MISSION ANALYSIS PROGRAM FOR SOLAR ELECTRIC PROPULSION (MAPSEP) CONTRACT NAS8-29666

(Revised)
Apri1, 1975

VOLIME III - PROGRAM MANUAL FOR EARTH ORBITAL MAPSEP

Prepared by:
Planetary Systems Mission Analysis and Operations Section
Denver Division
Martin Marietta Corporation

For

National Aeronautics and Space Administration Marsha11 Space Flight Center

Huntsville, Alabama

An Introduction to MAPSEP Changes for the Earth orbital version
Because of the limited amount of time and experience in low thrust Earth orbital missions, many MAPSEP changes were intended to provide (1) a basic capability to analyze anticipated solar electric missions, and (2) a foundation for future, more complex, modifications. Some of the major changes from the October, 1974, interplanetary version of MAPSEP are summarized below. In addition to these routines, most input and output related routines were affected, such as DATMAP, BLKDAT, DETAIL (REFSEP), DEFALT (GODSEP), etc.

$\begin{aligned} & A=\text { Add } \\ & D=\text { Delete } \\ & M=\text { Modify } \end{aligned}$	Change	$\begin{gathered} \text { Principal } \\ \text { Mode (s) } \\ \hline \end{gathered}$	Principal Subroutines
A	J2 zonal harmonic (oblateness)	TRAJ	New routine GRVPめT
A	J2 variation and uncertainty	TRAJ GODSEP S IMSEP	LøADFM, GRVPøT, GRVERR
A	Thrust shutdown and startup due to solar occultation (shadow)	TRAJ REFSEP	PATH, new routines SHAD $\emptyset \mathrm{W}, ~ \emptyset C C U L T$, QARTIC, QADRAT
A	Thrust startup uncertainty	$\begin{aligned} & \text { GODSEP } \\ & \text { SIMSEP } \end{aligned}$	DYNØ, ERRSMP
A	Solar cell degradation due to radiation flux	TRAJ	PATH, new routine FLUX
M	Thrust control policies	TRAJ TOPSEP SIMS EP	EP, ENC $\varnothing \mathrm{N}$, new routine THCPND
A	Orbital elements as input and target/control parameters	TRAJ TOPSEP	DATMAP, DATAT, FEGS
A	Equatorial related input/ output	TRAJ GODSEP	PRINTT, TCØMP, new routine PRNEQ
M	State augmentation ordering	TRAJ GØDSEP SIMSEP	$\emptyset \mathrm{D}, \mathrm{L} \emptyset \mathrm{ADFM}, ~ \emptyset \mathrm{UTPTG}$

$\begin{aligned} & A=\text { Add } \\ & D=\text { Delete } \\ & M=\text { Modify } \end{aligned}$	Change	$\begin{gathered} \text { Principal } \\ \text { Mode(s) } \\ \hline \end{gathered}$	Principal Subroutines
M	Modularization of observation matrix computations	GODSEP	¢BSERV
A	Horizon scanner measurement	GODSEP	\emptyset BSERV (\emptyset BSHZS)
D	Ephemeris planet uncertainty	GODSEP S IMS EP	STMGEN, STMRDR, GUIDE, $\emptyset \mathrm{D}$, delete RELC $\varnothing \mathrm{V}$
D	Astronomical observations	GODSEP	ØBSERV, delete ASTØBS
M	Tug $\mathbf{\Delta V}$ computation	TOPSEP	INJECT
M	```Station locations and errors in spherical (or cylindrical) coordinates```	GODSEP REFSEP	CYCEQ, PARSTA, ESLE
M	Targeting and guidance policies	TOPSEP GODS EP SIMSEP	GUIDE, DATAT, THCPND

FOREWORD

Abstract

MAPSEP (Mission Analysis Program for Solar Electric Propulsion) is a computer program developed by Martin Marietta Aerospace, Denver Division, for the NASA Marshall Space Flight Center under Contract NAS8-29666. MAPSEP contains the basic modes: TOPSEP (trajectory generation), GODSEP (linear error analysis) and SIMSEP (simulation). These modes and their various options give the user suffictent flexibility to analyze any low thrust mission with respect to trajectory performance, guidance and navigation, and to provide meaningful system related requirements for the purpose of vehicle design.

This volume is the third of three and contains a description of the internal structure of MAPSEP including logical flow. Prior volumes relate to analytical program description and to operational usage.

Page
Foreword 1
Table of Contents ii

1. Introduction 1
2. Macrologic 2
2.1 Input/Output 3
2.2 Overlay Structure 4
2.3 Subroutine Hierarchy 7
2.4 Blank Common 7
2.5 Program Loading 13
2.6 Labeled Common Blocks 16-A
2.6.1 MAPSEP 16-B
2.6.2 TOPSEP 27
2.6.3 GODSEP 35
2.6.4 SIMSEP 51
3. Subroutine Descriptions 54
3.1 MAPSEP 54
3.1.1 BLKDAT 56
3.1.2 DATAM 61
3.1.3 TIME 68
3.2 T ПSEP 69
3.2.1 BUCKET 71
3.2.2 DATAT 75
3.2.3 DELU 87
3.2.3A DIRECT 92-B
3.2.3B DTDUO 92-I
3.2.4 FEGS 93

iii

Page
3.2.5 FGAMA 103
3.2.6 GENMIN 111
3.2.7A GRID 119
3.2.7B INJECT (MøDINJ, TUGINJ) 123-B
3.2.8 MINMUM (THPM, THPØSM, FØPMIN) 124
3.2.9 PGM 132
3.2.10 PRINTO (PRINTI, PRTNT2) 142
3.2.11 PRINTD 147
3.2.12 SIZE 151
3.2.13 STEP 166
3.2.14A STEST 167
3.2.14B STMTAR 171-B
3.2.15 TEST 172
3.2.16 TREK 175
3.2.17 WEIGHT (UNWATE) 188
3.3 GØDSEP 194
3.3.1 AUGCN: 197
3.3.2 BLKDTG 200
3.3.3 ВøМВ 201
3.3.4 CøRREL 202
3.3.5 CøVP 207
3.3.6 CYE TEC 217
3.3.7 DATAG 219
3.3.8 DEFALT 220
3.3.9 DIMENS 226
3.3.10 DYN \varnothing 232
3.3.11 EIGPRN 235

Page

3.3.12 ESCHED 239

3.3.13A ESLE 242
3.3.13B FBURN 244-A
3.3.14 FILTR (FILTR2) 244-E
3.3.15 GAINF 249
3.3.16 GAINUS 251
3.3.17 GUIDE 252
3.3.18 INPUTG 262
3.3.19 LøADRC (LØDCØL, LØDRØW) 264
3.3.20A LøCLST 267
3.3.20B MASSIG 268-A
3.3.21 MEAS 268-C
$\begin{array}{ll}3.3 .22 & \text { MEASPR }\end{array}$
3.3.23 MNØISE 274
3.3.24 MSCHED 276
3.3.25 NMLIST 281
3.3.26 ØBSERV 282-A
3.3.27 ØUTPTG 295
3.3.29 PARSTA $302-A$
3.3 .30 PCNTRL 303
3.3.31 A PPAK 306
3.3.31B PRNEQ 307-B
$\begin{array}{lll}3.3 .32 & \mathrm{R} \not \mathrm{P} & 308\end{array}$
3.3.33 PRPART (PRCøRR, PUNC $\emptyset \mathrm{R}$) 312
3.3.34 PRSDEV (PUNSD) 315
$\begin{array}{ll}3.3 .36 \text { SCHED } & 320\end{array}$
Page
3.3.37 SETEVN 324
3.3.38 SETGUI 329
3.3.39 STMGEN 335
3.3.40 STMPR 338
3.3.41 STMRDR 340
3.3.42 STMUSE 346
3.3.43 VERR 349
3.4 SIMSEP 350
3.4.1 CSAMP 360
3.4.2 DATAS 363
3.4.4 EPHSMP 375
3.4.5 ERRSMP 380
3.4.6A EXGUID 384
3.4.6B GUIDMX $387-\mathrm{B}$
3.4.6C GRVSMP 387-E
3.4.7 LGUID 388
3.4.8 NLGUID 390
3.4.9A $\emptyset \mathrm{D}$ 403
3.4.9B \emptyset PSTAT 407 -B
3.4.9C REFTRJ 407-E
3.4.9D SDAT1 407-I
3.4.9E SDAT2 407-M
3.4.10A SET 408
3.4.10B SPRNT1 (SPRNT2, SPRNT3, SPRNT4) 413-B
3.4.11 STAT 414
3.4.12 THCPND 417
Page
3.5 TRAJ 420
3.5.1 DNØISE (NøISE) 427
3.5.2 DPHI 431
3.5.3 EP 433
3.5.4 EPHEM 440
3.5.5A FIND (FIND1, FIND3) 446
3.5.5B FLUX 448-B
3.5.6A GRAVAR 449
3.5.6B GRAVF \emptyset 452
3.5.6C GRVPøT 456 -C
3.5.7 LøADFM 457
3.5.8 LøCATE 464
3.5 .9 М $\varnothing \mathrm{T} \not \varnothing \mathrm{N}$ 465
3.5.10 NEWTめN 467
3.5.11A NUMIN (RUNG2, RUNG4, SETUP) 469
3.5.11B ØCCULT 471-B
3.5.12 PATH (FLIGHT) 472
3.5.13 PD ФT 494
3.5.14 PøWER 496
3.5.15A PRINTT 500
3.5.15B QADRAT 503-B
3.5.15C QARTIC 503-C
3.5.16A RPRESS 504
3.5.16B SHADOW $505-\mathrm{B}$
3.5.17 SøLAR 506
3.6 Utility Routines 507
Page
3.6.1 Minor Routines 507
3.6.2 BPIANE 512
3.6.3 CARTES 520
3.6.4 CøNIC 526
3.6.5 EСøMP 530
3.6.6 ENCøN (REFINE, ØSCUL) 534
3.6.7 GENINV 539
3.6.8 MPAK 542
3.6.9 MUNPAK 546
3.6.10 RNUM 549
3.6.11 TСøMP 551
3.6.12 THCØМР 554
3.7 REFSEP 559
3.7.1 DATREF 560
3.7.2A DETAIL 562
3.7.2B PUNCHR 568-B
3.7.2C TØRQUE 568 -D
3.7.3 TRAK 569
3.7.4 TSCHED 574
4.0 References 577

Page viii has been deleted. 1

1.0 INTRODUCTION

MAPSEP (Mission Analysis Program for Solar Electric Propulsion) is intended to provide sufficient flexibility to analyze a variety of problems related to trajectory performance, gilidance and navigation. However, since low thrust technology is never static, future changes are expected to the models and algorithms contained in MAPSEP. This volume, along with the program listings, is intended to provide the programmer/analyst with sufficient information about MAPSEP structure to enable him to make suitable modifications. The program itself is structured such that computational modules are as selfcontained as possible thus facilitating their replacement. It is highly recommended that the programmer/analyst review the two preceding volumes (analytical and user's manuals) before making program changes in order to understand the reasoning behind many of the models and analysis techniques that are coded.

2.0 MACROLOGIC

MAPSEP is composed of three primary modes: TOPSEP, GODSEP and SIMSEP (Figure 2-1). A fourth primary mode, REFSEP, is actually a submode of TOPSEP in a functional sense. In addition, a secondary mode, TRAJ, is used by all four primary modes to provide integrated trajectory information. As described in both the Analytic and User's Manuals, the primary modes each serve a specific function in the mission and system design sequence.

Figure 2-1. MAPSEP Modes

All of the routines and structure of MAPSEP are constructed to minimize core storage (thus reducing turn-around time and computer run cost) yet retain the flexibility needed for broad analysis requirements. Furthermore, routines are built as modular as possible to reduce the difficulties in future modifications and extensions.

2.1 Input/Output

The user interface or input to MAPSEP is primarily through cards using the NAMELIST feature, with supplementary means depending upon mode and function (Table 2-1). All modes require the \$TRAJ name1ist which defines the nominal trajectory and subsequent

Mode	INPUT			OUTPUT	
	Namelist	Formated Cards	$\begin{aligned} & \text { Tape } \\ & \text { (or disc) } \end{aligned}$	Punched Cards	$\begin{aligned} & \text { Tape } \\ & \text { (or disc) } \end{aligned}$
'TOPSEP	\$TRAJ \$TøPSEP	None	STM	None	STM GAIN
GODSEP	$\$$ TRAJ \$GØDSEP \$GEvent	Event Data	$\begin{aligned} & \text { STM } \\ & \text { GAIN } \end{aligned}$	States Covariances Guidance	STM GAIN SUMARY
SIMSEP	\$TRAJ \$SIMSEP \$GUID	None	STM	Statistics	STM GAIN SUMARY
REFSEP	\$TRAJ	Print Events	STM	THRUST array	STM

TABLE 2-1. MAPSEP User Input/Output
mode usage. However, if recycling or case stacking is performed it is not necessary to input \$TRAJ again unless desired. The second namelist required for each mode corresponds to mode peculiar input and bears the name of that particular mode. Additional namelist, formated cards, and tape input are generally optional. Besides
the standard printout associated with MAPSEP, auxiliary output can be obtained which will facilitate subsequent runs.

From an operational viewpoint, MAPSEP employs a maximum of six data files (Table 2-2). Most of these files are not normally saved from run to run, the primary exceptions being STMFILE and GAINFIL used in GODSEP.

I/O File Number	File	Mode Usage		
		$\begin{gathered} \text { TOPSEP AND } \\ \text { REFSEP } \end{gathered}$	GODSEP	SIMSEP
TAPE 3	STM	\$TRAN namelist	\$TRAJ namelist, trajectory and state transition matrix data	\$TRAJ namelist
TAPE 4	GAIN	-	a-priori covariances and filter gain matrices	\$GUID namelists
TAPE 5	INPUT	input data	Input data	input data
TAPE 6	OUTPUT	printout	printout	printout
TAPE 7	PUNCH	-	punched covariances	punched statistics
TAPE 8	SUMMARY	trajectory summaries	event data summaries	\$SIMSEP namelist

TABLE 2-2. Data Files

2.2 Overlay Structure

The structure of MAPSEP is organized into three levels of "overlays" which are designed to minimize total computer storage. At any given time, only those routines which are in active use are
loaded into the working core of the computer. The main overlay (Figure 2-2) is always in core and contains the main executive, MAPSEP, and all utility routines that are common to the three modes. The primary overlays contain key operating routines of each mode, that is, those routines which are always needed when that particular mode is in use. Also included as a primary overlay is the data initialization routine, DATAM, where STRAJ namelist is read, trajec-tory and preliminary mode parameters are initialized, and appropriate parameters are printed out.

The secondary overlays contain routines which perform various computations during a particular operational sequence. Included are data initialization routines, analgous to DATAM, which operate on mode peculiar input and perform mode initialization. An example of core usage in the changing overlay structure may be provided by a standard error analysis event sequence. Error analysis initialization is performed by the overlay DATAG. Transition matrices are then read from the STM file, the state covariance is propagated to a measurement event, and the overlay MEAS is called, which physically replaces, or overlays, the same core used previously by DATAG. Similarly at a guidance event, overlay TRAJ will replace MEAS to compute target sensitivity matrices and overlay GUID will then replace TRAJ to compute guidance corrections. Overlay switching is performed internally and is transparent to the user.

a

Figure 2-2. OVERLAY STRUCTURE

2.3 Subroutine Hierarchy

Each major overlay is supported by a number of routines, some of which are contained in that overlay, others are in higher overlays. Figures $2-3,2-4,2-5,2-6$, and $2-7$ 11lustrate the subroutine hierarchy for the major overlays TRAJ, TOPSEP, GODSEP, SIMSEP, and ' REFSEP, respectively. Multiple calls to subroutines and entry points are not shown, but may be found in the detailed subroutine descriptions (Chaper 3). The hierarchies also do not distinguish between routines called from different overlays.

2.4 Blank Common

One convenient feature of the $\operatorname{CDC} 6000$ series computer (on which MAPSEP was developed), is the ability to specify the location in core where blank common is loaded. This allows blank common to be loaded behind the longest secondary overlay to be loaded for the current mode. Thus, the length of blank common may be adjusted merely by changing the amount of core requested for the job. The resultant convenience factor is a core saving on many runs. Wherever possible, large arrays whose dimensions vary as a function of input parameters are loaded in blank common. Each mode in its data overlay computes the locations of these arrays as required by the input. Each mode starts using blank common from the first word, and defines for the TRAJ overlay the first available word of blank common it may access. TRAJ stores all information evaluated for integration steps in blank common. For an example of the disparity in blank common lengths required for different runs, the sample error

Figure 2-3. TRAJ Subroutine Hierarchy

Figure 2-4. TOPSEP Subroutine Hierarchy

Figure 2-5. GøDSEP Subroutine Hierarchy

Figure 2-5. GøDSEP Subroutine Hierarchy (Continued)

Figure 2-6 SIMSEP Subroutine Hierarchy

Figure 2-7. REFSEP Subroutine Hierarchy
analysis included in the User's Manual (Vol. II Sec. 3.2.2) requires 5184 decimal or 12100 octal words of blank common. The same run without guidance would require only $2304_{10}\left(4400_{8}\right)$ words of blank common. A TøPSEP run which does no targeting or optimization -merely integrates a reference trafectory -- requires less than $100{ }_{10}$ words of blank common.

2.5 Program Loading

The recommended usage of MAPSEP, which also minimizes computer core for a given run, is to load only those overlays and related routines which are necessary for the run. This is performed by "satisfying" from a master library file which contains all of the MAPSEP routines. In this case the deck necessary to run MAPSEP consists only of the overlay structure and the input data decks. The advantage is a direct result of not having to load all utility routines in the main overlay. Instead, the utility routines are loaded only in the overlays where they are used. In addition, blank common can easily be set to the size necessary to handle specific mode runs, thus, reducing further the overall core requirements. Figure 2-8 illustrates core utilization when satisfying from a library file.

If a library file is not used, then the utility routines would be loaded after the $1 / 0$ buffers in Figure $2-8$ and before the primary overlays. Although the core required for each primary overlay would be smaller, the total core (utility + primary) would be greater. Furchermore, blank common would start at the end of the last routine

(DATAS) 80 that the overall core penalty, if the entire program is loaded at once, would be approximately $3 k$ to $20 k$, depending upon the operating mode.

For those users who can vary the amount of blank comnon storage in their runs, a guideline to estimate the total MAPSEP core requirements is given below. Blank common length is related directly to the dimension of the dynamic state (NDIM) used in transition matrix (STM) computation, and, the total augmented (knowledge) state (NAUG). The values of "program" and "blank common" must be added to compute the total decimal core for a CDC 6500. Other operating systems must scale these requirements appropriately.

TOPSEP: program $=23400$

$$
\text { blank common }=800+68(\mathrm{~N})+(\mathrm{N})^{2}
$$

($\mathrm{N}:$ number of control
meters

GODSEP: program $=23900$
blank common $=100+9(\text { NDIM })^{2}$
$=100+9$ (NDIM) $^{2}+$
(if STM created)
5 (NAUG) 2
$=100+13$ (NAUG) 2
(if STM used)
$=100+13$ (NAUG) 2
(if PDOT used)
SIMSEP: program '= 39100
blank common $=900+\mathrm{N}(\text { NAUG })^{2}$.
($\mathrm{N}=$ number of guidance events)

REFSEP: program + blank common $=21000$

2.6 Labeled Commons

The labeled common blocks are grouped according to the principal overlays in which they are used: MAPSEP, TOPSEP, GODSEP, and SIMSEP. The type of each variable will be specified as follows:

Type	Designation
Real	R
Integer	I
Logical	L
Hollerith	H
Assigned G $\quad \mathrm{T} \varnothing$ \quad Statements	S

All units will be in $\mathrm{km}, \mathrm{km} / \mathrm{sec}$, days, radians, $\mathrm{kg}, \mathrm{kW}, \mathrm{km} / \mathrm{sec}^{2}$, or $\mathrm{km}^{3} / \mathrm{sec}^{2}$ unless otherwise noted.

The following index of common blocks is intended to facilitate their location by the reader.

Common	Principal Overlay	Page
conics	MAPSEP	17
CONST	MAPSEP	16-B
CYCLE	TOPSEP	27
datagi	GODSEP	35
DATAGR	GODSEP	36
DIMENS	GODSEP	36
DYN¢S	SIMSEP	51
EDIT	MAPSEP	17
ENCON	MAPSEP	17
EPHEM	MAPSEP	17
GRID	TOPSEP	27
GUIDE	GODSEP	38
IASTM	MAPSEP	18-A
ISIM	SIMSEP	51
ISIMD	SIMSEP	52
REPCON	GODSEP	39
LABEL	GODSEP	39
LdCATE	GODSEP.	40
LdGIC	GODSEP	41
MEASI	GODSEP	42
MEASR	GOPSEP	44
PRINT	TOPSEP	28

16-B

Common	Principal Overlay	Page
PRINT	TOPSEP	28
PRINTH	TOPSEP	28
PROPI	GODSEP	46
PROPR	GODSEP	46
SCHEDI	GODSEP	47
SCHEDR	GODSEP	49
SIMIAB	SIMSEP	52
STMI	STMSEP	$53-\mathrm{A}$
SIM2	SIMSEP	53-B
ST¢REC	STMSEP	$53-\mathrm{C}$
TARG ET	MAPSEP	18 -B
TIME	MAPSEP	19
TめP1	TOPSEP	28
TQP2	TOPSEP	32
TRAJ1	MAPSEP	19
TRAJ 2	MAPSEP	22
TRKDAT	MAPSEP	26
TUG	TOPSEP	34
WøRK	MAPSEP	26

2.6.1 MAPSEP Labe led Commons

Most common blocks that appear in MAPSEP primarily are used to save information created by the overlays DATAM and TRAJ. Other common blocks that appear in MAPSEP are used to transmit information from the Conic subroutines.
a) . Common/ OdNST/Program_constants

Name	Dimension	Type	Definition
AU	1	R	149597893. (km/AU)
BIG	1	R	10^{20}
ECEQ	3×3	R	Transformation matrix from Earth equatorial to Earth ecliptic coordinates
F\%P	1	R	10^{-15}
FOV	1	R	$10^{-2.5}$

 е) Common/EPHEM/ ephemeris constants

Name	Dimension	Type	Definition
CECC	4×10	R	Eccentricity constants of the planets
CINC	4×10	R	Inclination constants of the planets
CMEAN	4×10	R	Mean anomaly constants of the planets
COMEG	4×10	R	Longitude of the ascending node constants of the planets
COMEGT	4×10	R	Longitude of periapsis constants of the planets
CSAX	2×10	R	Semi-major axis constants of the planets
DJ 1900	1	R	Julian Date of January 0.5, 1900
EMN	15	R.	Lunar ephemeris constants
J2	1	R	J2 zonal harmonic (oblateness)
Planet	11	H	Hollerith label for the planets
PMASS	11	R	Planetary gravitational constants
PRADIS	11	R	Planetary radii
SMASS	1	R	Solar gravitational constant
SPHERE	11	R	P1anetary SOIs
SRADIS	1	R	Radius of the sun
SUN	1	H	Hollerith label for the sun

IASTM	1	I	Flag designating method of computing targeting sensitivity matrix
IJH	2×30	I	Array of flags identifying active controls
LISTAR	6	I	Array of flags identifying active targets
THETA	6×20	R	Sensitivity of final state to changes in thrust controls
PHI	6×6	R	Sensitivity of final state to changes in initial. state (STM)

Name	Dimension	Type	Definition
vCA	1	R	Speed at closest approach.
CA	1	R	Radius of closest approach
TCA	1	R	Time of closest approach
BDT	1	R	B $\cdot \underline{T}$
BDR	1	R	B - \underline{R}
TSI	1	R	Time of sphere of influence crossing
VHP	1	R	Hyperbolic excess velocity
SMA	1	R	Semi-major axis
ECC	1	R	Eccentricity
XINC	1	R	Inc1ination
QMEGA	1	R	Longitude of the ascending node
S¢MEGA	1	R	Argument of periapsis
XMEAN	1	R	Mean anomaly
TA	1	R	True anomaly
Fl	1	R	Hyperbolic anomaly
B	1	R	B-vector magnitude
BV	3	R	B-vector
TAIM	1	R	Theta aim (angle between the B-vector \& T-axis)
SV	3	R	S-vector (unit vector in direction of VHP vector)
REQ	3	R	Equatorial geocentric position vector
VEQ	3	R	Equatorial geocentric velocity vector
RFA	1	R	Apoapsis radius
EQLAT	1	R	Equatorial geocentric latitude

Name	Dimension	Type	Definition
EQLON	1	R	Equatorial geocentric longitude
TFA	1	R	Time of apoapsis crossing
vFA	1	R	Apoapsis velocity
PEREOD	1	R	Orbital period

Name	Dimension	Type	Definition
ЕРøСН	1	R	Julian Date of launch
TCP	1	R	Total CP time required to integrate a trajectory
TDUR	1	R	Trajectory termination time from launch in seconds
. TEND	1	R	Trajectory termination time from launch in days
TEVNT	1	R	Trajectory event time in seconds
TRCA	1	R	Time of closest approach
TREF	I	R	Trajectory start time from launch, in seconds
TSøI	1	R	Time at the sphere of influence of the target body
TSTART	1	R	Trajectory start time
TSTDP	1	R	Actual trajectory termination time

Name	Dimension	Type	Definition
ACC	1	R	Integration step-size scale factor
ALPHA	1	R	Inverse semi-major axis of the reference conic
APERT	3×12	R	Gravitational acceleration vectors due to the perturbing bodies
APRIM	3	R	Gravitational acceleration vector due to the primary body
ATøT	3	R	Total differential acceleration vector
B $\emptyset \mathrm{DY}$	3	H	Hollerith label of the planets included in the integration
DRMAX	3	R	Maximum deviation from the reference conic
ENGINE	30	R	Array that defines the thrust and power subsystems
FLX	1	R	Cumulative flux
FLXDøT	1	R	Flux rate

Name	Dimension	Type	Definition
ERCA	1	R	Fraction of the semi-major axis of the target planet to begin closest approach tests
GJ2	6	R	Partial deviatives of state wrt J2
GM11	3	R	Matrix of partial derivatives for transition matrix integration
GM12	3	R	Matrix of partial derivatives for transition matrix integration
GM21	3	R	Matrix of partial derivatives for transition matrix integration
GM22	3	R	Matrix of partial derivatives for transition matrix integration
GT	3×3	R	Matrix of partial derivatives for transition matrix integration
GTAUI	3×3	R	Diagonal matrix of inverse correlation times (first process)
GTAU2	3×3	R	Diagonal matrix of inverse correlation times (second process)
G11	3×3	R	Matrix of partial derivatives for transition matrix integration
G12	3×3	R	Matrix of partial derivatives for transition matrix integration
G22	3×3	R	Matrix of partial derivatives for transition matrix integration
PHAS	4	R	Thrust policy phasing angles
PITCH	1	R	Thrust pitch angle
QNøISE	6×6	R	Matrix of process noise
RCA	1	R	Local variable used in TRAJ
RPACC	3	R	Acceleration vector due to radiation pressure
RSTøP	1	R	Desired stopping radius
SCD	1	R	Solar cell degradation factor
SCMASS	1	R	Initial spacecraft mass
SCMVAR	1	R	Initial spacecraft mass variation
STATEO	8	R	First three elements are the initial position vector

Name	Dimension	Type	Definition
			Second three elements are the initial velocity vector
			Seventh element is the position magnitude
			Eighth element is the velocity magnitude
TCPI	1	R	CP time at the beginning of the integration
THRACC	3	R	Acceleration vector due to thrust
THRUST	10×40	R	Array used to define the operation of the thrust subsystem
TNめISE	6	R	First three elements contain thrust noise for the first process
			Second three elements contain thrust noise for the second process
UENC	3	R	Reference conic position vector
UENCM	1	R	Reference conic position magnitude
UP	3×12	R	Position vectors of all the bodies included in the integration
UREL	3×12	R	Position vectors of the spacecraft relative to all the bodies considered in the integration
URELM	12	R	Magnitudes of UREL
UTRUE	3	R	S/C position vector relative to the primary body
UTRUEM	1	R	S/C position magnitude relative to the primary body
VENC	3	R	Reference conic velocity vector
VENCM	1	R	Reference conic velocity magnitude
VP	3×12.	R	Velocity vectors of all the bodies considered in the integration
VREL	3×12	R	Velocity vectors of the spacecraft relative to all the bodies considered in the integration

Name	Dimension	Type	Definition
VRELM	12	R	Magnitudes of VREL
VTRUE	3	R	S/C velocity vector relative to the primary body
VTRUEM	1	R	S/C velocity magnitude relative to the primary body
WPØWER	1	R	Power available
XPRINT	1	R	Print interval
YAW	1.	R	Thrust yaw angle
ZK	3	R	Direction cosines of the reference star
j) Common/TRAJ2/Trajectory F1ags			
Name	Dimension	Type	Definition
IAUGDC	10	I	Array of flags used to augment the state for transition matrix or covariance integration
ICALL	1	I	Flag used to initialize TRAJ or to initialize TRAJ and to start integration or to continue integration from the previous time
IENRGY	1	I	Flag that determines the kind of power subsystem
IEVENT	1	S	Local variable used in TRAJ
IEVNT1	1	S	Local variable used in TRAJ
IEVNT2	1	S	Local variable used in TRAJ
IEVNT3	1	S	Local variable used in TRAJ
IEP	1	I	Flag used to locate information about the ephemeris body ($1=$ Sun, $2=$ Earth,...)
IM $¢ \mathrm{DE}$	1	I	Submode designation in TØPSEP
INIT	1	I	MAPSEP initialization flag
INTEG	1	I	Flag used to determine the type of equations to be integrated

Name	Dimension	Type	Definition
INTEG2	1	S	Local variable used by TRAJ
INTEG3	1	S	Local variable used by TRAJ
IPFLAG	1	I	Flag used to designate a control phase change
IPHASE	1	S	Local variable used in TRAJ
IPHASO	1	S	Local variable used in TRAJ
IPHAS 1	1	S	Local variable used in TRAJ
. IPHAS2	1	S	Local variable used in TRAJ
IPIACE	1	S	Local variable used in TRAJ
IPRI	1	I	Flag used to locate information about the primary body
IPRINT	1	I	Flag used to manipulate the trajectory print options'
IPRT	1	S	Local variable used in TRAJ
IPRT1	1	S	Local variable used in TRAJ
IRECT	1	I	Flag used to control rectification
ISCD	1	I	Flag used to activate solar cell degradation from flux
ISTEP	1	I	Number of integration steps taken
ISTMF	1	I	Flag used to control STM file use
ISTØP	1	I	Flag used to set the trajectory termination logic
ITEST	1	S	Local , variable used in TRAJ
ITP	1	I	Flag used to locate information about the target body
ITRAJ	1	I	Local variable used in TRAJ
JPFLAG	1	I	Flag used to designate a primary body change
JPHAS 1	1	S	Local variable used in TRAJ
JPHAS2	1	S	Local variable used in TRAJ
J2FLG	1	I	Flag used to activate J2 (oblateness)

Name	Dimension	Type	Definition
JPHAS3	1	S	Local variable used in TRAJ
JTEST	1	S	Local variable used in TRAJ
KST \dagger P	1	S	Local variable used in TRAJ
KTRAJ	1	I	Flag used to designate whether to test for control phase changes
KUTøFF	1	I	Flag used to designate the actual trajectory stopping criteria
LPRINT	1	S	Local variable used in TRAJ
'LøCAL	1	S	Local variable used in TRAJ
LøCDM	1	I	Location of the output mass variation in blank common
LøCDT	1	I	Location of the temporary derivatives in blank common
LøCDY	1	I	Location of the nominal derivatives in blank common
LøCET	1	I	Location of the integration event time in blank common
I 1 CFFI	1	I	Location of the F matrix in blank common
LめCF \varnothing	1	I	Location of the covariance to be integrated in blank common
LøCH	1	I	Location of the integration step-size in blank common
L¢CM	1	1	Location of the output mass in blank common
LøCPR	1	I	Location of the integration print time in blank common
LфCPT	1	I	Location of the actual print time in blank common
L¢CR	1	I	Location of the stored position magnitudes in blank common
LøCS	1	I	First location in blank common that can be used by TRAJ

Name	Dimension	Type	Definition
LøСТ	1	I	Location of the stored trajectory times in blank common
LøСтС	1	I	Location of the output transition matrix or covariance in blank common
LøCTE	1	I	Not used
LøCYC	1	I	Location of the nominal integrated solution in blank common
LøCYP	1	I	Location of the intermediate integrated solution in blank common
LØСҮT	1	I	Location of the temporary integrated solution in blank common
LøCX	1	I	Location of the trajectory time in blank common
MEQ	1	I	Total number of equations to be integrated
MEQS	1	I	Dimensions of the augmented transition matrix or covariance
MEQ8	1	I.	MEQ minus 8
MEVENT	1	I	Flag used to set event detection logic
$M \emptyset \mathrm{DE}$	1	I	Flag used to set the MAPSEP mode of operation (TØPSEP, GØDSEP, SIMSEP)
MPIAN	1	I	Number of bodies included in the integration
MSTØP	1	S	Local variable used in TRAJ
NB	11	I	Planet codes of the bodies to be included in the integration
$N B \emptyset D$	1	I	Number of bodies in NB
NØI SED	1	I	Flag used to turn off the noise for the simulation mode

Name	Dimension	Type	Definition
NPHASE	1	I	Flag to test for primary body changes
NPRI	1	I	Planet code of the primary body
NPRINT	1	S	Local Variable used in TRAJ
NRECT	1	I	Number of rectifications executed
NST¢P	1	S	Local Variable used in TRAJ
. NTP	1	I	Planet code of the target body
NTPHAS	1	I	Number of the current control phase
ELVMIN**	1	R	Minimum elevation angle for tracking
I $\emptyset \mathrm{BS}$ \%	1	I	Location in STAL¢C of astronomical observatory
KARDS*	1	I	Number of formatted print schedule cards following the $\$$ TRAJ namelist
NSTA*	1	I	Number of S/C tracking stations
PITCHI*	1	R	Moment of inertia about pitch axis
RøLLI*	1	R	Moment of inertial about roll axis
SPHLøC	1	L	Flag for determining coordinate system of station location
STALøC	3×9	R	Station location coordinates
STARDC	3×9	R	Star direction cosines
YAWI*	1	R	Moment of inertia about yaw axis

* Variables exclusive to the REFSEP mode

2.6.2 TOPSEP Common Blocks

Name	Dimension	Type	Definition
ICYCLE	1	I	Mode cycle flag.
			```=0, Do not store namelist varia- bles on disc. = 1, Store namelist variables on disc.```
Name	Dimension	Type	Definition
LめCE1	1	I	Blank common location of the target errors associated with the first step of the control grid.
LDCE2	1	I	Blank common location of the target errors associated with the second step of the control grid.
LOCEM1	1	I	Blank common location of the target error indices associated with the first step of the control grid.
LøCEM2	1	I	Blank coumon location of the target error indices associated with the second step of the control grid.
LDCEN	1	I	Blank common loration of the nominal trajectory target errors in the grid mode.
LøCF1	1	I	Blank common location of the performance indices associated with the first step of the control grid.
LDCF2	1	I	Blank common location of the performance indices associated with the second step of the control grid.


Name	Dimension	Type	Definition
CNTRøL	20	R	Initial values of all possible controls other than thrust controls.
ETLめUT	6	R	Target tolerances in print-out units.
GøUT	20	R	Performance gradient in print-out units.
HøUT	10x22	R	Perturbation array in print-out units.
KNTR $\dagger$ L	20	H	Hollerith names of controls in CNTRØL.
SøUT	120	R	Sensitivity matrix in print-out units.
TARØUT	6	R	Desired target values in printout units.
Name	Dimension	Type	Definition
LABELT		H	Hollerith names of chosen targets.
LABEL	25	H	Hollerith names of all possible targets.
Name	Dimension	Type	Definition
BTøL	1	R	Tolerance on control bounds.
CHI	1	R	In plane $\boldsymbol{\Delta} \mathbf{V}$ direction angle at injection.
CNVRTT	6	R	Conversion constants from input units to internal units for selected targets.
RPO	1	R	Initial periapsis radius
RAO	1	R	Initial apoapsis radius
XINCO	1	R	Initial orbital inclination


Name	Dimension	Type	Definition
CNVRTU	20	R	Conversion constants from input units to internal units for selected controls.
CTHETA	1	R	Cosine of optimization angle.
DELVO	1	R	Injection $\boldsymbol{\Delta V}$.
DFMAX	1	R	Maximum increase allowed in the cost index (F) per iteration.
DPSI	6	R	Target error to be removed during current iteration.
DP2	1	R	Estimated region of linearity in the control space.
E	6	R	Target errors of the current trajectory.
EMAG	1	R	Target error index.
EPSめN	1	R	Scalar multiple for control perturbations.
ETめL	6	R	Target tolerances.
ETR	6x6	R	Array of target errors of the reference and all trial trajectories evaluated during a single iteration.
F	1	R	Performance index of the current trajectory.
FTR	6	R	Vector of performance indices of the reference and all trial trajectories evaluated during a single iteration.
G	20	R	Performance gradient.
GAMA	1	R	Scale factor providing the best control change.
GAMMA	6	R	Vector of trial trajectory control change scale factors.
OMEGAO	1	R	Initial longitude of the ascending node


Name	Dimensions	Type	Definition
GTRIAL	5	R	One-dimensional search constants.
G	$10 \times 22$	R	Control perturbation array.
HMULT	20	R	Vector of scalar multiples of the H array to determine the second step of all controls in the control grid.
¢PTEND	1	R	Cosine of the optimization angle which is used to test convergence in the targeting and optimization mode.
$\emptyset$ SCALE	1	R	Scale on the performance index when simultaneously targeting and optimizing.
PCT	1	R	Percentage of the target error to be removed during an iteration.
PRTURB	20	R	Vector of control perturbations; summary of H array.
PSI	1	R	Out of plane $\Delta V$ direction angle at injection.
P1	6	R	Vector of net cost values for the reference and all trial trajectories evaluated during a single iteration.
P1P2	6	R	Vector of combined target error indices and net cost values for the reference and all trial trajectories evaluated during a single iteration.
P2	6	R	Vector of target error indices for the reference and all trial trajectories evaluated during a single iteration.
S	$6 \times 20$	R	Target sensitivity matrix.
STATR	$8 \times 6$	R	Array of initial states for the reference and all trial trajectories evaluated during a single iteration.
SOMEGO	1	R	Initial argument of periapsis.


Name	Dimensions	Type	Definition
STめL	1	R	Test variable for determining linearly dependent columns of the weighted sensitivity matrix.
TARGET	6	R	Vector of desired target values.
TARNФM	6	R	Target values evaluated for the reference trajectory.
TARPAR	6	R	Target values of the most recently generated trajectory.
TARTØL	25	R	Vector of all possible target tolerances.
TARTR	$6 \times 6$	R	Target values of the reference and all trial trajectories evaluated during a single iteration.
TLめW	1	R	Limit of target error index below which optimization only is performed.
TUP	1	R	Limit of target error index above which simultaneous targeting and optimization is discontinued and targeting only is initiated.
U ,	20	R	Selection of controls for the specified mode run.
UWATE	20	R	User input weights on controls.
VPARK	1	R	Circular parking orbit velocity magnitude.
WE	6	R	Vector of target weights.
XMM	1	R	Mean motion of s/c in parking orbit.
PRO	1	R	Radial distance at injection.
PINC	1	R	Geocentric ecliptic inclination at injection
PTO	1	R	Time of injection
XMEANO	1	R	Initial mean anomaly
TRUANO	1	R	Initial true anomaly


Name	Dimensions	Type	Definition
INACTV	20	I	Vector denoting which controls are active, on bounds, or within bound tolerance regions.
INSG	1	I	Flag set when $S$ and $G$ are input through namelist.
ITERAT	1	I	Iteration counter (in grid mode ITERAT indicates the index of the control being changed for a grid trajectory).
IWATE	1	I	Flag designating the desired control weighting scheme.
JMAX	1	I	Number of mission thrust phases.
JWATE	1	I	Flag designating target weighting.
KMAX	1	I	Number of thrust controls (THRUST ( $\mathrm{I}, \mathrm{J}$ ) ) chosen to be elements in U.
K $\emptyset$ NVRJ	1	I	Convergence flag.
LøCCDC	1	I	Blank common location for storage of the inner products of the weighted sensitivity matrix columns.
LøCCM	1	I	Blank common location for storage of the magnitude of the weighted sensitivity column vectors.
LøCDU	1	I	Blank common location of the total control correction vector (not sca1ed by GAMA).
IのCDUI	1	I	Blank common location of the performance control correction vector (not scaled by GAMA).
LøCDU2	1	I	Blank common location of the constraint control correction vector (not scaled by GAMA).
LøCRFM	1	I	Blank common location of the $\mathrm{s} / \mathrm{c}$ masses evaluated at event times for the reference and all trial trajectories in a single iteration.


Name	Dimensions	Type	Definition
LøCSDU	1	I	Blank common storage location for the original control correction vectors when a number of controls must be dropped during an iteration.
LøCSI*	1	I	Blank common location of the pseudo inverse of the weighted sensitivity matrix.
LめCSWG	1	I	Blank common storage location for the original weighted performance gradient when a number of controls must be dropped during an iteration.
LめCSWS	1	I	Blank common storage location for the original weighted sensitivity matrix when a number of controls must be dropped during an iteration.
LdCTS	1	I	Blank common location of event times for the reference and all trial trajectories in a single iteration.
LøCUL	1	I	Blank common location of minimum and maximum control bounds.
LOCWG*	1	I	Blank common location of the weighted performance gradient.
LøCWS*	1	I	Blank common location of the weighted sensitivity matrix.
LøCWU	1	I	Blank common location of the control weights.
LbCXR	1	I	Blank common location of the 6component state vectors associated with the event times of the reference and all the trial trajectories of a single iteration.
MIN	1	I	Index on the scale factor in the GAMA vector which provides the best control correction.


Name	Dimensions	Type	Definition
MPRINT	10	I	Flag designating TOPSEP print options.
NMAX	1	I	Maximum number of iterations.
NT	1	I	Number of targets;
NTNP	120	I	Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration.
NTPH	20	I	Vector of contro1 phase numbers associated with the event times of the reference and all trial trajectories in a single iteration.
NTR	1	I	```Trial trajectory counter (NTR=1 indicates the iteration reference trajectory).```
NTYPE	1	I	Flag designating the type of control correction to be made during an iteration.
NU	1	I	Number of controls.
INJLDC	1	I	Index locating the selected injection controls in the $U$ vector.
LØCFLX	1	I	Blank common location of flux values at the event times for the reference and all trial trajectories.
LOCFDT	1	I	Blank common location of flux rate values at the event times for the reference and all trial trajectories.
AZMAX	1	R	Maximum launch azimuth constraint
AZMIN	1	R	Minimum launch azimuth constraint
RP1	1	R	Inner parking orbit radius
TGFUEL	1	R	Fu11 capacity of tug stage
TUG	1	L	Flag controlling injection computations
TUGISP	1	R	Specific impulse of tug stage
TUGWT	1	R	Dry weight of tug stage

### 2.6.3 GดDSEP Labeled Commons

GØDSEP labeled commons were created following two specific guidelines as much as possible -- organization first by variable function, and second by variable type. Organization by function will hopefully simplify understanding of the program and minimize the number of common blocks required for any given subroutine. Organization by type is to facilitate conversion to machines which require double precision for many real variables, or which merely allocate different numbers of bytes of core for real, integer or logical variables.

Any variable for which further descriptions may be found under input description is denoted "(See Input)" and refers to Reference 1, Volume II (User's Manual) Section 2.3.

Name	Dimension	Type	Definition
C $¢$ NRD	1	L	```Used for input on1y =F, set a priori control equal to a priori knowledge =T, assume a priori control is read in namelist $G\emptysetDSEP```
IAUG	50	I	Parameter augmentation control (see Input)
IGFøRM	1	I	$=0$, input control uncertainties packed $=1$, input control uncertainties unpacked (see Input)
IRøT	1	I	Flag to specify equatorial covariance input
IPFøRM	1	I	$=0$, input knowledge uncertainties packed $=1$, input knowledge uncertainties unpacked (see Input)
MAXAUG	1	I	Maximum length allowed for augmented state vector (including $\mathrm{S} / \mathrm{C}$ state) allowable maximum governed only by available core and dimensioned lengths of LIST (see Common/DIMENS/) and AUGLAB (see Common/LABEL/) arrays


| Name | Dimension |
| :--- | :--- | :--- |
| MAXDIM |  |


Name	Dimension	Type	Definition
IDCAUG	$5 \times 5$	I	Array of locations of first word of covariance partitions within complete augmented covariance matrix. For example, since covariance blocks are ordered, S/C state, solve-for parameters, dynamic consider, measurement consider, ignore parameters,   - LøCAUG $(1,3)$ locates the first word of the sub-block of correlations between the $S / C$ state and the dynamic consider parameters.
LøCBLK	$5 \times 5$	I	Used for locating first word of covariance partitions when sub-blocks are stored separately but contiguously in core (for further explanation see AUGCNV Sec 3.3.1 and PPAK Sec 3.3.31)
IDCLAB	5	I	Locates within LIST and AUGLAB arrays the beginning of the parameter (LIST) or label (AUGLAB) lists for the five augmented state vector partitions   (1) $=1$   (2) = beginning of solve-for parameters   (3) = beginning of dynamic consider parameters   (4) = beginning of measurement consider parameters   $(5)=$ beginning of ignore parameters
NAUG	1	I	Dimension of augmented state vector
NAUGSQ	1	I	Total number of elements in' augmented covariance matrix (=NAUG**2)
NBLK	1	I	Total number of elements required to store individual, packed covariance partitions (for further explanation, see AUGCNV, Sec 3.3.1, and PPAK, Sec 3.3.31)
NDIM	5	I	Dimensions of individual state vector partitions   (1) $=$ S/C state   (2) $=$ solve-for parameters   (3) = dynamic consider parameters   (4) = measurement consider parameters   (5) = ignore parameters
NPHSTM	1	I	Number of dynamic parameters (including $S / C$ state) used included in state transition matrices on STM file.


Name	Dimension	Type	Definition
d) Common/GUIDE/Guidance Related Variables Not Specifically Used for Scheduling or Propagition			
BURNP	4	R	Guidance-interval parameters   (1) - vehicle mass at guidance start   (2) - thrust acceleration magnitude at guidance start   (3) - vehicle mass at guidance end   (4) - thrust acceleration magnitude at guidance end
C $¢$ NWT	5	R	Control weighting factors, following correspondences assumed   (1) - acceleration magnitude   (2) - cone angle   (3) - clock angle   (4) - cutoff time   (5) - startup time
DELAY	1	R	Guidance delay time for current maneuver
S	$6 \times 5$	R	Guidance sensitivity matrix of $S / C$ state at cutoff time with respect to controls
SMAT	15	R	Sensitivity matrix of target parameters w.r.t. control parameters
TARWT	3	R	Target parameter weights
TBURN	1	R	Length of burn interval for current guidance maneuver
TGSTøP	1	R	Stop time for integrator if either guidance or prediction requires integration of transition matrices to some time past TFINAL. For both guidance and prediction TDUR (Common/TIME/) is defined according to the maximum of TGSTøP and TFINAL
T¢FF	1	R	Cutoff time for current guidance maneuver
T NN	1	R	Execution time for current guidance maneuver
UMAX	5	R	Maximum ( 10 ) control corrections allowed
VARDV	4	R	Array of variances of delta-V execution error parameters   (1) - magnitude proportionality ( $100 \%^{2}$ )   (2) - magnitude resolution ( $\mathrm{km} / \mathrm{s}^{2}$ )   (3) - in-ecliptic pointing ( $\mathrm{rad}^{2}$ )   (4) - out-of-ecliptic pointing (rad ${ }^{2}$ )
VARMAT	18	R	Variation matrix, sensitivity of target conditions with respect to $S / C$ state at cutoff time
IP¢L	1	I	Guidance policy flag for current guidance event (see IGPdL, Input)
IREAD	1	I	Read policy for namelist \$GEVENT for current guidance event (see IGREAD, Input)
NOON	1	I	Number of controls to be used for low thrust guidance

```
e) Common/KEPC \(\emptyset \mathrm{N} /\) Transformations Required When Ephemeris Body State is in Keplerian Elements
```

Common block KEPCØN has been deleted.

Name	Dimension	Type	Definition
AUGLAB	30	H	Array of parameter labels, AUGLAB (I) contains a six-character Hollerith label which corresponds to the parameter number in LIST(I) (see LIST, Common/DIMENS /)
EVLAB	$2 \times 5$	H	Array of event labels   $(1,1),(2,1)$ - propagation   $(1,2),(2,2)$ - eigenvector   $(1,3),(2,3)$ - thrust   $(1,4),(2,4)$ - guidance   $(1,5),(2,5)$ - prediction
$J \emptyset B L A B$	10	H	Run identifying label input through namelist \$GODSEP and printed at the fop of the first page of each measurement and event print
MESLAB	$2 \times 10$	H	Array of measurement labels used for printing in MEASPR (see MEASPR, sec. 3.3.22 for further details)
PGLAB	$5 \times .5$	H	Array of labels for control covariance subblocks, used primarily for punching. Upper triangle elements are identical to those names used for control uncertainty input (CXSG, CXUG etc). Lower triangle blocks correspond to transposes of upper triangle blocks -- their labels are so denoted by an added dollar sign (CXSG\$, CXUG\$, etc).


Name	Dimension	Type	Definition
PLAB	$5 \times 5$	H	Array of labels for knowledge covariance sub-blocks. Upper triangle elements are identical to those names used for knowledge uncertainty input (CXS, CXU, etc). Lower triangle blocks correspond to transposes of upper triangle blocks -- their labels are so denoted by an added dollar sign (XSS, CXUS, etc).
VECLAB	2x5	H	Array of word labels for augmented state vector partitions $\begin{aligned} & (1,1),(2,1) \text { - state } \\ & (1,2),(2,2) \text { - solve-for } \\ & (1,3),(2,3) \text { - dynamic } \\ & (1,4),(2,4) \text { - measurement } \\ & (1,5),(2,5) \text { - ignore } \end{aligned}$
g) Common/LøCATE/Parameters Used To Locate Matrices In Blank Common			
P	1	I	Location of current knowledge covariance in blank common
PG	1	I	Location of current control covariance in blank common, if guidance events are included
PWLS	1	I	Location of weighted least squares reference covariance in blank common if using sequential weighted least squares $O D$ algorithm
PHI	1	I	Location of complete augmented transition matrix in blank common if not using covariance integration option
PTEMP	1	I	Location in blank common of temporary working area the size of the augmented covariance (and therefore transition matrix, also) By convention the output of CøVP is always located by PTEMP
PLøCAL	1	I	Location in blank common of local working storage area the size of the augmented covariance matrix. This area is intended to be used locally within a subroutine and not to be saved for use in another subroutine.


Name	Dimension	Type	Definition
H	1	I	Location of observation matrix in blank common
GAIN	1	I	Location of gain matrix in blank common
PG1	1	I	Locations of four augmented covariance
PG2	$1$	$I\}$	size blocks in blank common used for guidance computations
h) Common/LøGIC/Logical Variables			
CHEKPR	10	L	Array of flags controlling checkout print options (see Input)
DYNøIS	1	L	Flag controlling computation of effective process noise   =-TRUE., compute effective process noise   $=\cdot$ FALSE•, do not compute effective process noise
GAINCR	1	L	```Flag controlling creation of GAIN file (TAPE 4) =`TRUE•, create GAIN file =-FALSE\cdot, do not create GAIN file```
GENC $¢ \mathrm{~V}$	1	L	Flag indicating if current run is generalized covariance run   $=\cdot$ TRUE., generalized covariance run   =-FALSE•, not generalized covariance run
MESH	1	L	Flag indicating if scheduled trajectory time can be meshed with some time print on the STM file within specified forward and backward tolerances (TøLF $\emptyset R, T \emptyset L B A K$, common/PRøPR/)   =•TRUE•, meshing successful   =-FALSE•, meshing not successful
PDQT	1	L	Flag controlling covariance propagation   $=\cdot$ TRUE., propagate by integration of covariance variational equations   $=$-FALSE., propagate by state transition matrices


Name	Dimension	Type	Definition
PRINT	1	L	Flag contro1ling measurement print   =.TRUE.; causes full print before and after current measurement   =.FALSE., suppresses measurement print except for that on SUMMARY file if summary print requested (see SUMARY, common/LøGIC/)
PRNCØV	5	L	Array of flags controlling print options on covariance sub-blocks (see Input)
PRNSTM	5	L.	Array of flags controlling print options on transition matrix partitions (see Input)
PR $\emptyset$ PG	1	L	```Flag controlling propagation of control covariance =.TRUE., propagate control simultaneously with knowledge covariance =.FALSE., do not propagate control covariance```
PUNCHE	5	L	Array of flags controlling punching of complete augmented state uncertainties for different event types (see Input).
SCHFTL	1	L	Flag controlling termination or continuation of run after mesh failure on STM file   if MESH $=$.TRUE., SCHFTL has no effect.   if $\mathrm{MESH}=$.FALSE., then SCHFTL $=$.TRUE., will terminate error analysis processing, while SCHFTL $=$.FALSE., will result in diagnostic print and the currently scheduled measurement or event will not be processed
SUMARY	1	L	Flag controlling SUMMARY file print =.TRUE., prints sumary information for all measurements on SUMMARY file (TAPE 8) $=$.FALSE., no summary print
VRNIER	1	L	Flag indicating if current guidance event is a vernier (=.TRUE.) or a primary (=.FAISE.)

i) Common/MEASI/Measurement Related Integer Variables

Parameter number of first ephemeris element as used for input (See IAUG,Input).

Name	Dimension	Type	Definition
IAUGST	1	I	Parameter number for first station location parameter
IBAZEL	1	I	Parameter number for first azimuth-elevation angle bias parameter
IBDIAM	1	I	Parameter number for apparent planet diameter measurement bias
IBHCø2	1	I	Parameter number for horizon scanner altitude bias
IBHZS	1	I	Parameter number for horizon scanner angle bias
IBSTAR	1	I	Parameter number of first star-planet angle measurement bias
IB2NAY	1	I	Parameter number of first 2-way DSN measurement bias term
IB3WAY	1	I	Parameter number of first 3-way DSN measurement bias term
IDATYP	1	I	Leading digit of decoded measurement type   $=1$, ground-based range-rate   $=2$, ground-iase range   $=3$, azimuth-elevation angles   =4, on-board optics - star-planet angle   $=5$, on-board optics - apparent planet diameter
IDMAX	1	I	Maximum number allowed to be assigned to a dynamic parameter. All parameter numbers less than or equal to IDMAX are assumed to correspond to dynamic parameters. Those greater than IDMAX are assumed to be measurement parameters.
IGAIN	1	I	Flag indicating gain computation algorithm to be used (see Input)
ISTA1	1	I	Parameters used in decoding measurement codes.
ISTA2	1	I	For further explanation see ØBSERV, sec. 3.3.26.
ISTA3	1	I	
MAX STA	1	I	Maximum number of stations for which station location errors and range and range-rate biases can be augmented to the state (maximum number accommodated by TAUG array). See $\emptyset$ BSERV, sec. 3.3.26 for further explanation.


Name	Dimension	Type	Definition
NEPHEL	I	I	Number of ephemeris elements augmented to state for current error analysis run
NR	1	I	Dimension of observation vector for measurement currently being processed
NSゆLVE	1	I	Total number of variables and parameters being estimated by OD algorithm (number of $S / C$ state variables plus number of solve for parameters)
N ST	1	I	Total number of ground stations defined in STALØC array for possible use in ground-based observations (maximum 9). For further explanation see NST and STALDC, in Input.
j) Common/MEASR/Measurement Related Real Variables			
AZMUTH	1	R	Azimuth angle in degrees from station ISTA1 ( $\emptyset$ BSERV, sec 3.3 .26 ) computed only for azimuthelevation angle measurements
AZMTH2	1	R	Azimuth angle in degrees from station ISTA2 ( $\varnothing$ BSERV, sec 3.3 .26 ) computed only for azimuthelevation angle measurements and if ISTA2>0.
BDYDEC	1	R	Declination angle of the target body (in degrees) as seen from the designated observation
BDYRTA	1	R	Right ascension angle of the target body (in degrees) as seen from the designated observatory
ELEV	1	R	Elevation angle in degrees from station ISTA1 ( $\emptyset$ B SERV, sec 3.3 .26 ) computed for all groundbased measurements
ELEV2	1	R	Elevation angle in degrees from station ISTA2 ( $\emptyset$ BSERV, sec 3.3 .26 ) computed for all groundbased measurements when ISTA2 $>0$
HCø 2	1	R	Altitude of CO horizon for horizon scanner measurement.
R	16	R	Dual purpose measurement noise matrix. Before the knowledge covariance is updated at a measurement, $R$ is the covariance of the mea-. surement white noise. After the knowledge covariance is updated, $R$ is the measurement residual matrix. For further explanation see Vol. I, Analytical Manual, sec 6.4.
RANGE	1	R	Range in km from station ISTAI ( $\emptyset$ B SERV, sec 3.3.26) computed for all ground-based measurements


Name	Dimension	Type	Definition
RANGE2	1	R	Range in km from station ISTA2 ( $\varnothing$ BSERV, sec 3.3.26) computed for all ground-based measurements if ISTA2 $>0$
RRATE	1	R	Range-rate in $\mathrm{km} / \mathrm{s}$ from station ISTA1 ( $\emptyset \mathrm{BSERV}$, sec 3.3.26) computed for doppler (range-rate) measurements on1y
RRATE2	1	R	Range-rate in km/s from station ISTA2 ( $\emptyset$ BSERV, sec 3.3.26) computed for doppler (range-rate) measurements only, and only if ISTA2>0
SCDEC	1	R	```S/C geocentric equatorial declination in degrees, computed for all ground-based measure- ments```
SCGLØN	1	R	S/C geocentric equatorial longitude in degrees, computed for all ground-based measurements
STALøC	3 x 9	R	Array of station locations in cylindrical equatorial coordinates   STALøC $(1, I)=$ spin radius (km)   STAIめC $(2,1)=$ longitude (degrees externally, radians interna11y)   STALøC ( $3, \mathrm{I}$ ) $=$ height ( km ) (See Input)
STARDC	$3 \times 9$	R	```Array of ecliptic star direction cosines (or, equivalently, unit vectors in star directions) See Input```
STPANG	3	R	Array of star-planet angle measurements in degrees, computed only for star-planet angle measurements.   (1)-angle between planet/target body and star ISTA1 ( $\emptyset$ BSERV, sec 3.3 .26 )   (2), (3) - same as (1) above only for stars ISTA2 and ISTA3 respectively
VARMES	15	R	Array of measurement white noise variance. Default values and input are by standard deviations in array SIGMES (see Input) internal values require units conversion as well as squaring.   (1), 2-way doppler ( $\mathrm{km}^{2} / \mathrm{s}^{2}$ )   (2), 2-way range ( $\mathrm{km}^{2}$ )   (3), 3-way equivalent frequency drift $\left(\mathrm{km}^{2} / \mathrm{s}^{2}\right)$   (4), 3-way range ( $\mathrm{km}^{2}$ )   (5), azimuth angle (rad${ }^{2}$ )

(6), elevation angle ( $\mathrm{rad}^{2}$ )
(7), on-board optics-star-planet angle (rad ${ }^{2}$ )
(8), on-board optics-apparent planet diameter (rad ${ }^{2}$ )
(9), on-board optics-center finding uncertainty ${ }_{2}$ in conjunction with star-planet angle (rad ${ }^{2}$ )
(10), horizon scanner altitude uncertainty ( $\mathrm{km}^{2}$ )
(11), horizon scanner angle uncertainty ( $\mathrm{rad}^{2}$ )
(12)-(15), not used.
k) Cormon/PR $\emptyset$ PI/Propagation Related Integer Variables

IPRØP	1	I	Flag controlling print options with propagation event   $=0$, no print   $=1$, print standard deviations and correlation coefficients for $S / C$ state vector only $=2$, full eigenvector print
ITVERR	1	I	Flag for type of second thrust noise process (See Input)
LAFTER	1	I	not used
LBURN	1	I	not used
LDELAY	1	I	not used

1) Common/PRøPR/Propagation Related real Variables

EPTAU $3 \times 2$ Array of correlation times for thruster process noise terms; EPTAU (I, J) represents correlation time for process whose variance is EPVAR (I, J) (See Below)

EPVAR $3 \times 2$ R

GMASS
1 R
1 R
Array of variances for thruster noise processes. All elements are used for covariance integration, while only elements $\operatorname{EPVAR}(1,1)$ are used in the effective process noise model.

Primary processes
( 1,1 ) , magnitude variance
$(2,1)$, cone angle pointing variance
$(3,1)$, clock angle pointing variance
Secondary processes
$(1,2)$, magnitude variance
$(2,2)$, cone angle pointing variance
$(3,2)$, clock angle pointing variance
not used

Name	Dimension	Type	Definition
GTBURN	$3 \times 3$	R	GT matrix (See DYN $\emptyset$, Section 3.3.10) evaluated at the beginning of a guidance burn interval.
GTDIAY	$3 \times 3$	R	GT matrix (See DYN $\emptyset$, Section 3.3.10) evaluated at cutoff time of guidance interval.
GTSAVE	$3 \times 3$	R	GT matrix (See DYNø, Section 3.3.10) saved at beginning of each propagation interval during normal knowledge propagation.
Q	$6 \times 6$	R	Effective process noise matrix computed in DYNØ (Section 3.3.10).
SAVACC	3	R	Thrust acceleration magnitude for bias, and first and second noise processes.
$S I G \emptyset \mathrm{~N}$	1	R	Standard deviation in thrust start-up time
TDUMP	1	R	Time at which a core dump is desired.
TG	1	R	```Input epoch for contro1 uncertainties if different from epoch for knowledge uncertain- ties.```
TøLBAK	1	R	Backward tolerance on reading transition matrices from STM file.
TめLFめR	1	R	Forward tolerance on reading transition matrices from STM file.
XG	6	R	not used.
m) Common/SCHEDI/Scheduling Related Integer Variables			
IGPøL	20	I	Array of guidance policy control flags $=0$, no maneuver, print control uncertainties $=1$, target to cartesian state, XYZ, at time specified by TIMFTA   $=2$, two variable $B-p l a n e$ targeting ( $B \cdot T, B \cdot R$ ) $=3$, three variable $B-p l a n e$ targeting ( $B \cdot T$, $\mathrm{B} \cdot \mathrm{R}, \mathrm{T}_{\mathrm{SOI}}$ )   =4, closest approach targeting (radius of closest approach, inclination, time of closest approach).   $=5$, XYZ targeting, variable time of arrival.
IGREAD	20	I	Array of guidance event read control flags. (See Input)
ITPdL	20	I	Not used.


Name	Dimension	Type	Definition
MCøDE	50	I	Array of measurement (and propagation event) codes used in scheduling (See SCHED, Section 3.3.36).
MC $\varnothing$ UNT	1	I	Measurement counter, total cumulative number of measurements processed.
MESEVN	1	1	Current measurement or event code.
MNEXT	1	I	Code for measurement (or propagation event) to be scheduled after the current event.
MPCNTR	11	I	Array of counters for classes of data types used for measurement print control (See Input).
MPFREQ	11	I	Array of print frequencies for measurement print control (See Input).
NCNTE	1	I	Counter indicating number of current (or most recently executed) eigenvector event.
NCNTG	1	I	Counter indicating number of current (or most recently executed) guidance event.
NCNTP	1	I	Counter indicating number of current (or most recently executed) prediction event.
NCNTT	1	I	Counter indicating number of current (or most recently executed) thrust event.
NEIGEN	1	I	Total number of eigenvector events to be processed.
NGUID	1	I	Total number of guidance events to be processed.
NPRED	1	I	Total number of prediction events to be processed.
NSCHED	1	I	For input, number of scheduling cards to be read.   During execution, number of elements of SCHEDM (cnmmon/SCHEDR/) to be tested for scheduling.
NTHRST.	1	I	Total number of thrust events to be processed.



Name	Dimension	Type	
TSTM	1	$R$	
TTHRST	40	$R$	Current time from STM file when reading STM   file.
Array of thrust event times.			

### 2.6.4` SIMSEP Common Blocks

The STMSEP overlay of MAPSEP has seven common blocks: DYNøS, ISIM1, ISIM2, SIM1, SIM2, SIMLAB and STøREC. DYNøS contains the random number seed and thrust noise terms; it is essential to all SIMSEP routines that call the random number generator, RNUM. SIM1 and ISIM1 are common blocks containing information essential to the operation of SIMSEP and execution of the Monte Carlo 1oop. SIMl contains real data and ISIM1, integer data. SIM2 and ISIM2 have a correspondence similar to SIM1 and ISIM1 and contain accumulated statistical data. SIMLAB contains Hollerith labels used throughout the program. Finally, STøREC is a storage common block with three sets of data, each pertaining to the actual, estimated, and reference world integrating conditions.
Name Dimension Type Definition

IRAN	1	I	Random number seed.
TVERR	$6 \times 3$	R	Time varying thrust errors.

b) Common/ISIM1/SIMSEP Integer Variables

IGL	5	I	Guidance Flag.
INREF	1	I	State vector read-in flag.
IØUT	1	I	Printout frequency flag.
IPUNCH	1	I	Punch output flag.
ITMX	5	I	Maximum number of iterations allowed in nonlinear guidance.
ISTM	5	I	Flag vector to indicate whether trajectory sensitivities are to be computed by numerical differencing or integrated variational equati



Name	Dimension	Type	Definition
A $\dagger \mathrm{K}$	1	R	Backup convergence tolerance for the weak convergence test.
CめNWT	$6 \times 5$	R	Control weights.
CPMAX	1	R	Computer processing time limit.
DVMDøT	1	R	Mass flow rate for chemical propulsion system.
dVmxn	1	R	Maximum delta-veiocity magnitude step.
EXVERR	4	R	Midcourse velocity correction execution errors.
GMERR	3	R	Gravitational constants errors.
MEND	1	R	S/C reference mass at TEND.
PG	$6 \times 7$	R	Spacecraft control error matrix (eigenvector/ eigenvalue format).
RMGE	5	R	S/C reference mass at a guidance event.
RMTAR	5	R	S/C reference mass at a target point.
RXGE	$6 \times 5$	R	Reference state vector at a guidance event.
RXTAR	$6 \times 5$	R	Reference state vector at a target point.
SCERR	10	R	Spacecraft errors.
SMAT	36x5	R	Sensitivity or guidance matrix.
SPF IMP	1	R	Specific impulse for chemical propulsion system.
TCERR	$6 \times 20$	R	Thrust bias errors.
TE PH	2	R	Epoch of evaluation of the ephemeris errors.
TGE	5	R	Guidance event epoch
T $\varnothing \mathrm{L}$	5	R	Target condition tolerances.
HPERT	6.	R	Thrust control perturbation levels.
J2ERR	1	R	J2 error.


Name	Dimension	Type	Definition
TTAR	5	R	Target epoch．
UNTAR	$6 \times 5$	R	Conversion factor for converting target vari－ ables from internal to external printout units．
XEND	6	R	Reference state vector at TEND．
XTARG	$6 \times 5$	R	Reference trajectory target variables at TTAR．
f）Common／SIM2／Monte Carlo Real Variables			
ADVT	2	R	Total delta－velocity magnitude statistics．
AMASS	2	R	Accumulated final spacecraft mass statistics．
ATHC $\emptyset \mathrm{V}$	420	R	Accumulated total thrust．control statistics．
CNCDV	$42 \times 5$	R	Accumulated active thrust control error statistics．
DVCøV	$3 \times 4 \times 5$	R	Accumulated delta－velocity vector error matrix．
DVMAGS	2x5	R	Accumulated delta－velocity magnitude statistics．
ENDCøV	$6 \times 7$	R	Spacecraft control error covariance at the final trajectory time TEND．
GCCDV	$6 \times 7 \times 6$	R	Accumulated spacecraft control error statistics evaluated at guidance events．
GMCめV	$2 \times 5$	R	Accumulated mass error statistics evaluated at guidance events．
TCCめV	$6 \times 7 \times 5$	R	Accumulated spacecraft control error statistics evaluated at the target points．
TERCØV	$42 \times 5$	R	Accumulated target error statistics．
TMCめV	2×5	R	Accumulated mass error statistics evaluated at target points．

g) Common/STøREC/Stored Variables

Name	Dimension	Type	Definition
SCRA1	1	R	Stored radiation pressure coefficient.
SEXV1	1	R	Stored exhaust velocity.
SNTPH1	1	R	Stored thrust phase number.
SPM1	11	R	Stored planetary masses.
SP01	1	R	Stored electric power constant.
SSCM1	1	R	Stored S/C mass.
SSM1	1	R	Stored solar mass.
STEFF 1	1	R	Stored thruster efficiency.
STHRT1	$6 \times 20$	R	Stored thrust control profile.

Note that there are, in fact, three sets of data in ST $\varnothing$ REC corresponding to post-scripts, 1, 2, and 3. For example, SCRA1 contains the radiation pressure coefficient used while integrating an actual trajectory. SCRA2 also contains a radiation pressure coefficient but is used while integrating an estimated trajectory. Likewise, SCRA3 and all post-script-3 constants are used for generating the reference trajectory.

### 3.0 Subroutine Descriptions

### 3.1 Subroutine: MAPSEP

Purpose:
Input/Output:

Variable	Input/ Output	Argument/   Common	Definition
M $\downarrow \mathrm{DE}$	I	C	Flag determines the program's
			operational mode.
			$= \pm 1$, Targeting and Optimization (TØPSEP).
			$\begin{aligned} & = \pm 2, \text { Error analysis (GøDSEP) } \\ & = \pm 3, \text { Simulation (SIMSEP). } \end{aligned}$
			$=\mp 4$, Reference trajectory propagation (REFSEP).
			Positive values will cause recycling back to the MAPSEP main, while negative numbers will cause recycling back to the mode main.
ICYCLE	0	C	Flag used for writing the mode's namelist onto disc when recycling back to the mode's main.   $=0$, Do not store the namelist variables on disc.   $=1$, Store the namelist variables on disc.
INIT	0	c	Flag used to read namelist $\$$ TRAJ from disc during recycling.

## Local Variables:

Variable ._._Definition
ISEND

Index used to select the program's mode of operation. ISEND is the absolute value of MøDE .

Subroutines Called: DATAM, TGPSEP, GODSEP, SIMSEP, REFSEP

Common Blocks: (BLANK), CøNST, CYCLE, EDIT, EPHEM, TIME, TRAJ1,
TRAJ2, TRKDAT, WøRK

Logic Flow:

3.1.1 Subroutine: BLKDAT
Purpose: To fnitialize default values of programconstants.
Method: DATA statements.
Remarks:
The following four pages contain a listing of
BLKDAT with respect to the default constants
in MAPSEP. The variables are defined in
appropriate common blocks (Section 2.6).
Common CøNST: AU, PI, RAD, TM, FøP, BIG, SMALL
Common EPHEM: DJI900, SUN, PLANET, SMASS, PMASS,CSAX, CECC, CINC, C $\emptyset \mathrm{MEG}, \mathrm{C} M \mathrm{MEGT}, \mathrm{CMEAN}, \mathrm{EMN}$,
SPHERE, SRADIS, PRADIS
Common TRAJI: UP, VP

DATA AU／L．49597HYJEX／
DATA HODY／12＊6H／
DATA DJIYU0／ट4」5UCZO．U／
DATA PI，KAU／3．141つ426533891932384．57．29577ヶ513U8232．／
DATA T：A／00400．0／

DATA SUN，HLANET／GHSUN ，SHMEKCKY，GHVENUS OHFLRTH GHMAKS ，
\＄GHJUPITK，GHSATUKN，GHURANUS，OHNEP TNF，GHPLUTU，GHENCKE ，GHMOUN


DATA SMASS，DMASS／

S	1．327124ヶ4ヒ11－
M	2． 1．16159754340472ビ＋U4．
V	3．2406i10SU0ち4670E＋US．
E．	4．035034788677469t＋05．
A	4．28Ct64430635らちらカE゙＋04．
$\checkmark$	1．2t $707718 \pm 380876 \mathrm{t}+08$ ，
S	
U	勺．7877く346く712り8カE．0力。
N	6．5yuら7bく7c゙りから444t＋06．
P	7．324U0434078つ8．54E＋04，
$\times$	1.0
M	4.8983049709670462 t 3
$8 /$	

SEMIMAJOH AXIS UF OKALT（KM）
DATA CSAX／


ECCENTRICITY UF PLANET OREIT
DATA（CECC（I），$I=1,(2)$ ）
C． $640000000000000 \mathrm{E}-05$ ，
－3．000000000000000E－08，
－．O20050000000000Eー03，
9． $100000000000000 E-08$ ．
$1.675104000000000 E=02$ ，
$-1.260000000000000 E-07$ ，
9．331290000000 OOEE－02．
$-7.700000000000000 \mathrm{E}-0$ O．
$4.533760000000000 \mathrm{E}-02$ ，
0.
U．
－4．174000000000000t－45．
0 ．
$-4.150000000000000 \mathrm{c}-05$ ，
U．
Y．く́U6400000000000ビー05，
A
0 。
1.630200000000000 t－04，

J
0
U．

DATA	（CECC（I）， $1=<1,40$ ）
S	S． $889000000000000 \mathrm{E}-02$ ，
5	0.
U	4．104630000000000t－02，
U	0.
N	4．3C8440000000000E－03．
N	0．${ }^{\text {a }}$ ，
$\stackrel{\sim}{\sim}$	C．488033033626924E－01，
$p$	0.0
x	0.
x	0.1
\＄／	


inclination of planel until

data	$1=1$
M	1．2c22332＜0183338E－介，
M	－3．1ヶジ7Uぐう3くく340E－07，
v	5．923002675072064E－02，
$v$	－1．646841883883378E－08，
$E$	0.
E	0．
A	3． 2 ç440cy $2606839 \mathrm{E}-02$,
A	2．C01054112こ37303E－07，
$j$	2．2841 U2645\％11352E－32，
J	$0 \cdot$



MATA（CINC（I）， $1=21,40) /$


Lungitude uf ascending node of mlanet orbit
DATA（CONAG（I）， $1=1,20) /$

M		8．2＜851459b178ら38E－01．
M		3．U34 $333641745701 E-06$.
$v$		1．3220U4350027547t＋00．
$v$	，	7．155849 $33176171 E-06$ ．
E	．	0 ．
$E$		U．
A		8． $514846374154815 E-01$ ，
A		－2．424U大8405547005E－08，
，		1．735518077529711E＋00，
J		0 。

```
C.U68578773474119t-02,
0.
 1.570ら34ち27407097上-02.
0.
 U.
 0.
 1.345634308477203t-02.
- Ч. 3u84226773030825-08,
 1.76447939く348155ヒ-02.
 0 。
```

b／	
data	（COMEG（I）， $\mathrm{I}=21 \cdot 40)$ ）
S	1．968444580475854E＋00，
S	11.
$u$	1．28264677044C747E＋00，
$\cup$	0.
$N$	2．280173383300414E＋00，
N	U．
p	1．サ143315SU102258E＋00，
p	$6^{6}$
$x$	0 －
$x$	0 ．

Lungitude of rerdgef of planft orkit DATA（COMEGT（I），I＝1，20）／

M	1．3く4643611744565E＋00，
M	5．14387315057く180E－06．
V	C． 2717 ¢ 74 勺ob $93804 \mathrm{E}+00$ ．
V	－1．1041く000勺1U0UごE－05．
E	1．7b003031327ヶU85F＋00，
$E$	7．90ぐ4ちう00く0ヶら463E－06．
A	勺．033208050570くつ0t＋00．
A	C． $206503454107080 \mathrm{E}-06$ ，
$J$	2． 210 ¢ficlsol031ч0E－01．
$J$	0.
\％ 1	
i）ATA	（COMEGT（1）， $1=\alpha 1,40) /$
5	
3	0 －＊
U	$2.95024<60638 c 752 t+00$.
U	0.0
$N$	7．035293817954256E－01．
N	U．
P	3．90491930С79144 Bt＋ 00 ，
$p$	0.
$x$	0 。
$x$	0.

MEAN ANOMALY UF PLANET ORFI IT
DATA（CMEAN（I）， $1=1, \angle 0) /$
1．／85111905351731E＋00，
H．726646259971626E－09，
3．710626171888563E＋00，
1．68く4973ヶずけでら35E－06．
6． $6565: 3754118674 E+00$ ，
－1．954／68702233048E－07，
5．576340523254305E＋00，
2．30544473ち227422E－07．
3．930858175721440E＋00，
U．

1.ちટ3477869010149と-0く,$0 \text { • }$
U．
1．923．032858608217t－02，
U．
U．
0.
0 ．
0.


3．419861162130240E－02，
0 ，
2．834608630711と336－02．
0.0
1．532704515870120E－02，
U．${ }^{\text {a }}$
0.
0 。
U．
0.

$7.142471000792648 \mathrm{c}+02$ ． U． c．796244623278380ビ＋02， 0.
－ 1．7くUlナoy7070லら20t＋Uど，
－1．2C1730470396035E－09． Y． 14 万8ん772ら4947て6t＋01， 4．36332312998 ゆ४く3t－10， 1．450191ヶ27757481t＊U1， U．
$6 /$
DATA（CMLAN（I），I＝21，40）／

$\begin{aligned} & 3.002040400251532 E+00 \text {, } \\ & 0 . \end{aligned}$
7．204851ちU0367511ヒ－01，
0.
$3.943840000707340 E+00$,
0.
0.
0.

$\$ /$
DATA EMN／

0	4.223691515	
0	$0.000036<07$	
$\cdots$	5．b3b1ち1ヶ4	
＊	－U．0001rucus	
L	4．719960573	
L	－0．000019774	
I	0.08480410 ck	
E	0.054900484	
A	3．543484402F5	
\＄1		

3．543484402た5

DATA SPHEKE／


## RETUNN

ENO
勺. $837120 \rightarrow 8 \rightarrow 790549 c+00$,
U.
2:040547919058511c゙+00,
0.
,
1.046371040433037E+00,
0.
-
6.96ct35708298947上-01.
U.
-
U.
U.
-0.00092422
0.000000034
0.001944367
$-0.00000020 y$
0.024971481
0.000000033

### 3.1.2 Subroutine: DATAM

Purpose:

Method:

Remarks:

To read input data and initialize trajectory and spacecraft parameters for all MAPSEP modes. After DATAM executes the default value initialization, the namelist $\$$ TRAJ is read. The dimensions and definitions for variables contained in this namelist are discussed in detail in Section 2.1 of the User's Manua1. The input data are processed and stored in labeled common for subsequent use in any of the three possible modes. User options specified by input determine the degree of data preparation and the logic operations within the main cycle of the program. Some variables appearing in DATAM are initialized from the namelist with units specified in the User's Manua1. Before these variables are stored in common, they are converted, if necessary, to internal units which are: kg , $\mathrm{kw}, \mathrm{km}$, $\mathrm{sec}, \mathrm{km} / \mathrm{sec}$, and radians

## Input/Output:

Variable	Input/   Output	Namelist/   Common	Definition
ACC (STEP)	I	N/C	Scaling factor of the inte-   gration step size.
BIG	0	$C$	Large constant, $1 * 10^{20}$.
B $\quad$ DY	0	$C$	Hollerith names of bodies   considered in integration.


Variable	Input/ Output	Namelist/ Conmon	Definition
BODYIN	I	N	Input ephemeris data for body not included block data.
CECC	I/0	C	Array of orbital eccentricities and rates.
CINC	I/O	C	Array of orbital inclinations and rates.
CMEAN	I/O	C	Array of mean anomalies and rates.
COMEG	I/O	C	Array of longitudes of ascending node and rates.
CDMEGT	I/O	C	Array of longitudes of periapsis and rates.
CSAX	I/O	C	Array of semi-major axes and rates.
DJ1900	0	C	Julian date of year 1900.
DRMAX	I/O	N/C	Maximum deviation from the reference conic before rectification.
ECEQ	0	C	Transformation matrix from Earth equatorial to ecliptic.
ENGINE	I/O	N/C	Spacecraft subsystem parameter.
EPøCH (TLNCH)	I/0	$C$ (N)	Launch epoch.
FRCA	I/O	N/C	Specification for testing closest approach along trajectory (See Section 2.1, User's Manual).
IAUGDC	I/0	N/C	Flags specifying parameters which are used to augment the state transition matrix.
ICALL	0	C	Trajectory package initialization flag.


Variable $\quad$ I	Input／   Output	Namelist／ Common	Definition
ICめоRD	I／O	$\mathrm{N} / \mathrm{C}$	Flag indicating relative to which body the input state corresponds．
IENRGY	I／O	．N／C	Flag specifying type of power subsystem．
INIT	0	C	Cycle flag．
INTEG（I¢PT（1））	0	C	Flag specifying equations to be integrated in the trajectory package．
IPRINT	I／0	N／C	Print option flags．
ISTMF	I／0	N／C	STM file flag and data cycle flag．
ISTわP	I／O	N／C	Flag specifying stopping conditions．
JPFLAG	0	C	Primary body change out－ put flag．
KTRAJ（IGPT（2））	0	C	Control phase change out－ put flag．
LめCS	0	C	First location in blank common available for use in the trajectory package．
MEVENT（I\＆PT（3））	） 0	C	Event detection logic flag．
M $\varnothing \mathrm{DE}$	I／0	N／C	Mode specification flag．
MPLAN	0	C	Number of bodies included in the integration．
NB	I／0	N／C	Flag specifying bodies to be included in the inte－ gration．
NB $\emptyset$ D	0	C	Number of bodies specified in NB（MPLAN－1）．
NEP	1／0	N／C	Ephemeris planet designa－ tion．


Variable	Input/ Output	Namelist/ Common	Definition
NLP	0	C	Launch planet designation.
NØISED	0	C	SIMSEP noise flag.
NPHASE	0	c	Flag set to detect control phase changes.
NPRI	0	c	Primary body designation.
NTP	I/0	N/C	Target body designation.
NTPHAS	0	c	Control phase number.
PLANET	0	c	Hollerith names of all planets.
RAD	0	C	Number of degrees per radian.
RST $\dagger$ P	I/0	N/C	Stopping radius if ISTøp = 4.
SCMASS	I/O	N/C	Spacecraft initial mass.
Scmvar	0	c	Spacecraft initial mass variation.
SMASS	0	c	Mass of the sun.
Stateo	I	N	Spacecraft initial state (equatorial or ecliptic).
TDUR	0	c	Maximum spacecraft flight duration (sec).
TEND	I/O	N/C	Trajectory end time (days).
tevnt	0	C	Event time.
THRUST	I/0	N/C	Thrust control profile.
TLNCH	I	N	Launch epoch.
TM	0	C	Seconds per day.
TSTART	I/0	N/C	Trajectory start time (TSTART $\geq$ TLNCH).





# 3.1.3 Subroutine: TIME (DAY, IYR, M $\varnothing$, IDAY, IHR, MIN, SEC, IC $\emptyset D E$ ). Purpose: TIME converts a Julian Date to the corresponding calendar date or a calendar date to the corresponding Julian Date. 

## Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
DAY	1/0	A	Julian Date.
IYR	I/O	A	Calendar year.
M $\downarrow$	I/O	A	Month.
IDAY	I/O	A	Day.
IHR	I/0	A	Hour.
MIN	I/O	A	Minute
SEC	I/0	A	Second.
IC $\emptyset \mathrm{DE}$	I	A	Flag that determines whether to convert from a Julian Date to calendar day or vice versa.   $=0$, Convert to a Julian Date   $\neq 0$, Convert from a Julian Date

Subroutines Called: None
Calling Subroutine: DATAM
Common Blocks: None

Purpose: To execute the proper submode operation. Remarks: TøPSEP is the primary overlay which controls the targeting and optimization mode.

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
IM $\varnothing \mathrm{DE}$	I	C	Submode designation.
M $\varnothing \mathrm{DE}$	I	C	Mode designation.
		-1, Cycle back within mode	
		, Cycle back to MAPSEP   main	

## Local Variables:



3.2.1 Subroutine: BUCKET (X, Y, N, XX, YY, NP.)

Purpose:

Remarks:

To sort a set of independent elements in ascending order and to find a right bounded minimum from the associated set of dependent elements. This routine is used in preparation for the polynomial curve fitting routine, MINMMM, to aid in calculating trial control profiles. BUCKET sorts pairs of elements ( $X_{i}, Y_{i}$ ) in ascending order of the elements $X_{i}$ to form the pairs of elements ( $X_{i}, Y Y_{i}$ ) and locates the element $\mathrm{YY}_{\mathrm{NP}}$ such that

$$
\mathrm{YY}_{\mathrm{NP}}<\mathrm{YY}_{\mathrm{NP}+1}
$$

If this condition cannot be satisfied the pointer, $N P$, is set to zero to indicate that no right bounded minimum exists.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
N	I	A	Number of elements to be sorted.
NP	$\emptyset$	A	Pointer to a minimum dependent element.
X	I	A	Vector of independent elements to be sorted.
XX	$\emptyset$	A	Vector of ordered independ ent elements.


Variable	Input/   Output	Agrument/   Common		
$\mathbf{Y}$	$\mathbf{I}$	A		Vector of dependent elements
:---				
associated with X.				

## Local Variables:

## Variable

IEND
SAVE

Definition
Termination flag.
Intermediate variable.

Subroutines Called: None
Calling Subroutines: GENMIN
Common Blocks:
None


3.2 .2 ..... Subroutine: DATAT

## Purpose:

Method:

Remarks:

To read input data and initialize the trajectory targeting and optimization mode. After DATAT executes the default value initialization, the namelist $\$ T \emptyset P S E P$ is read. The dimensions and definitions for variables contained in this namelist are discussed in detail in the TØPSEP section of the User's Manual. The input data are processed and stored in labeled common for subsequent use in any of the three possible submodes. User options specified by input determine the degree of data preparation and the logic operations within the main cycle of the program. Some variables appearing in DATAT are initialized from the namelist with units specified in the User's Manual. Before they are transmitted to other routines, they are converted, if necessary, to internal operational units which are: kg , kw , $\mathrm{km}, \mathrm{sec}, \mathrm{km} / \mathrm{sec}$, and radians.

Input/Output:

Variable	Input/   Output	Namelist/   Common	Definition
BIG	I	C	Large constant, 1.E20
BT $\varnothing$ L	I	N/C	Tolerance on control   bounds.


Variable I	Input/   Output	Namelist/   Common	Definition
CHI	0	C	In plane $\Delta V$ direction angle at injection.
CNTRøL	0	C	Initial values of all possible controls other than thrust controls.
CNVRTT	0	c	Conversion constants from input units to internal units for selected targets.
CNVRTU	0	c	Conversion constants from input units to internal units for selected controls.
Delvo	0	C	Injection $\|\underline{\Delta V}\|$.
DFMAX	I/O	N/C	Maximum increase allowed in the cost index (F) per iteration.
DP2	I/0	N/C	Estimated region of linearity in the control space.
E	0	c	Target errors of the current trajectory.
ENGINE (1)	I	N/C	Power from solar panels at 1 A.U.
ENGINE (10)	I	N/C	s/C exhaust velocity.
EPS $\emptyset^{\text {N }}$	I	N/C	Scalar multiple for control perturbations.
ETLøUT	0	c	Target tolerances in printout units.
ETøL	0	C	Target tolerances.
G	I/O	N/C	Performance gradient.
GøUT	0	c	Performance gradient in print-out units.
GTRIAL	I/O	N/C	One-dimensional search constants.


Variable	Input/ Output	$\begin{aligned} & \text { Namelist/ } \\ & \text { Common } \end{aligned}$	Definition
H	I/O.	N/C	Control perturbation array.
HMULT	I/0	N/C	Vector of scalar multiples of the H array to determine the second step of all controls in the control grid.
HøUT	0	c	Control perturbation array in print-out units.
ICYCLE	I/O	C	Mode cycle flag.
IM $\%$ DE	I/O	N/C	TOPSEP submode designation.
INACTV	0	C	Vector denoting which controls are active, or bounds, or within bound tolerance regions.
INJLøC	0	c	Index of the control preceding the injection controls in $\underline{U}$.
INSG	I/O	N/C	Flag set when $S$ and $G$ are input through namelist.
ITERAT	0	c	Iteration counter.
IWATE	I/0	N/C	Flag designating the desired control weighting schemes.
JMAX	0	C	Number of mission thrust phases.
JWATE	1/0	N/C	Flag designating target weighting.
KMAX	0	C	Number of thrust controls (THRUST (I,J)) chosen to be elements in $\underline{U}$.
KøNVRJ	0	C	Convergence flag.
LABEL	0	C	Hollerith names of all possible targets.


Variable	Input/ Output	Namelist/ Common	Definition
LABELT	0	C	Hollerith names of chosen targets.
LøCCDC	0	C	Blank common storage location for the inner products of the weighted sensitivity matrix columns.
L $\varnothing$ CCM	0	C	Blank common location for storage of the magnitude of the weighted sensitivity column vectors.
L $\emptyset \mathrm{CDU}$	0	c	Blank common location of the total control correction vector (not scaled by. GAMA).
LøCDU1	0	c	Blank common location of the performance control correction vector (not scaled by GAMA).
LøCDU2	0	C	Blank common location of the constraint control correction vector (not scaled by GAMA).
LDCE1	0	C	Blank common location of the target errors associated with the first step of the control grid.
LDCE2	0	c	Blank common location of the target errors associated with the second step of the control grid.
LøCEM1	0	c	Blank common location of the target error indices associated with the first step of the control grid.
LøCEM2	0	C	Blank common location of the target error indices associated with the second step of the control grid.


Variable	Input/ Output	Namelist/ Common	Definition
LøCEN	0	C	Blank common location of the nominal trajectory target errors in the grid mode.
LøCF1	0	C	Blank common location of the performance indices associated with the first step of the control grid.
LøCF2	0	C	Blank common location of the performance indices associated with the second step of the control grid.
LøCRFM	0	C	Blank common location of the $\mathrm{S} / \mathrm{C}$ masses evaluated at event times for the reference and all trial trajectories in a single iteration.
LøCSDU	0	C	Blank common storage location for the original control correction vectors when a number of controls must be dropped during an iteration.
LøCSI*	0	C	Blank cormon location of the pseudo inverse of the weighted sensitivity matrix.
LøCSWG	0	C	Blank common storage location for the original weighted performance gradient when a number of controls must be dropped during an iteration.
LøCSWS	0	C	B1ank common storage location for the original weighted sensitivity matrix when a number of controls must be dropped during an iteration.

[^0]| Variable | Input/ Output | Namelist/ Common | Definition. |
| :---: | :---: | :---: | :---: |
| L $\dagger$ CTS | 0 | C | Blank common location of event times for the reference and all trial trajectories in a single iteration. |
| LøCUL | 0 | C | Blank common location of minimum and maximum control bounds. |
| LめCWG* | 0 | C | Blank common location of the weighted performance gradient. |
| LøCWS* | 0 | C | Blank common location of the weighted sensitivity matrix. |
| L $\emptyset \mathrm{CWU}$ | 0 | C | Blank common location of the control weights. |
| LøCXR | 0 | ${ }^{-}$ | Blank common location of the 6 -component state vectors associated with the event times of the reference and all the trial trajectories of a single iteration. |
| MPRINT | I/O | N/C | Flag designating TOPSEP print options. |
| NLP | I | C | Integer designation for launch planet. |
| NMAX | I/O | N/C | Maximum number of iterations. |
| NT | 0 | C | Number of targets. |
| NTNP | 0 | C | Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration. |

*May be in compressed form if controls have been dropped during the iteration.


Variable	Input/ Output	Namelist/   Common	Definition
P2	0	C	Vector of target error indices for the reference and all trial trajectories evaluated during a single iteration.
RAD	I	C	Number of degrees in one radian.
S	I/0	N/C	Target sensitivity matrix.
SCMASS	I	C	S/C initial mass.
SøUT	0	C	Target sensitivity matrix in print-out units.
STATEO	I	c	Initial state.
STøL	I	N/C	Test variable for determining linearly dependent columns of the weighted sensitivity matrix.
STøRE	I/O	c	Blank common variable.
TARGET	I/O	N/C	Vector of desired target values.
TARØUT	0	C	Desired target values in print-out units.
TARTøL	I/0	N/C	Vector of all possible target tolerances.
THRUST	I	C	Mission thrust controls.
TLゆW	I	N/C	Limit of target error index below which optimization only is performed.
TM	I	c	Number of seconds in a day.
TSTART	I	C	Reference trajectory start time.
TUP	I	N/C	Limit of target error index above which simultaneous targeting and optimization is discontinued and targeting only is initiated.


Variable	Input/ Output	Namelist/ Common	Definition
$\mathbf{U}^{+}$	$\emptyset$	C	Selection of controls for the specified mode run.
ULIMIT	I	N	Control bounds.
UWATE	$1 / \varnothing$	N/C	User input weights on controls.
VPARK	$\phi$	C	Parking orbit velocity at injection.
WE	$\emptyset$	C	Vector of target weights.
XMM	$\emptyset$	C	Mean motion of $\mathrm{s} / \mathrm{c}$ in parking orbit.
AZMAX	I/ $/$	N/C	Maximum launch azimuth constraint.
AZMIN	I/ $/ \varnothing$	N/C	Minimum launch azimuth constraint.
IASTM	I/ $/ \varnothing$	N/C	Flag specifying the method of computing the targeting sensitivity matrix.
PRNML	I	N	Logical flag specifying that the namelist STRAJ be printed (TRUE) or not be printed (FALSE).
RP 1	I/ $/ \varnothing$	$\mathrm{N} / \mathrm{C}$	Inner parking orbit radius.
TGFUEL	I/ $/ \square$	N/C	Fuel capacity of tug.
TUGISP	$I / \varnothing$	N C	Specific impulse of tug.
TUGWT	I/ $/ \varnothing$	N/C	Dry weight of tug.
TUG	$\emptyset$	C	Logical flag designating injection computations.

## Local Variables:

Variable Definition

KめUNT
Control counter.
TIME

Mission time corresponding to the implementation of controls chosen from the elements of the THRUST array.

Subroutines Called: ZEROM, COPY, UXV, UNITV, SCALE, SUB, VECMAG, UDめTV, PRINTD, INJECT

Calling Subroutines: T$\neq P S E P$
Common Blocks:
(BLANK), CØNST, CYCLE, EDIT, EPHEM, GRID, PRINT, PRINTH, TTME, T $\varnothing$ P1, T $\emptyset$ P2, TRAJ 1, TRAJ $2, ~ W \emptyset R K$, IASTM, TUG



3.2.3 Subroutine: DELU (WS, WG, DPSI, DP2, NT, NU, NTYPE, SINV, PG2, DU1, DU2, DU).

Purpose: To compute the contiol correction based upon the method of projected gradients. The projected gradient algorithm used in TOPSEP is described as follows. Let:

$$
\begin{aligned}
& U=\text { Set of control parameters; } \\
& E=\text { Set of target errors; } \\
& F=\text { Performance index; } \\
& G=\text { Performance gradient }\left(\frac{\partial \mathrm{F}}{\partial \underline{U}}\right) ; \\
& T=\text { Set of targets; } \\
& S=\text { Sensitivity matrix } \quad\left(\frac{\partial T}{\partial \underline{U}}\right) ;
\end{aligned}
$$

We seek a control correction $\Delta \underline{U}$ to increase the performance (decrease the cost) and decrease the target error. Then

$$
\Delta \underline{\mathrm{U}}=\alpha \Delta \underline{\mathrm{U}}_{1}+\beta \Delta \underline{\mathrm{U}}_{2}
$$

where

$$
\begin{aligned}
& \Delta \underline{U}_{2}=-S^{T}\left(S^{T}\right)^{-1} \underline{E} \\
& \Delta \underline{U}_{1}=\frac{-\sqrt{\Delta \mathrm{U}_{2}^{T} \Delta U_{2}}(\mathrm{I}-\mathrm{P}) \underline{G}}{\|(\mathrm{I}-\mathrm{P}) \mathrm{G}\|}
\end{aligned}
$$

and

$$
P=S^{T}\left(S S^{T}\right)^{-1} S
$$

$$
\begin{aligned}
& \alpha= \begin{cases}0, & \text { for targeting only } \\
1, & \text { for optimization }\end{cases} \\
& \beta= \begin{cases}0, & \text { for optimization only } \\
1, & \text { for targeting }\end{cases}
\end{aligned}
$$

Remarks:

$$
\Delta U_{1}=\operatorname{REGI} \phi_{N} \cdot * \quad(I-P) G
$$

$$
\operatorname{REGI} \phi_{N}=-\sqrt{\frac{E^{T}\left(S S^{T}\right)^{-1} E *\left(1+D P 2^{2}\right)}{G_{G}-(S G)^{T}\left(S S^{T}\right)^{-1}}(S G)}
$$

Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
DPSI	I	A	Target error to be removed   during current iteration.
DP2	I/O	A	Estimated region of linear-   ity in the control space.


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
DU	0	A	Total control correction vector (not scaled).
DU1	0	A	Performance control vector (not scaled).
DU2	0	A	Constraint control correction (not scaled).
NT	I	A	Number of controls.
NTYPE	I	A	Flag designating the type of control correction to be made during the current iteration.
NU	I	A	Number of controls.
PG2	0	A	Magnitude of the projected gradient squared.
SINV	0	A	Pseudo-inverse of the target sensitivity matrix if NU NT ; actual inverse of target sensitivity matrix if $\mathrm{NU}=$ NT.
WG	I	A	Performance gradient.
WS	I	A	Target sensitivity matrix.
ALPHA   Variable			

Variable
ALPHA

BETA

C1

Scale on DUl when computing DU; if not making a performance correction ALPHA set to 0 , otherwise set to 1 .

Scale on DU2 when computing DU; if not making a constraint correction BETA set to 0 , otherwise set to 1 .
$E^{T} *\left(S * S^{T}\right)^{-1} * E$

Variable Definition

C2
$G^{T} * G$
c3
$(S * G)^{T} *\left(S * S^{T}\right)^{-1} *(S * G)$

P ( $=\mathrm{W} \emptyset \mathrm{RK}$ (43))
REGIめN

SG (=WøRK (37))
S*G

SST (=WøRK (1))

Subroutines Called: CøPY, INVSQM, MMAB, MMABT, MMATB, MMATBA, ZERGM Calling Subroutines: SIZE

Common Blocks: EDIT, WøRK



3.2.3A	DIRECT (DU1, DU2, DU, SINV, ULIMIT, WG, WS, WU, NUD, NTD)
Purpose:	To compute the control correction, ALS.
Method:	The method of projected gradients is used to com-
	pute $\Delta \underline{\underline{u}}$. Preliminary computations include:
	- Determining linear dependency among columns of the sensitivity matrix, $S$, thus averting numerical problems when computing the pseudoinverse of $S$.
	o Determining which controls lie on their respective bounds, if any, and which control corrections violate the control constraints.
	o Determining the maximum allowable scale factor for the current iteration.

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
BIG	I	C	Large constant, 1.E20.
CTHETA	0	c	Cosine of optimization angle.
dFmax	I	C	Maximum increase allowed in the cost index (F) per iteration.
DPSI	0	c	Target error to be removed during current iteration.
DP2	I/ 0	c	Estimated region of linearity in the control space.



Variable	Input/ Output	Argument/ Common	Definition
1.dxCSW:	I	C	Blank common storage location for the original weighted performance gradient when a number of controls must be dropped during an iteration.
LめCSWS	I	C	Blank common storage location for the original weighted sensitivity matrix when a number of controls must be dropped during an iteration.
MPRINT	I	C	Array of topsep print flags.
NT	I	C	Number of targets.
NTD	I	A	Integer used to variably dimension SINV and WS.
NTYPE	I	C	Flag designating the type of control correction to be made during an iteration.
NU	I	C	Number of controls.
NUD	I	A	Integer used to variably dimension DU, DU1, DU2, SINV, ULIMIT, WG, WS and WU.
QSCALE	I	C	Scale on the cost index when simultaneously targeting and optimizing.
PCT	I	C	Percentage of the target error to be removed during an iteration.
P1	0	C	Vector of net cost values for the reference and all trial trajectories evaluated during a single iteration.


Variable	Input/ Output	Argument/ Common	Definition
P1P2	0	C	Vector of combined target error indices and net cost values for the reference and all trial trajectories evaluated during a single iteration.
P2	0	C	Vector of target error indices for the reference and all trial trajectories evaluated during a single iteration.
S	I	C	Target sensitivity matrix.
SINV	0	A	Test variable for determining linearly dependent columns of the weighted sensitivity matrix.
U	I	C	Selection of controls.
ULIMIT	I	A	Bounds on controls.
WE	I	C	Vector of target weights.
W G	0.	A	Weighted performance gradient.
W S	0	A	Weighted sensitivity matrix.
WU	0	A	Control weights.
DP1DS	0	C	The first derivative of the net cost function (P1) evaluated at $\boldsymbol{\gamma}=0$.
DP12DS	0	C	The first derivative of the combined net cost function and target error function (P1P2) evaluated at $\gamma=0$.
DP2DS	0	C	The first derivative of the target error function (P2) evaluated at $X=0$.

Local Variables:




3.2.4 Subroutine: FEGS

Purpose:

Method:

To calculate the performance index, the target errors, the targeting sensitivity matrix, and the performance gradient. FEGS provides the interface between the abstract control späce targeting, and optimization search, and the actual low thrust trajectory generation. Trajectory parameters such as

1) Initial conditions
o ecliptic state or equitional state relative to primary body;
o initial orbital elements o spacecraft mass;
2) Spacecraft engine characteristics;
3) Thrust controls;
are reset as specified by non-zero values of the H array (control perturbations). Subsequently, the trajectory propagator is called and trajectory information is collected.

Subroutine FEGS performs two major functions for TOPSEP depending upon the input value of IT. If IT equals 1 , the target sensitivity matrix $(S)$ and the performance gradient (G) are computed by finite differencing. A trajectory is generated for each
perturbed control resulting in the computation of a column of the $S$ matrix and an element of the $G$ vector. The perturbations to the controls are input in PERT, a variable in the argument list. If IT is -1 , a trial trajectory is generated. In this case all the specified trajectory parameters are reset before the trajectory propagator is called. After the trajectory is generated, the performance index ( $F$ ) and the target errors (E) are evaluated. If IT is 0 , a grid trajectory is generated. Basically the same logic flow is followed as for the trial trajectory generation. The primary differences are that only one element of PERT is non-zero and that no trajectory event times are stored in blank common. When the STM method of targeting is flagged (IASTM = 1) subroutine STMTAR constructs F, E, and $S$. Subroutine FEGS only generates the trial trajectories and the final reference trajectory.

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
E	0	$C$	Target errors of the current   trajectory.
ENGINE (1)	I/O	$C$	Power from solar array at 1 au.


Variable	Input/ Output	Argument/ Common	Definition
ENGINE (10)	I/O	C	Exhaust velocity.
F	1	c	Performance index.
FTR(1)	I	C	Performance index of the reference trajectory for the current iteration.
G	0	C	Performance gradient.
IT	I	A	1, generate perturbed trajectories and compute $S$ and $G$
		-	0 , generate a grid trajectory and compute $F$ and $E$   -1, generate a trial trajectory and compute $F$ and $E$.
ITERAT	I	C	Iteration counter (IT = 1 or -1 ); Control identifier for grid submode ( $\mathrm{IT}=0$ ).
KMAX	I	C	Number of thrust controls (THRUST (I, J)) chosen to be elements of $\underline{U}$.
LøCM	I	C	Blank common location of the current $s / c$ mass.
LøCTS	I	C	Blank common location of event times for the reference and all trial trajectories in a single iteration.
NLP	I	C	Launch planet identifier (normally Earth).
NT	I	C	Number of targets.
NTR	I	c	Trial trajectory counter.


Variable	Input/ Output	Argument/   Common	Definition
NU	I	C	Number of controls.
PERT	I	A	Vector of control perturbations.
PSI	I/0	C	Out of plane $\Delta V$ direction angle at injection.
S	0	C	Target sensitivity matrix.
SCMASS	I/O	C	S/C mass corresponding to the trajectory start time (TSTART).
Stateo	I/O	C	S/C state corresponding to the trajectory start time (TSTART).
STATR	I/0	C	Array of initial states for the reference and all trial trajectories evaluated during the current iteration.
TARGET	I	C	Vector of desired target values.
TARN@M	0	c	Target values evaluated for the reference trajectory.
TARPAR	0	C	Target values of the most recently generated trajectory.
TARTR	I/O	C	Target values of the reference and all trial trajectories evaluated during a single iteration.
TM	I	C	Conversion constant: Number of seconds in a day.
TSTART	I/O	C	Trajectory start time.


Variable	Input/ Output	Argument/ Common	Definition
U	I	C	Selection of controls for the specified mode run.
RPO	$I / \emptyset$	C	Initial periapsis radius
RAO	I/ $\emptyset$	C	Initial apoapsis radius
XINCO	$I / \emptyset$	C	Initial inclination
$\emptyset \mathrm{MEGAO}$	$I / \emptyset$	C	Intiial longitude of ascending node
S $\emptyset$ MEGO	$I / \emptyset$	C	Initial argument of periapsis
TRUANO	$I / \emptyset$	C	Initial true anomaly
Local Variables:			
Variable			Definition
NCTR $\emptyset \mathrm{L}$		The nom perturb	value of the control plus its
ITRIAL		Trial s	counter.
KALL		Stateme returns	umber to which the logic flow er $S$ and $G$ are computed.
KøUNT		Control	x.
Subroutines Called: CARTES, CøNIC, CøPY, PRINTI, VECMAG, MAT			

Calling Subrouicines: GRID, PGM, TøPSEP
Common Blocks: (BLANK), C $\emptyset$ NST, EDIT, EPHEM, TIME, TøP1,TøP2, TRAJ1, TRAJ2, WøRK




3.2.5 Subroutine: FGAMA (IS)

Purpose:

Method:

Remarks:

To evaluate the net cost index and target error index of a trial trajectory. Subroutine FGAMA scales the control correction $\Delta \mathrm{u}$ by GAMMA(NTR), which is computed in GENMIN, and calls FEGS to generate a trial trajectory. Preceding the call to FEGS for the second trial trajectory generation, a computation is made to estimate the scale factor which will reduce the value of the final spacecraft mass to some specified limit (FTR(1) - DF). This scale factor becomes the maximum allowable scale for future trial steps, unless the scale is further restricted by explicit control bounds. However, no additional constraint is placed on the scale factor if the final spacecraft mass is increased by taking larger trial steps in the $\Delta \underline{u}$ direction. The scale factor is not restricted due to the performance constraint prior to the second trial step for lack of information to make an accurate estimate.

The cost index $F$ is actually the negative of the final spacecraft mass. If the cost index is decreasing (becoming more negative) in the $\Delta \underline{u}$ direction the estimation loop is bypassed.

If the loop must be entered because the cost
is increasing, a modification must be made to the cost index values (FTR) so that the routines MINMUM and THPM may be used. To find the minimum value of the final spacecraft mass the negative of the cost index is minimized in the $\Delta \underline{u}$ direction.

## Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
DFMAX	I	C	Maximum percentage decrease allowed in the s/c.final mass for iteration.
E	0	C	Target erfors of the current trajectory.
ETøL	I	c	Target tolerances.
ETR	I/0	C	Array of target errors of the reference and all trial trajectories evaluated during a single iteration.
F	0	c	Cost index of the current trajectory.
FTR	I/O	c	Vector of cost indices of the reference and all trial trajectories evaluated during a single iteration.
G	0	c	Performance gradient.
gamMA	I	C	Vector of trial trajectory control change scale factors.
GTRIAL (2)	I/O	C	Maximum allowable value for GAMMA.


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
IS	I	A	Trial trajectory number.
LøCDU	I	C	Blank common location of the control correction vector $\Delta \underline{u}$.
LøCSDU	I	C	Blank common location of the trial step (GAMMA (NTR)* $\Delta \underline{U}$ ); used as such only when generating trial trajectories.
L $\emptyset$ CSI	I	C	Blank common location of the pseudo inverse of the weighted sensitivity matrix.
NT	I	C	Number of targets.
NTR	0	C	Trial trajectory counter (NTR $=1$ for the iteration reference trajectory).
NU	I	C	Number of controls.
ØSCALE	I	C	Scale on the net cost index P1 when simultaneously targeting and optimizing.
P1	0	C	Vector of net cost values for the reference and all trial trajectories evaluated during a single iteration.
P1P2	0	C	Vector of combined target error indices and net cost values.
P2	0	c	Vector of target error indices for the reference and all trial trajectories evaluated during a single iteration.
TARPAR	0	C	Target values of the most recently generated trajectory.


Variable	Input/   Output	Argument/   Common	Definition
WE	$I$	$C$	Vector of target weights

## Local Variables:

Variable
DF

DPIDS

EPRIME (=WøRK (1))

FMAX

FTEST (=WøRK (55))

GDU ( $=\mathrm{W} \emptyset \mathrm{RK}$ (13))
$\operatorname{GTR}(1)(=\mathrm{W} \emptyset \mathrm{RK}(50))$
$\operatorname{GTR}(2)(=\mathrm{W} \emptyset \mathrm{RK}(51))$
GTR (3) (=WøRK(52))
$\operatorname{GTR}(4)$ (=WøRK(53))
GTS $\quad(=W \emptyset \mathrm{RK}(7))$

IERR

Definition
Maximum decrease allowed in the final s/c mass.

First derivative of P1 evaluated at $\operatorname{GAMMA}(1)=0$.

Vector of target errors divided by tolerances.

Estimated maximum cost evaluated in the $\boldsymbol{\Delta} \underline{u}$ direction.

Vector of cost indices corresponding to the scale factors GTR(I), $I=1,3$ where $\operatorname{GTR}(1)<\operatorname{GTR}(2)<\operatorname{GTR}(3)$.

Linearized approximation to change in cost function required to perform a minimum - norm correction back to the targeted manifold.

GAMMA (1).
$\operatorname{MIN}\{\operatorname{GAMMA}(2), \operatorname{GTR}(4)\}$
$\max \{\operatorname{GAMMA}(2), \operatorname{GTR}(4)\}$
Scale factor corresponding to FMAX.
Internediate storage in GDU computation.

Flag set to 1 to direct MINMUM and THPM to compute GTR (4) given F(GTR (4)) using the prescribed polynominal expansion.

Subroutines Called: C $\emptyset P Y$, FEGS, MAT $\varnothing$ UT, MINMUM, MMAB, MMATB, MMATBA, NEGMAT, SCALE, THPM, ZERØM

Calling Subroutines: GENMIN
Common Blocks: (BLANK), EDIT, T $\emptyset \mathrm{Pl}, \mathrm{T} \emptyset \mathrm{P} 2$, W $\emptyset \mathrm{RK}$




3.2.6 Subroutine:	GENMIN (X, Y, DYDXI, GTRIAL, YES, MIN)
Purpose:	To choose the best control change scale factor   based on a one-dimensional search in the new   control vector direction.
Remarks:	The best scale factor will be defined as that   which provides for the minimum value of the net
cost-function as described in subroutine SIZE.	
The one dimensional search will consist of a	
series of second and third order polynomial	
curve fitting techniques.	

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument (A)/ } \\ \text { Common(C) } \\ \hline \end{gathered}$	Definition
DYDX1	I	A	Value of the first derivative of the net cost function evaluated at $X(1)=0$
GTRIAL (1)	I	A.	If $X(I+1)<\operatorname{GTRIAL}(1) * X(I)$, then $X(I+1)$ is set equal to GTRIAL(1) *X(I)
GTRIAL (2)	I	A	Maximum allowable scale factor value
GTRIAL (3)	I	A	The percentage of $\mathrm{X}(\mathrm{I}+1)$ to $X(I)$ above which the search will be terminated.
GTRIAL $(4)$	I	A	The percentage of YES (I) to Y ( $\mathrm{I}+2$ ) below which the search is terminated
GTRIAL (5)	I	A	Flag designating the extent of curve fitting in the new control direction (i.e., $\operatorname{GTRIAL}(5)=4$ signifies all four techniques may be used)
MIN	$\emptyset$	A	Pointer designating the minimizing scale factor
X(1)	I	A	$X(1)=0$, value of scale factor associated with current net cost function value

Input/Output: - ContInued

Variable	Input/ Dutput	Argument (A)/ Common (C)	Definition
X(2)	I	A	Value of scale factor for first trial net cost-function evaluation
X(3)	$\emptyset$	A	Scale factor returned from "two point, one slope" curve fitting routine
$\mathrm{X}(4)$	$\emptyset$	A	Scale factor returned from "three point, one slope" curve fitting routine
X(5)	$\emptyset$	A	Scale factor returned from "three point" curve fitting routine
X (6)	$\emptyset$	A	Scale factor returned from "four point" curve fitting routine
Y (1)	I	A	Value of current net cost-function
$Y(2) \rightarrow Y(6)$	$\emptyset$	A	Trial net cost-function values associated with $X(2) \rightarrow X(6)$
YES	$\emptyset$	A	Vector of estimates of net cost-function values returned from the curve fitting routines

## Local Variables:

Variable
MAX

MINSV

Definition
The number of trial net cost-function values which must be tested for the local minima

The number of a trial net cost-function value which is a local minimum but not necessarily the global minimum
Subroutines Called: BUCKET, FGAMA, MINMUM
Calling Subroutines: ..... SIZE
Common Blocks: ..... None





3.2.7A Subroutine: GRID

Purpose:	To generate a family of trajectories in orde
	to obtain performance and error index information.
Method:	Consider an NU-dimensional control space and a
	nominal control vector $\underline{\underline{u}}$. A grid of trajectory
	target error indices and performance indices is
	generated based upon two steps from the nominal
	control vector in each control direction. The
	first step in the $i^{\text {th }}$ control direction is
	specified by the $i^{\text {th }}$ element of PRTURB. The
	second step for the same control is specified
	$\text { by } \operatorname{HMULT}_{i} \quad * \quad \text { PRTURB }_{i} .$
Remarks:	The user can take advantage of the cycling
	capability of the TOPSEP mode to specify more
	than two steps in each of the control directions
	by stacking cases

Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
CNVRTT	I	C	Conversion constants from   internal target units to   output target units.
E	I	C	Target errors of current   trajectory.
ETR $(1,1)$	0	$C$	Target error index of   nominal trajectory.


Variable	Input/ Output	Argument/ Common	Definition
F	I	C	Performance index of current trajectory.
FTR(1)	0	c	Performance index of nominal trajectory.
HMULT	I	C	Vector containing the scale on the elements of PRTURB for the second step in each control direction.
Iterat	0	C	Index specifying which control element is being changed.
KøNVRJ	0	C	Index specifying the step number in the control direction under consideration.
LABELT	I	C	Hollerith labels for specified targets.
LøCDU1	I	C	Location in blank common of the first control steps.
LOCDU2	I	C	Location in blank common of the second control steps.
LøCEM1	I	C	Location in blank common of the target error indices associated with the first control steps.
LøCEM2	I	C	Location in blank common of the target error indices associated with the second control steps.
L¢CEN	I	C	Location in blank common of the target errors of the nominal trajectory.
LfdCE1	I	${ }_{6}$	Location in blank common of the target errors associated with the first control steps.


Variable	Input/ Output	Argument/ Common	Definition
LめCE2	I	C	Location in blank common of the target errors associated with the second control steps.
LøCF1	I	C	Location in blank common of the performance indices associated with the first control steps.
LめCF2	I	C	Location in blank common of the performance indices associated with the second control steps.
NT	I	C	Number of targets.
NTR	I	C	Flag used to set the branch of logic followed in FEGS (always set to 1 ).
NU	I	C	*Number of controls.
PRTURB	I	C	Perturbations to the controls for the first step in each control direction.
ST¢RE	I	C	Blank common variable for storage.
WE	I	C	$\begin{aligned} & \text { Vector used to compute } \\ & \text { target error index, containing } \\ & \qquad \frac{1}{\operatorname{TART} \emptyset \mathrm{~L}(\mathrm{I})} \end{aligned}$
WøRK	I	C	Working storage.

## Local Variables:

Variable
Definition
PERT ( = UWATE)
Vector used to transfer the control steps to FEGS where F and E are computed.

## Variable Definition

WETDL ( = S) | Array whose off-diagonal elements are |
| :--- |
| zero and whose diagonal elements are |
| $\operatorname{WE}(\mathrm{I})$ |

Subroutines called: C $\emptyset$ PY, FEGS, MMATBA, PRINT2, ZER $\varnothing$ M
Calling Subroutines: TøPSEP
Common Blocks: (BLANK), EDIT, GRID, PRINTH, T $\emptyset \mathrm{P} 1, \mathrm{~T} \varnothing \mathrm{P} 2$, W $\emptyset \mathrm{RK}$

## Logic Flow:




### 3.2.7B Subroutine: INJECT

## Entry Points:

TUGINJ
Purpose: $\quad$ To generate packing orbit transfer data
Method:

Remarks:
Subroutine INJECT consists of two related computational blocks. Each block corresponds to an entry point.

- INJECT, computation of outer parking orbit parameters: PRO, PINC, PTO, DELVO, CHI, and PSI.
- TUGINJ, computation of inner parking orbit and fuel requirements for the parking orbit transfer.

Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
AZMAX	I	C	Maximum launch azimuth constraint.
AZMIN	I	C	Minimum launch azimuth constraint.
CHI	I/O	C	In-plane $\Delta V$ direction angle at   injection.
DELVO	I/O	C	$\Delta V$ Vt injection.
ECEQ	I	$C$	Transformation matrix from Earth   equatorial to ecliptic.
H	I	C	Array of control perturbations


Variable	Input/ Output	Argument/ Common	Definition
INJIdC	I	C	Location of injection parameters in control vector.
NLP	I	C	Launch planet designation.
PINC	I/0	C	Ecliptic inclination of outer parking orbit.
PMASS	I	C	Vector of planetary masses.
PRO	I/O	C	Geocentric radial distance to S/C at injection.
PSI	I/O	C	Out-of-plane $\Delta V$ direction angle at injection.
PTO	I/0	C	Injection time relative to launch epoch.
RAD	I	C	Angle conversion constant (radians to degrees).
RP 1	I	C	Inner parking orbit radius.
SGMASS	I	C	Initial S/C mass.
STATEO	I/O	C	Initial S/C state.
TGFUEL	I	C	Fuel capacity of tug vehicle.
TUG	I	C	Logical flag specifying injection computations if TRUE.
TUGISP	I	C	Specific impulse of tug vehicle.
TUGWT	I	C	Dry weight of tug vehicle.
U	I	C	Control vector.
VPARK	I/0	C	Parking orbit velocity at injection.
XMM	I/0	C	S/C mean motion in outer parking orbit.

## Local Variables:

Variable
ANGLE (=WØRT(30))
DELVA $(=W \emptyset R K(32))$
DELVB $(=W \emptyset R K(33))$
EC $\quad(=W \emptyset R K(40))$

EQIMAX (=WORK (28))
EQIMIN (=WORK(29))
EQ11 (=WØRK(31))

EQ12 ( $=\mathrm{W} \emptyset \mathrm{RK}(27))$

GRAV
PHILAT
STATEQ (=WORK(21))
WFUELA (=WORK(35))
WFUELB (=WORK(36))
WFUELT (=WøRK(38))
WTゆT (=WORK(34))

XECC

Definition

Plane change required during parking orbit transfer. .

First impulsive $A V$.
Second impulsive $\boldsymbol{A} V$.
Eccentricity of hyperbolic escape orbit for single maneuver trajectory.

Maximum equatorial inclination constraint.
Minimum equatorial inclination constraint.
Equatorial inclination of inner parking orbit.

Equatorial inclination of outer parking orbit.

Gravitational constant.
Latitude of launch site.
Initial state in equatorial coordinates.
Fuel required for first tug maneuver.
Fuel required for second tug maneuver.
Total fue1 requirement.
Total tug weight plus payload prior to any maneuvers.

Eccentricity of outer parking orbit.

Subroutines Called: ADD, MMATB, SCALE, UDOTV, UNITV, UXV, VECMAG ANGMOD, CARTES, CONIC, COPY, MMAB NEGMAT

Calling Subroutines: PGM, FEGS, TREK, STMTAR
Common Blocks: C $\emptyset$ NST, EPHEM, T $\emptyset \mathrm{P} 1, \mathrm{~T} \emptyset \mathrm{P} 2, \mathrm{TRAJ} 1, \mathrm{TRAJ} 2, \mathrm{TUG}$, WøRK, PRINTH

Logic Flow:
See listing
3.2.8 Subrou亡ine: MINMUM (X, Y, DYDX1, XMIN, YMIN, IERR)

## Entry Points:

THPM
THP $\$$ SM
FgPMIN
Purpose:
To estimate a local minimum of the cost function $Y(X)$ and the minimizing independent variable $X^{*}$ by fitting selected sample points with a quadratic or cubic polynomial.

## Input/Output:

Variable
DYDX1

IERR

X

XMIN
$\mathbf{Y}$. $\mathbf{I}$.

## YMIN

Argument (A)/ Common (c) Definition

A

A

A

A

A
, A

Value of the first derivative of $Y$ with respect to $X$ evaluated at $X(1)=0$. Flag whose non-zero value indicates that two of the given X values are identical.

Vector of independent variable sample values

Minimizing independent variable X*

Vector of cost function sample values

Local minimum of the cost

## Local Variables:

## Variable

A

## Definition

Cubic polynomial coefficients

Subroutines Called: None
Calling Subroutines: GENMIN, FGAMA
Common Blocks: None
Method:
The function $Y(X)$ is approximated by either a second or third order polynomial in order to compute analytically the minimizing parameter X*. The polynomial approximation is of the form
$Y(X) \cong P(X)=\sum_{i=0}^{n} \quad a_{i} X^{i}$
where $n=2$ or $n=3$. The following four cases describe the method of approximation and the resulting minimization process

Case 1: Y is fitted with a quadratic polynomial based on

1) $\mathrm{Y}(0)$
2) $\left.\frac{d Y}{d X}\right|_{X=0}$
3) $Y\left(X_{0}\right)$ where $X_{o}>0$ is an initial estimate of $X^{*}$

The quadratic polynomial coefficients are calculated from the formulae

$$
\begin{aligned}
& a_{0}=Y(0) \\
& a_{1}=\left.\frac{d Y}{d X}\right|_{X=0} \\
& a_{2}=\frac{Y\left(X_{0}\right)-a_{o}}{X_{0}^{2}}+\frac{a_{1}}{X_{o}}
\end{aligned}
$$

The independent variable value minimizing the ' quadratic is
$X *=\frac{-{ }^{a} 1}{2 a_{2}}$

## Case 2

$Y$ is fitted with a cubic polynomial based on:

1) $Y(0)$
2) $\left.\frac{d Y}{d X}\right|_{X=0}$
3) $Y\left(X_{0}\right)$ where $X_{0}>0$ is a sample value
4) $Y\left(X_{1}\right)$ where $X_{1}>0$ is a sample value

The cubic polynomial coefficients are calculated from the following formulae

$$
\begin{aligned}
& \lambda=\max \left\{x_{0}, x_{1}\right\} \\
& \alpha=\min \left\{x_{0}, x_{1}\right\} / \lambda \\
& a_{0}=Y(0)
\end{aligned}
$$

$$
a_{1}=\left.\frac{d Y}{d X}\right|_{X=0}
$$

$$
a_{2}=\left[\frac{Y(\lambda \alpha)-\alpha^{3} Y(\lambda)}{1-\alpha}-\lambda \alpha(1+\alpha) a_{1}\right.
$$

$$
\left.-\left(1+\alpha+\alpha^{2}\right) a_{0}\right]\left(\lambda^{2} \alpha^{2}\right)^{-1}
$$

$$
a_{3}=\left[\lambda \alpha a_{1}+a_{0}(1+\alpha)+\frac{\alpha^{2} Y(\lambda)-Y(\alpha \lambda)}{1-\alpha}\right]\left(\lambda^{3} \alpha^{2}\right)^{-1}
$$

The independent variable value, $X^{*}$ minimizing $P$ is

$$
x^{*}=\left[-a_{2}+\sqrt{a_{2}^{2}-3 a_{3} a_{1}}\right]\left(3 a_{3}\right)^{-1}
$$

A quadratic polynomial is fitted to $Y\left(X_{0}\right), Y\left(X_{1}\right)$, $X\left(X_{2}\right)$ where $X_{0}, X_{1}, X_{2}$ are greater than or equal to zero and represent sample values of $X$ (not necessarily the same values as in prior cases). It is assumed that:

1) $X_{0}<X_{1}<X_{2}$
2) $Y\left(X_{0}\right)>Y\left(X_{1}\right)<Y\left(X_{2}\right)$

The formulae for the quadratic coefficients are as follows:
$b_{i j}=X_{i} X_{j}$

$$
c_{i j}=x_{i}+x_{j}
$$

$$
d_{i j}=x_{i}-x_{j}
$$

$a_{o}=\frac{b_{12}}{d_{01} d_{02}} Y\left(X_{0}\right)+\frac{b_{02}}{d_{10} d_{12}} Y\left(X_{1}\right)+\frac{b_{01}}{d_{20} d_{21}}+Y\left(X_{2}\right)$

$$
\begin{aligned}
& a_{1}=-\frac{C_{12}}{d_{01} d_{02}} Y\left(X_{0}\right)-\frac{C_{02}}{d_{10} d_{12}} Y\left(X_{1}\right)-\frac{C_{01}}{d_{20} d_{21}} Y\left(X_{2}\right) \\
& a_{2}=\frac{Y\left(X_{0}\right)}{d_{01} d_{02}}+\frac{Y\left(X_{1}\right)}{d_{10} d_{12}}+\frac{Y\left(X_{2}\right)}{d_{20} d_{21}}
\end{aligned}
$$

The independent variable value is the same as in Case 1 .
$X^{*}=\frac{-a_{1}}{2 a_{2}}$

## Case 4

A cubic polynomial is fitted to $Y\left(X_{0}\right), Y\left(X_{1}\right)$, $Y\left(X_{2}\right), Y\left(X_{3}\right)$. The formulae for the polynomial coefficients are as follows

$$
\dot{Y}_{i}=Y\left(X_{i}\right)
$$

$$
B_{i j}=x_{i} x_{j}
$$

$$
d_{i j}=x_{i}-x_{j}
$$

$$
A_{3}=-\frac{Y_{0}}{d_{10} d_{20} d_{30}}+\frac{Y_{1}}{d_{10} d_{21} \mathrm{~d}_{31}}-\frac{Y_{2}}{d_{20} \mathrm{~d}_{21} \mathrm{~d}_{32}}+\frac{Y_{3}}{d_{30} \mathrm{~d}_{31} \mathrm{~d}_{32}}
$$

$$
A_{2}=\frac{\left(X_{1}+X_{2}+X_{3}\right)}{d_{10} d_{20} d_{30}}-Y_{a}-\frac{\left(X_{0}+X_{2}+X_{3}\right)}{d_{10} d_{21} d_{31}}-Y_{1}+\frac{\left(X_{0}+X_{1}+X_{3}\right)}{d_{20} d_{21} d_{32}} \cdot Y_{2}
$$

$$
\frac{\left(X_{0}+X_{1}+X_{2}\right)}{d_{30} d_{31}{ }^{d_{32}}} \mathrm{Y}_{3}
$$

$$
A_{1}=-\frac{\left(B_{31}+B_{31}+B_{32}\right)}{d_{10} d_{20}{ }^{\mathrm{d}} 30} \cdot Y_{0}+\frac{\left(B_{20}+B_{30}+B_{32}\right)}{d_{10} d_{21} d_{31}} Y_{1}-\frac{\left(B_{10}+B_{30}+B_{31}\right)}{d_{20} d_{21} d_{32}}+
$$

$$
\frac{\left(\mathrm{B}_{10}+\mathrm{B}_{20}+\mathrm{B}_{21}\right)}{\mathrm{d}_{30} \mathrm{~d}_{31} \mathrm{~d}_{32}} \mathrm{Y}_{3}
$$

$$
A_{0}=Y_{0}-\left(A_{1} X_{0}+A_{2} X_{0}^{2}+A_{3} X_{0}^{3}\right)
$$

The independent variable value minimizing $P$ is the same as that in Case 2:

$$
X^{*}=\left[-A_{2}+\sqrt{A_{2}^{2}-3 A_{3} A_{1}}\right]\left(3 A_{3}\right)^{-1}
$$






This process continues until convergence has been achieved or the maximum number of iterations has been reached.

Remarks:
A check is made on the remaining central processor, (CP), time after every iteration. If the estimated processor time for the next iteration is larger than the remaining $C P$ time, the iteration process is terminated.

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
E	I	c	Target errors evaluated for the current trajectory.
EMAG	I	C	Target error index.
EPS $\emptyset \mathrm{N}$	I	C	Scalar multiple for control perturbations.
ETR ( $\mathrm{I}, 1$ )	0	C	$\mathrm{I}=1$, NT ; Target errors of the reference trajectory for the current iteration.
F	I	C	Performance index of the current trajectory.
FTR (1)	0	C	Performance index of the reference trajectory for the current iteration.
gAMA	I	C	Scale factor providing the best control change.
NTR	I	C	Trial Trajectory counter.
Nu	I	C	Number of controls.


Variable	Input/ Output	Argument/ Common	Definition
H	I/O	C	Control perturbation array.
INJLめC	I	C	Index on the control preceding the injection controls in the vector $\underline{U}$.
INSG	I/0	C	Flag. set when $S$ and $G$ are not calculated for current iteration.
ITERAT	0	C	Iteration counter.
KMAX	I	C	Number of thrust controls (THRUST (I, J)) chosen to be mode controls (U).
Kı@NRJ	I	c	Convergence flag.
L $\emptyset$ CDU	I	C	Blank common location of the total control correction vector (not scaled by GAMA).
LøCDU1	I	C	Blank common location of the performance control correction vector (not scaled by GAMA).
LøCDU2	I	C	Blank common location of the constraint control correction vector (not scaled by GAMA).
LDCRFM	I	c	Blank common location of the $\mathrm{S} / \mathrm{C}$ masses evaluated at event times for the reference and all trial trajectories in a single iteration.
LめCSI*	I	C	Blank common location of the pseudo inverse of the weighted sensitivity matrix.


Variable	Input/ Output	$\begin{gathered} \text { Argument } \\ \text { Common } \\ \hline \end{gathered}$	Definition
LøCTS	I	C	Blank common location of event times for the reference and all trial trajectories in a single iteration.
L $\phi$ CUL	I	c	Blank common location of minimum and maximum control bounds (ULIMIT).
LøCWG*	I	C	Blank common location of the weighted performance gradient.
LøCWS*	I	C	Blank common location of the weighted sensitivity matrix.
LøCWU	I	c	Blank common location of the control weights.
LøCXR	I	c	Blank cormon location of the 6 -component state vectors associated with the event times of the reference and all the trail trajectories evaluated during a single iteration.
MIN	I	c	Index of the scale factor in the GAMMA vector which provides the best control correction.
NLP	I	c	Integer designation of the launch planet.
NT	I	C	Number of targets.
NTNP	I	C	Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration.


Variable	Input/ Output	Argument/ Common	Definition
PMASS	I	C	Vector of planetary gravitational constants.
PRTURB	I	C	Vector of control perturbations.
StATEO	I/ $\varnothing$	C	S/C state at trajectory start time for the reference trajectory of a given iteration.
STATR	I/ 1 ¢	C	Array of initial S/C states for the reference and all trial trajectories of a given iteration.
TARNøM	I/ 1	C	Target values evaluated for the reference trajectory
TARTR	I	C	Target values evaluated for the reference trajectory and all trial trajectories in a given iteration.
U	$I / \varnothing$	C	Selection of controls for the specified mode run.
WE	I	c	Vector of target weights.
XMM	$\emptyset$	C	Mean motion of S/C in parking orbit.
IASTM	I	c	Flag specifying method of computing the targeting sensitivity matrix.
IM ¢ $^{\text {DE }}$	$\emptyset$	C	TOPSEP submode flag.
TUG	I	C	Logical flag specifying tug computations (TRUE).

Local Variables:

Variable	Definition
K $\varnothing$ UNT	Index counter for the control vector U.
TCPITR	CP time for the first iteration (exclud-   ing reference trajectory generation).
TCPN $\emptyset W$	Current CP time relative to the start   of the job.
TCPREF	CP time from job start to the end of   the reference trajectory generation.

Subroutines Called: C $\emptyset$ PY, FEGS, MMATBA, PRINTO, SEC $\varnothing$ ND, SIZE, STEP, TEST, TTMELIM, ZERøM, STMTAR, INJECT

Calling Subroutines: TøPSEP
Common Blocks: (BLANK), C $\varnothing$ NST, EDIT, EPHEM, $\mathrm{T} \varnothing \mathrm{P} 1, \mathrm{~T} \varnothing \mathrm{P} 2, \mathrm{TRAJ} 1$, TRAJ2, WøRK, IASTM, TUG

Logic Flow:


Logic Flow:





3.2.10 Subroutine:	PRINTO (KFLAG)
Entry Points:	PRINT1, PRINT2, PRINT3
Purpose:	To provide print summaries for the various
Remarks:	TOPSEP submodes.
	An iteration summary, a perturbed trajectory
	summary, a grid summary, or a termination summary
	is printed depending upon the entry point called.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
CNVRTT	I	c	Target parameter conversion constants.
CNVRTU	I	C	Control parameter conversion constants.
DPSI	I	c	Target error to be removed during current iteration.
DP2	I	c	Region of linearity in control space.
E	I	C	Target errors.
EmAg	I	C	Target error index.
ETDI	I	C	Target tolerances.
ETR	I	C	Array of target errors for iteration trial steps.
F	1	c	Performance index.
FTR	I	C	Vector of performance indices for iteration trial steps.
G	I	C	Performance gradient.
gama	I	C	Optimum control change scale factor.


Variable	Input $/$ Output	$\begin{gathered} \text { Argument / } \\ \text { Common } \\ \hline \end{gathered}$	Definition
ITERAT	I	C	Iteration number．
KFLAG	I	A	Print specification flag．
KøNVRJ	I	C	Convergence flag．
KøUNT	I	C ：	Index on control under consideration．
LABELT	I	C	Hollerith target labels．
LøCDU	I	C	Blank common location of total control correction vector．
LめCDU1	I	C	Blank common location of performance control correc－ tion vector．
LøCDU2	I	C	Blank common location of the targeting control correction vector．
LめCEM1	I	C	Blank common location of the target error indices associated with the first step of the control grid．
LめCEM2	I＇	C	Blank common location of the target error indices associated with the second step of the control grid．
LøCEN	I	C	Blank common location of the target errors associated with the first step of the control grid．
LøCE2	I	C	Blank common location of the target errors asso－ ciated with the second step of the control grid．
LøCF1	I	C	Blank common location of the performance indices associated with the first step of the control grid．


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
LøCF2	I	C	Blank common location of the performance indices associated with the second step of the control grid.
NT	I	C	Number of targets.
Nu	I	c	Number of controls.
PG2	I	C	The square of the projected gradient magnitude.
PRTURB	I	C	Control perturbation.
S	I	c	The sensitivity matrix.
TARGET	I	C	Desired target values.
TARPAR	I	C	Target values of perturbed trajectories.
TARTR	I	C	Target values of the trial trajectories.
U	I	C	Control vector.
LABEL	I	c	Hollerith labels for all possible targets.
XINC	I	C	Ecliptic inclination.
AEGA	I	C	Longitude of ascending mode.
S¢MEGA	I	C	Argument of periapsis.
XMEAN	I	c	Mean anomaly.
TA	I	c	True anomaly.

## Local Variables:

$\operatorname{CDU}$ ( $=\operatorname{WORK}(121)$ )	The scaled control change (converted to output units).
DU1øUT ( = WøRK.(1))	Converted performance control change
DU2¢UT ( $=$ WØRK(21) )	Converted constraint control change.


Variable	Definition
ENФM ( $=\mathrm{W} \emptyset \mathrm{RK}(73)$ )	Converted target errors of the nominal trajectory.
ETLøUT ( $=\mathrm{W} \emptyset \mathrm{RK}(85)$ )	Converted target tolerances.
E1¢UT ( $=$ WØRK(61))	Converted target errors of the first step grid trajectories.
E2øUT ( $=$ WORK (67) )	Converted target errors of the second step grid trajectories.
TARøUT ( $=$ WORK(79) )	Converted target values.
UOLD ( $=$ WORK(101))	Converted control vector of previous iteration.
UøUT ( = WØRK(41))	Converted control vector.
WØRK	Working storage.
ISTØPN	Hollerith labels of requested stopping conditions.
$\mathrm{K} \not \mathrm{FF}$	Hollerith labels of actual stopping conditions.

Subroutines Called: SCALE, STEP
Calling Subroutines: FEGS, GRID, PGM, TREK, STMTAR
Common Blocks: (BLANK), GRID, PRINTH, T $\phi$ P1, T $\phi$ P2, W $\phi$ RK, TARGET


### 3.2.11 Subroutine: PRINTD

Purpose: To print submode input summaries.
Remarks: PRINTD is in the DATAT overlay and does not remain in core during TOPSEP's submode operation.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
CNTRøL	I	C	Initial values of all possible controls.
CNVRTU	I	c	Conversion constants from input units to internal units for selected controls.
DFMAX	I	C	Maximum increase allowed in the cost index (F).
DP2	I	C	Estimated region of linearity in the control space.
EPS $\emptyset \mathrm{N}$	I	C	Scalar multiple for control perturbations.
GøUT	I	c	Performance gradient in print-out units.
GTRIAL	I	C	One-dimensional search constants.
HøUT	I	C	Control perturbations in printout units.
IM ${ }^{\text {D }}$ E	I	C	TOPSEP submode designation.
INACTV	I	C	Vector denoting which controls are active, on bounds, or within bound tolerance regions.
INSG	I	C	Flag set to 1 when $S$ and $G$ are input through namelist (nominally 0).


Variable	Input/ Output	Argument/ Common	Definition
IWATE	I	C	Flag designating the desired control weighting scheme.
JMAX	I	c	Number of mission thrust phases.
KMAX	I	C	Number of thrust controis (THRUST (I, J)) chosen to be elements in $\underline{U}$.
KNIRøL	I	c	Hollerith names for the elements in CONTR $\varnothing \mathrm{L}$.
L $\phi$ CUL	I	C	Blank common location of. minimum and maximum control bounds.
NMAX	I	C	Maximum number of iterations.
NT	I	C	Number of targets.
NU	I	c	Number of controls.
PCT	I	C	Percentage of target error to be removed during an iteration.
SøUT	I	C	Target sensitivity matrix in printout units.
STøL	I	C	Test variable for determining linearly dependert columns of the weighted sensitivity matrix.
TLDW	I	C	Limit of target error index below which optimization only is performed.
TUP	I	C	Limit of target error index above which simultaneous targeting and optimization is discontinued and targeting only is initiated.


	Input/   Output	Argument/   Common	Definition
UWATE	I/O	$C$	User input control weights.
W $\varnothing R K$	$I$	$C$	Working storage.

## Local Variables:

ariable	Definition

K $\emptyset$ UNT
UL ( $=\mathrm{W} \emptyset \mathrm{RK}(1))$

Contro1 counter.
The minimum and maximum values of the control bounds in printout units.

Subroutines Called: None
Calling Subroutines: DATAT
Common Blocks:
(BLANK), C $\emptyset N S T, E D I T, ~ E P H E M, ~ G R I D, ~ P R I N I, ~ P R I N T H, ~$ TIME, T $\emptyset \mathrm{P} 1, \mathrm{~T} \emptyset \mathrm{P} 2$, TRAJ1, TRAJ2, W $\emptyset R K$



### 3.2.12 Subroutine: SIZE

Purpose:	To size the control correction.
Method:	The basic procedure for sizing the control cor-
	rection is as follows:
	1. Compute the target error to be removed during
	the current iteration. Often it is not wise
	to remove all the target error in one step
	due to the nonlinear relationship of the
	targets to the controls.

2. Compute the control correction $\boldsymbol{\Delta} \underline{U}$ based upon the method of projected gradients.
3. Perform a one-dimensional search in the $\boldsymbol{\Delta} \underline{U}$ direction to determine a scaled control correction which will minimize either the target error, the cost index, or both.

Supplementary computations include:
o Determining linear dependency among columns of the sensitivity matrix, 3 , thus averting numerical problems when computing the pseudoinverse of $S$.
o Determining which controls lie on their respective bounds and which control corrections violate the control constraints.
o Determining the maximum allowable scale factor for the current iteration

Remarks: $\quad$ Steps 1 and 2 of the control sizing procedure are completed in the secondary overlay DELTU which is called from SIZE. In addition, DELTU performs most of the supplementary calculations. The third step is completed within subroutine GENMIN. Subroutine SIZE monitors the overall procedure. Elaboration of the third step in terms of the coded logic follows.

Subroutine size calls subroutine GENMIN to compute the value of the scaling factor $Y$ (GAMA) which minimizes a function $P(\gamma)$ in the combined constraint direction, $\Delta \underline{u}_{2}$, and the optimization direction, $\Delta \underline{u}_{i}$, or each direction individually depending upon the value of NTYPE. The function $P(\gamma)$ is the sum of two functions, $P 1(\gamma)$ and $P 2(\gamma) . P 1(\gamma)$ is the net cost index and $P 2(\gamma)$ is the target error index.

$$
\mathrm{P}(\gamma)=a \cdot \lambda \cdot \mathrm{PI}(\gamma)+\beta \cdot \mathrm{P} 2(\gamma)
$$

where

$$
\begin{aligned}
& a= \begin{cases}1, & \text { for optimization only or simultaneous } \\
\text { targeting and optimization, } \\
0, & \text { for targeting only }\end{cases} \\
& \beta= \begin{cases}1, & \text { for targeting only or simultaneous } \\
\text { targeting and optimization, } \\
0, & \text { for optimization only }\end{cases} \\
& \lambda=\text { Weighting of the net cost index ( } \varnothing S C A L E)
\end{aligned}
$$

GENMIN evaluates $P(\gamma)$ for different values of $\gamma$ so that a polynomial approximation of the function can be mate. Once the polynomial in formulated the minimizing $\gamma$ may be computed analytically. To reduce the number of point evaluations of $P(\gamma), S I Z E$ provides GENMIN with the first derivative of the function at $\quad \gamma=0$. The first derivative (DP12DS) is of the form $P^{\prime}(0)=\left.\frac{d P(y)}{d y}\right|_{y=0}=\alpha \cdot \lambda \cdot \mathrm{P}^{\prime}(0)+\beta \cdot \mathrm{P}^{\prime}(0)$

For the special case when only the target error is to be minimized, the first derivative (DP2DS) is

$$
P^{\prime}(0)=P 2^{\prime}(0)
$$

Likewise, for the case when only the net cost is to be minimized, the first derivative (DPIDS) is

$$
P^{\prime}(0)=\lambda \cdot P 1(0)
$$

The function $P 2(\gamma)$ to be minimized along the constraint direction, $\Delta u_{2}$, is the sum of the squares of the target errors (E) divided by the target tolerances (ETดL).

$$
P 2(\gamma)=\underline{E}^{T}\left(\underline{u}+\gamma \Delta \underline{u}_{2}\right) W \underline{E}\left(\underline{u}+\gamma \Delta \underline{u}_{2}\right)
$$

where
$\mathrm{W}=\left[\begin{array}{clll}\frac{1}{\operatorname{ET}(\mathrm{~L}(1)} & & & 0 \\ & 2 & & \\ & \frac{1}{\operatorname{ET} \phi \mathrm{~L}(2)} & & \\ & & & \ddots\end{array}\right]$

The first derivative evaluated at $y=0$ is simply

$$
\mathrm{P} 2^{\prime}(0)=2 \underline{E}^{\mathrm{T}}(\underline{\mathrm{u}}) \mathrm{S} \Delta \underline{u}_{2}
$$

where $S$ is the target sensitivity matrix $\left(\frac{\delta E}{\delta \underline{u}}\right)$.

The function $\operatorname{Pl}(\gamma)$ to be minimized along the optimization direction $\Delta \underline{u}_{1}$ is defined

$$
P 1(\gamma)=\frac{A}{F\left(\underline{u}+\gamma \Delta \underline{u}_{1}\right)-F(\underline{u})}+
$$

$$
\frac{G^{T}(\underline{u})\left[-S\left(S S^{T}\right)^{-1} E\left(\underline{u}+\gamma \Delta \underline{u}_{1}\right)\right]}{B}
$$

where A represents the change in performance produced by a step of length $\gamma$ along $\Delta \underline{u}_{1}$ and $B$ represents the 1 inearized approximation to change

```
in performance required to eliminate the target
error produced by a step of length \gamma along
\Delta \mp@subsup{\underline{u}}{1}{}.
S/C mass) and G is .the cost gradient ((\frac{\partialF}{\partial\underline{1}})\mathrm{ .}
The first derivative evaluated at }\gamma=0\mathrm{ is then
\[
P l^{\prime}(0)=\underline{G}^{T}(\underline{u}) \quad \Delta \underline{u}_{1}
\]
```

The functions $P^{\prime}(0), P 1^{\prime}(0)$, and $P 2^{\prime}(0)$ are initialized in the secondary overlay DELTU. The point evaluations of the functions $P(\gamma), P 1(\gamma)$, and $\mathrm{P} 2(7)$ are computed in GENMIN and stored in the vectors P1P2, P1, and $P 2$ respectively. The various values of the scale factor, $\gamma$, are stored in the vector GAMMA while the minimizing scale factor is stored in the variable GAMA.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
BIG	I	C	La:ge constant, 1.E20
DP1DS	1	C	P1 ${ }^{\prime}(0)$
DP12DS	I	C	$\mathrm{P}^{\prime}(0)$
DP2DS	I	C	P2' (0)
DP2	I/0	C	Scale on optimization correction.
gAMA	0	C	Scale factor providing the best control change.
GAMMA	0	C	Vector of control change scale factors for the trial trajec. tories.
GMAX	0	C	Largest allowed scale factor.
GTRIAL	I/0	C	One-dimensional search constants.
INACTV	1/0	C	Vector denoting which controls are active (1), on bounds (0), or within bound tolerances.
INSG	I/O	C	Flag set when $S$ and G are input through namelist.
ITERAT	I	C	Iteration founter.
KGMAX	1	c	Index on control which will   reach a bound if GMAX scales $\boldsymbol{A}^{4}$.
LøCUL	I	C	Blank common location for the control bounds,
MIN	0	C	Index of minimizing scale factor in GAMMA.
NTYPE	0	C	Flag specifying the type of control correction.


Variable	Input/ Output.	Argument/ Common	Definition
NU	I	C	Number of controls.
Pl	0	C	Vector of net cost values corresponding to the scale factors in GAMMA.
P1P2	0	C	Vector of combined net cost and target error index values corresponding to the scale factors in GAMMA.
P2	0	C	Vector oi target error index values corresponding to the scale factors in GAMMA.
U	I	C	Control vector.
ULIM1T	I	C	Control bounds.

## Local Variables:

Variable
PIEST

P12EST

P2EST

UNEW

Vector containing the estimates of Pl( $\boldsymbol{\gamma}$ ) for the trial trajectories.

Vector containing the estimates of $P(\boldsymbol{\gamma})$ for the trial trajectories.

Vector containing the estimates of P2 ( $\gamma$ ) for the trial trajectories.

Updated control vector used to compute INACTV.

Subroutines Called: CØPY, DELTU, GENMIN, STEP

## Calling Subroutines: PGM




Pages 159 through 165 have been deleted.

```
3.2.13 Subroutine: STEP (U\emptysetLD, SCALE, DELU, NU, UNEW)
Purpose: To update the control vector.
Method: The new control vector is updated by the follow-
ing algorithm:
 UNEW (I) = U\emptysetLD (I) + SCALE * DELU (I)
```

Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
DELU	I	A	Control correction vector.
NU	I	A	Number of controls.
SCALE	I	A	Scale on control correction.
UNEW	0	$A$	Updated control vector.
UøLD	I	A	Previous control vector.

Local Variables: None
Subroutines Called: None
Calling Subroutines: GRID, PGM
Common Blocks: None
Logic Flow: None

3.2.14A Subroutine:	STEST (WS, NT, N, STØL, CDOTC, CMAG, LDEP,
	NDEP)
Purpose:	To compute the inner products between columns
	of the weighted sensitivity matrix in order to
	determine linearly dependent control sensitiv-
	ities.
Method:	The normalized inner products between columns
	of the weighted sensitivity matrix are computed
	and stored in the $C D \emptyset T C$ array. These values are
	then tested to determine whether they fall within
	some tolerance (ST@L) of unity. The control
	sensitivity vectors, whose inner products do
	fall within this tolerance region, are considered
	to be linearly dependent and at least one of the
	associated controls will be dropped from the
	control vector during the concurrent iteration.
	For example, if $\underline{S}_{i}$ and $\underline{S}_{j}$ represent two columns
	of the weighted sensitivity matrix and

$$
1-\left|\frac{\underline{s}_{i} \cdot \underline{s}_{j}}{\left|\underline{s}_{i}\right| *\left|\underline{S}_{j}\right|}\right|<s T \phi_{L}
$$

then $\underline{S}_{i}$ and $\underline{S}_{j}$ are considered inearly dependent. Whether the $\underline{u}_{i}$ and $\underline{u}_{j}$ component is dropped from the control vector depends upon the other columr vector inner products. If $\underline{S}_{j}$ and $\underline{S}_{k}$ are also

Remarks:
linearly dependent then control $u_{j}$ will be dropped since this measure will allow more controls to remain active. The fact that a tolerance region is used to test linear dependency does permit $\underline{S}_{i}$ and $\underline{S}_{k}$ to remain linearly independent although both vectors are linearly dependent with $\underline{S}_{j}$. If $\underline{S}_{i}$ and $\underline{S}_{j}$ are the only linearly dependent vectors the control with the lower index is arbitrarily dropped. STEST is called only once per iteration and only when considering controls in the weighted space.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
$\mathrm{CD} \varnothing \mathrm{TC}$	0	A	Array of normalized inner products; CDøTC (I, J) is the inner product between the $I$ and $J$ columns of WS.
CMAG	0	A	Magnitude of the sensitivity column vectors.
LDEP	0	A	Vector of flags nominally zero but set to 1 to denote which controls should be dropped.
NDEP	0	A	Number of dropped controls.
NT	1	A	Number of targets.
NU	I	A	Number of controls.
STØL	I	A	Minimum difference allowed between normalized inner products of the control sensitivity vectors and unity before the vectors are considered linearly dependent.


Variable	Input/   Output	Argument/ Common	Definition
WS	I	A	Weighted sensitivity matrix.
Local Variables:			
Variable Definition			
MATRIX		Integer array the same dimensions as CDOTC whose components are nominally zero but set to 1 when ( $1-\operatorname{CD} \phi \mathrm{TC}{ }_{i j}<$ STØL)	
MRC		NU X 2 array; the first column represents the sum of the elements across the rows of MATRIX; the second column represents the sum of elements down the columns of MATRIX.	
MRCSUM		the sum across the rows of MRC.	
ITEST		Index of	he largest element of MRCSUM.

Subroutines Called: ..... 2ERØM
Calling Subroutines: ..... SIZE
Common Blocks: None



3.2 .14 B	Subroutine:	STMTAR (IT)
Purpose:		To compute the targeting sensitivity matrix from
		the augmented state transition matrix.
Method:		The method of computing the sensitivity matrix, $S$,
		from the partitions of the augmented STMs, $\varnothing$ and
		$\theta$, is described in Reference 1, Section 9.7,
		page 140 .
Remarks:		During each iteration the reference trajectory (i.e.
		the trajectory defined by the STRAJ variables in
		the zeroth iterate and the "best" trial trajectory
		in each subsequent iteration) must be integrated
		to compute $\emptyset, \theta$, and $S$. If a poition of this refer-
		ence trajectory remains constant throughout the
		iterative process, it is integrated during the
		zeroth iterate only. .

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
CA	0	$C$	Closest approach computed in BPLANE
E	0	$C$	Target error vector
ETA (=STATR (1,2))	0	$C$	Sensitivity of targets to changes   in final state
F	0	$C$	Cost index (negative of payload)
IJH	I	$C$	Array of flags indicating active   controls
IPRINT	0	$C$	Trajectory print flag


Variable	Input/   Output	Argument/ Common	Definition
IT	I	A	Flag indicating integration of the fixed trafectory ard ( -1 ) or Integration of simm (1)
KMAX	I	C	Number of active thrust controls
LISTAR	I	C	Array of flags indicating select ed targets
L0¢CM	I	C	Blank common location of final S/C mass
LOCRFM	I	C	Blank commor location of the $S / C$ masses evaluated at event times
LOCTS	I	C	Blank common location of event times
LOCXR	I	C	Blank common location of the S/C states evaluated at event times
MPRINT	I	C	TOPSEP print flags
NPRI	I	C	Primary body desígnation
NT	$I$	C	Number of inargets
NTNP	0	C	Vector of primary body designations associated with trajectory event times
NTP	I	C	The target body code
NTPH	I	C	Vector of control phase numbers associated with event times
NTPHAS	I	C	Thrust phase counter
NU	I	C	Number of controls
PHI	0	C	State transition matrix (6x6)
RCA	0	C	Target planet encounter radius computed in TRAJ
S	0	C	Targeting sensitivity matrix
SCMASS	I	C	S/C mass at trajectory start time


Variable	Input/ Output	Argument/   Common	Definition
STATEO	I	C	S/C state at trajectory start time
STATR	I	C	Array of initial states corresponding to the reference and each trial trajectory
TARGET	0	C	Desired target values
TARNめM	0	C	Target values evaluated for the reference trajectory
TCA	0	C	Time of closest approach computed in BPLANE.
TEND	I	C	Trajectory end time
THETA	0	C	Sensitivity of final state to changes in thrust controls
TM	I	C	Time conversion constant (days to seconds)
TRCA	0	C	Time at closest approach computed in TRAJ
TSI	0	C	Time at SOI computed in BPLANE
TSOI	0	C	Time at SOI computed in TRAJ
TSTART	I	C	Trajectory start time
TUG	I / 0	C	Logical flag indicating injection computations if TRUE

Local Variables:
Variable Definition

NPRIO	Primary body designation at time TSTART for the refer-   ence trajectory
REFMO	S/C initial mass at time TSTART for the reference   trajectory
REFXO $\quad$S/Cinitial state at time TSTART for the reference   trajectory	

Subroutines Called: CAPY, DTDUO, ECOMP, MATOUT, MMAR, MUNPAK, PRINT3, SUB, TCOMP, THCOMP, TREK, TUGINT, VECMAG

Calling Subroutine: PGM

Common Blocks: (Blank), CONST, IASTM, TARGET, TIME TOPI, TOPZ, TRAJ 1, TRAJ 2, TUG



### 3.2.15 Subroutine: TEST

Purpose:

Method:

## Remarks:

To test for convergence and to determine whether the next control change will be a targeting and/or optimization correction. The determination of the type of control correction is based upon the size of the error index (EMAG). The value of EMAG is compared to user input limits which direct the calculation of the next control change to be either a constraint correction, a performance correction, or simultaneous constraint and performance corrections. The iteration process is considered converged and the run is terminated when the performance index is maximized.

A summary of the control correction decision process is given in the following table.

IF	THEN
EMAG > TUP	TARGETING
TL $\phi W<$ EMAG $<$ TUP	TARGETING AND OPTIMIZATION
EMAG < TL $\phi \mathrm{W}$	OPTIMIZATION

Search Direction Options

The input limits TUP, TLOW, and $\emptyset$ PiEND allow the user flexibility in determining the type of targeting and optimization strategy. For example, the user may concentrate on targeting exclusively by setting TUP $=$ TLOW $=1$, and $\emptyset P T E N D=0$. When the trajectory is targeted the run will terminate without optimizing.

The angle ( $\theta$ ) between $\underline{G}$ and $\Delta \underline{u}_{1}$ is used to test convergence in subroutine TEST. Optimization is considered complete when

$$
\cos \theta=\frac{\underline{G} \cdot \Delta \underline{\underline{u}}_{1}}{|\underline{\underline{G}}|{ }^{\star}\left|\Delta \underline{\underline{u}}_{1}\right|}
$$

approaches 0 (when $\theta$ approaches 90 deg) and when EMAG < TLDW. The user may override this conver. gence requirement by specifying oPTEND. When $\emptyset P T E N D<\theta<90$ and EMAG $<$ TLOW the run is terminated. Figure 3-1 illustrates the convergence process.


Figure 3-1 Geometric Interpretation of Convergence

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
CTHETA	I	C	Cosine of the convergence test angle, $\boldsymbol{\theta}$. As optimization process converges, $\theta$ approaches 90 degrees and CTHETA approaches 0 .
EMAG	I	c	Quadratic error index.
ITERAT	I	c	Current iteration number.
KøNVRJ	0	C	Convergence flag. $=-1, \text { naximum iteration }$   rumber reached
			$\begin{aligned} & =0 \text {; iteration in process } \\ & =1, \text { convergence } \end{aligned}$
NMAX	I	C	Maximum number of iterations allowed.


Variable	Input/ Output	Argument/ Common	Definition
NTYPE	0	C	Flag designating type of next control correction.
			$\begin{aligned} & =-1, \text { optimization only } \\ & =0, \text { targeting and opti- } \\ & \text { mization } \end{aligned}$
			$=1$, targeting only
$\oint$ PTEND	I	C	User specified convergence tolerance on optimization process (e.g., CTHETA $\leq$ $\emptyset$ PTEND indicates convergence).
TLAW W	I	C	Upper limit of EMAG for which optimization only is performed.
TUP	I	c	Lower limit of EMAG for which targeting only is performed.

Local Variables: None
Subroutines Called: None
Calling Subroutines: ..... PGM
Common Blocks: ..... EDIT, TゆP1, TØP2
Logic Flow: None

Flag designating type of next control correction.
$=-1, o p \pm i m i z a t i o n ~ o n l y$
$=0$, targeting and optimization
$=1$, targeting only
User specified convergence tolerance on optimization process (e.g., CTHETA $\leq$ $\emptyset$ PTEND indicates convergence).

Upper limit of EMAG for which cptimization only is performed.

Lower limit of EMAG for which targeting only is performed.
3.2.16 Subroutine: TREK (IT, KOUNT)

Purpose: To organize calls to the trajectory propagator and to evaluate target conditions. The trajectory propagator, TRAJ, performs two basic functions for TOPSEP: 1) trajectory integration from some specified starting time (TREF) to the stopping condition denoted by ISTØP, and 2) trajectory integration from the starting time to an event time (TEVNT). In the latter case TRAJ may be recalled and trajectory integration continued from the current event time to the next event time without requiring initialization of the trajectory routines and parameters. These capabilities are utilized in TOPSEP's submodes in different ways. For the simple trajectory propagation submode, TRAJ is required to integrate from the start time to the termination time. However, the targeting and grid submodes require that TRAJ return to TREK at certain phase times so that the s/c mass and state may be stored in blank common. This requirement is necessary only for the reference and trial trajectory when elements of $\operatorname{THRUST}(I, J)$ are used as controls. When TREK is called to set up grid
trajectories and perturbed trajectories the
appropriate mass and state are selected from
blank common. TRAJ then integrates the trajec-
tory from the beginning of the associated thrust
phase to the teminal time thus avoiding the
duplication of known trajectory segments. When
elements of THRUST(I, J) are not used as con-
trols, however, TRAJ integrates from the start
time (TSTART) to the terminal time, TRAJ
returns the s/c terminal state, and mass and
the final time upon completion of the trajec-
tory integration. To compute additional termi-
nation data or to compute target parameters such
as BDT and BDR or orbital elements, subroutine
BPLANE must be called. Subroutine TCøMPl is then
called to select and to store the appropriate
target parameters in the vector TARPAR. -
The flag returned from TRAJ which directs jurther
computation of termination data is KUTøFF. The
following table provides a sumary of the kUTøFF
options.

KUT $¢ \mathrm{FF}$	Actual Stopping Condition	IST $\dagger$ P	Requested Stopping Condition	Computed $\mathrm{G} \emptyset \mathrm{T} \varnothing$ Statement Number
1	Final Time	1	Final Time	400
2	Final Time	2	Encounter	100
3	Final Time	3	SgI	100
4	Final Time	4	Stopping Radius	100
5	Encounter	2	Encounter	200
6	Encounter	3	SøI	200
7	s $\emptyset \mathrm{I}$	3	SøI	300
8	Stopping Radius	4	Stopping Radius	400
9	Event Time	NA	Event Time	700

## Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
BIG	I	C	Constant equal to 1.E20
cA	I	C	Closest approach.
ECC	I	c	Eccentricity of orbit relative to the target planet at the actual stopping condition.
ICALL	0	C	Trajectory initialization flag.
IMøDE	I	C	TOPSEP submode designation.
INTEG	0	c	Flag indicating which equations are to be integrated in TRAJ.
IPRINT	0	C	Trajectory print flag.


Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \end{aligned}$	Definition
IT	$I$	A	Flag indicating type of initialization preceding the call to TRAJ.
ITP	0	C	Index of the target planet in the NB array (bodies included in the trajectory integration).
KMAX	I	C	Number of thrust controls (THRJST (I, J)) chosen to be elements of $\underline{u}$.
KøUNT	I	A	Index on control.
KUTゆFF.	0	C	Termination flag.
L¢CM	0	C	Blank coumon location of final S/C mess.
L¢CRFM.	I	C	Blank common location of the $S / C$ masses evaluated at event times for the reference and all trial trajectories in a single iteration.
LOCTS	I	C	Blank common location of event times for the reference and all trial trajectories in a single iteration.
L¢CXR	I	C	Blank common location of the 6-common state vectors associated with the event times of the reference and all the trial trajectories of a single iteration.
MEVENT	0	C	Flag designating trajectory propagation to event times.
MPRINT	I	C	Submode print option flags.
NPRI	0	C	Primary body designation.
NTNP	0	C	Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration.


Variable	Input/ Output	Argument/   Common	Definition
NTP	I	C	The target body code (NB (ITP)).
NTPH	I	C	Vector of control phase numbers associated with the event times of the reference and all trial trajectories in a single iteration.
NTPHAS	0	C	Thrust phase counter.
NTR	I	C	Trial trajectory counter.
NU	I	C	Number of controls.
RCA	0	C	Target planet encounter radius.
SCMASS	I/0	C	$S / C$ mass at the trajectory start time.
SMA	0	C	Semi-major axis of the approach orbit relative to the target planet.
STATEO	I/0	C	S/C state at trajectory start time.
ST¢RE	I/0	C	Blank common variables.
TARPAR	0	C	Target values of the most recently generated trajectory.
TCA	0	C	Osculating time of closest approach.
TEVNT	0	C	Event time to be monitored by TRAJ.
TM	I	C	Number of seconds in a day.
TRCA	0	C	Time of cdosest approach determined by TRAJ if KUTOFF equals 5 or 6, otherwise set to TCA.
TREF	0	C	Reference time used by TRAJ to begin trajectory propagation.


Variable	Input/ Output	Argument/ Common	Uefinition
TS $\emptyset 1$	0	C	Time at sphere of influence determined by TRAJ if KUTØFF equals 7, otherwise set to TTSI.
TSTART	I	C	The reference trajectory start time.
TST $¢ \mathrm{P}$	0	C	The actual trajectory termination time.
UREL	0	C	Array containing the position components of the $S / C$ relative to the bodies flagged in the NB array.
URELM	0	C	Vector containing the magnitude of the position components of the $S / C$ relative to the bodies flagged in the NB array.
UTRUE	0	C	S/C position components relative to the primary body.
VCA	0	C	Osculating velocity at closest approach.
VRELM	0	C	Vector containing the magnitudes of the velocity components of the $S / C$ relative to the bodies flagged in the NB array.
VTRUE	0	C	$S / C$ velocity components relative to the primary body.
BDR	0	C	Osculating B-plane element orthogonal to the ecliptic plane.
BDR	0	C	Osculating Brplane element in the ecliptic plane.
IASTM	I	C	Flag designating the method of computing the target sensitivity matrix.


Variable	Input/ Output	$\begin{gathered} \text { Argument / } \\ \text { Common } \\ \hline \end{gathered}$	Definition
I,ISTAR	I	C	Array of indices identifying selected target variables.
NT	1	C	Number of target variables.
TSI	0	c	Time of sphere of influence crossing based upon osculating B-plane conditions.
TUG	0	c	Logical flag determining whether injection conditions should be calculated.
VHP	0	C	Hyperbolic excess velocity.
VREL	I	c	Array containing the velocity components of the S/C relative to the bodies flagged in the NB array.

## Local Variables

Variable	Definition
JUMP	Index on the thrust controls (THRUST   (I, J)) chosen to be elements of u.
MISS	Flag set to l if osculating elements   are calculated outside the target   planet's sphere of influence.
NPRIO	Primary body at time TSTART for the   reference trajectory.
NTPHO	Thrust control phase number at time   TSTART for the reference trajectory.
REFMO	S/C initial mass at time TSTART for   the reference trajectory.
	S/C initial state at time TSTART for   the reference trajectory.

Subroutines Called: BPLANE, CØPY, VECMAG, TUGINJ, PRINT3, TCOMP1
Calling Subroutines: FEGS, STMTAR
Common Blocks:
(BLANK), CØNST, EDIT, EPHEM, GRID, PRINTH, TARGET, TMME, T $\emptyset \mathrm{P} 1, \mathrm{~T} \emptyset \mathrm{P} 2$, TRAJ1, TRAJ2, WORK, IASTM, TUG

Page 182 has been deleted.





3.2.17 Subroutine: WEIGHT (DU1, DU2, DU, SINV, WG, WS, WU, NUD, NTD)

## Entry Points:

Purpose:

Method:

UNWATE
To perform the appropriate control and target space transformations by weighting and unweighting the controls, gradients, sensitivities, and targets.

Several different weighting algorithms have been devised to transform the control and target spaces in order to facilitate targeting and optimization. The weights are applied to "condition" the effects of selected controls when targeting and optimizing. The weighting algorithms are as follows:

1. User input weighting

WU $(J)=\frac{1}{\text { UWATE }(J)}$.
2. Unitized control weighting

$$
W U(J)=\left|\frac{1}{\mid U(J) * \operatorname{UWATE}(J)}\right|
$$

3. Sensitivity weighting

WU (J) $=\operatorname{MAX} \cdot\left\{\left|\frac{\mathrm{S}(\mathrm{I}, \mathrm{J})}{\operatorname{UWATE}(J)}\right|, i=1, \mathrm{NT}\right\}$
4. Combined sensitivity, target error, and control weighting
WU
$(J)=\sum_{I=1}^{N T}\left|\frac{S(I, J) * \operatorname{ETR}(I, 1)}{U(J) \div \operatorname{UWATE}(J)}\right|$
5. Target gradient weighting

$$
\begin{aligned}
& G 2(J)=2 \sum_{I=1}^{N T} S(I, J) * \operatorname{ETR}(I, 1) \\
& \text { WU }(J)=\frac{|G 2(J)|}{\sqrt{G 2^{T} G 2}}
\end{aligned}
$$

6. Averaged gradient and control weighting

$$
\mathrm{WU}(\mathrm{~J})=\frac{\left(10 * \mathrm{U}(\mathrm{x}) * \operatorname{UWATE}(\mathrm{~J})+\frac{.1}{\mathrm{G} 2(\mathrm{~J})}\right.}{\left(\mathrm{UWATE}(\mathrm{~J}) * \mathrm{U}(\mathrm{~J})^{2}+\frac{\mathrm{I}}{\mathrm{G} 2(\mathrm{~J})^{2}}\right)}
$$

Remarks:
This routine is used to weight controls and targets before the control correction is calculated and to unweight the same variables and certain additional parameters before the trial trajectories are made.

Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
DPSI	I	C	Target error to be removed   during current iteration.
DU	I/O	A	Total control correction.


Variable	Input/ Output	Argument/ Common	Definition
DU1	1/0	A	Performance correction.
DU2	I/0	A	Constraint correction.
ETøL	I	C	Target tolerances.
ETR	I	C	Array of trial trajectory errors.
G	I	C	Performance gradient.
IWATE	I	C	Flag specifying type of weighting.
			1, User input weighting   2, Unitized control weighting
	.		3, Sensitivity weighting   4, Combined sensitivity, target error, and control weighting
			5, Target gradient weight ing
			6, Averaged gradient and control weighting
IWATE	I	C	Flag specifying target weighting.
NT	I	C	Number of targets.
NTD	I	A	Integer variable used to dimension arrays in the argument list (number of targets) 。
NU	I	C	Number of controls.
NUD	I	A	Integer variable used to dimension arrays in the argument list.


Variable	Input/   Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
S	I	c	The sensitivity of targets to changes in controls.
SINV	I/O	A	Pseudo inverse of the sensitivity matrix.
U	I/O	C	The control vector.
UWATE	I	C	User input weights on controls (used in each weighting algorithm).
WG	$\emptyset$	A	Weighted performance gradient.
WøRK	I	c	Temporary working storage.
WS	0	A	Weighted sensitivity matrix.
WU	I	A	Control weighting vector.

## Local Variables:

Variable
Definition

G2
G2MAG
STøRE

Target gradient.
Magnitude of the target gradient.
Temporary storage location.

Subroutines Called: AMAXI, MMATB
Calling Subroutines: ..... SIZE
Common Blocks: EDIT, $\mathrm{T} \emptyset \mathrm{P} 1, \mathrm{~T} \emptyset \mathrm{P} 2, \mathrm{~W} \emptyset \mathrm{RK}$
Logic Flow:


Weight Targets: ( $I=1, N T ; J=1, N U$ ) $W S(I, J)=W S(I, J) / E T \emptyset L(I)$ $\operatorname{DPSI}(I)=\operatorname{DPSI}(I) / E T \not \subset L(I)$

## RETURN



3.3 Program:	GØDSEP
Purpose:	Executive control for error analysis.
Input/Output:	Inputs are all trajectory data provided by
	DATAM. Outputs are all error analysis data.
Local Variables:	None
Subroutines Called:	BLKDTG, CØPY, CØVP, DUMP, MASSIG, MAT
	SCHED, SETEVN, SETGUI, STMGEN
Calling Subroutines:	MAPSEP
Common Blocks:	WORK, (BLANK), DIMENS, EDIT, ENC ${ }^{\text {L }}$, LABEL,
	LØCATE, LøGIC, SCHEDI, SCHEDR, TRAJ1, TRAJ2




Pages $196-\mathrm{B}$ and $196-\mathrm{C}$ have been deleted.
3.3.1 Subroutine: AUGCNV (CøVIN, C $\emptyset V \emptyset U T, I \emptyset P T$ )

Purpose:

Remarks:

To convert internal storage format of the augmented state covariance information from "block" (see Remarks) to augmented (see Remarks) form. The augmented covariance form is assumed as follows, where the individual matrix partitions or subblocks are defined in Input (Vol. II, . User's Manual, Sec. 2.3):
$\left[\begin{array}{lllll}\mathrm{P} & \mathrm{CXS} & \mathrm{CXU} & \mathrm{CXV} & \mathrm{CXW} \\ \mathrm{CXS}^{\mathrm{T}} & \mathrm{PS} & \mathrm{CSU} & \mathrm{CSV} & \mathrm{CSW} \\ \mathrm{CXU}^{\mathrm{T}} & \mathrm{CSU}^{\mathrm{T}} & \mathrm{PU} & \mathrm{CUV} & \mathrm{CUW} \\ \mathrm{CXV}^{\mathrm{T}} & \mathrm{CSV}^{\mathrm{T}} & \mathrm{CUV}^{\mathrm{T}} & \mathrm{PV} & \mathrm{CVW} \\ \mathrm{CXW}^{\mathrm{T}} & \mathrm{CSW}^{\mathrm{T}} & \mathrm{CUW}^{\mathrm{T}} & \mathrm{CVW}^{T} & \mathrm{PW}\end{array}\right]$

The "block" form assumes that all active partitions are stored contiguously in packed form in the following order:

P, CXS, CXU, CXV, CXW, PS, CSU, CSV, CSW, PU, CUV, CUW, PV, CVW, PW.
$C \emptyset V I N$ and $C \emptyset V \emptyset U T$ may share the same location. Therefore, in order to prevent writing over elements which have not been properly relocated in going from block to augmented form, PW is relocated first, then CVW and so on up the abovementioned ordering of the block form. For the same reason, in going from augmented to block

```
form the forward ordering (\(P\), CXS, etc.) sequence is followed in relocating.
```


## Input/Output:

Variables	Input/ Output	Argument/ Common	Definition
covin	I	A	Augmented covariance in
			either block or augmented
			form according to IøPT
cøvøUT	0	A	Augmented covariance in
			opposite form from CøVIN, according to IøPT
IøPT	I	A	Conversion control flag
			$=1$, augmented to block form
			$=-1$, block to augmented form
IDCAUG	I	c	Array locating first word of
			each covariance partition
			within augmented form
LøCBLK	I	C	Array locating first word of each covariance partition
			within block form .
naug ${ }^{\text {- }}$	$I$	c	Length of augmented state
			vector
NDIM	I	c	Array of lengths of individual
			state vector partitions

## Local Variables:

Variable	Definition
$\left.\begin{array}{c} \text { ISUB } \\ \\ \text { JSUB } \end{array}\right\}$	Subscripts used for locating elements at LØCAUG and LDCBLK
NCOL	Number of columns in current covariance
	sub-block
NRめW	Number of rows in current covariance
	sub-block
Subroutines Called:	MPAK, MUNPAK, SYMUP
Calling Subroutines:	PPAK
Common Blocks:	WØRK, DIMENS
Logic Flow:	None

3.3.2 Subroutine: BLKDTG
Purpose: To initialize label arrays in common /LABEL/ by DATA statements.
Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
AUGLAB	0	c	Augmented state vector
			element labels
EVIAB	0	C	Event labels
MESLAB	0	c	Measurement labels
PGLAB	0	C	Control covariance parti-
			tion labels
PLAB	0	c	Knowledge covariance par-
			tition labels
VECLAB	0	c	Augmented state vector
			partition labels

Local Variables: None
Subroutines Called: None
Calling Subroutines: ..... GØDSEP
Common Blocks: LABEL
Logic Flow: None
3.3.3 Subroutine: $\mathrm{B} \emptyset \mathrm{MB}$
Purpose: To force abnormal termination with traceback.
Method: $\mathrm{B} \emptyset \mathrm{MB}$ computes and attempts to use the squareroot of -1.0 .Remarks: $\quad$ On CDC 6000 series computers any attempt to usethe square root of a negative number when op-erating with real variables causes programtermination and provides a traceback to themain program of subroutines called and thelocation called from each. $\mathrm{B} \emptyset \mathrm{MB}$ is calledfrom several places in G $\emptyset$ DSEP and its associatedsecondary overlays to indicate an unresolvableconflict of control variables.
Input/Output: None
Local Variables: None
Subroutines Called: None
Calling Subroutines: STMRDR, GAINF, DEFALT, DIMENS, NMLIST, ØUTPTG
Common Blocks: ..... None
Logic Flow: ..... None

### 3.3.4 Subroutine: C $\emptyset$ RREL (PVAR, IøPTN, PUNCH, C $\emptyset V L A B$ )

Purpose:
To compute, print, and optionally, punch standard deviations and correlations coefficients from an input covariance matrix. Since VARSD (covariance to standard deviations and correlation coefficients) operates strictly on the upper triangle of a covariance matrix, only the diagonal of PVAR need be saved outside PVAR. The remaining lower triangle terms are then copied into the upper triangle.

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
PVAR	I	A	Input covariance matrix.
IøPTN	I	A	Option flag.
			$=1$, PVAR in covariance form
			$=-1$, PVAR already in standard deviations and correlation coefficients
PUNCH	I	A	Logical flag indicating if standard deviations and correlation coefficients are to be punched.
CøVLAB	I	A	Array of labels to be used for punching, if $\mathrm{PUNCH}=$ .TRUE.
AUGLAB	I	c	Augmented state vector 1abels.


Variable	Input/   Output	Argument/   Common	Definition
LøCAUG	I	C	Array locating partitions   of augmented covariance   matrix.
NAUG	I	C	Array locating state vector   partition labels in AUGIAB.
NDIM	I	C	Length of augmented state   vector.
PRNC $\varnothing \mathrm{V}$	I	C	Array of dimensions of   augmented state vector   partitions.
			Logical array denoting   which partitions of stand-   ard deviations and correla-   tion coefficients are to be   printed.

Local Variables:
Variable
Definition

## $P \emptyset S$

VEL
$1 \sigma$ RSS position uncertainty.
$1 \sigma$ RSS velocity uncertainty.

Subroutines Called: MPAK, VECMAG, VARSD, PRSDEV, PUNSD, PRC $\$$ RR, PUNC $\emptyset R$, SYML $\emptyset$, MUNPAK.

Calling Subroutines: SETEVN, GUIDE, MEASPR
Common Blocks:

WøRK, DIMENS, LABEL, LøGIC

## Logic Flow:




3.3.5 Subroutine: C $\varnothing \mathrm{VP}$ (T, TF, STMRD, PIN)
Purpose:
Mo propagate a covariance between two time
Moints.
Three options are available:

1) propagation by transition matrices read from
STM file;
2) propagation by transition matrices computed

Remarks: needed and not saved; or $\quad$| 3) propagation by integration of covariance |
| :--- |
| variational equations. |

Additionally, when the option to read the STM file is exercised, C $\varnothing$ VP automatically propagates the control covariance if control propagation is indicated (logical variable PR $\emptyset \mathrm{PG}$ ).

When C $\emptyset V P$ is called with both STMRD and PDøT false (nominally for prediction events only) tests are made to subdivide the complete propagation interval into as many subintervals as necessary
to guarantee that no transition matrix propagation crosses a thrust phase change, since that would violate effective process noise model assumptions.

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
T	I	A	Beginning time of propa-
			gation interval
T	$I$	A	End time of propagation
			interval
STMRD	I	A	Logical variable indicat-
		,	ing source of transition
			matrices if transition
	.		matrices are to be used
			$=T$, read transition
		.	matrices from STM file
			$=F$, generate transition
.			matrices by calling
	.		TRAJ overlay
PIN	I	A	Input augmented covariance
DELTIM	I/O	C	Propagation interval length
DXDKST	0	C	Keplerian to cartesian
	.		transformation for ephemeris
			body


Variable	Input/ Output	Argument/   Common	Definition
DYNØIS	I	C	Dynamic noise flag
GT	I/O	C	Transformation matrix
			from thrust cone-clock
			system to heliocentric
			ecliptic coordinates
			evaluated at end of prop-
			agation incerval
GTSAVE	0	C	Same transformation matrix
			as GT, but evaluated at
			beginning of propagation
			interval
IAUGDC	$I$	C	Dynamic augmentation vector
ICALL	0	C	Initialization parameter
			for TRAJ (sec. 3.5)
IEP	I	C	Locator in UP, VP of
			elements corresponding to
			ephemeris planet
IEPHEM	I	C	Flag indicating form of
			ephemeris elements, if any
INTEG	0	C	Control parameter for TRAJ
			(sec. 3.j)
ISTØP	0	C	Control parameter for TRAJ
			(sec. 3.5)
LIST	I	C	Array cf state vector augmen-
			tation parameter numbers



Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
NAUG	I	C	Length of total augmented
		.	state vector
NEPHEL	I	c	Number of ephemeris elements
			augmented to state vector
NTPHAS	I	c	Number of current thrust
			phase
$P D \emptyset T$	I	c	Logical flag
			=T, integrate covariance
			variational equations
			=F, propagate covariances
			by transition matrices
PG	I	C	Location in blank common
			of control covariance
PHI	I	c	Location in blank common
			of transition matrix
PLOCAL	I	C	Location in blank common
			of working storage block
			as large as the augmented
PRøPG	I	c	Logical flag, operative
			only if PDøT = FALSE and
	- :		STMRD $=$ TRUE
			$=T$, propagate control co-
			variance simultaneously
			with knowledge


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \end{gathered}$	Definition
Q	0	C	$=$ F, do not propagate control covariance
			Effective process noise
			matrix
SMASS	I	c	Mass of Sun.
STATEO	0	C	Initial heliocentric
			ecliptic S/C state for
			TRAJ (sec 3.5) when ICALL $=$
	.		1
TCURR	I	C	Current trajectory time
TEVNT	0	C	Event time for propagation
			(either of covariance or
			transition matrix) to by
			TRAJ (sec 3.5)
TG	I	C	Epoch of input control co-
			variance referenced to TLNCH
TM	I	C	Conversion factor, seconds/
			day
TREF	0	C	Reference time for TRAJ
			$(\sec 3.5)$
TTHRST	I	c	Array of thrust event times
UP	I	C	Array of n -body heliocentric
			position vectors


Variable	Input/ Output	Argument/ Common	Definition
UTRUE	$I$	C	S/Cheliocentric position
			vector
VP	$I$	C	Array of n-body heliocentric
			velocity vectors
VTRUE	I	C	S/C heliocentric velocity
			vector

Local Variabies:
Variable
Definition
FRSTIM

ILIST
$\left.\begin{array}{l}\mathrm{T} 1 \\ \mathrm{~T} 2\end{array}\right\}$
Logical flag used when PDOT $=$ TRUE
to control one-time only initializa~
tion of parameters for TRAJ (sec 3.5)
$=T$, first pass through CøVP
$=F$, not first pass through CøVP
List of augmented dynamic parameters
Start and stop times respectively
for propagation subintervals as
governed by thrust events (see
Remarks)
Subroutines Called: AMABT, CARKEP, C $\emptyset P Y$, DYN $, ~ L \emptyset A D R C, ~ M M A B, M M A B T$, MJNPAK, PRØP, STMPR, STMRDR, STMUSE, ZER $\varnothing M$

Common Blocks: WØRK, (ELANK), CØNST, DIMENS, KEPCØN, LØCATE, LøGIC, MEASI, PRØPI, PRØPR, SCHEDI, SC̣HEDR, EPHEM, TIME , TRAJ1, TRAJ2

Lc F1om:




### 3.3.6 Subroutine: CYEQEC (STACYL, GRLøN, ECEQ, øMEGA, GEQSTA,

 GECSTA, SPHERE)Purpose:

Method:
To compute instantaneous geocentric Cartesian coordinates of a geographic location in both the equatorial and ecliptic systems.

Given either spherical ( $\mathrm{r}, \boldsymbol{\phi}, \boldsymbol{\lambda}$ ) or cylindrical ( $r_{s}, \lambda, z$ ) coordinates, as specified by the input flag, SPHERE, the Cartesian equatorial coordinates are computed as indicated in Section 6.3 of the Analytic Manual. The corresponding ecliptic position and velocities are obtained by application of the equatorial to ecliptic transformation, i.e.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{\text {(ecliptic) }}=E\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{\text {(equatorial) }}} \\
& {\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]_{\text {(ecliptic) }}=E\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]_{\text {(equatorial) }}}
\end{aligned}
$$

where

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos E & \sin \varepsilon \\
0 & -\sin \in & \cos \in
\end{array}\right]
$$

## Input/Output:

Variable	Input/ Output	Argument/   Common	Definition
STACYL	I	A	Geographic coordinates for the station location. Input as radius, latitude, and longitude when spherical coordinates are being used. Input as spin radius, longitude, and $z$-height for cylindrical coordinates.
GRLøN	I	A	Instantaneous sidereal hour angle of Greenwich.
ECEQ	I	A	Equatorial to ecliptic transformation E .
$\emptyset \mathrm{MEGA}$	$I$	A	Sidereal rotation rate of the Earth.
GEQSTA	0	A	Geocentric equatorial position and velocity of the station specified by STACYL.
GECSTA			Geocentric ecliptic position and velocity of the station.
SPHERE	I	A	Logic flag to identify whether STAGYL is in spherical coordinates (SPHERE = .TRUE.) or cylindrical coordinates (SPHERE = .FALSE.).

Subroutines Called: None.
Calling Subroutines: $\quad$ BSRAD, $\emptyset \mathrm{BSAEA}, \mathrm{TSCHED}$

Common Blocks: None.

Logic Flow: None.
3.3.7 Program: DATAG
Purpose:Executive control of G DDSEP data overlay.DATAG performs no computations. It merely
calls three separate subroutines to break thedata overlay coding into more easily managedblocks.
Input/Output:All initialization parameters for G $\emptyset$ DSEP.
Local Variables: None
Subroutines Called: DEFALT, INPUTG, ØUTPTG
Calling Subroutines: ..... GøDSEP
Common Blocks: None
Logic Flow: ..... None

```
3.3.8 Subroutine: DEFALT
Purpose: To establish default values for all error
 analysis inputs.
Remarks:
Only those variables not having default values
 defined in G\emptysetDSEP input (Vol. II, User's Manual,
 Section 2.3) will be included in the following
 Input/Output 1ist.
```

Input/Output:

Variables	Input/ Output	Argument Common	Definition
EPøCH	I	C	Julian date of launch
			epoch
GHZERø	0	c	Greenwich hour angle eval-
			uated at time EPøCH
IAUGDC	I	C	Array of flags controlling
			dynamic parameter augmen-
			tation for transition
			matrices
IAtigJ2	0	c	Location of J2 augmentation
IAUGST	0	C	Location of station location
			parameter flags in IAUG
			array
IBAZEL	0	C	Location of azimuth and
			elevation angle measurement
			bias flags in IAUG array


Variables	Input/ Output	Argument Common	Definition
IBD IAM	0	C	Location of apparent planet
			diameter measurement bias
			flag in IAUG array
IBSTAR	0	C	Location of star-planet
			angle measurement bias
			flags in IAUG array
IB 2WAY	0	C	Location of 2-way range
			and range-rate measurement
			bias flags in IAUG array
IB 3WAY	0	C	Location of 3-way range
			and range-rate measurement
			bias flags in IAUG array
IDMAX	0	C	Maximum allowable parameter
			number for any dynamic param-
			eter in IAUG array
IBHCO2	0	C	Location of $\mathrm{CO}_{2}$ altitude bias
			flag in the IAUG array for
			horizon sensor measurements.
IBHZS	0	C	Location of horizon sensor
			angle bias flags in the IAUG
			array.


Variables	Input/ Output	Argument Common	Definition
LIST	0	c	Array listing parameter
			numbers of augmented state
			vector. For first six
			locations (for basic S/C
			state) LIST(I) $=-\mathrm{I}$
LISTDY	0	c	List of parameter numbers
			of all dynamic parameters
			augmented to S/C state for
			transition matrices. De-
			fining values determined
			by LAUGDC array.
LDCS	0	c	Parameters locating first
			word of blank common avail-
			able to TRAJ (sec. 3.5 )
			default value,
			$=1$
MAXAUG	0	c	Maximum allowable length
			of augmented state vector.
			Determined by dimensions
			of LIST and AUGLAB arrays.
			Default value, $=30$.



Variables	Input/ Output	Argument Common	Definition
$\emptyset \mathrm{MEGAG}$	0	C	Earth sidereal rotation
			rate default value
			$=6.300388099 \mathrm{rad} / \mathrm{day}$
RAD	I	C	Conversion factor, degrees/
			radian.
TEND	I	C	Trajectory end time in
			days referenced to EP¢CH
			as defined in \$TRAJ name-
		.	list (Vol. II, User's
			Manua1, sec. 2.1)
THRUST	I	c	Array defining thrust con-
			trol policies, phase end
			times and specific param-
			eter values (see common
			/TRAJ 1/)
TM	I	C	Conversion constant, seconds/
			day
TSTART	I	c	Trajectory start time in
			days referenced to EPøCH,
			as defined in $\$$ TRAJ namelist
			(Vol. II, User's Manual,
			Sec. 2.1) .


Variables	Input/   Output	Argument   Common	Definition
XLAB	0	$C$	Six-character Hollerith
		labels corresponding to	
		input parameters as defined	
		by IAUG array (see Vol. II,	


Local Variables:	
Variable	
	Maximum number of parameters available
	for augmentation. Governed by dimen-
	sions of IAUG and XLAB arrays. Current
	default value $=50$.
	Fraction of a day the initial Julian
	date, EPØCH, is away from midnight
	Greenwich Mean Time. Used in computing
	GHZER $\varnothing$.

Subroutine Called: $\quad$ В $\emptyset \mathrm{MB}$, LøCATE
Calling Subroutines: DATAG
Common Blocks: $W \emptyset$ RK, (BLANK), C $\emptyset$ NST, DATAGI, DATAGR, DIMENS, GUIDE, KEPC $\varnothing \mathrm{N}, \mathrm{LABEL}, \mathrm{L} \emptyset C A T E, ~ L \emptyset G I C, M E A S I$, MEASR, PRØPI, PRøPR, SCHEDI, SCHEDR, TIME, TRKDAT, TRAJ1, TRAJ2

Logic Flow: None
3.3.9 Subroutine: DIMENS
Purpose: To define dimensions and locations of allmatrices located in blank common.
Remarks:
Blank common locations set aside by thevariables PHI, PL $\emptyset$ CAL and PTEMP are normallyallocated the same number of words of storageas for a covariance matrix. There are, how-ever, two exceptions to this standard. Ifthe dimensions of transition matrices to beread from the STM file are greater than thoseof the augmented covariance matrix, or if boththe transition matrices from the STM file andthe augmented covariance are smaller than $9 x 9$and guidance events are to be executed. Thesecond case requires a minimum $9 \times 9$ area sincethrust bias sensitivities are required for lowthrust guidance maneuver evaluations.
Since only one secondary overlay may reside incore at any one time, all blank common locationsassociated only with secondary overlays begin atthe same address. Therefore, LøCS (trajectory),H (measurement) and PGl (guidance) are set tothe same location.

Input/Output:

Variable	Input/   Output	Argument/ Common	Definition
AUGLAB	0	C	Hollerith labels for all parameters augmented to state vector.
C¢NRD	I	c	Logical flag indicating if control uncertainties read in.
H	0	C	Location in blank common of observation matrix.
IAUG	I	c	Array of parameter augmentation flags.
IAUGDC	0	C	Dynamic parameter augmentation flags.
IAUGJ2	I	C	Location in IAUG array of J2 parameter flag.
IDMAX	I	C	Maximum parameter number allowed for a dynamic parameter in IAUG array.
IGAIN	I	C	Integer flag for $O D$ algorithm.
IGFøRM	I	C	Integer flag indicating input form of control uncertainty matrices.
IPFøRM	I	C	Integer flag indicating input form of knowledge uncertainty matrices.
LIST	0	C	Array containing parameter numbers for all parameters in augmented state vector.
LISTDY	0	C	Dynamic parameter augmentation numbers.
LøCAUG	0	C	Array locating sub-blocks within augmented covariance. (See AUGCNV, Section 3.3.1).
LøCBLK	0	c	Array locating covariance sub-blocks within block form (See AUGCNV, Section 3.3.1).


Variable	Input/ Output	Argument/ Common	Definition
L $\emptyset$ CLAB	0	C	Array locating state vector partitions within LIST and AUGLAB arrays.
LøCFø	0	C	```Location in blank common where TRAJ (Section 3.5) picks up covariance matrix to be integrated.```
LøCS	0	C	Location in blank common of areas available to TRAJ (Section 3.5).
MAXAUG	I	C	Maximum allowable length of augmented state vector.
MAXDIM	I	C	Array of maximum allowable dimensions of individual state vector partitions.
NAUG	0	C	Length of augmented state vector.
NAUGSQ	0	C	NAUG*NAUG .
NBLK	0	C	Number of words occupied by augmented covariance stored in block form (See AUGCNV,. Section 3.3.1).
NDIM	0	C	Array of current dimensions of individual augmented state vector partitions.
NGUID	I	C	Number of guidance events to be executed.
NPHSTM	0	C	Number of dynamic parameters included in transition matrices on STM file.
NSØLVE	0	C	Total number of parameters to be solved-for by filter (including S/C state).


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
P	0	C	Location in blank common of knowledge covariance.
PD¢ ${ }^{\text {P }}$	I	C	Logical flag for covariance propagation.
.			$=T$, integrate covariance   $=$ F, use state transition matrices.
PG	0	C	Location in blank common of control covariance.
PG1	0	c 7	Location in blank common of NAUG X NAUG storage
PG2	0		blocks used for guidance.
PG3	0	C	
PG4	0	$\mathrm{c} \quad \mathrm{l}$	
PHI	-	C	Location in blank common of transition matrix.
PLøCAL	0	C	Working locations in blank common for intermediate
PTEMP.	0	C	operations on covariances and transition matrices.
PWLS	0	C	Location in blank common of weighted least squares reference covariance.
XLAB	I	C	Array of Hollerith labels for all parameters available for augmentation.

Local Variables: None
Subroutines Called: BøMB
Calling Subroutines: INPUTG
Common Blocks: WøRK, (BLANK), DATAGI, DATAGR, DIMENS, LABEL, LøCATE, L $\emptyset G I C$, MEASI, SCHEDI, TRAJ2

Logic Flow:

## DIMENS

Compute NEPHEL, Zero NDIM
Array. Redefine IAUG Array To Distinguish Between Measurement And Dynamic Consider Parameters


\#800

3.3.10 Subroutine: DYN $\varnothing$ ( $\mathrm{T}, \mathrm{DT}$, PHIMAT)

Purpose:	To compute effective process noise.
Method:	See Volume I, Analytical Manual, Section 6.2.
Remarks:	For PDOT, DYNø is used to modify the thrust bias
	and noise partitions of the augmented covariance
	when the number of thrusters has changed (at
	thrust switching events).
	To change the process noise model, subroutines
	affected for PDOT, and subroutines DYN $\emptyset$ and
	STMUSE may be affected for STM usage (effective
	process noise).

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
T	I	A	Trajectory time at beginning of propagation interval (STM only)
DT	I	A	Interval length (days).
PHIMAT	I	A	Augmented transition matrix over propagation interval.
Eptau	I	C	Array of process noise correlation times.
EPVAR	I	c	Array of process noise variances.
GT	I	c	Transformation matrix from magnitude and direction to ecliptic cartesian coordinate system evaluated at end of propagation interval.
GTSAVE	I	C	Same as GT matrix, only evaluated at beginning of propagation interval
ITVERR	I	C	Second process noise type.


Variable	Input/ Output	Argument/   Common	Definition
NAUG	I	C	Length of augmented state vector.
NTPHAS	I	C	Number of current thrust phase.
P	I	C	Location in blank common of knowledge covariance.
PTEMP	I	C	Location in blank common of temporary covariance.
Q	0	C	Effective process noise matrix (6x6).
SIGめN	I	C	Thrust start time uncertainty
THRUST	I	C	Array of thrust phase definition parameters.
TM	I	C	Conversion constant, seconds/day.
VTRUE	I	C	S/C velocity vector.
Local Variables:			
Variable			Definition
NCPHAS	Number of next thrust phase		
ПMECØV	Effective velocity covariance in magnitude and direction.		
PHISUB	$6 \times 3$ sub-block of PHIMAT representing sensitivity of position and velocity at end of interval to velocity at beginning of interval.		
THRSTR	Ratio of operating thruster at phase change.		
VEFF1	Effective ecliptic cartesian velocity covariance at beginning of interval.		
VEFF2	Effective ecliptic cartesian velocity covariance at end of interval.		
Subroutines Ca		ADD, AMABT, EP, LøCLST, MMABT, MMABAT, MPAK, MUNPAK, SCALE, SDVAR, SYMUP, VARSD, ZERØM	
Calling Subroutines: CØVP, GUIDE, SETEVN			
Common Blocks:	WøRK, (BLANK), CØNST, DIMENS, LøCATE, LøGIC, PR $\emptyset$ PR, TRAJ1, TRAJ2		


3.3.11 Subroutine: EIGPRN (A, N, PVSUB, PZER $\emptyset$, VZER $\emptyset$ )
Purpose:

To compute and print eigenvectors and eigen- values of an input matrix. Two options on computing eigenvalues and vectors are provided. The first operates on the complete input matrix. The second operates on the $3 \times 3$ position and velocity sub-blocks only, which are assumed to be the first and second $3 \times 3$ diagonal sub-blocks, respectively.

## Input/Output:

Variable	Input/   Output	Argument/ Common	Definition
A	I	A	Input matrix.
N	I	A	Dimension of input matrix (assumed to be square).
PVSUB	I	A	Logical flag controlling computation option.
.			$=T$, operate on position and velocity subblocks.   $=F$, operate on complete matrix.
PZER $\varnothing$	I	A	Off-diagonal annihilation value for complete matrix if $P V S U B=$.FALSE. or for position sub-block on1y if PVSUB $=$. TRUE.
VZERØ	I	A	Off-diagonal annihilation value for velocity subblock if PVSUB $=$.TRUE. Not used if PVSUB $=$.FALSE

## Local Variables:

Variable
ICYCLE
$\emptyset$ DZER $\emptyset$

VALPV

VECPV

## Definition

Cycle control flag when PVSUB $=$ .TRUE. indicating whether processing position or velocity sub-block.

Off-diagonal annihilation value given to EIGENV.

Array of eigenvalues returned by EIGENV.

Array of eigenvectors returned by EIGENV.

Subroutines Called: EIGENV, MATØUT, SQRT, MPAK
Calling Subroutines: SETEVN, RELCØV
Common Blocks: None

Logic Flow:




Input/Output:

Variable	Input/ Output	Namelist/   Common	Definition
KIND	I	A	Event code.
			$\begin{aligned} & =2, \text { eigenvector } \\ & =3, \text { thrust } \\ & =4, \text { guidance } \\ & =5, \text { prediction } \end{aligned}$
NCNT	0	A	Event counter, set equal to number of events scheduled by namelist \$GøDSEP which must be skipped during execution.
NSTめP	I/O	A	Total number of events of type KIND, including those skipped according to NCNT.
TIME	I	A	Array of scheduled event times.
EVLAB	I	C	Array of Hollerith event labels.
IGPøL	I	C	Array of guidance policy flags.
IGREAD	I	C	Array of guidance namelist read control flags.
TCURR	I	C	Current (and initial) trajectory time.
TCUT $\dagger$ F	I	C	Array of guidance event cutoff times.
TDELAY	I	C	Array of guidance event delay times.
TFINAL	I	C	Trajectory final time.
TPRED2	I	C	Array of times predicted to

## Local Variables:

Variable Definition
NUMBER . Actual number of events of code KIND to be executed.

## Subroutines Called: None

Calling Subroutine: ØUTPTG
Common Blocks: LABEL, SCHEDI, SCHEDR
Logic Flow: None

### 3.3.13A Subroutine: ESLE ( $\mathrm{P}, \mathrm{N}$ )

Purpose: $\quad$ To load equivalent station location errors

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
P	I/O	A	Augmented covariance matrix still in standard deviations and correlation coefficients.
N	I	A	Dimension of augmented covariance matrix.
C $\emptyset$ RLø $\mathrm{N}^{\text {d }}$	I	C	Station-to-Station longitude correlation coefficient.
IAUG	I	c	Parameter augmentation list.
IAUGST	I	C	Location of station location parameter flags in IAUG array.
LIST	I	C	List of parameters contained in augmented state vector.
NST	I	c	Number of tracking stations.
SIGLøN	I	C	Standard deviation in station longitude.
SPHL¢C	I	C	Input logical variable to identify whether the station location coordinates and error covariances are in a spherica1 (SPHLOC = .TRUE.) or cylindrical (SPHLOC = .FALSE.) representations.

ESLE－2

Local Variables：

Variable	Definition
EQSLE	Local array equivalenced to station location standard deviation terms．
	（Spherical）（Cylindrical）
	$\operatorname{EQSLE}(1)=$ SIGR $=$ SIGRS
	EQSLE 2 ）SIGLめN $=$ SIGLめN
	$\operatorname{EQSLE}(3)=$ SIGLAT $=$ SIGZ
	$\operatorname{EQSLE}(4)=\quad$ C $¢ \mathrm{RL} \emptyset \mathrm{N}=\mathrm{C}$（ $\quad=\quad$ RLON
ILめC	Counter for number of stations whose location uncertainties are included in the augmented state．
LøСАTE	Array used to locate off diagonal positions where longitude correla－ tions must be loaded if more than one station＇s location errors are augmented．

Subroutines Called：None
Calling Subroutines：INPUTG
Common Blocks：WめRK，DATAGI，DATAGR，DIMENS，MEASI，MEASR，TRKDAT
Logic Flow：None


Variable	Input/ Output	Argument/ Common	Definition
TARWT	I	A	Target parameter weights.
TBURN	I	A	Duration of guidance burn.
TEC¢V	I	A	Target error covariance before guidance.
UMAX	I	A	Vector of maximum control corrections allowed.
VMAT	I	A	Variation matrix of target WRT state (at guidance epoch).
VTA	I	A	Logical flag for variable time of arrival guidance.

Local Variables:

Variable	- Definition
CGAM	Guidance matrix for constrained control parameters,
CSWATE	Weighting factor for time parameters.
DC $\chi_{\mathrm{N}}$	Scaling factor.
GAMT	Guidance matrix transpose used as working array.
LC§N	Local vector of control labels (LABCDN).
LISTC	Vector of control parameter numbers (new ordering).
LISTU :	Vector of control parameters numbers (old ordering).
NCU	Number of constrained controls.
NUN	Number of unconstrained controls.
STEMP	Local sensitivity matrix (SMAT).
TRC $\$ \mathrm{~V}$	Target error covariance resilting from residual (non-removeable) control error.


Variable	Definition
$U$	Control parameter correction matrix.
UMAXI	Local vector of control bounds (UMAX).
UWATE	Local vector of control weights ( $\varnothing N W T$ ).

Subroutines Called: ADD, AMAB, AMABT, CøPY, CøPYT, GENINV, ICळPY, IDENT, LØADRC, MATØUT, MMABT, MMATBA, NEGMAT, PRSDEV, SCALE, VARSD, ZERøM

Calling Subroutine: GUIDE

Common Blocks: (BLANK), CONST, LABEL, LøCATE, TRAJ1, WøRK

Logic Flow:




## Input/Output:

Variable	Input/ Output	Argument/   Common	Definition:
P	I	A	Knowledge covariance before measurement.
H	I	A	Observation matrix.


Variable	Input/   Output	Argument/   Common
PP	0	A

## Local Variables:

Variable
HP

INVRES

INVRS2

Product of observation matrix and input covariance matrix.

Location in common/W\%RR/ of inverse of measurement residual matrix.

Location in common /W $/$ RR/ of working storage.

Subrountines Called: AMABT, AMATBT, C $\quad$ PPY, INVSQM, MMAB, MMATB, SCALE, SYMTRZ

Calling Subroutines: MEAS
Common Blocks: $\quad \mathrm{W} \emptyset \mathrm{RK}$

Logic Flow:


Pages 247 and 248 are deleted.

### 3.3.15 Subroutine: GAINF (K, RDWRIT)

Purpose:
To read gain matrix from or write gain matrix
to GAIN file (TAPE 4).

## Input/Output:

Variable	Input/ Output	Namelist/ Common	Definition
K	I/O	A	Gain matrix (real).
RDWRIT	I	A	Read/write control flag
			$=4$ HREAD, read gain matrix   $=$ 5HWRITE, write gain matrix.
CHEKPR (4)	I	c	Logical check print flag, operative for both read and write modes.
			```= T, print gain matrix to output = F, do not print gain matrix.```
MESEVN	I	c	Measurement code corresponding to gain matrix.
NR	I	C	Number of columns in gain matrix.
NS¢LVE	I	C	Number of rows in gain matrix.

Local Variables:

Variable
MEV

Definition

Measurement code read from GAIN file. MEV is compared to MESEVN, the code provided from SCHED (Section 3.3.36) to guarantee proper meshing of gain with its original data type.

Subroutines Called: MATøUT, B \emptyset MB

Calling Subroutine:	MEAS
Common Blocks:	LøGIC, MEASI, SCHEDI
Logic Flow:	None

3.3.16 Subroutine:	GAINUS (K)
Purpors:	To be replacod by wimer if may minin matrix
	algorithmis desired other than Kblman-Schmidt,
	sequential weighted least squares, or read
	from GAIN file.
Remarks:	Users-supplied gain is expected to be an infre-
	quently exercised option. The user who wishes
	to incorporate his own algorithm should be
	very familiar with filtering theory. Though
	there are no "wrong" algorithms, any algorithm
	not carefully thought out -- and many that are --
	will generally be meaningless and harmful. The
	only absolute rule is that the gain matrix has
	dimensions NS@LVE by NR (common/MEASI/).
Calling Subroutine:	MEAS

3.3.17 Subroutine: GUIDE

Purpose: To perform all computations and printout for the execution of a guidance maneuver.

Method: \quad Both low thrust and impulsive ΔV guidance are available. See Vol. I, Analytical Manual, Sec. 6.6 for details.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
AUGLAB	I	C	Hollerith label array for a11 augmented parameters.
CHEKPR (5)	I	C	Check print flag $=T$, low thrust guidance - print, knowledge and control uncertainties at end of burn interval and transition matrix over burn interval. ΔV guidance - prints eigenvalues and eigenvectors of ΔV covariance. $=F$, no optional print
CHEKPR (7)	I	C	Print (if TRUE) equatorial state covariance.
CøNWT	I/O	C	Array of control weights.
DELAY	I	C	Guidance delay time for current maneuver.
DYNøIS	I	C	Dynamic noise flag
FøV	I	C	Velocity covariance offdiagonal annihilation value for eigenvalue/vector computation.
GT	I/O	c	Transformation matrix for dynamic noise computation.
GTBURN	I	C	GT matrix evaluated at beginning of burn interval.

Variable	Input/ Output	Argument/ Common	Definition
GTDLAY	I	C	```GT matrix evaluated at beginning of guidance delay period.```
GTSAVE	I/O	C	Transformation matrix for dynamic noise computation.
IPØL	I	C	Guidance policy for current maneuver.
IREAD	I	C	Namelist \$GEVENT read control flag for current maneuver.
ITP	I	C	See UREL, VREL below.
IDCTC	I	C	Location in blank common of transition matrix from cutoff time to target condition time.
NAUG	I	C	Length of augmented state vector.
NCNTG	I	C	Number of current guidance maneuver.
$\mathrm{NC} \emptyset \mathrm{N}$	I	C	Number of low thrust controls.
NPHSTM	I	C	Dimension of state transition matrix from TRAJ (Sec. 3.5) with dynamic parameters only.
NTP	I	C	Code number for target body.
P	I	C	Location in blank common of knowledge covariance at beginning of guidance delay period.
PG	I	C	Location in blank common of control covariance at beginning of guidance delay time.
PG1	I	C	Locations in blank common for intermediate covariances
PG2	I	C	required for guidance computations.

Variable	Input/ Output	Argument/ Common	Definition
PHI	I	C	Location in blank common of transition matrix over delay period.
PI	I	C	Mathematical constant, Π
$\xrightarrow{\prime}$	I	C	Array of knowledge covariance labels.
PLDCAL	I	C	Location in blank common of covariance-sized working storage.
PTEMP	I	C	Same as PLøCAL.
RAD	I	C	Conversion constant, degrees/ radian.
S	I	C	Sensitivity matrix, cutoff state w.r.t. controls.
SMAT	I/0	C	Sensitivity matrix, targets WRT controls.
TBURN	I	C	Burn interval duration for current maneuver.
TIMFTA	I	C	Target condition evaluation time for fixed time of arrival guidance.
TM	I	C	Conversion constant, seconds/day.
TめFF	I	C	Cutoff time for current maneuver.
TめN	I	C	Startup time for current maneuver.
TSTM	I	C	Most recent STM file time point.
TST $\phi \mathrm{p}$	I	C	Trajectory stop time from integrator for $B-p l a n e$ or closest approach targeting.
UREL ($1, ~ I T P)$	I	C	S/C position vector at target condition time.
VARDV	I	C	Array of execution error variances.
VARMAT	I/O	C	```Variation matrix, sensitivity of target conditions to cutoff state.```
VREL (1, ITP)	I	C	S/C velocity vector at target condition time.

Local Variables:

Variable	Definition.
LABCøN	Array of control Kollerith labels.
CSWATE	Dimensional weighting for start-up and cutoff time controls.
deltav	Expected velocity update for ΔV guidance.
DVCøV	Impulsive $\boldsymbol{\Delta V}$ covariance
DVM	Mean ΔV magnitude.
ETA	Variation matrix, target conditions wrt state at target condition time.
gamma	Guidance matrix
LABS	Labe1ling array
ITARG	Input parameter to ECOMP (Sec.3.6.5)
JSTøP	Input parameter to ECøMP (Sec. 3.6.5)
LPG $¢$ FF	Location in blank common of control covariance at cutoff time.
LPGQN	Location in blank common of control covariance at startup time.
LPøFF	Location in blank common of knowledge covariance at cutoff time.
LP¢N	Location in blank common of knowledge covariance at startup time.
NTARG	Number of cargets.
PHITBRN	6×6 state transition matrix over burn interval.
PHITAR	6×6 state transition matrix from cutoff to target condition time.

3.3.18 Subroutine: INPUTG

Purpose: To control all inputs to GØDSEP

Remarks: \quad Common/L $\emptyset \mathrm{CAL} /$ appears in this subroutine only and
is an ordering artifice to equivalence its elements
to the array LøCATE.
Input/Output:

Variabie	Input/ Output	Argument/ Commion	Definition
CФNRD	\emptyset	C	Logical flag $=T$, control uncertainties read in $=F$, control uncertainties not read in
IGFøRM	\emptyset	C	Flag indicating form of input control uncertainties.
IPFøRM	\emptyset	C	Flag indicating form of input knowledge uncertainties.
ISTMF	I	C	STM file usage flag
MAXDIM	I	C	Array of maximum dimensions allowed on input covariance sub-blocks.
NAUG	\emptyset	C	Length of augmented state vector.
P	\emptyset	C	Location in blank common of knowledge covariance.
PG	\emptyset	c	Location in blank common of control covariance
XLAB	I	C	Array of Hollerith labels for all possible augmentation parameters.

Local Variables:

Variable
CXS, CXU, CXW, PS, CSU, CSV, CSW, PU, CUV, CUW, PV, CVW, PW

Definition
Locations in blank common of input covariance matrix subblocks of the same name.

Variable
NT \varnothing T

Definition
Total number of words allocated for each of knowledge and control uncertainties to be read in namelist \$GøDSEP.

Calling Subroutines:

Common Blocks:
WøRK, (BLANK), DATAGR, DATAGI, DIMENS, LøCATE, MEASI, TRAJ2, L \emptyset CAL
Logic Flow: None
3.3.19 Subroutine: LøADRC (A, MA, NA, LISTA, C, M, N, LISTC, LTRAN)

Entry Points: LøDCøL, LøDR ϕW
Purpose:

Method: to another.

To load selected rows or columns from one matrix

A list of codes (LISTA for matrix A and LISTC for matrix C) is associated with either column entries, row entries or both. The two matrix codes are compared and rows or columns having cormon codes are loaded from A to C.

I $\varnothing \mathrm{DC} \varnothing \mathrm{L}$ uses LISTC to define the columns of C . Letting the index J run from 1 to N, for each value of J, LISTA is searched for an element JJ such that LISTC $(J)=\operatorname{LISTA}(J J)$. If no equality is found, no operation is performed on column J of matrix C. If an equality is found, the elements of row $J J$ in matrix A are copied into row J of C.

LøDR $\varnothing \mathrm{W}$ functions the same way for the rows of C as LøDCøL does for columns. LISTC and LISTA are then assumed to define the rows of C and A, respectively.

LØADRC loads rows and columns simultaneously for square matrices where a single list can
denote ordering for both rows and columns, such as covariance and transition matrices. For the simultaneous loading, an intermediate transformation array LTRAN is used. LTRAN(I) is zero if the $I^{\text {th }}$ parameter of LISTC does not appear in LISTA, or is equal to $I I$ if LISTA(II) $=$ LISTC(I). Individual elements are transferred from A to C by

$$
C(I, J)=A(\operatorname{LTRAN}(I)), \operatorname{LTRAN}(J))
$$

Remarks:

The argument LTRAN is working storage and is used only when L $\varnothing A D R C$ is called. It must have a length at least as great as LISTC. The inputs $N A$ and N are ignored for $L \phi A D R C, A$ is assumed to be MAxMA and C to be $M x M$.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
A	I	A	Input matrix.
MA	I	A	Number of rows in A.
NA	I	A	Number of columns in A.
LISTA	I	A	Vector list of code numbers for rows/columns of A.
C	0	A	Output matrix.

Variable	Input/ Output	Argument/ Common	Definition
M	I	A	Number of rows in C.
LISTC	I	A	Number of columns in C.
LTRAN	O	A	Vector list of code num- bers for rows/columns of C.
	A	Transformation list from A to C in L申ADRC designed as working storage with no specific output func- tion. Must have length greater than or equal to that of LISTC.	

Local Variables:

Variable	Definition
MIN	LøDC $\emptyset \mathrm{L}$ - minimum of ($M, M A$)
	LøDR W_{W} - minimum of (N, NA)
	When copying rows or columns MIN is the row or column length. It guarantees that the length of rows or columns in neither A nor C is exceeded.

Gubroutines Called: None
Calİ̈ng Subroutines: STMRDR, GUIDE, C $\emptyset \mathrm{VP}$, PRED, STMUSE, RELC $\emptyset V$
Common Blocks: None
Eogic Flow: None

Purpose:

Input/Output:

Variable	Input/ Output	Argument Common	
IPARAM	I	A	Code number of parameter to be located.
NAVG	I	C	Dimension of augmented state vector.
LøCLST	I	C	Vector of code numbers in augmented state.
	0	F*	Parameter location, if in augmented state.

Local Variables: None
Subroutines Called: None
Calling Subroutines: ØBSERV
Common Blocks:
DIMENS

Logic Flow:

3.3.20B Subroutine: MASSIG (IFLAG, P, PG, DT)

Purpose:	To compute the estimated and cumulative
	spacecraft mass variances.
Method: \quad	See Analytic Manual, Section 6.2 (Covariance
	Propagation).

- Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
DT	I	A	Propagation interval.
Engine (10)	I	C	Exhaust velocity.
EPTAU	I	C	Thrust noise correlation times.
EPVAR	I	C	Thrust noise variances.
IAUGDC	I	c	Vector of flags for dynamic parameters.
Iflag	I	A	Flag for computational control. $=0$, do not average acceleration. = l, initialize SAVACC. $=2$, update mass variance, $=3$, update and print mass variance.
NAUG	I	C	Dimension of augmented state.
NTPHAS	I	c	Current thrust phase number.
P	I	A	Knowlege covariance.
PG	I	A	Control covariance,
SAVACC	I/O	c	Previous thrust acceleration.
SCMASS	I	C	Current S/C mass.
SCMVAR	I/0	c	Current mass variancee,
THRACC	I	C	Thrust acceleration yector,
THRUST	I	C	S/C thrust array.

Local Variables:

Variable	
FL $\emptyset W$	Definition
INITA	S/C mass flow rate.
	Initialization flag TAMAG$\quad 1$, use average acceleration.

Subroutines Called: C§PY, L\&CLST, VECMAG
Calling Subroutines: GøDSEP, SETEVN
Common Blocks: CØNST, DIMENS, LøGIC, PRめPR, TRAJ1, TRAJ2, WøRK

Logic Flow: None.

3.3.21 Program: MEAS

Purpose: Executive control for measurement processing.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
GAIN	\emptyset	C	Location in blank common of gain metrix.
H	\emptyset	C	Location in blank common of observation matrix.
IDATYP	\emptyset	C	See ØBSERV, 3.3.26.
IGAIN	I	C	$\begin{aligned} & \text { Gain matrix flag. } \\ & =1, \text { Kalman-Schmidt (KS) } \\ & =2, \text { sequential weighted } \\ & \text { least squares (WLS). } \\ & =3 \text {, user-supplied. } \\ & =4, \text { read from GAIN file } \end{aligned}$
ISTA3	\emptyset	C	See $\emptyset_{\text {BSERV }}$, 3.3.26.
NAUG	I	C	Length of augmented state vectcr.
NR	\emptyset	C	Length of measurement vector.
P	I	C	Location in blank common of knowledge covariance after measurement.
PRINT	\emptyset	C	Logic thag $=T$, full print for current measurement $=F$, do not give full wrint for current measurement.
PTEMP	I	C	Location in blank common of knowledge covariance before measurement.
PWLS	I	C	Location in blank commion of WLS reference covariance.
SUMMARY	I	C	```Logical flag #T, summary priņt for all measurements. FF, no suṃMary peinte.```

Local Variables: None
Subroutines Called: FILTR, GAINF, GAINUS, MEASPR, MNøISE, ØBSERV, PCNTRL

Calling Subroutines: GøDSEP
Common Blocks: WøRK, (BLANK), DIMENS, LABEL, L \emptyset CATE, L $\emptyset G I C$, MEASR, MEASI

Logic Flow:

3.3.22 Subroutine: MEASPR (TYPE)

Purpose: To control all measurement print
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
TYPE	I	A	```Print type =6HBEFORE, before measurement print =5HAFTER, after measurement print```
AUGLAB	I	C	Array of augmented parameter Hollerith labels.
AZMTH2	I	C	S/C azimuth angle from station ISTA2.
AZMUTH	I	C	S/C azimuth angle from station ISTA1.
CHEKPR (3)	I	C	Print covariance before and after measurement (if TRUE).
DELT IM	I	C	If >0, print transition matrices.
ELEV	I	C	S/C elevation angle from station ISTAI
ELEV2	I	C	S/C elevation angle from station ISTA2
GAIN	I	C	Location in blank common of gain matrix.
H	I	C	Location in blank common of observation matrix.
IDATYP	I	C	General data type flag (See $\emptyset B S E R V$, (Section 3.3.26).
ISTA1	I	C	
ISTA2	I	C	See \emptyset BSERV, Section 3.3.26.
ISTA3	I	C	
LøCLAB	I	C	Array locating state vector partitions in AUGLAB.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
MESEVN	I	C	Measurement code for current data type.
MESLAB	I	C	Array of measurement Hollerith labels.
NAUG	I	C	Length of augmented state vector.
NDIM	I	C	Array of lengths of individual state vector partitions.
NR	I	C	Length of current measurement vector.
NSøLVE	I	C	Total number of variables and parameters being estimated by filter.
P	I	c	Location in blank common of knowledge covariance after measurement.
PHI	I	C	Location in blank common of transition matrix.
PIAB	I	c	Array of knowledge covariance sub-block Hollerith labels.
PLøCAL	I	C	Location in blank common of covariance-sized working storage.
PRINT	I	c	Print control flag $=T$, full print =F, not full print
PTEMP	I	c	Location in blank common of knowledge covariance before measurement.
R	I	C	Before measurement, measurement white noise matrix; after measurement, measurement residual matrix.
SCDEC	I	C	S/C geocentric equatorial declination.

Variable	Input/ Output	Argument/ Common	Definition
SCGLON	I	C	S/C geocentric longitude
SCMASS	I	C	S/C mass
SUMARY	I	C	```Print control flag =T, summary print =F, no summary print```
TCURR	I	C	Current trajectory time
TPAST	I	C	Previous trajectory time
VECLAB	I	C	Array of state vector partition Hollerith labels.

Local Variables:

Variable
AZ
BLANK
DEC
EL
FSTA
FULPR

HØINUM
LON

Definition
"Azimuth" Hollerith label
Hollerith "blank"
"Declination" Hollerith label
"Elevation" Hollerith label
"From Station" Hollerith label
Flag on SUMARY print file
If full print is made for current data type
FULPR $=5 H P R I N T$; otherwise FULPR $=$ Hollerith blank.

Array of Hollerith numbers
"Longitude" Hollerith label

Subroutines Called: MPAK, SQRT, JøBTLE, PRINTT, STMPR, CøRREL, PRNEQ, СØРY, СØРYT, MATØUT, PRPART

Calling Subroutines: MEAS
Common Blocks: WøRK, (BIANK), DIMENS, KEPCØN, LABEL, LøCATE, LØGIC, MEASI, MEASR, SCHEDI, SCHEDR, TRAJ1, TRAJ2

Common Blocks: MEASI, MEASR
Logic Flow: None

3.3.24 Subroutine: MSCHED

Purpose:

Remarks:

To set up measurement and propagation event information for use by the scheduling routine SCHED (Section 3.3.36). If the current error analysis reads gain matrices from the gain file (generalized covariance run) all scheduling and measurement print control information will also be read from the gain file and any scheduling cards in input will be ignored. MSCHED automatically.writes this information on the gain file if gain file creation has been specified in namelist \$GøDSEP.

Each card read is assumed to contain four variables - START, ST $\emptyset \mathrm{P}, \mathrm{DELT}, \mathrm{MESC}$ D (for input format see GøDSEP input, Section 2.3). If the interval (START, STØP) is not completely contained in the interval (TCURR, TFINAL), the values of START and/or STøP will be adjusted so that only those events within the (TCURR, TPINAL) interval will be scheduled. Measurement events are denoted by MESC \varnothing D equal to the number of the data type, and propagation events by MESC $\varnothing \mathrm{D}$ equal to zero. An additional
option is also available to schedule measurements in any sub-interval of (TCURR, TFINAL). When any input card contains a value for DELT less than or equal to zero, all succeeding event cards are scheduled in the (START, STØP) interval defined by that card until a new card with DELT less than or equal to zero is encountered.

Input/Output:

Variable	Input / Output	Argument/ Conmon	Definition
IGAIN	I	C	Integer flag controlling filtering algorithm
			$\begin{aligned} \text { IGAIN }= & 4 \text { means read gain } \\ & \text { from gain file. } \end{aligned}$
GAINCR	I	C	Logical flag controlling gain file creation.
			$=$. TRUE., create gain file. $=$.FALSE., do not create gain file
MPFREQ	I/0	C	Array of measurement print control flags.
MCøDE	0	C	Array of measurement and propagation event codes.
NSCHED	I/O	C	Input as number of scheduling cards to be read. Output as number of entries in SCHEDM MCØDE arrays to be operated on for scheduling current run.
SCHEDM	0	C	Array defining scheduling of events found in MC $\varnothing \mathrm{DE}$. Each MC $\emptyset \mathrm{DE}$ (I) will be scheduled starting at SCHEDM (1, I), stopping at SCHEDM (2, I), in increments of $\operatorname{SCHEDM}(3, I)$.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
TCURR	I	c	Trajectury start time, lower bound for measurement scheduling.
TFINAL	I .	C	Trajectory stop time, upper bound for measurement scheduling.
Local Variabies:			
Variable		Definicion	
begmes		Beginning of allowable event scheduling. interval, initially set to TCURN.	
DELT		Schedule ments.	me interval between measure-
ENDMES		End of a val, ini	able event scheduling interly set to TFINAL.
IBIAS		Running cards read and MCøDE	ter of number of schedule ut not loaded into SCHEDM rays.
MESC \varnothing D		Measureme	code read from input card.
START		Beginning measurem	scheduling interval for type MESCøD.
STøP		End of s ment typ	uling interval for measureSCøD.

Subroutines Called: None
Calling Subroutines: \emptyset UTPTG
Commor Blocks: C \quad NST, SCHEDI, SCHEDR, MEASI, LøGIC, WØRK

3.3.25 Subroutine: NMLIST

Purpose:	Read \$GøDSEP namelist
Remarks:	Al1 knowledge and control covariance matrix partitions
	are provided as arguments to NMLIST in order to
	minimize the number of modifications necessary in
	the event maximum dimensions of any sub-block are
	changed. Dimensions of these arrays in NMLIST must
	correspond to those specified for MAXDIM array in
	subroutine DEFALT (Sec. 3.3.8)
	If GAIN file is being created, NMLIST writes all
	variables in namelist \$GøDSEP to GAIN file (TAPE 4)
	in binary format. Similarly, if GAIN file is being
	read, NMLIST reads default values for namelist
	\$GøDSEP in binary format from GAIN file (TAPE 4)
	and then reads normal namelist \$GøDSEP from input
	to modify defaulted values as desired.
Input/Output:	See GøDSEP Input, Volume II, User's Manual Sec. 2.3
Local Variables:	None
Subroutines Called:	ЈøВTLE, ВøMB
Calling Subroutines:	INPUTG
Common Blocks:	DATAGI, DATAGR, DIMENS, GUIDE, LABEL, LDGIC, MEASI, MEASR, PR $\emptyset \mathrm{PI}, \mathrm{PR} \emptyset \mathrm{PR}$, SCHEDI, SCHEDR, TRAJ2
Logic Flow:	None

3.3.26 Subroutine: \emptyset BSERV (HMAT)

Purpose:

Method:

Remarks:

To compute the observation matrix for a given data type at a measurement. ØBSERV is actually a master routine controling the calls to subordinate routines where the observation matrix (HMAT) is calculated for range, doppler, azimuth-elevation, star-planet angle, apparent planet diameter, and horizon sensor measurements. Depending on the measurement type code (IDATYP), \emptyset BSERV calls (1) OBSRAD to calculate range and doppler observation partials, (2) ØBSAEA for azimuth-elevation partials, (3) ØBSSPA for star-planet angle (i.e., star-Earth horizon angle) observation partials, (4) ØBSAPD for apparent planet diameter observation partials, and (5) ØBHZS for horizon sensor partials. The details of the mathematical models are given in the Analytic Manual, Section 6.3. Rather than explicitly documenting \emptyset BSRAD, $\emptyset_{\mathrm{BSAEA}}, \emptyset_{\mathrm{BSAPD}}$, and $\emptyset_{\mathrm{BS}} \mathrm{HZS}$, the key functional description and calculations for each of these routines will be discussed here in \emptyset BSERV.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definftion
HMAT	\emptyset	A	Observation matrix
AZMTH2	\emptyset	C	Azimuth angle from station
	\square		ISTA2

Variable	Input/ Output	Argument/ Conmon	Description
AZMUTH	\emptyset	C	Azimuth angle from station ISTA1
ECEQ	I	C	Rotation matrix from equatorial to ecliptic coordinates.
ELEV	\emptyset	C	Elevation angle from station ISTAI
ELEV2	\emptyset	C	Elevation angle from station ISTA2
GHZERø	I	C	Greenwich hour angle at launch
IAUGST	I	C	Location in IAUG array of station location flags.
IBAZEL	I	C	Location in IAUG array of azimuth-elevation angle measurement bias flags.
IBDIAM	I	C	Location in IAUG array of apparent planet diameter measurement bias flag.
IBSTAR	I	C	Location in IAUG array of starplanet angle measurement bias flags.
IB2WAY	I	C	Location in IAUG array of 2-way range and range-rate measurement bias flags.
IB3WAY	I	C	Location in IAUG array of 3-way range and range-rate measurement bias flags.
IBHCO2	I	C	Location in IAUG array of the CO_{2} altitude bias flag for the horizon sensor measurement.
IBHZS	I	C	Location in IAUG array of the horizon sensor angle biase flags.

Variable	Input/ Output	Argument/ Common	Definition
IDATYP	\emptyset	C	General data type decoded from MESEVN.
			$=1$, range-rate measurement $=2$, range measurement $=3$, azimuth-elevation anble measurement $=4$, on-board optics, starplanet angle $=5$, on-board optics, apparent planet diameter $=7$, horizon sensor observations.
ISTA1	\emptyset	C	For $\operatorname{IDATYP}=1,2,3$ ISTA1 $=$ station number of first station. For IDATYP=4 Number of first star. For IDATYP=5 ignored.
ISTA2	\emptyset	C	For $\operatorname{IDATYP}=1,2,3$ ISTA2 $=$ station number of second station (if data type requires) For IDATYP=4 number of second star. For IDATYP=5 ignored.
ISTA3	\emptyset	c	Ignored if $\operatorname{IDATYP}=3,4,5$ If $\operatorname{IDATYP}=1,2$: $=0,2$-way data from station ISTA1 $=1$, 3-way data from stations ISTA1 and ISTA2 $=2$, simultaneous 2 -way/3-way data from station ISTA1 and ISTA2 $=3$, differenced 2 -way $/ 3$-way data from stations ISTA1 and ISTA2.
LIST	I	C	List of augmented parameter numbers.
MAXSTA	I	C	Maximum station number for which station location errors and 2-way or 3-way biases are allowed.
MESEVN	I	C	Measurement code of current data type.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
NAUG	I	C	Length of augmented state vector.
NB	I	c	Array of bodies used in trajectory integration.
NB \emptyset D	I	c	Number of bodies used in trajectory integration.
NR	\emptyset	C	Length of current measurement vector.
ØMEGAG	I	C	Earth sidereal rotation rate.
PRADIS	I	C	Array of planetary radii
RAD	I	C	Conversion constant, degrees/ radian
RANGE	\emptyset	C	Range from station ISTA1 to S / C or range from S / C to Earth.
RANGE2	\emptyset	c	Range from station ISTA2 to S/C
SCDEC	\emptyset	C	S/C geocentric equatorial declination.
SCGLøN	\emptyset	C	S/C geocentric longitude.
STALøC	I	C	Array of station location geographic coordinates.
STARDC	I	C	Array of star direction cosines.
STPANG	\emptyset	C	Array of star planet angles.
TCURR	I	C	Current trajectory time.
TM	I	C	Conversion constant, seconds/day.
UP	I	C	Position array of bodies used in trajectory integration.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
UREL	I	c	Relative position array of S/C to bodies for trajectory integration.
VP	I	c	Velocity array of bodies used in trajectory integration.
VREL	I	c	Relative velocity array of S / C to bodies for trajectory integration.
Local Variables:	For all variables and equations, see Volume 1,		
	Analytical Manual, Section 6.		
Variable	Definition		
CACB	\cos (azimuth) $\times \cos$ (elevation)		
CALPHA	COS (azimuth)		
CBETTA	\cos (elevation)		
CGAMMA	\cos (star-planet angle)		
DABDX	$\partial(\alpha, s) /$ is		
DABDXS	$\partial(\alpha, \beta) / \partial \underline{x}_{s}$		
DELR	Vector position difference between stations ISTA1 and ISTA2.		
DELRH \emptyset	$\triangle P$		
DIFF23	Logical flag $=T$, differenced 2-way/3-way data $=$ F, not differenced 2-way/3-way data		
D¢PLER	Logical flag $=T$, range-rate measurement $=\mathrm{F}$, not range-rate measurement		
GECSTA	Geocentric ecliptic coordinates of ISTAl		
GECST2	Geocentric ecliptic coordinates of ISTA2		
GECV	S/C geocentric ecliptic coordinates		
GEQSTA	Geocentric equatorial coordinates of ISTA		

Variable	Definition
GEQV	S/C Geocentric equatorial coordinates
HECE	Heliocentric ecliptic coordinates of Earth.
HECV	S/C Heliocentric ecliptic coordinates.
HV	Observation partials for ISTAl station location parameters.
HV2	Observation partials for ISTA2 station location parameters.
HX	```2-way observation partials for S/C state from ISTAI.```
HX2	```2-way observation partials for S/C state from ISTA2.```
ISTA	Number of station or star for which partials are currently being computed.
NTEMP	When multi-station data is used, infor mation for ISTA2 is computed first in locations $H X, H V, R H \emptyset H A T$, and GECSTA. NTEMP is number of words which must be copied from $H X$, etc. into HX2, etc.
PECCYL	Partial of instantaneous station geocentric ecliptic to geographic coordinates.
PEQCYL	Partial of instantaneous station geocentric equatorial to geographic coordinates.
RHO	Range vector from station ISTA to S/C or from S / C to the Earth.
RH $\emptyset \mathrm{D} \emptyset \mathrm{T}$	Relative velocity vector from station ISTA to S / C.

Variable	Definition
RHØHAT	Unit vector in $\mathrm{RH} \emptyset$ direction from ISTA1
RHøHT2	Unit vector in RHø direction from ISTA2
SAL.PHA	SIN α
SBETA	SIN β -
SGAMMA	SIN Y
SGNCOS	Signum ($\cos \mathfrak{a})$
S IML23	```Logical flag =T, simultaneous 2-way/3-way data =F, not simultaneous 2-way/3-way data```
SINE	Sin (apparent planet diameter angle)
TATB	$\tan \alpha \tan \beta$
THRWAY	```Logical flag =T, 3-way data only =F, not 3-way data on1y```
TW的AY	```Logical flag =T, 2-way data only =F, not 2-way data only```
WHAT	\hat{W}
XSHAT	$\hat{\mathrm{X}}_{\mathrm{S}}$
Subroutines Called:	ZERøM, CYEQEC, VECMAG, UNITV, UDøTV, ASIN, LøCLST, PARSTA, MMAB, NEGMAT, MMATB, ATAN2, CØPY, ADD, MUNPAK, SUB, UXV, SQRT, MMABT, ACøS, LØDCØL
Calling Subroutines:	MEAS
Common Blocks:	WøRK, (BLANK), CøNST, DIMENS, EPHEM, MEASI, MEASR, SCHEDI, SCHEDR, TRAJ1, TRAJ2

Logic Flow:

3.3.27 Subroutine: ØUTPTG

Purpose: \quad| Print out for user information of options |
| :--- |
| selected and initial values. Conversion of |
| |
| input to internal units as necessary. |

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
BIG	I	C	Large constant, l.E20.
C@NRD	I	C	Logical flag.
			```= T, control uncertainties read in. = F, control uncertainties not read in.```
CøRLøN	I	C	Station longitude correlation coefficient.
DCDQ	0	c	Transformation matrix, ecliptic to equat.
DOPCNT	I	C	Average number of range-rate measurements taken per day during tracking arc.
DYNФIS	I	c	Logical flag.
			$=T$, compute effective process noise.   $=F$, do not compute effective process noise.
EPSIG	I	c	Array of process noise stand ard deviations.
EPtau	I	C	Array of process noise correlation times.
EPVAR	I	C	Array of process noise variances.
GAINCR	I	C	Logical flag.
			$=T$, create GAIN file.   $=F$, do not create GAIN file.

Input/ Argument/

Variable	Input/ Output	Argument/ Common	Definition
GENCOV	I	C	Logical flag.
			$=T$, generalized covariance analysis on current run.   $=F$, no generalized covariance analysis on current run.
gTAUl	$\emptyset$	C	Array of negative inverse primary process noise correlation times for TRAJ (Section $3 . ;$ ) Operative only if PDøT $=$.TRUE.
GTAU2	$\emptyset$	C	Array of negative inverse secondary process noise correlation times for TRAJ (Section 5) Operative only if $\mathrm{PD} \phi \mathrm{T}=$. TRUE.
IAUGST	I	c	Location in IAUG array of station location parameters.
IGAIN	I	C	Gain matrix algorithm flag.
ISTMF	I	C	STM file usage flag.
LIST	I	c	Array of augmented parameter numbers.
LPD¢T	$\emptyset$	c	Array of dynamic parameters to TRAJ (Section s s) Operative only if $\operatorname{PD\varnothing T}=$ .TRUE.
MCøUNT	$\emptyset$	C	Measurement counter.
MPFREQ	I/0	C	Measurement print frequency control array.
NAUG	I	C	Length of augmented state vector.
NCNTE	$\emptyset$	c	Eigenvector event counter.


Variable	Input/ Output	Argument/ Common	Definition
NENTG	$\emptyset$	C	Guidance event counter.
NCNTP	$\emptyset$	C	Prediction event counter.
NCNTT	$\emptyset$	C	Thrust event counter.
NEIGEN	$I / \emptyset$	C	Total number of eigenvector events to be scheduled.
NGUID	I/ $\varnothing$	C	Total number of guidance events to be scheduled.
NPRED	$I / \emptyset$	C	Total number of prediction events to be scheduled.
NTHRST	I/ $\varnothing$	C	Total number of thrust events to be scheduled.
NST	I	C	Number of tracking stations defined.
P	I	C	Location in blank common of knowledge covariance.
PDOT	I	C	Logical flag.
			$=T$, covariance propagation by integration of variational equations.   $=F$, covariance propagation by state transition matrices.
PG	I	C	Location in blank common of control covariance.
PGLAB	I	C	Array of control covariance sub-block Hollerith labels.
PLAB	I	c	Array of knowledge covariance sub-block to Hollerith labels.
PRNCøV	I	C	Logical array controlling covariance sub-blocks printed.
PRøPG	$\emptyset$	c	Logical flag.


Variable	Input/ Output	Argument/ Cormon	Definition
			$=T$, propagate control   covariance simultaneously with knowledge.   $=F$, do not propagate control covariance simultaneously with knowledge.
QNøISE	$\emptyset$	C	Array of process noise variances provided to TRAJ (Section 3.S) when $\operatorname{PD} \emptyset \mathrm{T}=$. TRUE.
RAD	I	C	Conversion constant, degrees/radian.
SCHFTL	I	c	Logical flag.
			$=T$, mesh failure on reading   STM file is fatal.   $=\mathrm{F}$, mesh failure on reading   STM file is not fatal.
SIGLøN	I	C	Standard deviation in station longitude.
SIGMES	I	C	Array of measurement white noise standard deviations.
SIGRS	I	C	Standard deviation in station spin radius.
SIGZ	I	C	Standard deviation in station $z$-height.
STALøC	I	C	Array of tracking station cylindrical coordinates.
TCURR	I	C	Current (and initial) trajectory time.
TDUR	I	C	Trajectory final time (seconds) for TRAJ (Section 3.5)
TEIGEN	I	c	Array of eigenvector event times.


Variable	Input/ Output	Argument/ Common	Definition
TFINAL	I	C	Error analysis final time.
TG	I	C	Epoch for input control uncertainties if $\mathrm{C} \emptyset \mathrm{NRD}=$ .TRUE.
TGUID	I	C	Array of guidance event times.
TM	I	C	Conversion constant, seconds/day.
TøLBAK	I	C	Backward tolerance on STM file mesh.
TøLFøR	I	C	Forward tolerance on STM file mesh.
TPRED	I	C	Array of prediction event times.
TTHRST	I	c	Array of thrust event times.
VARMES	$\emptyset$	C	Array of measurement white noise variances.

Local Variables: None
Subroutines Called: MSCHED, ESCHED, SCHED, B $\emptyset$ MB, ATAN, ZER $\emptyset \mathrm{M}, ~ G \not \subset R R E L$, PRNEQ, SDVAR, CØPY

Calling Subroutines: DATAG
Common Blocks: WØRK, (BLANK), CØNST, DATGI, DATGR, DIMENS, LABEL, LØCATE, LØGIC, MEASI, MEASR, PR $\emptyset P I, ~ P R \emptyset P R, ~ S C H E D I$, SCHEDR, TIME, TRAJ1, TRAJ2


Page 301 has been deleted.
3.3.29 Subroutine: PARSTA (GEQSTA, STAL $\varnothing C, E C E Q$, PECCYL, SPHERE)

## Purpose:

Method:

To compute the partials of station instantaneous geocentric ecliptic cartesian state with respect to equatorial geographic coordinates, either spherical or cylindrical.

Analytical expressions for these partial derivatives have been evaluated in the Analytical Manual, Section G, and are coded here for numberical calculations.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
GEQSTA	I	A	Instantaneous geocentric equatorial cartesian state vector of the station.
STALめC	I	A	Geographic coordinates of the station. Radius, latitude and longitude for spherical coordinates. Spin radius, longitude, and Z-height for cylindrical conditions.
ECEQ	I	A	Rotation matrix from equatorial to ecliptic cartesian frame.
PECCYL	$\emptyset$	A	Partial derivatives of instantaneous ecliptic state of the station with respect to the geographic coordinates of the station.
SPHERE	I	A	Logical flag to determine whether the input/output is in terms of spherical (SPHERE=.TRUE.) or cylindrical (SPHERE=.FALSE.) station coordinate variables.


Variable	Definition	
CøSEPS, SINEPS		$\operatorname{COS}$ and SIN of Earth obliquity to ecliptic.
CФSPHI, SINPHI		COS and SIN of instantaneous station equatorial longitude.
CPめMEG, SPØMEG		COS and SIN of Earth inertial rotation rate.
Subroutines Called:	None	
Calling Subroutines:	OBSRAD	
Common Blocks: None		

Logic Flow: None

### 3.3.30 Logical Function: PCNTRL (ITYPE, ISUB)

## Purpose:

## Method:

Remarks:

To control measurement print. Each general data type (e.g., 2 -way range, simultaneous 2-way/3-way doppler, azimuthelevation angles) is assigned a print frequency (MPFREQ) and a counter (MPCNTR). A test is made on the counter for the input data type defined by ITYPE, ISUB. If the MPCNTR, modulo its MPFREQ, is zero, the measurement is printed.

Two additional features are provided. The first processed measurement of any data type whose corresponding MPFREQ element is non-zero is printed. Also, the final measurement, independent of the data type, is printed.

Input/Output:

Variable	Input/ Output		$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
ITYPE	I	I	A	Basic data type, corresponds to IDATYP in common block MEASI.
				$\begin{aligned} & =1, \text { doppler } \\ & =2, \text { range } \\ & =3, \text { azimuth-elevation } \\ & =4, \text { angle } \\ & =5, \text { apparent planet diam- } \\ & \quad \text { eter. } \end{aligned}$
ISUB	I	A		Sub-data type for doppler and range, ignored if ITYPE $>2$.


Variable	Input/ Output	Argument/ Common	Definition
		$\cdots$	$\begin{aligned} & =0,2 \text {-way } \\ & =1,3 \text {-way } \\ & =2, \text { simultaneous } 2 \text {-way } / \\ & =3 \text {-way } \\ & =3 \text { differenced } 2 \text {-way } / \\ & 3 \text {-way } \end{aligned}$
PCNTRI	0	F*	Logical print control variable.
	.		$\begin{aligned} &= \text {.TRUE., if measurement to } \\ & \text { be printed } \\ &= \text {. FALSE., if measurement } \\ & \text { not to be printed. } \end{aligned}$
MPCNTR	I/O	C	Array of data type counters.
MPFREQ	I	C	Array of data type print frequencies.
TFINAL	I	C	Trajectory final time.
TMNEXT	I	C	Time of next scheduled measurement.

## Local Variables:

Variable
ICめDE Integer subscript locating data type in MPFREQ and MPCNTR.

Subroutines Called:

None

## Calling Subroutines: <br> MEAS

Common Blocks: SCHEDR, SCHEDI
*Function Value Output.

## Logic Flow:

PCNTRL-3


3.3.31A Subrout		$\emptyset \mathrm{CK}, \mathrm{IF}$ ¢ R	
Purpose:	To 10	input cova	es from either packed
		ked input   Section 3.	to block form (See
Input/Output:			
Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
PBLDCK	I	A	Array containing all input covariance information.
IFøRM	I	A	Flag indicating input form of individual sub-blocks within PBLØCK.
			$\begin{aligned} & =1 \text {, sub-blocks are packed. } \\ & =-1, \text { sub-blocks are not } \\ & \text { packed. } \end{aligned}$
PaUg	$\emptyset$	A	Output covariance in "block" form.
LøCBLK	I	C	Array locating covariance sub-blocks in "block" form (PAUG).
MAXDIM	I	C	Array of dimensions of covariance sub-blocks in PBLDCK. MAXDIM remains at input values if input sub-blocks are not packed and MAXDIM is adjusted to NDIM if subblocks are packed.
NDIM	I	C	Array of assumed sub-block dimensions on output.

## Loca1 Variables:

Variable
IBLØCK

Definition
Running counter locating current covariance sub-block within PBLøCK.
Variable Definition

MAXSAV
Array saving input values of MAXDIM.

Subroutines Called: MPAK, SYML $\varnothing$, AUGCNV
Calling Subroutine: INPUTG
Common Blocks: WøRK, DATAGI, DIMENS
Logic Flow: None
3.3.31 B Subroutine: PRNEQ (PIN, IGIN)
Purpose: $\quad$ To transform the $6 \times 6$ state error covariance
from ecliptic to equatorial coordinates, and
to print the equatorial covariance.

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
AUGLAB	I	C	Vector of printout labels.
IGIN	I	C	Transformation matrix from   ecliptic to equatorial   coordinates.
NAUG	I	A	Logical flag to print   eigenvectors and eigen-   values.
PIN	I	C	A

Subroutines Called: EIGPRN, MMABAT, MPAK, PRSDEV, VARSD
Calling Subroutines: GUIDE, MEASPR, SETEVN
Common Blocks: CØNST, DIMENS, LABEL, PRØPR, WøRK
Logic Flow: None.
3.3.32 Subroutine: PR $\emptyset \mathrm{P}$ (PIN, PHIMAT, NP, WLSREF, PØUT)

Purpose:
To propagate an augmented covariance matrix between time points.

Method:
State transition matrix with effective process noise model.

Remarks:
PIN and PøUT may not share the same location.
This routine also propagates the reference
covariance for sequential weighted least
squares (WLS) filtering.
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
PIN	I	A	Input covariance to be propagated.
PHIMAT	I	A	Transition matrix over time interval.
NP	I	A	Demension of input transition matrices.
WLSREF	I	A	Logical flag controlling propagation of WLS reference covariance.
			$=$.TRUE, and IGAIN $=2$, WLS reference propagated, otherwise not.
PøUT	0	A	Output covariance.
DYNøIS	I	C	Logical flag controlling addition of effective process noise.
.			$\begin{aligned} & =. \text { TRUE., add } Q \\ & =. \text { FALSE. }, \text { do not add } Q \end{aligned}$


Variable	Input/   Output	Argument/ Common	Definition
IGAIN	I	C	Integer flag controlling filtering algorithm
			$=2$, use WLS   $\neq 2$, do not use WLS.
NS¢LVE	I	C	```Total number of variables solved-for (=6 + number of solve-for parameters).```
PWLS	I	C	Location in blank common of WLS reference covariance.
Q	I	C	Effective dynamic noise matrix.

Loca1 Variables: None

Subroutines Called: ZER $\emptyset$, MUNPAK, MPAK, SYMTRZ, AMABAT
Calling Subroutines: C $\varnothing \mathrm{VP}, \mathrm{PRED}, \mathrm{GUIDE}$
Common Blocks:
(BLANK), DIMENS, LøCATE, LめGIC, MEASI, PR $\emptyset P R$

## Logic Flow:



3.3.33 Subroutine: PRPART (A, MAXR $\varnothing \mathrm{W}$, $N R \emptyset \mathrm{~W}$, NC $\varnothing \mathrm{L}$, LABEL)

Entry Points:

## Purpose:

Remarks:

## PRCøRR, PUNC $\varnothing$ R

To print or punch the transpose of any subblock or partition of a matrix with column labels for printing and a single matrix name for punching.

This routine was designed primarily for printing partitions of covariance and transition matrices and punching covariance partitions. However, it has general applications to any matrix. PRPART and PRC $\emptyset R R$ are functionally equivalent - the difference in output being E format by PRPART for general matrices and F format by $\operatorname{PRC} \emptyset_{R R}$ for easy reading of correlation coefficients. PUNC $\varnothing$ R punches, and is valid for general matrices. The calling sequence requires that the argument $A$ be the first word of the partition of interest. For example, given a $9 \times 9$ state transition matrix, PHI, which is theoretically partitioned as

$$
\text { PHI }=\left[\begin{array}{cc}
\Phi_{6 \times 6} & \theta_{6 \times 3} \\
0_{3 \times 6} & I_{3 \times 3}
\end{array}\right]
$$

to print the transpose of the $\Phi_{6 \times 6}$ partition we would use

CALL PRPART (PHI, 9, 6, 6; LABEL1) where LABELI is a 6 -vector of Hollerith labels for the columns of $\Phi_{6 \times 6^{\circ}}$. Similarly to print the transpose of $\theta_{6 \times 3}$, we would use CALL PRPART (PHI (1, 7), 9, 6, 3, LABEL2) where PHI (1, 7) represents the first element of the $\theta_{6 \times 3}$ partition, and LABEL2 as a 3 -vector of Hollerith labels for the columns of $\theta_{6 \times 3}$. If PHI is not explicitly dimensioned $9 \times 9$ in the calling routine, this last call could also have been

CALL PRPART (PHI (NPHI * (7-1) + 1),
NPHI, 6, 3, LABEL2)
where the PHI subscript (NPHI * (7-1) + 1) comes from the general formula for locating element $(\mathrm{I}, \mathrm{J})$ in a matrix dimensioned ( $\mathrm{M}, \mathrm{N}$ ):
$\mathrm{L} \phi \mathrm{C}=\mathrm{M} *(\mathrm{~J}-1)+\mathrm{I}$.

## Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
A	I	A	First word of matrix subblock to be printed or punched.
MAXRФW	I	A	Number of rows in complete matrix from which partition is being taken.
NR $\mathrm{W}^{\text {W }}$	I	A	Number of rows in partition to be printed/punched, must be less than or equal to MAXRめW.


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
NCめL	I	A	Number of columns in partition to be printed/punched.
LABEL	I	A	For PRPART and PRC $\varnothing R \mathrm{R}$ an NC $\varnothing$ L-vector of Hollerith labels for printing.
			For PUNC $\emptyset$ R, a one-word Hollerith label for the matrix to be punched.

Loca1 Variables: None
Subroutines Called: None
Calling Subroutines: CøRREL, STMPR, MEASPR, GUIDE
Common Blocks: None
Logic Flow: None
3.3.34 Subroutine: PRSDEV (SDC $\emptyset R$, MAXR $\varnothing \mathrm{W}$, NR $\emptyset \mathrm{W}$, LABEL)

## Entry Points: PUNSD

Purpose: To print (PRSDEV) or punch (PUNSD) a matrix of standard deviations and correlation coefficients.

Remarks: The input matrix (SDC $\emptyset R$ ) may represent a complete covariance or any diagonal sub-block thereof. It is assumed to have standard deviations on the * diagonal and correlation coefficients in the upper triangle. The lower triangle is ignored. For further remarks on locating the partition to be printed/punched, see Section 3.3.33, Subroutine PRPART under Remarks.

## Input/Output:

Variable	Input/ Output	Argument/   Common	Definition
SDCDR	I	A	First word of partition to be printed/punched.
MAXR $¢ W$	I	A	Total number of rows in matrix from which partition is taken.
NR $\dagger$ W	I	A	Number of rows in partition.
LABEL	I	A	PRSDEV - an NR $\emptyset$ i-vector of Hollerith labels corresponding to the variables in the partitions.
			PUNSD - a one-work Hollerith label for the matrix partition.

Subroutines Called: None
Calling Subroutines: CØRREL, GUIDE, RELC $\emptyset V$
Common Blocks: None
Logic Flow: None

Pages 317 through 319 are deleted.
3.3.36 Subroutine: SCHED (TLAST, TEVENT, DELT, JEVENT)

Purpose: $\quad$ To schedule for G $\emptyset$ DSEP the next measurement or event to be processed.

Remarks:
During normal operation, SCHED returns a precomputed measurement or event and then computes and stores locally the next measurement or event to be processed. Therefore, two successive calls are required to initialize both the measurement and event scheduling sequences.

The purpose in pre-computing times and event codes is to minimize search time. When a measurement is scheduled, only measurements need be scanned for the next scheduling, not events. The reverse, of course, is true when an event is scheduled.

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
TLAST	I	A	Time of previous measure-   ment/event.
TEVENT	0	A	Time of new measurement/   event.
JELT	0	A	Time difference between   previous and new measure-   ment/event.
BIG	I	A	Integer code of new measure-   ment/event corresponding to   time TEVENT.
In awfully large number.			


Variable	Input／ Output	Argument／   Common	Definition
MCøDE	I	C	Array of measurement codes to be scheduled．
MCめUNT	I／0	C	Measurement counter．
NCNTE	I／O	C	Eigenvector event counter．
NCNTG	I／O	C	Guidance event counter．
NCNTP	I／0	C	Prediction event counter．
NCNTT	I／O	C	Thrust event counter．
NEIGEN	I	C	Total number of eigenvector events．
NGUID	I	C	Total number of guidance events．
NPRED	I	C	Total number of prediction events．
NSCHED	I	C	Number of schedule times in SCHEDM to be scanned for next measurement or propagation event．
NTHRST	I	C	Total number of thrust events．
SCHEDM	I	C	Array of measurement sched－ ule times
			$\operatorname{SCHEDM}(1, I)=$ Next time to be scheduled for measurement type MCøDE（I）．
	．	．	$\operatorname{SCHEDM}(2, I)=$ Stop time for MCØDE（I）．
			$\operatorname{SCHEDM}(3, I)=$ Time increment for scheduling MCめDE（I）．
TEIGEN	I	C	Array of eigenvector event times。


Variable	Input/   Output	Argument/   Common	Definition
TFINAL	I	C	Final time。
TGUID	I	C	Array of guidance event   times.
TPRED	I	$\ldots$	C
TTHRST	I	C	Array of prediction event   times.
	Array of thrust event		
times.			

## Local Variables:

Variable	Definition
JENEXT	Integer code of next event to be sched-   uled.
MNEXT	Integer code of next measurement to be   scheduled.
TENEXT	Time of next event to be scheduled.
TMEXT	Time of next measurement to be sched-   uled.

Subroutines Called: None
Calling Subroutines: ØUTPTG, STMGEN, GØDSEP
Common BIocks: C $\emptyset$ NST, SCHEDI, SCHEDR

Logic Flow:


### 3.3.37 Subroutine: SETEVN

## Purpose: <br> Event print control and propagation control for prediction events.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
MESEVN	I	C	Event code.
			$=1$, propagation.   $=2$, eigenvector.   $=3$, thrust switching.   $=4$, guidance.   = 5, prediction.
AUGLAB	I	C	Array of augmented parameter Hollerith labels.
EVLAB	I	C	Hollerith event label array.
$F \emptyset \mathrm{P}$	I	C	Final off-diagonal annihilation value for position eigenvalue computation.
IPRøP	I	c	Print control flag for propagation events.
			$=0$, no print   $=1$, print standard deviations and correlation coefficients for S/C state only   $=2$, fuil eigenvector event print.
naug	I	C	Length of augmented state vector.
NCNTP	I	C	Number of current prediction event.


Variable	Input/   Output	Argument/   Common	Definition
P	I	C	Location in blank common   of current knowledge   covariance.
PLAB	I	C	Array of Hollerith labels   for knowledge covariance   sub-blocks:
PLøCAL	I	C	Location in blank common   of working storage provided   to subroutine RELCøV.
PTEMP	I	C	Location in blank common of   predicted knowledge covari-   ance.
SCMASS	I	C	C
TCURR	I	Current S/C mass.	

Local Variables:

Variable

LP

## Definition

Location in blank common of covariance to be operated on by RELCØV and CøRREL.

Subroutines Called: JøBTLE, MPAK, VARSD, PRSDEV, PRINTT, EIGPRN, RELC $\emptyset V$, CøRREL, CøVP; MASSIG, DYN $\emptyset, ~ P R N E Q$

Calling Subroutine: GøDSEP

Common Blocks:
WøRK, (BLANK), CøNST, DIMENS, GUIDE, KEPCØN, LABEL, LøCATE, LøGIC, MEASI, PRøPI, SCHEDI, SCHEDR, TIME, TRAJI



### 3.3.38 Subroutine: SETGUI

Purpose: $\quad$ Set up control for guidance event. Performs
all computations which must be done in primary
overlay which consists primarily of interfacing
with TRAJ.

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
BIG	I	C	Bnormons constant, 1.E20
BURNP	0	c	Mas's and thrust at gifdance start
CHEKPR (8)	I	C	Logical flag. and stop
			$=T$, generate transition matrices for guidance by reading STM file. $=F$, integrate transition matrices for guidance in TRAJ.
DELAY	$\emptyset$	C	Guidance delay time fcr current event.
DXDKAF	$\emptyset$	c	DXDKST evaluated at end of burn interval.
DXDKBR	$\emptyset$	C	DXDKST evaluated at beginning of burn interval.
DXDKST	I	C	Keplexian to cartesian ephemeris transformation from STMRDR, corresponds to beginning of guidance delay interval.
GT	$I / \varnothing$	C	Transfurmation matrix for subroutine DYMO evaluated at end of propagation interval.
GTBURN	$\emptyset$	C	GT matrix evaluated at beginning of burn interval.


Variable	Input/ Output	Argument/ Common	Definition
GTDLAY	$\emptyset$	C	GT matrix evaluated at beginning of delay interval.
GTØFF	$\emptyset$	C	GT matrix evaluated at end of burn interval.
gTSAVE	$\emptyset$	c	GT matrix evaluated at beginning of current propagation interval for subroutine DYN $\emptyset$.
IAUGDC	I/0	C	Dynamic parameter augmentation flags.
ICALL	$\emptyset$	C	Setup parameter for TRAJ (Section 3.5)
IEP	I	C	Set UP, VP below.
IEPHEM	I	C	Ephemeris element coordinate system flag.
IGPDL	I	C	Array of guidance policy flags.
IGREAD	I	C	Array of namelist \$GEVENT read control flags.
INTEG	$\emptyset$	C	Setup parameter for TRAJ (8ection 3.5)
IP L $_{\text {L }}$	$\emptyset$	C	Guidance policy flag for current event.
IPRINT	$\emptyset$	C	Setup parameter for TRAJ (Section 3.5)
IREAD	$\emptyset$	C	\$GEVENT read policy for current event.
ISTめP	$\emptyset$	C	Stopping condition parameter for TRAJ (Section 3.5)
KUT $\mathrm{FFF}^{\text {F }}$	$\emptyset$	C	Flag indicating actual integrator stopping conditions.
LISTDY	I	C  	List of dynamic parameters contained in transition matrix generated either from STM file or TRAJ.


Variable	Input/ Output	Argument/ Common	Definition
LøCTC	I	C	Location in blank common of trarisition matrix returned by TRAJ.
MEVEN'	$\emptyset$	C	Setup flag for TRAJ (Section 3.5)
NAUG	I	C	Length of augmented state vector.
NCNTG	I	C	Number of current guidance event.
N PHSTM	I	C	Dimension of transition matrix returned by subroutine STMRDR or by TRAJ.
NPRI	I	C	Body number of primary integration body.
NTPHAS	I	C	Number of current thrust phase.
PG1	I	C	Locations in blank common of working storage for
PG2	I	C	guidance related covariance computations.
PHI	I	C	Location in blank common of transition matrix.
PL6CAL	I	C	Location in blank common of covariance working storage.
PTEMP	I	C	Location in blank common of covariance working s;orage.
S	$\emptyset$	C	Guidance sensitivity matrix, cutoff state wrt controls.
SCMASS	I	C	S/C mass.
SMASS	I	C	Mass of sun.
STATEO	$\emptyset$	C $\cdots$	Initial integration state for TRAJ.
TBURN	$\emptyset$	C	Length of burn intequal for current event.


Variable	Input/ Output	Argument/ Common	Definition
TCUT $\varnothing$ F	I	C	Array of guidance event cutoff times.
TDELAY	$\emptyset$	C	Guidance delay time for current event.
TDUR	$\emptyset$	C	Maximum integration time (seconds) for TRAJ.
TEVNT	$\emptyset$	C	Event time for TRAJ.
TFINAL	I	C	Error analysis final time.
TGST $¢ \mathrm{P}$	I	C	Maximum integration time if guidance event needs transition matrices evaluated past final time.
TGUID	I	C	Array of guidance event scheduled times.
THRACC	I	C	Thrust acceleration vector.
TIMFTA	1	C	Target condition evaluation time for fixed time of arrival guidance.
TM	I	C	Conversion constant, seconds/ day.
TøFF	$\emptyset$	C	Cutoff time for current event.
$\mathrm{T} \emptyset \mathrm{N}$	$\emptyset$	C	Maneuver execution time for current event.
TREF	$\emptyset$	c	TRAJ reference time for integration initialization.
TSTM	I	c	STM file time.
UP ( 1, IEP $)$	I	c	Position of ephemeris body.
VP ( 1, IEP)	I	C	Velocity of ephemeris body.
UTRUE	I	C	S/C heliocentric ecliptic position vector used to define STATEO for TRAJ initialization.


Variable	Input/ Output	Argument/ Common	Definition
VTRUE	I	c	S/C heliocentric ecliptic velocity vector used to define STATEO for TRAJ initialization.
VRNIER	$\emptyset$	c	$\begin{aligned} & \text { Logical flag. } \\ & =T, \text { current maneuver is } \\ & =F, \begin{array}{c} \text { vernier } \\ \\ \\ \text { primary. } \end{array} \end{aligned}$

## Local Variables:

Variable
IHOLD1, IHOLD2, IHOLD3 IHOLD4, IHOLD5, IHOLD6

TSTMSV

Definition
Locations for saving parameter values which will be changed by calls to either STMRDR or TRAJ.

Saves STM file time (TSTM) when generating state transition matrices by calling STMRDR.

Subroutines Called: C $\emptyset P Y, Z E R \emptyset M, S T M R D R, M P A K, S T M U S E, S T M P R, ~ P A R K E P$, BøMB, JøBTLE

Calling Subroutine: GøDSEP
Common Blocks: $\quad$ Ø $\emptyset R K$, (BLANK), C $\emptyset N S T, ~ D I M E N S, ~ E P H E M, ~ G U I D E, ~ K E P C \emptyset N, ~$ LøCATE, LØGIC, MEASI, PR $\emptyset P I, ~ P R \emptyset P R$, SCHEDI, SCHEDR, TIME, TRAJ1, TRAJ2

## Logic Flow:



### 3.3.39 Subroutine: STMGEN

## Purpose: Generate STM file.

Remarks: $\quad$ For effective process noise computation subroutine DYNø requires the evaluation at beginning and end of a propagation interval of the rotation matrix from body-centered magnitude, pitch, yaw system to heliocentric ecliptic cartesian coordinates. This transformation must be saved on the STM file. At thrust phase change two such transformations are required, one for each phase evaluated at the same time point. Calls to the trajectory overlay are generated to guarantee that this transformation is always evaluated for the interval just ending, and an extra call to subroutine $E P$ is required to evaluate the transformation at the beginning of the new thrust phase. This pertains to statements between statement numbers 300 and 400 .

## Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
CHEKPR (1)	I	C	Check print flag.
			$=T$, write to output all trajectory information written on STM file.   $=F$, no write to output.
DELTIM	I	c	Time difference between previously and currently scheduled events.


Variable	Input/ Output	Argument/ Common	Definition
LDCM	I	C	Location as blank common of current $\mathrm{S} / \mathrm{C}$ mass.
LøCTC	I	C	Location as blank common of current transition matrix.
MESEVN	I	C	Current event code.
NCNTT	I	C	Number of current thrust event.
NPHSTM	I	C	Dimension of transition matrix.
TCURR	I	C	Currently scheduled trajectory time.
TFFINAL	I	C	Stop time for STM file generation.
TM	I	C	Conversion constant, seconds/ day.
TPAST	I	c	Previously scheduled trajectory time.
			Initialization parameters
		C	for TRAJ.
			Trajectory information written to STM file. See
		C	common block descriptions
			for individual variable descriptions.



Local Variables:	None
Subroutines Called:	CøPY, SCHED, EP
Calling Subroutine:	GØDSEP
Common Blocks:	WøRK, (BLANK), C $\emptyset$ NST, DIMENS, LøGIC, PR $\emptyset P R$, SCHEDI, SCHEDR, TIME, TRAJ1, TRAJ2
Logic Flow:	None

3.3.40 Subroutine: STMPR (T, TF, PHIMAT)
Purpose: To print state transition matrix partitions and effective process noise covariance if computed.

Input/Qutput:
Input/ Argument/
Variable Output Common Definition

T	I	A	Trajectory time at beginning of propagation interval.
TF	I	A	Trajectory time at end of propagation interval.
PHIMAT	I	A	Augmented transition matrix over'propagation interval.
AUGLAB	I	c	Array of augmented parameter Hollerith labels.
DYNOIS	I	C	Dynamic noise flag.
LøCAUG	I	c	Array locating sub-blocks within augmented transition matrix.
LDCLAB	I	C	Array locating state vector partions within AUGLAB array.
NAUG	I	c	Length of augmented state vector.
NDIM	I	C	Array of lengths of individual state vector partitions.
PRNSTM	I	c	Output control flag determining sets of transition matrix
			$=T$, print sensitivities of relevant state vector partition to entire augmented state.   $=F$, no sensitivities printed for relevant state vector partition.


VariableInput/   Output	Argument/   Common	Definition


Q	I	C	Effective process noise   covariance.
VECLAB	I	$C$	Array of state vector par-   tition Hollerith labels.

Local Variables: None
Subroutines Called: PRPART, MAT $\emptyset$ UT
Calling Subroutines: MEASPR, STMRDR, GUIDE, SETGUI
Common Blocks: WøRK, DIMENS, LABEL, L $\emptyset G I C$, PR $\emptyset$ PR
Logic Flow: None

### 3.3.41 Subroutine: $\operatorname{STMRDR}(T, T F, I \emptyset P T)$

Purpose: To read transition matrices and trajectory information from STM file (TAPE 3).

Remarks:
During STM file creation the user should have scheduled as fine a time grid of trajectory points as will ever be necessary for the particular mission. Therefore, situations will
occur during STM file reading where many time points are encountered on the file between
time points requested by the scheduler for
the current error analysis. In this situation
transition matrices over the short time inter-
vals are chained to produce the required transi-
tion matrix over the complete time interval.

## Input/Output:

Variable	Input/   Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \end{gathered}$	Definition
T	I	A	Trajectory time at beginning of propagation interval.
TF	I	A	Scheduled trajectory time at end of propagation interval.
IØPT	$I$	A	Option flag.
-	.	-	$=0$, normal read.   $=+1$, count number of records read for future backspace capability.   $=-1$, same as +1 but compute guidance sensitivity matrix in addition.
CHEKPR (1)	I	C	Check print flag.


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
			$=T$, print all trajectory information read from STM file and all intermediate products in transition matrix chaining.   $=\mathrm{F}$, no print.
DELTIM	I/O	C	Input as scheduled interval length. If STM file is already positioned within forward tolerance DELTIM is set to 0 .
LISTDY	I	C	List of dynamic parameters included in transition matrix read from STM file.
MESH	$\emptyset$	C	Logical flag.   $=T$, successful mesh of scheduled trajectory times with STM file times.   $=F$, unsuccessful mesh.
NAUG	I	C	Length of augmented state vector.
NPHSTM	I	C	Dimension of transition matrix read from STM file.
PHI	I	c	Location in blank common of output transition matrix.
PLOCAL	I	C	Location in blank common of transition matrix working storage for chaining.



Local Variables:

Variable	Definition
IHOLD	Intermediate holding variable used when exchanging values of IPHI2 and IPHI3.
$\left.\begin{array}{l} \text { IPHI2 } \\ \text { IPHI3 } \end{array}\right\}$	Initially set to PTDCAL and PTEMP respectively. Values are switched to avoid copying of incermediate transition matrices used in chaining.
NBACK	Number of records read when $1 \emptyset \mathrm{PT}=0$ to be used for backspacing.
NUPPER	Upper word limit for reading STM record.
TSTMO	Last Value of $T S T M$ when $I \emptyset \mathrm{PT}=0$.
Subroutines Called:	VECMAG, PARKEP, BøMB, MMAB, MATØUT, MPAK, STMUSE, STMPR
Calling Subroutines:	CØVP, SETGUI
Common Blocks:	WøRK, (BLANK), CøNST, DIMENS, EPHEM, GUIDE, KEPC $\emptyset \mathrm{N}$, LøCATE, LøGIC, MEASI, PR $\emptyset$ PR, SCHEDI, SCHEDR, TIME, TRAJ1, TRAJ2



3.3.42 Subroutine: STMUSE (THRNUM, DXDK, STMIN, NIN, LISTIN, STMळUT, NøUT)

Purpose:
To convert state transition matrix as read from STM file to state transition matrix as needed by augmented covariance matrix. There are two possible operations required to convert STM file transition matrices to the augmented transition matrix required for covariance propagation:
(1) ordering of rows and columns with insertions for measurement parameters and deletions for unused dynamic parameters as necessary
(2) scaling of thrust parameter sensitivities to account fór number of thruster operating over current phase;

Input/Output:

Variable	Input/   Output	Argument/   Common	
THRNUM	I	A	Number of thrusters operat-   ing over transition matrix   interval.



Logic Flow:

3.3.43 Subroutine: VERR (VARDV, DV, CøVERR)

Purpose: To compute the $\Delta V$ execution error covariance.
Method: Variances in $\Delta V$ proportionality, resolution and two pointing angles are applied to the input $\Delta V$ to form the execution error covariance (See Section 6.3 of the Analytic Manual).

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
VARDV	I	A	$\Delta v$ execution error
			$\sigma_{\mathrm{PRD}}{ }^{\text {variances: }} \sigma_{\mathrm{RES},}^{2}, \sigma_{\alpha,}^{2} \sigma_{\xi}^{2}$
DV	I	A	$\Delta \underline{V}=\left(\Delta V_{x}, \Delta V_{y}, \Delta V_{z}\right)$
CめVERR	0	A	Execution error covariance

Subroutines Called: None
Calling Subroutines: GUIDE
Common Blocks: None
Logic Flow: None
$\sim$

Remarks:

To control the overall logic flow of the trajectory simulation mode. SIMSEP is the main subroutine in the trajectory simulation mode. Its primary function is to control the execution of algorithms and logic according to the operation and option flags specified during input. This is done in two basic cycles within the program. The first, or outer cycle, is the so-called Monte Carlo mission cycle where a complete actual trajectory is propagated from beginning to end. Included within the mission cycle is the guidance event loop where trajectory estimation and guidance are performed to keep the "actual" trajectory on course. After many sample missions have been flown, certain statistical parameters are computed to aid in the deduction of expected trajectory characteristics and system performance. One of the key operations performed in SIMSEP and its subordinate routines is the propagation of trajectories from one time point to another. This operation may simultaneously include the generation of state transition matrices. Since all communications with the integrator are by
common block variables, the explicit in line initialization of integrator control variables prior to calling the trajectory routine is evident throughout SIMSEP. A list of variables which must be defined to properly initialize the trajectory is given below. This list should clarify how SIMSEP's interface with TRAJ is performed.

Variable
EPøCH

TREF

TDUR

STATEO
SCMASS
NTPHAS
NPRI
ICALL

INTEG

Definition
Initial trajectory epoch, a Julian date.

Trajectory starting time (in seconds) measured from EPøCH.

Trajectory termination time (in seconds) measured from EPøCH.

State vector specified at TREF.
S/C mass specified at TREF.
Thrust phase number of TREF.
Primary body number at TREF.
Trajectory initialization flag.
ICALL $=1$, the trajectory is initialized and propagated.
ICALL $=2$, the trajectory is initialized on1y.
ICALL $=3$, the trajectory is propagated from a previous integration step.

Flag indicating which equations are to be integrated in TRAJ.

INTEG $=1$, equations of motion and variational equations are to be integrated.

Variable	Definition
ISTøP	INTEG $=2$, only the equations of motion are integrated.
	Trajectory stopping condition flag.
	ISTø $\varnothing$ P $=$, the trajectory integration is ended at TDVR.
	IST $\varnothing \mathrm{P}=2$, the trajectory integration is ended when closest approach is detected at the Earth.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
NREF	I	C	State vector read-in flag.
UREL	I	C	Relative s/c position vectors.   $\operatorname{UREL}(1,1)$ for $\mathrm{i}=1,2,3$ is the heliocentric posi~ tion vector of the s/c. UREL ( $i$, ITP) for $i=1$, 2,3 is the position vector relative to the Earth.
VREL	I	C	$\operatorname{VREL}(i, 1)$ for $i=1,2,3$ is the heliocentric velocity vector of the s/c.   VREL ( $i$, ITP) for $i=1$, 2,3 is the velocity vector relative to the Earth.
BLANK   (LøCM)	I	c	Current $\mathrm{s} / \mathrm{c}$ mass at any given instant along the trajectory integration.
TST $\dagger$ P	I	C	Trajectory stop time relative to EPøCH.


Variable	Input/ Output	353   Argument/   Coumon	SIMSEP-4   Definition
EP@CH	I	c	Initial epoch of the mission. A Julian data corresponding to the launch of the mission.
TGE	I	C	Epoch of a guidance event.
IRAN	I	c	Random number seed.
N@ISED	I	c	Thrust process notse flag. If NOISED $=1$, time-varying dynamic noise is activated in the trajectory integrator. If NøISED $=0$, there is no dynxmic noise.
PG	I	C	Initial s/c control covariance in eigenvector/ eigenvalue form.
KTERR	I	C	Plag to indicate whether or not a trajectory is to be propagated after a given guidance correction to the designated target to evaluate target errors. If KTERR - 2, target exrors are computed. If KTERR = 0 , no target errors.
NSAMP	1	c	Previous number of Monte Carlo cycles that have been processed for a given guidance event.
MC	1	C	Previous number of Monte Carlo cycles that have been processed for the total aission.
RXGE	1	c	Reference trajectory state vectors at guidance events.
RMGE	I	C	Reference s/c mass at guidance events.
RXTAR	I	C	Reference trajectory atate at the target time.
RMTAR	I	c.	Reference s/c mass at the target time.


VarLable	Input/ Output	Argument/ Common	Definition
THRUST	I	C	Thrust control array.
MTPH	I	C	Thrust control phase number at guidance events.
STHRT3	I	C	Stored thrust control array for the reference trajectory thrust profile.
NGUID	I	C	Number of guidance events for this mission.
NCYCLE	I	C	Number of Monte Carlo cycles for this SIMSEP run.

Local Variables:

Variable	Definition
IC	Monte Carlo cycle counter for complete missions.
IMAN	Guidance event counter for completed guidance events within a mission.
XREFO	Initial reference rrajectory state vector.
$\mathbf{X A}$	Actual trajectory state vector.
XE	Estimated trajectory state vector.
XT	Actual trajectory final target variables.
IPRNT	Print output flag.
ICNVEG	Guidance convergence flag.


Variable (	Definition
DELTAU	Guidance control corrections computed at a guidance event.
IGUID	Guldance law flag.
Subroutines Called:	C $\$$ PYY, CSAMP, DATAS, EPHSMP, ERRSMP, EXGUID, LGUID, NLGUID, N历ISE, ØD, $4 P S T A T, ~ T R A J$, REFRTJ, SET, SPRNT1, STAT, TC\$MP, VECMAG, 2EROM
Calilng Subroutines:	MAPSEP
Common Blocks:	```C\emptysetNST, CYCLE, DYN\emptysetS, EDIT, EPHEM, IASTM, SIMI, ISIMI, SIM2, ISIM2, SIMLAB, ST@REC, THME, TRAJ1, TRAJ2, WORK, (BLANK)```

Logic Flow:





3.4.1 Subroutine:	CSAMP (EVEC, NN, REFVEC, SMPVEC, IRAN)
Purpose:	To sample a n-dimensional covariance matrix in
	order to formulate a zero-mean, Gaussian, error vector which is added to the reference value.
Method:	From an input array of eigenvalues corresponding
	to a specified covariance matrix in an uncorre-
	lated representation, a standard Monte Carlo
	sampling technique is used to define a random
	vector. This random vector is then multiplied
	by the modal matrix of eigenvectors to rotate
	it back into the original state space. It is
	added to the reference vector to obtain a sample
	vector.
Remarks:	This routine is used in SIMSEP for constructing
	random actual state vectors relative to the
	reference state at the initial time from the
	input control error covariance. It is also
	used to compute an augmented estimated state
	vectors from the input knowledge covariances at
	guidance events. The maximum dimension a
	covariance matrix may have is $20 \times 20$.

Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
EVEC	I	A	Variably dimensioned   (NN $\times(N N+1))$ array of eigen-   vectors and eigenvalues.




3.4.2 Subroutine:	DATAS
Purpose:	To make calls to SDAT1 and SDAT2 in order to
	read the SIMSEP input.
Method:	DATAS is a macro-logic routine which serves
	exclusively to call SDAT1 and SDAT2 in suc-
	cession.
Input/Output:	None
Local Variables:	None
Subroutines Called:	SDAT1, SDAT2
Calling Subroutines:	SIMSEP
Compon Blocks:	None
Logic Flow:	None

Pages 364 through 374 have been deleted.
3.4.4 Subroutine: EPHSMP (IPRNT)
To make random samples from the input ephemerisplanet error covariances and the gravitationalconstant uncertainties.Method: A standard Monte Carlo sampling procedure isused to form discrete errors in the Cartesianstate vector of the ephemeris planets. Thissampling is made at a specified epoch and istransformed into changes in the Keplerian orbitalelements. The analytic ephemeris is modified toreflect these ephemeris errors. Likewise, errorsare computed for the solar and ephemeris planetgravitational constants.

## Input/Output:

Variable	Input/   Output	Argument/   Common


SMASS	I/O	C	Solar gravitational   constant.
PMASS	I/O	$C$	Planetary gravitational   constant.
PLANET	I	$C$	Hollerith array of planetary   names.
CSAX	I/O	$C$	Analytic ephemeris semi-   major axes.
CECC	I/O	$C$	Analytic ephemeris eccen-   tricities.
CINC	I/O	C	Analytic ephemeris inclina-   tions.


Variable	Input/   Output	Argument/ Common	Definition
CøMEG	I/O	C	Analytic ephemeris arguments of the ascending mode.
CøMEGT	I/O	C	Analytic ephemeris arguments of the apsis.
CMEAN	I/O	C	Analytic ephemeris mean anomalies and mean motions.
GMERR	I	c	One sigma uncertainties in the gravitational constants.
XEPH	I/O	c	Ephemeris planet state vector at epoch.
NEP2	I	C	Flag array specifying the ephemeris planets.
EPHERR	I	c	Eigenvector/eigenvalue representation of the ephemeris error covariance.
TEPH	I	C	Epoch at which the ephemeris errors are evaluated.

ocal Variables:

Variable
Definition
GMUS Temporary storage for the solar gravitational constant.

GMU $\quad$ Sum of sampled solar and planetary masses.

XX
Temporary storage for the sampled Cartesian ephemeris planet state.

EL
Temporary storage for the sampled orbital elements.
iubroutines Called: RNUM, CSAMP, C $\emptyset$ NIC, C $\emptyset$ PY, ZER $\varnothing$ M

Calling Subroutines: SIMSEP
Common Blocks: CøNST, DYN $\varnothing$, EPHEM, SIM1, ISEM1, W $\emptyset \mathrm{RK}$


Page 379 has been deleted.

3.4.5 Subroutine:	ERRSMP:
Purpose: $\quad$	To make random samples from input SEPS paranieter
	errors, thrust biases and thrust process noise
	in order to formulate actual values for these
	parameters used during the propagation of an
	actual trajectory.
	A standard Monte Carlo sampling procedure is used
	to compute random errors which are added to the
	reference values to form "actual" parameter
	values.

## Input/Output:

Variable	Input/   Output	Argument/ Common	Definition
SCMASS	I/O.	C	Initial S/C mass.
$\begin{gathered} \text { ENGINE (10) } \\ (=\text { EXHVEL }) \end{gathered}$	I/0	C	Thrust exhaust velocity.
ENGINE (1) (=PøWERO)	I/O	C	Electric power at 1. A.U.
$\begin{gathered} \text { ENGINE (11) } \\ (=\text { THREFF }) \end{gathered}$	I/0	c	Thruster efficiency.
$\underset{(=\operatorname{CRA})}{\operatorname{ENGINE}(15)}$	I/O	C	Radiation pressure coefficient.
THRUST	1/0	C	Thrust control array.
TNØISE	0	C	Thrust control noise.
GTAU1	0	C	Thrust control noise time correlation coefficients for the first process.


Variable	Input/ Output	Argument/ Common	Definition
gTav2	0	c	Thrust control noise time correlation coefficients for the second process.
SCERR	I	C	SEPS parameter errors.
TCERR	$I$	c	Thrust control biases.
TVERR	I	C	Time varying thrust control errors.
Jmax	1	C	Total number of active thrust phases.
JMIN	I	C	Thrust phase number for the first active phase
Subroutines	Called:		
Calling Subroutines: SIMSEP			
Common Blocks:		T, DYNかS,   2, WøRX	, ISIMI, TIME, TRAJI,




3.4.6A Subroutine:	EXGUID (XA, DELTAU, IMAN, IPRNT)
Purpose:	To execute commanded thrust control changes or
	impulsive delta-velocity corrections which have been computed by the guidance algorithm.
Method:	For a low thrust guidance event, the actual
	thrust controls are changed according to the
	commanded corrections computed by the guidance
	algorithm. These updated thrust controls still
	reflect thrust biases which were determined as
	random samples from the input error sources.
	For an impulsive guidance event, the commanded
	delta-velocity is corrupted by randomly sampled
	execution errors and is then added to the actual
	state vector as an instantaneous velocity change

## Input/Output:

Variables	Input/   Output	Argument/   Common	
XELTAU	I	A	Actual s/c state vector.
IMAN	I	A	Commanded thrust control   correction or delta-   velocity change.
IPRNT	I	A	Number of the current   guidance event.
EXVERR	I	C	Print output flag.   THRUST
	I/O	C	Impulsive maneuver execu-   tion errors.
		Thrust control array.	


Variable	Input/ Output	Argument// Common	Tefinition
NTC	I	C	Number of active thrust controls.
IGL	I	C	Guidance law specification flag.

## Local Variables:

Variable
EDVM

ADVM

UEDV

AE

BE

AA

BA

Defint:ion
Magnitude of the commanded deltavelocity correction.

Magnitude of the actual deltavelocity correction.

Unitized estimated delta-velocity vector.

Angle measured ir the ecliptic plane from the positive X -axis to the projection of the commanded delta-velocity correction.

Angle measured out of the ecliptic plane to the comanded delta-velocity correction.

Angle measured in the ecliptic plane from the positive X -axis to the projection of the actual delta-velocity correction.

Angle measured out of the ecliptic plane to the actual delta-velocity correction.

Subroutines Called: VECMAG, UNITV, RNUM, ZERøM, ADD, SET, MATøUT, CØPY
Calling Subroutines: SIMSEP
Common Blocks: CøNST, DYNøS, LASTM, SIM1, ISIM1, STMLAB, STøREC,TRAJ1



3.4.6B Subroutine:	GUIDMX (FAI, THETA, ETA, GAMMA, NC, NT, IGUID,
	IMAN, CØNWT)
Purpose:	To calculate the guidance matrix used by the
	linear guidance algorithm.
Method:	The guidance, matrix, $\Gamma$, is computed from tra-
	jectory sensitivities evaluated about the
	reference trajectory according to the guidance
	policy specified during input. The computational
	steps in formulating $\Gamma$ are discussed in the
	Analytic Manual, Section 7.3.1. Once the guid-
	ance matrix has been determined, it is stored
	and used on successive Monte Sarlo cycles, thus
	eliminating the need to re-evaluate trajectory
	sensitivities.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
PHI	I	A	State tc state transition matrix, 1 .
THETA	I	A	```Control variable to state component transition matrix, \|```
ETA	I	A	State to target variable transformation matrix, M.
GAMMA	0	A	Guidance matrix, $\Gamma$.
NC	I	A	Number of centrol vafiables.
NT	I	A	Number of target variables,
IGUID	I	A	Guidance maneuver type flag.


Varizble	Input/   Output	Argument/   Common	Definition
IMAN	I	A	Guidance event number.
C@NWT	I	A	Weighting factors for the   control variables.

## Local Variables:

Variable Definition
TMX1
TMX2
TMX3 $\quad\left\{\begin{array}{l}\text { Temporary matrices storing } \\ \text { intermediate calculations. }\end{array}\right.$

Subroutines Called: GENINV, MMAB, MPAK, SCALE
Calling Subroutine: REFTRJ
Common Blocks: None

Logic F1ow:



```
3.4.7 Subrcurine: LGUID (XE, IMAN, IPRNT, DELTAU)
Purpose: To compute low thrust or impulsive guidance
 corrections using a linear, non-iterative
 guidance law.
 Using the linear guidance matrix, \Gamma , formu-
 lated in GUIDMX, LGUID computes a set of low
 thrust or impulsive corrections according to
 the matrix equation
\[
\Delta \underline{u}=\boldsymbol{\Gamma} \delta \underline{x}_{E},
\]
where \(\delta \underline{X}_{E}\) is the state vector difference between the estimated and reference trajectory state at the guidance point.
```


## Input/Output:

Variable	$\begin{array}{c}\text { Input/ } \\ \text { Output }\end{array}$	$\begin{array}{c}\text { Argument/ } \\ \text { Common }\end{array}$	Definition		
XE	I	A	Estimated S/C state vector.	$]$	IMAN
:---					
IPRNT					

## Lecal Variables:

## Variable Definition

DXE

GAMMA
Guidance matrix, $\boldsymbol{\Gamma}$.
EDU
Temporary storage for the computed control correction.
Subroutines Called: CøPY, MMAB, SUB
Calling Subroutines: SIMSEP
Common Blocks: $\quad$ IASTM, SIMl, ISIM1, SIMLAB, ST $\dagger$ REC, TIME, WøRK
Logic Flow: None

3.4.8 Subroutin   Purpose:   Method:	NLGU   To rect   The targ refe vari compu From ity lated trol erro targ iter curr miss the solu in $t$	(XE, IMAN   pute low th ns using a   timated st time wher nce target ions with ed with th he target trix, a li and applie   This pro are withi tolerance ions, furt $t$ Monte Ca n is ended nlinear gu on which h Analytic	IPRNT, DELTAU, ICNVEG)   rust or impulsive guidance cornonlinear guidance algorithm.   te is propagated to the designated target errors relative to the conditions are evaluated. State espect to guidance controls are estimated trajectory propagation. rrors and the resultant sensitivear control corrertion is calcuas an update to the current coness is repeated until the target specified tolerances. If the are not satisfied after NMAX er guidance corrections for the lo mission are aborted and the   A more complete discussion of dance problem and the method of s been implemented here is given anual, Section 7.3.4.
$\frac{\text { INPUT/OUTPUT: }}{\text { VARIABLE }}$	INPUT/   OUTPUT	$\begin{gathered} \text { ARGUMENT/ } \\ \text { COMMON } \\ \hline \end{gathered}$	DEFINITION
XE	I	A	Estimated S/C state vector.
IMAN	I	A	Number of the current guidance event.
IPRNT	I	A	Print output flag.
deltau	0	A	Computed low thrust or impulsive control corrections.
ICNVEG	0	A	Convergence flag.   $=0$, No convergence after ITMX iterations or after the quadratic error function, $Q$, has increased on three successive iterations.   $=1$, Weak convergence after ITMX iterations and $Q$ being less than AOK.   $=2$, Strong convergence ( $Q \leqslant 1$ ).
тøL	I	C	Array of target error tolerances used in computing the quadratic error function.


VARIABLE	INPUT/ OUTPUT	$\begin{gathered} \text { ARGUMENT } \\ \text { COMMON } \\ \hline \end{gathered}$	DEFINITION
IGL	I	c	Flag designating the type of guidance correction to be computed. If IGL $=+2$, the guidance is low thrust. If IGL $=-2$, the guidance is impulsive.
ITMX	I	C	Maximum number of guidance iterations allowed. (Input as NMAX).
AøK	I	C	Weak convergence tolerance.
ISIM	I	C	Flag to indicate whether the trajectory sensitivities are to be computed by numerical differencing (ISTM=0) or by integrating variational equations (ISTM $=1$ ).
NTAR	I	C	Number of target variables.
NTC	I	C	Number of control variables.
TGE	I	c	Time of the guidance event.
TTAR	I	c	Designated target time.
LSTAR	I	C	List of target variable codes.
XTARG	I	c	- Reference trajectory target conditions at the designated target time.
SMAT	I	C	Stored sensitivity matrix.
C@NWT	I	c	Control variable weights.
THRUST	I	c	Array of thrust controls.
STHRT2	I	C	Stored array of estimated thrust controls.
RXTAR	I	C	Reference trajectory state at the designated target time.
UNTAR	I	C	Conversion factor which convert target variables from internal to external units.
DVMXN	I	C	Maximum delta-velocity magnitude change.



## Calling Subroutines: SIMSEP

Common Blocks: $\quad$ CØNST, TRAJ1, TRAJ2, SIM1, ISIM1, TIME, (BLANK)



Pages 396 through 402 have been deleted
3.4.9A Subroutine: $\emptyset \mathrm{D}$ (XA, XE, IMAN, IPRNT)

Purpose:

Method:
To estimate the $s / c$ state vector and parameters which have been augmented to the state at a guidance event.

Since an explicit orbit determination process and measurement models are not included in SIMSEP, $\emptyset$ D, in effect, performs the state estimation function. A knowledge covariance, which has been transformed into an eigenvector/ eigenvalue representation, is randomly sampled to form an error, $X_{E}$, in the estimated state vector relative to the actual, i.e., $\delta X_{E}=$ $X_{E}-X_{A}$ 。 If parameters such as gravifational constants thrust biases, etc., have been augmented to the six-component Cartesian state, estimated errors for these parameters are simultaneously computed by sampling an augmented knowledge covariance. The formulated error vector is added to the corresponding actual values to define an estimated state and estimates of the augmentation parameters to be used in calculating guidance corrections.

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
XA	I	A	Actual s/c state vector   (position and velocity).


Variable:	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
XE	0	A	Estimated s/c state vector (position and velocity).
IMAN	I	A	Number of the current guidance event.
IPRNT	I	A	Print cutput flag.
BLANR	I	C	Array of eigenvector and eigenvalues corresponding to the augmented knowledge covariance.
ENGINE (1) ( = PWWERO)	${ }^{0}$	C	Estimated electric power at 1 A.U.
SPO3	I	C	Saved reference value of the electric power at 1 A.U.
ENGINE (10) ( = EXHVEL)	0	C	Estimated thrust exhaust velocity.
SEXV3	I	C	Saved reference value of the thrust exhaust velocity.
$\begin{aligned} & \text { ENGINE (I1) } \\ & (=\text { THREFF }) \end{aligned}$	0	C	Estimated thruster efficiency.
StEFF3	I	C	Saved reference value of the thruster efficiency.
ENGINE (15). $(=C R A)$	0	C	Estimated radiation pressure coefficient.
SCRA3	I	C	Saved reference value of the radiation pressure.
$0^{\text {SCMASS }}$	0	C	Estimated SEPS mass.
RMGE	I	C	Reference SEPS mass.
THRUST	0	C	Estimated thrust control array.
STHRT3	I	C	Saved reference thrust control array.

Page 405 has been deleted.

Variable	Input/   Output	Argument/   Common	Definition
SMASS	I $/ O$	C	Dimension of the augmented   knowledge covariance
PMASS	I/O	C	Estimated solar gravita-   tional constant.
GMERR	I	C	Estimated Earth grav-   itational constant.   Solar and planetary gravita-
			tional constant uncertain-   ties.

Local Variables:

Variable	Definition
AXA	Augmented actual state vector. The dimension and packing are determined by KTY.
AXE	Augmented estimated state vector. Like AXA, the dimension and packing are determined by KTY.
INDEX1	Index identifying the position in the EVEC matrix of the first element corresponding to the current augmented knowledge covariance.
utines Called:	ZER M $^{\prime}$, CSAMP, C $\varnothing$ PY,
ng Subroutines:	SIMSEP
n Blocks:	C $\emptyset$ NST, TRAJ1, EPHEM, TIME, SIM1, ST $\emptyset R E C, W \emptyset R K, ~ I S I M 1$ (BLANK)



$$
4_{407-\mathrm{A}}
$$



\subsection*{3.4.9B Subroutine: ØPSTAT <br> | Purpose: | To output statistics evaluated during the |
| :---: | :---: |
|  | Monte Carlo mission simulations. |
| Method: | After completion of Monte Carlo cycles in |
|  | SIMSEP, ØPSTAT transforms variances and |
|  | covariances which characterize the statistics |
|  | of the "real world" trajectories into standard |
|  | deviations and correlation coefficients. The |
|  | standard deviations, correlations, and means |
|  | are printed as a part of the standard SIMSEP |
|  | output whenever the number of Monte Carlo |
|  | cycles is greater than one. Arrays of these |
|  | numbers are also punched (if requested by the |
|  | user) in a format ready to initialize a sub- |
|  | sequent SIMSEP run. |

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
NGUID	I	C	Number of guidance events occurring on the mission.
NSAMP (i)	I	C	Number of Monte Carlo cycles executed in accumulating statistics for $i^{\text {th }}$ guidance events.
$\operatorname{Gcc} \phi \mathrm{V}(\mathrm{i})$	I	C	Control error covariance and vector mean evaluated at the $i^{\text {th }}$ guidance event.
GMCDV (i)	I	C	S/C mass variance and mean evoluated at the $i^{\text {th }}$ guidance event.


Variable	Input/   Output	Argument/ Common	Definition
DVC $¢ \mathrm{~V}$ (i)	I	C	Delta-velocity covariance and vector mean evaluated for impulsive maneuvers at the $i^{\text {th }}$ guidance event.
DVMAGS (i)	I	C	Delta-velocity magnitude variance and mean for impulsive maneuvers at the $i^{\text {th }}$ guidance event.
CNC円V (i)	I	C	Thrust control correction covariance and means evaluated for low thrust maneuvers at the $1^{\text {th }}$ guidance everit.
NTC (i)	I	C	Number of low thrust controls active for the $i^{\text {th }}$ guidance event.
TCCDV (i)	I	C	Control error covariance and vector mean evaluated at the target time on the $i^{\text {th }}$ guidance event.
TMC ${ }^{\text {( }}$ ( i )	I	C	S/C mass variance and mean evaluated at the target time on the $i^{\text {th }}$ guidance event.
TERC $¢ \mathrm{~V}$ (i)	I	C	Target error covariance and means evaluated at the target time on the $i^{\text {th }}$ guidance event.
NTAR (i)	I	C	Number of target variable for the $i^{\text {th }}$ guidance event.
MC (i)	I	C	Number of Monte Carlo cycles executed in accumulating statistics.
ENDCøV	I	C	Control error covariance and vector mean evaluated at the trajectory end time (TEND).
AMASS	I	C	S/C mass variance and mean evaluated at the trajectory end (TEND).


Variable	Input/ Output	Argument/   Conmon	Definition
ADVT	I	C	Delta-velocity magnitude variance and mean evaluated for all impulsive maneuvers.
ATHCめV	I	C	Covariance of active thrust controls used throughout the mission for all low thrust maneuvers executed.
KATHC	I	C	Dimension of the ATHCOV matrix.

## Local Variables: None

Subroutines Called: MATøUT, SYMUP, VARSD
Calling Subroutines: SIMSEP
Common Blocks: SIM1, ISIMl, SIM2, ISIM2
Logic Flow: None

Purpose: (1) To compute reference trajectory conditions, e.g., state, mass, sensitivities, etc., at the guidance points; (2) to evaluate reference trajectory target conditions at designated target times; and (3) to compute the guidance matrix to be used at linear guidance events. REFTRJ performs the trajectory calculations necessary whenever INREF is read as zero during the \$SIMSEP namelist input. These calculations are done by repetitively calling either the TRAJ overlay or the THCøMP subroutine. In addition, REFTRJ prints and punches the reference trajectory data so that they may be used to initialize subsequent SIMSEP runs (with INREF = 1).

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
TGE	I	C	Epoch of a guidance event.
TTAR	I	C	Designated target epoch.
NGUID	I	C	Number of guidance events.
NTAR	I	C	Number of target variables.
NTC	I	C	Number of controls.
IGL	I	C	Guidance law flag.   LSTAR
	I	C	List of target variable   codes.


Variable	Input/ Output	Argument   Common	Definition
RXGE	0	C	Reference trajectory state at the guidance event.
RMGE	0	C	Reference $S / C$ mass at the guidance event.
RXTAR	0	C	Reference trajectory state at the target time.
RMTAR	0	C	Reference $S / C$ mass at the target time.
XTARG	0	C	Reference target conditions at the target time.
XEND	0	C	```Reference trajectory state at the final trajectory time (TEND).```
MEND	0	C	Reference $S / C$ mass at the final trajectory time.
SMAT	0	C	Sensitivity or guidance matrix for guidance maneuvers.
PHI	0	C	State to state transition matrix.
THETA	0	C	Thrust controls to state transition matrix.

Local Variables:

Variable
Definition

ETA
State to target variable transformation matrix.

GAMMA

TMXI

Linear guidance matrix.
Temporary storage of intermediary calculations.

Subroutines Called: C CøPY, ECØMP, GUIDMX, MMAB, MPAK, TRAJ, TCøMP, THCØMP

Conmon Blocks: CØNST, EPHEM, IASTM, SIM1, ISIM1, SIMLAB, TIME, TRAJ1, TRAJ2, (BLANK)

Logic Flow:


### 3.4.9D Subroutine: SDAT1

Purpose: To read input data from the \$SIMSEP namelist and to initialize the trajectory simulation mode.

Method: Once the default values have been initialized, the SSIMSEP namelist is read from input. Names, dimensions, and definitions for variables contained in \$SIMSEP are discussed in the User's Manual (Section 2.4, page 37). The input data are processed and stored in common blocks so that they may be used by Monte Carlo cycle logic in SIMSEF. Variables contained in this namelist control the degree of data preparation and computational operations performed within the main cycle of the program.

Remarks: Many of the variables appearing in SDAT1 are initialized from namelist with units specified in the User's Manual. Before they are transmitted to other routines and used by the program, they are converted to internal units which are kg, kw, km, sec, km/sec, and radians.

Input/Output:

Variable	Input/ Output	Namelist/   Common	Definition
$A \emptyset K$	I/0	N/C	Backup convergence tolerance for weak convergence $t \geqslant s t$.
CPMA	I/0	N/C	Computer processing time limit for the current STMSEP run.
DVMXN	I/0	N/C	Maximum delta-velocity magnitude step.
INREF	I/0	N/C	State vector and trajectory parameter read-in flag.
I¢UT	I/ 0	N/C	Print output flag.
IPUNCH	I/ 0	N/C	Punch output flag.
IRAN	I/0	N/C	Rancom number seed.
NCYCLE	I/0	N/C	Number of Monte Carlo cycles to be run.

Input/Output:

Variable	Input/ Output	Namelist/   Common	Definition
NGUID	I/0	N/C	Number of guidance events to be executed on each Monte Carlo mission simulation.
J2ERR	I/O	N/C	Uncertainty in the J2 coefficient in the gravitational potential function.
PG	I/ 0	N/C	S/C control error matrix.
EXVERR	I/0	N/C	Midcourse velocity correction execution errors.
SCERR	I/0	N/C	SEP and S/C errors.
TCERR	I/ 0	N/C	Thrust bias errors.
TVERR	I/0	N/C	Thrust process noise.
ADVT	I/0.	N/C	Total de1ta-velocity magnitude statistics.
ENDCøV	I/0	N/C	Accumulated S/C control error statistics at TEND.
AMASS	I/0	N/C	Accumulated S/C mass statistics at TEND.
ATHCøV	I/0	N/C	Accumulated total thrust control statistics.
XEND	I/0	N/C	Reference trajectory state vector at TEND.

## Input/Output:

Variable	Input/ Output	Namelist/   Common	Definition
MEND	I/ 0	N/C	Reference S/C mass at TEND.
SPFIMP	I/0	N/C	Chemical propulsion system specific impulse.
DVMD0T	I/0	N/C	Chemical propulsion system mass flow rate.
MC	I / 0	N/C	Number of previous Monte Carlo cycles.
KATHC	I/ 0	N/C	Dimension of the ATHCOV matrix.
JMAX	0	C	Number of the last active thrust control phase between trajectory times TSTART and TEND.
JMIN	0	C	Number of the first active thrust control phase after TSTART.

Loca1 Variables: None
Subroutines Called: CøPY, EIGENV, EPHEM, MATØUT, SDVAR, ZERØM.
Calling Subroutines: DATAS
Common Blocks: CøNST, CYCLE, DYNøS, EDIT, EPHEM, SIM1, ISIM1, STM2, ISIM2, SIMLAB, TIME, TRAJ1, TRAJ2.

Logic Flow:


### 3.4.9E Subroutine: SDAT2

Purpose:	To read input data from the \$GUID namelist and to define the guidance philosophy, guidance control variables, targets, etc., at each guidance event.
Method:	Since the number of guidance events considered for a
	given STMSEP run has been specified by the NGUID vari
	reads the SGUID namelist NGUID-times. Names, dimension
	default values, and definitions for the variables con-
	tained in \$GUID are discussed in the User's Manual
	(Section 2.4 , page 37). The input data from \$GUTD are
	stored in conmon blocks for subsequent usage during
	the execution of guidance maneuvers. The user specifies through input the type of guidance, duration of the
	through input the type of guidance, duration of the guidance event, target variables and controls.
Remarks:	Variables appearing in SDAT2 are initialized from name
	list in external "user" units. As was done in SDAT1,
	hese variables are converted to internal units before
	being transmitted to the rest of the program.

Input/Output:

Variable	Input/   Output	Namelist/   Common	Definition
TGUID	I	N	Guidance event epoch
TGE	0	$\mathrm{C} \quad \int$	
XGREF	I	N	Reference trajectory state vector at the guidance
RXGE	0	$\mathrm{C} \quad$	point.
MGREF	I	N	S/C mass at the guidance point.
RMGE	0	C	
S	I	N	Sensitivity or guidance matrix.
SMAT	0	C	
H	I	N	Array of on/off flags used to identify active: thrust controls at a guidance event.
IJH	0	C	Matrix of active control variable indices.
HPERT	$\emptyset$	C	Numerical perturbation values used in computing numerically differenced sensitivities.

Input/Output:


Input/Output:

Variable	Input/ Output	Namelist/   Common	Definition
P	I	N	Augmented knowledge error covariance at a guidance event.
PS	I	N	
cXS	I	N	
BLANK	0	C	Eigenvectors and eigenvalues
KDIMEN	I	N	Dimension of the augmented knowledge covariance.
KDTM	0	C	
KTER	I	N	Option flag for computing target errors.
KTERR	0	C	
CCDVG	I	N	Accumulated control error statistics at the guidance point.
gccov	0	C	
GMSCOV	I	N	Accumulated S/C mass statistics at the guidance point.
GMCOV	0	C	
CNTCAV	I	N	Accumulated active thrust control error statistics.
cncor	0	C	
DVMCOV	I	N	Accumulated delta-velocity vector statistics at the guidance event.
DVCov	0	c	
DVMAG	I	N	Accumulated delta-velocity magnitude statistics at the guidance event.
DVMAGS	0	C	
codvt	I	N	Accumulated control error statistics at the target point.
TCODV	0	C	
TMSCOV	I	N	Accumulated S/C mass statistics at the target point.
TMCOV	0	C	
TARCOV	I	N	Accumulated target error statistics.
TERCDV	0	C	

## Input/Output:

Variable	Input/ Output	Namelist/   Common	Definition
MSAMP	I	N	Number of previous Monte
NSAMP	0	$\cdots \quad 1$	Carlo samples on the accumuiated statistics.
MTPH	0	C	Thrust phase number at a guidance event.
ICYCLE	0	c	Recycle flag.
UNTAR	0	c	Vector of target variable conversion factors.

## Local Variables:

Variable Definition

PP
Temporary storage for the augmented knowledge covariance matrix.

TMAN

INDEX 1

INDEX2

Guidance event counter.

Index marking the position in blank common after which eigenvectors corresponding to a particular augmented knowledge covariance are stored.

Index like INDEX1 except it marks where eigenvalues are stored.

Subroutines Called: C才PY, EIGENV, ICøPY, MAT申UT, MPAK, MUNPAK, SDVAR, SYMLd, SYMUP, ZERCM.

Calling Subroutines: DATAS
Common Blocks: CYCLE, EDIT, EPHEM, IASTM, SIM1, ISIM1, SIM2, ISIM2, SIMLAB, TTME, TRAJ1, TRAJ2, (BLANK).

Logic Plow:


3.4.10A Subroutine: SET (IST $\emptyset$ RE)
Purpose: To set and store physical parameters (ephemeris,gravitational, etc.) and SEPS parameters (thrustcontrols, mass, exhaust velocity, etc.) neededby the trajectory integration routine for generat-ing the actual, estimated, and reference trajec-tories.
Method:
Remarks:
SET simply performs multiple copy operations intransferring the working values used by thetrajectory integrator into designated storagearrays, S1, S2 and S3. By calling SET withIST $\emptyset$ RE equal to $+1,+2$ or +3 , the correspondingS1, S2 or S3 array is equated to whatever is inthe regular working arrays. If ISTøRE equals +4 ,all three S-arrays are set. When SET is calledwith ISTøRE equal to $-1,-2$, or -3 , then theworking arrays are re-set to whatever is storedin S1, S2 or S3, respectivively.This routine is essential to SIMSEP in that itallows the program to use the same trajectoryintegrator to evaluate each of the differenttypes of trajectories needed for a mission simu-lation.

## Input/Output:

Variables	Input/   Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
ISTØRE	I	A	Flag controlling the SET logic̣ flow.
ENGINE (1)   (=PめWERO)	I/0	C	Electric power at 1 A.U.
$\begin{aligned} & \text { ENGINE (10) } \\ & (=\text { EXHVEL }) \end{aligned}$	$\mathrm{I} / 0$	c	Thrust exhaust velocity.
ENGINE (11) $(=$ THREFF)	I/O	C	Thruster efficiency.
$\begin{gathered} \text { ENGINE (15) } \\ (=\text { CRA }) \end{gathered}$	I/O	C	Radiation pressure coefficient.
SCMASS	I/O	C	SEPS mass.
SMASS	I/O	C	Solar gravitational constant.
PMASS	I/0	C	Planetary gravitational constants.
NTPHAS	I/O	c	Current thrust control phase number.
THRUST	I/0	C	Thrust control array.
SSM1	I/O	c	Stored solar gravitational constant.
SSCM1	I/O	C	Stored SEPS mass.
SEXV1	I/O	C	Stored thrust exhaust velocity.
STEFFI	I/0	C	Stored thruster efficiency.
SCRA1	I/O	C	Stored radiation pressure.
SP01	I/O	C	Stored electric power to 1. A.U.
SPM1	I/O	C	Stored Earth gravitational constants.
STHRT1	I/O	C	Stored thrust controls.

Page 410 has been deleted.
(Comment: Iri addition to these storage arrays and variables, there are also corresponding S-2 and S-3 arrays.)
Local Variables: None
Subroutines Called: ..... CØPY
Calling Subroutines: SIMSEP, NLGUID
Common Blocks: ..... EPHEM, SIM1, ISIM1, STØREC, TRAJ1, TRAJ2




## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
XA	I	A	Current actual S/C state.
XE	I	A	Current astimated S/C   state.



Variable	Input/   Output	Argument/ Common	Definition
SCRA1	I	C	Actual, estimated, and
SCRA2	I	C	reference radiation pressure
SCRA3	I	C	co-efficient.
STHRT1	I	C	Actual, estimated, and
STHRT2	I	C	reference thrust controls.
STHRT3	I	C	
SSM1	I	C	Actual, estimated and
SSM2	I	C	reference solar gravitational
SSM3	I	C	constant.
SPM1	I	C	Actual, estimated, and refer-
SPM2	I	C	ence gravitational constant
SPM3	I	C	for the Earth.

## Local Variables:

Variable Definition ,

DXE

DXA

ELACT
ELEST
ELREF
EMASS

Vector deviation of the estimated state from the reference and/or the actual.

Vector deviation of the actual state from the reference.


Keplerian elements corresponding to the actual, estimated, and reference Cartesian states of the $S / C$.

Actual S/C mass evaluated at TEND.

## Subroutines Called: CøNIC, SUB

Calling Subroutines: SIMSEP
Common Blocks: C $\quad$ NST, DYNøS, EPHEM, SIM1, ISTM1, STMLAB, ST $\emptyset R E C$, TIME, TRAJ1, TRAJ2, (BLANK)

Logic Flow: None.
3.4.11 Subroutine: STAT (XA, XR, N, N1, AC $\varnothing \mathrm{V}, \mathrm{M}, \mathrm{PC} \varnothing \mathrm{V}$ )

Purpose:

## Method:

$$
\bar{X}_{M}=\left(X_{M}+(M-1) \bar{X}_{M-1}\right) / M
$$

for $M=1,2,3, \ldots$ The covariance matrix is also updated by the relation,

$$
\begin{aligned}
C_{M}= & {\left[\frac{M-2}{M-1}\right] C_{M-1}+\left[\bar{X}_{M-1} \bar{X}_{M-1}^{T}\right] } \\
& +\frac{1}{M-1} \dot{X}_{M} X_{M}^{T}-\frac{M}{M-1} \bar{X}_{M} \bar{X}_{M}^{T}
\end{aligned}
$$

for $M=2,3,4, \ldots$, , where $C_{M-1}$ is the previous covariance matrix and $\mathrm{C}_{\mathrm{M}}$ the new covariance.

Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
KA	I	A	Actual sampled vector.
YR	I	A	Reference vector.
N	I	A	Dimension of XA and XR.
NI	I	A	NI $=N+1$.


Variable	Input/ Output	Argument/ Common	Definition
AC $\varnothing \mathrm{V}$	I	A	A-prior covariance matrix and mean, based on $\mathrm{M}-1$ samples. This is a (NxN1) array with the variances and covariances being stored in the first N columns and the means being stored in the N1columns.
M	1	A	Number of Monte Carlo samples used to formulate the updated covariance matrix.
PCøV	I	A	Updated output covariance matrix and vector of means. The storage is in the same format as $A C \emptyset V$. $A C \emptyset V$ and PC $\emptyset \mathrm{V}$ may, in fact, share the same core locations.

## Local Variables:

## Variable <br> Definition

X
XX
XXT

Error vector, $\mathrm{X}=\mathrm{XA}$ - XR.
Temporary storage for the new means.
Temporary storage for the outer product of two vectors.

Subroutines Called: SUB
Calling Subroutines: SIMSEP
Common Blocks:
$w \emptyset R K$

3.4.12 Subroutine: THCPND (XIN, MIN, NPRIN, NATC, IJH, TGØ, THALT, IMAN, XøUT, MøUT, THETA, PHI)

Purpose:

Method:

Remarks: to $\mathrm{THC} \mathrm{\emptyset MP}$, a utility routine. However, it is used exclusively in SIMSEP in the linear and nonlinear guidance algorithms.

## Input/Output:

Variable	Input/   Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
XIN	I	A	```Initializing S/C state vector (position and velocity) for the trajectory propagations.```
MIN	I	A	Initial S/C mass.
NPRI	I	A	Body number for the primary body.
NATC	I	A	Number of active thrust controls.
IJH	I	A	Matrix of thrust control indices which identify the active thrust controls to be used for numerical differencing.


Variable	Input/   Output	Argument/   Common	Definition
TG $\emptyset$	$I$	A	Initial trajectory time.
THALT	I	A	Final trajectory time.
IMAN	I	A	Maneuver number.
XøUT	$\emptyset$	A	Output S/C state on the nominal trajectory evaluated at THALT.
MøUT	$\emptyset$	A	Final S/C mass.
THETA	$\emptyset$	A	Output (\%) matrix of state changes w.r.t. control changes.
PHI			```Output }\Phi\mathrm{ matrix of final state changes w.r.t. initial state changes.```
LøСTC	I	C	Location in blank common of the state transition matrix, $\Phi_{A}$.
UREL	I	C	S/C position vector at final trajectory time.
VREL	I	C	S/C velocity vector at final trajectory time.
HPERT	I	C	Array of numerical perturbations to be applied to each thrust control as identified by the IJH array.

Local Variables: None.
Subroutines Called: CøPY, ICØPY, IZER $\emptyset M, \emptyset V E R I A Y$ (TRAJ)
Calling Subroutines: NLGUID, REFTRJ
Common Blocks: (BLANK), C $\varnothing$ NST, TIME, TRAJ1, TRAJ2, SIM1, ISIM1, WøRK

3.5 Subroutine: TRAJ

Purpose: To control the overall trajectory initialization and propagation.

Remarks:
Since TRAJ is used by the three modes, it must be capable of reproducing the same trajectory for each mode, independent of the augmented state form, event times or print times. Special problems arise when the equations to be propagated include the transition matrix or covariance between events. For example, at the beginning of an event either the transition matrix must be reset to an identity or an updated covariance must be given to TRAJ. To solve these problems, logic was incorporated into TRAJ to make use of event logic in the subroutine PATH with an entry point FLIGHT.

Beginning at the trajectory epoch $t_{0}$, the transition matrix or covariance is initialized and is propagated to the first event ( $\mathrm{E}_{1}$ ). MAPSEP Iogic returns to the calling routine which performs its operations. Upon reentering TRAJ, the transition matrix or covariance is again reinitialized and


- propagated from $E_{1}$ to $E_{2}$. In order to propagate the transition matrix or covariance from $\mathrm{E}_{2}$ to $\mathrm{E}_{3}$ and preserve the trajectory grid, the special logic in TRAJ calls FLIGHT to propagate the appropriate matrix from $E_{2}$ to $t_{1}$. Then the spacecraft state is propagated from $t_{0}$ to $t_{1}$. Now having the state and transition matrix or covariance at $t_{1}$, the appropriate matrix is propagated to $E_{3}$. This process is continued until all events have been satisfied.


## Input/Output:



Variable	Input/   Output	Argument/ Common	Definition
DSC	I	C	The blank common array.   The following flage will be used to locate specific information.
LøCET	I.	C	Previous event.
LøCX	I	C	Trajectory time.
LøCH	I	C	Integration stepsize.
LфCTC	I	C	State transition matrix or Covariance.
LøCF $\emptyset$	I	C	Deviations (from conic) of state (reference).
LめCDY	I	C	Deviations (from conic) of state derivatives (reference).
LфСYT	I	C	Deviations of state (event).
L¢CDT	I	C	Deviations of state derivatives (event).
MEQS	I	c	Dimensions of the covariance or transition matrix.
TEVNT	I	C	Next event time.
IAUGDC	I	C	Flags used to augment the covariance or transition matrix.

## Local Variables:

Variable
TEVNTS

IAUGDS

Subroutines Called:

Definition
Stored value of TEVNT.

Stored value of IAUGDC.

PATH, FLIGHT, IDENT, C $\emptyset P Y, \chi_{\text {A }_{\mathrm{D}_{\mathrm{M}}}}$
Calling Subroutines: TøPSEP, GØDSEP, SIMSEP
Common Blocks: TRAJ2, WøRK, (BIANK), CøNST, EDIT, EPHEM, TTME,TRAJ1



3.5.1 Subroutine: DNØISE ..... (T)
Entry Point: ..... NoISE
Purpose:
To compute thrust acceleration perturbationsdue to time-varying process noise.
A vector of thrust control perturbations, $\delta \underline{u}$,is computed during the trajectory integrationat the beginning, middle, and end of each inter-gration step. The time correlated thrust noiseis assumed to be a Gauss -Markov sequence accord-ing to the equation

$$
\delta \underline{u}_{i+1}=A \delta_{\underline{u}_{i}}+\underline{\omega}_{i+1}
$$

$$
\text { where } \quad A=\left[e^{-\Delta t / T} 1\right.
$$

$$
0
$$

$$
-\Delta t / T_{2}
$$

$$
\mathbf{e}
$$

$$
\ddots
$$

0

$$
\left.e^{-\Delta t / T_{N}}\right]
$$

and $\Delta t=t_{i+1}-t_{i}$. The factors $T_{1}, T_{2}, \ldots$, $T_{N}$ are the correlation times associated with each stochastic process, $\delta u_{j}$. The vector $\delta \underline{u}_{i}$ is assumed to remain constant over the interval $\Delta t$ with its effect on $\delta_{\underline{u}_{i+1}}$ being diminished
by the exponential decay terms in $A .{\underset{i}{i+1}}^{\text {is }}$
a vector of independent random variables which
have Gaussian distributions. The standard
deviation, $\sigma_{\omega_{j}}$, is given by

$$
\sigma_{\omega_{j}}=\left(1-e^{-2 \Delta t / T_{j}}\right)^{\frac{1}{2}} \sigma_{u_{j}}
$$

in order to satisfy the requirement that the process be stationary.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
T	I	A	Current trajectory time.
graul	I	c	Negative reciprocal of the correlation times for the first process.
GTAU2	I	C	Negative reciprocal of the correlation times for the second process.
TVERR	I	c	One-sigma values for the time-varying thrust control errors.
IRAN	I	c	Random number seed.空
TNØISE	I/0	C	Vector of thrust control perturbations.

Local Variables:

Variable
T1

Definition
Trajectory time at the previous point of thrust noise evaluation.

Variable Definition

$$
\begin{array}{ll}
\text { H } & \text { Time increment since the previous } \\
\text { thrust noise evaluation. }
\end{array}
$$

Subroutines Called: RNUM
Calling Subroutines: EP, SIMSEP
Common Blocks: TRAJ1, DYNDS TRAJ2


### 3.5.2 Subroutine: DPHI (T, DS, DSTM, M, N, LøC)

## Purpose: $\quad$ To compute the time derivative of the State Transition Matrix ( $\phi$ ) <br> Method: <br> $\dot{\Phi}=F \boldsymbol{F}$

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
IAUCDC	I	c	Flag indicating the augmentation of the STM and covariance Matrix.
T	I	A	Trajectory time
DS	1	A	Independent variables
DSTM	0	A	Differential equations
M	I	A.	Number of rows in DS and DSTM
N	I	A	Number of columns in DS and DSTM
LO¢	I .	A	Routing flag
INTEG	I	C	Set $=1$ Propagate the State and Transition Matrix   Set $=2$ Propagate the State   Set $=3$ Propagate the State and State Covariance
IRECT	I	C	Index used to check whether the current call to DPHI is for rectification purposes only (i.e. IRECT $=1$ )

## Local Variables:

IAUGS Index used to check whether the $F$ matrix needs to be augmented.

Calling Subroutines: NUMIN
Subroutines Called: MøTIøN, LOADFM, GRAVAR
Common Blocks: TRAJ2

Logic Flow:


3.5 .3	EP (T, CMASS)
Purpose:	To compute the effective low thrust accelera-
	tion vector and matrix of partial deviatives
	for transition matrix or covariance propagation
	in a control phase.
Method:	After the available thruster power, orbital
	eccentric anomaly, and thrust policy type
	are computed, the following sequence of
	parameters is computed (assuming non-coast
	policy)
	- thrust acceleration magnitude (ACCEL),
	- thrust pointing angles (either AIN and
	AøUT, or PITCH and YAW), and their noise
	contributions (if SIMSEP),
	- body thrust acceleration vector (ASC),
	- rotation matrix from body to inertial
	frame (RøTMAT),
	- inertial thrust acceleration (THRACC),
	- rotation matrix from thrust controls
	to inertial thrust acceleration (GT).
	See also Analytic Manual, Section 4.1

Pages 434 and 435 have been deleted.

## Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
T	I	C	Trajectory time in seconds.
CMASS	I	C	Current spacecraft mass.
EXHVEL	I	C	Exhaust velocity (c),   (Equivalenced to ENGINE (10).   Thruster efficiency ( $\eta$ ),   (Equivalenced to ENGINE (11).
NTPHAS	I	c	Current thrust phase number.
WPCWER	0	C	Power available (P).
UREL	I	c	Heliocentric position vector.
URELM	I	c	Position magnitude array.
NøISED	I	C	Flag that causes EP to add noise to the controls.
THRUST	I	C	Matrix that contains a set of controls for each segment. (THRUST ( $i$, NTPHAS)) where $i$ is the desired information for the NTPHAS phase.
			$\begin{aligned} & i=1, \text { thrust policy } \\ & i=2, \text { phase end time in } \\ & \text { seconds } \end{aligned}$
			$\begin{aligned} i= & 3, \text { thrust scale factor } \\ i= & 4,5,6,7,9,10 \\ & \text { thrust policy coef- } \\ & \text { ficients } \end{aligned}$
			$i=8$, number of thrusters
A1	I	c	S/C mean motion.
EZER $\varnothing$	I	C	Reference eccentric anomaly.


Variable	Input/   Output	Argument/   Common	Definition
PHAS	I	C	Phase angles for thrust   controls.
YITCH	0	C	Thrust pitch angle.   ZK
GT	I	C	Thrust yaw angle.
THRACC	0	C	Reference orientation vector.
UTRUE	I	C	Transformation matrix from   thrust controls to ecliptic.
VTRUE	I	C	Thrust acceleration.
		Position vector relative   to the primary body.	
C	Velocity vector relative   to the primary body.		

Local Variables:
Variable
Definition

ACCEL	Thrust acceleration.
AIN	In-Orbit plane thrust angle.
AØUT	Out of plane thrust angle.
ASC	Thrust acceleration vector (body coordinates)
EANøM	Eccentric anomaly.
RØTMAT	Transformation matrix from body to ecliptic.
ITYPE	Thrust policy for the NTPHAS segment $=$ THRUST ( 1, NTPHAS).
DELTAT	Time from the beginning of the control phase.
nes Called:	ANGMøD, PØWER, DNØISE, UNITV, UXV, MMAB, NEGMAT, 2ERøM
Subroutines:	M $\varnothing$ TI $\varnothing \mathrm{N}$, DYN $\emptyset$
B1ocks:	CøNST, EPHEM, TRAJ1, TRAJ2, WøRK, ENC $\emptyset \mathrm{N}$
low:	None.

Pages 438 and 439 have been deleted.
3.5.4 Subroutine: EPHEM (N $\varnothing$, DJ, R, V)

Purpose:

Method:

To compute the heliocentric position and velocity vectors of a given planet or body. The orbital elements ( $a, e, i, \Omega, \tilde{\omega}, M$ ) of the desired body are computed from time varying expressions, for example, the semi-major axis

$$
a(t)=a_{0}+a_{1} t_{J}+a_{2} t_{J}^{2}+a_{3} t_{J}^{3}
$$

where $a_{0}$ is the value at the ephemeris epoch 1900, January $0.5, t_{J}$ is the time from the epoch, and $a_{1}, a_{2}, a_{3}$ are constant coefficients. $t_{j}$ is measured in days for all elements except mean anomaly of the planets where $t_{j}$ is measured in units of $10^{-4}$ days. After the osculating orbital elements are computed, they are transformed into cartesian position and velocity vectors.

A unique case occurs when EPHEM is used to compute the position and velocity vectors of the earth's moon. The position ( $\underline{r}_{\mathrm{E}}$ ) and velocity ( $V_{⿷}$ ) vectors of the earth are computed and added to the position ( $\underline{r}_{M}$ ) and velocity $\left(\mathrm{V}_{\mathrm{M}}\right)$ vectors of the moon relative
to earth. The heliocentric position (r) and velocity (V) are

$$
\begin{aligned}
& \underline{\underline{r}}=\underline{\underline{r}}_{\mathrm{E}}+\underline{r}_{\mathrm{M}} \\
& \underline{\mathbf{v}}=\underline{v}_{\mathrm{E}}+\underline{v}_{\mathrm{M}}
\end{aligned}
$$

## Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
Nø	I	A	Number of the planet for which $\underline{r}$ and $v$ are desired.
DJ	I	A	Trajectory time in Julian Days from launch.
R	$\emptyset$	A	$\underline{r}$.
v	$\emptyset$	A	$\underline{v}$
SMASS	I	C	Gravitational constant of the sun.
PMASS	I	C	Array of gravitational constants for the planets and the moon.
CsAX	I	C	Semi-major axis constants (a)
CESS	I	C	Eccentricity constants (e).
CINC	I	C	Inclination constants (i).
C $¢$ MEG	I	C	Longitude of the Ascending Node constants ( $\Omega$ ).
C $\emptyset$ MEGT	I	C	Longitude of Periapsis constants (※).
CMEAN	I	C	Mean Anomaly constants (M).


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
EMN	I	C	Array of constants for the moon.
			1-4 Longitude of the Ascending Node constants.
			5-8 Longitude of Periapsis constants.
			9-12 Mean Anomaly constants.
			13 Inclination constants.
			14 Eccentricity constants.
			15 Semi-major axis constants.
PI	I	c	3.14159..... (T)
DJ1900	I	C	2415020.

## Local Variables:

Variable
Definition

Array used to store $\underline{r}_{\mathrm{E}}$ and $\mathrm{V}_{\mathrm{E}}$.
Planet code, initially set equal to Nの.
$\frac{\pi}{2}$.
a.
e.
i.
$\Omega$
$\Omega-\tilde{\omega}=\omega$
XMEAN
M.
Variable

PøLY1

## D

## DD

T
SMASS + PMASS (NP), for the planets.
PMASS (3) + PMASS (11), for the moon.
Statement function that performs
$\alpha_{i}(t)=a_{i}+t_{J}\left(b_{i}+t_{J}\right.$ PMASS (3) + PMASS (11), for the moon.

$$
\left.\left(c_{i}+d_{i} t_{J}\right)\right)
$$

                \(\left.\left(c_{i}+d_{i} t_{J}\right)\right)\)
    SMASS + PMASS(NP), for the planets.

Statement function that performs

$$
\alpha_{i}(t)=a_{i}+t_{J}\left(b_{i}+t_{J}\right.
$$

Statement function that performs $\alpha_{i}(t)=a_{i}+b_{i}{ }^{t} J$

Days from 1900.
D/10000.
D/36525.
Subroutines Called: ..... CARTES
Calling Subroutines: SøLAR
Common Blocks: C历NST, EPHEM



3.5.5A Subroutine:	FIND
Entry Points:	FIND1, FIND3
Purpose:	(1) To compute the location in Blank Common arrays   that will be used by TRAJ and the number of equa-   tions to be integrated, (2) to copy integrated   parameters into mode accessible locations, and (3)   to initialize the F matrix.
Method:	None

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
LDCS	I	C	Location in Blank Common where TRAJ can start array allocation.
INTEG	I	C	  Transition Matrix   Set $=2$ Propagate State only   Set $=3$ Propagate State and   Covariance
IAUGDC	I	C	Flag array determining the components of the Transition Matrix or Covariance to be propagated.
MEQ	$\emptyset$	C	Total number of equations to be integrated.
MEQ8	$\emptyset$	C	MEQ-8
MEQS	$\emptyset$	C	$\sqrt{\text { MEQ8 }}$
LøOH	$\emptyset$	c	Integration stepsize
LøCX	$\emptyset$	C	Trajectory time in seconds
LøCPT	$\emptyset$	C	Trajectory print time
LøCET	$\emptyset$	C	Trajectory event time
LøCPR	$\emptyset$	C	Trajectory time for print
LøCT	$\emptyset$	C	Trajectory time stored for interpolation

Input/Output:
(Continued)

Variable	Input/ Output	Argument/   Common	Definition
L $\varnothing$ CR	$\emptyset$	C	Position magnitude stored for interpolation
LøCYC	$\emptyset$	C	Dependent variables
LDCDY	$\emptyset$	c	Differential equations
LøCYT	$\emptyset$	C	Dependent variables for print and events
L®CDT	$\emptyset$	C	Differential equations for print and events
LDCYP	$\emptyset$	C	Temporary locations for integration
LDCTE	$\emptyset$	C	Future modifications
LøCFI	$\emptyset$	C	$F$ matrix, $\dot{\phi}=\mathrm{F} \phi$
Locm	$\emptyset$	c	Mass
LøCDM	$\emptyset$	c	Mass variation
LøCTC	$\emptyset$	C	Transition or Covariance ma

Local Variables:
Variables
Definition
ISTATE
Array containing size of augmented dynamic parameters
Subroutines Called: CøPY, IDENT, MUNPAK, ZERØM
Calling Subroutines: PATH
Common Blocks: (BLANK), DIMENS, TRAJ1, TRAJ2, WøRK

## Logic Flow:



3.5.5-B Subroutine:	Flux
Purpose:	To compute the power degradation factor due
	to proton/electron bombardment of the solar
Method:	cells in the Earth's radiation field.
Remarks:	See Analytic Manual, Section 4.1.
	Flux is updated only after each normal, that
	is, non-event related, integration step in
	subroutine PATH. Flux is integrated by modified
	Euler method.

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
CøM (LøCX)	I	C	Current flight time.
CøM (LøCH)	I	C	Integration step size.
ECEQ	I	C	Ecliptic to equatorial transformation matrix.
FLX		C	Cumulative particle fluence.
FLXDøT		C	Flux rate.
GHZERø	I	C	Greenich hour angle at launch.
ITP	I	C	Target planet code.
¢MEGAG	I	C	Earth rotation rate.
PRADIS	I	C	Planetary radii.
SCD	0	C	Power degradation factor.
UREL	I	C	Body relative position vectors.

$$
448-\mathrm{C}
$$

## Local Variables:

Variable	Definition
AI	Power degradation constants.
CMLAT	Cosine of magnetic S/C latitude.
DLAT	Latitude of North magnetic pole.
DL $\emptyset \mathrm{N}$	Longitude of North magnetic pole.
ERAD	S/C radius.
FI	Degradation functions.
GHA	Greenich longitude.
GLAT	Geographic S/C 1atitude.
GLめN	Geographic S/C longitude.
SMLAT	Sine of magnetic S/C latitude
U	Intermediate variable.
utines Called:	ANGMØD, MMATB, VECMAG
ng Subroutines:	PATH
n Blocks:	(BLANK), CøNST, EPHEM, TRAJ1, TRAJ2, WøRK
Flow:	None.

### 3.5.6-A Subroutine: GRAVAR

Purpose: GRAVAR computes the variational matrices, with the exception of the gravity gradient matrix (G11), needed to formulate the matrix differential equations which integrate into the augmented state transition matrix.

Method: The variational matrices are formulated as follows (Reference 1; p 122):

G12 $=k=\frac{\partial \dot{\underline{r}}^{\prime}}{\partial \underline{\underline{r}}_{e}}=\frac{\mu_{e}}{r_{e}^{5}}\left[3 \underline{r}_{e}^{T} \underline{r}_{e}^{T}-\underline{r}_{e}^{2} I\right]-\frac{\mu_{s}}{\rho_{e}^{5}}\left[3 \rho_{e} \rho_{e}^{T}-\rho_{e}^{2} \quad I\right]$
G22 $=p=\frac{\partial \dot{\underline{r}}_{e}}{\partial \underline{r}_{e}}=-\frac{\mu_{e}}{r_{e}^{5}}\left[3 \underline{r}_{e} \underline{r}_{e}^{T}-\underline{r}_{\epsilon}^{2} I\right]$

GM11 $=m=\frac{\partial r}{\partial \mu_{s}}=-\frac{\underline{r}}{r^{3}}$
$G M 12=\mathrm{d}=\frac{\partial \ddot{\rho}_{e}}{\partial \mu_{e}}=-\frac{\rho_{e}}{\rho_{e}{ }^{3}}$

GM21 $=s=\frac{\partial \underline{\dot{r}} \dot{e}}{\partial \mu_{s}}=-\frac{\dot{\underline{\underline{r}}}}{\mathbf{r}_{\mathbf{e}}^{3}}$
$G M 22=q=\frac{\partial \dot{\underline{r}} \dot{\dot{e}}}{\partial \mu_{e}}=-\frac{\dot{\underline{\dot{e}}} \dot{\underline{e}}}{\mathbf{r}_{\mathrm{e}}^{3}}$
where:
$\underline{r}$ is the $s / c$ heliocentric position vector
$r_{e}$ is the heliocentric ephemeris planet position vector
$\mu_{e}$ is the gravitational constant of the ephemeris planet
$\mu_{\mathrm{s}}$ is the gravitational constant of the sụn
$\rho_{e}$ is the position vector of the s/c WRT the ephemeris planet

## Input/Output:

VariableInput/   Output	Argument/   Common	Definition


UP	I	c	Heliocentric position vectors of all bodies in the integration
IAUGDC	I	c	Array of flags used to augment the state for STM or covariance integration
PMASS	I	C	Planetary gravitational constants
SMASS	I	C	Solar gravitational constant
UREL	I	c	Position vector of s/c relative to all bodies considered in the integration
URELM	I	C	Magnitudes of UREL
G12	$\theta$	C	k
G22	0	C	p
GM11	$\emptyset$	C	m
GM12	$\emptyset$	C	d
GM21	$\emptyset$	E	s
GM22	0	C	q
IEP	I	C	Ephemeris body identification

## Local Variables:

Variable
UPM ( $=$ WORK(10))

SMUK ( = WORK (4))

## Subroutines Called:

Calling Subroutines:
Common Blocks:

Definition
Magnitude of position vector of the ephemeris planet.

Gravitational constant of ephemeris planet VEGMAG

DPHI, PDOT
EPHEM, TRAI 1, TRAJ 2, WORK


### 3.5.6-B Subroutine: GRAVF (UA)

Purpose:

Method:

The subroutine GRAVFØ has two principal purposes. The first is the calculation of differential accelerations acting on the $\mathrm{s} / \mathrm{c}$ due to gravitational bodies being considered in the analysis. The second purpose is the computation of the gravity gradient matrix, Gll, which is used in the algorithm determining the step size for the trajectory integrator (PATH). Gll is used also with the other variational matrices, G12, G22, GM12, GM12, GM21, and GM22 (all computed in GRAVAR) to formulate the matrix differential equations which integrate into the augmented state transition matrix. In addition, GRAVF $\varnothing$ performs many auxilliary calculations which determine the relative geometrics among all planetary bodies and the s/c. These geometricl quantities are stored in coumon blocks accessible to other routines where they may be used without further computational expense.

TRAJ uses Encke's formulation of the equations of motion for propegating trajectories, (Section 4.1, Reference 1). The differential acceleration computed by GRAVF is

$$
\begin{aligned}
\delta \underline{\underline{r}}= & -\frac{\mu}{r_{c}^{3}}\left[f(\alpha) \cdot \underline{r}+\delta_{\underline{r}}\right]-\sum_{i=1}^{N} \frac{\mu}{e_{i}^{3}} . \\
& {\left[\underline{r}+f\left(\alpha_{i}\right) \cdot \underline{r}_{i}\right] }
\end{aligned}
$$

where

$$
\begin{aligned}
& \underline{\underline{r}}=\underline{r}_{\mathrm{c}}+\delta \underline{r} \\
& \underline{\dot{r}}=\dot{\underline{r}}_{\mathrm{c}}+\delta \underline{\underline{r}} \\
& \mathrm{f}(\alpha)=\frac{\alpha\left(3+3 \alpha+\alpha^{2}\right)}{1+(1+\alpha)^{3 / 2}} \\
& \alpha=\frac{(\delta \underline{r}-2 \underline{r}) \cdot \delta \underline{r}}{r^{2}}
\end{aligned}
$$

$$
\underline{\rho}_{i}=\underline{\underline{r}}+\underline{r}_{p}-\underline{r}_{i}
$$

$$
f\left(\alpha_{i}\right)=\alpha_{i}\left[\frac{3+3 \alpha_{i}+\alpha_{i}^{2}}{1+(1+i)^{3 / 2}}\right]
$$

$$
\alpha_{i}=\frac{r}{\rho_{i}}\left[\frac{r}{\varrho_{i}}-\frac{2 \underline{r} \cdot \underline{\rho_{i}}}{r \rho_{i}}\right]
$$

$r_{c}$ - reference conic position vector of the spacecraft.
$P_{i}$ - position vector of the spacecraft relative to the th body.
r - heliocentric position vector of the spacecraft.
$r_{i}$ - heliocentric position vector of the $i$ th
N - number of bodies included in the integration other than the sun.
$r_{p}$ - heliocentric position vector of the primary
$\mu$ - gravitational constant.

GRAVF also computes the gravity gradient matrix, G11, which is used for state transition matrix propagation and as a determinant in the integrator step size logic. (Reference 1, p 122) $G 11=f=\left(\sum_{i=1}^{N} f_{i}\right)+f_{p}$

$$
=\left(\sum_{i=1}^{N} \frac{\partial \ddot{\rho}_{i}}{\partial \underline{\rho}_{i}}\right)+\frac{\ddot{\theta}_{p}}{\partial \underline{\rho}_{p}}
$$

$$
\left(\sum_{i=1}^{N} \frac{\mu_{i}}{\rho_{i} 5}\left[3 \rho_{i} \rho_{i}^{T}-\rho_{i}^{2} \quad\right]\right)
$$

$$
\left.+\frac{\mu_{\mathrm{p}}}{\rho_{\mathrm{p}}^{5}} \underset{-\mathrm{p}-\mathrm{p}}{3 \rho_{-\mathrm{p}} \rho_{-}^{\mathrm{T}}-\rho_{-}^{2}} \mathrm{I}\right]
$$

The subscript $i$ refers to the $i^{\text {th }}$ perturbing body and the subscript $p$ refers to the primary body. $\mathscr{\rho}$ indicates body relative position vectors while $\mu$ is the gravitational constant.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
UA	I	A	The first three elements contain $\delta \underline{r}$.
			The second three elements contain $\delta \dot{\underline{\dot{x}}}$.
UENC	I	c	$\underline{\underline{r}}_{\boldsymbol{c}}$
UENCM	I	c	${ }^{\text {c }}$ c
VENC	I	C	$\dot{\underline{\underline{S}}}_{\text {c }}$
UTRUE	0	C	$\underline{\underline{x}}$
UTRUEM	0	C	r
VTRUE	0	c	$\dot{\underline{y}}$
Vtruem	0	C	$\dot{\mathrm{r}}$
APERT	0	C	Array that contains the perturbing acceleration vector for each body included in the integration. APERT (I, IPRI) $I=1.3$ contains the vector sum of these perturbations.
SMASS	1	C	Solar gravitational constant.
PMASS	I	C	Array or̈ planetary gravitational constants.
UREL	0	c	
URELM	0	C	Array containing each $\rho_{i}$.
VREL	0	C	Array containing each ${\underset{-1}{\rho}}^{\underline{1}}$.
VRELM	0	C	Array containing each $\dot{\rho}_{1}$.
UP	I	c	Array containing each $\underline{r}_{i}$.
vp	I	c	Array containing each $\dot{\underline{r}}_{i}$.




3.5.6C	Subroutine:	GRVPøT
Purpose:		To evaluate perturbing accelerations due to
		the J2 term in the gravitational potential
		and to calculate variational partial derivatives
		appearing in the variational differential equation
		which generates the augmented state transition
		matrix.
Method:		The perturbing acceleration vector due to J 2
		is computed as outlined in the Analytic Manual,
		Section 4.1. This acceleration vector is
		rotated from the equatorial to the ecliptic
		frame and is transmitted to subroutine GRAVFめ
		where it is added to $A T \emptyset T$, the differential
		acceleration vector. When the nonspherical mass
		model is being considered, variational partials
		are also computed in GRVPøT by analytic formulae
		which are given in Section 9.4 of the Analytic
		Manual. These partials are added to the a
		appropriate partition of the $\mathrm{F}_{\mathrm{A}}$ matrix.

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
J2	I	C	J2 coefficient in the   gravitational potential   function.
PRADIS	I	C	P1anetary radil (Earth).


Variable	Input/   Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
PMASS	I	C	Planetary gravitational constants (Earth).
UTRUE	I	C	```Geocentric S/C position vector, ecliptic reference frame.```
ECEQ	I	C	```Rotation matrix for trans- forming a vector from equatorial to ecliptic coordinates.```
GPERT	$\emptyset$	C	```Vector of perturbing accelerations due to the nonspherical mass distribution of the primary.```
G11	I/O	C	Variational partials of S/C acceleration changes w.r.t. changes in the position.
IAUGDC	I	C	Flag vector identifying augmented dynamic parameters.
GJ2	0	C	```Variation partials of S/C acceleration change w.r.t. changes in J2.```

## Local Variables:

Variable	Definition
UTRUEQ	S/C position vector relative to the primary body's equatorial system.
GPRTEQ	Perturbing acceleration vector due to a nonspherical mass distribution.
GEQ	Variational partials expressed relative to the geocentric equatorial coordinate system.
Subroutines Called:	ADD, MMAB, MMABAT, MMATB, ZERØM
Calling Subroutines:	GRAVFø
Common Blocks:	CØNST, EPHEM, TRAJ1, TRAJ2, WøRK



### 3.5.7 Subroutine: LøADFM (DS, DP, INDEX)

Purpose:

Method:

## Remarks:

To compute the F matrix and the matrix of derivatives $\dot{\Phi}=\mathrm{F} \Phi$ or $\dot{\mathrm{P}}=\mathrm{FP}+\mathrm{PF}^{\mathrm{T}}+\mathrm{Q}$ for transition matrix or covariance, respectively. (Sections 4.5 and 4.6, Reference 1).

The non-zero components of F are stored in appropriate sub-matrices, according to the degree the state is augmented.

Case 1: State transition matrix.
Given the augmented state vector

where
r - spacecraft position vector.
$\dot{\underline{x}}$ - spacecraft velocity vector.
ㄴ - constant spacecraft controls.
$r_{e}$ - position vector of the spacecraft relative to the ephemeris body.
$\dot{r}_{e}$ - velocity vector of the spacecraft relative to the ephemeris body.

The linearized equations of motion for the augmented state are

$$
\delta \dot{\underline{x}}=F \delta \underline{x}
$$

where

$$
\begin{aligned}
F & =\frac{\partial \underline{\underline{x}}}{\partial \underline{x}} \\
& =\left[\begin{array}{ccccccc}
0 & I & 0 & 0 & 0 & 0 & 0 \\
\mathbf{f} & 0 & \mathbf{g} & \mathbf{k} & 0 & d & m \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & P & 0 & q & s \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

where $I$ is a $3 \times 3$ identity matrix and

$$
\begin{aligned}
& f=\frac{\partial \ddot{\underline{r}}}{\partial \underline{r}} \\
& m=\frac{\partial \ddot{\underline{r}}}{\partial \mu_{s}} \\
& g=\frac{\partial \underline{\underline{r}}}{\partial \underline{u}} \\
& p=\frac{\partial \ddot{\underline{r}}_{e}}{\partial \underline{r}_{e}} \\
& k=\frac{\partial \ddot{\underline{r}}}{\partial \underline{\underline{r}}_{e}} \\
& q=\frac{\partial \ddot{\underline{r}}_{e}}{\partial \mu_{e}} \\
& \mathrm{~d}=\frac{\partial \underline{\underline{r}}}{\partial \mu_{\mathrm{e}}} \\
& s=\frac{\partial \ddot{\underline{r}}_{e}}{\partial \mu_{s}}
\end{aligned}
$$

Case 2: Covariance matrix.
Given the augmented state vector

$$
\underline{x}=\left[\begin{array}{l}
\underline{r} \\
\underline{r} \\
\underline{\mathbf{u}} \\
\underline{\omega} \\
\underline{r}_{1} \\
\underline{r}_{2} \\
\underline{r}_{3}
\end{array}\right]
$$

where
W - time varying thrust parameters.
${\underset{i}{i}}{ }^{-}$tracking station position vectors.
and
$F=\left[\begin{array}{lllllll}0 & I & 0 & 0 & 0 & 0 & 0 \\ f & 0 & \mathrm{~g} & \mathrm{n} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathrm{~h} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
where $I$ is a $3 \times 3$ identity matrix,

$$
f=\frac{\partial \ddot{\underline{r}}}{\partial \underline{\underline{r}}}
$$

$$
\begin{aligned}
& \mathrm{g}=\frac{\partial \ddot{\underline{\underline{u}}}}{\partial \underline{\mathrm{u}}} \\
& \mathrm{n}=[\mathrm{g} \vdots \mathrm{~g}]
\end{aligned}
$$

and $h$ is the matrix of process noise correlation times

$$
h=\left[\begin{array}{cccc}
\frac{-1}{T_{1}} & 0 & \cdots & 0 \\
0 & \frac{-1}{T_{2}} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \frac{-1}{\tau_{6}}
\end{array}\right]
$$

The matrix $Q$ is the process noise,
$Q=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \cdot h \cdot E\left[\delta u\left(\delta \hat{u}^{\boldsymbol{T}}\right]\right. & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

The dimensions of $\Phi, \dot{\Phi}, P, \dot{P}, F$ and $Q$ are determined by the highest degree of augmentation of the state vector. The flag array that controls the augmentation is the IAUGDC array.

## Input/Output:

Variable	Input/ Output	Argument/   Common	Definition
INDEX	I	A	$=1$, Load the F matrix   and compute P .   $=2$, Load the F matrix and compute   $=3$, Use current $F$, compute $\dot{\mathrm{P}}$   $=4$, Use current $F$, compute $\$$.
DS	I	A	```=. P for Covariance propagation. = 7 for Transition Matrix propagation```
DP	0	A	$=\dot{\mathrm{P}}$ for Cpvariance propagation, $\mathbf{f}$ for transition matrix
F (LOCFI)	I	C	Location in Blank Common to use for $\mathbf{F}$ matrix storage.
IAUCDC	I	c	Array of flags where each element determines what is to be loaded in the $F$ matrix.
611	I	C	f
GT	I	c	g
G12	I	C	k
G22	I	C	p
GM12	I	C	d
GM22	I	c	q
GM11	I	c	m
GM21	I	C	$s$
gTaul	I	C	Upper left $3 \times 3$ of. $h$
grau2	I	C	Lower right $3 \times 3$ of $h$
QNøISE	I	c	Q = process noise
MEQS	I	C	Dimensions of $\overline{\mathbf{\Sigma}}, \dot{\mathbf{\Sigma}}, \mathrm{P}, \dot{\mathrm{P}}$, and F .

Subroutines Called: MMAB, MUNPAK, SCALE, SYMTRZ, ZERDM
Ca11ing Subroutines: DPHI, PDดT, TRAJ
Common Blocks: (BLANK), TRAJ1, TRAJ2, WøRK

Logic F1ow:


3.5.8 Function Routine: LøCATE (INDEX)
Purpose: To locate the target body, ephemeris body,launch body or primary body in the NB array.
Method: None
Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
INDEX	I	A	```SET = 1 Locate target body =2 Locate ephemeris body = 3 Locate launch body =4 Locate primary body```
NTP	$I$	C	Number of the target body
NEP	I	c	Number of the ephemeris body
NLP	I	C	Number of the launch body
NPRI	I	C	Number of the primary body

Local Variables: None
Subroutines Ca1led: None
Calling Subroutines: ..... PATH, GRAVFØ
Common Blocks:TRAJ2
Logic Flow:

3.5.9 Subroutine: $M \not \subset \mathrm{TI} \not \mathrm{N}_{\mathrm{N}}(\mathrm{T}, \mathrm{DS}, \mathrm{DSD}, \mathrm{M}, \mathrm{N}, \mathrm{L} \varnothing \mathrm{C})$

Purpose:
To compute the $\mathrm{S} / \mathrm{C}$ accelerations and to rectify the reference conic.

Method:
Encke's formulation of the equations of motion.
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
T	I	A	Trajectory time
DS	I	A	Dependent variable
DSD	$\emptyset$	A	Differential equations
M	I	A	Number of rows in DS and DSD
N	I	A	Number of columns in DS and DSD
LøC	I	A	Routing flag
ЕРøСН	I	c	Julian Date of Launch
TM	I	C	Conversion from seconds to days
EXHVEL	I	C	Exhaust velocity
ATDT	I	c	Differential acceleration plus perturbing gravitational accelerations
THRACC	I	c	Thrust accelerations
RPACC	1	C	Radiation Pressure acceleration

Local Variables: None
Subroutines Called: REFINE, S $\emptyset$ LAR, $\emptyset S C U L, G R A V F \emptyset, E P, R P R E S S, A D D, C \emptyset P Y$
Calling Subroutines: NUMIN, DPHI, PDøT
Common Blocks:
C $\varnothing$ NST, TIME, TRAJ1, TRAJ2, W $\phi$ RK

## Logic Flow:



### 3.5.10 Subroutine: NEWT $\emptyset \mathrm{N}$ (XVALUE, YVALUE, $X, Y$, INDEX)

Purpose:

Method:
To fit a third Order Polynomial through 4 data points for either interpolation or finding the minimum of the polynomial.

Newton's third Order Divided Difference Interpolation Polynomial. (See Appendix 3, Reference 1)

## Input/Output:

Variable	Input/ output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \end{gathered}$	Definition
XVALUE	I	A	Table of independent values
YVALUE	I	A	Table of dependent values
X	I/0	A	For interpolation, the value of $X$ for which $Y$ is desired. (Input)   For a minimum, the value of $X$ at the minimum. (Output)
Y	I/0	A	For interpolation, the interpolated value of $Y$. (Output)   For a minimum, the value of Y at the minimum. (Output)
INDEX	I	A	Set $=1$, Find the minimum   Set $=2$, Interpolate

## Local Variables:

Variable

DDX The Divided Differences
$A, B, C, D \quad$ Coefficients of a 3rd Order Polynomial
Subroutines Called: None
Calling Subroutines: PATH
Common Blocks: None

## Logic Flow:


3.5.11A Subroutine: NUMIN (M, N, X, H, YC, YP, F, DERIV)

Entry Points: SETUP, RUNG2, RUNG4
Purpose: $\quad$ To integrate an MxN matrix of first order differential equations.

Method: 4th Order Runge-Kutta formula (RUNG4) and 2nd Order (RUNG2)
Input/Output:

Variable	I/0	Argument/ Common	Definition
M	I	A	Number of rows
N	I	A	Number of columns
X	$I / \emptyset$	A	Independent variable
H	I	A	Integration step-size
YC	$I / \emptyset$	A	Matrix of dependent variables
YP	$\emptyset$	A	Temporary storage matrix
F	$\emptyset$	A	4 - Temporary storage
			matrices
DERIV	I	A	Name of the subroutine
			containing the
			differential equations.

## Local Variables:



Subroutines Called: DERIV (defined by argument, e.g., DPHI, MøTI $\emptyset \mathrm{N}, \mathrm{PD} \emptyset \mathrm{T}$ ) Calling Subroutine: PATH

Common Blocks: None

Logic Flow:

3.5.11-B Subroutine: $\emptyset C C U L T$ (A, E, USV, XMU, RS, B $\emptyset D Y, T, F)$

Purpose: To compute the entrance and exit true anomalies of occultation.

A quartic equation in the cosine of the entrance and exit true anomalies is formulated as follows:
$\mathscr{S}=\mathrm{C}_{1} \cos ^{4} \mathrm{f}+\mathrm{C}_{2} \cos ^{3} \mathrm{f}+\mathrm{C}_{3} \cos ^{2} \mathrm{f}+$

$$
C_{4} \cos f+C_{5}
$$

The coefficients are derived from the orbital geometry and the anti-sun vector as described in Appendix 8 of the Analytic Manual. The equation $\mathscr{X}=0$ is the condition for shadow entrance and shadow exit. If the S/C is entering the shadow, \&ust change from minus to plus. Exit from the shadow will be characterized by $\mathcal{C}$ changing from plus to minus. Spurious roots of the above equation are eliminated by enforcing the physical constraint that

$$
\underline{s} \bullet \underline{r}>0
$$

where $\underline{S}$ is the anti-sun vector and $\underline{r}$ is the position vector to shadow entrance (or exit) in the orbit. for a complete discussion of the shadow model.

## Input/Output:

Variable	$\begin{array}{c}\text { Input/ } \\ \text { Output }\end{array}$	$\begin{array}{c}\text { Argument/ } \\ \text { Common }\end{array}$			
A	I	A	Definition	$]$	Semi-major axis.
:---					
USV					

## Local Variables:

Variable
Definition
BETA
$\bar{S} \cdot \bar{P}$, where $\bar{P}=\operatorname{USV}(I), I=1,3$
C1, C2, C3
C4, C5

Variable	Definition
CPHI	Test angle to eliminate spurious roots
$P$	Semi-latus rectum
$R$	Position magnitude
$X X I$	$\bar{S} \cdot \bar{Q}$, where $\bar{Q}=\operatorname{USV}(I), I=4,6$

Subroutines Called: ANGMøD, QARTIC, UDøTV
Calling Subroutines: SHADめW
Common Blocks:
CØNST, ENCØN, SHADØW, WØRK
Logic Flow: See listing.

### 3.5.12 Subroutine: PATH

## Entry Point: FLIGHT

## Purpose:

PATH initializes all trajectory routines, while FLIGHT controls trajectory propagation.

Remarks:
Based upon input flags, PATH determines how FLIGHT will function as well as all the other trajectory routines. FLIGHT tests for and executes trajectory rectification, primary body changes, thrust control and shadow phase changes, trajectory termination conditions, trajectory print and trajectory events.

The most significant feature of PATH is the use of blank common as a working area for the Fourth Order Runge-Kutta numerical integration routine (Appendix 2, Reference 1), applied to a matrix of first order differential equations.

$$
Y_{k+1}=Y_{k}+\frac{h_{k}}{6}\left(F_{1}+2 \cdot F_{2}+2 \cdot F_{3}+F_{4}\right)
$$

where

$$
\begin{aligned}
& F_{1}=F^{\prime}\left(x_{k}, Y_{k}\right) \\
& F_{2}=F^{\prime}\left(x_{k}+\frac{h_{k}}{2}, Y_{k}+\frac{h_{k}}{2} \cdot F_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{3}=F^{\prime}\left(x_{k}+\frac{h_{k}}{2}, Y_{k}+\frac{h_{k}}{2} \cdot F_{2}\right) \\
& F_{4}=F^{\prime}\left(x_{k}+h_{k}, Y_{k}+h_{k} \cdot F_{3}\right)
\end{aligned}
$$

The values of : $Y$ and $F$ are stored in a blank common array (DSC) and their order depends upon whether some or no events are processed within the normal integration step ( $h_{k}$ ).
Case 1: If no events occur between $X_{k}$ and $X_{k+1}=X_{k}+h_{k}$, then a normal integration step will be taken. The values of $Y_{k}$ and $F_{1}$ ( $X_{k}, Y_{k}$ ) are used for the Runge-Kutta integration and at the completion of the step the DSC array appears as

$$
\begin{aligned}
\operatorname{DSC}= & Y_{k+1}, F_{1}\left(X_{k}+h_{k}, Y_{k+1}\right) \\
& F_{2}, F_{3}, F_{4}, \longrightarrow, Y_{k+1}
\end{aligned}
$$

where the first two entries ( $Y$ and $F_{1}$ ) are at the updated $X_{k+1}$ point, the next three entries contain values of $F$ in the $h_{k}$ interval, there are two unused storage arrays, and the last entry is a running value of $Y$ (which becomes $Y_{k+1}$ at the end of the step). The next
integration step $\left(h_{k+1}\right)$ can now be taken and starts with $\mathrm{Y}_{\mathrm{k}+1}, \mathrm{~F}_{1}$.
Case 2: If an event or print has been specified by either the calling mode or TRAJ itself, and it occurs between $X_{k}$ and $X_{k+1}$, then a short integration step $(* h)$ is taken to the event. The resultant blank common storage at the event $\left(X_{k}+* h\right)$ is then

$$
\begin{aligned}
D S C= & Y_{k}, F_{1}, * Y_{k+1}, * F_{1}\left(x_{k}+* h_{k}, * Y_{k+1}\right) \\
& * F_{2}, * F_{3}, * F_{4}, * Y_{k+1}
\end{aligned}
$$

where asterisks ( $\stackrel{( }{ })$ refer to values for the event integration step. The first two entries are stored values of $Y$ and $F$ at $X_{k}$, to preserve values such that a normal integration step can be taken after the event has been processed. The next six entries are used for the event integration step. If no more events occur before $X_{k}+h_{k}$, then normal integration resumes with the stored values $Y_{k}$ and $F_{I}$, and the results are shown in Case 1. If more events occur before $X_{k}+h_{k}$, then the process of Case 2 is repeated using $*_{Y_{k+1}}$ and ${ }^{*} F_{1}$ until all events have been processed. Since TRAJ can integrate the
transition matrix or covariance in addition to the state deviation from the reference conic, an additional array is needed. This array is used to store the partial deviatives contained in the F matrix (Appendix 4, Reference 1). The locations for the F matrix begin after the last word of $Y_{k}$ (or * $Y_{k}$ ). The amount of blank common used by TRAJ varies with the number of equations to be integrated. For the state only case,

$$
Y=\left[\begin{array}{r}
\delta \underline{r} \\
\delta \underline{v} \\
\mathrm{~m} \\
\delta \mathrm{~m}
\end{array}\right]
$$

where $\delta \underline{r}$ and $\delta \underline{v}$ are deviations from the conic state, $m$ is the spacecraft mass and $\delta m$ is the mass variation. When the transition matrix. (\$) or the covariance ( $P$ ) are to be integrated

$$
Y=\left[\begin{array}{c}
\delta \underline{r} \\
\delta \underline{v} \\
m \\
\delta m \\
\Phi
\end{array}\right]
$$

or

$$
\mathbf{Y}=\left[\begin{array}{c}
\delta \underline{r} \\
\delta \underline{v} \\
m \\
\delta m \\
P
\end{array}\right]
$$

For state only integration, $Y$ is an $8 \times 1$ matrix. When the transition matrix or covariance is to be integrated, the dimension of $Y$ varies with $\Phi$ and $P$. The dimensions of $\Phi$ and $P$ are those for the highest degree of augmentation. The subroutine FIND determines the number of equations to be integrated, the dimensions of $\Phi$ or $P$ and the number of locations in blank common needed for numerical integration.

Other information stored in blank common are:

```
X}\mp@subsup{\dot{k}}{}{\prime}\mathrm{ - Current trajectory integration
 time (t);
h - Integration stepsize;
tp - Integration event time;
te - Next mode event time;
t}\mp@subsup{P}{R}{
ti - Four stored times used for interpo-
 lation;
ri - Four stored position magnitudes
 corresponding to the ti}\mp@subsup{i}{}{\prime}s\mathrm{ , also
 used for interpolation;
```


## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
INTEG	$I$	$C$	Flag that determines the   equations to be integrated.


Variable	Input/ Output	Argument/ Common	Definition
			$\begin{aligned} & =1, \text { State and transition } \\ & \text { matrix; } \\ & =2, \text { State; } \\ & =3, \text { State and covariance. } \end{aligned}$
IPRINT	I	${ }^{\prime} \mathrm{C}$	Flag that determines when to print.
	.		```= 1, Every IPRINT integra- tion step; = 0, No print; =-1, Every XPRINT days; =-2, At trajectory event.```

MPLAN I C Total number of bodies to be considered in the NB array.

L $\varnothing \mathrm{cs}$

ISTゆP

KTRAJ

MEVENT
I

C

C

First location the integration routine can use for storage。

Flag that determines trajectory termination.

1 - Final trajectory time (TDUR);
2 - Radius of Closest Approach to the target body;
3 - Sphere of influence of the target body;
4 - Stopping radius relative to the target body.

Flag used to test for control phase change.
$<0$ - Not in use;
$>0$ - Test for control phase changes;
$=0$ - Do not test for control phase changes;

0 - Do not test for events; 1 - Test for events.

VariableInput/   Output	Argument/   Common	
NPHASE	I	C



Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
GTAU1	I	C	Thrust noise correlation times.
GTAU2	I	C	Thrust noise correlation times.
NTP	I	C	Number of the target body.
ITP	I	C	Location of target body in the $N B$ array.
QN¢ISE	I	C	Process noise matrix.
RST $\emptyset \mathrm{P}$	I	C	The stopping radius relative to the target body.
SPHERE	$I$	C	Array containing all the sphere's of influence.
TSøI	0	C	Time at the sphere of influence of the target body.
TM	I	C	86400 seconds.
TRCA	$\emptyset$	c	Time at the closest approach to the target body.
UREL	I	c	Relative position vectors of the spacecraft.
VREL	I	c	Relative velocity vectors of the spacecraft.
DSC	I/O	C	The blank common array where the following flags (IøCH to LøCX) are used to locate data.
LøCH	I	c	Integration step-size (h).
LøCM	I	C	Spacecraft mass (*m).
LøCFI	I	C	F matrix ( F ) .
LøCPR	I	C	Trajectory integration print time ( $t_{P R}$ ).

1

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
LøCPT	I	C	Trajectory print time ( $\mathrm{t}_{\mathrm{p}}$ ).
LøCDM	I	C	Mass variation ( $\delta \mathrm{m}$ ) .
LøCDT	I	C	Differential equations for events and print ( $*_{\mathrm{i}}$ ).
L $\emptyset$ CDY	I	C	Differential equations for the reference ( $\mathrm{F}_{\mathbf{i}}$ ).
LøCET	I	C	Event integration time ( $\mathrm{t}_{\mathrm{e}}$ ).
LøCFø	I	C	Location of the input covariance.
LøCR	I	C	Location of the stored position magnitudes ( $\mathrm{r}_{\mathrm{i}}$ ).
LøСт	I	c	Location of the stored position trajectory times ( $t_{i}$ ).
LøСтС	I	C	Location of the output transition matrix or covariance ( $*$ P or $* \mathbb{\Phi}$ ).
LOCYC	I	c	Integrated equations for the reference $\left(Y_{k+1}\right)$.
LøCYP	I	C	Integrated equations working array ( $\mathrm{Y}_{\mathrm{k}}$ ).
L $\emptyset \mathrm{CYT}$	I	C	Integrated equations for events and print $\left(* Y_{k+1}\right)$.
LøCX	I	C	Trajectory time ( $\mathrm{X}_{\mathrm{k}}$ ) 。
MEQ	I	C	Total number of equations to be integrated.
MEQ8	I	c	MEQ-8.
MEQS	I	C	$\sqrt{\text { MEQ8 }}$


Variable	Input/   Output	Argument/   Common	Definition
PØLICY	$I / \varnothing$	C	The thrust policy in effect during occultation.
LITE	$I / \varnothing$	C	Flag directing computational flow for shadow changes.
IPHAS 3	I/ $\varnothing$	C	Flag which determines whether trajectory information is to be printed at shadow phase changes.
NITE	$\emptyset$	C	Flag indicating no orbital rectification for shadow phase changes.
TSHAD $\emptyset$	I	C	Time at which coarse shadow tests are to be made.
TQ	I	C	Time at which refined shadow tests are to be made.
TPHASE	$\emptyset$	C	Time of next phase change (i.e., thrust, shadow-in, or shadowout phase changes).
TØFF	I	C	Time of shadow entrance.
$T \emptyset \mathrm{~N}$	I	C	Time of shadow exit plus the thruster warm-up time.
KIND	0	C	Flag indicating kind of approaching phase change.


	Input/	Argument/
Variable Common	Output	Definition



Requested IST $\boldsymbol{P}$ P

Final Time	1
Closest Approach	2
Sphere of Influence	3
Stopping Radius	4
Closest Approach	2
Sphere of Influence	3
Sphere of Influence	3
Stopping Radius	4,
Event Time	NA

## Local Variables:

Variable
hevnt
HPRNT

IRSTP

Event integration step-size.
Print integration step-size.
Indicates termination for determining KUT $\emptyset$ FF。

The following variables are used in assigned $G \emptyset T \emptyset$ statements and are in the TRAJI common block. When these statements are used in FLIGHT, there are implicit tests made. The majority of the tests are made in PATH. ITRAJ, IPHASO, IPHAS1, IPHAS2, JPHAS1, JPHAS2, JPHAS3, JTEST, KST $\emptyset \mathrm{P}, \mathrm{L} \emptyset \mathrm{CAL}, \mathrm{MST} \varnothing \mathrm{P}, \mathrm{NST} \emptyset \mathrm{P}$, IEVNT1, IEVNT2, IEVNT3, INTEG2, INTEG3, IPHASE, IPRT, IEVENT.

Subroutines Called: CøPY, DPHI, FIND, FIND1, FIND3, IDENT, LøCATE, MøTIめN, NEWTøN, PDめT, PRTNTT, RUNG2, RUNG4, SETUP, UDØTV, VECMAG, ZERØM, FLUX, PUNCHR, SHADØW

Calling Subroutines: TRAJ
Common Blocks:

Logic Flow:
(BLANK), CøNST, EPHEM, TIME, TRAJ1, TRAJ2, WøRK, SHADøW

The functional flow of PATH and FLIGHT is given on the next two pages, followed by a more detailed logic flow.

Summary
Logic F1ow:



Detailed
Logic Flow:



PATH-17






3.5.13 Subroutine: PDดT (T, DS, DP, M, N, LøøC)
Purpose: To compute the time derivative of the state covariance (P)
Method: $\dot{P}=F P+P F^{T}+Q$
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
T	I	A	Trajectory time
DS	I	A	Independent variables
DP	$\emptyset$	A	Differential equations
M	I	A	Number of rows in DS and DP
N	I	A	Number of columns in DS and DP
L0C	I	A	Routing flag
INTEG	I	C	Set $=1$ Propagate the state and Transition Matrix   Set $=2$ Propagate the state   Set $=3$ Propagate the state and state covariance
IAUGDC	I	C	Flag indicating the augmentation of the STM and covariance matrix
IRECT	I	C	Index used to check whether the current call to $\mathrm{PD} \phi \mathrm{T}$ is for rectification purposes only (i.e. IRECT = 1 )

## Local Variables

Variable
IAUGS

Vefinition

Index used to check whether the $F$ matrix needs to be augmented

Calling Subroutines: NUMIN

Common Blocks:
TRAJ 2

Logic F1ow:


### 3.5.14 Function: PoWER (R, TT)

## Purpose:

Method:

P $\emptyset$ WER computes the power available to the thrusters of the 10 w thrust spacecraft for solar electric and nuclear propulsion. The power is computed from the following expression.

$$
\begin{aligned}
& {\left[P_{o}\left[\frac{A_{1}}{r^{2}}+\frac{A_{2}}{r^{5 / 2}}+\frac{A_{3}}{r^{3}}+\frac{A_{5}}{r^{5}}\right]\right.} \\
& * \exp \left[-P_{L}\left(t-t_{D L}\right)\right]-P_{H K}, \quad \begin{array}{l}
\text { solar } \\
\text { electric }
\end{array} \\
& \text { P }=\{ \\
& P_{\text {max }} \text { if } P>P_{\text {max }} \text { or } r<r_{\text {min }}, \begin{array}{l}
\text { solar } \\
\text { electric }
\end{array} \\
& \left(P_{0} \exp \left[-P_{L}\left(t-t_{D L}\right)\right]-P_{H K}\right. \text {, nuclear } \\
& \begin{array}{l}
P_{0}-\quad \text { Power available (at } 1 \text { AU for solar, } \\
\text { at energization for nuclear) }
\end{array} \\
& \text { - (Empirical) Constants defining solar } \\
& \text { array characteristics } \\
& \text { r - Heliocentric position magnitude of } \\
& \text { the } \mathrm{S} / \mathrm{C} \\
& P_{\text {L }} \quad \text { - Power decay constant } \\
& \text { t - Time from epoch } \\
& t_{D L} \quad \text { - Time delay } \\
& \mathrm{P}_{\mathrm{HK}} \quad-\text { Housekeeping power }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{\text {max }} \text { - Maximum allowable solar eleciric } \\
& \text { power } \\
& r_{\text {min }}-\begin{array}{l}
\text { Heliocentric distance for which } P \\
\text { is less than } P_{\max }
\end{array}
\end{aligned}
$$

Input/Output:

Variable	Input Output	$\begin{gathered} \text { Argument/ } \\ \text { Coniminon } \\ \hline \end{gathered}$	Definition
R	I	A	Heliocentric distance in A.U. (r)
TT	I	A	Trajectory time in seconds (t)
PøWERO	I	C	Po (Equivalenced to ENGINE (1))
PHK	I	C	$\begin{aligned} & \mathrm{P}_{\mathrm{HK}} \quad \text { (Equivalenced to } \\ & \text { ENGINE(2)) } \end{aligned}$
PMAX	I	C	$\cdot P_{\max } \underset{\text { ENGINE (3) }}{\text { (Equivaled }}$
A1	I	c	$\begin{aligned} & A_{1} \quad \text { Equivalenced to } \\ & \text { ENGINE(4)) } \end{aligned}$
A2	I	c	$\mathrm{A}_{2} \underset{\operatorname{ENGINE}(5))}{\text { Equivalenced to }}$
A3	I	C	$A_{3} \quad \begin{gathered} \text { (Equivalenced to } \\ \text { ENGINE (6)) } \end{gathered}$
A4	I	C	$A_{4} \quad \begin{aligned} & \text { (Equivalenced to } \\ & \text { ENGINE(7)) }\end{aligned}$
A5	I	c	$\begin{aligned} & \mathrm{A}_{5} \quad \text { (Equivalenced to } \\ & \text { ENGINE (8)) } \end{aligned}$
RMIN	I	C	$\begin{aligned} & \mathbf{r}_{\min } \quad \begin{array}{l} \text { (Equivalenced to } \\ \text { ENGINE (9)) } \end{array} \end{aligned}$
PLøSS	I	C	$\mathrm{P}_{\mathrm{L}} \quad$ (Equivalenced to ENGINE (12))
TDL	I	C	$t_{\text {DL }}$ (Equivalenced to ENGINE (13))



3.5.15A Subroutine: PRINTT (TT, MASS)

Purpose: $\quad$ To print trajectory and spacecraft related information.

Input/Output:

Variable	Input/   Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
NTPHAS	I	C	Number of the current thrust phase.
NPRI	I	C	Number of the current primary body.
NEP	I	C	Number of the epnemeris body.
NTP	I	C	Number of the target body.
PLANET	I	c	Array containing the names of the planets.
MASS	I	A	Current spacecraft mass.
WPøWER	I	c	Current power available to the spacecraft for thrust.
TT	I	A	Trajectory time in days.
TDUR	I	C	Trajectory termination time in seconds.
EPøCH	I	C	Trajectory initial time (Ju1ian days).
TM	I	c	86400. seconds.
APRIM	I	C	Acceleration vector due to the gravity of the primary body.
THRACC	I	C	Acceleration vector due to thrust.
RPACC	I	C	Acceleration vector due to radiation pressure.


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
IPFLAG	I	C	Flag that indicates control phase change.
JPFLAG	I	C	Array containing only the names of the planets included in the integration.
APERT	I	C	Matrix containing the acceleration vectors due to the gravity of the non-primary bodies.
UREL	I	c	Matrix of spacecraft position vectors relative to the bodies considered in the integration.
URELM	I	C	Array containing magnitudes of the position vectors.
VREL	I	C	Matrix of spacecraft velocity vectors relative to the bodies considered in the integration.
VRELM	I	c	Array containing magnitudes of the velocity vectors.
MPIAN	I	C	Total number of bodies included in the integration.
THRUST	I	C	Array containing the thrust control. To locate information for the current control phase NTPHAS is used as follows: THRUST (i, NTPHAS) where $i$ is the desired infor mation.

Local Variables:
Variable_D_D_D_Dinition
WøRK Temporary storage array.

PHASE
Array that contains headings for control and primary body changes.

Subroutines Called: None
Calling Subroutines: PATH, MEASPR
Common Blocks: CøNST, EPHEM, TIME, TRAJ1, TRAJ2
Logic Flow:



```
3.5.15-B Subroutine: QADRAT (A, B, C, X1, X2, KK)
```


## Purpose: To solve for the roots of a quadratic equation. <br> Method: The equation

$$
A x^{2}+B x+C=0
$$

possesses two roots given by

$$
x_{i}=-\frac{B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
A, B, C	I	A	Coefficients of the quad-   ratic equation.
X1, X2,	$\emptyset$	A	Real roots of the equation.
KK	$\emptyset$	A	No. of real roots

Subroutines Called: None
Calling Subroutines: QARTIC
Common Blocks: None
Logic Flow: See Listing


Input/Output:

	Input/ Argument/	Oariable

A, B, C,
I
A
Coefficients of the quartic

D, E
X1, X2, X3, X4 $\emptyset$

KK . $\emptyset$
equation.

Real roots of the quartic equation.

Number of real roots.

Subroutines Called: QADRAT
Calling Subroutines: OCCULT
Common Blocks: $\quad \mathrm{C} \emptyset \mathrm{NST}$

Low Flow:
See Listing

```
3.5.16A Subroutine: RPRESS (CMASS)
Purpose: RPRESS computes the effective acceleration
 acting on a spacecraft due to radiation pres-
 sure.
Method: The effective acceleration is computed from
 the following expression.
 a ar
 r - heliocentric position vector of the space-
 craft.
 m - spacecraft mass.
 CrA - coefficient of reflectivity multiplied
 by the effective area of the solar array.
 In the event that r { rmin
 distance at which the solar electric power is
 a maximum, the effective cross sectional area
 of the solar array is changed by tilting (or
 folding) them. Therefore, the effective accel-
 eration is reduced,
 \mp@subsup{a}{R}{}}=\mp@subsup{a}{R}{
 where }\alpha\mathrm{ is the off-sun tilt angle.
Input/Output:
\begin{tabular}{cccc}
Variable & \begin{tabular}{c}
Input/ \\
Output
\end{tabular} & \begin{tabular}{c}
Argument/ \\
Common
\end{tabular} & Definition \\
CMASS & I & A & Current spacecraft mass.
\end{tabular}
```

Variable	Input/   Output	Argument/ Common	Definition
CRA	I	C	$\mathrm{C}_{\mathrm{r}} \mathrm{A}$ (Equivalenced to ENGINE (15))。
CTILT	I	C	$\cos \alpha$ (Equivalenced to ENGINE(16)).
RMIN	I	C	$r_{\text {min }}$ (Equivalenced to ENGINE (9)).
URELM (1)	I	C	Heliocentric position of the spacecraft.
UREL ( $\mathrm{I}, 1)$	I	C	Heliocentric position vector of the spacecraft.
RPACC	$\emptyset$	c	$\mathrm{a}_{\mathrm{r}}$
Loca1 Variables:			
Variable		Definition	
RPA		$l a_{r} 1$	
Subroutines Called:	: None		
Calling Subroutine:	: MøTI $\mathrm{N}_{\mathrm{N}}$		
Common B1ocks:	CøNST, TRAJI		


3.5.16B Subroutine:	SHADWW
Entry Point:	SHADE
Purpose:	To determine the times of shadow entrance
Method:	and shadow exit.
	Coarse tests are made to determine whether
	the osculating orbit intersects the Earth's
	shadow. If an intersection exists, the
	time of shadow entrance is predicted. At
	that time an accurate, or refined, computa-
	tion is completed to determine the actual
	entrance and exit times. A quartic equation
	in the cosine of the entrance and exit true
	anomalies is solved and Kepler's equation
	is applied to determine the entrance and
Remarks: $\quad$	exit times.
	If the current thrust policy is an imposed

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
ALPHA	I	C	Inverse of semi-major axis.
A1	I	C	Orbital mean motion.
BIG	I	C	$10^{20}$.


Variable	Input/ Output	Argument/ Common	Definition
DELE	I	C	See Page 535.
$\begin{aligned} & \text { DLAY } \\ & (=\text { ENGINE (18) }) \end{aligned}$	I	C	Coefficients in the warm-up equation.
$\begin{aligned} & \text { DLAYO } \\ & (=\text { ENG INE }(17)) \end{aligned}$	I	C	If the shadow time is less than DLAYO, the warm-up time is considered to be nil.
ECCITY	I	C	Orbital eccentricity.
EV	I	C	Laplace vector.
EZERO	I	C	See Page 535.
HM	I	C	Angular momentum.
HV	I	C	Angular momentum vector.
ITP	I	C	Location of the target planet in the NB array.
LøCX	I	C	Location of the current trajectory time in blank common.
M RBIT $^{\text {d }}$	I	C	Number of orbital revolutions to be completed before further coarse shadow tests are to be made.
NTP	I	C	Target planet code.
NTPHAS	I	C	Current thrust phase number.
PERIOD	0	C	Osculating orbital period.
PI	I	C	TT.
PMASS	$I$	C	Planetary mass.
PRADIS	I	C	Planetary radii.
THRUST	I	C	Thrust profile.
TNITE	0	C	TNITE(1), shadow entrance time referenced from periapsis crossing; TNITE (2), shadow exit time referenced from periapsis crossing.


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
TØFF	$\emptyset$	C	Time from launch at which the shadow is entered and thrusters become inoperative.
TøN	$\emptyset$	C	Time from launch at which the shadow is exited and the thrusters become inoperative (includes warmup time).
TQ	$\emptyset$	C	Time at which the quartic equation is to be formulated.
TRUEAN	$\emptyset$	C	True anomalies of shadow entrance and shadow exit.
TSHADE	$\emptyset$	C	Actual time spent in shadow.
TSHAD $\emptyset$	$\emptyset$	C	Time at which the coarse shadow tests will again be made.
WARMUP	$\emptyset$	C	Engine restart delay time.

## Local Variables:

Variable
Definition

BETA

CAO

CBETA

DBETA

ECCANS

ECTOOP

P
$P Q$

True anomaly of the projection of the anti-sun vector in the orbit plane.

Cosine of the angle between the S/C position vector and the anti-sun vector.

Cosine of BETA.
The transit angle through the shadow.
The eccentric anomaly of the projection of the anti-sun vector in the orbit plane.

Transformation matrix from ecliptic to orbital plane coordinates.

Unit vector in the direction of periapsis.
A six vector composed of the elements in vectors $P$ and $Q$.

Variable	Definition
Q	Unit vector in the direction of the velocity vector at periapsis.
RP	Periapsis radius.
RS	Radial magnitude at a true anomaly of BETA in the osculating orbit.
S	Anti-sun vector.
SMA	Semi-major axis.
SPRØJ	Projection of the anti-sun vector in the orbital plane.
TBETA	Time from periapsis crossing at which the $\mathrm{S} / \mathrm{C}$ will pass through the center of the shadow.
TFROMP	Time from periapsis crossing locating the $S / C$ in the orbit.
W	Unit momentum vector.
tines Called:	ANGMøD, MMATB, NEGMAT, ØCCULT, UDØTV, UNTTV, UXV
g Subroutines:	PATH
n Blocks:	CめNST, ENCØN, EPHEM, SHADØW, TRAJ1, TRAJ2, WøRK

Logic Flow:



### 3.5.17 Subroutine: S $\quad$ LAR (JDATE)

Purpose:

Method:
Input/Output:

	Input   Variables   Output	Argument/ Common

I
C

A

C

C

Array of bodies for which the position and velocity are to be computed.

Julian Date at which the position and velocity are to be computed

Array of position vectors
Array of velocity vectors

Local Variables: None
Subroutines Called: EPHEM
Calling Subroutine: $M \emptyset T I \emptyset N$
Common Blocks: TRAJ1, TRAJ2
Logic Flow:


### 3.6 Utility Routines

A number of subroutines and function routines are used in each mode that are (1) standard to many scientific computer programs, or (2) common to more than one MAPSEP mode. These utility routines are described in this Section. The first group (3.6.1) contain relatively minor and straightforward routines that perform matrix manipulation and vector operations. The second group (3.6.2 through 3.6.11) describe more complex utility routines, all of which apply standard mathematical techniques to compute specific parameters required by MAPSEP.

### 3.6.1 Minor Subroutines

The following utility routines are straightforward in usage and internal computation. Their description consists of name (and any entry points), input and output arguments, and function. No common blocks are contained in these routines and all are subroutines except UDØTV and VECMAG which are function routines.
Subroutine
（Entry Points）

ADD

ANGMゆD

СØРY（ICØPY）

СØРYT

$$
\mathrm{CT}, \mathrm{C}, \mathrm{M}, \mathrm{~N}
$$

$A, N, F \emptyset D$, W2，V

C， N
$\begin{array}{ll}\text { INVSQM } \\ & \text { A，N，XB，} \\ \text { RTEST，IX }\end{array}$
$\begin{array}{ll}\text { INVSQM } & \text { A，N，XB，}, \\ \text { RTEST，IX，}\end{array}$ IY

None

MATØUT

MMAB（AMAB）
Arguments
$A, B, C$ ， M，N

ANG

A，B，M，N

EIGENV

IDENT

A，NRøW， NCØL，LABEL
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{M}$,
$\mathrm{L}, \mathrm{N}$

## Function

ADD performs the matrix opera－ tion［C］ $\mathrm{MxN}=[A]_{\mathrm{MxN}}{ }^{+}[B]_{\mathrm{MxN}}$ matrices．

ANGMøD modulates the angle ANG so that its value is between 0 ．and $2 \pi$ ．

CØPY copies a real matrix A into matrix $B$ ，where $A$ and $B$ are MxN．

ICøPY assumes A and B are integer matrices．

Copies the transpose of the matrix CT into matrix $C$ ，where $C T$ is $N x M$ and $C$ is MxN．

EIGENV computes the eigenvalues and eigenvectors of a N X．N matrix $A$ ， using Jocobi＇s method of successive rotations．$F \emptyset D$ is the tolerance for the off diagonal elements of $A$ ． The eigenvalues and eigenvectors are returned in the vector arrays $W 2$ and $V$ ，respectively．

Creates an NxN identity matrix C．
INVSQM inverts an NxN matrix A by the Gauss－Jordan elimination method．The results are returned in A．INVSQM requires four NxI vectors，XB，RTEST，IX and IY， for temporary storage（to keep core requirements to a minimum）．

JØBTLE is used by GØDSEP to eject a page and to print out the job title，a row of asterisks and the trajectory time．

MATめUT prints a matrix A，NRめWxNCøL， with a 6 character Hollerith label， LABEL．

MMAB performs the matrix operation $[\mathrm{C}]_{\mathrm{MxN}}=[\mathrm{A}]_{\mathrm{MxL}^{*}}{ }^{*}[\mathrm{~B}]_{\mathrm{LxN}}$ ．

AMAB performs the matrix operation $[C]_{\mathrm{MxN}}=[C]_{\mathrm{MxN}}+[A]_{\mathrm{MxL}}{ }^{*}[B]_{\mathrm{LxN}}$

Subroutine (Entry Points)

MMABAT
(AMABAT)

MMABT (AMABT)

MMATB (AMATB)

MMATBA (AMATBA)

MMATBT (AMATBT)

Arguments
A, B, C, M, L, N

\mathrm{A}, \mathrm{B}, \mathrm{C}$, M, L, N

## Function

MMABAT performs the matrix operation $[\mathrm{C}]_{\mathrm{MxM}}=[\mathrm{A}]_{\mathrm{MxL}}$ * $[B]_{\mathrm{LxL}} *[A]_{\mathrm{MxL}}^{\mathrm{T}} \quad$ (Note: $N$ is not used). AMABAT performs the matrix operation $[\mathrm{C}]_{\mathrm{MxM}}=[\mathrm{C}]_{\mathrm{MxM}}+$ $[A]_{\mathrm{MxL}} *[\mathrm{~B}]_{\mathrm{LxL}} *[\mathrm{~A}]_{\mathrm{MxL}}^{\mathrm{T}}$.

MMABT performs the matrix operation $[\mathrm{C}]_{\mathrm{MxN}}=[\mathrm{A}]_{\mathrm{MxL}}$ * [B] ${ }_{\mathrm{N} \times \mathrm{L}}^{\mathrm{T}}$.
AMABT performs the matrix operation $[\mathrm{C}]_{\mathrm{MxN}}=[\mathrm{C}]_{\mathrm{MxN}}+$ $[A]_{M x L} *[B]_{N \times L}^{T}{ }^{\mathrm{T}}$

MMATB performs the matrix operation $[\mathrm{C}]_{\mathrm{MxN}}=[\mathrm{A}]_{\mathrm{LxM}}^{\mathrm{T}}$ * $\left[\mathrm{B}_{\mathrm{LxN}}{ }^{\text {. }}\right.$ AMATB performs the matrix operation $[\mathrm{C}]_{\mathrm{MxN}}=[\mathrm{C}]_{\mathrm{MxN}}+$ $[A]_{\mathrm{LxM}}^{\mathrm{T}} *[\mathrm{~B}]_{\mathrm{LxN}}{ }^{-}$

MMATBA performs the matrix operation $[\mathrm{C}]_{M x M}=[A]_{\mathrm{LxM}}^{\mathrm{T}}$ * $[B]_{\text {LxL }} *[A]_{\text {LxM }}$ Note: $N$ is not used. AMATBA performs the matrix operation $[C]_{\mathrm{MxM}}=[\mathrm{C}]_{\mathrm{MxM}}+$ $[\mathrm{A}]_{\mathrm{LxM}}^{\mathrm{T}} *[\mathrm{~B}]_{\mathrm{LxL}} *[\mathrm{~A}]_{\mathrm{LxM}}$.

MMATBT performs the matrix operation $[C]_{\mathrm{MxN}}=[\mathrm{A}]_{\mathrm{LxM}}^{\mathrm{T}}$. $[B]_{\mathrm{NXL}}^{\mathrm{T}}$.
AMATBT performs the matrix operation $[\mathrm{C}]_{\mathrm{MxN}}=[\mathrm{C}]_{\mathrm{MxN}}+$ $[A]_{\mathrm{L} \times \mathrm{M}}^{\mathrm{T}} *[\mathrm{~B}]_{\mathrm{NXL}}^{\mathrm{T}}$.

Subroutine (Entry Points)	Arguments	Function
NE GMAT	A, C, M, N	NEGMAT negates a matrix such that $[C]_{\mathrm{MxN}}=-[A]_{\mathrm{MXN}}$.
SCALE	$\begin{aligned} & \text { FACT } \emptyset R, A, \\ & M, N, B \end{aligned}$	SCALE multiplies a matrix A by a scalar FACTめR and returns the result in a matrix $B,[B]_{M \times N}=$ FACT $\varnothing$ R $*[A]_{\text {MxN }}$.
SDVAR (VARSD)	CøVIN, CøVØUT, N	SDVAR takes an NxN matrix C $\varnothing$ VIN of standard deviations and correlation coefficients, and operates on the lower triangle of CøVIN to create a full covaripnce matrix CøVØUT. VARSD takes an NxN covariance matrix CøVIN and operates on the upper triangle to create a matrix CøVØUT, where only the upper triangle contains the correlationgcoefficients, the diagnel the standard deviation and the lower trangle. remains unchanged.
SUB	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C}, \\ & \mathrm{M}, \mathrm{~N} \end{aligned}$	SUB subtracts matrix $B$ from matrix $A$ and returns the results as matrix C. The dimensions of $A, B$, and $C$ are MxN .
SUBT	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C}, \\ & \mathrm{M}, \mathrm{~N} \end{aligned}$	SUBT subtracts matrix $B^{T}$ from matrix $A$ and returns the results as matrix C. The dimensions of $A$ and $C$ are $M_{X N}, B$ is $N X M$.


Subroutine (Entry Points)	Arguments	Function
SYMTRZ   (SYMLD, SYMUP)	PSYM, N	SYMTRZ takes an NxN matrix PSYM and makes it symmetric by averaging each corresponding off-diagonal pair.   SYML ${ }^{\prime}$ takes an NxN matrix PSYM and makes the upper triangle equal to the lower triangle. SYMUP takes an NxN matrix and makes the lower triangle equal to the upper triangle.
UDøTV	U, V	UD $\emptyset$ TV performs the vector operation $\underline{U} \cdot \underline{V}$, for three dimensional vectors.
UNITV	U, uv	UNITV take a three dimensional vector $U$ and makes it a unit vector UV.
uxv	$\mathrm{u}, \mathrm{v}, \mathrm{W}$	UXV performs the vector operation $\underline{U} \times \underline{V}=\underline{W}$, for three dimensional vectors.
VECMAG	U	VECMAG computes the magnitude of a three dimensional vector.
ZERøM	A, MR $\varnothing \mathrm{W}$, MCøL.	null matrix $A$.

3.6.2 Subroutine: BPLANE (R, V, TO, NTP, IEQ)

Purpose: To compute the trajectory termination conditions relative to the target body (i.e., Earth)

Method:
Given the spacecraft planetocentric ecliptic position and velocity vectors, $\underline{r}$ and $\underline{v}$ respectively, at time $t$ relative to the Earth, compute all trajectory termination conditions. Using the orbital elements (a, e, i, , M), calculated from the conic formulas of Section 3.6.4, the closest approach, or periapsis, conditions may be formulated.

$$
\begin{aligned}
& r_{\mathrm{CA}}=\mathrm{a}(1-\mathrm{e}) \\
& \mathrm{V}_{\mathrm{CA}}=\sqrt{\mu\left(\frac{2}{r_{C A}}-\frac{1}{a}\right)}
\end{aligned}
$$

Delete Pages 513 and 514.

$$
\begin{aligned}
& \cos E=\left(1-\frac{r}{a}\right) \\
& e \cdot \sin E=\frac{\underline{\underline{r}} \cdot \underline{V}}{\sqrt{\mu a}} \\
& \tan E=\frac{\sin E}{\cos E} \\
& M
\end{aligned}
$$

The apoapsis conditions are then

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{FA}}=\mathrm{a}(1+e) \\
& \mathrm{V}_{\mathrm{FA}}=\left((1+e) \mu / \mathrm{R}_{\mathrm{FA}}\right)^{\frac{1}{2}} \\
& \mathrm{P}=2 \pi\left(\frac{a^{3}}{\mu}\right)^{\frac{3}{2}} \\
& \mathrm{~T}_{\mathrm{FA}}=\mathrm{T}_{\mathrm{CA}}+\mathrm{P} / 2
\end{aligned}
$$

Remarks: B-PLANE also contains the necessary logic to compute B-plane parameters if the orbit is hyperbolic.

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
R	I	A	Position vector relative to the target body.
V	I	A	Velocity vector relative tc the target body.
T0	I	A	Time associated with R and V.
BDT	0	C	$\underline{B} \cdot \underline{ }$


Variable	Input/   Output	Argument/ Common	Definition
IEQ	I	C	Flag indicating whether the input state is ecliptic   ( $\mathrm{IEQ}=0$ ) or equatorial $(I E Q=1)$
RFA	$\emptyset$	C	Apoapsis radius.
VFA	$\emptyset$	C	Apoapsis velocity.
TFA	$\emptyset$	C	Time of apoapsis crossing.
PEREØD	$\emptyset$	C	Orbital period.
REQ	$\emptyset$	C	Equatorial position to S/C.
VEQ	$\emptyset$	C	Equatorial velocity of S/C.
EQLめN	$\emptyset$	C	Equatorial geocentric longitude.
EQLAT	$\emptyset$	C	Equatorial geocentric latitude.


Variable	Input/ Output	Argument/   Common	Definition
BDR	0	C	B - R.
TS¢I	0	C	Time at the sphere of influence, $\mathrm{t}_{\mathrm{SOI}}$.
NTP	I	A	Number of the target body. This flag is used to locate the SOI size and mass of the target body in the SPHERE and PMASS arrays.
VHP	0	C	Hyperbolic excess velocity, $\mathrm{V}_{\mathrm{hp}}{ }^{\circ}$
PI	I	C	3.14159....
PMASS	I	C	Array containing the masses of the planets.
SPHERE	I	C	Array containing the sphere sizes of the planets.
VCA	0	C	Velocity at closest approach.
RCA	0	C	Radius of closest approach.
TCA	0	C	Time of closest approach.
A	0	C	Semi-major axis of the osculating conic.
E	0	C	Eccentricity of the osculating conic.
XINC	0	C	Inclination of the osculating conic.
ØMEGA	0	C	Longitude of the ascending node.
SØMEGA	0	C	Argument of periapsis.
XMEAN	0	C	Mean anomaly.


Variable	Input/   Output	Argument/   Common	Defini
TA	0	C	True anoma1y。
BIG	I	C	$10^{30}$.

## Local Variables:

GMU	Mass of the target body.
RS	SOI size of the target body.
XN	Inverse of the mean motion, $n$
SV	$\widehat{\mathrm{S}}$
BV	$\hat{B}$
B	$\|B\|$
TMAG	\|S]
RVX, RVY, RVZ	Components of $\widehat{R}$
THETA	Angle between $\underline{B}$ and the $\hat{\mathrm{T}}$ axis.
CøSHF1	$\cosh \mathrm{F}$
CøSH2	$\cosh \mathrm{F}_{\text {SOI }}$
SINF1	sinh F
SINF2	$\sinh \mathrm{F}_{\text {SOI }}$
F1	F
F2	$\mathrm{F}_{\text {SOI }}$
DT	Time from the sphere to $\underline{r}$.
CE	$\cos E$
SE	$\sin \mathrm{E}$
ECC	E
XM	Mean anomaly, M

Subroutines Called: C $\quad$ NIC, ANGM $\varnothing$ D
Calling Subroutines: TCøMP,
Common Blocks:
C $\varnothing$ NICS, C $\varnothing$ NST, EPHEM, TARGET

3.6.3 Subroutine: CARTES (A, E, XI, $\varnothing, W, X M, G M U, R, V)$

## Purpose:

Method: To compute the cartesian state vector corresponding to a set of orbital elements at a given time. Time is implicit in the Mean Anomaly $X M$. Conic Formulae for Elliptic and Hyperbolic Motion.

## Input/Output:

Variable I/O

A
I
E I

XI I
$\varnothing$ I

W I
GMU

R
0
v
0

PI I
XM
Local Variables:
Variable
ITT
NITT
FP

Argument/ Common

## Definition

A
A.

A
A

A
A
A
A

C

A

Semi-major Axis
Eccentricity
(e)

Inclination
(i)

Longitude of the Ascending
Node ( $\Omega$ )
Argument of Periapsis ( $\omega$ )
Gravitational Constant ( $\mu$ )
Position Vector (r)
Velocity Vector ( $\underline{v}$ )
3.14159 .

Mean Anomaly
(M)

## Definition

Iteration counter for Kepler's Equation
Maximum iterations for Kepler's Equation
Derivative of Kepler's Equation ( $f$ ' $\left(x_{n}\right)$ ).

## Variable

ECC
FN

SQE

TA
RM
SINHE
CDSHE
SINHEC
CøSHEC

P

TH
CøSTH
SINTH
$\cos \phi$
SIN
CøSW
CøSI
SINI
VA
VB
vc

## Definition

Eccentric Anomaly ( $\mathrm{x}_{\mathrm{n}}$ )
Kepler's Equation (f $\left(x_{n}\right)$ )

$$
\sqrt{\frac{1+E}{|1-E|}}
$$

True Anomaly
Magnitude of the Position Vector
XM/E
$\sqrt{1+\text { SINHE }^{2}}$
Hyperbolic Sine of ECC
Hyperbolic Cosine of ECC
Semi-latus Rectum
Argment of Latitude
Cosine of TH
Sine of TH
Cosine of $\phi$
Sine of $\phi$
Cosine of W
Cosine of XI
Sine of XI
$\sqrt{\text { GMU/P }}$
SINTH + E * SINW
CøSTH +E * CosW

## Remarks:

Given:

Find:

The orbital elements $a, e, i, \Omega, \omega$ and the gravitational constant $\mu$.

The position $\underline{r}$ and the velocity $\underline{v}$.
First we must find the eccentric anomaly $E$ for the elliptical case and $H$ for the hyperbolic in terms of $M$, the mean anomaly. For the elliptical case $M=E-e \cdot \sin E$
and for the hyperbolic case
$\mathrm{M}=\mathrm{e} \cdot \sinh \mathrm{H}-\mathrm{H}$
Since both equations are transcendental we must
solve them interatively. The method used to
solve these equations is Newton's Method of
the form

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}^{\prime}\right.}
$$

Therefore, for the elliptical case the expression is.

$$
E_{n+1^{-}}=E_{n}-\frac{E_{n}-e \cdot \sin E_{n}-M}{1-e \cdot \cos E_{n}}
$$

and for the hyperbolic case the expression is

$$
H_{n+1}=H_{n}-\frac{e \cdot \sinh H_{n}-H_{n}-M}{e \cdot \cosh H_{n}-1}
$$

Depending on the kind of orbit defined by the orbital elements, the appropriate equation is iterated upon until

$$
|f(x)| \leq 10^{-10}
$$

or

$$
\left|\frac{f(x)}{f^{\prime}(x)}\right| \leq 10^{-10}
$$

for a finite number of iterations.
Now that we have $E$ or $H$ we can find $\underline{r}$ and $\underline{v}$
from the following equations:

## Elliptical

$$
\begin{aligned}
\tan \left(\frac{f}{2}\right) & =\left(\frac{1+e}{1-e}\right) \cdot \tan \left(\frac{E}{2}\right) \\
r & =a(1-e \cdot \cos E) \\
p & =a\left(1-e^{2}\right)
\end{aligned}
$$

$$
\underline{\mathbf{r}}=\mathbf{r}\left[\begin{array}{l}
\cos \Omega \cdot \cos \theta-\sin \Omega \cdot \sin \theta \cdot \cos i \\
\sin \Omega \cdot \cos \theta+\cos \Omega \cdot \sin \theta \cdot \cos i \\
\sin \theta \cdot \sin i
\end{array}\right]
$$

$$
\underline{v}=-\sqrt{\rho}\left[\begin{array}{l}
\cos \Omega(\sin \theta+e \cdot \sin \omega)+\sin \Omega \cdot \cos i(\cos \theta+e \cdot \cos \omega) \\
\sin \Omega(\sin \theta+e \cdot \sin \omega)-\cos \Omega \cdot \cos i(\cos \theta+e \cdot \cos \omega) \\
-(\cos \theta+e \cdot \cos \omega) \cdot \sin i
\end{array}\right]
$$

Subroutines Called: None
Calling Program: EPHEM
Common Block: CøNST

## Logic Flow:



3.6.4 Subroutine: C $\not$ NIC (R, V, GMU, A, E, XINC, MEGA, S§MEGA, XMEAN, THETA)

Purpose:
To compute the orbit elements given a state vector and the corresponding time.

Method: Conic Formulae for Elliptic and Hyperbolic motion.

Remarks:
Given:

Find:
The position vector $\underline{x}$, the velocity vector $\underline{V}$ and the gravitational constant $\mu$.

The orbital elements $a, e, i, \Omega \omega$ and $M$ and also $\theta$
$\underline{\mathbf{h}}=\underline{\mathrm{r}} \times \underline{\mathrm{v}}$
$\underline{w}=\underline{h} / \mathrm{h}$
$r_{v}=\underline{E} \cdot \underline{v}$
$\underline{e}=\frac{1}{\mu} \quad(\underline{v} \times \underline{h})-\underline{r} / r$
$p=h / \mu$
$\alpha=\left(\frac{2}{r}-\frac{v^{2}}{\mu}\right)$
$\underline{o}=\underline{e} / \mathrm{e}$
$\underline{q}=\underline{w} \underline{p}$
$\sin \theta=\frac{h \cdot r}{r}$
$\cos \theta=\frac{h^{2}-\mu}{r}$

Now

$$
\begin{aligned}
& a=\frac{1}{\alpha} \\
& e=|\underline{e}| \\
& i=\cos ^{-1}\left(w_{z}\right) \\
& \Omega=\tan ^{-1}\left(w_{x} /-\omega_{y}\right) \\
& \omega=\tan ^{-1}\left(\rho_{z} / q_{z}\right) \\
& \theta=\tan ^{-1}(\sin \theta / \cos \theta) \\
& \cos E=1-r \cdot \alpha \\
& \sin E=\frac{r}{\mu} \cdot \alpha
\end{aligned}
$$

for the elliptical case
for the hyperbolic case

$$
\begin{aligned}
& E=\tan ^{-1}(\sin E / \cos E) \\
& M=E-e \cdot \sin E
\end{aligned}
$$

$$
\sinh H-\sin E / e
$$

$$
\cosh H=\cos E / e
$$

$$
\begin{aligned}
& \mathrm{H}=\ln (\sinh H-\cosh H) \\
& M=e \cdot \sinh H-H
\end{aligned}
$$

## Input/Output:




## Local Variables:

## Variable

H

## HV

WV
BM
VM
RDV
EV
AA
$\mathbf{P}$
PV
QV
THETA
STH
CTH
ECC
CE

Definition
Magnitude of the Angular Momentum Vector
(h)

Angular Momentum Vector (h)
Unit Vector in the direction of (w)
Magnitude of $\underline{\underline{r}}$
Magnitude of v
$\underline{r} \cdot \underline{v}$
e
$\frac{1}{a}$
Semi-Latus Rectum
e/e
$\underline{h} \times(\underline{e} / \mathrm{e})$
Argument of latitude
Sine of THETA
Cosine of theta
Eccentric Anomaly
Sine of ECC

Variable
SE
FCC
CHF
SHF

## Definition

## Cosine of ECC

Hyperbolic Anomaly
Hyperbolic Sine of FCC
Hyperbolic Cosine of FCC

Subroutines Ca1led: UXV, VECMAG, UNITV, UD $\$$ TV
Calling Subroutines: BPLANE, PR $\phi$ P, EPHERR, $\varnothing \mathrm{D}$, PGM, DATAT, FEGS
Common Blocks: CøNICS, C $\varnothing$ NST

## Logic Flow:


3.6.5 Subroutine: ECøMP (XX, VV, TSTOP, NTARG, NTP, LISTAR, ETA)

Purpose:

Method:

Remarks:

Input/ Argument/

Variable	Output	Common   CX	I
VV	I	A	State vector position   components.


Variable	Input / Output	Argument/ Common	Definition
TSTめP	I	A	Epoch of state vector evaluation; generally the target time.
LISTAR	I	A	List of target variable codes to be passed to TCøMP.
NTARG	I	A	Number of target variables.
NTP	I	A	Target planet number.
ETA	0	A	$\eta$ - matrix of partial derivatives.

## Local Variables:

Variable
DEL
XT1
XT2

Definition
State vector perturbations.
Backward step target variables.
Forward step target variables.

Subroutines Called: TCøMP
Calling Subroutines: LGUID, NGUID, GUIDE, NLGUID, REFTRJ, STMTAR
Common Blocks: W$\quad$ RK
Logic Flow:




Local Variables:

Variable

* TZER $\emptyset$
GMU

Definition
Time of rectification ( $t_{o}$ ).
Mass of the reference body.


	$1-\frac{a}{r_{0}}\left[\cosh \left(H-H_{o}\right)-1\right]$ for the hyperbolic case.
ARG2	$\frac{1}{n}\left[\sin \left(E-E_{0}\right)-e\left(\sin E-\sin E_{0}\right)\right]$   for the elliptical case. $\frac{1}{n}\left[e\left(\sinh H-\sinh H_{o}\right)-\sinh \left(H-H_{0}\right)\right]$ for the hyperbolic case.
ARG3	$-\frac{\sqrt{\mu a}}{r r_{o}} \sin \left(E-E_{0}\right) \text { for the elliptical }$ case.
	$-\frac{\sqrt{\mu a}}{\mathrm{rr}_{\mathrm{o}}} \sinh \left(\mathrm{H}-\mathrm{H}_{\mathrm{o}}\right)$ for the hyperbolic case.
ARG4	$1-\frac{a}{r}\left[1-\cos \left(E-E_{o}\right)\right]$ for the elliptical case.
	$1^{-} \frac{a}{r}\left[\cosh \left(H-H_{o}\right)-1\right]$ for the hyperbolic case.

Subroutines Ca11ed: VECMAG, UXV, UDøTV
Calling Subroutines: MøTI $\downarrow \mathrm{N}$
Common Blocks:
CøNST, ENCøN, EPHEM, TIME, TRAJ1, TRAJ2

Logic Flow:
ENCØN


3.6.7 Subroutine: GENINV (A, M, N, B)
Purpose:
To compute an inverse $B$ for any $m \times n$ matrix $A$. There are three cases for which GENINV will compute an inverse.
Case 1: $m<n$

$$
B=A^{T}\left[A A^{T}\right]^{-1}
$$

Case 2: $m=n$

$$
B=A^{-1}
$$

Case 3: $m>n$

$$
B=\left[A^{T} A\right]^{-1} A^{T}
$$

The matrices A and B can share the same location only if $m=n$.

Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
A	I	A	The matrix to be inverted.
M	I	A	Number of rows in A (Columns   in B).
N			Number of columns in A   (Rows in B).
B	I	A	Inverse of A.

## Local Variables:

Variable	Definition
MIN	Number of needed locations for tempo-   rary calculations.
L $\quad$Number of needed locations for the   inverse.	

Subroutines Called: $\quad$ C $\emptyset \mathrm{PY}, \mathrm{MMABT}, \mathrm{MMATB}$, INVSQM
Calling Subroutines: GUIDE, LGUID, NLGUID
Common Blocks:
$\omega \emptyset \mathrm{RK}$

## Logic Flow:




MPAK-1
3.6.8 Subroutine: MPAK (A, M, N, ASUB, MSUB, NSUB)

Purpose:
MPAK is used to (1) copy subblocks of matrix A into a matrix ASUB, (2) copy the diagonal elements of matrix A into ASUB which can be a vector (or row matrix) or (3) "pack" the matrix A. $M$ and $N$ are the dimensions of $A$, and MSUB and NSUB are the dimensions of ASUB.

Method: An mxn matrix is stored internally in the computer by columns. Take the $3 \times 3$ matrix
$E=\left[\begin{array}{ccc}e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33}\end{array}\right]$

In the computer, $E$ is stored as

Column $1 \quad e_{11}$
$\mathbf{e}_{21}$
$\mathbf{e}_{31}$
Column $2 \quad{ }^{12}$
${ }^{\mathbf{e}} 22$
${ }^{e} 23$
Column $3 \quad{ }^{e} 13$
${ }^{e} 23$
${ }^{e_{33}}$

MPAK uses this information to perform one of the three following cases, (1) to copy sub blocks of $E$, (2) to copy the diagonal elements of $E$, and (3) to pack $E$.

Case 1: Given a $3 \times 3$ matrix

$$
E=\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]
$$

copy the sub block

$$
F=\left[\begin{array}{ll}
e_{21} & e_{22} \\
e_{31} & e_{32}
\end{array}\right]
$$

into the $2 \times 2$ matrix $F$. In order to accomplish this, MPAK must know the first element of the sub block to be copied. For this problem, it is $e_{21}$. The FORTRAN call to MPAK must transmit this information. Such a call would be

CALL MPAK ( $\mathrm{E}(2,1), 3,3, \mathrm{~F}, 2,2)$

Case 2: Given a $2 \times 2$ matrix

$$
A=\left[\begin{array}{ll}
{ }^{a_{11}} & { }^{a}{ }_{12} \\
{ }^{a_{21}} & { }^{a} 22
\end{array}\right]
$$

copy the diagonal terms $a_{11}$ and $a_{22}$. into the $2 \times 1$ row vector $B$. The call to MPAK is

The dimension of $A$ is given as $3 \times 2$. Internally in the computer, $A$ is thought of as being stored

Column $1 \quad a_{11}$
$a_{21}$
${ }^{a}{ }_{12}$

Column $2 \quad a_{22}$

This particular call makes MPAK copy the elements and and $a_{22}$ into $B$.

Case 3: Given the $3 \times 3$ matrix

$$
A=\left[\begin{array}{ccc}
a & c & 0 \\
b & d & 0 \\
0 & 0 & 0
\end{array}\right]
$$

pack it so that

$$
A=\left[\begin{array}{ccc}
a & d & 0 \\
b & 0 & 0 \\
c & 0 & 0
\end{array}\right]
$$

Pack as used here, means to order the nonzero elements of A into consecutive locations internally. If

$$
A=-\left[\begin{array}{cccc}
a & c & e & 0 \\
b & d & f & 0 \\
0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

than packing A would result in

$$
A=\left[\begin{array}{llll}
a & e & 0 & 0 \\
b & f & 0 & 0 \\
c & 0 & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right]
$$

The appropriate call to MPAK would be

CALL MPAK (A, 3, 3, A, 2, 2)
for the first example ( $3 \times 3 \mathrm{~A}$ ), and for the second example:

CALL MPAK (A, 4, 4, A, 3, 3)

## Input/Output:


3.6.9 Subroutine: MUNPAK (ASUB, MSUB, NSUB, A, M, N)

Purpose:

Method:

MUNPAK is used to copy a matrix ASUB into a large matrix $A$, to copy a row matrix ASUB onto the diagonal of $A$ or to "unpack" the matrix ASUB.

MUNPAK, like MPAK takes advantage of the way a matrix is stored internally in a computer. MUNPAK performs the reverse function of MPAK: (1) copy a matrix into a larger matrix,
copy a row matrix onto the diagonal of a matrix or (3) unpack the matrix.

Case 1: Copy a $2 \times 2$ matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

into a $3 \times 3$ matrix $B$ so that


This is accomplished by specifying where the first element of $A$ is to be located in $B$ : The. FORTRAN call to MUNPAK is

CALL MUNPAK (A, 2, 2, B (2, 2), 3, 3)
Case 2: Copy the $1 \times 2$ row matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12}
\end{array}\right]
$$

into the $2 \times 2$ matrix $B$. In the call to MUNPAK, the dimensions of $B$ are given as a $3 \times 2$. The net result is

$$
B=\left[\begin{array}{ll}
{ }^{a_{11}} & 0 \\
0 & a_{12}
\end{array}\right]
$$

The call to MUNPAK is
CALL MUNPAK (A, 1, 2, B, 3, 2).
Case 3: Given the $3 \times 3$ matrix

$$
A=\left[\begin{array}{ccc}
a & d & 0 \\
b & 0 & 0 \\
c & 0 & 0
\end{array}\right]
$$

"unpack" it so that

$$
A=\left[\begin{array}{ccc}
a & c & 0 \\
b & d & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The call to MUNPAK to accomplish this operation
is
CALL MUNPAK (A, 2, 2, A, 3, 3).
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
ASUB	I	A	The matrix to be operated on.
MSUB	I	A	The number of rows of ASUB.
NSUB	I	A	The number of columns of ASUB.
A	0	A	The resultant matrix.
M	I	A	The number of rows of $A$.
N	I	A	The number of columns of A.

Local Variables: None
Subroutines Called: None
Calling Subroutines: SIZE, SDAT, (GøDSEP, et al.)

Common Blocks:
None

```
3.6.10 Function: RNUM (SIGMA, IRAN)
Purpose:
To sample a uniform distribution and generate
random samples on a Gaussian distribution.
Method:
Two random samples from a uniform distribution
are made to form a random sample on a zero-mean,
Gaussian distribution which has a unit standard
deviation. The random variable on the Gaussian
distribution is scaled according to the input
standard deviation, SIGMA. For IRAN equal to
zero, a one-sigma, forced Monte Carlo sample is
computed and returned.
```


## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
SIGMA	I	A	Standard deviation of the   random variable being   sampled.
IRAN	I	A	Flag to indicate whether   or not a forced Monte Carlo   sample is to be returned.
RNUM	0	A	Resultant random variable.

## Local Variables:

Variable

D1

D2

First random sample from a uniform distribution.

Second random sample from a uniform distribution.

Subroutines Called:
RANF

Calling Subroutines: CSAMP, EXGUID, EPHSMP, ERRSMP, DN $\emptyset$ ISE

Common Blocks:
Logic Flow:

C $\emptyset$ NST

3.6.11 Subroutine: TC $\quad$ MP ( $\mathrm{XX}, \mathrm{VV}$, TSTøP, NTP, NTARG, LESTAR, XTARG, IPASS)

Method: The BPLANE utility routine is called to compute osculating values of target variables corresponding to a given state vector. Individual target values are loaded into a target vector according to the target codes in the LISTAR array.

## Input/Output:

Variable	$\begin{array}{c}\text { Input/ } \\ \text { output }\end{array}$	$\begin{array}{c}\text { Argument } \\ \text { Common }\end{array}$	Definition		
XX	I	A	State vector position components	$]$	VV
:---					
TSTøP					


Variable	Input/   Output	Argument Common	Definition
TCA	I	C	Conically interpolated time of arrival at the radius of closest approach.
A	I	C	Semi-major axis evaluated on an osculating conic.
E	I	C	Eccentricity evaluated on an osculating conic.
XINC	I	C	Inclination evaluated on an osculating conic.
OME GA	I	C	Argument of the ascending node evaluated on an osculating conic.
SめMEGA	I	C	Argument of periapsis evaluated on an osculating conic.
XMEAN	I	C	Mean anomaly evaluated on an osculating conic.
TA	I	C	True anomaly evaluated on an osculating conic
Variables:	None		
tine Calle	BPLANE, VECMAG		
g Subrouti	ECØMP, NLGUID, REFTRJ, SIMSEP, STMTAR, TREK		
Blocks:	CøNST, TARGET		
Flow:	See	sting	

Page 553 has been deleted.

3.6.1\%	IMAN, XøUT, M
Purpose:	To complete the $\hat{\mathcal{G}}_{u}$ and $\Phi$ matrices which are
	used for trajectory targeting over a specified trajectory arc.
Method:	THCøMP computes and stores certain partitions
	of the augmented state transition matrix into the $\hat{\Theta}_{u}$ and $\bar{\Phi}$ matrices as outlined in Appendix 7. of the Analytic Manual.
Remarks:	This routine is used by TøPSEP and SIMSEP for
	evaluating $\hat{\boldsymbol{\theta}}_{u}$ and $\Phi$. TøPSEP also has an
	alternate set of logic which uses a numerical
	differencing algorithin for the same purpose. SIMSEP uses THCळMP exclusively.

## Input/Output:

Variable	Input/   Output	Argument/   Common	Definition
XIN	I	A	Initial stafe vector.
MIN	I	A	Initial S/C mass.
NPRIN	I	A	Primary body code to which   XIN is referenced.
NATC	I	A	Nunber of active thrust   controls.
IJU	I	A	Array of active thrust   control codes.
TG	I	A	Initial trajectory time.


Variable	Input/ Output	Argument/ Common	Definition
THALT	I	A	Final trajectory time.
IMAN	I	A	Guidance maneuver number.
XØUT	0	A	Output state vector.
MøUT	0	A	Output S/C mass.
THETA	0	A	Output control to state transition matrix, $\boldsymbol{O}_{\mathrm{u}}$.
PHI	0	A	Output state to state transition matrix, あ.
THRUST	I	C	Array of thrust controls.
BLANK	I	C	Blank common storage of trajectory variables, i.e, the augmented state transition matrix.
TEVNT	I	C	Trajectory event time.
MEVENT	I	C	Trajectory event test flag.
LめCTC	I	C	Location in blank common of the first element in the augmented state transition matrix.
IAUGDC	I	C	Flag used to augment the transition matrix for integration.
TREF	I	C	Initial trajectory time transmitted to TRAJ in seconds.
TDUR	I	C	Final trajectory time transmitted to TRAJ in seconds.
INTEG	I	C	Flag to indicate to TRAJ that the augmented state transition matrix in to be integrated.
ICALL	I	C	TRAJ initialization flag.

## Local Variables:

Variable Definition

NPHI | Dimension of the augmented state transition |
| :--- |
| matrix. |

$\left.\begin{array}{l}\text { JJ0 } \\ \text { JJ1 } \\ \text { JJ2 }\end{array}\right\}$ Logic control flag.

JJ 2
PHI21
PHI 32
THET21 THET 32

Subroutines Called:
CØPY, ICØPY, IDENT, IZERØM, MMAB, MPAK, TRAJ, ZERØM.

Calling Subroutines: STMTAR, REFTRJ, NLGUID.
Common Blocks: CøNST, TIME, TRAJ1, TRAJ2, WøRK, (BLANK).


3.7 Subroutine: REFSEP
Purpose: $\quad$ To monitor the subroutine flow in the REFSEP modeof MAPSEP.Remarks: A complete view of the REFSEP hierarchy is revealedin Section 2.3, page $12-\mathrm{B}$ of this manual.
Subroutines Called: DATREF, TRAK
Calling Subroutines: MAPSEP
Logic Flow: See macrologic listing

### 3.7.1 Subroutine: DATREF

Purpose: To initialize REFSEP parameters and the trajectory propagator.
Remarks: Proper initialization of the scheduler requires two consecutive calls to subroutine SCHED. Also, TRAJ is called only to inialize parameters not to propagate the trafectory.

## Input/Output:

Variable	Input/ Output	Argument / Common	Definition
GAINCR	0	C	GODSEP variables which are de-
IGAIN	0	C	faulted in DATREF to avoid incorrect computations in subroutine SCHED. None of these
NCNTE	0	C	variables is relevant to execution of REFSEP.
NCNTG	0	C	
NCNTP	0	c	
NCNTT	0	c	
Neigen	0	C	
NGUID	0	c	
NPRED	0	C	
NTHRST	0	C	
ICALL	0	c	Flag used to initialize TRAJ.
INTEG	0	c	Flag indicating the equations to be integrated in TRAJ.
KARD:	I	C	Number of print schedule cards.


Variable	Input/ Output	Argument/   Common	Definition
TABET,	0	C	Hollerith names of all possible target parameters.
MEVENT	0	C	Flag used to set event detection logic in TRAJ.
MNEXT	0	C	Next scheduled print code.
NSCHED	0	C	Number of print schedule cards.
TCURR	0	C	Current trajectory time.
TEND	I	C	Trajectory end time.
TFINAL	0	C	Trajectory end time.
TM	I	C	Time conversion constant (days to seconds).
TMNEXT	0	C	Time of next print code execution.
TREF	0	C	Initial trajectory time.
TSTART	I	c	Initial trajectory time.

## Local Variables: None

Subroutines Called: SGHED, TRAJ

Calling Subroutine: REFSEP
Common Blocks: CØNST, EDIT, L母GZC, MEASI, PRINTH, SCHEDI, SCHEDR, TIME, TRAJ 1, TRAJ 2, TRKDAT, WØRK

Logic Flow: See listing.

### 3.7.2A Subroutine: DETAIL (IT)

Purpose: To print trajectory information at the times designated on the formatted schedule cards.

Remarks: The blocks of trajectory information to be printed are cued by the print code which is stored in the variable IT. A discussion of the print code may be found in the User's Manual, Section 2.5, page 52-B.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
APERT	I	c	Gravitationa1 acceleration vectors due to the perturbing bodies.
ATøT	I	C	Total differential acceleration vector.
B	I	C	Magnitude of the B-vector.
BDR	I	C	$\underline{B} \cdot \underline{R}$
BDT	I	C	B - $\underline{\text { T }}$
$B \emptyset \mathrm{D}$	I	C	Hollerith label of the planets included in the integration.
BV	I	c	Unitary B-vector.
CA	I	C	Closest approach radius computed in BPLANE.
ECC	I	C	Eccentricity.
EPØCH	I	C	Launch epoch
F1	I	C	Hyperbolic anomaly
IPRI	I	C	Flag used to locate information about the primary body.
ISTEP	I	C	Number of integration steps taken.
IT	I	A	Print code.
ITP	I	C	Flag used to locate information about the target body.


Variable	Input/ Output	Argument/   Common	Lefinition
L. 0 CH	I	C	Blank common location of the step size.
LØCM	I	C	Blank common location of the S/C mass.
LOCYT	I	C	Blank common location of the temporary integrated solution.
MPLAN	I	C	Number of bodies included in the integration.
NPRI	I	C	Planet code of the primary body.
NRECT	I	C	Number of rectifications executed during the trajectory integration.
NTP	I	C	Target planet code.
NTPHAS	I	C	Number of the current control phase.
MEGA	I	C	Longitude of the ascending node.
PV	I	C	Unitary peripoint vector.
QV	I	C	Unitary peri-velocity vector.
RAD	I	C	Angular conversion constant (radians to degrees).
SMA	I	C	Semi-major axis.
S¢MEGA	I	C	Argument of periapsis.
SV	I	C	Unitary hyperbolic excess velocity vector.
TA	I	C	True anomaly.
TAIM	I	C	Angle between $B$-vector and T-axis,
TCA	$I$	C	Time of closest approach computed in BPLANE.
TCURR	I	C	Current event time,
TEVNT	I	C	Current trajeçtory time.


Variable	Input/ Output	Argument/ Common	Definition
THRACC	$I$	C	Acceleration vector due to thrust.
TM	I	C	Time conversion constant (days to seconds).
TSI	I	C	Time of SOI crossing as computed in BPLANE.
VENC	I	C	Reference conic position vector.
UP	I	C	Position vectors of all bodies included in the integration.
UREL	I	C	Position vectors of S/C relative to all bodies considered in the integration.
UTRUE	I	C	S/C position vector relative to primary body.
VCA	I	C	Velocity at closest approach as computed in BPLANE.
VENC	I	C	Reference conic velocity vector.
VHP	I	C	Magnitudue of hyperbolic excess velocity.
VP	I	C	Velocity vectors of all bodies considered in the integration.
VREL	I	C	Velocity vectors of $S / C$ relative to all bodies considered in the integration.
VTRUE	I	C	S/C velocity vector relative to the primary body.
WV	I	C	Unitary momentum vector.
XINC	I	C	Ecliptic inclination.
MMEAN	I	C	Mean anomaly.

## Local Variables:



Logic Flow:




3.7.2-B Subroutine:	PUNCHR (MTPHAS)
Purpose:	To punch the THRUST array (i.e., an array
Remarks:	in the STRAJ namelist) on cards.
	Each column of the THRUST array represents a
	thrust phase in the mission control profile.
	Each time a phase change is encountered
	during the trajectory integration of a
	REFSEP run a column of the thrust profile
	is punched on four cards by subroutine
	PUNCHR. If the shadow logic is being
	executed in the trajectory propagator, the
	shadow-in and shadow-out phases are also
	punched on cards. Thus, PUNCHR provides a
	convenient means of incorporating shadow
	phase changes in the thrust profile so that
	the shadow logic need not be executed in future

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
MTPHAS	$\emptyset$	A	Number of the thrust phase which will be punched.
PøLICY	I	C	Thrust policy which has been suspended during occultation periods
TPHASE	I	c	The current phase end time (also the time during trajectory integration at which the columns of THRUST will be punched)

## Local Variables:

$\qquad$
ANGLE1

ANGLE2
The initial in-orbit-plane angle (or pitch angle) which will be effected at the beginning of a shadow-out change.

The initial out-of-plane angle (or yaw angle) which will be effected at the beginning of a shadow-out phase change.

IS HAD $\emptyset$
A flag which is set to one to indicate that the next thrusting phase will be a shadow-out phase

Subroutines Called: ANGMøD, COPY, ZERøM
Calling Subroutines: PATH
Common Blocks: CONST, SHADOW, TRAJ1, TRAJ2, W $\emptyset R K$
Logic Flow: See Listing.

### 3.7.2-C Subroutine: TøRQUE

## Purpose:

Method:
To compute and print out supplementary thrust related data such as solar array rotation angle, roll angle, thrust attitude rates and required torques (for PITCH/YAW thrust policies only) Analytical expressions dependent upon thrust policy are used to compute attitude rates and torques. Roll angle and solar array rotation ( $\alpha$ ) are given by

$$
\begin{aligned}
\tan (\text { roll })= & -\frac{\sin (\text { yaw }) \sin (\text { pitch })}{\cos (\text { pitch })} \\
\sin \alpha= & -\cos (\text { yaw }) \sin (\text { pitch }) \\
\cos \alpha= & -\sin (\text { rol1) } \sin (\text { yaw }) \sin \\
& (\text { pitch }+\cos (\text { pitch }) * \\
& \cos (\text { roll) })
\end{aligned}
$$

## Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
DELE	I	c	Change in eccentric anomaly.
EZERø	I	C	Reference eccentric anomaly,
PHAS	I	C	Thrust control phase angles
PITCH	I	c	Pitch angle.
PITCHI	I	C	Pitch moment of inertia
RøLLI	I	C	Yaw moment of inertia.
$\begin{aligned} & \text { THRUST } \\ & \text { (1, NTPHAS) } \end{aligned}$	I	c	Thrust policy.
YAW	I	C	Yaw angle.
YAWI	I	C	Yaw moment of inertia.

## Local Variables:

Variable	Definition
ALPHE	Solar array rotation angle.
EA	Eccentric anomaly of S/C.
Itype	Thrust policy type.
PDøT	Pitch time derivative.
PDøT2	Second time derivative of pitch.
PT $\emptyset$ RQ	Pitch torque.
RDøT	Roll time derivative.
RøLL	Ro11 angle.
RTøRQ	Roll torque.
YDøT	Yaw time derivative.
YDøT2	Second time derivative of yaw.
YTøRQ	Yaw torque.

Subroutines Called: None.
Calling Subroutines: DETAIL
Common Blocks: CøNST, ENCøN, TRAJ1, TRAJ2, TRKDAT, WøRK
Logic Flow: None.

### 3.7.3 Subroutine: TRAK

Purpose: $\quad$ To control the point to point (event time to event time) integration of the trajectory propagator.

Remarks:
The event times which are input into the trajectory propagator are obtained from the scheduling subroutine SCHED. After TRAJ performs the integration to the desired event time, subroutine DETAIL is called to print detailed trajectory information.

Input/Output:

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
BDR	0	C	$\underline{B} \cdot \underline{R}$
BDT	0	C	B. $\mathrm{T}^{\text {I }}$
CA	0	C	Closest approach radius as computed in BPLANE
ECC	0	C	Eccentricity
ISTQP	I	C	Desired trajectory termination flag
ITP	I	C	Target body index (i.e. NTP=NB (ITP))
KUTøFF	0	C	Actual trajectory termination flag
LABEL	I	C	Hollerith labels for terminal conditions
LDCM	I	C	Blank common location of S/C mass
NPRI	$I / \emptyset$	C	Primary body code
NTP	I	c	Target body coce
MMEGA	0	C	Longitude of ascending node
RAD	I	c	Angular conversion constant (radians to degrees)
RCA	0	c	Radius of closest approach computed in TRAJ
SMA	0	c	Semi-major axis


Variable	Input/ Output	Argument/   Common	Definition
SQMEGA	0	C	Argument of periapsis
TA	0	C	True Anomaly
TCA	0	C	Time of closest approach computed in BPLANE
TCURR	0	C	Current event time
TEVNT	0	C	Next event time
TM	I	C	Time conversion constant (days to seconds)
TRCA	0	C	Time of closest approach computed in TRAJ
TSI	0	C	Time of $\mathrm{S} \emptyset \mathrm{I}$ crossing computed in BPLANE
TSOI	0	C	Time of $S \emptyset I$ crossing computed in TRAJ
TSTART	I	C	Trajectory start time
TST¢P	0	C	Trajectory stop time
UREL	0	C	Position vectors of $S / C$ relative to all bodies considered in the integration
URELM	0	C	Magnitudes of UREL vectors
VCA	0	C	Velocity at closest approach
VHP	0	C	Hyperbolic excess velocity
VREL	0	C	Velocity vector of $S / C$ relative to all bodies considered in the integration
VRELM	0	C	Magnitudes of VREL vectors
XICA	0	C	Inclination of orbit relative to target body
XINC	0	C	Inclination
XMEAN	0	C	Mean anomaly

Local Variables:
Variable Definition



Time between events

ISTØPN

JEVNT
KøFF

MISS

Hollerith labels of requested stopping conditions

Print code
Hollerith labels of actual stopping conditions

Flag indicating whether the target body is the primary body at the trajectory end time

Subroutines Called: BPLANE, DETAIL, SCHED, TRAJ
Calling Subroutine: REFSEP
Common Blocks:
(Blank), CのNST, EDIT, EPHEM, PRINTH, SCHEDI, SCHEDR, TARGET, TIME, TRAJ 1, TRAJ 2, WøRK



### 3.7.4 Subroutine: TSCHED

Purpose: $\quad$ To compute and print $\mathrm{S} / \mathrm{C}$ tracking information
Method: $\quad$ S/C rise and set times are computed for a selection of tracking stations. The primary assumption, which has been made to simplify the computations, is that the $S / C$ moves very slowly across the celestial sphere. Thus, the rise and set times are poor approximations for near-Earth orbital missions.

## Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
ECEQ	I	C	Equatorial to ecliptic trans: formation matrix
ELVMIN	I	C	Minimum elevation angle
GHZERø	I	c	Greenwich hour angle at launch
IøBS	I	C	Index of astronomical observatory in STALDC
ITP	I	C	Index of target planet in NB
MPLAN	I	c	Number of bodies considered in the integration
NB	I	C	Vector identifying bodies considered in the integration
NSTA	I	C	Number of S/C tracking stations
NTP	I	C	Target planet code
MMEGAG	I	C	Earth rotation rate
PI	I	C	$\pi$
RAD	I	C	Angular conversion constant (radians to degrees)
Staldc	I	C	Station location coordinates
TCURR	I	C	Current event time


Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
TM	I	C	Time conversion constant (days to seconds)
UP	I	C	Heliocentric positions of bodies considered in the integration
UREL	I	C	Position vectors of S/C relative to bodies considered in the integration
URELM	I	C	Magnitudes of UREL vectors
VP	I	C	Heliocentric velocities of bodies considered in the integration
VREL	I	c	Velocity vectors of S/C relative to bodies considered in the integration
VRELM	I	c	Magnitudes of VREL vectors
Local Variables:			
Variable	Definition		
AZMUTH	Azimuth of $S / C$ reladive to the tracking station		
DEC	Declination of $\mathrm{S} / \mathrm{C}$		
ELEV	Elevation of S/C		
GECSTA	Geocentric ecliptic station coordinates		
GEQSTA	Geocentric equatorial station coordinates		
GHA	Greenwich hour angle		
GHZERø	Greenwich hour angle at launch		
LAMDA	Right ascension minus Greenwich hour angle		
RANGE	S/C range from Earth		


Variable	Definition
RHO	S/C range vector
RISE	S/C rise time at each station
RRATE	S/C range rate from Earth
RTA	Right ascension
RVIANG	Range-velocity included angle
SESANG	Sun-Earth-S/C angle
SET	S/C set time at each station
SINELV	$\sin$ (ELV)
SLAT	Station latitude
STATE	S/C equatorial state
TM	Time conversion constant (days to seconds)
TWめPI	$2 \times \pi$
UPM	Magnitude of planet position vectors
outines Called:	CYEQEC, MMATB, SUB, UDØTV, UNITV, UXV, VEGMAG
ing Subroutine:	DETAIL
on Blocks:	CONST, EDIT, SCHEDR, TIME, TRAJ1, TRAJ 2, TRKDAT, WØRK
c Flow:	See listing

### 4.0 REFERENCES

1. "MAPSEP, Volume I - Analytical Manual and Volume II User's Manual," P. Hong, et al, Final Report for NAS8-29666, December, 1973.
2. "Low Thrust Orbit Determination Program - Final Report, NAS1-11686," P. Hong, et al, NASA CR-112256, December, 1972.

[^0]:    *May be in compressed form if controls have been dropped during the iteration.

