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ABSTRACT

The asymptotic solution for the transient analysis of a
general nonlinear sfstem in the neighborhood of the stability
boundary is obtained by using the multiple-time-scaling
asymptotic- expansion method. The nonlinearities are assumed
to be of algebraic nature. Terms of order 53 (where &
is the order of amplitude of the unknown)‘are included in the
solution. The solution indicates that there always exists a
limit-cycle..-.The-limit-cyecle..is Stable*j{unstable) .and exists-
above . (below)..the stability boundary. if the nonlinear terms
are stabilizing (destabilizing). Extension of the solution to
include fifth‘order nonlinear terms is also presented. Com-

parisons with harmonic balance and with multiple-time-scaling

solution-of panel flutter—equatiofis-are-also-includeds—.
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SECTION I

INTRODUCTION

1.1 Regular Perturbation Methods

This work deals with the stability analysis of nonlinear
systems by a singular perturbation method, the multiple time
scaling method. 1In order teo motivate the use of this method,
it is convenient to consider first'the regular perturbation
method.-- For-the-sake-of simpldicity,~this-method-—is used-for

solving a simple.equatioh;-the-Puffin—equations—
e k]
XX +EX=0 O< &« (1.1)

which-does- not-yield- any. instability, since it is conservative.
The analysis of this equation-is useful to understand—the~-j
meaningzof'éértain3terms'isecular'termsl:and-henCe to motivate =
theﬁuse;o£'tHe;Singularnperturhation'methods:;;Asmwell:known;::
Eq.— {1.I) represents-a-mass-spring system_{(unit mass with non-
linear’spring)landzhas;aaperiodic;solution {elliptic functions)s -
It may be noted that Eq.” (1.1) has an energy ~integral -

+ £ X* - constant | (1.2)

e

Zz

2
+ X
2

NS

which implies that the energy (and hence thelamplitude of vi-
bration) remains bounded.
According to a well'known'theoremfiPoiﬁcareﬂtheoremlé,'the,

solution of Eg. {1.1l) depends analytically upon .the parameter



-2-

and hence may be expressed in the form

x=x(£z) = 2 E" Xnld)

X=x(te) = 22“ X (1) (1.3)
where on
Xn(t) = 4 &5
Nt oE" Lo
(1.4)

The regular perturbation method consists in the use of Eg. (1.3)

for solving Eg. (1.1). Combining Egs. (1.1) and {1.3) yields
3 .

? EN X+ % e X, * & (Zol E“_Kn)

Ve .t 3 ! z . :o
(xo+><o) _I_E(xlq-)(‘fxo) + E_Z'(Xz+><z+5xo )<|]+
(1.5)
‘which implies
- Xo t Xp =0 (1.6a) =
.- 2 . ..
X, 2. X 4 Xy =0 = (1.6b) "
X, % X ¥3%x5 X =0 (1.6¢)
The solution of Eg. (l.6a)=is: . .
it -
Xe=0e + Qe (1.7)

where a is a complex member and a is its conjugate. Combining

Egs. (1.6B) and-{1.7), one obtains’

e , — 1t T, ~13t
X +x, +(a*e'™+ 300’ r2a6°e "+ 0%e’ )=O (1.8)
The _solution -of Eg. (1.8) .is .
- 3t 2 = ot
x'—_:[belt +‘éoseL %-L—% Qateb]‘% C.T. (1.9}

where -C.T. represents the Conjugate Term of the term in brackets.
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Hence, the solution is given by

X= X +EX, +0(&) = [(Q+&b)e& + Eé—oaew’t

+ EL_ZQ a*at edJ+ C. T+ 0(e?) (1.10)

The third term on the right hand side grows in time beyond any

limit. Terms of this type are called secular terms.l Clearly,

if the series is truncated to terms of second order, the so-
lution does not have the expected properties since it is not

periodic and does not remain bounded in time.

1.2 8Singular Perturbation Methods

In order to circumvent the above mentioned problem, several
methods were introduced. These methods are called singular per-
4turbation methods and are based upon the concept of asymptotic
exp&nsions;%:;WellEknown:are:thevKrylov;andthliubovéwméthD& -
(avefaginqamethodtfandwtheLCo1e;and:KeVBrkianguméthod7{tWQ1w,~
variable expansion). More recent are the multiple scaling
method (Refs. .5<9)-and the Lie transform method- {Refs, 10-14).
These -last” two-methods are-used -in Ref.-15 to analyze the:stabi--*-
lity of nonlinear systems. The multiple time scaling is consi- -

dered here.* This method consists of assuming that the solution

be of the form
X = Xo(to){l,tz,-a.,) + Ex| ({o}‘tl‘)‘tzJ . - ) F o
= ; e xpltotits,...) | (1.11)

*
A comparison of the multiple time scaling with the harmonic

balance method is given -in Appendix-&a.



where

1, =£&"t (1.12)
are the multiple scales and are treated as independent variables.
The functicnal dependence of the X upon the tm is obtained by
imposing that the solution contains no secular terms. It may

be noted that Eg. (1.12) implies that

A 5D gt T D
w Gt 0T 5 (112

Combining Egs. (1.1),_(1.11), and (1.13), one obtains

(5 o2y v eSp 2 fm) -] (xorexrex)

F (X tEX, +E K vend) + EXE 4 EBXIX + ... =0

{1.14)
which implies
- DKoy x =0 - (1.15a) =
2 [+]
Iy
a?‘-rz,___o + X, +>< =0 (1.15b)

ot

N

3%, &xs: E)K
+ + o o X 3)(K C)
a{z ZER’C)Q o +26{at+ x =01, 15¢)

The solution of (1.15a) is

L ]

X,=Q€e " +0e (1.16)

where a and its conjugate a are functions of tI,‘tz,-.aa..

Combining Egs. (1.15b) and (1.16), one obtains

ale + aa Lu 3 ILS'{'-U 2 = l't (_T (1-17)
Y3 [&—a—a "+ Qe " +300e ]+ .
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where C.T. indicates the conjugate term. In order to avoid

secular terms, the condition

2,98 137G =0 (1.18)
oty
must be imposed. The solution of Eg. (1.18) is obtained by
setting 9
L
a=lale (1.19)
and separating real and imaginary parts. This yields
20 _ 3 417
VY o 2 o (1.20a).
ot 2 e}
olal-_qo - , (1.20b) -
ot
or
(210l 30,3,
Qzlalet(zxaitlf('po) =Qae'-2 { (1.21)
where
- Q,=lal e“-Lp"; (1.22)
is a funétionzﬂfrtz,;t3; e If Eq. {1.18) is satisfied7 -
the solution of Eg. (1.17) is given by
B _ 5 _
X=bet igote' ™ .23
Combining Eg. (1.11), {(1.16), (1.21) and {1.23).,- one obtains
i, t20,0,1) . -
X=0,€ r elbe™r Q2 e )i0lg)r e (.29

which is equivalent to

Lot ; - |
x=(0+Eb+.)e'™ & E(%" +-‘..)<£>L,3“’Jc r CT L0y

-25) -



with _

oD='1+E.%ODC1,,+.__ (1.26)
The analysis may be continued with the solution of Eq. (1.15).
This yields another term in the expression for and a harmonic

of the type e‘5mt.

1.3 Comments

It may be noted that the Taylor series of Eq. (1.26}) yields

X =.fQoe‘Lt+ a[beEt+é03e.L3t P15 QL C_lbteL*]+ O(er)  (1.27)

in agreement-with Eg.” {1.10). -Hence, ~"the appearance—of-the-
secular terms—does-not mean that the series solution does actually

diverge if one considers the whole series,just in the same manner

in which the whole series t - (t3/3!) + (t5/5!)... converges to
sin-{&)-. As-it is impossible-to build-enocugh_terms. by successive
approximations. te be able-te ascertain-this’fact,—the .appearance -..:
of secular terms renders the method impracticable," {(Ref. 1,

P- 219Tﬁ‘“The~term=tei?;is due—to the.fact-that _thedifference - .
between-two-sinusoidal-functions-having amplitude-and.-frequency-- -
slightly different, grcws (initially) linear in t. Obviously,
solutions which contain secular terms are meaningful only if the
complete series iz known. Hence, they have limited interest
from-the practical point of view. -

Tt may.be noted that the Duffin Equation has been considered
only as an example in order to introduce the concepts of secular
terms-and singular perturbation methods.. The results _obtained.
above may be obtained with. more-elementary methods; -such-as

Lindstedt's small perturbation method (Ref. 1, p. 224).



SECTION II

ONE-DEGREE-OF-FREEDOM SYSTEMS

2.1 Van-der Pol Equation

As it will be shown in Section III, a characteristic
behavior of nonlinear systems in the neighborhood of the stabi-
lity boundary is given by the existence of limit cycles. The
simplest equation to yield a limit cycle solution is the Van
der Pol equation.

Consider the-two-forms-of the .Vanfderu.Polfequation2

%—E%Jr&%(%f:rx:cn | (2.1)
and

o’ d 2\ —

T E@d ()Y =0 22

Equation.i{2.2) ¢an-be obtadiried.by differentiating Eq.z{2.L1) - :.

with .respect to tmana;setting:z;
Y = Tt ' (2.3)

For=simplicity, the-multiple scalking-method -is applied to Eg. .
(2.1). Similar results are obtained for Egq. (2.2) (Ref. 5).
Combining Egs. (1.11), (1.13), and (2.1) yields

St 28w S exin) e

o @)
_&(a{b+ Ei(—._-)—{i*- ...)(xo+&><,+ ) " g[(%o+£@a—{1+... )(xo+&.x1+.._)r=o
(2.4)
which implies: - -
a‘xo F X, =0 (2.5a)




o1, ‘ X0 oy Dt (2. 5b)
The solution of Eg. (2 5a) is given by
X,=Qe’ “rae® (2.6)
where a and a are functions of t;, t,, +...... Combining Egs.

(2.5b) and (2.6), one obtains

a'}(q - aa -to ’ L{o i - 2 -la'to . 2 = .L'l'.o
50 v Xy ZLO{‘C—? rlae v z10e T (a'de 1T (2.7
The condition for avoiding secular terms is
-2 da. -
Zat, + Q-G G=0 (2.8)

By setting -
Y ‘
:‘Qle ‘ (2.9)

and separating real and imaginary parts, one obtains

Q

(a
{ -

|

ORIGINAL PAGE I8 2 “lal +lal’ =0 (2.10a)

OF POOR QUALITY

|Q)
(a

@_QQ_,: o- (2.10b) =
or (_p (P and®
LAY /S (2.12)-
Q=_-.-" f*'k@—?g'_-_‘ <
where k and (f) are functions of tor eeeen Hence, the solution

of Eq. (2.1) is given by

1 ((t+G) - (¢+8)
X TV ket (e + & +0(&) (2.13)
The functlon
Y, 4‘+k£‘*4 1’+S e
(2.14)
1

*Setting'LJ= aE one .obtains 5_.—: P -%%aL='—ﬂ%F “Oj“,ar)=‘U44

lat
or 1A=1+{<é¢' which is equivalent to Eg. (2.12).



with
S¢ = 3gn(K) (2.15a)
T = - An K] (2.15b)
is plotted—in Fig. 1 which-shows-clearly that the solution of —.
Eq. (2.13) tends to a limit cycle
X ) = 2cos (1)) (2.16)
independent of the initial conditions (except for the phase

angle QL ).

2.2 _Generalized Van der Pol Equations.___

A one-degree-of-freedom system which has many characteristics
of the N-degrees—-of-freedom systems (see Section III) "is the

generalized-Van der Pol equation.

X +X = —Z& Uﬁgk-@lxh%(‘tﬁaf-- ¥y xi)] 3 (2.17)

Combining—Egss ~{1.X1)7 {1.13); and.-{2.17) and-séparating-different
powers of & yields

a.z_.xo_";}-_'—')( = 0O-
oty - ° (2.18a).

az)(| - " azxo OXp - 4L x Xo\? 3
ot 2[5&% e 5 ﬁ1x°+35'<(5¥0)"”é51’<°] (2.18D)

(+]

The solution of Eg.” (2.18) is given by Eq.>(2.6), which-when—-
combined with Eg. (2.18b) yields
0%, [ Pa. it L4 4 | .
e T = =/ 155 "- oo ‘=tto | 3t,
ot T 2[L5g € " tBeraetfrae™ + L [cidel s
Cas 'f,,) _1 i34 .
3rdae™) — 3 UI—(cfe‘ NG i = °)} +C.T.

{(2.19)
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The condition for the elimination of the secular terms 1is

@ (59_+Lﬁx)a +(’Z§’,E+Lb/) A =0 (2.20)

By using Eqg. {2.9) and separating real and imaginary parts, one

obtains

%.1 +,69_/a/ +5 lal’=0 (2.21a)

g:{_(*g _(_ﬁr +KI Ia|z=o {(2.21b)

The~solution of Eq. {2.21a) is"

(2.22)
with k function of t,. Substituting into Egq. {2.21b) and in-
tegrating yields

(51—15& ). 8z EEJPA‘;“ N
2L T 2 .-
(p ﬁla——'ﬂ’a {g-h KE- o (2.23)- -

with'Q%_;ﬁpnctionﬁaﬁ t2 e nan. -Finally, combining-Egs: - (1.11)

and-=(1.13) with:Egs+ (2.6}, (2.22)---and=(2.23}), one-obtains .. .
x=lal2 cos| (Htew )t + = Ln_la,l 4—(.9] (2.24)

with 0){ = -@I + 61 ﬁ[a/’h’e -

The behavior of the solution depends upon the .signs._of ﬁ@__and_ﬁé

S = Sgn (Be) | (2.25a)

5= 5gn (¥y) | . (2.25b)

*See footnote to Eg. (2.12).°
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Note that Eq. (2.22) is egquivalent to

lal - S S¢
—— = [ _TTTE 2.26
lﬁa/l{z\z 4%—5:85‘& ( )
with
T = 2Iﬂe!£, + S talE] (2.27)

The discﬁssion of the solution behavior is divided into
four cases, depending upon the signs of fBe and ¥ .

‘Consider first the case analogous to the Van der Pol
equation,mnamelyzﬁg <. 0 and;K§n>t 0 (destabilizing linear terms _

and stabilizing nonlinear-terms)<=:In thisicase, Eq.={2.26)>

lal - . 4
Al —f - e

with;fT(Tlaprtted:in Fig::X. *In this-casej:.thezsolution . tends:z-

yields

to a. limit~cycte given.by .-

X = 2lale eos{wt+d,) - (2.29)
with ..
|l = }—@E/(g“ (2.30a)
W= A +EW, (2.30D)
Q.- & gnlal, +U, (2.30¢)
[

=}
Next, consider the case with both—(linear and nonlinear) terms
stabilizing ( ﬁﬁ.> 0 and ¥ > 0). 1In this case, Eq. (2.26)

yields

ol e - [ A
| Be /¥, |2 R - 1r5.et (2.31)

The-function-£,(T) (real only for o, & 0, T> 0), is plotted in
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Fig. 2, from which it is evident that the solution is uncondi-
tionally stable.

Third, consider the case with both (linear and nonlinear)
terms destabilizing ('Bﬁ < 0 and ¥eg « 0). In this case, Eq.

(2.26) yields

lal

= N = - T (2.32)
|Be ¥ |2 1+Sce

The function f3(T) {real only for K< 0, T 4 0) is shown in

Fig. 3, from which.it is apparent=that-the-solution-is-uncondi=—
tionally.-unstable, :and:goes.to infinity—in finite time..-

Finally consider the case with stabilizing linear terms
{ Bﬁ_>“0) and destabilizing nonlinear terms ( ¥p<0). In

this case, Eg. (2.26) yields

e S N P

(Bl

The--function f4{T} is plotted-in Fig. 4, from which_ it is apparent .--

T (2.33) "~

that there exists an unstable limit :cycle-given by =-

x=2lal., cos (wt+@,) {2.34)
with
lal. . = /Belfe (2.35a)
W= 4+8&wy (2.35b)
_ & 1 (2. 35¢)
('Q-ot) KE Mla’ - o0 +Lp°

Equations.-{2.35) are analeogous to Egs. .{2.30) .- The-subscript - oo

is used to indicate that the unstable limit cycle is reached as

t —= —00.
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SECTION III

N-DEGREES—-QF-FREEDOM SYSTEMS

3.1 Introduction

consider an autonomous N-degrees-of-freedom system of the

type

x + ADx = Fx)

(3.1)
where A is a matrix, function of a parameter A, and £(x) is

the vector of the nonlinear terms. Assume that the linear

system =
X+ ANx =0 (3.2)
is such that all the eigenvalues P of the matrix, A given by
pet(p I+ AN)) =0 (3.3)

are stable (negative real part) for A £ X, , while for AT A

there existé‘a'pair of eigenvalues ﬁ==i£w and for-%gagﬂa;ng;_;;___ ——
this pair of eigenvalues becomes unstable (positive real part).-.. .
The value Ao defines the stability limit. For A=A , the

solution of Eg. (3.2) is given by oL T

Lot - lwt
X=uae” + ae ™ +o.T (3.4)

where D.T. indicates the Damped Terms (eigenvalues with negative
real part), W is the eigenvector relative to the eigenvalue A=,

that is the nontrivial solution of the system,

(Lw IfA(%\)U-=O - (3.5)
The stability analysis of nonlinear systems considered here .

deals with the study of Eqg. (3.1) in the neighborhood of the

value ‘Ko.
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Assume that the matrix A is an analytic function of A

in the neighborhood of Ao -

A=A, #AD)+ A D)+ (3.6)
and th;‘nonlinear terms vector is an analytic function of x

£ = (1) = {2 o XoXg * & Conge XoXy X0 1

pgrs dnpclrs prqxr xs + p%ﬁ‘f elpc.brs't )(P ch){,.)(h X'I:+" _,} (3.7)

3.2 Formulation of Problem—
Assume for simplicity that.the.nonlinear .terms are-only of

odd order*, namely

bhp% = dnpctrs = O

(3.8)
In this case, if ¢ is the order of magnitude of x, the
solution is of the type
T NPT B S
X==EXEERXRFEXS " | (3.9)

where xi,x3,x5, .... are functions of tO'tz’t4’ ee.. (for,
the odd-order scales do not appear in the solution ). Hence,

a. a2 ) 40
at - 4, f 24, té P (3.10)

Furthermore, it is convenient to set
2z 4
>\=>\o+5>\;+5/\4+-"‘ (3.11)

where

(3.12)

A, =+

*If the even-order nonlinear terms are -different:from zero,
the analysis is only formally more complicated, but the results

are essentially the same. (Appendix B).
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and )\4 to be determined (see Subsection 4.3). Combining Eq.

(3.1) with Egs. (3.6) through (3.11), one cobtains
o IR
(aé +aa§% +243—4+-..)(&x‘+53x3+35x5+...)

f (A + A, +' A e .. )(&x‘,wsxs +;_5x5+---)

3 s
&F & £ .

(3.13)
with
A_ = )\sz’;f; | (3.14a) -
A )‘4 A’—+ Y o (3-18b)=
and
(3.15a)

£-1{,.1- {2 e Xop Xog x]

.l'! {415“}”{ Z an (x.,p XigX grat X0 xa,% an-** X;PJXI%X;,_.,-); i

pgr s

' (3.
N p%{ ehpobrgt -(_XIIF: Ang Xir XI.S“XI,t_)} -
Equation~(3.13)-implies -
o 3.
5, +A X, -0 (
5 = £, - g% - (3.
a-&?: +‘Agx3 '.FS E’j-_-l;i Azx\
(3.

IoX
54—_&;( -Ps gfs—*g:; A?‘s_nqxr

3.3 Third Order:Solution;'

The solution of Egs. {3.16) including third order.terms,

15b)...

l6a)

16b)

16c)
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is considered here. The effect of fifth order terms iz consi-

dered in Section 4. The solution to Eg. (3.16) is given by

"L.U-)'to

+uae (3.17)

(=]

X =uae"™
In Egq. (3.17), the damped terms have been disregarded, since,

as shown for instance in Ref. 6, these terms do not have any

effect on the solution as +—= oo .

By combining Egs. (3.16b) and (3.17), one obtains

(3) 3wt ) cwt
%’.ﬂ'A X, -—‘_-Fs a’e +§, aae” ~
o 7 ' (3.18) -
A wwt - twt _
u %%,_e - A Qae— + @t -
with
() :
.F3 = {Z'r O"P‘Br "%P u.*% Mr} - (3.19a)
) L
(3.19L)
'F , {E;;(?“gﬂ‘u M%L‘ + U £A%Ur+ u M%!Ar}

The—condition‘for_the_ellmlnatlonwof the. secular” terms is ‘that ~

the--compenent of the=vector —

(1) - |
Z, =-Uu c’)é- —A ua- +£ (3.20a)

in the direction of the vector u is equal to zero.s In other
words, the inner product between the vector 23(1)'and the eigen-
vector‘uA of the adjoint-operator (ﬁ?‘is the conjugate_ of_the .

transpose of A), defined by -
- ~T

(“LWI +A )uf o - (3.20Db) -

must be equal to zero6 or

— (3.21
(up”z (ﬂ) uAT 2‘3“) —_ O )
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Assuming for simplicity that the vector u, is normalized by the

condition
(uA,u) =u'u-="1 (3.22)
Equation (3.21) is equivalent to the condition
R 4pa. +5AXG=0 (3.23a)
ot, (g
with
T
{5=(UA)AZu)— U’A. u (3.23b)
-~ WY = — 17 ) (3.23¢)
K“""( uA).F?.t ) UAT -FS
Equation--(3.23a) "is similar to Eg.—{2.20) -and_ the solution_ is --
given by
Wt + T twtal +@)
a=lale S | (3.24)
with ‘
o B
TN [ttt (3.25a)<~
W, = ‘BE_ . _ Br - . . (3.25b)
. -

wheréf@@ '*and—k+areafunctionéiof-ti,ats i...and—rﬁaR,i;BI,:_KR,t:“
and E{I are, respectively, the real and imaginary parts of ﬁ

and § . Finally, the solution of Eg. (3.18), under the condition

expressed by Eg. (3.23) is given by

3wty (1) rwto .

x3=p‘3)e + (bu +Ps ) e (3.26)

3
(3)

where b is a function of t3, t, :... (see Section 4) -and pg and

(1)

P, - are the solutions of the systems,
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, (=)
[L3w1+Ao]p3(5) -+ o’ (3.27a)
. ) ),
[wI+A, ]p=z,"-F'0a-uZ - Aua  ©.2m

Ot.
(1)

respectively. The vector o contains an arbitrary constant

which can be eliminated by setting, for convenience,

(1) '
(uAJ PB ): uATpsu) =0 (3.28)

3.4° Comments .. -

Note that_ the solution of Eg.” (3.16b) is important not as
much for obtaining the solution for x3(t0)u (see.Eg._-3.26), . but __
for obtaining the functional dependence of xj upon~t,. - Eqg. {3.26) *-
contains the function b(tz. .+.) which can be obtained only by
studying -Eq.- {3.16c) . for - the unknown Xe (toi -- Hence,- consider _ .

the -solution-which.can-be written_as.

wwt o -t ) 3
x=z(uce™ iuae™t)+ O (3.29)
where ‘a 'is given-by Eq.= (3.24).~ In Eg. -(3.29), the damped -
terms-have. been-disregarded. ..Furthermore, . still. neglecting

higher order terms, & is related to A by
A=A +EA, | (3.30)

with-X,=%4 , or

£ = ( | >\_>\ol (3.31)

(3.32)
AL = Sgn (A-X,)
It should be noted that by definition of A r the linear terms

are stabilizing (which implies- ﬁe> 0) for )\<>\° (>\Z=—{) and
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vice versa for A>A, . Combining Egs. (3.23a) and (3.1l4a),

one obtains

; ‘
@—X:-(UMA u) (3.33)
Hence [3z » 0 for X,= -1, implies that the real part of
(uA, A'u) is negative. Hence, the discussion based on the re-

sults of Section 2, reduces to two cases only, KR > 0 and

¥e <« 0, respectively. In the first case, KR > 0 (stabilizing
nonlinear terms), the solution is unconditionally stable for
A< X, .(Fig. 2) while for A >, there exists a stable limit

cycle:{Fig:i 1) given:by -

wot+ @) - —  -tlwtr@s)
X=(UG ® +uUue (3.34)

with LP,Q given by Eg. (2.30c). This behavior is summarized

in Fig. 5 where. the amplitude of the limit cycle

{3.35)

Nic= \/()\—Ko)

&l

is ptotted .and-the .different. trends-of the-solution .(for WA >)\D ~
and A < >\o } are indicated.

In the second casey, ‘XQ;{: 0 (destabilizing nonlinear terms),
the solution is unconditionally stable-{Fig. 3) for A >\, .
while, for A\ <\, , there exists an unstable-limit cycle (Fig. 4)

given by

lwt ) - it e QL))
x =) B {ue ) e ) e

with ALP,,Q given by Eg. (2.35¢). This behavior is summarized in
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Fig. 6 where the amplitude of the limit cycle

e =0

(3.

is plotted and the different trends of the solution (for A,

and X\ <A, ) are indicated.

3.5 BApplication to Aercelasticity

The system-of eguations for panel flutter is of the type7

yroy Ky By =g
G-6+{x6
3-{9}={Z.Coear vy v+

with——-

Equationata.ési is equivalent -to the-system . —

y=2

Z+GzrKy12Ey =g

which is 0f the-type-of Eq. (3.1) -~

I

A=[_2" = _N A_+ A-.' D P

(3.

(3

(3.

(3.

(3.

(3.

(3.

37)

38)

.3%a)

39b)

403) T

40b)

4la)

41b) -

. 42)



with

where Go__‘a*\D—\b’é) GI:TE{K ’G" and K= K + X E,

Furthermore, the eigenvector g is given by

o 3]
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where v and w can -be obtained from

iw \L——_w =0

Lo+ GW + Kov}z O

(3.43a)

(3.43b)

(3.44)

(3.45a) ._

(3.45Db)

This implies that w is the~eigenvector-of the -original system

['“":I‘"ﬂ*‘"@ -G, + KB]V =0

while w is- given by Eg.—{3.45a)~and hence-

Similarly, the eigenvector "

g [(wl +Al=0
Setting.
]
i]A?‘=_lj;lLa;>EJ
one obtains |
. A
[WOW +Vv K = O

AT -

T
(8

is given by

(WO - W + WG, =0

(3.46)_

(3.47) - =~

(3.48)

(3.49)

{(3.50a) " -

(3.50b)
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or, eliminating ﬁ?

GT[_sz+LwGO+KO] =0 (3.
In other words, the vector GT is the left-eigenvector of the
original systems and the vector ﬁAT is given by
. MNT | AT _‘L_ AT | A~ T
uAT= LV (LUDI +Go)i v _l= Lie.oV KOEV__I (3.
Finally, by using the first expression for ﬁAT, Eq. (3.22) is
equivalent-to .-
— - ATy - N ARG Y A |
i = “ltw L+ )! ==
AT , .
=V (2iwl+G)v =1 (3.
while Egs. (3.23) are equivalent to -
— : ! v
“NUTAY = w0014V
"'"-T o , (3.
- 0L VH{EH®G) v
— T (1) AT AT O AT
8 :‘_TuK‘ _."F3" = w“;“\,—{":‘_;_'} "—'V h1 (3.
with
—_ —_ -\ (3

in agreement with the results of Refs. 6 and 7.

51)

52}

53)

54a) -~

54b)- -

.55}
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SECTICN IV

FIFTH ORDER TERMS

4.1 Introduction

In this section,- the effeét—of-the: fifthrorder—-noniinear—=-

terms is analyzed. Combining Egs. (3.16c), (3.17), and (3.25)

I

yields

ox e @_[ @ 3wt w0 t'wfo}
E Ak = h- Gl e (pr ube

A LpPe™+ (ph uble ]

~ D& vy it _ A Lty
{(4.1)

Furthermore, - according to Eq. {3.15b),
£, { Z: Copie (Xip XugKae £ Xup Xag Kir + Xap XigX or)

+ Z - e I"\-P%l"ﬁt.’_".(i'.‘X‘ll p X lﬁ’*—X_L r- x_l_s X_(;L- )} -

p%rst ' . 4.2)
= $D) Crqr Yap XugXar + 21 € Xip Xig X X
N 12 Y e AR M p$rsf-_hpﬂf5t"'ﬁp h%' r ﬂ$><Ht
where
P
Ch’Pc:br = c‘np%r'---"-'.c.hprcﬁ- +Cnrabp;-;.-

(4.3)
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By combining Bgs. (4.2}, (3.17), and (3.26), one obtains

£l {2t o™ s 0 (B0 )

Pqr
&G0y e lp et lou,  pu)eie]
| N Pz%rl‘stenf’%rst (_( o Up U%Ur U Uy ) eLSmt,, +

a‘d(ﬁpu% UrUs U, +‘UﬁUchr UsUg + Usbg Uy Us U, +
+ UP U%ur‘ ufb UL) e sttb

+ 0’6" (Up Tig Uy Us Uy + Us UgTh U 1L,
.ol x U u%:uerGt)éL—“’“ +CT]}‘ -
_ (4.8) .
_ 5) Swts ' (3wt u) cwte
7_-F; e + 423 e +-{; e + CL

where

\ _ _ —
_FSU = { ng' 9 npgr [GL U UCb( b U,. +p;2) +_ a-a»( up U%+‘UPU%‘) A

)] -
(b + P:.- + O UpUg park és Cnpgrat 020 {Tplig Uy Usls -
o (4.5)
+ u uguu UE,U.{. e o ot UP u.c‘_ur,.us,uk),} e

Similar expressions—ho1d for_fsgg) and_fs(é).- It may be

noted that Eq. (3.27a) may be .rewritten as

3) z A 3
P. =ap,

(4.6)
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with 63(3) independent of a, while combining Egs. (3.27b) and

(3.23a), one may write

) _ (4.7)
3

"“J 2 - V(*)
aps  +aap,
with p—(l) and E (1) iﬁdependent of a. In summary, it is possible
to rewrite Egq. {(4.5) as

z T A — v e ¢ )
-F“’ = (Q b-+Zaéb )-F3[-4—)-+Q-E;f)+ a‘a-‘:;)ér a’a’ ‘FS“ (4.8)

=)

whereAf (-{ is given .by Eg. .(3.19b) .or, .according to Eq. (4.3)

g
-? 1) {Z Chpq’r(u U%U +UPU%U + U U‘%U )}

- { 70 8opar Uplg Gr}

Par

_ (4.9)

COn théiother;ﬁan&;:Ehe-exp}icitrepressiGRSffor»fg and f§~{

(independent of a) can-be obtained—by combining “Eqgs:- {4.5), =

(4.6) ;~and—{4.7). Finally, combining Egs. (4.1) and {4.9) and

noting- that-according-to Egs:-+(3.23) -and-=(4.7), it is possible...

to write -

ag;:) A“O{ + pu) za “*'P

3

(4.10)

(with 33(}?,‘%3{1), and-Eg(%) independent-of a), one obtains --.
o 3wt
gfs A\ X = Zts)eﬁ _i_z(ss.)uet L Zu) +C T

o {4.11)
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where

1 b
z¥-Lu £ +Auo-§Y (ob+2 aab) + U gf;
+(a4u+’6;4) zlaam. _FH))

4

peiapy §0)aa  [go-g0) da]

(4.12)
Similar_ -expressions-_hold _for. zs(§{_and Z (3i
The “non-secular-terms condition is
T T (1) {4.13)
(”A) “))-_F uA Z5 =
or, according.to Egs.. (3.22),:(3.23a),-and-{3.23b)5 -
Ob-yah +1 ( b2 a@b-—)i-:; ;
5L thb .
— oa.
= 8o +bad + S - 5L (4.14)
where-- -
— T = {—- €
6:_.u (n “+P5“) A M) J) (4.15a)
Y () Vo), s (4) 4,15b)
5= -, (pora,p -8 (a-250
"= - T g W 4.15¢)-
J u,\(p3 ~ £, ) (4-130)

The=solution of Eq. {(4.14) is discussed-in Subsection-4.2...°.

Finally, if Eq. (4.14) is satisfied; the solution of Egq. (4.11)

is given by
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L3 ts ote
Xs= SLS)elsw T+ P5 “ Pé” +C u)E’L + G w1

where 95)18 the solution of the algebraic system

[lK“):[*A ] Z:} (4.17)

4.2 The Function b(t,)
Consider Eg. (4.14) using Eg. (2.9)

a -:"Ith'ieit(p-: ’ (4.18)-—.
setting—
b=b'euP (4.19)

and dividing by el(P , yields - -

OB 100 4 BB +¥ (lal'p +2lal'G)

ot,
Tl 5
_Slal +&'lal 48! [l QLO* “ilalo® -
= Ot
{4.20) -
The~imaginary-part -of Eg:s=(3.23)ryields:.(see-also_Eg. -2. 2lb) -
A _ _p. ¥l (4.22)

Ot,
Combining this equation with Eq:—(4.20} yields—
Ob' f 21 z Py
ST b +%lal’e ¢ ¥lal (6'+b")

= 8lal +&'lal’ + §"lal® - glf' ~1ilal 3“),
Otq (4.22)
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Next, by separating real and imaginary parts, one obtains

a{ +ﬁRb + 3%, \al' b,

= Selal + 8. 1al” + 8. [al® = dlal
Slal + &, lal” + 8. la Qlal

(4.23a)
5%1 Bl + 8 0al b, + 2% 1al* 1y,
= 6 |O‘ 4‘6 ]Q‘ -4-(51_ 'Ols -IOJ__@ {4.23b) -
Ots - '
Finally, by setting -—
] _ I ’
o, =B, rgle (4.24a) -
: (4.24b)
bI_ = Bllal
and using the real part of Eqg. (3.23) (see-also Egq. 2.2la) .
gf] FBlal e g lali=o (4.25)
and‘irtsfderivative_withfrespec‘t--_‘to_.t2 —
azlal aral 2 .
=~ 12 ,
TR Pe 55 +3E\§Qlai SLCZI -0 (4.26)
one obtains
OB.- Sxlal+ & [al’s §:lal®~ dlaldy
o, olal /@{_ (4.27a)
@B
% 425 l0l, =& +8llal s Sloli- 22 w2

Oty
Tt may be noted .that, according to Eg.. (3.25a),
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lal= |Befse — |4 (4.28)
4+K€T “,ggé_‘_Koe‘[ |

Ke=-K&/8. | (4.29) = -
T = 2139JCZ (4.30)

which yields
olal = _p 1alPK,e"

with

O+, (4.31)
and
a___!c_lilV“':__\_ (3 8‘(0
Oti—- IO‘ “Otgs e (4.32) ~
Combining Egs. (4.27a), (4.28), (4.31), and (4.32) yields
OB L [ e Pt st (e”
Foooke
T ARIK - Obs -
(4.33)
and hence by integrating,_.one.obtains*_ .
R R N (ﬁ)]
ﬁﬁ.i Zﬁék R ¥ )
-2 1 | -
12 i 5o Peyi e A Qﬁo}
26710270 (32) * 3k, Be 1T
-(4.34)

et

*Note-thatw
-T

e - _ -T K K T

S at e - & +6_29}2m(c+|<be)
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where BR(D) is a function of t2 .....

The condition for non-secular terms* is

O ~Sr (%f)z S oK -0 (4.35)

Combining Egs. {4.34), (4.35), (4.30), (4.25), and (4.24a) yields

og = ‘éﬁ [ & +5"(g)}(—_ Belal’)

[

)(ﬂglo.l + KEIQ,I-)—,-_

"

(5L

= Béo)lol . B;é” lalf+(8§)lalw B(s, 1al® )M(’al

(4.36)
(0)

where as mentioned above, B is a function of té ..., While

R

B “)1 .§§. [ i &2 " 1] (o} 6’ (4:37a)
R . 2621___6E'_— éﬁ’, \62 J";&E‘ (%) + BE EE.'-
B,f’ -—Be S (4.37b) -
: Op
=
BR(%) — __1_6 " (4.37¢c)
2

Te

gSimilarly, by imposing -the condition-{Appendix C, Egs.-C.13 .and-...

C.14)

*
The secular -terms must -be considered~for’t—*ooin:the case=0f -
stable limit cycle, and for t—=-cin the .case.of unstable-limit_ .

cycle.



one obtains (Appendix C, Eg. C.18)}
-y - @ - :
b = B2 lal + 8y 1l +(BPlal+ BP0l ) b lal

(0) is a function of t2 ...., while {(Appendix C, Eq.

where B
(”- A " ' ¥ (1)
o zxa.lrélv— —g,i_éﬁ):_é B

o = B o

Finally, combining Eqgs. {(4.19), (4.386), and_.(4.39) yiélds
©} ) 2= 2 =
b= B° +BY%a + (B + B%aa) Inlal

with~

()2 (K) .
E3 E%}K)

4.3 The"Function~a(t2f t4 ees)

The solution of Eg. (4.35) is

K- K, o

with -

§=-7 [69_2 69( %Yl

while the solution of Ed.-(4.35)7is ~~

¢%:= ytt4 4.4%,

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

.38)

.39)

.17)

40a)

40b)

40c)

41)

42) 7

43)

44)

45)
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Combining Egs. (4.43), (4.45), (3.24), and (4.28) yields

P
a=lale (4. 46)
with
] ”_
lal= ([ % 2feta+ Gq (4.47a)
= tKye
Br
- R At . (4.47b) _
G- wtr & galal + xty +0,
¥ |
Finally, it is possible-to determine the arbitrary-constant
A A introduced.-:in Eq. ~{3.1k).  .Note_-that-—A 4__--ra_ppear—s.-_49n1y--—in .
A, which is given by Eg. (3.14b),

A=) A+A =X, A2+A" (4.48)

and that A, appears only in & , given-by Eg.-.(4.15a),. .

- T )\ " __‘.-:' T A T
&= =Uy { 4 A u +A:4 -1-_P3 =+ A "\3“_}__{- “
— (s (4.49)
= (-f; |8 +6, f
where:—cso —is the.value for & at T)\4 = 0 *anc‘i?/ﬁ; is given-by Eg...

(3.23a). Hence, Eg. (4.44) may be rewritten as
)\ N 2
o-2 [ 3 pera-60 ()]
~23)r s

and _hence the exponent in Eq.. (4.47a) is

(nge"_(ﬁr 521\5\5) + 810}) et (4.51)

(4.50)
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If G, has the opposite sign as ﬁ R( which is positive for e < 0
and negative for KR > 0) then the limit cycle switches from un-

stable to stable ({or vice versa) for

g, = 2 (4.52)" "
28e, 2‘)% +§,

a
This value of € must correspond to the knee of the curve
\al as a function of A , and hence must satisfy the condition _.

ON . |
JEr L A +204 Ece =0 (4.53)

Combining Egs—=(4.52) and-{4.53)-yields—

Mg =Gy A, {4:54)

2 B
Applications-of these-resnlts to the panel-flutter problem are

given-in Ref.:f-'*S, where - the -equation-
X + [)\ ;H (%24 x*) +v ( >‘<2+><z,)z] X £X =0 {4.55) _

(with <A <=0, a->: 0, ¥ < 0) is also.considered: -This.equa-
tion yields ‘two limit cycles—{one stable-and-one unstable)

given by (exact solution!)-

X=X,cos{d+q) (k=1,2) (4.56)

where-- X, are the two positive’roots of

,);("'J,Hx*{.)\___o - (4.57) =



1.

2.

3-

4,

5.

6.

7.

8.

g.
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APPENDIX A

COMPARISON WITH HARMONIC BALANCE METHOD

A.1: Introduction

In this Appendix, the multiple time scaling method is
compared to the harmonic balance method. For simplicity, the
analysis is limited to nonlinear terms of third order {see Egs.
3.1, 3.7, and 3.8).

First,-the system

N
x,,f+PZ_l. Ans N X, = ch XpX g Xt Olef). (A1)

wheré-£#- is the order-of magnitude=of X, =~ 15 analyzed.by the_--
harmonic balance method. The resulting systém of algebraic
equations--is:then solved-by an aigebraic;perturbatien‘metho&%aA"
Finally, .it is shown that:the-fesults-coincide-with. the ones
obtained.by using .the _multiple.time scaling method.
Considerqu.“(A.li.;'According*to—thenHarmonic;Balance:%i
Method-{which is equivalent-to the- Galerkin.method): the solution-—-—

of Eg.—{A.l) can be obtained by setting

P R =) T - | -
PZ} ( pwt N X:\P]*_e pqu_) . (A.Z)

Pl Pl P 2
{(where - X,, is a complex number and .- Xn is its complex
conjugate) and-by "balancing” the first:P harmonics. of the:re-. -
sulting expression;, i.e., by setting-the coefficients of

equal--to zero for p = 1,2 ....P. For P = 1, and . setting Xn = Xn
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one obtains

f'w Xﬂ +Z Anpxp = E;_Cnp%r (}‘(P X%Xr + XP >_<% X.-
(A.3)

+ Yo Xq %) + 0les)
and the complex conjugate eguation. This system of algebraic
equations can be solved by a standard numerical technique such
as the Newton-Raphson method, for instance, (Refs. 7 and 14).

Here, Eq.(A.3) is solved by an algebraic perturbation method.

A.2 Algebraic Perturbation Method -

Since,xn ig of order-&-, set —
)(n = & er T 63Xn,3 + O(-E-s) (A.4) -

By combining Egs.- (A.3).-and—(A.4) and neglecting higher_order: -

ternms,;--one—-obtains

_ N
{ WXy '=:1+.Za-,A,,P:(v\f)f Xoi= O (A.5) =

The -solution.of Eg. (A.5) is discussed in Section.III (see:Eq.=-
3.5) ‘whie¢h 'shows that a-selution.exists for —A=X, -and_cd= (O
and :is given by

Xr\.A = O.u“ (A'S)
where{whiis the-eigenvector of the matrix [l\nﬁtk;ﬂ , relative

to the eigenvalue {0, . .Next set

ed= Wy + £200, + O(84) - (A.7)
A= A, +& A, +0(e)- (A.8)

with A,=%1 (see Egs. 3.1l and 3.12}).
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By using Eq. (b.8), one cbtains (see Egs. 3.6 and 3.1l4a),

I

Anp () = AnpOl) + (’OA“P) S b ..

oA

(o) . )
e AP’\P + Ez Anp

(A.9)

with

Ane = AL (0

S (2

|
| (A20)=="
aA“xqw.ug

Combining Egs. (A.3), (A.4), (A.7),-and (A.9} and ..separating

terms of. the same order of magnitude yields.

()
L, xm YA xm = 0 (A.1la)

o = . . AB R
{ Wy, Xm g Z “P i} ‘-»-:Zh o (A.TIBY=w

with . .

Zn = ""L wz-xh.l--—-f—- z A::) )(pq
+ %I_ Cnp%r ( >_<-p,1 X%,'Xm + _xﬁ’l —x%d".)(..r.{ T _x_P.II}S%ﬂ _>_<,,r,|:') -

(A.12)

The solution.of Eqg. (A.lla) is given. by Eg. (A.6). <Combining

gs.- (A.6) and (A.12) yields-

Z,=~lwau, -aZ DD up

+0.0.chpcbr(uigucb u.r'l-up'a%ur.fupucbar) (A.13)
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Equation (A.11b) has a determinant equal to zero. Hence, the
solution exists only if =z is orthogonal to the left eigen-

—_ to)
.+ vector {1&%: u, {see Eg. 3.20b) of the matrix [Z\ ]

JARVERE ~ (w07 Un —anzpvnA,f;’up

+G?a, Z 'trnC,.pcbr (Upucﬁur "'Upa%ur t upufb Gr—) =0

npgr
(A.14)
or s.s
(w,0-+Ba—+ §aid=0 - (A.15)
with
lZ)
ﬁ’ np Up ‘
j&.-_ (A.16) _
Vo Ua
Z Yy —n U U U E Iy
- npgr- - et Pir( .E_ %Ur‘f Ap %Ur_i- LLP_U% U,'_) (A 17y

z —;’-)-M_' um .
in agreement with Egs.-(3.22), (3.23a)-and —-(3.23b}. Separating

the real and imaginary parts, Eg. {A.1l5) -yields
3
B.a + Q" =0 (.18)

wa +fa + 8 a’=0 (2.13)

Equation (A.18) yields

A | (A.20)
e

R
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(_X,, Eg. (3.12) must be chosen so that a is real) while Eq.

(A.19) yields

W= - -84 = ~f; +€&/§_ra (A.21)
=4

in agreement with Egs. (2.30a) and (3.25b), respectively.

In conclusion, the harmonic balance metﬁod (combined with
an algebraic perturbation technigue) yields the same results.as -
the multiple time scaling. It may be noted that the results
are more easily derived with the:harhonic balance method: than
with’the:multiﬁlertimeisealiné:method:::ﬂowever;:the:harmonic:f_
balance method is limited to steady. state-(limit-cycle} solutions,
while the multiple time scaling method_yields ihith no additional
computational-effort).-also. the envelope of the transient res-
ponse and, ip particular, the stability (or instability) or the
limit:cyclg,:? |

Finally7 -it may be worth noting.a computational advantage
thatTthe;algebraic:perturbation;harmonic—balance_methodﬁ(as
wellas the multiple time scaling method}*héS“With respect--to
the Newton-Raphson harmonic balance methed. Solving the - linear
system;qu.-(A.S),-requires-lessrtime*than*solving”the nonlinear
system,.- EqQ. (A.3). . Moreover, .the nonlinear_ system must.be
solved for different values of A° , while the linéar system must
be solved only once: the additional time to obtain the coeffi-
cients16 ‘and 0. is negligible. Hence,~the.t0tal-tiﬁe required
by the-Newton-Raphson-harmonic balance method -is N-times: larger
+han-the one required by the algebraic-perturbation harmonic:

palance method {and multiple time scaling method) where N is
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the number of points used to describe the curve which gives the
amplitude of the limit cycle versus X . Note that the higher
accuracy obtained by solving exactly Eqg. (A.3) {(Newton-Raphson
harmonic balance) is only apparent since the difference between
the two results is of the same order of magnitudef-és-':'as the

error in the original equation, Eg. (A.l).
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APPENDIX B

SECOND ORDER NONLINEARITIES

B.1 Introduction

In the-main.body of this:report:Eq..{3.L).1is analyzed
under the assumption that the even order terms .are .equal. to
zero, Eq. (3.8). The solution of Eq. (3.16) including third
order terms is considered in this Appendix without the assump-
tions bnp%z (O and dnp%rs =0 . The solution is

assumed to be given by

X =exX:wex: w0 e)

(B.Xk. s
whefefxi,xng;...“areffunctionszoffﬁa,tlftzgi,Heﬁbe=z:
d .2 8 5D . ...
at afu.+ﬁa{f+fﬁéz+
. (B.2)
{ombining.: Eqs 3.1 F, (3.6, #{3.7), 7{B. L), 2and ={B. 2), Fone=n=
obtains = .
( EJa'Z + E*aaz e aae - )( EXEE X, HERTTT )
PR St
(A +EA +‘ . )(Ex.\*fxz_‘i"&x?)"s‘.__ ) _ (B.3). -

T

with A and A, given be BEq. (3.14), and~

"F - —{~F2 nk D { _npcr)gi =8 Xj.%} g (B.4da})=-:

'Fa {’tbn}- {Z bﬁr&p% (Xip Xagt XapXag)- (B 4b) ==

+ Z Cnp%.- XIp x4%XH’}

Separating terms of the -same order- of magnltude vields -

\ ;’ﬁ£2<‘:; o (B.5a)
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X, . .
ato A x _Fz - g-ﬁ (B.5b)
ax, _OX DX,

+ A X, _FB 5 - 52(_' ‘A2X1 (B.5c)

B.2 Second Order Solutiocn

The solution of Egq. .{(B.53a) is given by Eq. (3.17),

SRS SR
X, = Quae YR CT (B.6)

where a is now a function of tl’t2’ ... BY combining Egs.

(B.5b) and (B.6), one obtains

0% A x, -afe™ rad £ daye @ty CT

Ot, . d4 (B.7)-: . .
where. -
(n '
‘F { Z lan(L— Upu%}— ) {B.Bai):
Iw
£ 1% T lou (o + )} (3.50)
The condition to avoid secular terms is :
da
4, - -0 (B.9P. 0

anthhen-the?selutlon;for_xi is given -by* -~

2 /S (@) W2 %

X, = 0" Pite " f ol Pi s GT.

(B.10) —.
where ~- -

Ay -5 -yt

pl-; = [—’[g (‘OI* Aol— 'F?_ g
{(B.1la)

) (o)

RN o

(B.XIb) =

It maywbefﬁotedfthat*theféecondwofderfnonlinéanaterms;do=ﬁﬁ

not yield -any .secular terms. For this reason:the expression -

~

%Note?thati as it will Be ¢lear:from-the third order-analysis;zz::-
L . ,
the term-of the type uef’fﬁ {solution of homogeneous -equation) - .

can be safely disregarded. _ .
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used for A., Eg. (3.11), does not contain terms of order € ,
since the perturbation of A must be of the same order of

magnitude as the nonlinear terms which yield secular terms.

B.3 Third Order Solution

Combining Egs (B.4b), (B.6), and (B.10) ,one obtains

‘Fa = { Z (bnpq + bn%p) Xep Xz,ab + Z‘é" chp%r Ap X"cb Ker }
Lwty 2 A@ 2wt

- {ZFQE“P%*‘Q"%P){-Q U@ + @l e )( o Dog ©
4

o)’ — 2 —L? to - . ] t? _____ .
+ at p_lk'-{ ’ Z p{} 3y )+ %‘r _S;;P%"'(O qp':'-elfo = -
. — = - ote cewt - - —reate wity l
o Use” M)(O,u e_-°+a,u IS TR Mt
e % q
_— -y to
Qu.e )}
3} 3 _ al
=a’ A ke + OwaE‘ tets + CT
(B.1:29 .5 -
whereé ==
(3}""‘ ) ) ) )
= Ay L O
{Z (br\%'{' bn%P) pzlcb' s + ;lr CDP%P‘_U‘P uiul"} e
(Ba,13a)
(1177 A
{Z (b"P‘L “%P)(UP ng £ 2up Pz?)
(B.13b)= -

+ sz C':‘PCb\" ( ap U% u,. +- UP G% u.- + UP H%a,—)}
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Finally, combining Egs. (B.5c), (B.6), (B.9), (B.10), and

(B.12) one obtains

)] '3t () - _twio
7.8 Ax. =+ are” .+ £ ade
5_&0 o L 3

—oay it A ef-,w*’ + C.T.. (B.13). ..
S;ue  -Aue @

which is formally identical to Eq. (3.18). [The definitions

W
3

of Eq. {(3.19)]). Hence, the solution of Eq. (B.13) is given in

) .
of £§ and £ ,however, are now given by Eg. (B.l1l2) instead
Section ‘3:- ‘The “onclusions -are the ones:given=in Sectiom 3wd.._ =

The”solution -is given by ==

x =t{uae ™ i gae’ ) iole) . L,

where a is given in Egqg. (3.24). - Note that the only effect

of the .second _order nonlinear terms.on Eg._(B.14).i$ the order

o~

of magnitude”of: the rerror'and =tife idif ferent -definition .of. 21

f., -[Dq.(B.12) :instead:of Eq.:(3.1%) ] "wWHich: is: used:in. the l-

3
definition sof F [Eg.#(3.23¢c)Fu::.
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APPENDIX C

THE FUNCTION gI (&)

C.1l. Introduction

In Section 4, Eq.T4.23.b) -~

~ ~ —~ 2 E )
T R Y A Gl
€4 P
! 3 0 5 %:ﬁ
S lof + 8 |al®+ S, [al Ialatdr. (c.1)
was derived.  -By setting (see Egs. (4.24.Db))
b = B la| -
roT B (C.2y -
and using-Eg. (4. 25) “one=obtains--Eyg. 4.27.h¥ = -
aB‘:-ZJII@‘bR +-5Iiﬂafhll+ 5110J4
2¢t, (C.3)

‘*_".9‘10/21:4

On the :other handj:.according -to Egs{4.36) and {4:26) :=

Do 2, [0e- 5 B+ 80 ()] el

R -2%22_ |
(a) - -
- (Bg _ ’z"ﬂgh Am I,ﬂ,/) jlzl .4y -
Pr TR 2

while, :accerding :to Egs.(2.9.and {3.24) (see.also -Eqg. (2.23)=-:

¢ = t, o+ _%_ Inlal +¢ (c.5) =
ORIGAVA BAGE )
6F Poor QUAI._T'_‘I_S
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and thus
29 . dr 2 (dnlal) + 24,
"i T 9!:4( ) . Pk
\ - - (5,4 2]_'_@1’ °f. .
[a R (ﬁg) A 25, + ot (c.6)

i [SR . IR
ok

T
Since ({(deriving 212l from Eq. (4.32), € from Eg. (4.31) and St
gty +

from Eg. (4.35))

2 faf o L da]® T 2K
9254%10" e _9':4} < | " e e
] | za}a[/ﬁtz ,;o __J- é-n f_e s .
ozl -8, lalk, ; e () ]
"o N2 L 2l . €. 7)
:—--I- IJR-—JR‘(_%R) Lq,'ggz___ C

Finallyjcgﬁbiniﬁngqs3@3.3: 0%4Eaﬁd;efsﬁoﬁe%obtainsjv#

% . bk _[JR A TGN
) (q_ [ ] 1l gfaf‘n
vy (B - a5 el IS

QD

88 a1 & el

O 5 S8V gl P coo
ARG VA At

ThisTis the-desiredadiffeféntial;foriBE(tzllf;ThiEQ;;
equatien :is analyzed=in this Appendixsiir.
PAGE 18

RIGINAL
%F POOR QUALITY
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c.2. The functions B (t}, and b {t5)

Eguation (C.8) may be rewritten as

8B, . dtn D lag
5T, 0, 1 a4, lal s 5T /f’»/ o
2 plaf?
where +‘7+JM/‘2{ iti +‘75 é%; %[d’!
A
a2 I 5&4
il
i ‘Bz I . 2
bl - B[4 4 5]
S
F‘Sa
BT /- Yh
TR oA
- ) 5” Bz C.10 .
V)g [ cfﬁ) :|
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Integrating Eg. (C.9) one obtains*

BI . n, {:z-f-q[(_.%';. _%:Ly,[a.])

zlt R a.__..L
+ql[§:—z 1+J§Ew/ r jal? ]

1, lal? +74(:o.121>n;aih jal®) 0, dm|a ]+ B/

(")oﬂ +q& z>t +( ﬂ_.i.q _(_B_.qu)%lﬂf

Holg a0 1) Il 2 9 fa]* dnla]+ B9

(c.ix)z: .

In order to avoid secular terms, set

. "’;V],ﬁ + T ‘ER?_’.—:O‘ | (5.12)—':_3‘

R
R L

or (see 'Eg'.."(C,IO)).

18
ORIGINAL PAGE
_ 9 $ = 0  oF POOR QUALITY

9£:+ (C.13) ..
* Note- thatw- atl _ﬁ_ {; 4_. P/”\l“l) 1&; :}_I__ 1 PR]“’W’K]“{) (ﬂlz,w'
nd 2 & - z "' e a a
AL aJ*t“ % nlel - 5 1al)< (&)= B L (Ruledegelel?)

P A Bl (pulel e eP) = (17
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_ 5?% [JR S8 By g (B Y]
Eguation (C.13) yields

(100 =-CJB,' tzr +'56al-

and ~combined -with Eqg. (€. 11), “yields ==~

BI _ %(°)+Brmlﬂ-|2+ BI(ZJ%}A-I +B'I(3] [“'z%lﬂl

ORIGINAL P

(c.14)

(c.15): 73

(c.16)

with {se€ —Eqs IZ43..1.0).8nd f4;:3 rAVERS
3} POOR QU
B.I .:—_—23-;-4{)3_‘/)‘1" OF
QJR‘ -
:--...L S”..?lzajf-”:d‘_é"ﬁ;a_ é\H &Z }
+20 B 4 4 _gf_:z 3.
Ba 2w

LB B L (5% g
. ¥R ) 2 ¥R g IR R)

No———
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)
B =—ﬂ.'_+qz__§%+)f)5
R

Iy
-G B (g nn (LR )
4 %ﬁa [de- & _%)l]
- 6] Bl 2]
B . 21, <. %5;.: %_Bﬁ“’. (c.17).

Finally..combining: Egs..(C.2}and (C:16).yields su=

’g .—.,BIM ‘_“l ; BI('):IOLF +(BI(21'+ Bjm {G—lz) Jaf %‘ja/ (c.18)

I



