(=\mathrm{CNTROD}+\times\) WK
SUMEQ=SUMSQ+XSXK*XK
CONTINUE
CNTROD = CNTROD S SUMNRM
SUMSO = SUMEO- SLMNRM
RMS = SORT (SUMSO-CNTRODWCHTROD)
WRITE (3, 98) OHTROD, RHS

GO TO 102

SIGZP=DUR*150, *SQRT(ABS (STGZ)) (160: ※COS (ANG))
WRITE(3,96)5IGEP
WRITEGBGS SIGEPA \(Z=\), FIE.5)
96. FORMGT(15H SIGMA Z \(\quad\) IF SIGZ LT. O. JWRTE 3,95 )

95 FORMAT (I2H NEGATIVE )
102 CONTINUE
DO \(73 K=L 0, I H E\)
IX=FLOAT (IPR(K) SSIZE*100. +.5
FLOT \((I X)=P E E\)
WRITE (3, P5) K, IPR(K), PLOT
75 . FORMAT (1H, 2IS, 101 AL
PLOT \((I X)=\) BLAFKK
73 CONTINUE
© NOIJ PLOT PULSE AVG, SPECTRUM
3.2
\(X M A X=0\).
CNTROD \(=0\).
SUMARM=0.
DO \(64 \mathrm{~K}=\mathrm{LO}\), IHI
CNTROD = CNTROD+PULSE (K * *FLOAT K \()\)
SUMNRM = SUMNRM+FULSE (K)
64 XMAX=AMAX1 (XMAX, PLLSE (K) )
CNTROD \(=\) CHTROD SUMHRM

ORIGINAL PAGE IS OF POOR QUALITY

\begin{tabular}{|c|c|c|c|}
\hline & PULSE & 4E54R & REAL VAR \\
\hline & XLaE & 4 F 54 & REAL YAR \\
\hline & PLot & \(4 \mathrm{F6CR}\) & REAL VA \\
\hline & PAV & 5100 R & REAL YAR \\
\hline & WIND & 5500 R & REAL VAR \\
\hline & CMPLX & 0000 R & EXT FUNC \\
\hline & P.I & 0008 R & REAL VAR \\
\hline & N & 0000 R & INTE VAR \\
\hline & NTUP & 000ER & INTE VAR \\
\hline & LO & 0010 R & INTE \\
\hline & IHI & 0012 R & INTE \\
\hline & DOT & 0014 P & FEAL VAR \\
\hline & STAR & 0018 P & REA \\
\hline & blank & 091 CR & REAL YAR \\
\hline & SLAS & 0020 & REAL \\
\hline & ES & gotar & REAL PAR \\
\hline & A & 0028 R & REAL VAR \\
\hline & FOUR1T & 0000 R & EXT FUHE \\
\hline & 101 & 003 ER & LABEL \\
\hline & 100 & 0056 R & LABEL \\
\hline & [104 & 0000 R & EXT FU \\
\hline & 2 & OEEE & LAE \\
\hline & DE & 5904 R & 1 NT \\
\hline & N 2 & 5906 & INTE VAR \\
\hline & N21 & 59008 & INTE VAR \\
\hline & Niofer & 5914 R & INTE VAR \\
\hline & XN & 5916 R & REAL VAR \\
\hline & 1. & 0000 R & EXT FUNC \\
\hline & XP & 591 AR & REAL, VAR \\
\hline & 42 & g日ECR & LABEL \\
\hline & 1. & 591 ER & INTE VAR \\
\hline & Cos & 00008 & EXT FUNE \\
\hline & FLOAT & 0000 R & EXT FUNC \\
\hline & 23 & Q146R & CATEELVAR \\
\hline & & 0194 R & LABEL \\
\hline & 5 & 0104 R & label \\
\hline & 30 & 01 EGR & LABEL \\
\hline & 31 & 92e4R & LABEL \\
\hline & ANGLE & 593 AR & REAL VAR \\
\hline & DUR & \(593 E R\) & REAL VAR \\
\hline & 6 & OEEER & LABEL \\
\hline & ANG & 5942 R & REAL VAR \\
\hline & dELTA & 594 AR & REAL VAR \\
\hline & 1. & OEROR & LNTE VAR \\
\hline & IFILE & 5952 R & INTC VAR \\
\hline & THRSH & 031 CR & LABEL \\
\hline & 99 & 9372R & LABEL. \\
\hline & 7. & 03 AFR & Label \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline IBLKS & 5956 F & INTE \\
\hline ISIZE & 5958 R & INTE VAR \\
\hline STEE & 595 AR & REAL VAR \\
\hline 8 & 03 F OR & LAEEL \\
\hline 41 & 04 ERR & LABEL \\
\hline Kount & 595ER & INTE VAR \\
\hline 9 & OFGER & LABEL \\
\hline IIII & 5964 R & INTE VAR \\
\hline 10 & 047 AR & LABEL \\
\hline 15 & Q 4 CAR & LABEL \\
\hline IL & 5966 R & INTE VAR \\
\hline BKS & Q000R & EXT FUNC \\
\hline ECKERM & 1 0000R & EXT FUMO \\
\hline 12 & O76AR & LABEL \\
\hline 1.3 & 95 BCR & LabEL \\
\hline MIN & 5970 R & INTE VAR \\
\hline . 1 & OOOQR & EXT FUNC \\
\hline 11 & QSGER & LABEL \\
\hline III & 5976 R & INTE YAR \\
\hline IJ. & 5978 R & INTE VAR \\
\hline J & 597 ER & INTE VAR \\
\hline MINO & 0000 R & EXT FUNC \\
\hline 14 & 0608 F & LABEL \\
\hline \(x\) & \(5980 R\) & REAL VAR \\
\hline \(x\) & 5984 R & PEAL VAR \\
\hline 70 & QGFOR & LAEEL \\
\hline 40 & 0716 C & LABEL \\
\hline CABS & 0000R & EX \\
\hline 62 & 0784 R & LABE \\
\hline 72 & OB26R & LABEL \\
\hline 74 & OTDCR & LabeL \\
\hline SUMNRM & 5988 R & FEAL VAR \\
\hline CNTROD & 5980 R & REAL YAR \\
\hline SUMSQ & \(5990 R\) & REAL VAR \\
\hline TMIN & 5994 R & REAL VAR \\
\hline TMAX & 59908 & REAL VAR \\
\hline & OBCER & LABEL \\
\hline XK & 5949 R & REAL VAR \\
\hline GMINI & g000R & EXT FUNC \\
\hline AMAX1 & 0000 R & EXT FUMC \\
\hline RMS & 5944 F & EEAL VAR \\
\hline GQRT & O000R & EXT FUNC \\
\hline 98 & 0940 R & LABEL \\
\hline 102 & QAS8R & LABEL \\
\hline EIGZ S & \(59+8 \mathrm{P}\) & REA \\
\hline - & 0000 P & EXT \\
\hline SIGZP 5 & \(5080 R\) & REAL VAR \\
\hline 4 BS & OOdgr & EXT FUNC \\
\hline 360 & OGFER & LABEL \\
\hline 55 & 0 OAER & LABEL \\
\hline 30 & 0910 P & LABEL \\
\hline \(\times 5\) & 59 COR & INTE VAR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline V & 0000 R & EXT FUNC \\
\hline 75 & OAESR & LABEL \\
\hline 76 & OF 40 P & LABEL \\
\hline XIAX & SGCAR & REAL \\
\hline E. 4 & UBTER & LAEEL VAR \\
\hline 1 CNTR & 5 OER & INTE VAR \\
\hline \(E 5\) & QCIOR & LABEL VAR \\
\hline YNOPM & 5909 R & CABEL \\
\hline 16 & OCDAR & LABEL \\
\hline 61 & OCHER & EXTTFUNC \\
\hline EP & OOOOR & EABEL \\
\hline 60 & OD24R & LABEEL \\
\hline 200 & ODGER & \\
\hline 22 & QLgor & LABEL \\
\hline 18 & OFEER & LGEEL AR \\
\hline D & 59 DAR & REAL VAR \\
\hline ALOG10 & 00002 & EXT FGNC \\
\hline MAXO & Ogeger & EXT FUNC \\
\hline 19 & OEEGR & LABEL \\
\hline 29 & GFOER & LAEEL \\
\hline 21 & DF58R & LABEL \\
\hline . V & 0000 R & EXT FUNC \\
\hline 0000 ERR & ORS & \\
\hline
\end{tabular}




\section*{}

(1)

0

\section*{
}


\(\qquad\)





\section*{.}


\section*{\(\ddagger\)}

(5)









\section*{(5)}



 \(7 H-100000000000000\)

\footnotetext{
1
}






\section*{\(\stackrel{\infty}{4}\)}

\(\dot{0}\)


\section*{(5)}
\(60-6006\)
in


0 (0)
(0)
0






```

