
AND

NASA TECHNICAL NASA TM X-3227
MEMORANDUM

CN

I-

(SA-T-X-32 2 7  GAS SAPLING METHOD FOR N75-2232DETERINING POLLUTANT CONCENTRATIONS IN THE.FLQHE ZONE OF TO SJIPL-CAN COUiBUSTOR
ODULES (NASA) 25 p C $3HG CSCL 21E Uclas

HI/07 21040

GAS SAMPLING METHOD FOR
DETERMINING POLLUTANT CONCENTRATIONS

IN THE FLAME ZONE OF TWO ,,

SWIRL-CAN COMBUSTOR MODULES

Lewis Research Center

Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION * WASHINGTON, D. C. * MAY 1975

https://ntrs.nasa.gov/search.jsp?R=19750014249 2020-03-22T21:35:35+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42889083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM X-3227
4. Title and Subtitle GAS SAMPLING METHOD FOR DETERMINING 5. Report Date

POLL T CONCENTRATIONS IN TH FLAME ZONE OF May 1975
POLLUTANT CONCENTRATIONS IN THE FLAME ZONE OF 6. Performing Organization Code

TWO SWIRL-CAN COMBUSTOR MODULES

7. Author(s) 8. Performing Organization Report No.

E-8211
Robert A. Duerr

10. Work Unit No.

9. Performing Organization Name and Address 505-04

Lewis Research Center 11. Contract or Grant No.

National Aeronautics and Space Administration

Cleveland, Ohio 44135 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, D.C. 20546

15. Supplementary Notes

16. Abstract

A gas sampling probe and traversing mechanism were developed to obtain detailed measurements

of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to

better understand how pollutants are formed. The gas sampling probe was actuated by a three-

degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line

gas analysis system. The pollutants in the flame zone of two different swirl-can combustor

modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and

references velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results

show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module.

Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the

downstream wake regions of each module. By careful and detailed probing, the effect of various

module design features on pollutant formation can be assessed. The techniques presently de-

veloped seem adequate to obtain the desired information.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Measurement of gaseous pollutants Unclassified - unlimited

Jet engines STAR Category 07 (rev.)

Combustion

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 24 $3. 25

* For sale by the National Technical Information Service, Springfield, Virginia 22151



CONTENTS
Page

SUMMARY .................... ............ ...... 1

INTRODUCTION ......... .........................

APPARATUS AND PROCEDURES .......................... 2

Test Facility ............... ***** ***...............* ** ..... 2

Combustor Test Section ............. .................. 3

Swirl-Can Module Designs ............... ........... **** *.... 3

Emission Measurements ......... ... . ................. 3

Gas sample probe actuator assembly . . . . . . . . . . . . . ........ 4

Gas sample probe .................. ** ** ** .. .... 4

Gas analysis system .............................. 4

Analytical procedure ..... .......... .............. 5

Test Conditions ....... ........................... ..... 5

RESULTS AND DISCUSSION............................. 5

Contour Plots .................................. '

Unburned Hydrocarbons Emissions......................**.... 6

Carbon Monoxide Emissions . . . . . . . . . . . . . . . . . .7

Nitrogen Oxides Emissions . . . . . . . .... . . . . . . . . . . 7

Ratio of Local- to Metered-Fuel-Air Ratios (FARR). . ........... . . 8

Evaluation of Probing Technique. . . . . . . .. . . . . . . . . . . . . . . . . 8

SUMMARY OF RESULTS .............. . ...... ....... 8

REFERENCES ......... .... ...........................

iii



GAS SAMPLING METHOD FOR DETERMINING POLLUTANT

CONCENTRATIONS IN THE FLAME ZONE OF TWO

SWIRL-CAN COMBUSTOR MODULES

by Robert A. Duerr

Lewis Research Center

SUMMARY

A gas sampling probe and traversing mechanism were developed to obtain detailed

measurements of gaseous pollutant concentrations in the primary and mixing regions of

combustors in order to better understand how pollutants are formed. The gas sampling

probe was actuated by a three-degree-of-freedom traversing mechanism and the sam-

ples obtained were analyzed by an on-line gas analysis system. The pollutants in the

flame zone of two different swirl-can combustor modules were measured at an inlet-

air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23

and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spa-

tial gradients in the gaseous pollutant concentration close to the swirl-can module.

Average concentrations of unburned hydrocarbons and carbon monoxide decrease

rapidly in the downstream wake regions of each module. By careful and detailed

probing, the effect of various module design features on pollutant formation can be as-

sessed. The techniques presently developed seem adequate to obtain the desired in-

formation.

INTRODUCTION

This report discusses a three-degree-of-freedom gas sampling probe which has

been developed for measuring the pollutant formations in the primary zone of gas tur-

bine combustors. Primary zone concentrations of gaseous pollutants are reported for

two different swirl-can combustor module designs.

Concern over air pollution has drawn the attention of combustion engineers to the

quantities of exhaust emissions produced by gas turbine engines. Two general areas



of concern have been expressed: urban pollution in the vicinity of airports and pollution

of the stratosphere. The principal urban pollutants are unburned hydrocarbons and

carbon monoxide during idle and taxi, and oxides of nitrogen and smoke during takeoff
and landing. Oxides of nitrogen are also considered to be the most predominant emis-
sion products formed during altitude cruise.

Altering gas turbine combustor designs to make substantial reductions in oxides of

nitrogen will be an extremely difficult task (ref. 1). Oxides of nitrogen are formed

during any combustion process involving air. The amount formed is reaction-rate con-
trolled and is a function of flame temperature, dwell time of the combustion gases at

high temperature, concentrations of nitrogen and oxygen present, and the combustor
pressure. Flame temperatures increase as the primary zone fuel-air ratio approaches

stoichiometric values. Dwell time is affected by combustor primary zone length and

reference velocity. Trends in combustor operating conditions indicate a steady in-

crease in inlet temperature and pressure due to increasing compressor pressure ratios
(ref. 2).

A detailed probing of the primary zone of a combustor should help in understanding
how various combustor design features affect the combustion reaction and the formation

of gaseous pollutants. For this reason a gas sampling probe was constructed for mak-

ing measurements in the primary zone of a segment combustor which consisted of a
single swirl-can module. For information on the swirl-can combustor, see references
3 to 9. Two different swirl-can module designs were tested. Combustor test condi-
tions were held nominally at an inlet-air temperature of 590 K, a pressure of 6 atmo-
spheres, and reference velocities of 23 and 30 meters per second. Fuel-air ratios
were held nominally at 0. 02.

APPARATUS AND PROCEDURE

Test Facility

The tests in this report were conducted in a closed-duct test facility capable of
supplying air to a combustor at flow rates up to 1 kilogram per second and at pressures
up to 7.5 atmospheres. A schematic of the flow system is shown in figure 1. Ambient
temperature combustion airflow is measured by a square-edged orifice installed ac-
cording to ASME standards. The high-pressure inlet air may be indirectly preheated
to 750 K in a counterflow heat exchanger using methane for fuel. Airflow rates and
combustor pressures were regulated by remotely controlled valves upstream and down-
stream of the test section. In these tests, the hot exhaust gases from the combustor
were cooled in a water quench upstream of the exhaust valve.
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Combustor Test Section

The test section, designed for a single swirl-can module, is shown schematically

in figure 1. The fuel tube for each swirl can was centered in the combustor housing

and passed out of the combustor through an upstream flange. The combustor liner was

6.91 centimeters in diameter and was not cooled with combustor air. The swirl-can

modules were each centered in the liner and were located approximately 9. 5 centi-

meters from the downstream end of the liner. A 20-joule ignitor plug was inserted

through the water-cooled outer jacket around the test combustor and was located so

that the spark would pass through a hole in the liner approximately 4 centimeters down-

stream of the swirl-can module.

Swirl-Can Module Designs

A typical swirl-can module is shown schematically in figure 2. Each module con-

sists of three components: a cup, an inner swirler, and a flame stabilizer. In opera-

tion, the module performs several functions. Each module mixes fuel with air, swirls

the mixture, stabilizes the combustion in its wake, and provides large interfacial mix-

ing areas between the bypass air around the module and combustion gases in its wake.

Pollutant emission measurements were made on two swirl-can module designs.

Details of the designs are presented in table I. In calculating the percent blockage,

which is related to the pressure drop, the swirler discharge coefficient was assumed

equal to 1. Figures 3 and 4 depict the two modules tested. Figure 3 shows the model 1

design which uses a hexagonal plate as a flame stabilizer. The inner swirler is mount-

ed so that the swirler face and the hexagonal plate are coplanar. Figure 4 shows the

model 2 design in which the fuel is injected downstream of the inner swirler against the

circular disk shown in the center of the module. The swirler face was recessed 0. 56

centimeter from the flame stabilizer. Each figure shows two of the three pieces of

tubing that were attached to the carburetor for the purpose of centering the swirl-can

module in the test section.

Emission Measurements

Concentrations of total oxides of nitrogen, carbon monoxide, unburned hydrocar-

bons, and carbon dioxide were obtained with an on-line gas sampling and analysis sys-

tem. The gas sample was drawn at axial locations varying from 2. 5 to 25 centimeters

from the face of the swirl-can module at radial locations varying from 0 to 4 centi-
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meters from the centerline of the module, and at four equally spaced azimuthal loca-
tions.

Gas sample probe actuator assembly. - The gas sample probe could be located at
any position in the flame zone through the combination of three remotely controlled ac-
tuator systems. Command potentiometers could be set to the desired positions for the
axial, radial, and azimuthal directions and separate control systems, each with its own
motor, would drive the probe to the appropriate position. Probe position could be con-
stantly monitored in the control room through feedback potentiometers and digital elec-
tronic displays. A water-cooled ball socket attached to the outside of the test rig
served as pivot point of operation for the probe actuator assembly as shown in figure 1.

Gas sample probe. - The gas sample probe, shown in figure 5, was located down-
stream of the swirl can in such a manner as to allow gas samples to be taken at any
location in the flame zone. The probe was constructed of five concentric pieces of
stainless-steel tubing in order to allow passages for water and steam cooling of the
probe. The sample gas entered the probe through four ports of 0. 12 centimeter diam-
eter located on the outer diameter of the probe approximately 1 centimeter from the tip
of the probe. This design inhibited the entry of soot into the probe at close range to
the swirl can. In the original probe design, which provided for entry of the sample
along the central axis of the probe, soot tended to collect inside the probe and impede
the flow of sample gas. With the side-entry probe, however, much of the soot has
enough momentum to carry it past the sample ports. The gas sample temperature at
the probe exit was maintained between 410 and 450 K by use of both steam and water
cooling.

Gas analysis system. - A picture of the gas analysis instrumentation and a sche-
matic of the system are shown in figures 6 and 7, respectively. The sample collected
by the probe was transported through 0. 64 -centimeter-diameter stainless-steel line to
the analytical instruments. In order to prevent condensation of water and to minimize
adsorption-desorption effects of hydrocarbon compounds, the line was electrically
heated. Sample line pressure was nominally maintained at 2 atmospheres at the in-
struments in order to supply sufficient pressure to operate the instruments. Excess
sample was vented at the instruments.

The exhaust gas analysis system is a packaged unit consisting of four commer-
cially available instruments along with associated peripheral equipment necessary for
sample conditioning and instrument calibration. The hydrocarbon content of the ex-
haust gas is determined by a Beckman Instruments Model 402 Hydrocarbon Analyzer.
This instrument is of the flame ionization detector type. The concentration of the
oxides of nitrogen is determined by a Thermo Electron Corporation Model 10A Chemi-
luminescent Analyzer. The instrument includes a thermal reactor to reduce nitrogen
dioxide to nitric oxide and was operated at 972 K. Both carbon monoxide and carbon
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monoxide and carbon dioxide analyzers are of the nondispersive infrared (NDIR) type

(Beckman Instruments Model 315). The carbon monoxide analyzer has four ranges:

0 to 100 ppm, 0 to 1000 ppm, 0 to 1 percent, and 0 to 10 percent. These ranges of

sensitivity are accomplished by using stacked cells of 0. 64 centimeter and 34 centi-

meters in length. The carbon dioxide analyzer has two ranges: 0 to 5 percent and 0 to

15 percent, with a sample cell length of 0. 32 centimeter.

Analytical procedure. - All analyzers were checked for zero and span prior to and

during each test run. Solenoid switching within the console allows rapid selection of

zero, span, or sample modes. Therefore, it was possible to perform frequent checks

to ensure calibration accuracy without disrupting testing.

Where appropriate, the measured quantities were corrected for water vapor re-

moved. The correction included both inlet-air humidity and water vapor from combus-

tion. The equations used were obtained from reference 10.

Test Conditions

The swirl-can modules were each tested at nominal test conditions of 6 atmo-

spheres pressure, 590 K inlet temperature, 23 and 30 meters per second reference

velocities, and a fuel-air ratio of 0. 02. These test conditions were selected to simu-

late operating conditions of an actual gas turbine engine.

RESULTS AND DISCUSSION

For each set of test conditions with each swirl-can model, detailed probing was

done at axial planes 5, 10, and 15 centimeters downstream of the test combustor.

Data were taken at the geometric centerline and at four radial locations from the cen-

terline of the combustor at four equally spaced azimuthal locations.

Contour Plots

The results of the data scans are displayed in figures 8 to 10, for concentrations

in parts per million of hydrocarbons, carbon monoxide, and oxides of nitrogen, re-

spectively. Figure 11 shows the ratio of the local fuel-air ratio based on gas analysis

to the metered fuel-air ratio (FARR), which was calculated for each position. The

contour maps are based on a 7-centimeter-diameter view around the geometric center-

line looking axially upstream toward the swirl-can combustor module.
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These contour maps were constructed from the data obtained at the 17 locations of
the gas sampling probe at each axial location as described previously. Time did not
permit a more detailed probing, and therefore these contours are best estimates only.
As a result they should not be considered a detailed mapping, but rather indicate trends
in the primary zone of each combustor module.

For each axial position, contour maps compare the distribution of the parameter
for each of the two swirl-can models tested, and the values of the contour lines are
shown between the two plots. To the immediate right of each contour map, the inte-
grated average value of the parameter for that map is shown. The integration is based
on area weighting of the data taken at the various radial locations and averaged over the
four azimuthal locations and also indicate trend values rather than exact averages over
the entire cross section.

The contour maps for all four parameters show a general symmetry about a point
somewhat lower than and to the left of the geometric center. This is a dominant trend
near the combustor which tends to fade as the distance from the combustor increases.
The probable cause for this phenomenon is the hole in the inner liner through which the
ignitor passed, approximately 4 centimeters from the combustor. It is located in the
upper right section of the liner as seen from downstream and is about 0. 8 centimeter
in diameter. Since the static pressure inside the liner is slightly less than the static
pressure in the "dead zone" between the inner liner and the outer liner, a recirculation
flow could develop in which gases are drawn around the downstream end of the inner
liner and back into the mainstream flow through the ignitor hole. As the distance from
the combustor increases, the flow recovers from this disturbance and approaches the
geometric centerline.

Unburned Hydrocarbons Emissions

The integrated values of the hydrocarbon concentration shown in figure 8(a) indi-
cate a slightly higher level at the 5-centimeter scan for model 1 over model 2, but a
lower value for the 10- and 15-centimeter locations. Figure 8(b) shows higher levels
for the 5- and 10-centimeter positions for model 2 over model 1, but a lower value at
15 centimeters. The model 2 contours for figure 8(b) indicate some hydrocarbon
toward the top of the test section which suggests that the fuel spray angle of model 2
apparently is wide enough to deposit fuel on the walls of the inner liner which then col-
lects at the downstream edge of the liner and burns there. This conclusion was sup-
ported by visual indication of flame seating on the end of the liner. The integrated
values also show lower levels of concentrations at the 30-meter-per-second condition
than at 23 meters per second at all positions for both models which indicates that the
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higher pressure drop at the 30-meter-per-second condition improved atomization of the

fuel for quicker combustion. Also, the general irregularity of the contours indicate a

nonhomogeneous distribution of fuel around the combustor modules.

Carbon Monoxide Emissions

In figure 9(a), the integrated values of the carbon monoxide concentrations show

higher levels for model 1 over model 2 at the 5- and 10-centimeter locations, but a

lower value for model 1 at the 15-centimeter position. In figure 9(b), the integrated

values are higher at the 5-centimeter location for model 1, but model 2 has higher

levels for the two downstream positions. This indicates a longer burning zone for

model 2 which is consistent with the previous observation of flame seating on the end of

the liner. With the exception of the 10-centimeter position for model 1, the integrated

values were higher for 30 meters per second than for 23 meters per second which also

indicates a longer burning zone for the higher reference velocity condition as expected.

A comparison of figure 8 with figure 9 indicates a substantial contrast between the

hydrocarbon contours and the carbon monoxide contours. The carbon monoxide con-

tours are surprisingly symmetric in comparison with the contours of hydrocarbons.

This indicates intense mixing of combustion gases in the wakes of the two models.

Nitrogen Oxides Emissions

The nitrogen oxides concentration levels shown in figure 10 reflect the prinicple

that higher residence times lead to higher concentrations of nitrogen oxides in that the

integrated values for the 23-meter-per-second condition are generally higher than those

for the 30-meter-per-second condition with one exception. That exception is the level

for model 2 at the 15-centimeter position for the 30-meter-per-second condition. The

very high levels of nitrogen oxides at this condition are not at all consistent with the

other contours. There might have been an error in the measurements, but without a

more detailed probing of the combustion zone a definite answer is not possible. The

combustion zone does appear to be longer for model 2 than model 1 as shown by the

carbon monoxide contours and this is reflected by nitrogen oxides concentrations slight-

ly higher for model 2 over model 1. There is also evidence of hot spots in the contour

plot for model 2 at 23 meters per second and the 5-centimeter position; this is reflect-

ed in the high integrated value at that position. Another,phenomenon that can be distin-

guished is the peaking of the integrated values near the 10-centimeter position and the

downstream dilution effects which lower the concentration levels.
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Ratio of Local- to Metered-Fuel-Air Ratios (FARR)

Figure 11 indicates the contours and integrated values of the FARR parameter.

Comparison of the values for the two combustor models and the two reference veloci-

ties does not result in any clear trends, except that the integrated values decrease

with increasing distance from the combustor module. The combustion zones mix as

they move downstream, and tend toward homogeneity which would be represented by a

constant FARR value of 1. O0 over the entire cross section. Again, the 15-centimeter

position for model 2 at 30 meters per second seems inconsistent with the other 11 con-

tour plots indicating unusually low values of FARR. With limited information avail-

able, no conclusive explanation can be made.

Evaluation of Probing Techniques

The previous measurements of gaseous pollutants in the combustor primary zone

successfully demonstrate the feasibility of designing a gas sampling probe to withstand

the adverse environment inside a combustor. The probe was adequately cooled for all

locations in the combustor. Clogging of the gas sampling ports with carbon was suc-

cessfully prevented by locating the ports on the side of the probe. The traverse mech-

anism provided remote control movement of the probe tip to any desired location in the

combustor.

The previous tests also indicate that, due to the large spatial gradients, probing

in much more detail than was done is necessary in order to obtain desired information

on how gaseous pollutants are formed in the combustor primary zone. With a single

point probe as the one used in these tests, this detailed probing will require a substan-

tial amount of test time.

SUMMARY OF RESULTS

Gas samples were obtained with a three-degree-of-freedom probe connected to an

on-line gas analysis system. This technique successfully demonstrated probing of the

primary zone of a research combustor for the purpose of studying the formation of

gaseous pollutants and their spatial distribution.

However, the primary zone of a combustor must be probed in much more detail
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than was done here due to the large spatial gradients that exist in order to quantitative-

ly determine the formation of gaseous pollutants in the combustor process.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, February 28, 1975,
505-04.
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TABLE I. - DESCRIPTION OF SWIRL-CAN COMBUSTOR MODULES

Model Percent Inner swirler description Flame stabilizer description Fuel injection description
blockage in

6.91-cm-diam

duct

1 47. 8 Stamped swirler, 12 blades, Hexagon of side L = 2. 79 cm; Fuel tube centered in can;

450 angle at tips; tip diameter, full area, 20. 3 cm
2  

0. 13-cm-diam orifice at

3.25 cm; hub diameter, 1. 59 cm; end of tube 0. 32 upstream

open area, 2. 36 cm of inner swirler; fuel

sprayed through inner

swirler

2 60.3 Stamped swirler, 12 blades, Stamped swirler, 24 blades, Fuel tube attached to center

450 angle at tips; swirler face 450 angle at tips; swirler blades of inner swirler hub; 0. 13-

recessed 0. 56 cm from flame of opposite rotation from inner cm-diam orifice through

stabilizer; tip diameter, 3. 33 cm; swirler; tip diameter, 5.79 cm; hub; fuel passes through

hub diameter, 1.91 cm; open area, hub diameter, 4. 57 cm; open orifice and splashes against

2.30 cm 2  
area, 2.90 cm 2; swirler shroud 1. 97-cm-diam disk mounted

diameter, 5. 95 cm 0. 16 cm from inner swirler

hub

Laboratory Airflow ireCombustor Water Atmospheric

air heat exchanger s ovalve exhaust

Ignitor plug-, r-Gas sampling /-Water quenchample flow to
Fuel inlet- \ I probe / Sample flow to

\ I gas analysis

Diffuser liner-, I equipment
\ ,Water-cooled

t t ,: / ballsocket -

STest Water-

swirl cooled

can jacket '-Probe support and //

Inlet temperature actuator assembly-

and pressure rakes
- To exhaust valve

Figure 1. - Test facility and combustor test section schematics.
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(Dimensions in cm.)

Hydrocarbon anayzer xides of nitrogen analyzer

0 tr

rbon dioxide

Carbon monoxide analyzer

C-71-3941

Figure 6. - Gas sampling instrument console.

PAGEIS4r 
13~

"DBBAUAUrm, 
i



C-73-2207

or poors oU

12Figure 4. - Model 2.



From gas Control-room
sampling typewriter
probe terminal

SBypass On-lineBypass
Heated vent
line Dual- Dual-

Flow Bypass channel channel
I flowmeter recorder recorder

Indicating Indicating Indicating Indicating
W meter meter meter meter

Control Hydrocarbon Carbonmonoxid Carbondioxide Oxides

valve analyzer analyzer analyzer anay

Inlet
pressure
gage 

Oven 
Air dryer

Inlet
thermocouple

Figure 7. - Schematic diagram of gas analysis system.
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Unburned hydrocarbon
concentration,

ppm
A 5000 A 3000 A 1000

B 4000 B 2000 B 750
C 3000 C 1200 C 500
D 2000 D 600 D 250

D B

(a-) Model 1.

3200 1400 500

5 10 15

Axial distance from swirl can, cm

(a-2 Model Z

(a) Reference velocity, 23 meters per second.

Figure 8 - Contours of unburned hydrocarbon concentration. The integrated value for each contour is given at the upper right of each plot.
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Unburned hydrocarbon
concentration,

ppm
A 6000 A 3000 A 800
B 4500 B 2000 B. 400
C 3000 C 1000 C 200
D 1500 D 500 D 100

2800 700 290

D

(b-l) Model 1.

3100 1300 200

D C

S10 15
Axial distance from swirl can, cm

(b-2) Model 2

(b) Reference velocity, 30 meters per second.

Figure 8. - Concluded.
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Carbon monoxide
concentration,

ppm
A 90000 A 60 000 A 5000
B 60000 B 40000 B 2500
C 30000 C 20000 C 1000
D 15 000 D 10000 D 500

30000 16 000 700

D

(a-l) Model 1.

25000 15000 3000

5 10 15

Axial distance from swirl can, cm

(a-2) Model 2.

(a) Reference velocity, 23 meters per second.

Figure 9. - Contours of carbon monoxide concentration. The integrated value for each contour is given at the upper right of each plot.
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Carbon monoxide
concentration,

ppm
A 90000 A 60000 A 20000
B 60000 B 40000 B 15000
C 30000 C 20 000 C 10 000
D 15 000 D 10 000 D 5000

31 000 1100018

CD B

(b-1) Model 1.

28000 15000 7500

D CB

5 10 15

Axial distance from swirl can, cm

(b-2) Model 2

(b) Reference velocity, 30 meters per second.

Figure 9. - Concluded.
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Nitrogen oxides
concentration,

ppm
A 100 A 180 A 120
B 75 B 120 B 90
C 50 C 80 C 60
D 25 D 40 D 30

40 80 56

(a-1) Model 1.

75 77 474

A A D

5 10 15

Axial distance from swirl can, cm

(a-2) Model 2.

(a) Reference velocity, 23 meters per second.

Figure 10. - Contours of nitrogen oxides concentration. The' jrated value for each contour is given at the upper right of each plot.
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Nitrogen oxides
concentration,

ppm
A 80 A 120 A 240
B 60 B 90 B 160
C 40 C 60 C 80
D 20 D 30 D 40

31 655

D

B D 

5C 

)

(b-1) Model 1.

27 63 143

5 10 15
Axial distance from swirl can, cm

(b-2) Model Z
(b) Reference velocity, 30 meters per second.

Figure 1Q - Concluded.
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Ratio of local- to metered-
fuel-air ratio

A 4 A 3.5 A 1.75
B 3 B 2.5 B 1.25
C 2 C 1.5 C 1.00
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Figure 11. - Contours of ratio of local- to metered-fuel-air ratio The integrated value for each contour is given at the upper right of each plot
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Figure 11. - Concluded.
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