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ABSTRACT

First order effects of gradients in nonuniform potential flows

of a compressible gas are Included in a dispersion relation for sound

waves. Three nondiraensional numbers, the ratio of the change in the

kinetic energy in one wavelength to the thermal energy of the gas,

the ratio of the change in the total energy in one wavelength to the

thermal energy, and the ratio of the dillatation frequency (the rate

of expansion per unit volume) to the acoustic freqency, play the

dominant role permitting the separation of the effects of flow grad-

ients into isotropic and anisotropic effects. Dispersion and atte-

nuation (or amplification) of sound are proportional to the wavelength

for small wavelength and depend on the direction of wave propagation

relative to flow gradients. Modification of ray acoustics for the

effects of flow gradients is suggested and conditions for amplifi-

cation and attenuation of sound are discussed.

Research supported by NASA , Grant NCR 15-005-174.



INTRODUCTION

Recent Interest in propagation of noise in high speed flows through

variable area ducts, e.g., in turbomachinery, calls for reexamination

of existing methods of treatment of acoustics of inhomogeneous flowing
(1-3)gas. The existing methods are based on the zero-wavelength appro-

ximation and use wave propagation properties corresponding to a locally

homogeneous (uniform) flow. The objective of this investigation is to

display the phenomena which manifest themselves when otherwise small

inhomogeneitdesare not neglected but are retained in the analysis.

The present work is applicable to cases where the boundary condi-

tions of the mean flow induce large gradients of the the mean flow so

that changes in the properties of the medium over the distance of a

wavelength of sound are no longer negligible while still small enough

to permit a classical (deterministic) treatment. As an example consider

a plane wave propagating in the upstream direction in a flow with Mach

number M = U/a through a duct with a sudden constriction. The phase

velocity is a-U = a(l-M) and the frequency is v = a(l-M)/X. If the

characteristic length of the flow inhomogeneities at the constriction

is L = 1 m, and we take the wavelength X < L/10 = 10 cm, then we are

limited to v > 3(l-M)xl03 Hz. Thus the assumption of small but not

negligible wavelength would limit the frequencies considered to those

above about 3 kHz at low speeds. However, at, e.g., M = 0.9 all

frequencies of upstream-propagating waves above 300 Hz could be con-

sidered in the small wavelength approximation and only those above

6 kHz for waves propagating downstream.
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ANALYSIS OF THE POTENTIAL EQUATION

The potential equation for an irrotational flow of an inviscid

barotropic gas, as given, e.g., by von Mises , is

c2V2$ + — = 0 (1)

f\ 4

where c = (Y-l)P = adiabatic speed of sound, P = /[p(p)]~ dp =
= -Osr + ^T" )» »* = ̂ f» D/Dt = 3/3t + iT»V, Y = ratio of specific heats,ot i
p = hydrostatic pressure, p = density.

The term DP/Dt may be expanded and interpreted as follows,

— = (— + ~~»VH— * 2) ^Q
- Dt = 9t 9t T 3tJ

92«
.—+25..

where the subscript ( )0 indicates the convention that the convective

velocity u0 is to be regarded as constant when operated upon with the

operator D/Dt. With this convention Eq.(l) may be written as

2 2B
C
2V2J) _ [—$. + 2u'V̂ - + u«V(u»V)f] = c2V2J !r (2)

3t' ~ Dt

Small Amplitude Approximation

We shall assume that the scales of the rate of change of the

medium and that of the acoustic oscillations are vastly different

permitting us to separate the scales by averaging over times large

as compared to the acoustic scale but small on the scale of the
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slowly varying mean motion of the gas.. Let f =$ + <}> where $ is

the potential of the mean flow and <J> is the perturbation potential

of the sound field with zero time average. Assuming low intensity

sound and neglecting squares of the perturbations, we have

2c = •

2
where a is the adiabatic speed of sound of the mean flow. Substi-

tuting the above expression in Eq.(2) yields

•) „ o2* ^
[aV$ -

2^2. 3 <t> nn*. . 3[ a V 2 < f > - - - 2 V $ - V < | > -
ot ot

-V<J>ot

H- (Y-1)V24>( +V$-V4>). (3)

If we assume that time averages of the perturbation quantities

vanish, then, due to the fact that squares of the perturbations were

neglected, averaging Eq.(3) leaves only the first bracketed term.

Thus the potential of the mean flow, $ , must satisfy the original

potential equation, Eq.(l). Subtracting Eq.(l) form Eq.(3) we obtain

a2V2<J> -
—

ot

(4)

Equation (A) is valid when squares of the perturbations are

negligible. Further, Eq.(4) is a linear equation with variable

coefficients, the latter being known function of the mean flow which

- 4 -



is independent of the perturbations. With the coefficients set

equal to their instantaneous local values we may deduce valuable

information concerning instantaneous and local propagation proper-

ties of the sound field and its dependence on the gradients of

the mean flow.

Small Wavelength Approximation

For the purpose of a discussion we shall nondimensionalize

Eq.(4) by refering V$ to U = local speed of the mean flow, spatial

gradients of $ to the length scale L and those of 4> to X = wavelength,

and time derivatives of $ to U/L and time derivatives of <|> to a/X.
2 2Dividing by a /A , the nondimensional form of Eq.(4) becomes

V2^ „. -O_ _ 2M V$»|-V<f> - M2V$'(V$-W<J>)
8t2 3

(V$-W4>)'V<J> + CY-l)
M '

It is apparent that the inhomogeneities of the mean flow, i.e.,

the derivatives of V$, will have a negligible effect on the sound

propagation if .the coefficient of the terms on the right side tends to

zero, that is, when

M2 A + o.
- - _ -, -L* _ - ; - - . " - ..' - ,r . _^_ .. - - - - . . - - . -

The above condition will be satisfied if M •*• 0, X -»• 0, or L •*• ».

In the case of vanishingly small Mach number we obtain the wave

equation governing the classical acoustics of stationary media,(

at2

The more important case is that of flows with M> 0 and with the

length L characterizing the spatial scale of the inhomogeneities of
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the flowing medium. In the case of high speed flow the inhomo-

geneities of the medium will have no effects on the sound propagation

if X/L •*• 0. Thus, in the limit of zero wavelength we obtain the

convective wave equation,

v< J > - •- - 2M V<J"|-V(f> - M2V$-(V$«VV(J)) = 0
3t2 8t

which is the nondimensional form of Eq.(2) with the coefficients

evaluated at the local values of the mean flow. Consequently, the

convective wave equation should be regarded as the zero wavelength

limit of the acoustics of inhomogeneous media or as a locally homo-

genous (L = «) approximation for small wavelengths.

The problem of sound propagation in an inhomogeneous medium is

not unlike that confronting the physicist at the turn of the century.

The realization that the classical mechanics is equivalent to the

zero wavelength limit of the geometrical mechanics lead to the deve-

lopment of the quantum mechanics. Quantum-like (probabilistic) for-

mulation of acoustics may be necessary for the wavelengths comparable

to the scale of fluid inhomogeneities X= 0(L), e.g., for the study of

noise generated by fluid turbulence, cf . Kentzer . In the limit of

infinite wavelength or infinitesimal inhomogeneities, X/L -*• °°, various

scattering theories are applicable. In this work we shall be con-

cerned with the extension of the classical (deterministic) methods for

the case of small wavelengths,

0 <=

in the hope of displaying at least the first order effects of dis-

persion and attenuation or amplification of sound by an inhomogeneous

high speed flow. Consequently , we shall retain all the terms in

Eq.(4) keeping in mind the fact that the equation is valid for small

wavelengths only.
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DISPERSION RELATION FOR NONUNIFORM FLOWS

We observe first that Eq.(4), as it stands, could be solved

numerically by the method of characteristics with the right-hand-side

playing the role of a forcing function. However, extensive numerical

calculations would have to be performed in order to study the effects

of the inhomogeneities, to identify the causes, and to separate the

varied effects. Further, the method of characteristics would not per-

mit the evaluation, of the changes in the noise spectrum. An insight

into the effects of flow nonuniformities on the sound spectrum may

be gained only by a spectral analysis of Eq.(4).

We consider now Eq.(4) with its coefficients kept constant at

their local values. This permits us to treat Eq.(4) as locally linear

and to obtain local propagation properties of the wave solutions with

the derivatives of the mean flow as parameters. The fundamental solu-

tions of constant coefficient linear equation are of the form

<J> « A exp[i(x~'k - wt)]

where we take the frequency was being complex in general, and where

k is the wavenumber vector. Then we may substitute

r-?j .^. r?2j 12, oA . . 3d) 2.1V<J> = lkd> , V <p = — k (p —"*• = — ibxp , = — w <p
8t 3t2

in Eq.(4) to obtain the secular equation

- a2k2 +u2 - 2(U*)W + (U-k)
2

,i[-2 () -k + 7U2 * + (Y-l) V-U(-w + D'k) ] . (5)

We introduce now the following nondimensional ratios

_ k'VD2 = change in the kinetic energy over one wavelength
1 2, 2 thermal energy
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_ Y-1 V*U = dilatation frequency
z ~ 2 ak acoustic frequency '

3U -
_ - 9t V(J-U2+ P) »k
K. = — —— =» i
3 a2k2 a2k2

_ change in total energy over one wavelength
~ thermal energy

The ratios K- and K, are measures of, respectively, the convec-

tive and nonstationary rates of stretching of linear elements normal

to the wave front, while K? measures the importance of the rate of

change of material volume elements. The ratios K. and K. introduce

anisotropy or directional dependence of the propagation of sound.

We may introduce three characteristic length scales,

Lx - 2TTU*/|VU
2|, L2 = [̂ £]/|vu|, L3 = 2TrtJ

2/|V(iu2 + P) | .

Then, with X = 2ir/k, the assumption of small wavelength,

. |K2|, |K3|« 1,

takes the form

Ll L2 L3X « rain < —, —, —
M2 M M2

In terms of the nondimensional ratios the secular equation (5)

becomes

(u) - U'k)2 + 2iakK2(w - U-k) - aV[l + 1(1̂  + 2K3)] = 0.

With (i) = u + iu. we may separate real and imaginary parts and solve

for u and GO.,
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U-k
(K̂ K,)2

U«k + a*k, (6)

a2k2(|K + K )
w « - akK, + =-= =- . (7)
1 * a*k

Since 4» = A expfw t + i(x k - to t)], the Initial amplitude A will

be amplified if w > 0 and attenuated if w. < 0. Whether sound waves

are amplified or attenuated depends on the signs of K., K_, and K?. We

may observe at this point that in a steady flow K is positive if the

wave propagates in the direction of acceleration, and K. is positive in

an expanding flow, that is, in an accelerating flow regardless of the

direction of acceleration. Thus maximum amplification will occur in

compression regions for waves propagating in the direction of lower

pressures and higher kinetic energies of the mean flow. Such conditions

exist, e.g., for sound waves propagating in an upstream direction in

a diverging subsonic duct flow.

MODIFICATIONS OF GEOMETRICAL ACOUSTICS

We shall consider now corrections which, in high speed flows,

should be applied to the nondispersive geometrical acoustics as de-

veloped over the years by, e.g., Blokhintsev , Kornhauser ,

Warren , and others. The corrections are due to the small terms "

retained on the right hand side of Eq.(4). They modify the expression

for the real part of the frequency, as evidenced by the appearence of

the effective speed of sound, a*, replacing the acoustic speed a of

the mean flow in Eq.(6), and introduce an exponential dependence of

amplitudes on time.
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The time variation of wave amplitudes implies that the acoustic

energy flux in a ray tube is not constant. However, an inspection of

Eq. (7) reveals that w. is independent of the magnitude of the wavenumber

vector, so that all rays in a given ray tube of small cross section are

equally attenuated or amplified. The number of rays in a given ray tube

is not conserved due to dispersion, and one must consider separately

ray tubes of rays with initial wavenumbers in a small range dk centered

at a given value of k. The rays corresponding to a given initial posi-

tion xc and initial wavenumber k0, may be constructed with the help of

the group velocity. Differentiating to with respect to k we obtain

for the group velocity V

- 2 )
V - (IH-an) + ~ -.an •g 2 a*

«C?>2
1, 2,2

8a*ka

where n = k/k » unit wavenormal, and where

(8)

a = « 8t;
1/2

The first term on the right hand side of Eq.(8) represents the

group velocity in absence of inhomogeneities, the second term repre-

sents effects of the change in the apparent speed of sound and gives ah

anisotropic correction to the group velocity component normal to the

wave front, and the last term gives an anisotropic correction in the

directions of the local convective and nonstationary accelerations.

The last term may be thought of as representing effects bf changes in

the apparent velocity of the mean flow» A superposition of these cor-

rections is illustrated schematically in Fig. 1.
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The local values of the group velocity determine a direction

field, dx/dt, which is a function of local mean flow and of its grad-

ients as well as a function of the wavenumber.

The phase velocity, V , is, by definition,

V - oik/k2 = (U*n)n + a*n - [U-n + a*]n.
P

We observe that the phase velocity V is not equal to the pro-_ P _

jection of the group velocity V on the wavenormal n. The implications
8 (6)

of this fact are discussed by Brillouin '.

CONCLUSIONS

Retaining temporal and spatial derivatives of the mean flow in

the potential equation for a low intensity sound in high speed flows,

and evaluating the coefficients of the potential equation at the in-

stantaneous local values of the mean flow, we obtained a local dis-

persion relation which is valid for small amplitude sound field and

for small, but not necessarily negligible wavelengths. Differentia-

tion of the frequency with respect to the wavenumber defines the

local group velocity which furnishes a direction field. The direction

field is a function of the mean flow, its gradients and of the dir-

rection and magnitude of the wavenumber vector. The so determined

direction field may be used to generalize the geometrical acoustics

to the cases where the effects of local inhomogeneities of the mean

flow are not negligible but small and proportional to the wavelength.

Due to the dependence of the group velocity on the magnitude and

direction of the wavenumber vector, the sound propagation is dispersive

in nature and anisotropic. Further, sound waves may be either ampli-
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fled or attenuated depending on the direction of propagation relative

to the directions of the gradients of the mean flow. As a consequence

of the dispersive nature of the propagation of sound, the Huygens1

principle does not apply, that is, the solution of Cauchy's problem

at any point (x,t) does not depend solely on the Cauchy data on the

intersection of the initial data surface with a characteristic cone

with its vertex at (x,t). As a matter of fact, no unique characteris-

tic cone exists since the rays passing through a given point (x,t)

and corresponding to different wavenumbers are not confined to a par-

ticular surface, that is, the rays do not form a one-parameter family

of lines.

Refraction of sound in inhomogeneous moving gas is likewise

modified when temporal and spatial derivatives of the mean flow are

retained. In particular, refraction of sound becomes wavelength de-

pendent in presence of mean flow gradients and "gas prism" effects are

expected to occur. The "gas prism" phenomenon will alter spectral

distribution of acoustic energy. Estimation or detailed calculations

of energy spectra are currently of great interest in connection with

the design of tuned acoustical liners for treating jet engine Intakes.
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