## MISSION ANALYSIS PROGRAM FOR SOLAR ELECTRIC PROPULSION (MAPSEP)

#### CONTRACT NAS8-29666

(Revised)
April, 1975

(NASA-CR-120408) MISSION ANALYSIS PROGRAM

FOR SOLAR ELECTRIC PROPULSION (MAPSEP).

VOLUME 3: PROGRAM MANUAL FOR EARTH ORBITAL

VOLUME 3: PROGRAM MANUAL FOR EARTH ORBITAL

MAPSEP (Martin Marietta Corp.) 564 p HC

CSCL 22A G3/13 20453

\$13.00



VOLUME III - PROGRAM MANUAL FOR EARTH ORBITAL MAPSEP

#### Prepared by:

Planetary Systems Mission Analysis and Operations Section Denver Division Martin Marietta Corporation

For

National Aeronautics and Space Administration Marshall Space Flight Center Huntsville, Alabama

### An Introduction to MAPSEP Changes for the Earth orbital version

Because of the limited amount of time and experience in low thrust Earth orbital missions, many MAPSEP changes were intended to provide (1) a basic capability to analyze anticipated solar electric missions, and (2) a foundation for future, more complex, modifications. Some of the major changes from the October, 1974, interplanetary version of MAPSEP are summarized below. In addition to these routines, most input and output related routines were affected, such as DATMAP, BLKDAT, DETAIL (REFSEP), DEFALT (GODSEP), etc.

| A = Add<br>D = Delete<br>M = Modify | Change                                                        | Principal<br>Mode(s)     | Principal<br>Subroutines                                |
|-------------------------------------|---------------------------------------------------------------|--------------------------|---------------------------------------------------------|
| A                                   | J2 zonal harmonic (oblateness)                                | TRAJ                     | New routine GRVPØT                                      |
| A                                   | J2 variation and uncertainty                                  | TRAJ<br>GODSEP<br>SIMSEP | LØADFM, GRVPØT,<br>GRVERR                               |
| <b>A</b>                            | Thrust shutdown and startup due to solar occultation (shadow) | TRAJ<br>REFSEP           | PATH, new routines<br>SHADØW, ØCCULT,<br>QARTIC, QADRAT |
| A                                   | Thrust startup uncertainty                                    | GODSEP<br>SIMSEP         | DYNØ, ERRSMP                                            |
| A                                   | Solar cell degradation due to radiation flux                  | TŖAJ                     | PATH, new routine FLUX                                  |
| М                                   | Thrust control policies                                       | TRAJ<br>TOPSEP<br>SIMSEP | EP, ENCØN, new routine THCPND                           |
| A                                   | Orbital elements as input and target/control parameters       | TRAJ<br>TOPSEP           | DATMAP, DATAT, FEGS                                     |
| A .                                 | Equatorial related input/output                               | TRAJ<br>GODS EP          | PRINTT, TCØMP, new routine PRNEQ                        |
| М                                   | State augmentation ordering                                   | TRAJ<br>GØDSEP<br>SIMSEP | ØD, LØADFM, ØUTPTG                                      |

| A = Add<br>D = Delete<br>M = Modify | <u>Change</u>                                                          | Principal Mode(s)          | Principal<br>Subroutines                       |
|-------------------------------------|------------------------------------------------------------------------|----------------------------|------------------------------------------------|
| М                                   | Modularization of observation matrix computations                      | GODSEP                     | ØBS ERV                                        |
| A                                   | Horizon scanner measurement                                            | GODSEP                     | ØBSERV (ØBSHZS)                                |
| D                                   | Ephemeris planet uncertainty                                           | GODS EP<br>S IMS EP        | STMGEN, STMRDR,<br>GUIDE, ØD, delete<br>RELCØV |
| <b>D</b> .                          | Astronomical observations                                              | GODSEP                     | ØBSERV, delete<br>ASTØBS                       |
| M                                   | Tug <b>∆∨</b> computation                                              | TOPSEP                     | INJECT                                         |
| М                                   | Station locations and errors in spherical (or cylindrical) coordinates | GODS EP<br>REFSEP          | CYCEQ, PARSTA,<br>ESLE                         |
| М                                   | Targeting and guidance policies                                        | TOPSEP<br>GODSEP<br>SIMSEP | GUIDE, DATAT,<br>THCPND                        |

•

#### FOREWORD

MAPSEP (Mission Analysis Program for Solar Electric Propulsion) is a computer program developed by Martin Marietta Aerospace, Denver Division, for the NASA Marshall Space Flight Center under Contract NAS8-29666. MAPSEP contains the basic modes: TOPSEP (trajectory generation), GODSEP (linear error analysis) and SIMSEP (simulation). These modes and their various options give the user sufficient flexibility to analyze any low thrust mission with respect to trajectory performance, guidance and navigation, and to provide meaningful system related requirements for the purpose of vehicle design.

This volume is the third of three and contains a description of the internal structure of MAPSEP including logical flow. Prior volumes relate to analytical program description and to operational usage.

### TABLE OF CONTENTS

|     |       |           |               |      | Pa | ge            |
|-----|-------|-----------|---------------|------|----|---------------|
| For | eword |           |               |      |    | i             |
| Таь | le of | Contents  | •             |      | ,  | ii            |
| 1.  | Intr  | oduction  |               |      |    | 1             |
| 2.  | Macr  | ologic    |               |      |    | 2             |
|     | 2.1   | Input/Ou  | tput .        |      |    | 3             |
|     | 2.2   | Overlay   | Structure     |      |    | 4             |
|     | 2.3   | Subrouti  | ne Hierarchy  | ,    |    | 7             |
|     | 2.4   | Blank Co  | mmon          |      |    | 7             |
|     | 2.5   | Program   | Loading       |      |    | 13            |
|     | 2.6   | Labeled   | Common Blocks |      |    | 16-A          |
|     |       | 2.6.1 M   | APSEP         |      |    | 16-B          |
|     |       | 2.6.2 T   | OPSEP         |      |    | 27            |
|     | •     | 2.6.3 G   | ODSEP         |      |    | 35            |
|     |       | 2.6.4 S   | IMSEP         |      |    | 51            |
| 3.  | Subr  | outine De | scriptions    |      |    | 54            |
|     | 3.1   | MAPSEP    |               |      |    | 54            |
|     |       | 3.1.1     | BLKDAT        |      |    | 56            |
|     |       | 3.1.2     | DATAM         |      | В  | 61            |
|     |       | 3.1.3     | TIME          |      |    | 68            |
|     | 3.2   | TØPSEP    |               |      |    | 69            |
|     |       | 3.2.1     | BUCKET .      |      |    | 71            |
|     |       | 3.2.2     | DATAT         |      |    | 75            |
|     |       | 3.2.3     | DELU          |      |    | 87            |
|     |       | 3.2.3A    | DIRECT        |      |    | 92 <b>-</b> B |
|     |       | 3.2.3B    | DTDUO         | 1.87 |    | 92 <b>-I</b>  |
|     |       | 3.2.4     | FEGS          |      |    | 93            |

|     |         |          |                        | <u>Page</u>    |
|-----|---------|----------|------------------------|----------------|
|     | 3.2.5   | FGAMA    |                        | 103            |
|     | 3.2.6   | GENMIN   |                        | 111            |
|     | 3.2.7A  | GRID     |                        | 119            |
|     | 3.2.7B  | INJECT   | (MØDINJ, TUGINJ)       | 123 <b>-</b> B |
|     | 3.2.8   | MINMUM   | (THPM, THPØSM, FØPMIN) | 124            |
|     | 3.2.9   | PGM      |                        | 132            |
|     | 3.2.10  | PRINTO   | (PRINT1, PRINT2)       | 142            |
|     | 3.2.11  | PRINTD   |                        | 147            |
|     | 3.2.12  | SIZE .   |                        | <b>1</b> 51    |
|     | 3.2.13  | STEP     |                        | 166            |
|     | 3.2.14A | STEST    |                        | 167            |
|     | 3.2.14B | STMTAR   |                        | 171 <b>-</b> B |
|     | 3.2.15  | TE ST    |                        | 172            |
|     | 3.2.16  | TREK     |                        | 175            |
|     | 3.2.17  | WEIGHT   | (UNWATE)               | 188            |
| 3.3 | GØDSEP  |          |                        | 194            |
|     | 3.3.1   | AUGCNV   |                        | 197            |
|     | 3.3.2   | BLKDTG   |                        | 200            |
|     | 3.3.3   | вøмв     |                        | 201            |
|     | 3.3.4   | CØRREL   |                        | 202            |
|     | 3.3.5   | CØVP     |                        | 207            |
|     | 3.3.6   | CYE QE C |                        | 217            |
|     | 3.3.7   | DATAG    |                        | 219            |
|     | 3.3.8   | DEFALT   |                        | 220            |
|     | 3.3.9   | DIMENS   |                        | 226            |
|     | 3.3.10  | DYNØ     |                        | 232            |
|     | 3 3 11  | E I GPRN |                        | 235            |

|          |                         | <u>Page</u>    |
|----------|-------------------------|----------------|
| 3.3.12   | ESCHED                  | 239            |
| 3.3.13A  | ESLE                    | 242            |
| 3.3.13B  | FBURN                   | 244-A          |
| 3.3.14   | FILTR (FILTR2)          | 244-E          |
| 3.3.15   | GAINF                   | 249            |
| 3.3.16   | GAINUS                  | 251            |
| 3.3.17   | GUIDE                   | 252            |
| 3.3.18   | INPUTG                  | 262            |
| 3.3.19   | LØADRC (LØDCØL, LØDRØW) | 264            |
| 3.3.20A  | LØCLST                  | 267            |
| 3.3.20B  | MASSIG                  | 268-A          |
| 3.3.21   | MEAS                    | 268-C          |
| 3.3.22   | MEASPR                  | 270            |
| 3.3.23   | MNØISE                  | 274            |
| 3.3.24   | MSCHED                  | 276            |
| 3.3.25   | NMLIST                  | 281            |
| 3.3.26   | ØBSERV                  | 282 <b>-A</b>  |
| 3.3.27   | ØUTPTG                  | 295            |
| 3.3.29   | PARSTA                  | 302 <b>-</b> A |
| 3.3.30   | PCNTRL                  | 3.03           |
| 3.3.31 A | PPAK                    | 306            |
| 3.3.31B  | PRNEQ                   | 30 <b>7-</b> B |
| 3.3.32   | ₽RØP                    | 308            |
| 3.3.33   | PRPART (PRCØRR, PUNCØR) | 312            |
| 3.3.34   | PRSDEV (PUNSD)          | 315            |
| 3.3.36   | SCHED                   | 320            |

- ,

|     |         | v                               |                |
|-----|---------|---------------------------------|----------------|
| ,   |         | ·<br>•                          | Page           |
|     | 3.3.37  | SETEVN                          | 324            |
|     | 3.3.38  | SETGUI                          | 329            |
|     | 3.3.39  | STMGEN                          | 335            |
|     | 3.3.40  | STMPR                           | 338            |
|     | 3.3.41  | STMRDR                          | 340            |
|     | 3.3.42  | STMUSE                          | 346            |
|     | 3.3.43  | VERR                            | 349            |
| 3.4 | SIMSEP  |                                 | 350            |
| ·   | 3.4.1   | CSAMP                           | 360            |
|     | 3.4.2   | DATAS                           | 363            |
|     | 3.4.4   | EPHSMP                          | 375            |
|     | 3.4.5   | ERRSMP                          | 380            |
|     | 3.4.6A  | EXGUID                          | 384            |
|     | 3.4.6B  | GUIDMX                          | 387-В          |
|     | 3.4.6C  | GRVSMP                          | 387-E          |
|     | 3.4.7   | LGUID                           | 388            |
|     | 3.4.8   | NLGUID                          | 390            |
|     | 3.4.9A  | ØD                              | 403            |
|     | 3.4.9B  | ØPSTAT .                        | 407 <b>-</b> B |
|     | 3.4.9C  | REFTRJ                          | 407-E          |
|     | 3.4.9D  | SDAT1                           | 407-I          |
|     | 3.4.9E  | SDAT2                           | 407-M          |
|     | 3.4.10A | SET                             | 408            |
|     | 3.4.10B | SPRNT1 (SPRNT2, SPRNT3, SPRNT4) | 413-B          |
|     | 3.4.11  | STAT                            | 414            |
|     | 3.4.12  | THCPND                          | 417            |

|     |         |                             | Page           |
|-----|---------|-----------------------------|----------------|
| 3.5 | TRAJ    |                             | 420            |
|     | 3.5.1   | DNØISE (NØISE)              | 427            |
|     | 3.5.2   | DPHI                        | 431            |
|     | 3.5.3   | EP                          | 433            |
|     | 3.5.4   | ЕРНЕМ                       | 440            |
|     | 3.5.5A  | FIND (FIND1, FIND3)         | 446            |
|     | 3.5.5B  | FLUX                        | 448 <b>-</b> B |
|     | 3.5.6A  | GRAVAR                      | 449            |
|     | 3.5.6B  | GRAVF <b>∅</b>              | 452            |
|     | 3.5.6C  | GRVPØT                      | 456 <b>-</b> C |
|     | 3.5.7   | LØADFM                      | 457            |
|     | 3.5.8   | LØCATE                      | 464            |
|     | 3.5.9   | MØTIØN                      | 465            |
|     | 3.5.10  | newtøn                      | 467            |
|     | 3.5.11A | NUMIN (RUNG2, RUNG4, SETUP) | 469            |
|     | 3.5.11B | ØCCULT                      | 471-B          |
|     | 3.5.12  | PATH (FLIGHT)               | 472            |
|     | 3.5.13  | PDØT                        | 494            |
|     | 3.5.14  | PØWER                       | 496            |
|     | 3.5.15A | PRINTT                      | 500            |
|     | 3.5.15B | QADRAT                      | 503-B          |
|     | 3.5.15C | QARTIC                      | 503-C          |
|     | 3.5.16A | RPRESS                      | 504            |
|     | 3.5.16B | SHADOW                      | 505 <b>-</b> В |
|     | 3.5.17  | SØLAR .                     | 506            |
| 6   | Heiliev | Poutines                    | 507            |

|     |         |                       | Page           |
|-----|---------|-----------------------|----------------|
|     | 3.6.1   | Minor Routines        | 507            |
|     | 3.6.2   | BPLANE                | 512            |
|     | 3.6.3   | CARTES                | 520            |
|     | 3.6.4   | CØNIC                 | 526            |
|     | 3.6.5   | E CØMP                | 530            |
|     | 3.6.6   | ENCØN (REFINE, ØSCUL) | 534            |
|     | 3.6.7   | GEN INV               | 539            |
|     | 3.6.8   | MPAK                  | 542            |
|     | 3.6.9   | MUNPAK                | 546            |
|     | 3.6.10  | RNUM                  | 549            |
|     | 3.6.11  | TCØMP                 | 551            |
|     | 3.6.12  | THCØMP                | 554            |
| 3.7 | REFSEP  |                       | 559            |
|     | 3.7.1   | DATREF                | 560            |
|     | 3.7.2A  | DETAIL                | 562            |
|     | 3.7.2B  | PUNCHR .              | 568~B          |
|     | 3.7.2C  | TORQUE                | 568 <b>-</b> D |
|     | 3.7.3   | TRAK                  | 569            |
|     | 3.7.4   | TSCHED                | 574            |
| 4.0 | Referen | ces ·                 | 57 <b>7</b>    |

Page viii has been deleted.

#### 1.0 INTRODUCTION

MAPSEP (Mission Analysis Program for Solar Electric Propulsion) is intended to provide sufficient flexibility to analyze a variety of problems related to trajectory performance, guidance and navigation. However, since low thrust technology is never static, future changes are expected to the models and algorithms contained in MAPSEP. This volume, along with the program listings, is intended to provide the programmer/analyst with sufficient information about MAPSEP structure to enable him to make suitable modifications. The program itself is structured such that computational modules are as self-contained as possible thus facilitating their replacement. It is highly recommended that the programmer/analyst review the two preceding volumes (analytical and user's manuals) before making program changes in order to understand the reasoning behind many of the models and analysis techniques that are coded.

#### 2.0 MACROLOGIC

MAPSEP is composed of three primary modes: TOPSEP, GODSEP and SIMSEP (Figure 2-1). A fourth primary mode, REFSEP, is actually a submode of TOPSEP in a functional sense. In addition, a secondary mode, TRAJ, is used by all four primary modes to provide integrated trajectory information. As described in both the Analytic and User's Manuals, the primary modes each serve a specific function in the mission and system design sequence.



Figure 2-1. MAPSEP Modes

All of the routines and structure of MAPSEP are constructed to minimize core storage (thus reducing turn-around time and computer run cost) yet retain the flexibility needed for broad analysis requirements. Furthermore, routines are built as modular as possible to reduce the difficulties in future modifications and extensions.

#### 2.1 Input/Output

The user interface or input to MAPSEP is primarily through cards using the NAMELIST feature, with supplementary means depending upon mode and function (Table 2-1). All modes require the \$TRAJ namelist which defines the nominal trajectory and subsequent

|        | INPUT                          |                   |                   | OUTPUT                            |                       |
|--------|--------------------------------|-------------------|-------------------|-----------------------------------|-----------------------|
| Mode   | Namelist                       | Formated<br>Cards | Tape<br>(or disc) | Punched<br>Cards                  | Tape<br>(or disc)     |
| TOPSEP | \$TRAJ<br>\$TØPSEP             | None              | STM               | None                              | STM<br>GAIN           |
| GODSEP | \$TRAJ<br>\$GØDSEP<br>\$GEVENT | Event<br>Data     | STM<br>GAIN       | States<br>Covariances<br>Guidance | STM<br>GAIN<br>SUMARY |
| SIMSEP | \$TRAJ<br>\$SIMSEP<br>\$GUID   | None              | STM               | Statistics                        | STM<br>GAIN<br>SUMARY |
| REFSEP | \$TRAJ                         | Print<br>Events   | STM               | THRUST<br>array                   | STM                   |

TABLE 2-1. MAPSEP User Input/Output

mode usage. However, if recycling or case stacking is performed it is not necessary to input \$TRAJ again unless desired. The second namelist required for each mode corresponds to mode peculiar input and bears the name of that particular mode. Additional namelist, formated cards, and tape input are generally optional. Besides

the standard printout associated with MAPSEP, auxiliary output can be obtained which will facilitate subsequent runs.

From an operational viewpoint, MAPSEP employs a maximum of six data files (Table 2-2). Most of these files are not normally saved from run to run, the primary exceptions being STMFILE and GAINFIL used in GODSEP.

| T/0 713            |         | Mode Usage              |                                                                       |                       |
|--------------------|---------|-------------------------|-----------------------------------------------------------------------|-----------------------|
| I/O File<br>Number | File    | TOPSEP AND<br>REFSEP    | GODSEP                                                                | SIMSEP                |
| TAPE 3             | STM     | \$TRAJ<br>namelist      | \$TRAJ namelist,<br>trajectory and<br>state transition<br>matrix data | \$TRAJ<br>namelist    |
| TAPE 4             | GAIN    | <u>.</u>                | a-priori covar-<br>iances and<br>filter gain<br>matrices              | \$GUID<br>namelists   |
| TAPE 5             | INPUT   | input data              | input data                                                            | input data            |
| TAPE 6             | OUTPUT  | printout                | printout                                                              | printout              |
| TAPE 7             | PUNCH   | -                       | punched<br>covariances                                                | punched<br>statistics |
| TAPE 8             | SUMMARY | trajectory<br>summaries | event data<br>summaries                                               | \$SIMSEP<br>namelist  |

TABLE 2-2. Data Files

#### 2.2 Overlay Structure

The structure of MAPSEP is organized into three levels of "overlays" which are designed to minimize total computer storage.

At any given time, only those routines which are in active use are

(Figure 2-2) is always in core and contains the main executive,
MAPSEP, and all utility routines that are common to the three modes.
The primary overlays contain key operating routines of each mode,
that is, those routines which are always needed when that particular
mode is in use. Also included as a primary overlay is the data
initialization routine, DATAM, where \$TRAJ namelist is read, trajectory and preliminary mode parameters are initialized, and appropriate
parameters are printed out.

The secondary overlays contain routines which perform various computations during a particular operational sequence. Included are data initialization routines, analgous to DATAM, which operate on mode peculiar input and perform mode initialization. An example of core usage in the changing overlay structure may be provided by a standard error analysis event sequence. Error analysis initialization is performed by the overlay DATAG. Transition matrices are then read from the STM file, the state covariance is propagated to a measurement event, and the overlay MEAS is called, which physically replaces, or overlays, the same core used previously by DATAG. Similarly at a guidance event, overlay TRAJ will replace MEAS to compute target sensitivity matrices and overlay GUID will then replace TRAJ to compute guidance corrections. Overlay switching is performed internally and is transparent to the user.



Figure 2-2. OVERLAY STRUCTURE

#### 2.3 Subroutine Hierarchy

Each major overlay is supported by a number of routines, some of which are contained in that overlay, others are in higher overlays. Figures 2-3, 2-4, 2-5, 2-6, and 2-7 illustrate the subroutine hierarchy for the major overlays TRAJ, TOPSEP, GODSEP, SIMSEP, and REFSEP, respectively. Multiple calls to subroutines and entry points are not shown, but may be found in the detailed subroutine descriptions (Chaper 3). The hierarchies also do not distinguish between routines called from different overlays.

#### 2.4 Blank Common

One convenient feature of the CDC 6000 series computer (on which MAPSEP was developed), is the ability to specify the location in core where blank common is loaded. This allows blank common to be loaded behind the longest secondary overlay to be loaded for the current mode. Thus, the length of blank common may be adjusted merely by changing the amount of core requested for the job. The resultant convenience factor is a core saving on many runs. Wherever possible, large arrays whose dimensions vary as a function of input parameters are loaded in blank common. Each mode in its data overlay computes the locations of these arrays as required by the input. Each mode starts using blank common from the first word, and defines for the TRAJ overlay the first available word of blank common it may access. TRAJ stores all information evaluated for integration steps in blank common. For an example of the disparity in blank common lengths required for different runs, the sample error





Figure 2-3. TRAJ Subroutine Hierarchy



Figure 2-4. TOPSEP Subroutine Hierarchy



Figure 2-5. GØDSEP Subroutine Hierarchy



Figure 2-5. GØDSEP Subroutine Hierarchy (Continued)



Figure 2.6 SIMSEP Subroutine Hierarchy



Figure 2-7. REFSEP Subroutine Hierarchy

analysis included in the User's Manual (Vol. II Sec. 3.2.2) requires 5184 decimal or 12100 octal words of blank common. The same run without guidance would require only 2304<sub>10</sub> (4400<sub>8</sub>) words of blank common. A TOPSEP run which does no targeting or optimization -- merely integrates a reference trajectory -- requires less than 100<sub>10</sub> words of blank common.

#### 2.5 Program Loading

The recommended usage of MAPSEP, which also minimizes computer core for a given run, is to load only those overlays and related routines which are necessary for the run. This is performed by "satisfying" from a master library file which contains all of the MAPSEP routines. In this case the deck necessary to run MAPSEP consists only of the overlay structure and the input data decks. The advantage is a direct result of not having to load all utility routines in the main overlay. Instead, the utility routines are loaded only in the overlays where they are used. In addition, blank common can easily be set to the size necessary to handle specific mode runs, thus, reducing further the overall core requirements. Figure 2-8 illustrates core utilization when satisfying from a library file.

If a library file is not used, then the utility routines would be loaded after the I/O buffers in Figure 2-8 and before the primary overlays. Although the core required for each primary overlay would be smaller, the total core (utility + primary) would be greater. Furthermore, blank common would start at the end of the last routine



Ē

(DATAS) so that the overall core penalty, if the entire program is loaded at once, would be approximately 3k to 20k, depending upon the operating mode.

For those users who can vary the amount of blank common storage in their runs, a guideline to estimate the total MAPSEP core requirements is given below. Blank common length is related directly to the dimension of the dynamic state (NDIM) used in transition matrix (STM) computation, and, the total augmented (knowledge) state (NAUG). The values of "program" and "blank common" must be added to compute the total decimal core for a CDC 6500. Other operating systems must scale these requirements appropriately.

TOPSEP: = 23400(N = number of blank common =  $800 + 68(N) + (N)^2$ control para-meters) GODSEP: program = 23900 blank common = 100 + 9 (NDIM) (if STM created)  $= 100 + 9 (NDIM)^2 +$ (if STM used) 5 (NAUG)<sup>2</sup>  $= 100 + 13 (NAUG)^2$ (if PDOT used) SIMSEP: program  $^{\circ} = 39100$ (N = number ofblank common =  $900 + N(NAUG)^2$ guidance events)

REFSEP: program + blank common = 21000

#### 2.6 <u>Labeled Commons</u>

The labeled common blocks are grouped according to the principal overlays in which they are used: MAPSEP, TOPSEP, GODSEP, and SIMSEP. The type of each variable will be specified as follows:

| Type                         | Designation |
|------------------------------|-------------|
| Real                         | R           |
| Integer                      | ī           |
| Logical                      | L           |
| Hollerith                    | H           |
| Assigned GØ TØ<br>Statements | S           |

All units will be in km, km/sec, days, radians, kg, kW, km/sec<sup>2</sup>, or km<sup>3</sup>/sec<sup>2</sup> unless otherwise noted.

The following index of common blocks is intended to facilitate their location by the reader.

| Principal Overlay | Page                                                                                                                          |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------|
| MAPSEP            | 17                                                                                                                            |
| MAPSEP            | 16-B                                                                                                                          |
| TOPSEP            | 27                                                                                                                            |
| GODSEP            | 35                                                                                                                            |
| GODSEP            | 36                                                                                                                            |
| GODSEP            | 36                                                                                                                            |
| SIMSEP            | 51                                                                                                                            |
| MAPSEP            | 17                                                                                                                            |
| MAPSEP            | 17                                                                                                                            |
| MAPSEP            | 17                                                                                                                            |
| TOPSEP            | 27                                                                                                                            |
| GODSEP            | 38                                                                                                                            |
| MAPSEP            | 18-A                                                                                                                          |
| sim <b>s</b> ep   | 51                                                                                                                            |
| SIM <b>S</b> EP   | 52                                                                                                                            |
| GODSEP            | 39                                                                                                                            |
| GODSEP            | 39                                                                                                                            |
| GODSEP.           | 40                                                                                                                            |
| GODSEP            | 41                                                                                                                            |
| GODSEP            | 42                                                                                                                            |
| GODSEP            | 44                                                                                                                            |
| TOPSEP            | 28                                                                                                                            |
|                   | MAPSEP TOPSEP GODSEP GODSEP GODSEP SIMSEP MAPSEP MAPSEP TOPSEP GODSEP SIMSEP SIMSEP SIMSEP GODSEP GODSEP GODSEP GODSEP GODSEP |

| Common         | Principal Overlay | Page          |
|----------------|-------------------|---------------|
| PRINT          | TOPSEP            | 28            |
| PRINTH         | TOPSEP            | 28            |
| PRØPI          | GODSEP            | 46            |
| PR <b>Ø</b> PR | GODSEP            | 46            |
| SCHEDI         | GODSEP            | 47            |
| SCHEDR         | GODSEP            | 49            |
| SIMLAB         | SIMSEP            | 52            |
| SIMI           | SIMSEP            | 53 <b>-</b> A |
| SIM2           | SIMSEP            | 53 <b>-</b> B |
| STØREC         | SIMSEP            | 53 <b>-</b> C |
| TARG ET        | MAPSEP            | 18 -B         |
| TIME           | MAPSEP            | 19            |
| TØP1           | TOPSEP            | 28            |
| TØP2           | TOPSEP            | 32            |
| TRAJ1          | MAPSEP            | 19            |
| TRAJ2          | MAPSEP            | 22            |
| TRKDAT         | MAPSEP            | 26            |
| TUG            | TOPSEP            | 34            |
| <b>WØRK</b>    | MAPSEP            | 26            |

### 2.6.1 MAPSEP Labeled Commons

Most common blocks that appear in MAPSEP primarily are used to save information created by the overlays DATAM and TRAJ. Other common blocks that appear in MAPSEP are used to transmit information from the Conic subroutines.

### a) Common/CONST/program constants

| Name         | Dimension | Type | Definition                                                                |
|--------------|-----------|------|---------------------------------------------------------------------------|
| AU           | 1         | R    | 149597893. (km/AU)                                                        |
| BIG          | 1         | R    | 10 <sup>20</sup>                                                          |
| E CEQ        | 3 x 3     | R    | Transformation matrix from Earth equatorial to Earth ecliptic coordinates |
| F <b>Ø</b> P | 1         | R    | 10 <sup>-15</sup>                                                         |
| FØ₹          | 1         | R    | 10 <sup>-25</sup>                                                         |

| Name           | Dimension | <u>Type</u> | Definition                                 |
|----------------|-----------|-------------|--------------------------------------------|
| GHZER <b>Ø</b> | 1         | R           | Greenwich Hour angle at launch             |
| ØMEGAG         | 1         | R           | 6.300388099 Earth rotation rate in rad/day |
| PI             | 1         | R           | 3.14159 (PI)                               |
| RAD            | 1         | R           | 57.29 (deg/rad)                            |
| SMALL          | 1         | R           | 10-20                                      |
| TM             | 1         | R           | 86400.0 (sec/day)                          |

# b) Common/CØNICS/Osculating conic parameters

| <u>Name</u> | Dimension | Type | Definition                          |
|-------------|-----------|------|-------------------------------------|
| PV          | 3         | R    | Eccentricity unit vector            |
| QV          | 3         | R    | Unit vector orthogonal to WV and PV |
| WV          | 3         | R    | Angular momentum unit vector        |
| RM          | 1         | R    | Position Magnitude                  |
| VM          | 1         | R    | Velocity Magnitude                  |
| RDV         | 1         | R    | <u>r</u> · <u>v</u>                 |
| H.          | 1         | R    | Angular momentum magnitude          |
| P           | 1         | R    | Semi-latus rectum                   |

# c) Common/EDIT/future modification storage

| Name  | Dimension | Type | Definition                                                                                                                                     |
|-------|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| EDIT  | 50        | R    | Miscellaneous storage array; intended for use<br>by temporary modifications until permanent<br>storage (labeled and blank common) is arranged. |
| IEDIT | 20        | I    | 'Miscellaneous storage for integer variables.                                                                                                  |
| LEDIT | 20        | L    | Miscellaneous storage for logical variables.                                                                                                   |

|    |                    |           |     |            |           |      |     | <b>-</b>    |      | _ |
|----|--------------------|-----------|-----|------------|-----------|------|-----|-------------|------|---|
|    |                    |           |     | - <b>-</b> | TINICIONS | 1    | DD  | 527         | 535) |   |
|    | O/ENCON/10001      | wariahles | for | subroutine | FINCAIN   | (see | rr. | <i>⊃</i> ., | 3337 |   |
| α} | Common/ENCØN/local | VALICATES |     | •          |           |      |     |             |      | _ |

| ۵)         | Common/EPHEM/ | ephemeris | constants |
|------------|---------------|-----------|-----------|
| <b>-</b> / | - + ,,        |           |           |

| <u>Name</u>     | Dimension | Type | Definition                                               |
|-----------------|-----------|------|----------------------------------------------------------|
| CECC            | 4 x 10    | R    | Eccentricity constants of the planets                    |
| CINC            | 4 x 10    | R    | Inclination constants of the planets                     |
| CMEAN           | 4 x 10    | R    | Mean anomaly constants of the planets                    |
| <b>CØM</b> EG   | 4 x 10    | R    | Longitude of the ascending node constants of the planets |
| C <b>Ø</b> MEGT | 4 x 10    | R    | Longitude of periapsis constants of the planets          |
| CSAX            | 2 x 10    | R    | Semi-major axis constants of the planets                 |
| DJ 1900         | 1         | R    | Julian Date of January 0.5, 1900                         |
| EMN             | 15        | R    | Lunar ephemeris constants                                |
| J2              | 1         | R    | J2 zonal harmonic (oblateness)                           |
| PLANET          | 11        | Н    | Hollerith label for the planets                          |
| PMASS           | 11        | R    | Planetary gravitational constants                        |
| PRADIS          | 11        | R    | Planetary radii                                          |
| SMASS           | 1         | R    | Solar gravitational constant                             |
| SPHERE          | 11        | R    | Planetary SOIs                                           |
| SRADIS          | 1         | R    | Radius of the sun                                        |
| SUN             | 1         | H    | Hollerith label for the sun                              |
|                 |           |      |                                                          |

## f) Common/IASTM/Sensitivity Matrix Parameters

| <i>=</i> ' |      |   |                                                                   |
|------------|------|---|-------------------------------------------------------------------|
| IASTM      | 1    | I | Flag designating method of computing targeting sensitivity matrix |
| IJH .      | 2x30 | I | Array of flags identifying active controls                        |
| LISTAR     | 6    | I | Array of flags identifying active targets                         |
| THETA      | 6x20 | R | Sensitivity of final state to changes in thrust controls          |
| PHI        | 6x6  | R | Sensitivity of final state to changes in initial state (STM)      |

| <u>Name</u> | Dimension | <u>Type</u> | Definition                                        |
|-------------|-----------|-------------|---------------------------------------------------|
| VCA         | 1         | R           | Speed at closest approach.                        |
| CA          | 1         | R           | Radius of closest approach                        |
| TCA         | 1         | R           | Time of closest approach                          |
| BDT         | 1         | R           | <u>B</u> · <u>T</u>                               |
| BDR         | 1         | R           | <u>B</u> • <u>R</u>                               |
| TSI         | 1         | R           | Time of sphere of influence crossing              |
| VHP         | 1         | R           | Hyperbolic excess velocity                        |
| SMA         | 1         | R           | Semi-major axis                                   |
| ECC         | 1         | R           | Eccentricity                                      |
| XINC        | 1         | R           | Inclination                                       |
| ØMEGA       | 1         | R           | Longitude of the ascending node                   |
| SØMEGA      | . 1       | R           | Argument of periapsis                             |
| XMEAN       | 1         | R           | Mean anomaly                                      |
| TA          | 1         | R           | True anomaly                                      |
| Fl          | 1         | R           | Hyperbolic anomaly                                |
| В           | 1         | R           | B-vector magnitude                                |
| BV          | 3         | R           | B-vector                                          |
| TAIM        | · 1       | R           | Theta aim (angle between the B-vector & T-axis)   |
| sv ,        | 3         | R           | S-vector (unit vector in direction of VHP vector) |
| REQ         | 3         | R           | Equatorial geocentric position vector             |
| V EQ        | 3         | R           | Equatorial geocentric velocity vector             |
| RFA         | 1         | R           | Apoapsis radius                                   |
|             |           |             |                                                   |

Equatorial geocentric latitude

1

EQLAT

R

## (g) Common/TARGET/Osculating Conic Conditions

| Name   | Dimension | Type | Definition                      |
|--------|-----------|------|---------------------------------|
| EQLON  | 1         | R    | Equatorial geocentric longitude |
| TFA    | 1         | R    | Time of apoapsis crossing       |
| VFA    | 1         | R    | Apoapsis velocity               |
| PEREOD | 1         | R    | Orbital period                  |

## h) Common/TIME/time parameters

| Name          | Dimension | Type | Definition                                         |
|---------------|-----------|------|----------------------------------------------------|
| <b>ЕР</b> ØСН | 1         | R    | Julian Date of launch                              |
| TCP           | 1         | R    | Total CP time required to integrate a trajectory   |
| TDUR          | 1         | R    | Trajectory termination time from launch in seconds |
| TEND          | 1         | R    | Trajectory termination time from launch in days    |
| TEVNT         | 1         | R    | Trajectory event time in seconds                   |
| TRCA          | . 1       | R    | Time of closest approach                           |
| TREF          | I         | R    | Trajectory start time from launch, in seconds      |
| TSØI          | 1         | R    | Time at the sphere of influence of the target body |
| TSTART        | 1         | R    | Trajectory start time                              |
| TSTØP         | 1         | R    | Actual trajectory termination time                 |

# i) Common/TRAJ1/trajectory propagation parameters

| Name         | Dimension | Type | Definition                                                                |
|--------------|-----------|------|---------------------------------------------------------------------------|
| ACC          | 1         | R    | Integration step-size scale factor                                        |
| ALPHA        | 1         | R    | Inverse semi-major axis of the reference conic                            |
| APERT        | 3 x 12    | R    | Gravitational acceleration vectors due to the perturbing bodies           |
| APRIM        | 3         | R    | Gravitational acceleration vector due $t \boldsymbol{o}$ the primary body |
| <b>АТØ</b> Т | 3         | R    | Total differential acceleration vector                                    |
| ВØDY         | 3 .       | Н    | Hollerith label of the planets included in the integration                |
| DRMAX        | 3         | R    | Maximum deviation from the reference conic                                |
| ENGINE       | 30        | R    | Array that defines the thrust and power subsystems                        |
| FLX          | 1         | R    | Cumulative flux                                                           |
| FLXDØT       | 1         | R    | Flux rate                                                                 |

| Name   | Dimension | Type | Definition                                                                           |
|--------|-----------|------|--------------------------------------------------------------------------------------|
| FRCA   | 1         | R    | Fraction of the semi-major axis of the target planet to begin closest approach tests |
| GJ2    | 6         | R    | Partial deviatives of state wrt J2                                                   |
| GM11   | 3         | R    | Matrix of partial derivatives for transition matrix integration                      |
| GM12   | 3         | R    | Matrix of partial derivatives for transition matrix integration                      |
| GM21   | 3         | R    | Matrix of partial derivatives for transition matrix integration                      |
| GM22   | 3         | R    | Matrix of partial derivatives for transition matrix integration                      |
| GT     | 3 x 3     | R    | Matrix of partial derivatives for transition matrix integration                      |
| GTAU1  | 3 x 3     | Ŗ    | Diagonal matrix of inverse correlation times (first process)                         |
| GTAU2  | 3 x 3     | R    | Diagonal matrix of inverse correlation times (second process)                        |
| G11    | 3 x 3     | R    | Matrix of partial derivatives for transition matrix integration                      |
| G12    | 3 x 3     | R    | Matrix of partial derivatives for transition matrix integration                      |
| G22    | 3 x 3     | R    | Matrix of partial derivatives for transition matrix integration                      |
| PHAS   | 4         | R    | Thrust policy phasing angles                                                         |
| PITCH  | 1         | R    | Thrust pitch angle                                                                   |
| QNØISE | 6 x 6     | R    | Matrix of process noise                                                              |
| RCA    | 1         | R    | Local variable used in TRAJ                                                          |
| RPACC  | 3         | R    | Acceleration vector due to radiation pressure                                        |
| rstøp  | 1         | R    | Desired stopping radius                                                              |
| SCD    | 1         | R    | Solar cell degradation factor                                                        |
| SCMASS | 1         | R    | Initial spacecraft mass                                                              |
| SCMVAR | 1         | R    | Initial spacecraft mass variation                                                    |
| STATEO | 8         | R    | First three elements are the initial position vector                                 |

| <u>Name</u> | Dimension | <u>Type</u> | Definition                                                                                  |
|-------------|-----------|-------------|---------------------------------------------------------------------------------------------|
|             |           |             | Second three elements are the initial velocity vector                                       |
|             |           |             | Seventh element is the position magnitude                                                   |
|             |           |             | Eighth element is the velocity magnitude                                                    |
| TCPI        | 1         | R           | CP time at the beginning of the integration                                                 |
| THRACC      | 3         | R           | Acceleration vector due to thrust                                                           |
| THRUST      | 10 x 40   | R           | Array used to define the operation of the thrust subsystem                                  |
| TNØISE      | 6         | R           | First three elements contain thrust noise for the first process                             |
|             |           |             | Second three elements contain thrust noise for the second process                           |
| UENC        | 3         | R           | Reference conic position vector                                                             |
| UENCM       | 1         | R           | Reference conic position magnitude                                                          |
| UP          | 3 x 12    | R           | Position vectors of all the bodies included in the integration                              |
| UREL        | 3 x 12    | R           | Position vectors of the spacecraft relative to all the bodies considered in the integration |
| URELM       | 12        | R           | Magnitudes of UREL                                                                          |
| UTRUE       | 3         | R           | S/C position vector relative to the primary body                                            |
| UTRUEM      | 1         | R           | S/C position magnitude relative to the primary body                                         |
| VENC        | 3         | R           | Reference conic velocity vector                                                             |
| VENCM       | 1         | R           | Reference conic velocity magnitude                                                          |
| VP          | 3 x 12.   | R           | Velocity vectors of all the bodies considered in the integration                            |
| VREL        | 3 x 12    | R           | Velocity vectors of the spacecraft relative to all the bodies considered in the integration |

| <u>Name</u>     | Dimension | <u>Type</u> | Definition                                          |  |
|-----------------|-----------|-------------|-----------------------------------------------------|--|
| VRELM           | 12        | R           | Magnitudes of VREL                                  |  |
| VTRUE           | 3         | R           | S/C velocity vector relative to the primary body    |  |
| VTRUEM          | 1         | R           | S/C velocity magnitude relative to the primary body |  |
| wp <b>ø</b> wer | 1         | R           | Power available                                     |  |
| XPRINT          | 1         | R           | Print interval                                      |  |
| YAW             | 1         | R           | Thrust yaw angle                                    |  |
| ZK              | 3         | R           | Direction cosines of the reference star             |  |

### j) Common/TRAJ2/Trajectory Flags

| <u>Name</u> | Dimension | Type | Definition                                                                                                                    |
|-------------|-----------|------|-------------------------------------------------------------------------------------------------------------------------------|
| IAUGDC      | 10        | Ī    | Array of flags used to augment the state for transition matrix or covariance integration                                      |
| ICALL       | 1         | I    | Flag used to initialize TRAJ or to initialize TRAJ and to start integration or to continue integration from the previous time |
| IENRGY      | 1         | I    | Flag that determines the kind of power subsystem                                                                              |
| IEVENT      | 1         | S    | Local variable used in TRAJ                                                                                                   |
| IEVNT1      | 1         | S    | Local variable used in TRAJ                                                                                                   |
| IEVNT2      | 1         | S    | Local variable used in TRAJ                                                                                                   |
| IEVNT3      | 1         | S    | Local variable used in TRAJ                                                                                                   |
| IEP         | 1         | I    | Flag used to locate information about the ephemeris body (1 = $Sum$ , 2 = $Earth$ ,)                                          |
| imøde       | 1         | I    | Submode designation in TØPSEP                                                                                                 |
| INIT        | 1         | I    | MAPSEP initialization flag                                                                                                    |
| INTEG       | 1 .       | I    | Flag used to determine the type of equations to be integrated                                                                 |

| Name    | Dimension | <u>Type</u> | Definition                                             |
|---------|-----------|-------------|--------------------------------------------------------|
| INTEG2  | 1         | S           | Local variable used by TRAJ                            |
| INTEG3  | 1         | S           | Local variable used by TRAJ                            |
| IPFLAG  | 1         | I           | Flag used to designate a control phase change          |
| IPHASE  | 1         | S           | Local variable used in TRAJ                            |
| IPHASO  | 1         | S           | Local variable used in TRAJ                            |
| IPHAS1  | 1         | S           | Local variable used in TRAJ                            |
| .IPHAS2 | 1         | S           | Local variable used in TRAJ                            |
| IPLACE  | 1         | S           | Local variable used in TRAJ                            |
| IPRI    | 1         | I           | Flag used to locate information about the primary body |
| IPRINT  | 1         | I           | Flag used to manipulate the trajectory print options'  |
| IPRT    | 1         | S           | Local variable used in TRAJ                            |
| IPRT1   | 1         | s           | Local variable used in TRAJ                            |
| IRECT   | 1         | I           | Flag used to control rectification                     |
| ISCD    | 1         | 1           | Flag used to activate solar cell degradation from flux |
| ISTEP   | 1         | I           | Number of integration steps taken                      |
| ISTMF   | 1         | I           | Flag used to control STM file use                      |
| istøp   | 1         | I .         | Flag used to set the trajectory termination logic      |
| ITEST   | 1         | S           | Local variable used in TRAJ                            |
| ITP     | 1         | I           | Flag used to locate information about the target body  |
| ITRAJ   | 1         | I           | Local variable used in TRAJ                            |
| JPFLAG  | 1         | I           | Flag used to designate a primary body change           |
| JPHAS1  | 1.        | S           | Local variable used in TRAJ                            |
| JPHAS2  | 1         | S           | Local variable used in TRAJ                            |
| J2FLG   | 1         | I           | Flag used to activate J2 (oblateness)                  |

| Name          | Dimension | Type       | Definition                                                       |
|---------------|-----------|------------|------------------------------------------------------------------|
| JPHAS3        | 1 .       | , <b>S</b> | Local variable used in TRAJ                                      |
| JTEST         | 1         | S          | Local variáble used in TRAJ                                      |
| kstøp         | 1         | <b>S</b> . | Local variable used in TRAJ                                      |
| KTRAJ         | 1         | I          | Flag used to designate whether to test for control phase changes |
| KUTØFF        | 1         | I          | Flag used to designate the actual trajectory stopping criteria   |
| LPRINT        | 1         | S          | Local variable used in TRAJ                                      |
| ·LØCAL        | 1         | S          | Local variable used in TRAJ                                      |
| LØCDM         | 1         | I          | Location of the output mass variation in blank common            |
| LØCDT         | 1         | I          | Location of the temporary derivatives in blank common            |
| <b>LØCD</b> Y | 1         | ı          | Location of the nominal derivatives in blank common              |
| LØCET         | 1         | I          | Location of the integration event time in blank common           |
| <b>L</b> ØCFI | 1         | I          | Location of the F matrix in blank common                         |
| LØCFØ         | 1         | I          | Location of the covariance to be integrated in blank common      |
| ГфСН          | 1         | ľ          | Location of the integration step-size in blank common            |
| <b>LØ</b> CM  | 1         | ī          | Location of the output mass in blank common                      |
| <b>LØ</b> CPR | 1         | Ι.         | Location of the integration print time in blank common           |
| LØCPT         | 1         | I          | Location of the actual print time in blank common                |
| <b>LØ</b> CR  | 1         | I          | Location of the stored position magnitudes in blank common       |
| <b>LØ</b> CS  | 1         | 1          | First location in blank common that can be used by TRAJ          |

| Name           | Dimension | Type | Definition                                                             |  |
|----------------|-----------|------|------------------------------------------------------------------------|--|
| <b>LØ</b> CT   | 1         | Ţ    | Location of the stored trajectory times in blank common                |  |
| LØCTC          | 1         | I    | Location of the output transition matrix or covariance in blank common |  |
| LØCTE          | 1         | I    | Not used                                                               |  |
| LØCYC          | 1         | I    | Location of the nominal integrated solution in blank common            |  |
| <b>LØ</b> CYP  | 1         | I    | Location of the intermediate integrated solution in blank common       |  |
| <b>LØ</b> CYT  | 1         | I    | Location of the temporary integrated solution in blank common          |  |
| LØCX           | 1         | I    | Location of the trajectory time in blank common                        |  |
| MEQ            | 1         | I    | Total number of equations to be integrated                             |  |
| MEQS           | 1         | I    | Dimensions of the augmented transition matrix or covariance            |  |
| MEQ8           | 1         | I    | MEQ minus 8                                                            |  |
| MEVENT         | 1         | I    | Flag used to set event detection logic                                 |  |
| мØDE           | 1         | I    | Flag used to set the MAPSEP mode of operation (TØPSEP, GØDSEP, SIMSEP) |  |
| MPLAN          | 1         | I    | Number of bodies included in the integration                           |  |
| MST <b>Ø</b> P | 1         | s    | Local variable used in TRAJ                                            |  |
| NB             | 11        | I    | Planet codes of the bodies to be included in the integration           |  |
| NBØD           | 1         | I    | Number of bodies in NB                                                 |  |
| NØISED         | 1         | I    | Flag used to turn off the noise for the simulation mode                |  |

| Name           | Dimension   | Type | Definition                                                             |
|----------------|-------------|------|------------------------------------------------------------------------|
| NPHASE         | 1           | I    | Flag to test for primary body changes                                  |
| NPRI           | 1           | I    | Planet code of the primary body                                        |
| NPRINT         | 1           | S    | Local Variable used in TRAJ                                            |
| NRECT          | 1           | I    | Number of rectifications executed                                      |
| nst <b>⊄</b> p | 1           | S    | Local Variable used in TRAJ                                            |
| ·NTP           | 1           | I    | Planet code of the target body                                         |
| NTPHAS         | 1           | I    | Number of the current control phase                                    |
| k) Com         | non/TRKDAT/ |      | Tracking Data                                                          |
| ELVMIN*        | 1           | R    | Minimum elevation angle for tracking                                   |
| IØBS*          | 1           | I    | Location in STAL#C of astronomical observatory                         |
| KARDS*         | 1           | I    | Number of formatted print schedule cards following the \$TRAJ namelist |
| nsta*          | . 1         | I    | Number of S/C tracking stations                                        |
| PITCHI*        | 1           | R    | Moment of inertia about pitch axis                                     |
| RØLLI*         | . 1         | R    | Moment of inertial about roll axis                                     |
| SPHLØC         | 1           | L    | Flag for determining coordinate system of station location             |
| STALØC         | 3x9         | R    | Station location coordinates                                           |
| STARDC         | 3x9         | R    | Star direction cosines                                                 |
| YAWI*          | 1           | R    | Moment of inertia about yaw axis                                       |

<sup>\*</sup> Variables exclusive to the REFSEP mode

| 1) Common/     | ₩ <u>Ø</u> R <u>K</u> / |   | Working Storage                                          |
|----------------|-------------------------|---|----------------------------------------------------------|
| ₩ØRK           | 200                     | R | Array used as local variables to conserve core locations |
| iw <b>ø</b> rk | 50                      | I | Integer local variables                                  |

### 2.6.2 TOPSEP Common Blocks

# a) CØMMØN/CYCLE/TOPSEP Cycle Flag

| Name   | Dimension | Туре | Definition                                         |
|--------|-----------|------|----------------------------------------------------|
| ICYCLE | 1         | I    | Mode cycle flag.                                   |
|        | ·         |      | = 0, Do not store namelist varia-<br>bles on disc. |
|        |           |      | = 1, Store namelist variables on<br>disc.          |

### b) COMMON/GRID/Blank Common Locations

| Name   | Dimension | Туре | Definition                                                                                                    |
|--------|-----------|------|---------------------------------------------------------------------------------------------------------------|
| LØCE1  | 1         | I    | Blank common location of the target errors associated with the first step of the control grid.                |
| LØCE2  | 1         | I    | Blank common location of the target errors associated with the second step of the control grid.               |
| LØCEM1 | 1         | I    | Blank common location of the target<br>error indices associated with the<br>first step of the control grid.   |
| LØCEM2 | 1         | I    | Blank common location of the target<br>error indices associated with the<br>second step of the control grid.  |
| LØCEN  | . 1       | I    | Blank common location of the nominal trajectory target errors in the grid mode.                               |
| LØCF1  | 1         | I    | Blank common location of the perform-<br>ance indices associated with the<br>first step of the control grid.  |
| LØCF2  | 1         | I    | Blank common location of the perform-<br>ance indices associated with the<br>second step of the control grid. |

### c) CØMMØN/PRINT/Printout Parameters

| Name            | Dimension        | Туре      | Definition                                                          |
|-----------------|------------------|-----------|---------------------------------------------------------------------|
| CNTRØL          | 20               | R         | Initial values of all possible controls other than thrust controls. |
| E <b>TLØ</b> UT | 6                | R         | Target tolerances in print-out units                                |
| GØUT            | 20               | R         | Performance gradient in print-out units.                            |
| нøит            | 10x22            | R         | Perturbation array in print-out units.                              |
| KNTRØL          | 20               | H         | Hollerith names of controls in CNTRØL.                              |
| søut            | 120              | R         | Sensitivity matrix in print-out units.                              |
| TARØUT          | 6                | R         | Desired target values in printout units.                            |
| d) CØMMØ        | N/PRINTH/Printon | ıt Labels |                                                                     |
| Name            | Dimension        | Type      | Definition                                                          |
| LABELT          | 6                | Н         | Hollerith names of chosen targets.                                  |
| LABEL           | 25               | н         | Hollerith names of all possible targets.                            |

## e) CØMMØN/TØP1/TOPSEP Parameters - Real Variables

| Name          | Dimension | Туре | Definition                                                                    |
|---------------|-----------|------|-------------------------------------------------------------------------------|
| BT <b>Ø</b> L | 1         | R    | Tolerance on control bounds.                                                  |
| CHI           | 1         | R    | In plane $\Delta v$ direction angle at injection.                             |
| CNVRTT        | 6         | R    | Conversion constants from input units to internal units for selected targets. |
| RPO           | 1         | R    | Initial periapsis radius                                                      |
| RAO           | 1         | R    | Initial apoapsis radius                                                       |
| XINCO         | 1         | R    | Initial orbital inclination                                                   |

| Name   | Dimension | Туре | Definition                                                                                                                |
|--------|-----------|------|---------------------------------------------------------------------------------------------------------------------------|
| CNVRTU | 20        | R    | Conversion constants from input units to internal units for selected controls.                                            |
| СТНЕТА | 1         | R    | Cosine of optimization angle.                                                                                             |
| DELVO  | 1         | R    | Injection $\Delta V$ .                                                                                                    |
| DFMAX  | 1         | R    | Maximum increase allowed in the cost index (F) per iteration.                                                             |
| DPSI   | 6         | R    | Target error to be removed during current iteration.                                                                      |
| DP2    | 1         | R    | Estimated region of linearity in the control space.                                                                       |
| E      | 6         | R    | Target errors of the current tra-<br>jectory.                                                                             |
| EMAG   | 1         | R    | Target error index.                                                                                                       |
| epsøn  | 1         | R    | Scalar multiple for control perturbations.                                                                                |
| ETØL   | 6         | R    | Target tolerances.                                                                                                        |
| ETR    | 6×6       | R    | Array of target errors of the reference and all trial trajectories evaluated during a single iteration.                   |
| F      | . 1       | R    | Performance index of the current trajectory.                                                                              |
| FTR .  | 6         | R    | Vector of performance indices of<br>the reference and all trial trajec-<br>tories evaluated during a single<br>iteration. |
| G      | 20        | R    | Performance gradient.                                                                                                     |
| GAMA   | 1 .       | R    | Scale factor providing the best control change.                                                                           |
| GAMMA  | . 6 .     | R    | Vector of trial trajectory control change scale factors.                                                                  |
| OMEGAO | 1         | R    | Initial longitude of the ascending node                                                                                   |

| Name   | Dimensions | Type | Definition                                                                                                                                    |
|--------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| GTRIAL | 5          | R    | One-dimensional search constants.                                                                                                             |
| G      | 10x22      | R    | Control perturbation array.                                                                                                                   |
| HMULT  | 20         | R    | Vector of scalar multiples of the H array to determine the second step of all controls in the control grid.                                   |
| ØPTEND | 1          | R    | Cosine of the optimization angle which is used to test convergence in the targeting and optimization mode.                                    |
| ØSCALE | 1          | R    | Scale on the performance index when simultaneously targeting and optimizing.                                                                  |
| PCT    | 1          | R    | Percentage of the target error to be removed during an iteration.                                                                             |
| PRTURB | 20         | R    | Vector of control perturbations; summary of H array.                                                                                          |
| PSI    | 1          | R    | Out of plane $\Delta V$ direction angle at injection.                                                                                         |
| P1     | 6          | R    | Vector of net cost values for the reference and all trial trajectories evaluated during a single iteration.                                   |
| P1P2   | 6          | R    | Vector of combined target error indices and net cost values for the reference and all trial trajectories evaluated during a single iteration. |
| P2     | 6          | R    | Vector of target error indices for<br>the reference and all trial trajec-<br>tories evaluated during a single<br>iteration.                   |
| S      | 6x20       | R    | Target sensitivity matrix.                                                                                                                    |
| STATR  | 8x6        | R    | Array of initial states for the reference and all trial trajectories evaluated during a single iteration.                                     |
| SOMEGO | 1          | R    | Initial argument of periapsis.                                                                                                                |

| Name           | Dimensions | Туре | Definition                                                                                                                       |
|----------------|------------|------|----------------------------------------------------------------------------------------------------------------------------------|
| STØL           | 1.         | R    | Test variable for determining line-<br>arly dependent columns of the<br>weighted sensitivity matrix.                             |
| TARGET         | 6          | R    | Vector of desired target values.                                                                                                 |
| TARNØM         | 6          | R    | Target values evaluated for the reference trajectory.                                                                            |
| TARPAR         | 6          | R    | Target values of the most recently generated trajectory.                                                                         |
| TART <b>ØL</b> | 25         | R    | Vector of all possible target tolerances.                                                                                        |
| TARTR          | 6x6        | R    | Target values of the reference and all trial trajectories evaluated during a single iteration.                                   |
| TLØW           | 1          | R    | Limit of target error index below which optimization only is performed.                                                          |
| TUP            | 1          | R    | Limit of target error index above which simultaneous targeting and optimization is discontinued and targeting only is initiated. |
| U 、            | 20         | R    | Selection of controls for the specified mode run.                                                                                |
| UWATE          | 20         | R    | User input weights on controls.                                                                                                  |
| VPARK          | . 1        | R    | Circular parking orbit velocity magnitude.                                                                                       |
| WE             | 6          | R    | Vector of target weights.                                                                                                        |
| XMM            | 1          | R    | Mean motion of s/c in parking orbit.                                                                                             |
| PRO            | 1          | R    | Radial distance at injection.                                                                                                    |
| PINC           | 1          | R    | Geocentric ecliptic inclination at injection                                                                                     |
| РТО            | 1 .        | R    | Time of injection                                                                                                                |
| XMEANO         | 1          | R    | Initial mean anomaly                                                                                                             |
| TRUANO         | 1          | R    | Initial true anomaly '                                                                                                           |

# f) CØMMØN/TØP2/TOPSEP Parameters - Integer Variables

| Name          | Dimensions | Туре | Definition                                                                                                                           |
|---------------|------------|------|--------------------------------------------------------------------------------------------------------------------------------------|
| INACTV        | 20         | I    | Vector denoting which controls are active, on bounds, or within bound tolerance regions.                                             |
| INSG          | 1          | I    | Flag set when S and G are input through namelist.                                                                                    |
| ITERAT        | 1          | I    | Iteration counter (in grid mode ITERAT indicates the index of the control being changed for a grid trajectory).                      |
| IWATE         | 1          | I    | Flag designating the desired control weighting scheme.                                                                               |
| JMAX          | 1          | I    | Number of mission thrust phases.                                                                                                     |
| JWATE         | 1          | I    | Flag designating target weighting.                                                                                                   |
| KMAX          | 1          | I    | Number of thrust controls (THRUST (I,J)) chosen to be elements in $\underline{U}$ .                                                  |
| KØNVRJ        | 1          | I    | Convergence flag.                                                                                                                    |
| TÒCCDC        | 1          | I    | Blank common location for storage of the inner products of the weighted sensitivity matrix columns.                                  |
| LØCCM         | 1          | Ι    | Blank common location for storage of the magnitude of the weighted sensitivity column vectors.                                       |
| <b>L</b> ØCDU | 1          | I    | Blank common location of the total control correction vector (not scaled by GAMA).                                                   |
| LØCDU1        | . 1        | I    | Blank common location of the per-<br>formance control correction vector<br>(not scaled by GAMA).                                     |
| LØCDU2        | 1          | I    | Blank common location of the constraint control correction vector (not scaled by GAMA).                                              |
| LØCRFM        | 1          | I    | Blank common location of the s/c masses evaluated at event times for the reference and all trial trajectories in a single iteration. |

| Name                     | Dimensions | Туре | Definition                                                                                                                                                                   |
|--------------------------|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L <b>Ø</b> CS <b>D</b> U | 1          | Ι    | Blank common storage location for<br>the original control correction<br>vectors when a number of controls<br>must be dropped during an iteration.                            |
| LØCSI*                   | 1          | Ι    | Blank common location of the pseudo inverse of the weighted sensitivity matrix.                                                                                              |
| LØCSWG                   | 1          | I    | Blank common storage location for<br>the original weighted performance<br>gradient when a number of controls<br>must be dropped during an iteration.                         |
| LØCSWS                   | <b>1</b>   | I    | Blank common storage location for<br>the original weighted sensitivity<br>matrix when a number of controls<br>must be dropped during an iteration.                           |
| LØCTS                    | 1          | I    | Blank common location of event<br>times for the reference and all<br>trial trajectories in a single<br>iteration.                                                            |
| L <b>Ø</b> CUL           | 1          | I    | Blank common location of minimum and maximum control bounds.                                                                                                                 |
| LOCWG*                   | 1          | I    | Blank common location of the weighted performance gradient.                                                                                                                  |
| LØCWS*                   | 1          | I    | Blank common location of the weighted sensitivity matrix.                                                                                                                    |
| LØCWU                    | 1          | I.   | Blank common location of the con-<br>trol weights.                                                                                                                           |
| LØCXR                    | 1          | I    | Blank common location of the 6-<br>component state vectors associated<br>with the event times of the refer-<br>ence and all the trial trajectories<br>of a single iteration. |
| MIN                      | 1          | I    | Index on the scale factor in the GAMA vector which provides the best control correction.                                                                                     |

<sup>\*</sup>May be in compressed form if controls have been dropped during the iteration.

| Name     | Dimensions    | Туре       | Definition                                                                                                                         |
|----------|---------------|------------|------------------------------------------------------------------------------------------------------------------------------------|
| MPRINT   | 10            | I          | Flag designating TOPSEP print options.                                                                                             |
| NMAX     | 1             | I          | Maximum number of iterations.                                                                                                      |
| NT       | 1             | I          | Number of targets,                                                                                                                 |
| NTNP     | 120           | I          | Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration.        |
| NTPH     | 20            | I          | Vector of control phase numbers associated with the event times of the reference and all trial trajectories in a single iteration. |
| NTR      | 1             | I          | Trial trajectory counter (NTR=1 indicates the iteration reference trajectory).                                                     |
| NTYPE    | 1             | I          | Flag designating the type of control correction to be made during an iteration.                                                    |
| NU       | 1             | I          | Number of controls.                                                                                                                |
| INJLØC   | 1             | I          | Index locating the selected injection controls in the U vector.                                                                    |
| LØCFLX   | 1             | I          | Blank common location of flux values at the event times for the reference and all trial trajectories.                              |
| LOCFDT   | 1             | I          | Blank common location of flux rate values at the event times for the reference and all trial trajectories.                         |
| g) Commo | on/TUG/Tug Av | Parameters |                                                                                                                                    |
| AZMAX    | 1             | R          | Maximum launch azimuth constraint                                                                                                  |
| AZMIN    | 1             | R          | Minimum launch azimuth constraint                                                                                                  |
| RP1      | . 1           | R          | Inner parking orbit radius                                                                                                         |
| TGFUE L  | 1             | R          | Full capacity of tug stage                                                                                                         |
| TUG      | 1             | L          | Flag controlling injection computations                                                                                            |
| TUGISP   | 1             | R          | Specific impulse of tug stage                                                                                                      |
| TUGWT    | 1             | R          | Dry weight of tug stage                                                                                                            |

#### 2.6.3 GØDSEP Labeled Commons

GØDSEP labeled commons were created following two specific guidelines as much as possible -- organization first by variable function, and second by variable type. Organization by function will hopefully simplify understanding of the program and minimize the number of common blocks required for any given subroutine. Organization by type is to facilitate conversion to machines which require double precision for many real variables, or which merely allocate different numbers of bytes of core for real, integer or logical variables.

Any variable for which further descriptions may be found under input description is denoted "(See Input)" and refers to Reference 1, Volume II (User's Manual) Section 2.3.

a) Common/DATAGI/Integer Variables Required Only for DATA Overlay

| Name            | Dimension | <u>Type</u> | Definition                                                                                                                                                                                                           |
|-----------------|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CØNRD           | 1         | L           | Used for input only =F, set a priori control equal to a priori knowledge =T, assume a priori control is read in namelist \$GØDSEP                                                                                    |
| IAUG            | 50        | I           | Parameter augmentation control (see Input)                                                                                                                                                                           |
| igf <b>ø</b> rm | 1         | I .         | <pre>=0, input control uncertainties packed =1, input control uncertainties unpacked (see Input)</pre>                                                                                                               |
| IRØT            | 1         | I           | Flag to specify equatorial covariance input                                                                                                                                                                          |
| IPFØRM          | 1         | I           | <pre>=0, input knowledge uncertainties packed =1, input knowledge uncertainties unpacked (see Input)</pre>                                                                                                           |
| MAXAUG          | 1         | I           | Maximum length allowed for augmented state vector (including S/C state) allowable maximum governed only by available core and dimensioned lengths of LIST (see Common/DIMENS/) and AUGLAB (see Common/LABEL/) arrays |

| Name    | Dimension      | <u>Type</u> | Definition                                                                                                                                                                                                                                                                                                                                                               |
|---------|----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAXDIM  | 5              | I           | Maximum allowable input dimensions on individual state vector partitions corresponding to actual dimensions of covariance partitions in subroutine NMLIST  MAXDIM(1) = 6 (S/C state)  MAXDIM(2) = 10 (solve-for parameters)  MAXDIM(3) = 13 (dynamic consider)  MAXDIM(4) = 15 (measurement consider)  MAXDIM(5) = 10 (ignore)                                           |
| XLAB    | 50             | н           | Parameter Hollerith labels corresponding to parameters as ordered for IAUG (see Input, IAUG)                                                                                                                                                                                                                                                                             |
| b) Comm | non/DATAGR/Rea | l variable  | es required only for DATA overlay                                                                                                                                                                                                                                                                                                                                        |
| DØPCNT  | 1              | R           | Average number of doppler (range-rate) measure-<br>ments taken per day during tracking arcs<br>(see Input)                                                                                                                                                                                                                                                               |
| SIGRS   | 1              | R           | Standard deviation in spin radius for equivalent station location errors (see Input)                                                                                                                                                                                                                                                                                     |
| S IGLØN | 1              | R           | Standard deviations in longitude for equivalent station location errors (see Input)                                                                                                                                                                                                                                                                                      |
| SIGZ    | 1              | R           | Standard deviation in z-height for equivalent station location errors (see Input)                                                                                                                                                                                                                                                                                        |
| CØRLØN  | 1              | R           | Station-to-station longitude correlation for equivalent station location errors (see Input)                                                                                                                                                                                                                                                                              |
| c) Comm | on/DIMENS/Cox  | variance di | mensions and sub-block locators                                                                                                                                                                                                                                                                                                                                          |
| LIST    | 30             | I .         | List of parameters included in augmented state vector in the order in which they appear in the covariance. LIST is used for locating elements of covariance and transition matrices where necessary. All parameters augmented are denoted by parameter number used for Input (see IAUG in Input). S/C state components - x,y,z,x,y,z - are denoted by -1,-2,-3,-4,-5,-6, |
| LISTDY  | 20             | I           | respectively.  List of dynamic parameters included in transition matrices read from STM file. Parameter numbering and ordering conventions are the same as for LIST (above).                                                                                                                                                                                             |

|         |           |             | en e                                                                                                                                                                                                                                                                                                 |
|---------|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 1         | , t=        | <b>37</b>                                                                                                                                                                                                                                                                                                                                |
| Name    | Dimension | <u>Туре</u> | Definition                                                                                                                                                                                                                                                                                                                               |
| LØCAUG  | 5x5       | I           | Array of locations of first word of covariance partitions within complete augmented covariance matrix. For example, since covariance blocks are ordered, S/C state, solve-for parameters, dynamic consider, measurement consider, ignore parameters,LØCAUG(1,3) locates the first word of the                                            |
|         |           |             | sub-block of correlations between the S/C state and the dynamic consider parameters.                                                                                                                                                                                                                                                     |
| LØCBLK  | 5x5       | I           | Used for locating first word of covariance partitions when sub-blocks are stored separately but contiguously in core (for further explanation see AUGCNV Sec 3.3.1 and PPAK Sec 3.3.31)                                                                                                                                                  |
| 'LØCLAB | 5         | I           | Locates within LIST and AUGLAB arrays the beginning of the parameter (LIST) or label (AUGLAB) lists for the five augmented state vector partitions (1) = 1 (2) = beginning of solve-for parameters (3) = beginning of dynamic consider parameters (4) = beginning of measurement consider parameter (5) = beginning of ignore parameters |
| NAUG    | 1         | I           | Dimension of augmented state vector                                                                                                                                                                                                                                                                                                      |
| NAUGSQ  | 1         | 1           | Total number of elements in augmented covariance matrix (=NAUG**2)                                                                                                                                                                                                                                                                       |
| NB LK   | 1         | I           | Total number of elements required to store individual, packed covariance partitions (for further explanation, see AUGCNV, Sec 3.3.1, and PPAK, Sec 3.3.31)                                                                                                                                                                               |
| NDIM    | 5         | I           | Dimensions of individual state vector partitions (1) = S/C state (2) = solve-for parameters (3) = dynamic consider parameters (4) = measurement consider parameters (5) = ignore parameters                                                                                                                                              |
| nphstm  | 1         | I           | Number of dynamic parameters (including S/C state) used included in state transition matrices on STM file.                                                                                                                                                                                                                               |

Name Type Dimension Definition Common/GUIDE/Guidance Related Variables Not Specifically Used for Scheduling or Propagation BURNP R Guidance interval parameters (1) - vehicle mass at guidance start (2) - thrust acceleration magnitude at guidance start (3) - vehicle mass at guidance end (4) - thrust acceleration magnitude at guidance end CØNWT 5 R Control weighting factors, following correspondences (1) - acceleration magnitude (2) - cone angle (3) - clock angle (4) - cutoff time (5) - startup time DELAY 1 R Guidance delay time for current maneuver S 6x5R Guidance sensitivity matrix of S/C state at cutoff time with respect to controls SMAT 15 Sensitivity matrix of target parameters w.r.t. R control parameters TARWT - 3 R Target parameter weights TBURN 1 R Length of burn interval for current guidance maneuver TGSTØP 1 R Stop time for integrator if either guidance or prediction requires integration of transition matrices to some time past TFINAL. For both guidance and prediction TDUR (Common/TIME/) is defined according to the maximum of TGSTOP and TFINAL TOFF 1 R Cutoff time for current guidance maneuver TON 1 R Execution time for current guidance maneuver UMAX 1 5 R Maximum (10) control corrections allowed VARDV 4 R Array of variances of delta-V execution error parameters (1) - magnitude proportionality (100%<sup>2</sup>) (2) - magnitude resolution  $(km^2/s^2)$ (3) - in-ecliptic pointing (rad<sup>2</sup>) (4) - out-of-ecliptic pointing (rad<sup>2</sup>) VARMAT 18 R Variation matrix, sensitivity of target conditions with respect to S/C state at cutoff time IPOL. 1 Ι Guidance policy flag for current guidance event (see IGPQL, Input) IREAD 1 Ι Read policy for namelist \$GEVENT for current guidance event (see IGREAD, Input) 1 NCON Ι Number of controls to be used for low thrust

guidance

e) Common/KEPC $\phi$ N/Transformations Required When Ephemeris Body State is in Keplerian Elements

Common block KEPCØN has been deleted.

#### f) Common/LABEL/Labeling Arrays

| Name     | Dimension | Туре     | Definition                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUGLAB . | 30        | Н        | Array of parameter labels, AUGLAB(I) contains a six-character Hollerith label which corresponds to the parameter number in LIST(I) (see LIST, Common/DIMENS/)                                                                                                                                                                                                    |
| EVLAB    | 2x5       | н        | Array of event labels (1,1),(2,1) - propagation (1,2),(2,2) - eigenvector (1,3),(2,3) - thrust (1,4),(2,4) - guidance (1,5),(2,5) - prediction                                                                                                                                                                                                                   |
| JØBLAB   | 10        | н .      | Run identifying label input through namelist \$GØDSEP and printed at the top of the first page of each measurement and event print                                                                                                                                                                                                                               |
| MESLAB   | 2×10      | Н        | Array of measurement labels used for printing in MEASPR (see MEASPR, sec. 3.3.22 for further details)                                                                                                                                                                                                                                                            |
| PGIAB    | 5x5       | <b>H</b> | Array of labels for control covariance sub-<br>blocks, used primarily for punching. Upper<br>triangle elements are identical to those names<br>used for control uncertainty input (CXSG,CXUG<br>etc). Lower triangle blocks correspond to<br>transposes of upper triangle blocks their<br>labels are so denoted by an added dollar sign<br>(CXSG\$,CXUG\$, etc). |

| Name    | Dimension      | Туре      | Definition                                                                                                                                                                                                                                                                                                     |
|---------|----------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLAB    | 5×5            | Н         | Array of labels for knowledge covariance sub-blocks. Upper triangle elements are identical to those names used for knowledge uncertainty input (CXS, CXU, etc). Lower triangle blocks correspond to transposes of upper triangle blocks their labels are so denoted by an added dollar sign (XS\$, CXUS, etc). |
| VECLAB  | 2×5            | Н         | Array of word labels for augmented state vector partitions                                                                                                                                                                                                                                                     |
|         |                |           | (1,1),(2,1) - state<br>(1,2),(2,2) - solve-for<br>(1,3),(2,3) - dynamic<br>(1,4),(2,4) - measurement<br>(1,5),(2,5) - ignore                                                                                                                                                                                   |
| g) Comm | non/LØCATE/Par | ameters U | sed To Locate Matrices In Blank Common                                                                                                                                                                                                                                                                         |
| P       | 1              | I         | Location of current knowledge covariance in blank common                                                                                                                                                                                                                                                       |
| PG      | 1              | I         | Location of current control covariance in blank common, if guidance events are included                                                                                                                                                                                                                        |
| PWLS    | 1              | I         | Location of weighted least squares reference covariance in blank common if using sequential weighted least squares OD algorithm                                                                                                                                                                                |
| PHI PHI | 1              | I         | Location of complete augmented transition matrix in blank common if not using covariance integration option                                                                                                                                                                                                    |
| PTEMP   | 1              | I         | Location in blank common of temporary working area the size of the augmented covariance (and therefore transition matrix, also) By convention the output of COVP is always located by PTEMP                                                                                                                    |
| PLØCAL  |                | I         | Location in blank common of local working storage area the size of the augmented covariance matrix. This area is intended to be used locally within a subroutine and not to be saved for use in another subroutine.                                                                                            |

| Name  | Dimension | <u>Type</u> | Definition                                     |
|-------|-----------|-------------|------------------------------------------------|
| H     | 1         | I           | Location of observation matrix in blank common |
| GA IN | 1         | ı           | Location of gain matrix in blank common        |
| PG1   | 1         | I           | Locations of four augmented covariance         |
| PG2   | 1         | I .         | size blocks in blank common used for           |
|       |           |             | guidance computations                          |

| h) Common/LøGIC/Logical Variables |    |          |                                                                                                                                                                                                                                                 |  |  |
|-----------------------------------|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CHEKPR                            | 10 | <b>L</b> | Array of flags controlling checkout print options (see Input)                                                                                                                                                                                   |  |  |
| DYNØIS                            | 1  | <b>L</b> | Flag controlling computation of effective process noise = TRUE., compute effective process noise = FALSE, do not compute effective process noise                                                                                                |  |  |
| GAINCR                            | 1  | L        | Flag controlling creation of GAIN file (TAPE 4) = TRUE, create GAIN file = FALSE, do not create GAIN file                                                                                                                                       |  |  |
| GENC <b>ØV</b>                    | 1  | L        | Flag indicating if current run is generalized covariance run = TRUE, generalized covariance run = FAISE, not generalized covariance run                                                                                                         |  |  |
| MESH                              | 1  | L        | Flag indicating if scheduled trajectory time can be meshed with some time print on the STM file within specified forward and backward tolerances (TØLFØR, TØLBAK, common/PRØPR/) = •TRUE•, meshing successful = •FALSE•, meshing not successful |  |  |
| PDØT                              | 1  | L        | Flag controlling covariance propagation TRUE., propagate by integration of covariance variational equations FALSE., propagate by state transition matrices                                                                                      |  |  |

| <u>Name</u> | Dimension | <u>Type</u> | Definition                                                                                                                                                                                                                                                                                                                                   |
|-------------|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRINT       | 1         | L           | Flag controlling measurement print TRUE., causes full print before and after current measurement FALSE., suppresses measurement print except for that on SUMMARY file if summary print requested (see SUMARY, common/LØGIC/)                                                                                                                 |
| PRNCØV      | 5         | L           | Array of flags controlling print options on covariance sub-blocks (see Input)                                                                                                                                                                                                                                                                |
| PRNSTM      | 5         | L           | Array of flags controlling print options on transition matrix partitions (see Input)                                                                                                                                                                                                                                                         |
| PRØPG       | 1         | L           | Flag controlling propagation of control covariance =.TRUE., propagate control simultaneously with knowledge covariance =.FALSE., do not propagate control covariance                                                                                                                                                                         |
| PUNCHE      | 5         | L           | Array of flags controlling punching of complete augmented state uncertainties for different event types (see Input).                                                                                                                                                                                                                         |
| SCHFTL      | 1         | L           | Flag controlling termination or continuation of run after mesh failure on STM file if MESH = .TRUE., SCHFTL has no effect. if MESH = .FALSE., then SCHFTL = .TRUE., will terminate error analysis processing, while SCHFTL = .FALSE., will result in diagnostic print and the currently scheduled measurement or event will not be processed |
| SUMARY      | 1         | L           | Flag controlling SUMMARY file print =.TRUE., prints summary information for all measurements on SUMMARY file (TAPE 8) =.FAISE., no summary print                                                                                                                                                                                             |
| VRNIER      | 1         | L           | Flag indicating if current guidance event is a vernier (=.TRUE.) or a primary (=.FALSE.)                                                                                                                                                                                                                                                     |

i) Common/MEASI/Measurement Related Integer Variables

IAUGPH 1 I Parameter number of first ephemeris element as used for input (See IAUG, Input).

| Name                    | <u>Dimension</u> | Type        | Definition                                                                                                                                                                                                                          |
|-------------------------|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IAUGST                  | 1                | I           | Parameter number for first station location parameter                                                                                                                                                                               |
| IBAZEL                  | 1                | I           | Parameter number for first azimuth-elevation angle bias parameter                                                                                                                                                                   |
| IBDIAM                  | 1                | ı           | Parameter number for apparent planet diameter measurement bias                                                                                                                                                                      |
| Івнс <b>ø</b> 2         | 1                | I           | Parameter number for horizon scanner altitude bias                                                                                                                                                                                  |
| IBHZS                   | 1                | I           | Parameter number for horizon scanner angle bias                                                                                                                                                                                     |
| IB STAR                 | 1                | I           | Parameter number of first star-planet angle measurement bias                                                                                                                                                                        |
| IB 2W AY                | 1                | I           | Parameter number of first 2-way DSN measure-<br>ment bias term                                                                                                                                                                      |
| IB 3W AY                | 1                | I           | Parameter number of first 3-way DSN measurement bias term                                                                                                                                                                           |
| IDATYP                  | 1                | I           | Leading digit of decoded measurement type =1, ground-based range-rate =2, ground-base range =3, azimuth-elevation angles =4, on-board optics - star-planet angle =5, on-board optics - apparent planet diameter                     |
| IDMAX                   | 1                | I           | Maximum number allowed to be assigned to a dynamic parameter. All parameter numbers less than or equal to IDMAX are assumed to correspond to dynamic parameters. Those greater than IDMAX are assumed to be measurement parameters. |
| IGAIN                   | 1                | I           | Flag indicating gain computation algorithm to be used (see Input)                                                                                                                                                                   |
| ISTA1<br>ISTA2<br>ISTA3 | 1<br>1<br>1      | I<br>I<br>I | Parameters used in decoding measurement codes. For further explanation see ØBSERV, sec. 3.3.26.                                                                                                                                     |
| MAX STA                 | 1                | I           | Maximum number of stations for which station location errors and range and range-rate biases can be augmented to the state (maximum number accommodated by TAUG array). See ØBSERV, sec. 3.3.26 for further explanation.            |

| Name    | Dimension     | Type        | Definition                                                                                                                                                                                                                                                                                                                   |
|---------|---------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NEPHEL. | 1             | I           | Number of ephemeris elements augmented to state for current error analysis run                                                                                                                                                                                                                                               |
| NR      | 1             | I           | Dimension of observation vector for measurement currently being processed                                                                                                                                                                                                                                                    |
| n sølve | 1             | I           | Total number of variables and parameters being estimated by OD algorithm (number of S/C state variables plus number of solve for parameters)                                                                                                                                                                                 |
| n st    | 1             | I           | Total number of ground stations defined in STALØC array for possible use in ground-based observations (maximum 9). For further explanation see NST and STALØC, in Input.                                                                                                                                                     |
| j) Comm | non/MEASR/Mea | surement Re | elated Real Variables                                                                                                                                                                                                                                                                                                        |
| AZMUTH  | 1             | R           | Azimuth angle in degrees from station ISTA1 (ØBSERV, sec 3.3.26) computed only for azimuth-elevation angle measurements                                                                                                                                                                                                      |
| AZMTH2  | 1             | R           | Azimuth angle in degrees from station ISTA2 (ØBSERV, sec 3.3.26) computed only for azimuth-elevation angle measurements and if ISTA2 > 0.                                                                                                                                                                                    |
| BDYDEC  | 1             | R           | Declination angle of the target body (in degrees) as seen from the designated observation                                                                                                                                                                                                                                    |
| BDYRTA  | 1             | R           | Right ascension angle of the target body (in degrees) as seen from the designated observatory                                                                                                                                                                                                                                |
| ELEV    | 1             | R           | Elevation angle in degrees from station ISTAl $(\emptyset B  SERV,  sec  3.3.26)$ computed for all groundbased measurements                                                                                                                                                                                                  |
| ELEV2   | 1             | R           | Elevation angle in degrees from station ISTA2 (ØBSERV, sec 3.3.26) computed for all ground-based measurements when ISTA2 > 0                                                                                                                                                                                                 |
| нс∅2    | 1             | R           | Altitude of CO2 horizon for horizon scanner measurement.                                                                                                                                                                                                                                                                     |
| R       | 16            | R           | Dual purpose measurement noise matrix. Before<br>the knowledge covariance is updated at a<br>measurement, R is the covariance of the mea-<br>surement white noise. After the knowledge<br>covariance is updated, R is the measurement<br>residual matrix. For further explanation see<br>Vol. I, Analytical Manual, sec 6.4. |
| RANGE   | 1             | R           | Range in km from station ISTA1 (ØBSERV, sec 3.3.26) computed for all ground-based mea-                                                                                                                                                                                                                                       |

surements

|        | •         |             |                                                                                                                                                                                                                                                                                                                                                   |
|--------|-----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | Dimension | <u>Type</u> | <u>Definition</u>                                                                                                                                                                                                                                                                                                                                 |
| RANGE2 | 1         | R           | Range in km from station ISTA2 (ØBSERV, sec 3.3.26) computed for all ground-based measurements if ISTA2 > 0                                                                                                                                                                                                                                       |
| RRATE  | 1         | R           | Range-rate in km/s from station ISTA1 (ØBSERV, sec 3.3.26) computed for doppler (range-rate) measurements only                                                                                                                                                                                                                                    |
| RRATE2 | 1         | R           | Range-rate in km/s from station ISTA2 (ØBSERV, sec 3.3.26) computed for doppler (range-rate) measurements only, and only if ISTA2 > 0                                                                                                                                                                                                             |
| SCDEC  | 1         | R           | S/C geocentric equatorial declination in degrees, computed for all ground-based measurements                                                                                                                                                                                                                                                      |
| SCGLØN | 1         | R           | S/C geocentric equatorial longitude in degrees, computed for all ground-based measurements                                                                                                                                                                                                                                                        |
| STALØC | 3×9       | R           | Array of station locations in cylindrical equatorial coordinates STALØC (1,I) = spin radius (km) STALØC (2,1) = longitude (degrees externally, radians internally) STALØC (3,I) = height (km) (See Input)                                                                                                                                         |
| STARDC | 3x9       | R           | Array of ecliptic star direction cosines (or, equivalently, unit vectors in star directions) See Input                                                                                                                                                                                                                                            |
| STPANG | 3         | R           | Array of star-planet angle measurements in degrees, computed only for star-planet angle measurements.  (1)-angle between planet/target body and star ISTA1 (ØBSERV, sec 3.3.26)  (2),(3) - same as (1) above only for stars ISTA2 and ISTA3 respectively                                                                                          |
| VARMES | 15        | R           | Array of measurement white noise variance.  Default values and input are by standard deviations in array SIGMES (see Input) internal values require units conversion as well as squaring.  (1), 2-way doppler (km²/s²)  (2), 2-way range (km²)  (3), 3-way equivalent frequency drift (km²/s²)  (4), 3-way range (km²)  (5), azimuth angle (rad²) |

| <u>Name</u> | Dimension      | <u>Type</u> | Definition                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                |             | <ul> <li>(6), elevation angle (rad²)</li> <li>(7), on-board optics-star-planet angle (rad²)</li> <li>(8), on-board optics-apparent planet diameter (rad²)</li> <li>(9), on-board optics-center finding uncertainty in conjunction with star-planet angle (rad²)</li> <li>(10), horizon scanner altitude uncertainty (km²)</li> <li>(11), horizon scanner angle uncertainty (rad²)</li> <li>(12)-(15), not used.</li> </ul> |
| k) Co       | mmon/PRØPI/Pro | pagation :  | Related Integer Variables                                                                                                                                                                                                                                                                                                                                                                                                  |
| IPRØP       |                | I           | Flag controlling print options with propagation event =0, no print =1, print standard deviations and correlation coefficients for S/C state vector only =2, full eigenvector print                                                                                                                                                                                                                                         |
| ITVERR      | 1              | I           | Flag for type of second thrust noise process (See Input)                                                                                                                                                                                                                                                                                                                                                                   |
| LAFTER      | 1              | I           | not used                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LBURN       | 1              | I           | not used                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LDELAY      | . 1            | I           | not used                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1) Con      | mmon/PRØPR/Pro | pagation F  | Related real Variables                                                                                                                                                                                                                                                                                                                                                                                                     |
| EPTAU       | 3x2            | R           | Array of correlation times for thruster process noise terms; EPTAU(I,J) represents correlation time for process whose variance is EPVAR(I,J) (See Below)                                                                                                                                                                                                                                                                   |
| EPVAR       | 3×2            | R           | Array of variances for thruster noise processes. All elements are used for covariance integration, while only elements EPVAR(I,1) are used in the effective process noise model.                                                                                                                                                                                                                                           |
|             |                |             | Primary processes (1,1), magnitude variance (2,1), cone angle pointing variance (3,1), clock angle pointing variance                                                                                                                                                                                                                                                                                                       |
|             |                |             | Secondary processes (1,2), magnitude variance (2,2), cone angle pointing variance (3,2), clock angle pointing variance                                                                                                                                                                                                                                                                                                     |
| GMASS       | 1              | R           | not used                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                          | Dimension     | <u>Type</u> | Definition                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|---------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GTBURN                   | 3x3           | R           | GT matrix (See DYNØ, Section 3.3.10) evaluated at the beginning of a guidance burn interval.                                                                                                                                                                                                                                                                                          |
| GTDLAY                   | 3x3           | Ř           | GT matrix (See DYNØ, Section 3.3.10) evaluated at cutoff time of guidance interval.                                                                                                                                                                                                                                                                                                   |
| GTSAVE                   | 3×3           | R           | GT matrix (See DYNØ, Section 3.3.10) saved at beginning of each propagation interval during normal knowledge propagation.                                                                                                                                                                                                                                                             |
| Q                        | 6x6           | R           | Effective process noise matrix computed in DYNØ (Section 3.3.10).                                                                                                                                                                                                                                                                                                                     |
| SAVACC                   | 3             | R           | Thrust acceleration magnitude for bias, and first and second noise processes.                                                                                                                                                                                                                                                                                                         |
| SIGØN                    | 1             | R           | Standard deviation in thrust start-up time                                                                                                                                                                                                                                                                                                                                            |
| TDUMP                    | 1             | R           | Time at which a core dump is desired.                                                                                                                                                                                                                                                                                                                                                 |
| TG                       | 1             | R           | Input epoch for control uncertainties if different from epoch for knowledge uncertainties.                                                                                                                                                                                                                                                                                            |
| T <b>Ø</b> LBAK          | 1             | R           | Backward tolerance on reading transition matrices from STM file.                                                                                                                                                                                                                                                                                                                      |
| T <b>Ø</b> LF <b>Ø</b> R | 1             | R           | Forward tolerance on reading transition matrices from STM file.                                                                                                                                                                                                                                                                                                                       |
|                          |               |             |                                                                                                                                                                                                                                                                                                                                                                                       |
| XG                       | 6             | R           | not used.                                                                                                                                                                                                                                                                                                                                                                             |
|                          |               |             | not usedelated Integer Variables                                                                                                                                                                                                                                                                                                                                                      |
| m) Commo                 | on/SCHEDI/Sch | eduling R   | elated Integer Variables                                                                                                                                                                                                                                                                                                                                                              |
|                          |               |             | elated Integer Variables  Array of guidance policy control flags =0, no maneuver, print control uncertainties =1, target to cartesian state, XYZ, at time specified by TIMFTA                                                                                                                                                                                                         |
| m) Commo                 | on/SCHEDI/Sch | eduling R   | elated Integer Variables  Array of guidance policy control flags =0, no maneuver, print control uncertainties =1, target to cartesian state, XYZ, at time                                                                                                                                                                                                                             |
| m) Commo                 | on/SCHEDI/Sch | eduling R   | elated Integer Variables  Array of guidance policy control flags =0, no maneuver, print control uncertainties =1, target to cartesian state, XYZ, at time specified by TIMFTA =2, two variable B-plane targeting (B·T, B·R) =3, three variable B-plane targeting (B·T,                                                                                                                |
| m) Commo                 | on/SCHEDI/Sch | eduling R   | elated Integer Variables  Array of guidance policy control flags =0, no maneuver, print control uncertainties =1, target to cartesian state, XYZ, at time specified by TIMFTA =2, two variable B-plane targeting (B·T, B·R) =3, three variable B-plane targeting (B·T, B·R, T <sub>SOI</sub> ) =4, closest approach targeting (radius of closest approach, inclination, time of       |
| m) Commo                 | on/SCHEDI/Sch | eduling R   | elated Integer Variables  Array of guidance policy control flags =0, no maneuver, print control uncertainties =1, target to cartesian state, XYZ, at time specified by TIMFTA =2, two variable B-plane targeting (B·T, B·R) =3, three variable B-plane targeting (B·T, B·R, TSOI) =4, closest approach targeting (radius of closest approach, inclination, time of closest approach). |

| Name    | Dimension | Type | Definition                                                                                                                                     |
|---------|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| MCØDE   | 50        | I .  | Array of measurement (and propagation event) codes used in scheduling (See SCHED, Section 3.3.36).                                             |
| MCØUNT  | 1         | r .  | Measurement counter, total cumulative number of measurements processed.                                                                        |
| MESEVN  | 1         | r    | Current measurement or event code.                                                                                                             |
| MNEXT   | 1         | I    | Code for measurement (or propagation event) to be scheduled after the current event.                                                           |
| MPCNTR  | 11        | ·I   | Array of counters for classes of data types used for measurement print control (See Input).                                                    |
| MPFREQ  | 11 .      | I    | Array of print frequencies for measurement print control (See Input).                                                                          |
| NCNTE   | 1         | 1    | Counter indicating number of current (or most recently executed) eigenvector event.                                                            |
| NCNTG   | 1         | I    | Counter indicating number of current (or most recently executed) guidance event.                                                               |
| NCNTP   | 1 .       | 1    | Counter indicating number of current (or most recently executed) prediction event.                                                             |
| NCNTT   | 1         | 1    | Counter indicating number of current (or most recently executed) thrust event.                                                                 |
| NEIGEN  | 1         | I    | Total number of eigenvector events to be processed.                                                                                            |
| NGUID   | 1 .       | ī    | Total number of guidance events to be processed.                                                                                               |
| NPRED   | 1         | I    | Total number of prediction events to be processed.                                                                                             |
| NSCHED  | 1         | 1    | For input, number of scheduling cards to be read. During execution, number of elements of SCHEDM (common/SCHEDR/) to be tested for scheduling. |
| NTHRST. | 1         | ĭ    | Total number of thrust events to be processed.                                                                                                 |

| Name            | Dimension      | Type       | Definition                                                                                                                                                                                                            |
|-----------------|----------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                |            |                                                                                                                                                                                                                       |
| n) Comm         | non/SCHEDR/Sch | neduling R | elated real Variables                                                                                                                                                                                                 |
| DELTIM          | 1              | R          | Propagation interval length, time between previously and currently scheduled event. DELTIM computed between STM file time when reading STM file, and between actual scheduled times for PDØT and STM file generation. |
| SCHEDM          | 3 <b>x5</b> 0  | R          | Array of measurement schedule times.                                                                                                                                                                                  |
|                 |                |            | SCHEDM(1,I) = Next time to be scheduled for measurement type MCØDE(I) SCHEDM(2,I) = Stop time for MCØDE(I) SCHEDM(3,I) = Time increment for scheduling MCØDE(I).                                                      |
| TCURR           | 1              | R          | Current trajectory time.                                                                                                                                                                                              |
| TCUT <b>Ø</b> F | 20             | R          | Array of guidance event cutoff times.                                                                                                                                                                                 |
| TDELAY          | 20             | R          | Array of guidance event delay times.                                                                                                                                                                                  |
| TEIGÈN          | 20             | R          | Acray of eigenvector event times.                                                                                                                                                                                     |
| TFINAL          | 1              | R          | Final trajectory time for current run.                                                                                                                                                                                |
| TGUID           | 20             | R          | Array of guidance event times.                                                                                                                                                                                        |
| TIMFTA          | 1              | R          | Target condition evaluation time for fixed time of arrival targeting.                                                                                                                                                 |
| TMNEXT          | 1              | R          | Time of next measurement (or propagation event) to be scheduled (See SCHED, Section 3.3.36).                                                                                                                          |
| TPAST           | 1              | R ·        | Time of most recently scheduled measurement or event. Set to previous scheduled time when generating STM file or executing PDØT. Set to previous STM file time when reading from STM file.                            |
| TPRED           | 10             | R          | Array of prediction event times.                                                                                                                                                                                      |
| TPRED2          | 10             | R          | Array of times predicted to for prediction events.                                                                                                                                                                    |

| <u>Name</u> | Dimension | Type | Definition                                        |
|-------------|-----------|------|---------------------------------------------------|
| TSTM        | 1         | R    | Current time from STM file when reading STM file. |
| TTHRST      | 40        | R    | Array of thrust event times.                      |

#### 2.6.4' SIMSEP Common Blocks

The SIMSEP overlay of MAPSEP has seven common blocks: DYNØS, ISIM1, ISIM2, SIM1, SIM2, SIMLAB and STØREC. DYNØS contains the random number seed and thrust noise terms; it is essential to all SIMSEP routines that call the random number generator, RNUM. SIM1 and ISIM1 are common blocks containing information essential to the operation of SIMSEP and execution of the Monte Carlo loop. SIM1 contains real data and ISIM1, integer data. SIM2 and ISIM2 have a correspondence similar to SIM1 and ISIM1 and contain accumulated statistical data. SIMLAB contains Hollerith labels used throughout the program. Finally, STØREC is a storage common block with three sets of data, each pertaining to the actual, estimated, and reference world integrating conditions.

a) Common/DYNØS/Process Noise Variables

| Name    | Dimension      | Type    | Definition                  |
|---------|----------------|---------|-----------------------------|
| IRAN    | 1              | I       | Random number seed.         |
| TVERR   | 6x3            | R       | Time varying thrust errors. |
| b) Comm | on/ISIM1/SIMSE | Integer | Variables                   |

| IGL    | 5  | I          | Guidance Flag.                                                                                                                            |
|--------|----|------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| INREF  | 1  | I          | State vector read-in flag.                                                                                                                |
| IØUT   | 1  | I          | Printout frequency flag.                                                                                                                  |
| IPUNCH | .1 | I          | Punch output flag.                                                                                                                        |
| ITMX   | 5  | Ι          | Maximum number of iterations allowed in non-<br>linear guidance.                                                                          |
| ISTM   | 5  | , <b>I</b> | Flag vector to indicate whether trajectory sensitivities are to be computed by numerical differencing or integrated variational equations |

| Name    | Dimension          | Type           | Definition                                                                   |
|---------|--------------------|----------------|------------------------------------------------------------------------------|
| JMAX    | 1                  | I              | Number of the last active thrust control phase.                              |
| JMIN    | 1                  | I              | Number of the first active thrust control phase.                             |
| KDIM    | 5                  | I              | Dimension of the augmented knowledge covariance.                             |
| KTERR   | 5                  | I              | Option flag for calculating target errors after a guidance correction.       |
| LSTAR   | 6x5                | I              | List of target variable codes.                                               |
| MTPH    | 5                  | I              | Thrust phase number at a guidance event.                                     |
| NCYCLE  | 1                  | I              | Number of Monte Carlo cycles.                                                |
|         | ·                  |                | •                                                                            |
| NGUID   | 1                  | Ι              | Number of the guidance event                                                 |
| NTAR    | 5                  | I              | Number of target variables.                                                  |
| NTC     | 5                  | I              | Number of control variables.                                                 |
| c) Comm | <br>non/ISIM2/Mont | e Carlo In     |                                                                              |
| KATH    | 1                  | I              | Dimension of the ATHC $\emptyset$ V covariance matrix (see Common SIM2).     |
| MC      | 1                  | I              | Number of Monte Carlo cycles executed previously.                            |
| N SAMP  | 5                  | , I            | Number of Monte Carlo cycles executed previously for a given guidance event. |
| d) Comm | on/SIMLAB/SIM      | <br>SEP Labels |                                                                              |
| LABCON  | 12x5               | I              | Stores Hollerith data pertaining to control variables.                       |
| LABTAR  | 12x5               | I              | Store Hollerith data pertaining to target variables.                         |
| NAMEX   | 12                 | I              | Store Hollerith state vector labels.                                         |

e) Common/SIM1/Trajectory Simulation Real Variables

| Name   | Dimension     | Type | Definition                                                        |  |  |
|--------|---------------|------|-------------------------------------------------------------------|--|--|
| AØK    | 1             | R    | Backup convergence tolerance for the weak convergence test.       |  |  |
| CØNWT  | 6x5           | R    | Control weights.                                                  |  |  |
| CPMAX  | 1             | R    | Computer processing time limit.                                   |  |  |
| DVMDØT | 1             | R    | Mass flow rate for chemical propulsion system.                    |  |  |
| DVMXN  | 1             | R    | Maximum delta-velocity magnitude step.                            |  |  |
| EXVERR | 4 .           | R    | Midcourse velocity correction execution errors.                   |  |  |
| GMERR  | 3             | R    | Gravitational constants errors.                                   |  |  |
| MEND   | 1             | R    | S/C reference mass at TEND.                                       |  |  |
| PG     | 6 <b>x</b> 7  | R    | Spacecraft control error matrix (eigenvector/ eigenvalue format). |  |  |
| RMCE   | 5             | R    | S/C reference mass at a guidance event.                           |  |  |
| RMTAR  | 5             | R    | S/C reference mass at a target point.                             |  |  |
| RX GE  | 6x5           | R    | Reference state vector at a guidance event.                       |  |  |
| RXTAR  | 6×5           | R    | Reference state vector at a target point.                         |  |  |
| SCERR  | 10            | R    | Spacecraft errors.                                                |  |  |
| SMAT   | 36x5          | R    | Sensitivity or guidance matrix.                                   |  |  |
| SPFIMP | 1             | R    | Specific impulse for chemical propulsion system.                  |  |  |
| TCERR  | 6 <b>x</b> 20 | R    | Thrust bias errors.                                               |  |  |
| TE PH  | 2             | R    | Epoch of evaluation of the ephemeris errors.                      |  |  |
| TGE    | 5             | R    | Guidance event epoch                                              |  |  |
| TØL    | 5             | R    | Target condition tolerances.                                      |  |  |
| HPERT  | 6             | R    | Thrust control perturbation levels.                               |  |  |
| J2ERR  | 1             | R    | J2 error.                                                         |  |  |

| Name                                      | Dimension | <u>Type</u> | Definition                                                                                  |  |  |
|-------------------------------------------|-----------|-------------|---------------------------------------------------------------------------------------------|--|--|
| TTAR                                      | 5         | R           | Target epoch.                                                                               |  |  |
| UNTAR                                     | 6x5       | R           | Conversion factor for converting target variables from internal to external printout units. |  |  |
| XEND                                      | 6         | R           | Reference state vector at TEND.                                                             |  |  |
| XTARG                                     | 6x5       | R           | Reference trajectory target variables at TTAR.                                              |  |  |
| f) Common/SIM2/Monte Carlo Real Variables |           |             |                                                                                             |  |  |
| ADVT                                      | 2         | R           | Total delta-velocity magnitude statistics.                                                  |  |  |
| AMASS                                     | . 2       | R           | Accumulated final spacecraft mass statistics.                                               |  |  |
| ATH <b>CØ</b> V                           | 420       | R           | Accumulated total thrust control statistics.                                                |  |  |
| CNCØV                                     | 42x5      | R           | Accumulated active thrust control error statistics.                                         |  |  |
| DACQA                                     | 3x4x5     | R           | Accumulated delta-velocity vector error matrix.                                             |  |  |
| DVMAGS                                    | .2x5      | R           | Accumulated delta-velocity magnitude statistics.                                            |  |  |
| ENDC <b>Ø</b> V                           | 6×7       | R           | Spacecraft control error covariance at the final trajectory time TEND.                      |  |  |
| GCCØV                                     | 6x7x6     | R           | Accumulated spacecraft control error statistics evaluated at guidance events.               |  |  |
| GMCØV                                     | 2×5       | R           | Accumulated mass error statistics evaluated at guidance events.                             |  |  |
| TCCØV                                     | 6x7x5     | R           | Accumulated spacecraft control error statistics evaluated at the target points.             |  |  |
| TERCØV                                    | 42×5      | R           | Accumulated target error statistics.                                                        |  |  |
| tmcøv                                     | 2×5       | R           | Accumulated mass error statistics evaluated                                                 |  |  |

at target points.

#### g) Common/STØREC/Stored Variables

| Name   | Dimension | Type | Definition                             |
|--------|-----------|------|----------------------------------------|
| SCRA1  | 1         | R    | Stored radiation pressure coefficient. |
| SEXV1  | 1         | R    | Stored exhaust velocity.               |
| SNTPH1 | 1         | R    | Stored thrust phase number.            |
| SPM1   | 11        | R    | Stored planetary masses.               |
| SPO1   | 1         | R    | Stored electric power constant.        |
| SSCM1  | 1         | R    | Stored S/C mass.                       |
| SSM1   | 1         | R    | Stored solar mass.                     |
| STEFF1 | 1         | R    | Stored thruster efficiency.            |
| STHRT1 | 6x20      | R    | Stored thrust control profile.         |

Note that there are, in fact, three sets of data in STØREC corresponding to post-scripts, 1, 2, and 3. For example, SCRA1 contains the radiation pressure coefficient used while integrating an actual trajectory. SCRA2 also contains a radiation pressure coefficient but is used while integrating an estimated trajectory. Likewise, SCRA3 and all post-script-3 constants are used for generating the reference trajectory.

#### 3.0 Subroutine Descriptions

3.1 Subroutine: MAPSEP

Purpose:

MAPSEP is the executive routine that selects the mode of operation (primary overlay): TOPSEP, GODSEP, SIMSEP, or REFSEP. In addition, MAPSEP calls a fifth primary, overlay DATAM, to initialize many trajectory parameters, and to print the initial trajectory information.

Input/Output:

| Input/Output:   | Input/ | Argument/ |                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|--------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Variable</u> | Output | Common    | Definition                                                                                                                                                                                                                                                                                                                                      |
| MØDE            | I      | C         | Flag determines the program's operational mode.  = ± 1, Targeting and Optimization (TØPSEP).  = ± 2, Error analysis (GØDSEP).  = ± 3, Simulation (SIMSEP).  = ± 4, Reference trajectory propagation (REFSEP).  Positive values will cause recycling back to the MAPSEP main, while negative numbers will cause recycling back to the mode main. |
| ICYCLE          | 0      | С         | Flag used for writing the mode's namelist onto disc when recycling back to the mode's main.  = 0, Do not store the namelist variables on disc.  = 1, Store the namelist variables on disc.                                                                                                                                                      |
| INIT            | O      | С         | Flag used to read namelist \$TRAJ from disc during recycling.                                                                                                                                                                                                                                                                                   |

#### Local Variables:

| Variable | Definition                                                                                 |  |  |
|----------|--------------------------------------------------------------------------------------------|--|--|
| ISEND    | Index used to select the program's mode of operation. ISEND is the absolute value of MØDE. |  |  |

Subroutines Called: DATAM, TOPSEP, CODSEP, SIMSEP, REFSEP

Common Blocks:

(BLANK), CØNST, CYCLE, EDIT, EPHEM, TIME, TRAJ1,

TRAJ2, TRKDAT, WORK

#### Logic Flow:



3.1.1 Subroutine: BLKDAT

Purpose: To initialize default values of program

constants.

Method: DATA statements.

Remarks: The following four pages contain a listing of

 ${\tt BLKDAT}$  with respect to the default constants

in MAPSEP. The variables are defined in

appropriate common blocks (Section 2.6).

Common CØNST: AU, PI, RAD, TM, FØP, BIG, SMALL

Common EPHEM: DJ1900, SUN, PLANET, SMASS, PMASS,

CSAX, CECC, CINC, COMEG, COMEGT, CMEAN, EMN,

SPHERE, SRADIS, PRADIS

Common TRAJ1: UP, VP

```
BLKDAT-2
                                    57
 DATA AU/1.49597893E8/
 DATA BODY/12#6H
 DATA 0J1900/2415020.0/
 DATA PI, RAD/3.1415926535897932384,57.29577951308232/
 DATA TM/06400.0/
 DATA SMALL, BIG. FOP. FOV/1. E-20, 1. E20, 1. E-15, 1. E-25/
                           . SHMERCRY . SHVENUS . SHEARTH . SHMARS
 DATA SUN PLANET/6HSUN
$ 6HJUPITH,6HSATURN,6HURANUS,6HNEPINE,6HPLUTU ,6HENCKE ,6HMOUN
 DATA UP(1-1), UP(2-1), UP(3-1), VP(1-1), VP(2-1), VP(3-1)/0^{\circ}0.0/
 DATA SMASS.PMASS/
S
                 1.32712499611
                 2.618159769346472E+04+
М
٧
                 3.248601030054670£+05.
                 4.035039788677469E+05+
E.
                 4.282844386355556E+04+
Α
```

1.267077188380876E+08,

3.792652577732038£+07+ 5.787723462712586£+06+

6.8905762720564446+06.

7.324089348785859E+04,

4.898309970967646263

## SEMIMAJOR AXIS OF ORBIT (KM)

l.ú

S

U

N P

X

```
DATA CSAK/
                 5.790913494324970E+07.
٧
                 1.0820888330031876+08+
                                                U.
                 1.495979274075146E+08,
E
                 2.279410379820089E+08,
                                                U.
                 7.7832836649407586+08•
                 1.426990814457794£+09,
S
U
                 2.86962882v53J920E+09+
                                               -0.528276684144000L+04:
                                                1.8103828378023776+05+
                 4.4964717985893256+69+
Ν
                 5.8902137061467336+09,
                                                U.
۲
X
                 ŋ.
                                                U.
$/
```

### ECCENTRICITY OF PLANET ORBIT

```
DATA (CECC(I) + I = 1 + 20) /
                  2.056142100000000E-01,
                                                  2.04000000000000000000-05,
                 -3.000000000000000E-08.
М
                                                 -4./740000000000000E-05.
                  6.8206900000000000000-03,
٧
                  9.100000000000000E-08,
                                                  Ü.
٧
                  1.675104000000000E-02.
                                                 -4.180000000000000c-05.
£
                 -1.2600000000000000E-07,
E
                  9.33129000000000E-02,
                                                  Y.2064000000000000E-05,
                 -7.700000000000000E-08.
Α
                  4.833760000000000E-02.
                                                  1.63020000000000000000004-04.
J
                                                  U.
                  Ú.
```

```
8/
DATA (CECC(1) +1=21+40)/
                                               -3.4705000000000000E-04.
                 5.5890000000000000E-02.
S
5
                                                 2.7204000000000000t=04,
                  4.7046300000000000E-02,
U
                                                 Ü.
                 0.
U
                                                 7.701000000000000E-05.
                  8.528490000000000E-03+
N
                                                 0.
Ν
                  2.488033053626924E-01,
                                                 Ú.
ρ
                  U.
X
X
5/
     INCLINATION OF PLANE! URBIT
 DATA (CINC(1)+1=1+20)/
                                                 3.247766849752789L-U5.
                  1.222233228183338E-01.
М
                                                 0.
                 -3.19977u295322940E-07+
M
                                                 1.755510339297630E-05,
                  5.923002679072864E-02:
                                                 U.
                 -1.696847883883378E-08:
E
E
                                                -1.1780972450961806-05+
                  3.229440892606839E-02+
 A
                  2.2010541122373036-07.
                                                -9-696273622190714E-05•
                  2.2841026958113526+02+
 J
                                                  U.
 J
       (CINC(I) + I = 21 + 40)/
                                                 -7.757018897752580t-05;
                  4.350378604700200E-02.
 S
                  0.
 S
                                                  9.696273622190725E-06+
                   1.348654698110507E-02,
 U
 U
                                                 -1.599885147661470E-04.
                   3.105377071610904E-02+
 Ν
                                                  Ü.
                                                  Ū.
                   2.996706970859694E-01,
 ρ
                                                  0.
                   0.
                                                  0 .
                   Û.
 X
```

# LONGITUDE OF ASCENDING NODE OF PLANET ORBIT

```
DATA (COMEG(I) + I=1 , 20)/
                                               2.u68578773874119E-02,
                 8.228519595178838E-01+
М
                 3.0349336437457018-06.
М
                                               1.5705345274070976-02.
                 1.3226043500275471+00+
                 7.155849933176/71E-06+
E
Ε
                                               1.345634308877203L-02,
                 8.514840374154815E-01.
                                               -9.3084226773030825-08;
                -2.424058405547685E-08+
                                                1.764479392398155E-02+
                 1.735518077529711E+00,
J
                 0.
J
```

```
1/
 DATA (COMEG(1), I=21.40)/
                                                1.5239778696101496-02,
S
                 1.968444580475854E+00,
5
                                                8.912087492996046E=03,
                 1.282640770442747E+00+
U
U
                                                1.9230328586682176-02,
                 2.2807733833004146+00+
Ν
                 1.414337550102258E+00+
                                                0.
¥
ĸ
                 0.
X
                 U.
$/
    LONGITUDE OF PERIGEE OF PLANET ORBIT
 DATA (COMEGT(I) +I=1+20)/
                                                2.714840258929940E-02+
                 1.324699617794565E+00+
                                                Ú.
                 5.143873156572180E-06+
М
                 2.271787450583804E+00+
                                                c.45/486612586557t-02,
٧
                -1.704120089100021E-05+
٧
                                                3.000526416797356E-02,
E
                  1.7666363132790856+00,
                                                5.8177641733144526-08,
                  7.902463002085463E-06+
                                                J.212729365018996E-02,
                 5.033208058570250E+00+
A
                                               -2.0346988287710056-08,
                 2.2665039591a7080E-06,
                                                2.812302353243390c-02,
                 2.218562188703190E-01.
J
J
11
 DATA (COMEGI(I) \cdot 1 = 21 \cdot 40)
                                                3.419861162136240E-02.
                  1.539799665616077E+00+
S
S
                                                2.834608630711233L-02.
                  2.950242608382752E+00+
U
                                                U.
                 0.
IJ
                                                1.532704515870120E-02+
                  7.6352938179542566-01.
Ν
Ν
                                                Ü.
p
                  3.909919302791948E+00,
                                                0.
                  0.
                                                Ú.
X
                                                0.
X
    MEAN ANOMALY OF PLANET ORBIT
 DATA (CMEAN(I) + I=1 +20)/
                                                7.1424710007926486+02,
                  1./85111955351731E+00+
                  8.726646259971626E-09;
                                                U.
                  3.710626171888563E+00+
                                                2.796244623278380E+02,
                  1.682497398922535E-06,
٧
                                                1.720196976768520E+02,
                  6.256583784118874E+00,
E.
                 -1.954768762233648E-07,
                                               -1.221730476396035E-09+
E
                                                9.145887725994726E+01,
                  5.576840523254305E+00.
٨
                                                4.363323129985823L-10,
                  2.365444735227922E+07+
A
                                                1.4501919277574816+01,
                  3.930858175721440E+00+
```

```
6/
DATA
      (CMLAN(I)+I=21+40)/
                                                5.8371209897905496+00+
5
                 3.062640406251532E+00+
S
                                                U.
                                                2,0465479190585116+00+
U
                 1.297162152226178E+00,
U
                                                1.046371040833037E+00+
Ν
                 7.204851506367511E-01.
                                                6.9626357082989974-01.
                 3.993890006707340E+00•
μ
                                                U.
                 0.
                                                U.
                 0.
X
Χ
                 0.
$/
 DATA EMN/
                 4.523691515
                                               -0.00092422
                                                0.000000034
                 0.000036267
0
                                                0.001944367
                 5.63515154
                -0.000180205
                                               -0.000000209
                 4.719966573
                                                0.229971481
                -0.000019774
                                                0.000000033
                 0.089804108
I
                 0.054900489
E
                 3.54398440265
"DATA SPHEKE!
                    3.189878022841E+05 •
M
٧
                    1.458336566233£+06
E
                   2.1672261958726+06
Δ
                    1.563493250956E+06
J
                    7.664078431145E+07
S
                    9.3993533953966+07
                    1.010084500916E+08
U
                    1.677463630809c+08
                    4.8314593147556+07
X
                    8.5552811392236-06
 DATA SRAUIS.PRAUIS/
                    6.939926+05
S
                    2.435002+03
М
                    6.05000E+03
۷
                    6.37816E+93
E
                    3.39340E+03
                     7.13720E+04
                    6.0401UE+04
S
                    2.36500E+04
U
                     2.50020E+04
N
                     7.01600E+03
Р
                    0.0
                     1.73809E+03
  RETURN
  END
```

### 3.1.2 Subroutine: DATAM

Purpose:

To read input data and initialize trajectory and spacecraft parameters for all MAPSEP modes.

Method:

After DATAM executes the default value initialization, the namelist \$TRAJ is read. The dimensions and definitions for variables contained in
this namelist are discussed in detail in Section
2.1 of the User's Manual. The input data are
processed and stored in labeled common for subsequent use in any of the three possible modes.
User options specified by input determine the
degree of data preparation and the logic operations within the main cycle of the program.

Remarks:

Some variables appearing in DATAM are initialized from the namelist with units specified in the User's Manual. Before these variables are stored in common, they are converted, if necessary, to internal units which are: kg, kw, km, sec, km/sec, and radians

| Variable   | Input/<br>Output | Namelist/<br>Common | Definition                                           |
|------------|------------------|---------------------|------------------------------------------------------|
| ACC (STEP) | I                | N/C                 | Scaling factor of the integration step size.         |
| BIG        | o                | C                   | Large constant, 1*10 <sup>20</sup> .                 |
| ВØDY       | . 0              | С                   | Hollerith names of bodies considered in integration. |

| <u>Variable</u> | Input/<br>Output | Namelist/<br>Common | Definition                                                                                            |
|-----------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------|
| BØDYIN          | I                | N                   | Input ephemeris data for body not included block data.                                                |
| CECC            | 1/0              | С                   | Array of orbital eccen-<br>tricities and rates.                                                       |
| CINC            | 1/0              | C                   | Array of orbital inclina-<br>tions and rates.                                                         |
| CMEAN           | 1/0              | c                   | Array of mean anomalies and rates.                                                                    |
| CØMEG           | 1/0              | C                   | Array of longitudes of ascending node and rates.                                                      |
| CØMEGT          | 1/0              | <b>C</b> .          | Array of longitudes of periapsis and rates.                                                           |
| CSAX            | 1/0              | <b>. c</b>          | Array of semi-major axes and rates.                                                                   |
| DJ1900          | . 0              | C                   | Julian date of year 1900.                                                                             |
| DRMAX           | 1/0              | N/C                 | Maximum deviation from the reference conic before rectification.                                      |
| ECEQ            | 0 .              | C                   | Transformation matrix from Earth equatorial to ecliptic.                                              |
| ENGINE          | 1/0              | N/C                 | Spacecraft subsystem para-<br>meter.                                                                  |
| EPØCH (TLNCH)   | 1/0              | C(N)                | Launch epoch.                                                                                         |
| FRCA            | 1/0              | N/C                 | Specification for testing closest approach along tra-<br>jectory (See Section 2.1,<br>User's Manual). |
| IAUGDC          | 1/0              | N/C                 | Flags specifying parameters which are used to augment the state transition matrix.                    |
| ICALL           | •0               | С                   | Trajectory package initial-<br>ization flag.                                                          |

| Variable         | Input/<br>Output | Namelist/<br>Common | <u> Pefinition</u>                                                          |
|------------------|------------------|---------------------|-----------------------------------------------------------------------------|
| ICØØRD           | 1/0              | N/C                 | Flag indicating relative<br>to which body the input<br>state corresponds.   |
| IENRGY           | 1/0              | · N/C               | Flag specifying type of power subsystem.                                    |
| INIT             | 0                | С                   | Cycle flag.                                                                 |
| INTEG (IFPT(1))  | 0                | С                   | Flag specifying equations to be integrated in the trajectory package.       |
| IPRINT           | 1/0              | N/C                 | Print option flags.                                                         |
| ISTMF            | 1/0              | N/C                 | STM file flag and data cycle flag.                                          |
| ISTØP            | 1/0              | N/C                 | Flag specifying stopping conditions.                                        |
| JPFLAG           | 0                | С                   | Primary body change out-<br>put flag.                                       |
| KTRAJ (IØPT(2))  | 0                | , <b>c</b>          | Control phase change output flag.                                           |
| LØCS             | 0                | С                   | First location in blank common available for use in the trajectory package. |
| MEVENT (IPPT (3) | ) o              | С                   | Event detection logic flag.                                                 |
| MØDE             | 1/0              | N/C                 | Mode specification flag.                                                    |
| MPLAN            | 0                | C ·                 | Number of bodies included in the integration.                               |
| NB               | 1/0              | N/C                 | Flag specifying bodies to be included in the integration.                   |
| NBØD             | 0                | С                   | Number of bodies specified in NB (MPLAN-1).                                 |
| NEP              | 1/0              | n/c                 | Ephemeris planet designa-<br>tion.                                          |

| Variable | Input/<br>Output | Namelist/<br>Common | Definition                                         |
|----------|------------------|---------------------|----------------------------------------------------|
| NLP      | 0                | С                   | Launch planet designation.                         |
| nøised   | 0 .              | C                   | SIMSEP noise flag.                                 |
| NPHASE   | 0                | С                   | Flag set to detect control phase changes.          |
| NPRI     | 0                | C                   | Primary body designation.                          |
| NTP      | 1/0              | N/C                 | Target body designation.                           |
| NTPHAS   | o                | С                   | Control phase number.                              |
| PLANET   | 0                | С                   | Hollerith names of all planets.                    |
| RAD      | 0                | C                   | Number of degrees per radian.                      |
| rstøp    | 1/0              | N/C                 | Stopping radius if ISTOP = 4.                      |
| SCMASS   | 1/0              | N/C                 | Spacecraft initial mass.                           |
| SCMVAR   | 0                | С                   | Spacecraft initial mass variation.                 |
| SMASS    | 0                | C                   | Mass of the sun.                                   |
| STATEO   | I                | N                   | Spacecraft initial state (equatorial or ecliptic). |
| TDUR     | 0                | C                   | Maximum spacecraft flight duration (sec).          |
| TEND     | 1/0              | N/C                 | Trajectory end time (days).                        |
| TEVNT    | .0               | C                   | Event time.                                        |
| THRUST   | 1/0              | N/C                 | Thrust control profile.                            |
| TLNCH    | ī                | N                   | Launch epoch.                                      |
| TM       | o                | С                   | Seconds per day.                                   |
| TSTART   | 1/0              | N/C                 | Trajectory start time (TSTART > TLNCH).            |

|       |                 | Input/<br>Output | Namelist/<br>Common |                                                                                                    |
|-------|-----------------|------------------|---------------------|----------------------------------------------------------------------------------------------------|
|       | XBQDY           | I/Ø              | N/C                 | Hollerith name of input body.                                                                      |
|       | XPRINT          | 1/0              | N/C                 | Trajectory print frequency (days).                                                                 |
|       | ZK              | I/Ø              | N/C                 | Direction cosines of the reference star.                                                           |
|       | DUMMY           | I                | N                   | Not used.                                                                                          |
|       | ELVMIN          | I/Ø              | N/C                 | Minimum elevation angle.                                                                           |
|       | GHZER <b>Ø</b>  | Ø                | С                   | Greenwich hour angle at launch epoch.                                                              |
|       | I¢BS            | I/ <b>Ø</b>      | N/C                 | Index designating location of astronomical observatory in STALDC.                                  |
|       | KARDS           | I/Ø              | N/C                 | Number of formatted print<br>schedule cards to be read dur-<br>ing a REFSEP run.                   |
|       | PRNML           | τ                | N                   | Logical flag specifying that<br>the \$TRAJ namelist be printed<br>(TRUE) or not be printed (FALSE) |
| ,     | STALØC          | 1/Ø              | N/C                 | Tracking station coordinates.                                                                      |
| Local | Variables:      |                  |                     |                                                                                                    |
|       | <u>Variable</u> | <del></del>      |                     | Definition                                                                                         |
|       | AO, A1, A2, A   | .3               | Constants<br>tions. | used in the obliquity computa-                                                                     |
|       | DJCENT          |                  | Days in a           | Julian Century.                                                                                    |
|       | D10K            |                  | Constant 3          | 104.                                                                                               |
|       | IØPT            |                  | Option fla          | ags used to set parameters in                                                                      |
|       | JMAX            |                  | Number of           | thrust control phases.                                                                             |
|       | STATER          |                  | Magnitude           | of initial position vector.                                                                        |
|       | STATEV          |                  | Magnitude           | of initial velocity vector.                                                                        |
| Subro | utines Called:  | BLKDAT,          | ZERØM, MMAB,        | VECMAG, TIME                                                                                       |
| Calli | ng Subroutine:  | MAPSEP           |                     |                                                                                                    |

CØNST, EDIT, EPHEM, TIME, TRAJ1, TRAJ2, WØRK, TRKDAT

Common Blocks:





3.1.3 Subroutine: TIME (DAY, IYR, MØ, IDAY, IHR, MIN, SEC, ICØDE)

Purpose:

TIME converts a Julian Date to the corresponding

calendar date or a calendar date to the correspond-

ing Julian Date.

### Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                     |
|----------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY      | 1/0              | A                   | Julian Date.                                                                                                                                                   |
| IYR      | 1/0              | A                   | Calendar year.                                                                                                                                                 |
| мø       | 1/0              | A                   | Month.                                                                                                                                                         |
| IDAY     | 1/0              | A                   | Day.                                                                                                                                                           |
| IHR      | 1/0              | <b>A</b> _          | Hour.                                                                                                                                                          |
| MIN      | 1/0              | A                   | Minute.                                                                                                                                                        |
| SEC      | 1/0              | A                   | Second.                                                                                                                                                        |
| ICØDE    | I                | A                   | Flag that determines whether to convert from a Julian Date to calendar day or vice versa. = 0, Convert to a Julian Date \$\neq 0\$, Convert from a Julian Date |

Subroutines Called: None

Calling Subroutine: DATAM

Common Blocks: None

3.2 Subroutine: TOPSEP

Purpose: To execute the proper submode operation.

Remarks: TOPSEP is the primary overlay which controls the

targeting and optimization mode.

### Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                   |
|-----------------|------------------|---------------------|------------------------------|
| imøde           | ı                | С                   | Submode designation.         |
| møde            | I                | C                   | Mode designation.            |
|                 |                  |                     | -1, Cycle back within mode   |
|                 |                  |                     | 1, Cycle back to MAPSEP main |

#### Local Variables:

| Variable | Definition       |
|----------|------------------|
| WØRK     | Working storage. |

Subroutines Called:

DATAT, FEGS, GRID, PGM

Calling Subroutines:

MAPSEP

Common Blocks:

(BLANK), ALTFIL, CONST, EDIT, EPHEM, GRID, TIME,

TØP1, TØP2, TRAJ1, TRAJ2, WØRK

**>**0

RETURN

## 3.2.1 Subroutine: BUCKET (X, Y, N, XX, YY, NP)

Purpose:

To sort a set of independent elements in ascending order and to find a right bounded minimum from the associated set of dependent elements.

Remarks:

This routine is used in preparation for the polynomial curve fitting routine, MINMUM, to aid in calculating trial control profiles. BUCKET sorts pairs of elements  $(X_i, Y_i)$  in ascending order of the elements  $X_i$  to form the pairs of elements  $(XX_i, YY_i)$  and locates the element  $YY_{NP}$  such that

## $YY_{NP} < YY_{NP+1}$

If this condition cannot be satisfied the pointer, NP, is set to zero to indicate that no right bounded minimum exists.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                   |
|----------|------------------|---------------------|----------------------------------------------|
| N        | · I              | A                   | Number of elements to be sorted.             |
| NP       | Ø                | <b>A</b>            | Pointer to a minimum dependent element.      |
| X        | I                | <b>A</b> .          | Vector of independent elements to be sorted. |
| XX       | Ø                | A                   | Vector of ordered independent ent elements.  |

| <u>Variable</u> | Input/<br>Output | Agrument/<br>Common | Definition                                       |
|-----------------|------------------|---------------------|--------------------------------------------------|
| Y               | I                |                     | Vector of dependent elements associated with X.  |
| YY              | Ø,               | . <b>A</b>          | Vector of dependent elements associated with XX. |

### Local Variables:

Variable Definition

IEND

Termination flag.

SAVE

Intermediate variable.

Subroutines Called:

None

<u>Calling Subroutines</u>:

**GENMIN** 

Common Blocks:

None





### 3.2.2 Subroutine: DATAT

Purpose:

To read input data and initialize the trajectory targeting and optimization mode.

Method:

After DATAT executes the default value initialization, the namelist \$TOPSEP is read. The
dimensions and definitions for variables contained in this namelist are discussed in detail
in the TOPSEP section of the User's Manual. The
input data are processed and stored in labeled
common for subsequent use in any of the three
possible submodes. User options specified by
input determine the degree of data preparation
and the logic operations within the main cycle
of the program.

### Remarks:

Some variables appearing in DATAT are initialized from the namelist with units specified in the User's Manual. Before they are transmitted to other routines, they are converted, if necessary, to internal operational units which are: kg, kw, km, sec, km/sec, and radians.

| Variable | Input/<br>Output | Namelist/<br>Common | Definition            |
|----------|------------------|---------------------|-----------------------|
| BIG      | I                | С                   | Large constant, 1.E20 |
| BTØL     | I                | N/C                 | Tolerance on control  |

| Variable       | Input/<br>Output | Namelist/<br>Common | Definition                                                                     |
|----------------|------------------|---------------------|--------------------------------------------------------------------------------|
| CHI            | 0                | С                   | In plane $\Delta V$ direction angle at injection.                              |
| CNTRØL         | 0                | C                   | Initial values of all possible controls other than thrust controls.            |
| . CNVRTT       | 0                | C                   | Conversion constants from input units to internal units for selected targets.  |
| CNVRTU         | 0 .              | <b>.</b>            | Conversion constants from input units to internal units for selected controls. |
| DELVO          | 0                | C                   | Injection   AV  .                                                              |
| DFMAX          | 1/0              | N/C                 | Maximum increase allowed in the cost index (F) per iteration.                  |
| DP2            | 1/0              | N/C                 | Estimated region of linear-<br>ity in the control space.                       |
| E              | о                | С                   | Target errors of the current trajectory.                                       |
| ENGINE (1)     | I                | N/C                 | Power from solar panels at 1 AU .                                              |
| ENGINE (10     | ) I              | N/C                 | S/C exhaust velocity.                                                          |
| EPS <b>Ø</b> N | I                | N/C                 | Scalar multiple for control perturbations.                                     |
| ETLØUT         | 0                | C                   | Target tolerances in print-<br>out units.                                      |
| ETØL           | <b>o</b> .       | С                   | Target tolerances.                                                             |
| G              | 1/0              | N/C                 | Performance gradient.                                                          |
| GØUT           | 0                | C                   | Performance gradient in print-out units.                                       |
| GTRIAL         | 1/0              | n/c                 | One-dimensional search constants.                                              |

| •        | •                |                     |                                                                                                             |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------|
| Variable | Input/<br>Output | Namelist/<br>Common | Definition                                                                                                  |
| Valiable |                  |                     |                                                                                                             |
| Н        | 1/0.             | и/с                 | Control perturbation array.                                                                                 |
| HMULT    | 1/0              | n/c                 | Vector of scalar multiples of the H array to determine the second step of all controls in the control grid. |
| HØUT .   | <b>o</b>         | С                   | Control perturbation array in print-out units.                                                              |
| ICYCLE   | 1/0              | С                   | Mode cycle flag.                                                                                            |
| IMØDE    | 1/0              | N/C                 | TOPSEP submode designation.                                                                                 |
| INACTV   | 0                | С                   | Vector denoting which controls are active, or bounds, or within bound tolerance regions.                    |
| INJLØC   | 0                | С                   | Index of the control preceding the injection controls in $\underline{U}$ .                                  |
| INSG     | 1/0              | N/C                 | Flag set when S and G are input through namelist.                                                           |
| ITERAT   | o                | С                   | Iteration counter.                                                                                          |
| IWATE    | 1/0              | N/C                 | Flag designating the desired control weighting schemes.                                                     |
| JMAX     | 0                | C                   | Number of mission thrust phases.                                                                            |
| JWATE    | 1/0              | N/C                 | Flag designating target weighting.                                                                          |
| KMAX     | 0                | c                   | Number of thrust controls (THRUST(I,J)) chosen to be elements in $\underline{U}_{\bullet}$                  |
| KØNVRJ   | 0                | C                   | Convergence flag.                                                                                           |
| LABEL    | 0                | С                   | Hollerith names of all possible targets.                                                                    |

| Variable        | Input/<br>Output | Namelist/<br>Common | Definition                                                                                               |
|-----------------|------------------|---------------------|----------------------------------------------------------------------------------------------------------|
| LABELT          | 0                | C                   | Hollerith names of chosen targets.                                                                       |
| LØCCDC          | O                | C                   | Blank common storage location for the inner products of the weighted sensitivity matrix columns.         |
| LØCCM           | 0                | ָ C                 | Blank common location for<br>storage of the magnitude<br>of the weighted sensitivity<br>column vectors.  |
| <b>l</b> øcdu   | 0                | C                   | Blank common location of<br>the total control correction<br>vector (not scaled by GAMA).                 |
| LØCDU1          | 0                | С                   | Blank common location of<br>the performance control<br>correction vector (not<br>scaled by GAMA).        |
| LØCDU2          | 0                | С                   | Blank common location of<br>the constraint control cor-<br>rection vector (not scaled<br>by GAMA).       |
| LØCE1           |                  | C                   | Blank common location of<br>the target errors associated<br>with the first step of the<br>control grid.  |
| 1. <b>Ø</b> CE2 | 0                | c                   | Blank common location of<br>the target errors associated<br>with the second step of the<br>control grid. |
| LØCEM1          | 0                | C                   | Blank common location of the target error indices associated with the first step of the control grid.    |
| LØCEM2          | <b>o</b> .       | <b>C</b> .          | Blank common location of the target error indices associated with the second step of the control grid.   |

| Variable       | Input/<br>Output | Namelist/<br>Common | Definition                                                                                                                                          |
|----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| LØCEN          | 0                | C                   | Blank common location of<br>the nominal trajectory<br>target errors in the grid<br>mode.                                                            |
| LØCF1          | 0                | C                   | Blank common location of<br>the performance indices<br>associated with the first<br>step of the control grid.                                       |
| LØCF2          | 0                | С                   | Blank common location of<br>the performance indices<br>associated with the second<br>step of the control grid.                                      |
| LØCRFM         | 0                | C                   | Blank common location of<br>the S/C masses evaluated<br>at event times for the<br>reference and all trial<br>trajectories in a single<br>iteration. |
| LØCSDU         | 0                | С                   | Blank common storage location for the original control correction vectors when a number of controls must be dropped during an iteration.            |
| LØCSI*         | 0                | c                   | Blank common location of<br>the pseudo inverse of the<br>weighted sensitivity matrix.                                                               |
| <b>LØC</b> SWG | 0                | <b>C</b>            | Blank common storage location for the original weighted performance gradient when a number of controls must be dropped during an iteration.         |
| <b>Lø</b> csws | 0 .              | C                   | Blank common storage location for the original weighted sensitivity matrix when a number of controls must be dropped during an iteration.           |

<sup>\*</sup>May be in compressed form if controls have been dropped during the iteration.

| Variable       | Input/   | Namelist/<br>Common | Definition                                                                                                                                                                      |
|----------------|----------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LØCTS          | 0        | С                   | Blank common location of<br>event times for the refer-<br>ence and all trial trajec-<br>tories in a single iteration.                                                           |
| LØCUL          | 0        | С                   | Blank common location of minimum and maximum control bounds.                                                                                                                    |
| <b>LØC</b> WG* | o        | .c                  | Blank common location of<br>the weighted performance<br>gradient.                                                                                                               |
| LØCWS*         | <b>o</b> | C                   | Blank common location of<br>the weighted sensitivity<br>matrix.                                                                                                                 |
| løcwu          | 0        | C                   | Blank common location of the control weights.                                                                                                                                   |
| <b>LØ</b> CXR  | 0        | ~ <b>C</b>          | Blank common location of<br>the 6-component state<br>vectors associated with<br>the event times of the<br>reference and all the trial<br>trajectories of a single<br>iteration. |
| MPRINT         | 1/0      | n/c                 | Flag designating TOPSEP print options.                                                                                                                                          |
| NLP            | I        | C                   | Integer designation for launch planet.                                                                                                                                          |
| NMAX           | 1/0      | N/C                 | Maximum number of iterations.                                                                                                                                                   |
| NT             | 0        | С                   | Number of targets.                                                                                                                                                              |
| NTNP           | 0        | C                   | Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration.                                                     |

\*May be in compressed form if controls have been dropped during the iteration.

| Variable | Input/<br>Output | Namelist/<br>Common | Definition                                                                                                                                                    |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NTPH     | 0                | C                   | Vector of control phase numbers associated with the event times of the reference and all trial trajectories in a single iteration.                            |
| NTR      | 0                | C                   | Trial trajectory counter (NTR = 1 indicates the iteration reference trajectory).                                                                              |
| NTYPE    | 0                | С                   | Flag designating the type of control correction to be made during an iteration.                                                                               |
| NU       | O                | С                   | Number of controls.                                                                                                                                           |
| ØPTEND   | 1/0              | N/C                 | Cosine of the optimization angle which is used to test convergence in the target-ing and optimization mode.                                                   |
| ØSCALE   | 1/0              | N/C                 | Scale on the performance index when simultaneously targeting and optimizing.                                                                                  |
| PCT      | 1/0              | N/C                 | Percentage of the target error to be removed during an iteration.                                                                                             |
| PRTURB   | 0                | C                   | Vector of control perturbations; summary of H array.                                                                                                          |
| PSI      | O                | <b>c</b>            | Out of plane $\Delta V$ direction angle at injection.                                                                                                         |
| P1       | 0                | C .                 | Vector of net cost values for the reference and all trial trajectories evaluated during a single iteration.                                                   |
| P1P2     | <b>o</b>         | c                   | Vector of combined target<br>error indices and net cost,<br>values for the reference<br>and all trail trajectories<br>evaluated during a single<br>iteration. |
|          |                  |                     |                                                                                                                                                               |



| Variable | Input/<br>Output | Namelist/<br>Common | Definition                                                                                                                       |
|----------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|
| P2       | 0                | <b>c</b>            | Vector of target error indices for the reference and all trial trajectories evaluated during a single iteration.                 |
| RAD      | I                | C                   | Number of degrees in one radian.                                                                                                 |
| Ś        | 1/0              | N/C                 | Target sensitivity matrix.                                                                                                       |
| SCMASS   | I                | С                   | S/C initial mass.                                                                                                                |
| SØUT     | o                | С                   | Target sensitivity matrix in print-out units.                                                                                    |
| STATEO   | I                | ·C                  | Initial state.                                                                                                                   |
| STØL     | I                | N/C                 | Test variable for determin-<br>ing linearly dependent<br>columns of the weighted<br>sensitivity matrix.                          |
| STØRE    | 1/0              | С                   | Blank common variable.                                                                                                           |
| TARGET   | 1/0              | N/C                 | Vector of desired target values.                                                                                                 |
| TARØUT   | 0                | C                   | Desired target values in print-out units.                                                                                        |
| TARTØL   | 1/0              | N/C                 | Vector of all possible tar-<br>get tolerances.                                                                                   |
| THRUST   | 1                | C                   | Mission thrust controls.                                                                                                         |
| TLØW     | I                | N/C                 | Limit of target error index below which optimization only is performed.                                                          |
| TM       | I                | C                   | Number of seconds in a day.                                                                                                      |
| TSTART   | Ι.               | C                   | Reference trajectory start time.                                                                                                 |
| TUP<br>, | . I              | N/C                 | Limit of target error index above which simultaneous targeting and optimization is discontinued and targeting only is initiated. |

| <u>Variable</u> | Input/<br>Output | Namelist/<br>Common | Definition                                                                                    |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------|
| <b>U</b> *      | ø                | С                   | Selection of controls for the specified mode run.                                             |
| ULIMIT          | I                | N                   | Control bounds.                                                                               |
| UWATE           | I/Ø              | N/C                 | User input weights on controls.                                                               |
| VPARK           | Ø                | С                   | Parking orbit velocity at injection.                                                          |
| WE              | Ø                | C                   | Vector of target weights.                                                                     |
| XMM             | Ø                | С                   | Mean motion of s/c in parking orbit.                                                          |
| AZMAX           | 1/0              | N/C                 | Maximum launch azimuth constraint.                                                            |
| AZMIN           | I/ <b>Ø</b>      | N/C                 | Minimum launch azimuth con-<br>straint.                                                       |
| IASTM           | I/ <b>Ø</b>      | N/C                 | Flag specifying the method of computing the targeting sensitivity matrix.                     |
| PRNML           | . I              | N                   | Logical flag specifying that the namelist \$TRAJ be printed (TRUE) or not be printed (FALSE). |
| RP1             | I/Ø              | N/C                 | Inner parking orbit radius.                                                                   |
| TGFUEL          | 1 <b>/Ø</b>      | N/C                 | Fuel capacity of tug.                                                                         |
| TUGISP          | I /Ø             | N C                 | Specific impulse of tug.                                                                      |
| TUGWT           | 1/ <b>ø</b>      | N/C                 | Dry weight of tug.                                                                            |
| TUG             | Ø                | <b>C</b> .          | Logical flag designating injection computations.                                              |

## Local Variables:

| Variable | Definition                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------|
| KØUNT    | Control counter.                                                                                           |
| TIME     | Mission time corresponding to the implementation of controls chosen from the elements of the THRUST array. |

Subroutines Called: ZEROM, COPY, UXV, UNITV, SCALE, SUB, VECMAG,

UDØTV, PRINTD, INJECT

Calling Subroutines: TOPSEP

Common Blocks: (BLANK), CONST, CYCLE, EDIT, EPHEM, GRID, PRINT,

PRINTH, TIME, TOP1, TOP2, TRAJ1, TRAJ2, WORK,

IASTM, TUG







3.2.3 Subroutine: DELU (WS, WG, DPSI, DP2, NT, NU, NTYPE, SINV, PG2, DU1, DU2, DU).

<u>Purpose</u>: To compute the control correction based upon

the method of projected gradients.

Method: The projected gradient algorithm used in TOPSEP

is described as follows. Let:

.U = Set of control parameters;

E = Set of target errors;

F = Performance index;

 $G = Performance gradient <math>(\frac{\partial F}{\partial \underline{U}})$ 

T = Set of targets;

S = Sensitivity matrix  $(\frac{\partial \underline{\mathbf{U}}}{\partial \underline{\mathbf{U}}});$ 

We seek a control correction  $\Delta \, \underline{U}$  to increase the performance (decrease the cost) and decrease the target error. Then

$$\Delta \underline{\mathbf{u}} = \boldsymbol{\alpha} \Delta \underline{\mathbf{u}}_1 + \boldsymbol{\beta} \Delta \underline{\mathbf{u}}_2$$

where

$$\Delta \underline{\mathbf{U}}_2 = -\mathbf{S}^{\mathrm{T}} (\mathbf{S}\mathbf{S}^{\mathrm{T}})^{-1} \underline{\mathbf{E}}$$

$$\Delta \underline{\mathbf{U}}_{1} = -\sqrt{\Delta \underline{\mathbf{U}}_{2}^{T} \Delta \underline{\mathbf{U}}_{2}} \quad (I-P) \underline{\mathbf{G}}$$

and

$$P = S^{T} (SS^{T})^{-1} S$$

$$\alpha = \begin{cases} 0, & \text{for targeting only} \\ 1, & \text{for optimization} \end{cases}$$

$$\beta = \begin{cases} 0, & \text{for optimization only} \\ 1, & \text{for targeting} \end{cases}$$

#### Remarks:

DELU is called only after transforming the control space to a weighted space. Thus, WS and WG are a weighted target sensitivity matrix and a weighted performance gradient respectively. The control corrections, therefore, are also weighted.

The performance correction is modified to account for an estimated region of linearity (DP2). This control correction may then be represented as follows:

$$\Delta U_1 = REGIØN \cdot * (I-P) G$$

REGIØN = 
$$-\sqrt{\frac{E^{T}(SS^{T})^{-1}E*(1+DP2^{2})}{G^{T}G-(SG)^{T}(SS^{T})^{-1}(SG)}}$$

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                               |
|-----------------|------------------|---------------------|----------------------------------------------------------|
| DPSI            | I                | A                   | Target error to be removed during current iteration.     |
| DP2             | 1/0              | A                   | Estimated region of linear-<br>ity in the control space. |

| Variable                  | Input/<br>Output | Argument/<br>Common  | Definition                                                                                                                    |
|---------------------------|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| DU                        | o                | A                    | Total control correction vector (not scaled).                                                                                 |
| DU1                       | o                | A                    | Performance control vector (not scaled).                                                                                      |
| DU2                       | 0                | <b>A</b> %           | Constraint control correction (not scaled).                                                                                   |
| NT                        | I                | A                    | Number of controls.                                                                                                           |
| NTYPE                     | I                | A                    | Flag designating the type of control correction to be made during the current iteration.                                      |
| NU                        | I                | <b>A</b>             | Number of controls.                                                                                                           |
| PG2                       | 0                | A                    | Magnitude of the projected gradient squared.                                                                                  |
| SINV                      | 0                | A                    | Pseudo-inverse of the target<br>sensitivity matrix if NU<br>NT; actual inverse of target<br>sensitivity matrix if NU =<br>NT. |
| WG                        | I                | A                    | Performance gradient.                                                                                                         |
| ws                        | 1 .              | A                    | Target sensitivity matrix.                                                                                                    |
| ALPHA<br>Local Variables: |                  |                      |                                                                                                                               |
| <u>Variable</u>           |                  |                      | Definition                                                                                                                    |
| ALPHA                     |                  | not maki             | DU1 when computing DU; if ng a performance correction to 0, otherwise set to 1.                                               |
| ВЕТА                      |                  | not maki             | DU2 when computing DU; if ng a constraint correction to 0, otherwise set to 1.                                                |
| C1                        |                  | E <sup>T</sup> * (S* | $(S^{T})^{-1} * E$                                                                                                            |

| Variable        | Definition                                                                      |
|-----------------|---------------------------------------------------------------------------------|
| C2 .            | G <sup>T</sup> * G                                                              |
| <b>C3</b>       | $(S*G)^{T} * (S*S^{T})^{-1} * (S*G)$                                            |
| P (=WØRK (43))  | $s^T * (s*s^T)^{-1} * s*g$                                                      |
| REGIØN          | Scale on performance correction accounting for the assumed region of linearity. |
| SG (=WØRK (37)) | S*G                                                                             |
| SST (=WØRK (1)) | s*s <sup>T</sup>                                                                |

Subroutines Called: COPY, INVSQM, MMAB, MMABT, MMATBA, ZERØM

Calling Subroutines: SIZE

Common Blocks: EDIT, WØRK



3.2.3A Subroutine: DIRECT (DU1, DU2, DU, SINV, ULIMIT, WG, WS, WU,

NUD, NTD)

Purpose:

To compute the control correction, Au.

Method:

The method of projected gradients is used to com-

pute Au. Preliminary computations include:

- o Determining linear dependency among columns of the sensitivity matrix, S, thus averting numerical problems when computing the pseudoinverse of S.
- o Determining which controls lie on their respective bounds, if any, and which control corrections violate the control constraints.
- o Determining the maximum allowable scale factor for the current iteration.

#### Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                    |
|----------|------------------|---------------------|---------------------------------------------------------------|
| BIG      | I                | <b>C</b> ·          | Large constant, 1.E20.                                        |
| CTHETA   | 0                | C                   | Cosine of optimization angle.                                 |
| DF MAX   | I                | <b>C</b>            | Maximum increase allowed in the cost index (F) per iteration. |
| DPSI     | 0                | С                   | Target error to be removed during current iteration.          |
| DP2      | I/O              | С                   | Estimated region of linearity in the control space.           |

| Variable       | Input/<br>Output | Argument<br>Common | /<br>Definition                                                                                                                                        |
|----------------|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| DU             | 0                | A                  | Unscaled total control correction.                                                                                                                     |
| DU1            | 0                | A                  | Unscaled performance control correction.                                                                                                               |
| DU2            | 0                | A                  | Unscaled constraint control correction.                                                                                                                |
| E              | 0 .              | С                  | Target errors of the current trajectory.                                                                                                               |
| EMAG           | 0                | С                  | Target error index.                                                                                                                                    |
| G              | 0                | С                  | Performance gradient.                                                                                                                                  |
| GAMA           | 0                | С                  | Scale factor providing the best control change.                                                                                                        |
| GAMMA          | 0                | С                  | Vector of trial trajectory control change scale factors.                                                                                               |
| GTRIAL         | I/O              | C                  | One-dimensional search constants.                                                                                                                      |
| INACTV         | 1/0              | С                  | Vector denoting which controls are active (1), on bounds (0), or within bound tol.                                                                     |
| KGMAX          | O                | С                  | Index identifying the control which will reach bound if <b>Au</b> is scaled by GMAX.                                                                   |
| ITERAT         | I                | С                  | Iteration counter.                                                                                                                                     |
| <b>LØCC</b> DC | I                | С                  | Blank common location of the inner products of the columns of the sensitivity matrix.                                                                  |
| LØCCM          | Ţ                | C                  | Blank common location of the magnitude of the sensitivity column vectors.                                                                              |
| LØC SDU        | I                | <b>C</b>           | Blank common storage location<br>for the original control cor-<br>rection vectors when a number<br>of controls must be dropped<br>during an iteration. |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                  |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| LØCSWG   | τ                | С                   | Blank common storage location for the original weighted performance gradient when a number of controls must be dropped during an iteration. |
| LØCSWS   | I                | С                   | Blank common storage location for the original weighted sensitivity matrix when a number of controls must be dropped during an iteration.   |
| MPRINT   | Ι.               | С                   | Array of <b>TOPSEP</b> print flags.                                                                                                         |
| NT       | I                | c                   | Number of targets.                                                                                                                          |
| NTD      | I                | A                   | Integer used to variably dimension SINV and WS.                                                                                             |
| NTYPE    | . 1              | С                   | Flag designating the type of control correction to be made during an iteration.                                                             |
| NU       | I                | С                   | Number of controls.                                                                                                                         |
| ИUD      | ı                | A                   | Integer used to variably dimension DU, DU1, DU2, SINV, ULIMIT, WG, WS and WU.                                                               |
| ØSCALE   | I                | С                   | Scale on the cost index when simultaneously targeting and optimizing.                                                                       |
| PCT      | I                | c                   | Percentage of the target error to be removed during an iteration.                                                                           |
| P1       | 0                | <b>c</b> .          | Vector of net cost values<br>for the reference and all<br>trial trajectories evaluated<br>during a single iteration.                        |

| Variable_ | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                 |
|-----------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1 P2     | 0                | С                   | Vector of combined target<br>error indices and net cost<br>values for the reference and<br>all trial trajectories evalu-<br>ated during a single iteration |
| Р2        | 0                | С                   | Vector of target error in-<br>dices for the reference and<br>all trial trajectories evalu-<br>ated during a single iteration                               |
| S         | I .              | С                   | Target sensitivity matrix.                                                                                                                                 |
| SINV      | 0                | A                   | Test variable for determin-<br>ing linearly dependent<br>columns of the weighted<br>sensitivity matrix.                                                    |
| U         | I                | С                   | Selection of controls.                                                                                                                                     |
| ULIMIT    | I                | A                   | Bounds on controls.                                                                                                                                        |
| WE        | , <b>I</b>       | С                   | Vector of target weights.                                                                                                                                  |
| WG        | 0.               | Α .                 | Weighted performance gradient.                                                                                                                             |
| WS        | o                | Α                   | Weighted sensitivity matrix.                                                                                                                               |
| WU        | o                | Α                   | Control weights.                                                                                                                                           |
| DP1DS     | 0                | С                   | The first derivative of the net cost function (P1) evaluated at \$ = 0.                                                                                    |
| DP12DS    | 0                | <b>c</b>            | The first derivative of the combined net cost function and target error function (P1P2) evaluated at \$\mathbf{x}\$ = 0.                                   |
| DP2DS     | o                | <b>c</b> .          | The first derivative of the target error function (P2) evaluated at \$\mathbb{X} = 0.                                                                      |

### Local Variables:

| Variable                | Definition                                                                            |
|-------------------------|---------------------------------------------------------------------------------------|
| DU1MAG (=WORK(1))       | Magnitude of $\triangle \underline{u}_1$ .                                            |
| EPRIME (=WORK(10))      | Weighted target errors.                                                               |
| ES (=WORK (16))         | $\underline{\mathbf{E}}^{T}\mathbf{S}$ .                                              |
| GAM (=WORK (36))        | Vector of maximum allowable scale factors for each element of the control correction. |
| GF MAX                  | Estimate of the scale factor which will cause the DFMAX constraint to be violated.    |
| KDEP                    | Number of controls on bounds.                                                         |
| LDEP                    | Vector indicating which controls are to be dropped from the control correction.       |
| MU                      | Number of active controls in the current iteration.                                   |
| SSINV (=WORK (80))      | Storage for the pseudo-inverse of the sensitivity matrix.                             |
| UNEW (=WORK (60))       | Updated control vector used to compute INACTV.                                        |
| s Called: COPY, GENMIN, | STEP, DELTU                                                                           |

Subroutines Called:

Calling Subroutines:

PGM

Common Blocks:

(BLANK), CØNST, EDIT, TØP1, TØP2, WØRK,

SIZE





3.2.3B Subroutine: DTDUO

Purpose: To compute the appropriate columns of the target-

ing sensitivity matrix which relate changes in target values to changes in the initial state.

Input/Output:

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                                                  |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------|
| ETA             | I                | A                   | Sensitivity of targets to changes in final state                            |
| ІЈН             | I                | С                   | Array indicating active controls                                            |
| м               | I                | A                   | Number of targets                                                           |
| N               | I                | A                   | Number of controls                                                          |
| PHI             | I                | С                   | State transition matrix                                                     |
| SPRIME          | ø                | A                   | Partition of sensitivity matrix                                             |
| Local Variables |                  |                     |                                                                             |
| <u>Variable</u> |                  | <del></del>         | Definition                                                                  |
| DXFDXO          |                  |                     | Sensitivity of final state to changes in selected elements of initial state |

Subroutines Called: COPY, MMAB

Calling Subroutines: STMTAR

Common Blocks: IASTM, TOP2, WORK

Logic Flow: See listing

3.2.4 Subroutine: FEGS

Purpose:

To calculate the performance index, the target errors, the targeting sensitivity matrix, and the performance gradient.

Method:

FEGS provides the interface between the abstract control space targeting, and optimization search, and the actual low thrust trajectory generation.

Trajectory parameters such as

- 1) Initial conditions
  - o ecliptic state or equitional state relative to primary body;
  - o initial orbital elements
  - o spacecraft mass;
- 2) Spacecraft engine characteristics;
- Thrust controls;

are reset as specified by non-zero values of the H array (control perturbations). Subsequently, the trajectory propagator is called and trajectory information is collected.

Subroutine FEGS performs two major functions for TOPSEP depending upon the input value of IT. If IT equals 1, the target sensitivity matrix (S) and the performance gradient (G) are computed by finite differencing. A trajectory is generated for each

perturbed control resulting in the computation of a column of the S matrix and an element of the G vector. The perturbations to the controls are input in PERT, a variable in the argument list. If IT is -1, a trial trajectory is generated. In this case all the specified trajectory parameters are reset before the trajectory propagator is called. After the trajectory is generated, the performance index (F) and the target errors (E) are evaluated. If IT is 0, a grid trajectory is generated. Basically the same logic flow is followed as for the trial trajectory generation.

The primary differences are that only one element of PERT is non-zero and that no trajectory event times are stored in blank common.

### Remarks:

When the STM method of targeting is flagged

(IASTM = 1) subroutine STMTAR constructs F, E,

and S. Subroutine FEGS only generates the trial

trajectories and the final reference trajectory.

| Input/Output: | <b>T</b>         | A                   |                                          |
|---------------|------------------|---------------------|------------------------------------------|
| Variable      | Input/<br>Output | Argument/<br>Common | Definition                               |
| E             | 0                | С                   | Target errors of the current trajectory. |
| ENGINE (1)    | ) I/O            | С                   | Power from solar array at 1 au.          |

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                                                                             |
|---------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------|
| ENGINE (10)   | ) I/O            | С                   | Exhaust velocity.                                                                                                      |
| F             | I                | . <b>C</b>          | Performance index.                                                                                                     |
| FTR(1)        | I                | C                   | Performance index of the reference trajectory for the current iteration.                                               |
| G             | .0               | <b>C</b> .          | Performance gradient.                                                                                                  |
| IT            | ľ                | <b>A</b>            | <ol> <li>generate perturbed<br/>trajectories and<br/>compute S and G</li> </ol>                                        |
| <u>.</u> .    |                  | •                   | 0, generate a grid tra-<br>jectory and compute<br>F and E                                                              |
|               |                  |                     | -1, generate a trial tra-<br>jectory and compute<br>F and E.                                                           |
| ITERAT        | <b>I</b>         | С                   | Iteration counter (IT = 1 or -1); Control iden-<br>tifier for grid submode<br>(IT = 0).                                |
| KMAX          | I                | c                   | Number of thrust controls (THRUST (I,J)) chosen to be elements of $\underline{U}_{\bullet}$                            |
| <b>LØC</b> M  | I                | С                   | Blank common location of the current s/c mass.                                                                         |
| <b>LØ</b> CTS | I                | С                   | Blank common location of<br>event times for the ref-<br>erence and all trial<br>trajectories in a single<br>iteration. |
| NLP           | I                | С                   | Launch planet identifier (normally Earth).                                                                             |
| NT            | I                | C                   | Number of targets.                                                                                                     |
| NTR           | I                | С                   | Trial trajectory counter.                                                                                              |

|                 |                  | •                   |                                                                                                              |
|-----------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------|
| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                   |
| NU              | I                | C                   | Number of controls.                                                                                          |
| PERT            | I                | A                   | Vector of control perturbations.                                                                             |
| PSI             | 1/0              | С                   | Out of plane $\Delta V$ direction angle at injection.                                                        |
| S               | 0                | - <b>C</b>          | Target sensitivity matrix.                                                                                   |
| SCMASS          | 1/0              | C .                 | S/C mass corresponding to the trajectory start time (TSTART).                                                |
| STATEO          | 1/0              | <b>C</b> .          | S/C state corresponding to<br>the trajectory start time<br>(TSTART).                                         |
| STATR           | 1/0              | С                   | Array of initial states for the reference and all trial trajectories evaluated during the current iteration. |
| TARGET          | 1                | C                   | Vector of desired target values.                                                                             |
| TARNØM          | <b>o</b> ;       | C                   | Target values evaluated for the reference trajectory.                                                        |
| TARPAR          | O                | C                   | Target values of the most recently generated trajectory.                                                     |
| TARTR           | 1/0              | С                   | Target values of the reference and all trial trajectories evaluated during a single iteration.               |
| TM              | I                | С                   | Conversion constant:<br>Number of seconds in a<br>day.                                                       |
| TSTART          | 1/0              | C                   | Trajectory start time.                                                                                       |

|                   | Input/          | Argument/            |                                                           |
|-------------------|-----------------|----------------------|-----------------------------------------------------------|
| Variable          | Ou <b>tp</b> ut | Common               | <u>Definition</u>                                         |
| υ                 | I               | С                    | Selection of controls for the specified mode run.         |
| RPO               | ı/ó             | С                    | Initial periapsis radius                                  |
| RAO               | I/Ø             | С                    | Initial apoapsis radius                                   |
| XINCO             | 1/Ø             | С                    | Initial inclination                                       |
| ØMEGAO            | I/Ø             | С                    | Intiial longitude of ascending node                       |
| S ØMEGO           | I/Ø             | С                    | Initial argument of periapsis                             |
| TRUANO            | 1/Ø             | С                    | Initial true anomaly                                      |
| Local Variables:  |                 |                      |                                                           |
| <u>Variable</u>   |                 | · <del></del>        | Definition                                                |
| nctr <b>ø</b> l , |                 | The nomina perturbat | al value of the control plus its ion.                     |
| ITRIAL            |                 | Trial ste            | p counter.                                                |
| KALL              |                 |                      | number to which the logic flow fter S and G are computed. |
| K <b>∮</b> UNT    |                 | Control i            | ndex.                                                     |
| Subroutines Call  | ed: CART        | ES, CØNIC, CØP       | Y, PRINTI, VECMAG, MATØUT,                                |

TREK

Calling Subroutines: GRID, PGM, TØPSEP

(BLANK), CØNST, EDIT, EPHEM, TIME, TØP1, TØP2, TRAJ1, TRAJ2, WØRK Common Blocks:









Subroutine: FGAMA (IS) 3.2.5

To evaluate the net cost index and target Purpose:

error index of a trial trajectory.

Subroutine FGAMA scales the control correction Method:

 $\Delta \underline{u}$  by GAMMA(NTR), which is computed in GENMIN,

and calls FEGS to generate a trial trajectory.

Preceding the call to FEGS for the second trial

trajectory generation, a computation is made to

estimate the scale factor which will reduce the

value of the final spacecraft mass to some

specified limit (FTR(1) - DF). This scale

factor becomes the maximum allowable scale for

future trial steps, unless the scale is further

restricted by explicit control bounds. However,

no additional constraint is placed on the scale

factor if the final spacecraft mass is increased

by taking larger trial steps in the  $\Delta \underline{u}$  direc-

The scale factor is not restricted due

to the performance constraint prior to the

second trial step for lack of information to make

an accurate estimate.

The cost index F is actually the negative of Remarks:

the final spacecraft mass. If the cost index

is decreasing (becoming more negative) in the

 $\Delta \underline{u}$  direction the estimation loop is bypassed.

If the loop must be entered because the cost is increasing, a modification must be made to the cost index values (FTR) so that the routines MINMUM and THPM may be used. To find the minimum value of the final spacecraft mass the negative of the cost index is minimized in the  $\Delta \underline{u}$  direction.

## Input/Output:

|                 | Input/  | Argument/ | Definition                                                                                                         |
|-----------------|---------|-----------|--------------------------------------------------------------------------------------------------------------------|
| <u>Variable</u> | Output  | Common    | Delinition                                                                                                         |
| DFMAX           | I       | c         | Maximum percentage decrease allowed in the s/c final mass for iteration.                                           |
| <b>E</b>        | 0       | С         | Target errors of the cur-<br>rent trajectory.                                                                      |
| ETØL            | I       | С         | Target tolerances.                                                                                                 |
| ETR             | 1/0     | C         | Array of target errors of<br>the reference and all trial<br>trajectories evaluated dur-<br>ing a single iteration. |
| F               | 0       | C         | Cost index of the current trajectory.                                                                              |
| FTR             | 1/0     | С         | Vector of cost indices of<br>the reference and all trial<br>trajectories evaluated dur-<br>ing a single iteration. |
| G               | 0       | С         | Performance gradient.                                                                                              |
| GAMMA           | I       | C         | Vector of trial trajectory control change scale factors.                                                           |
| GTRIAL (2       | 2) [1/0 | С         | Maximum allowable value for GAMMA.                                                                                 |

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                                                                               |
|---------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| IS            | I                | A                   | Trial trajectory number.                                                                                                 |
| <b>r</b> øcdu | I                | C                   | Blank common location of the control correction vector $\Delta \underline{\mathbf{u}}$ .                                 |
| LØCSDU        | I                | C                   | Blank common location of the trial step (GAMMA(NTR)* $\Delta U$ ); used as such only when generating trial trajectories. |
| <b>LØ</b> CSI | ı                | C                   | Blank common location of<br>the pseudo inverse of the<br>weighted sensitivity<br>matrix.                                 |
| NT            | I                | С                   | Number of targets.                                                                                                       |
| NTR           | 0                | С                   | Trial trajectory counter (NTR = 1 for the iteration reference trajectory).                                               |
| NU            | I                | С                   | Number of controls.                                                                                                      |
| ØSCALE        | I                | С                   | Scale on the net cost index P1 when simultane-ously targeting and optimizing.                                            |
| <b>P1</b>     | 0                | c                   | Vector of net cost values<br>for the reference and all<br>trial trajectories evaluated<br>during a single iteration.     |
| P1P2          | 0                | С                   | Vector of combined target error indices and net cost values.                                                             |
| P2            | O                | <b>c</b>            | Vector of target error indices for the reference and all trial trajectories evaluated during a single iteration.         |
| TARPAR        | 0                | C                   | Target values of the most recently generated trajectory.                                                                 |

| Variable | Input/<br>Output | Argument/ Common |   | Definition                |  |
|----------|------------------|------------------|---|---------------------------|--|
| WE       | 1                |                  | C | Vector of target weights. |  |

# Local Variables:

| riable        |              | Definition                                                                                                                         |  |  |
|---------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DF            | • •          | Maximum decrease allowed in the final s/c mass.                                                                                    |  |  |
| DP1DS         |              | First derivative of Pl evaluated at GAMMA(1) = 0.                                                                                  |  |  |
| EPRIME        | (=WØRK(1))   | Vector of target errors divided by tolerances.                                                                                     |  |  |
| FMAX          |              | Estimated maximum cost evaluated in the $\Delta \underline{u}$ direction.                                                          |  |  |
| FTEST         | (=WØRK(55))  | Vector of cost indices corresponding to the scale factors $GTR(1)$ , $I = 1$ , 3 where $GTR(1) < GTR(2) < GTR(3)$ .                |  |  |
| GDU           | (=WØRK(13))  | Linearized approximation to change in cost function required to perform a minimum - norm correction back to the targeted manifold. |  |  |
| GTR(1)        | (=WØRK (50)) | GAMMA(1).                                                                                                                          |  |  |
| GTR(2)        | (=WØRK(51))  | MIN { GAMMA(2), GTR(4) }                                                                                                           |  |  |
| <b>GTR(3)</b> | (=WØRK(52))  | MAX { GAMMA(2), GTR(4) }                                                                                                           |  |  |
| GTR (4)       | (=WØRK(53))  | Scale factor corresponding to FMAX.                                                                                                |  |  |
| GTS           | (=WØRK(7))   | Intermediate storage in GDU computation.                                                                                           |  |  |
| IERR          | •            | Flag set to 1 to direct MINMUM and THPM to compute GTR(4) given F(GTR(4) using the prescribed polynominal expansion.               |  |  |

Subroutines Called:

COPY, FEGS, MATOUT, MINMUM, MMAB, MMATB, MMATBA, NEGMAT, SCALE, THPM, ZEROM

Calling Subroutines:

 ${\tt GENMIN}$ 

Common Blocks:

(BLANK), EDIT, TØP1, TØP2, WØRK







3.2.6 Subroutine: GENMIN (X, Y, DYDX1, GTRIAL, YES, MIN)

Purpose: To choose the best control change scale factor

based on a one-dimensional search in the new

control vector direction.

Remarks: The best scale factor will be defined as that

which provides for the minimum value of the net cost-function as described in subroutine SIZE. The one dimensional search will consist of a series of second and third order polynomial

curve fitting techniques.

### Input/Output:

| Variable  | Input/<br>Output | Argument(A)/<br>Common(C) | Definition                                                                                                                              |
|-----------|------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| DYDX1     | Ī                | Α                         | Value of the first derivative of the net cost function evaluated at X(1)=0                                                              |
| GTRIAL(1) | I                | Α.                        | <pre>If X(I+1) &lt; GTRIAL(1)*X(I), then X(I+1) is set equal to GTRIAL(1) *X(I)</pre>                                                   |
| GTRIAL(2) | I                | A                         | Maximum allowable scale factor value                                                                                                    |
| GTRIAL(3) | Ι                | A                         | The percentage of X(I+1) to X(I) above which the search will be terminated.                                                             |
| GTRIAL(4) | I                | <b>A</b>                  | The percentage of YES(I) to Y(I+2) below which the search is terminated                                                                 |
| GTRIAL(5) | I                | <b>A</b>                  | Flag designating the extent of curve fitting in the new control direction (i.e., GTRIAL(5)=4 signifies all four techniques may be used) |
| MIN       | Ø                | A                         | Pointer designating the minimizing scale factor                                                                                         |
| X(1)      | · I              | A                         | X(1)=0, value of scale<br>factor associated with<br>current net cost function va                                                        |

Input/Output: - Continued

| Variable    | Input/<br>Output | Argument(A)/<br>Common(C) | Definition                                                                               |
|-------------|------------------|---------------------------|------------------------------------------------------------------------------------------|
|             |                  | - <del>-</del>            |                                                                                          |
| X(2)        | I,               | <b>A</b>                  | Value of scale factor for first trial net cost-function evaluation                       |
| X(3)        | ø                | A                         | Scale factor returned from "two point, one slope" curve fitting routine                  |
| X(4)        | Ø                | A                         | Scale factor returned from "three point, one slope" curve fitting routine                |
| x(5)        | Ø                | A                         | Scale factor returned from "three point" curve fitting routine                           |
| x(6)        | Ø                | A                         | Scale factor returned from "four point" curve fitting routine                            |
| Y(1)        | I                | A                         | Value of current net cost-function                                                       |
| Y(2) → Y(6) | Ø                | A                         | Trial net cost-function values associated with X(2)→ X(6)                                |
| YES         | <b>ø</b>         | <b>A</b>                  | Vector of estimates of net cost-function values returned from the curve fitting routines |
|             | •                | ·                         |                                                                                          |

# Local Variables:

| <u>Variable</u> | Definition                                                                                                    |
|-----------------|---------------------------------------------------------------------------------------------------------------|
| MAX             | The number of trial net cost-function values which must be tested for the local minima                        |
| MINSV           | The number of a trial net cost-function value which is a local minimum but not necessarily the global minimum |

Subroutines Called: BUCKET, FGAMA, MINMUM

Calling Subroutines: SIZE

Common Blocks: None









#### 3.2.7A Subroutine: GRID

Purpose:

To generate a family of trajectories in order to obtain performance and error index information.

Method:

Consider an NU-dimensional control space and a nominal control vector  $\underline{\mathbf{u}}$ . A grid of trajectory target error indices and performance indices is generated based upon two steps from the nominal control vector in each control direction. The first step in the  $\mathbf{i}^{th}$  control direction is specified by the  $\mathbf{i}^{th}$  element of PRTURB. The second step for the same control is specified by  $\mathbf{HMULT_i}$  \*  $\mathbf{PRTURB_i}$ .

Remarks:

The user can take advantage of the cycling capability of the TOPSEP mode to specify more than two steps in each of the control directions by stacking cases.

| Variable  | Input/<br>Output | Argument/<br>Common | Definition                                                              |
|-----------|------------------|---------------------|-------------------------------------------------------------------------|
| CNVRTT    | ı                | С                   | Conversion constants from internal target units to output target units. |
| E         | Ţ                | С                   | Target errors of current trajectory.                                    |
| ETR(1, 1) | ) 0              | С                   | Target error index of nominal trajectory.                               |

| Variable       | Input/<br>Output | Argument/<br>Common | Definition                                                                                           |
|----------------|------------------|---------------------|------------------------------------------------------------------------------------------------------|
| F              | I                | С                   | Performance index of current trajectory.                                                             |
| FTR(1)         | 0                | С                   | Performance index of nominal trajectory.                                                             |
| HMULT          | I                | .c                  | Vector containing the scale on the elements of PRTURB for the second step in each control direction. |
| ITERAT         | 0                | C                   | Index specifying which control element is being changed.                                             |
| kønvrj         | 0                | С                   | Index specifying the step number in the control di-<br>rection under consideration.                  |
| LABELT         | 1                | C                   | Hollerith labels for spec-<br>ified targets.                                                         |
| LØCDU1         | I                | c                   | Location in blank common of the first control steps.                                                 |
| LØCDU2         | I                | C                   | Location in blank common of the second control steps.                                                |
| LØCEM1         | 1                | c                   | Location in blank common of the target error indices associated with the first control steps.        |
| LØCEM2         | I                | · c                 | Location in blank common of the target error indices associated with the second control steps.       |
| <b>LØ</b> CEN  | I                | С                   | Location in blank common of the target errors of the nominal trajectory.                             |
| L <b>¢</b> CE1 | I                | ,c                  | Location in blank common of the target errors associated with the first control steps.               |

|          |                  |                     | i e                                                                                           |
|----------|------------------|---------------------|-----------------------------------------------------------------------------------------------|
| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                    |
| LØCE2    | I                | С                   | Location in blank common of the target errors associated with the second control steps.       |
| LØCF1    | ŗ                | <b>c</b>            | Location in blank common of the performance indices associated with the first control steps.  |
| LØCF2    | <b>I</b>         | C                   | Location in blank common of the performance indices associated with the second control steps. |
| NT       | · I              | С                   | Number of targets.                                                                            |
| NTR      | I                | c                   | Flag used to set the branch of logic followed in FEGS (always set to 1).                      |
| NU       | I                | C                   | Number of controls.                                                                           |
| PRTURB   | I                | С                   | Perturbations to the con-<br>trols for the first step<br>in each control direction.           |
| STØRE    | I                | c                   | Blank common variable for storage.                                                            |
| WE       | I                | c                   | Vector used to compute target error index, containing $\frac{1}{\text{TARTØL(I)}^2}$          |
| wørk     | I .              | С                   | Working storage.                                                                              |
|          |                  |                     |                                                                                               |

| <u>Variable</u> | Definition                                                                    |
|-----------------|-------------------------------------------------------------------------------|
| PERT ( = UWATE) | Vector used to transfer the control steps to FEGS where F and E are computed. |
|                 | COMPACEA.                                                                     |

Variable

Definition

WETØL (=S)

Array whose off-diagonal elements are zero and whose diagonal elements are WE(I)

Subroutines Called:

COPY, FEGS, MMATBA, PRINT2, ZEROM

Calling Subroutines:

TØPSEP

Common Blocks:

(BLANK), EDIT, GRID, PRINTH, TØP1, TØP2, WØRK

Logic Flow:





123-B INJECT-1

3.2.7B Subroutine: INJECT

Entry Points:

TUGINJ

Purpose:

To generate packing orbit transfer data

Method:

The analytic discussion of the injection process may be found in Reference 1, Section 9.5, page

129.

Remarks:

Subroutine INJECT consists of two related computational blocks. Each block corresponds to an entry point.

- o INJECT, computation of outer parking orbit parameters: **P**RO, PINC, PTO, DELVO, CHI, and PSI.
- o TUGINJ, computation of inner parking orbit and fuel requirements for the parking orbit transfer.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                               |
|----------|------------------|---------------------|----------------------------------------------------------|
| AZMAX    | I                | С                   | Maximum launch azimuth constraint.                       |
| AZMIN    | I                | <b>c</b> .          | Minimum launch azimuth constraint.                       |
| CHI      | 1/0              | С                   | In-plane $\triangle V$ direction angle at injection.     |
| DELVO    | 1/0              | С                   | ∆V at injection.                                         |
| ECEQ     | I                | С                   | Transformation matrix from Earth equatorial to ecliptic. |
| Н        | ı                | С                   | Array of control perturbations                           |

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                              |
|-----------------|------------------|---------------------|---------------------------------------------------------|
| inji <b>d</b> c | I                | С                   | Location of injection parameters in control vector.     |
| NLP             | I                | С                   | Launch planet designation.                              |
| PINC            | 1/0              | C ,                 | Ecliptic inclination of outer parking orbit.            |
| PMASS           | I                | С                   | Vector of planetary masses.                             |
| PRO             | 1/0              | С                   | Geocentric radial distance to S/C at injection.         |
| PSI             | 1/0              | С                   | Out-of-plane AV direction angle at injection.           |
| PTO             | 1/0              | С                   | Injection time relative to launch epoch.                |
| RAD             | I                | С                   | Angle conversion constant (radians to degrees).         |
| RP1             | I                | С                   | Inner parking orbit radius.                             |
| SCMASS          | I                | С                   | Initial S/C mass.                                       |
| STATEO          | 1/0              | С                   | Initial S/C state.                                      |
| TGFUEL          | I                | С                   | Fuel capacity of tug vehicle.                           |
| TUG             | I                | c .                 | Logical flag specifying injection computations if TRUE. |
| TUGISP          | 1                | С                   | Specific impulse of tug vehicle.                        |
| TUGWT           | I                | С                   | Dry weight of tug vehicle.                              |
| T .             | Ĭ                | С                   | Control vector.                                         |
| VPARK           | 1/0              | <b>C</b>            | Parking orbit velocity at injection.                    |
| XMM             | 1/0              | С                   | S/C mean motion in outer parking orbit.                 |

123-D INJECT-3

# Local Variables:

| Variable           | Definition                                                              |
|--------------------|-------------------------------------------------------------------------|
| ANGLE (=WØRT(30))  | Plane change required during parking orbit transfer.                    |
| DELVA (=WØRK(32))  | First impulsive & V.                                                    |
| DELVB (=WØRK(33))  | Second impulsive AV.                                                    |
| EC (=WØRK(40))     | Eccentricity of hyperbolic escape orbit for single maneuver trajectory. |
| EQIMAX (=WORK(28)) | Maximum equatorial inclination constraint.                              |
| EQIMIN (=WORK(29)) | Minimum equatorial inclination constraint.                              |
| EQ11 (=WØRK(31))   | Equatorial inclination of inner parking orbit.                          |
| EQ12 (=WØRK(27))   | Equatorial inclination of outer parking orbit.                          |
| GRAV               | Gravitational constant.                                                 |
| PHILAT             | Latitude of launch site.                                                |
| STATEQ (=WORK(21)) | Initial state in equatorial coordinates.                                |
| WFUELA (=WORK(35)) | Fuel required for first tug maneuver.                                   |
| WFUELB (=WORK(36)) | Fuel required for second tug maneuver.                                  |
| WFUELT (=WØRK(38)) | Total fuel requirement.                                                 |
| WTØT (=WORK(34))   | Total tug weight plus payload prior to any maneuvers.                   |
| XECC               | Eccentricity of outer parking orbit.                                    |

123-E INJECT-4

Subroutines Called: ADD, MMATB, SCALE, UDOTV, UNITV, UXV, VECMAG

ANGMOD, CARTES, CONIC, COPY, MMAB NEGMAT

Calling Subroutines: PGM, FEGS, TREK, STMTAR

Common Blocks: CØNST, EPHEM, TØP1, TØP2, TRAJ1, TRAJ2, TUG,

WØRK, PRINTH

<u>Logic Flow</u>: See listing

# 3.2.8 Subroutine: MINMUM (X, Y, DYDX1, XMIN, YMIN, IERR)

# Entry Points:

THPM

THPØSM

**FØPMIN** 

### Purpose:

To estimate a local minimum of the cost function Y(X) and the minimizing independent variable X\* by fitting selected sample points with a quadratic or cubic polynomial.

| Input/Ou | tput:      |     | Argument(A)/ |                               |
|----------|------------|-----|--------------|-------------------------------|
| Var      | iable      | 1/0 | Common (c)   | <u>Definition</u>             |
|          | DYDX1      | I   | <b>A</b> .   | Value of the first derivative |
|          |            | -   |              | of Y with respect to X        |
|          |            |     |              | evaluated at X(1) = 0.        |
|          | IERR       | 0   | A            | Flag whose non-zero value     |
|          | ,          |     |              | indicates that two of the     |
| •        |            |     |              | given X values are identical. |
|          | <b>X</b> . | I   | A            | Vector of independent         |
|          |            |     |              | variable sample values        |
|          | XMIN       | 0   | A            | Minimizing independent        |
|          |            |     |              | variable X*                   |
| •        | <b>Y</b>   | ı.  | A            | Vector of cost function       |
|          |            |     |              | sample values                 |
|          | YMIN       | 0   | · , A        | Local minimum of the cost     |
|          |            |     |              | function, y(X*)               |

Variable

#### Definition

Α

Cubic polynomial coefficients

Subroutines Called:

None

Calling Subroutines:

GENMIN, FGAMA

Common Blocks:

None

Method:

The function Y(X) is approximated by either a second or third order polynomial in order to compute analytically the minimizing parameter X\*. The polynomial approximation is of the form

$$Y(X) \stackrel{\sim}{=} P(X) = \sum_{i=0}^{n} a_i X^i$$

where n = 2 or n = 3. The following four cases describe the method of approximation and the resulting minimization process

Case 1: Y is fitted with a quadratic polynomial based on

- 1) Y(0)
- $2) \quad \frac{dY}{dX} \Big|_{X=0}$
- 3)  $Y(X_0)$  where  $X_0>0$  is an initial estimate of X\* The quadratic polynomial coefficients are

calculated from the formulae

$$a_0 = Y(0)$$

$$a_1 = \frac{dY}{dX} \Big|_{X=0}$$

$$a_2 = \frac{Y(X_0) - a_0}{X_0^2} + \frac{a_1}{X_0}$$

The independent variable value minimizing the quadratic is

$$x* = \frac{-a_1}{2a_2}$$

Case 2

Y is fitted with a cubic polynomial based on:

- 1) Y(0)
- $2) \quad \frac{\mathrm{dY}}{\mathrm{dX}}\big|_{\mathrm{X}=0}$
- 3)  $Y(X_0)$  where  $X_0>0$  is a sample value
- 4)  $Y(X_1)$  where  $X_1>0$  is a sample value

The cubic polynomial coefficients are calculated from the following formulae

$$\lambda = \max \{X_0, X_1\}$$

$$\alpha = \min\{x_0, x_1\}/\lambda$$

$$a_0 = Y(0)$$

$$\mathbf{a}_1 = \frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}\mathbf{X}} \Big|_{\mathbf{X}=\mathbf{0}}$$

$$a_2 = \left[ \frac{Y(\lambda \alpha) - \alpha^3 Y(\lambda)}{1 - \alpha} - \lambda \alpha (1 + \alpha) \right] a_1$$

$$-(1+\alpha+\alpha^2)a_0^{(1+\alpha+\alpha^2)}$$

$$\mathbf{a_3} = \left[\begin{array}{cc} \lambda \alpha \mathbf{a_1} + \mathbf{a_0} (1 + \alpha) + \frac{\alpha^2 Y(\lambda) - Y(\alpha \lambda)}{1 - \alpha} \end{array}\right] (\lambda^3 \alpha^2)^{-1}$$

The independent variable value, X\* minimizing P is

$$X^* = \left[ -a_2 + \sqrt{a_2^2 - 3a_3^2} \right] (3a_3)^{-1}$$

Case 3

A quadratic polynomial is fitted to  $Y(X_0)$ ,  $Y(X_1)$ ,  $Y(X_2)$  where  $X_0$ ,  $X_1$ ,  $X_2$  are greater than or equal to zero and represent sample values of X (not necessarily the same values as in prior cases). It is assumed that:

1) 
$$X_0 X_1 X_2$$

2) 
$$Y(X_0) > Y(X_1) < Y(X_2)$$

The formulae for the quadratic coefficients are as follows:

$$a_0 = \frac{b_{12}}{d_{01}d_{02}} Y(X_0) + \frac{b_{02}}{d_{10}d_{12}} Y(X_1) + \frac{b_{01}}{d_{20}d_{21}} + Y(X_2)$$

$$a_1 = -\frac{c_{12}}{d_{01}d_{02}}$$
  $Y(X_0) - \frac{c_{02}}{d_{10}d_{12}}$   $Y(X_1) - \frac{c_{01}}{d_{20}d_{21}}$   $Y(X_2)$ 

$$a_2 = \frac{Y(X_0)}{d_{01}d_{02}} + \frac{Y(X_1)}{d_{10}d_{12}} + \frac{Y(X_2)}{d_{20}d_{21}}$$

The independent variable value is the same as in Case 1.

$$x* = \frac{-a_1}{2a_2}$$

Case 4

A cubic polynomial is fitted to  $Y(X_0)$ ,  $Y(X_1)$ ,  $Y(X_2)$ ,  $Y(X_3)$ . The formulae for the polynomial coefficients are as follows

$$Y_i = Y(X_i)$$

$$B_{ij} = X_i X_j$$

$$d_{ij} = X_i - X_j$$

$$A_3 = -\frac{Y_0}{d_{10}d_{20}d_{30}} + \frac{Y_1}{d_{10}d_{21}d_{31}} - \frac{Y_2}{d_{20}d_{21}d_{32}} + \frac{Y_3}{d_{30}d_{31}d_{32}}$$

$$A_2 = \frac{(x_1 + x_2 + x_3)}{d_{10}d_{20}d_{30}} - Y_a - \frac{(x_0 + x_2 + x_3)}{d_{10}d_{21}d_{31}} - Y_1 + \frac{(x_0 + x_1 + x_3)}{d_{20}d_{21}d_{32}} \cdot Y_2 - \frac{(x_0 + x_2 + x_3)}{d_{20}d_{21}d_{32}} - Y_3 + \frac{(x_0 + x_1 + x_3)}{d_{20}d_{21}d_{32}} \cdot Y_3 - \frac{(x_0 + x_2 + x_3)}{d_{20}d_{21}d_{32}} - \frac{(x_0 + x_2 + x_3)}{d_{20}d_{21}d_{22}} - \frac{(x_0 + x_2 + x_3)}{d_{20}d_{21}d_{22}} - \frac{(x_0 + x_3 + x_3)}{d_{20}d_{21}d_{22}} - \frac{(x_0 + x_3 + x_3)}{d_{20}d_{21}d_{22}} - \frac{(x_0 + x_3 + x_3)}{d_{20}d_{22}} - \frac{(x_0 + x_3 + x_3)}{d_$$

$$\frac{(x_0^{+}x_1^{+}x_2^{-})}{d_{30}^{d_{31}^{d_{32}}}}$$
  $y_3$ 

$$A_{1} = -\frac{(B_{31}^{+B}_{31}^{+B}_{31}^{+B}_{32})}{\frac{1}{d_{10}^{d_{20}^{d_{30}}}}} \cdot Y_{0} + \frac{(B_{20}^{+B}_{30}^{+B}_{32})}{\frac{1}{d_{10}^{d_{21}^{d_{31}}}}} Y_{1} - \frac{(B_{10}^{+B}_{30}^{+B}_{31})}{\frac{1}{d_{20}^{d_{21}^{d_{32}}}}} +$$

$$\frac{(B_{10}^{+}B_{20}^{+}B_{21}^{})}{d_{30}^{d_{31}^{d_{32}}}}$$
  $Y_3$ 

$$A_0 = Y_0 - (A_1 X_0 + A_2 X_0^2 + A_3 X_0^3)$$

The independent variable value minimizing P is the same as that in Case 2:

$$X^* = \left[ -A_2 + \sqrt{A_2^2 - 3A_3A_3} \right] (3A_3)^{1}$$







132

3.2.9 Subroutine: PGM

Purpose:

To generate a targeted and optimized reference trajectory.

Method:

PGM (Projected Gradient Method) is the organizational routine for the targeting and optimization submode. The logic for a complete iteration may be found in this routine. Basically, the iterative scheme proceeds as follows:

- A reference trajectory is generated using the namelist input variables in \$TRAJ.
- o The target error index is calculated.
- The method of control correction is determined and convergence is tested.
- o Target sensitivities to changes in controls are computed by numerical differencing or STM techniques.
- o A control correction is computed and scaled.
- o The control correction is applied to the cutrent control vector.
- o The trajectory associated with the new control vector becomes the reference trajectory for the next iteration.

133 PGM-2

This process continues until convergence has been achieved or the maximum number of iterations has been reached.

#### Remarks:

A check is made on the remaining central processor, (CP), time after every iteration. If the estimated processor time for the next iteration is larger than the remaining CP time, the iteration process is terminated.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                 |
|-----------------|------------------|---------------------|--------------------------------------------------------------------------------------------|
| Е               | I                | C .                 | Target errors evaluated for the current trajectory.                                        |
| EMAG            | I                | С                   | Target error index.                                                                        |
| eps <b>ø</b> n  | I                | C                   | Scalar multiple for control perturbations.                                                 |
| ETR (1,1)       | 0                | С                   | <pre>I = 1, NT; Target errors of the reference trajectory for the current iteration.</pre> |
| F               | I                | С                   | Performance index of the current trajectory.                                               |
| FTR(1)          | 0                | C                   | Performance index of the reference trajectory for the current iteration.                   |
| GAMA            | I                | С                   | Scale factor providing the best control change.                                            |
| NTR             | I                | С                   | Trial Trajectory counter.                                                                  |
| NU              | I                | С                   | Number of controls.                                                                        |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                          |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>H</b>        | 1/0              | C                   | Control perturbation array.                                                                                                                         |
| injløc          | I                | c                   | Index on the control preceding the injection controls in the vector $\underline{\mathbf{U}}$ .                                                      |
| INSG            | 1/0              | C                   | Flag set when S and G are not calculated for current iteration.                                                                                     |
| ITERAT          | 0                | · c                 | Iteration counter.                                                                                                                                  |
| KMAX            | I                | c                   | Number of thrust controls (THRUST(I,J)) chosen to be mode controls ( $\underline{U}$ ).                                                             |
| кønvrj          | I                | . <b>c</b>          | Convergence flag.                                                                                                                                   |
| <b>L</b> ØCDU   | I                | С                   | Blank common location of<br>the total control correc-<br>tion vector (not scaled<br>by GAMA).                                                       |
| LØCDU1          | I                | C                   | Blank common location of<br>the performance control<br>correction vector (not<br>scaled by GAMA).                                                   |
| <b>LØ</b> CDU2  | I .              | C                   | Blank common location of<br>the constraint control<br>correction vector (not<br>scaled by GAMA).                                                    |
| LØCRFM          | I                | С                   | Blank common location of<br>the S/C masses evaluated<br>at event times for the<br>reference and all trial<br>trajectories in a single<br>iteration. |
| løcsi*          | I                | С                   | Blank common location of<br>the pseudo inverse of the<br>weighted sensitivity<br>matrix.                                                            |

| Variable       | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                         |
|----------------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LØCTS          | I                | c                   | Blank common location of<br>event times for the refer-<br>ence and all trial trajec-<br>tories in a single iteration                                                                               |
| <b>LØ</b> CUL  | I .              | С                   | Blank common location of minimum and maximum control bounds (ULIMIT).                                                                                                                              |
| <b>LØC</b> WG* | Ι.               | C                   | Blank common location of<br>the weighted performance<br>gradient.                                                                                                                                  |
| løcws*         | ï                | С                   | Blank common location of<br>the weighted sensitivity<br>matrix.                                                                                                                                    |
| røcwu          | I                | C                   | Blank common location of the control weights.                                                                                                                                                      |
| <b>L</b> ØCXR  | I                | C                   | Blank common location of<br>the 6-component state<br>vectors associated with<br>the event times of the<br>reference and all the<br>trail trajectories evalu-<br>ated during a single<br>iteration. |
| MIN            | I                | С                   | Index of the scale factor in the GAMMA vector which provides the best control correction.                                                                                                          |
| NLP            | I                | С                   | Integer designation of the launch planet.                                                                                                                                                          |
| NT             | I                | c ·                 | Number of targets.                                                                                                                                                                                 |
| NTNP           | I .              | C                   | Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration.                                                                        |

<sup>\*</sup>Arrays may be in compressed form if controls have been dropped during the iteration.

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                                                                            |
|-----------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------|
| PMASS           | I                | С                   | Vector of planetary gravi-<br>tational constants.                                                     |
| PRTURB          | I                | С                   | Vector of control pertur-<br>bations.                                                                 |
| STATEO          | I/Ø              | С                   | S/C state at trajectory start time for the reference trajectory of a given iteration.                 |
| STATR           | I/Ø              | С                   | Array of initial S/C states for the reference and all trial trajectories of a given iteration.        |
| TARN <b>Ø</b> M | I/Ø              | С                   | Target values evaluated for the reference trajectory.                                                 |
| TARTR           | I .              | С                   | Target values evaluated for the reference trajectory and all trial trajectories in a given iteration. |
| U               | 1/Ø              | С                   | Selection of controls for the specified mode run.                                                     |
| WE              | I                | С                   | Vector of target weights.                                                                             |
| XMM             | Ø                | С                   | Mean motion of S/C in park-<br>ing orbit.                                                             |
| IASTM           | I                | С                   | Flag specifying method of computing the targeting sensitivity matrix.                                 |
| IMØDE           | Ø                | С                   | TOPSEP submode flag.                                                                                  |
| TUG             | I                | С                   | Logical flag specifying tug computations (TRUE).                                                      |

| Variable        | Definition                                                                   |  |  |
|-----------------|------------------------------------------------------------------------------|--|--|
| K <b>¢</b> UNT  | Index counter for the control vector U.                                      |  |  |
| TCPITR          | CP time for the first iteration (excluding reference trajectory generation). |  |  |
| TCPN <b>¢</b> W | Current CP time relative to the start of the job.                            |  |  |
| TCPREF          | CP time from job start to the end of the reference trajectory generation.    |  |  |

Subroutines Called: COPY, FEGS, MMATBA, PRINTO, SECOND, SIZE, STEP, TEST,

TIMELIM, ZERØM, STMTAR, INJECT

Calling Subroutines: TOPSEP

Common Blocks: (BLANK), CØNST, EDIT, EPHEM, TØP1, TØP2, TRAJ1,

TRAJ2, WØRK, IASTM, TUG

#### Logic Flow:



#### Logic Flow:







}



3.2.10 Subroutine: PRINTO (KFLAG)

Entry Points:

PRINT1, PRINT2, PRINT3

Purpose:

To provide print summaries for the various

TOPSEP submodes.

Remarks:

An iteration summary, a perturbed trajectory

summary, a grid summary, or a termination summary

is printed depending upon the entry point called.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                               |
|-----------------|------------------|---------------------|----------------------------------------------------------|
| CNVRTT          | I                | <b>C</b>            | Target parameter conversion constants.                   |
| CNVRTU          | I                | С                   | Control parameter conversion constants.                  |
| DPSI            | I                | С                   | Target error to be removed during current iteration.     |
| DP2             | I                | С                   | Region of linearity in control space.                    |
| E               | I                | С                   | Target errors.                                           |
| EMAG            | I                | С                   | Target error index.                                      |
| et <b>ø</b> l   | I                | С                   | Target tolerances.                                       |
| ETR             | . I              | C                   | Array of target errors for iteration trial steps.        |
| F               | 1                | С                   | Performance index.                                       |
| FTR             | I                | , <b>c</b>          | Vector of performance indices for iteration trial steps. |
| G ·             | I                | С                   | Performance gradient,                                    |
| GAMA            | I                | С                   | Optimum control change scale factor.                     |

| Variab <u>le</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                      |
|------------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| ITERAT           | I                | С                   | Iteration number.                                                                                               |
| KFLAG            | I                | A                   | Print specification flag.                                                                                       |
| KØNVRJ           | Ţ                | С                   | Convergence flag.                                                                                               |
| K <b>Ø</b> UNT   | ī                | <b>C</b> 5          | Index on control under consideration.                                                                           |
| LABELT           | I                | С                   | Hollerith target labels.                                                                                        |
| <b>løcd</b> u    | I                | C                   | Blank common location of total control correction vector.                                                       |
| LØCDU1           | I                | c ·                 | Blank common location of performance control correction vector.                                                 |
| LØCDU2           | I                | C                   | Blank common location of<br>the targeting control<br>correction vector.                                         |
| LØCEM1           | ı                | C                   | Blank common location of<br>the target error indices<br>associated with the first<br>step of the control grid.  |
| LØCEM2           | Υ .              | c                   | Blank common location of<br>the target error indices<br>associated with the second<br>step of the control grid. |
| <b>LØ</b> CEN    | I                | С                   | Blank common location of<br>the target errors associated<br>with the first step of the<br>control grid.         |
| LØCE2            | ı                | С                   | Blank common location of<br>the target errors asso-<br>ciated with the second<br>step of the control grid.      |
| løcf1            | I                | c                   | Blank common location of<br>the performance indices<br>associated with the first<br>step of the control grid.   |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                            |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------|
| LØCF2    | I                | С                   | Blank common location of the performance indices associated with the second step of the control grid. |
| NT       | I                | С                   | Number of targets.                                                                                    |
| NU       | I                | C ·                 | Number of controls.                                                                                   |
| PG2      | I                | C                   | The square of the projected gradient magnitude.                                                       |
| PRTURB   | I                | С                   | Control perturbation.                                                                                 |
| S        | I                | c                   | The sensitivity matrix.                                                                               |
| TARGET   | I                | С                   | Desired target values.                                                                                |
| TARPAR   | I                | С                   | Target values of perturbed trajectories.                                                              |
| TARTR    | I                | С                   | Target values of the trial trajectories.                                                              |
| U        | I                | С                   | Control vector.                                                                                       |
| LABEL    | I                | ć                   | Hollerith labels for all possible targets.                                                            |
| XINC     | I                | С                   | Ecliptic inclination.                                                                                 |
| ØMEGA ~  | I                | С                   | Longitude of ascending mode.                                                                          |
| SØMEGA   | r                | C                   | Argument of periapsis.                                                                                |
| XMEAN    | I                | С                   | Mean anomaly.                                                                                         |
| TA       | I                | С                   | True anomaly.                                                                                         |

| Variable               | Definition                                             |  |
|------------------------|--------------------------------------------------------|--|
| CDU ( = WORK(121))     | The scaled control change (converted to output units). |  |
| DU1ØUT ( = $WØRK(1)$ ) | Converted performance control change.                  |  |
| DU2ØUT ( = WØRK(21)    | Converted constraint control change.                   |  |

| Variable                | Definition                                                    |
|-------------------------|---------------------------------------------------------------|
| ENØM ( = WØRK(73))      | Converted target errors of the nominal trajectory.            |
| ETLØUT ( = $WØRK(85)$ ) | Converted target tolerances.                                  |
| E1ØUT ( = WØRK(61))     | Converted target errors of the first step grid trajectories.  |
| E2ØUT (= WORK(67))      | Converted target errors of the second step grid trajectories. |
| TARQUT ( = WORK(79))    | Converted target values.                                      |
| UØLD ( = WORK(101))     | Converted control vector of previous iteration.               |
| UØUT ( = WØRK(41))      | Converted control vector.                                     |
| wørk                    | Working storage.                                              |
| ISTØPN .                | Hollerith labels of requested stopping conditions.            |
| Køff                    | Hollerith labels of actual stopping conditions.               |

Subroutines Called: SCALE, STEP

Calling Subroutines: FEGS, GRID, PGM, TREK, STMTAR

Common Blocks: (BLANK), GRID, PRINTH, TOP1, TOP2, WORK, TARGET



3.2.11 Subroutine: PRINTD

Purpose: To print submode input summaries.

Remarks: PRINTD is in the DATAT overlay and does not

remain in core during TOPSEP's submode opera-

tion.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                               |
|-----------------|------------------|---------------------|------------------------------------------------------------------------------------------|
| CNTRØL          | I                | С                   | Initial values of all possible controls.                                                 |
| CNVRTU          | I                | C                   | Conversion constants from input units to internal units for selected controls.           |
| DFMAX           | I                | С                   | Maximum increase allowed in the cost index (F).                                          |
| DP2             | I                | C                   | Estimated region of lineearity in the control space.                                     |
| epsøn           | r                | C                   | Scalar multiple for con-<br>trol perturbations.                                          |
| G <b>Ø</b> UT   | I                | C                   | Performance gradient in print-out units.                                                 |
| GTRIAL          | · I              | C                   | One-dimensional search constants.                                                        |
| нфит            | I                | C                   | Control perturbations in printout units.                                                 |
| IMØDE           | I                | ·                   | TOPSEP submode designation.                                                              |
| INACTV          | I                | c                   | Vector denoting which controls are active, on bounds, or within bound tolerance regions. |
| INSG            | I                | C                   | Flag set to 1 when S and G are input through namelist (nominally 0).                     |

|                 | Input/ | Argument/ | Definition                                                                                                                       |
|-----------------|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------|
| <u>Variable</u> | Output | Common    | Delimition                                                                                                                       |
| IWATE           | I      | · C       | Flag designating the desired control weighting scheme.                                                                           |
| JMAX            | I      | C .       | Number of mission thrust phases.                                                                                                 |
| KMAX            | I      | C         | Number of thrust controls (THRUST (I, J)) chosen to be elements in $\underline{U}$ .                                             |
| kntrøl          | ı      | С         | Hollerith names for the elements in CONTRØL.                                                                                     |
| LØCUL           | I      | C .       | Blank common location of minimum and maximum control bounds.                                                                     |
| NMAX            | I      | · · · c   | Maximum number of iterations.                                                                                                    |
| NT              | I      | C         | Number of targets.                                                                                                               |
| NU              | I      | C         | Number of controls.                                                                                                              |
| PCT             | I      | С         | Percentage of target error to be removed during an iteration.                                                                    |
| søut            | I      | C         | Target sensitivity matrix in printout units.                                                                                     |
| ST <b>Ø</b> L   | Ι      | C         | Test variable for determin-<br>ing linearly dependent<br>columns of the weighted<br>sensitivity matrix.                          |
| TLØW            | . I    | C         | Limit of target error index below which optimization only is performed.                                                          |
| TUP             |        | c         | Limit of target error index above which simultaneous targeting and optimization is discontinued and targeting only is initiated. |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                  |
|----------|------------------|---------------------|-----------------------------|
| UWATE    | 1/0              | <b>c</b> `          | User input control weights. |
| ₩ØRK     | I                | <b>C</b> .          | Working storage.            |

| Variable        | Definition                                                              |  |
|-----------------|-------------------------------------------------------------------------|--|
| KØUNT           | Control counter.                                                        |  |
| UL ( = WØRK(1)) | The minimum and maximum values of the control bounds in printout units. |  |

Subroutines Called:

None

Calling Subroutines:

DATAT

Common Blocks:

(BLANK), CONST, EDIT, EPHEM, GRID, PRINT, PRINTH,

TIME, TOP1, TOP2, TRAJ1, TRAJ2, WORK



Logic Flow:



#### 3.2.12 Subroutine: SIZE

Purpose:

To size the control correction.

Method:

The basic procedure for sizing the control correction is as follows:

- Compute the target error to be removed during the current iteration. Often it is not wise to remove all the target error in one step due to the nonlinear relationship of the targets to the controls.
- Compute the control correction ▲ U based upon the method of projected gradients.
- 3. Perform a one-dimensional search in the  $\Delta \underline{U}$  direction to determine a scaled control correction which will minimize either the target error, the cost index, or both.

Supplementary computations include:

- o Determining linear dependency among columns of the sensitivity matrix, S, thus averting numerical problems when computing the pseudo-inverse of S.
- o Determining which controls lie on their respective bounds and which control corrections violate the control constraints.
- o Determining the maximum allowable scale factor for the current iteration

Remarks:

Steps 1 and 2 of the control sizing procedure are completed in the secondary overlay DELTU which is called from SIZE. In addition, DELTU performs most of the supplementary calculations. The third step is completed within subroutine GENMIN. Subroutine SIZE monitors the overall procedure. Elaboration of the third step in terms of the coded logic follows.

Subroutine size calls subroutine GENMIN to compute the value of the scaling factor  $\gamma$  (GAMA) which minimizes a function  $P(\gamma)$  in the combined constraint direction,  $\Delta \underline{u}_2$ , and the optimization direction,  $\Delta \underline{u}_1$ , or each direction individually depending upon the value of NTYPE. The function  $P(\gamma)$  is the sum of two functions,  $P(\gamma)$  and  $P(\gamma)$ .  $P(\gamma)$  is the net cost index and  $P(\gamma)$  is the target error index.

$$P(\gamma) = \alpha \cdot \lambda \cdot P1(\gamma) + \beta \cdot P2(\gamma)$$

where

 $\beta = \begin{cases} 1, & \text{for targeting only or simultaneous} \\ & \text{targeting and optimization,} \\ 0, & \text{for optimization only} \end{cases}$ 

 $\lambda$  = Weighting of the net cost index ( $\emptyset$ SCALE)

153

GENMIN evaluates  $P(\gamma)$  for different values of Y so that a polynomial approximation of the function can be made. Once the polynomial is formulated the minimizing  $\gamma$  may be computed analytically. To reduce the number of point evaluations of  $P(\gamma)$ , SIZE provides GENMIN with the first derivative of the function at Y=0. The first derivative (DP12DS) is of the form

$$P'(0) = \frac{dP(\gamma)}{d\gamma} = \alpha \cdot \lambda \cdot P1'(0) + \beta \cdot P2'(0)$$

For the special case when only the target error is to be minimized, the first derivative (DP2DS) is

$$P'(0) = P2'(0)$$

Likewise, for the case when only the net cost is to be minimized, the first derivative (DPIDS) is

$$P'(0) = \lambda \cdot P1 (0)$$

The function P2( $\gamma$ ) to be minimized along the constraint direction,  $\Delta u_2$ , is the sum of the squares of the target errors ( $\underline{E}$ ) divided by the target tolerances (ETØL).

$$P2(\gamma) = \underline{E}^{T}(\underline{u} + \gamma \Delta \underline{u}_{2}) \ \forall \ \underline{E}(\underline{u} + \gamma \Delta \underline{u}_{2})$$

where

$$W = \begin{bmatrix} \frac{1}{ET\emptyset L(1)} & 0 \\ \frac{1}{ET\emptyset L(2)} & 2 \\ 0 & \frac{1}{ET\emptyset L(NT)} \end{bmatrix}$$

The first derivative evaluated at  $\gamma = 0$  is simply

$$P2^{\prime\prime}(0) = 2\underline{E}^{T} (\underline{u}) S \Delta \underline{u}_{2}$$

where S is the target sensitivity matrix  $(\frac{\delta E}{\delta \underline{u}})$ .

The function Pl(  $\gamma$  ) to be minimized along the optimization direction  $\Delta\underline{u}_1$  is defined

$$P1(\gamma) = F(\underline{u} + \gamma \Delta \underline{u}_1) - F(\underline{u}) +$$

$$G^{T}(\underline{u}) \left[ -S(SS^{T})^{-1} E(\underline{u} + \gamma \Delta \underline{u}_{1}) \right]$$

where A represents the change in performance produced by a step of length  $\gamma$  along  $\Delta \underline{u}_1$  and B represents the linearized approximation to change

155

 $\gamma = 0$  is then

in performance required to eliminate the target error produced by a step of length  $\gamma$  along  $\Delta \, \underline{u}_1$ . F is the cost index (negative of the S/C mass) and G is the cost gradient  $(\frac{\partial \, F}{\partial \, \underline{u}})$ .

$$P1'(0) = \underline{G}^{T} (\underline{u}) \Delta \underline{u}$$

The first derivative evaluated at

The functions P'(0), P1'(0), and P2'(0) are initialized in the secondary overlay DELTU. The point evaluations of the functions  $P(\gamma)$ ,  $P1(\gamma)$ , and  $P2(\gamma)$  are computed in GENMIN and stored in the vectors P1P2, P1, and P2 respectively. The various values of the scale factor,  $\gamma$ , are stored in the vector GAMMA while the minimizing scale factor is stored in the variable GAMA.

## Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                |
|-----------------|------------------|---------------------|-------------------------------------------------------------------------------------------|
| BIG             | I                | С                   | Large constant, 1.E20                                                                     |
| DP1DS           | ĭ                | C <sub>.</sub>      | P1'(0)                                                                                    |
| DP12DS          | I                | С                   | P'(0)                                                                                     |
| DP2DS           | I                | С                   | P2' (0)                                                                                   |
| DP2             | 1/0              | С                   | Scale on optimization correction.                                                         |
| GAMA            | 0                | C                   | Scale factor providing the best control change.                                           |
| GAMMA           | 0                | С                   | Vector of control change scale factors for the trial trajectories.                        |
| GMAX            | o                | С                   | Largest allowed scale factor.                                                             |
| GTRIAL          | 1/0              | С                   | One-dimensional search constants.                                                         |
| INACTV          | 1/0              | С                   | Vector denoting which controls are active (1), on bounds (0), or within bound tolerances. |
| INSG            | I/O              | С                   | Flag set when \$ and G are input through namelist.                                        |
| ITERAT          | I                | С                   | Iteration counter.                                                                        |
| KGMAX           | ı                | C                   | Index on control which will reach a bound if GMAX scales Au                               |
| LØCUL           | I                | c                   | Blank common location for the control bounds,                                             |
| MIN             | 0                | С                   | Index of minimizing scale factor in GAMMA.                                                |
| NTY PE          | 0                | C .                 | Flag specifying the type of control correction.                                           |

| Variable            | Input/<br>Output | Argument/<br>Common | Definition                                                                                                      |
|---------------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| NU                  | I                | С                   | Number of controls.                                                                                             |
| P1                  | 0                | C                   | Vector of net cost values corresponding to the scale factors in GAMMA.                                          |
| P1P2                | 0                | <b>C</b>            | Vector of combined net cost<br>and target error index values<br>corresponding to the scale<br>factors in GAMMA. |
| P2                  | o                | С                   | Vector of target error index values corresponding to the scale factors in GAMMA.                                |
| u                   | I                | С                   | Control vector.                                                                                                 |
| ULIMIT              | I                | С                   | Control bounds.                                                                                                 |
| Local Variables:    |                  |                     |                                                                                                                 |
| Variable            |                  | Defi                | nition                                                                                                          |
| Plest               |                  |                     | ontaining the estimates of for the trial trajectories.                                                          |
| P12EST              |                  |                     | ontaining the estimates of or the trial trajectories.                                                           |
| P2EST               |                  |                     | ontaining the estimates of for the trial trajectories.                                                          |
| UNEW                |                  | Updated<br>INACTV.  | control vector used to compute                                                                                  |
| Subroutines Called: | CØ               | PY, DELTU, GEN      | MIN, STEP                                                                                                       |
| Calling Subroutines | : P(             | GM                  |                                                                                                                 |
| Common Blocks:      | · (E             | BLANK), CØNST,      | EDĪT, TØP1, TØP2, WØRK, SIZE*                                                                                   |



Pages 159 through 165 have been deleted.

8

3.2.13 Subroutine: STEP (UØLD, SCALE, DELU, NU, UNEW)

Purpose:

To update the control vector.

166

Method:

The new control vector is updated by the follow-

ing algorithm:

UNEW (I) = UØLD (I) + SCALE \* DELU (I)

### Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                   |
|----------|------------------|---------------------|------------------------------|
| DELU     | I                | A                   | Control correction vector.   |
| NU       | I                | A                   | Number of controls.          |
| SCALE    | I                | A                   | Scale on control correction. |
| UNEW     | О                | A                   | Updated control vector.      |
| UØLD     | r                | Α                   | Previous control vector.     |

Local Variables:

None

Subroutines Called:

None

Calling Subroutines:

GRID, PGM

Common Blocks:

None

Logic Flow:

None

3.2.14A Subroutine: STEST (WS, NT, NU, STØL, CDØTC, CMAG, LDEP, NDEP)

Purpose:

To compute the inner products between columns of the weighted sensitivity matrix in order to determine linearly dependent control sensitivities.

Method:

The normalized inner products between columns of the weighted sensitivity matrix are computed and stored in the CDØTC array. These values are then tested to determine whether they fall within some tolerance (STØL) of unity. The control sensitivity vectors, whose inner products do fall within this tolerance region, are considered to be linearly dependent and at least one of the associated controls will be dropped from the control vector during the concurrent iteration. For example, if  $\underline{S}_i$  and  $\underline{S}_j$  represent two columns of the weighted sensitivity matrix and

$$\frac{1 - \left| \frac{\underline{S_i} \cdot \underline{S_j}}{|\underline{S_i}| * |\underline{S_j}|} \right| < \text{STØL}$$

then  $\underline{S}_i$  and  $\underline{S}_j$  are considered linearly dependent. Whether the  $\underline{\omega}_i$  and  $\underline{\omega}_j$  component is dropped from the control vector depends upon the other column vector inner products. If  $\underline{S}_i$  and  $\underline{S}_k$  are also

linearly dependent then control  $u_j$  will be dropped since this measure will allow more controls to remain active. The fact that a tolerance region is used to test linear dependency does permit  $\underline{S}_i$  and  $\underline{S}_k$  to remain linearly independent although both vectors are linearly dependent with  $\underline{S}_j$ . If  $\underline{S}_i$  and  $\underline{S}_j$  are the only linearly dependent vectors the control with the lower index is arbitrarily dropped. STEST is called only once per iteration and only when considering controls in the weighted space.

# Input/Output:

Remarks:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                      |
|----------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CDØTC    | 0                | A                   | Array of normalized inner products; CDØTC (I, J) is the inner product between the I and J columns of WS.                                                        |
| CMAG     | 0                | A                   | Magnitude of the sensitivity column vectors.                                                                                                                    |
| LDEP .   | o                | <b>A</b>            | Vector of flags nominally zero but set to 1 to denote which controls should be dropped.                                                                         |
| NDEP     | 0                | <b>. A</b>          | Number of dropped controls.                                                                                                                                     |
| NT       | ı                | A                   | Number of targets.                                                                                                                                              |
| NU       | I                | A                   | Number of controls.                                                                                                                                             |
| STØL     | I                | A                   | Minimum difference allowed between normalized inner products of the control sensitivity vectors and unity before the vectors are considered linearly dependent. |

| <b>V</b> ariable | Input/<br>Output | Argument/<br>Common | Definition                                                                          |
|------------------|------------------|---------------------|-------------------------------------------------------------------------------------|
| WS               | I .              | A                   | Weighted sensitivity matrix.                                                        |
| Local Variables: |                  |                     |                                                                                     |
| Variable         |                  |                     | Definition                                                                          |
| MATRIX           |                  | CDOTC who           | erray the same dimensions as ose components are nominally set to 1 when (1-CDØTC ij |
| MRC              |                  |                     | rray; the first column repre-                                                       |

MRCSUM

NU X 1 vector whose elements represent

the rows of MATRIX; the second column represents the sum of elements down

the sum across the rows of MRC.

the columns of MATRIX.

ITEST

Index of the largest element of MRCSUM.

Subroutines Called:

ZERØM

Calling Subroutines:

SIZE

Common Blocks:

None





3.2.14B <u>Subroutine</u>:

STMTAR (IT)

Purpose:

To compute the targeting sensitivity matrix from the augmented state transition matrix.

Method:

The method of computing the sensitivity matrix, S, from the partitions of the augmented STMs,  $\emptyset$  and  $\theta$ , is described in Reference 1, Section 9.7, page 140.

Remarks:

During each iteration the reference trajectory (i.e. the trajectory defined by the \$TRAJ variables in the zeroth iterate and the "best" trial trajectory in each subsequent iteration) must be integrated to compute  $\emptyset$ ,  $\Theta$ , and S. If a portion of this reference trajectory remains constant throughout the iterative process, it is integrated during the zeroth iterate only.

#### Input/Output:

| Variable   | Input/<br>Output | Argument/<br>Common | Definition                                       |
|------------|------------------|---------------------|--------------------------------------------------|
| CA         | o                | С                   | Closest approach computed in BPLANE              |
| E          | o                | С                   | Target error vector                              |
| ETA(=STATR | (1,2)) 0         | С                   | Sensitivity of targets to changes in final state |
| F          | o                | С                   | Cost index (negative of payload)                 |
| ijĦ        | I                | С                   | Array of flags indicating active controls        |
| IPRINT     | o                | С                   | Trajectory print flag                            |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                    |
|----------|------------------|---------------------|-----------------------------------------------------------------------------------------------|
| IT .     | I                | A                   | Flag indicating integration of<br>the fixed trajectory arc (-1) or<br>integration of STMH (1) |
| KMAX     | I                | С                   | Number of active thrust controls                                                              |
| LISTAR   | I.               | С                   | Array of flags indicating selected targets                                                    |
| L¢CM     | I                | С                   | Blank common location of final S/C mass                                                       |
| LOCRFM   | I                | C                   | Blank common location of the S/C masses evaluated at event times                              |
| LOCTS    | I                | С                   | Blank common location of event times                                                          |
| LOCXR    | I                | С                   | Blank common location of the S/C states evaluated at event times                              |
| MPRINT   | I                | C                   | TOPSEP print flags                                                                            |
| NPRI     | Ι                | С                   | Primary body designation                                                                      |
| NT       | I                | С                   | Number of cargets                                                                             |
| NTNP     | 0                | <b>C</b>            | Vector of primary body designa-<br>tions associated with trajectory<br>event times            |
| NTP      | . I              | С                   | The target body code                                                                          |
| NTPH     | I                | C                   | Vector of control phase numbers associated with event times                                   |
| NTPHAS   | I                | С                   | Thrust phase counter                                                                          |
| NU       | I                | С                   | Number of controls                                                                            |
| PHI      | o                | c '                 | State transition matrix (6x6)                                                                 |
| RÇA      | 0                | С                   | Target planet encounter radius computed in TRAJ                                               |
| S        | Ó                | С                   | Targeting sensitivity matrix                                                                  |
| SCMASS   | I                | С                   | S/C mass at trajectory start time                                                             |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                       |
|----------|------------------|---------------------|----------------------------------------------------------------------------------|
| STATEO   | I                | С                   | S/C state at trajectory start time                                               |
| STATR    | I                | С                   | Array of initial states corresponding to the reference and each trial trajectory |
| TARGET   | o                | c                   | Desired target values                                                            |
| TARNOM   | 0                | С                   | Target values evaluated for the reference trajectory                             |
| TCA      | 0                | С                   | Time of closest approach computed in BPLANE                                      |
| TEND     | ŗ                | С                   | Trajectory end time                                                              |
| THETA    | 0                | С                   | Sensitivity of final state to changes in thrust controls                         |
| TM       | ī.               | C .                 | Time conversion constant (days to seconds)                                       |
| TRCA     | 0                | Ċ                   | Time at closest approach computed in TRAJ                                        |
| TSI      | 0                | С                   | Time at SOI computed in BPLANE                                                   |
| TSØ1     | 0                | С                   | Time at SOI computed in TRAJ                                                     |
| TSTART   | I                | С                   | Trajectory start time                                                            |
| TUG      | 1/0              | С                   | Logical flag indicating injection computations if TRUE                           |

## Local Variables:

| Variable | Definition                                                           |
|----------|----------------------------------------------------------------------|
| NPRIO    | Primary body designation at time TSTART for the reference trajectory |
| REFMO    | S/C initial mass at time TSTART for the reference trajectory         |
| REFXO    | S/C initial state at time TSTART for the reference trajectory        |

COPY, DTDUO, ECOMP, MATOUT, MMAB, MUNPAK, PRINT3, SUB, TCOMP, THCOMP, TREK, TUGINJ, VECMAG Subroutines Called:

Calling Subroutine: PGM

(Blank), CONST, IASTM, TARGET, TIME TOPI, TOPZ, TRAJ1, TRAJ2, TUG Common Blocks:





3.2.15 Subroutine: TEST

Purpose:

To test for convergence and to determine whether the next control change will be a targeting and/or optimization correction.

Me thod:

The determination of the type of control correction is based upon the size of the error index (EMAG). The value of EMAG is compared to user input limits which direct the calculation of the next control change to be either a constraint correction, a performance correction, or simultaneous constraint and performance corrections.

The iteration process is considered converged and the run is terminated when the performance index is maximized.

Remarks:

A summary of the control correction decision process is given in the following table.

| IF                | THEN                       |
|-------------------|----------------------------|
| emag > tup        | TARGETING                  |
| TLØW < EMAG < TUP | TARGETING AND OPTIMIZATION |
| . EMAG < TLØW     | OPTIMIZATION               |

Search Direction Options

The input limits TUP, TLOW, and OPTEND allow the user flexibility in determining the type of targeting and optimization strategy. For example, the user may concentrate on targeting exclusively by setting TUP = TLOW = 1, and OPTEND = 0. When the trajectory is targeted the run will terminate without optimizing.

The angle (0) between  $\underline{G}$  and  $\underline{\Delta}\,\underline{u}_1$  is used to test convergence in subroutine TEST. Optimization is considered complete when

$$\cos \theta = \frac{\underline{G} \cdot \Delta \underline{u}_1}{|\underline{G}| * |\Delta \underline{u}_1|}$$

approaches 0 (when  $\theta$  approaches 90 deg) and when EMAG < TLØW. The user may override this convergence requirement by specifying ØPTEND. When  $\theta$ PTEND <  $\theta$  < 90 and EMAG < TLØW the run is terminated. Figure 3-1 illustrates the convergence process.



Figure 3-1 Geometric Interpretation of Convergence

## Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| CTHETA   | Ι.               | С                   | Cosine of the convergence test angle, . As optimization process converges, approaches 90 degrees and CTHETA approaches 0. |
| EMAG     | I                | С                   | Quadratic error index.                                                                                                    |
| ITERAT   | I                | C                   | Current iteration number.                                                                                                 |
| KØNVRJ   | o                | С                   | Convergence flag.                                                                                                         |
|          |                  | •                   | = -1, maximum iteration number reached ,                                                                                  |
|          | `                | ,                   | = 0; iteration in process                                                                                                 |
|          |                  |                     | = 1, convergence                                                                                                          |
| NMAX     | I                | C                   | Maximum number of itera-<br>tions allowed.                                                                                |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                  |
|-----------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------|
| NTYPE           | 0                | С                   | Flag designating type of next control correction.                                                           |
|                 |                  |                     | = -1, optimization only                                                                                     |
|                 |                  |                     | = 0, targeting and opti-<br>misation                                                                        |
|                 |                  |                     | = 1, targeting only                                                                                         |
| <b>∮</b> PTEND  | I                | C                   | User specified convergence tolerance on optimization process (e.g., CTHETA ≤ ØPTEND indicates convergence). |
| TL <b>Ø</b> W   | <b>I</b> .       | c                   | Upper limit of EMAG for which optimization only is performed.                                               |
| TUP             | . <b>I</b>       | С                   | Lower limit of EMAG for which targeting only is performed.                                                  |

Local Variables:

None

Subroutines Called:

None

<u>Calling Subroutines</u>:

PGM

Common Blocks:

EDIT, TØP1, TØP2

Logic Flow:

None '

3.2.16 Subroutine: TREK (IT, KOUNT)

<u>Purpose</u>: To organize calls to the trajectory propagator

and to evaluate target conditions.

Method: The trajectory propagator, TRAJ, performs two

basic functions for TOPSEP: 1) trajectory

integration from some specified starting time

(TREF) to the stopping condition denoted by

ISTOP, and 2) trajectory integration from the

starting time to an event time (TEVNT). In

the latter case TRAJ may be recalled and tra-

jectory integration continued from the current

event time to the next event time without

requiring initialization of the trajectory

routines and parameters. These capabilities

are utilized in TOPSEP's submodes in different

ways. For the simple trajectory propagation

submode, TRAJ is required to integrate from

the start time to the termination time. However,

the targeting and grid submodes require that

TRAJ return to TREK at certain phase times so

that the s/c mass and state may be stored in

blank common. This requirement is necessary

only for the reference and trial trajectory

when elements of THRUST(I, J) are used as con-

trols. When TREK is called to set up grid

trajectories and perturbed trajectories the appropriate mass and state are selected from blank common. TRAJ then integrates the trajectory from the beginning of the associated thrust phase to the terminal time thus avoiding the duplication of known trajectory segments. When elements of THRUST(I, J) are not used as controls, however, TRAJ integrates from the start time (TSTART) to the terminal time. returns the s/c terminal state, and mass and the final time upon completion of the trajectory integration. To compute additional termination data or to compute target parameters such as BDT and BDR or orbital elements, subroutine BPLANE must be called. Subroutine TCOMP1 is then called to select and to store the appropriate target parameters in the vector TARPAR.

The flag returned from TRAJ which directs further computation of termination data is KUTØFF. The following table provides a summary of the KUTØFF options.

| KUTØFF | Actual Stopping<br>Condition | ISTØP     | Requested Stopping<br>Condition | Computed GØ TØ<br>Statement<br>Number |
|--------|------------------------------|-----------|---------------------------------|---------------------------------------|
| 1      | Final Time                   | 1         | Final Time                      | 400                                   |
| 2      | Final Time                   | 2         | Encounter                       | 100                                   |
| 3      | Final Time                   | 3         | søi ·                           | 100                                   |
| 4      | Final Time                   | 4         | Stopping Radius                 | 100                                   |
| 5      | Encounter                    | .2        | Encounter                       | 200                                   |
| 6      | Encounter                    | 3         | SØI                             | 200                                   |
| 7      | SØI                          | 3         | SØI                             | 300                                   |
| 8      | Stopping Radius              | 4         | Stopping Radius                 | 400                                   |
| 9      | Event Time                   | <b>NA</b> | Event Time                      | 700                                   |

# Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                            |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------|
| BIG      | I                | C                   | Constant equal to 1.E20                                                               |
| CA       | ľ                | C                   | Closest approach.                                                                     |
| ECC      | I                | C                   | Eccentricity of orbit relative to the target planet at the actual stopping condition. |
| ICALL .  | O                | <b>c</b> .          | Trajectory initialization flag.                                                       |
| IMØDE    | I                | С                   | TOPSEP submode designation.                                                           |
| INTEG    | 0                | С                   | Flag indicating which equations are to be integrated in TRAJ.                         |
| IPRINT   | o                | C                   | Trajectory print flag.                                                                |

| Variable                     | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                 |
|------------------------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IT                           | I                | A                   | Flag indicating type of in-<br>itialization preceding the<br>call to TRAJ.                                                                                 |
| ITP                          | 0                | С                   | Index of the target planet in the NB array (bodies included in the trajectory integration).                                                                |
| KMAX                         | I                | C .                 | Number of thrust controls (THRUST (I, J)) chosen to be elements of $\underline{\mathbf{u}}$ .                                                              |
| K <b>∲</b> UNT               | I                | Α                   | Index on control.                                                                                                                                          |
| Kut <b>ø</b> ff <sub>.</sub> | 0                | C                   | Termination flag.                                                                                                                                          |
| L <b>Ø</b> CM                | 0.               | C                   | Blank common location of final S/C mass.                                                                                                                   |
| LØCRFM                       | I                | <b>c</b>            | Blank common location of the S/C masses evaluated at event times for the reference and all trial trajectories in a single iteration.                       |
| LØCTS                        | I                | C                   | Blank common location of event<br>times for the reference and all<br>trial trajectories in a single<br>iteration.                                          |
| L <b>Ø</b> CXR               | I                | <b>C</b>            | Blank common location of the 6-common state vectors associated with the event times of the reference and all the trial trajectories of a single iteration. |
| MEVENT                       | . 0              | <b>C</b>            | Flag designating trajectory propagation to event times.                                                                                                    |
| MPRINT                       | I                | С                   | Submode print option flags.                                                                                                                                |
| NPRI                         | 0                | С                   | Primary body designation.                                                                                                                                  |
| NTNP                         | 0 .              | C                   | Vector of primary bodies asso-<br>ciated with the event times of<br>the reference and all trial<br>trajectories in a single itera-<br>tion.                |

| Variable       | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                         |
|----------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------|
| NTP            | I                | С                   | The target body code (NB (ITP)).                                                                                                   |
| NTPH           | I .              | С                   | Vector of control phase numbers associated with the event times of the reference and all trial trajectories in a single iteration. |
| NTPHAS         | 0                | C                   | Thrust phase counter.                                                                                                              |
| NTR            | I                | c                   | Trial trajectory counter.                                                                                                          |
| NU             | I.               | . c                 | Number of controls.                                                                                                                |
| R <b>CA</b>    | 0                | С                   | Target planet encounter radius.                                                                                                    |
| SCMASS         | 1/0              | С                   | S/C mass at the trajectory start time.                                                                                             |
| SMA            | 0                | С                   | Semi-major axis of the approach orbit relative to the target planet.                                                               |
| STATEO         | 1/0              | С                   | S/C state at trajectory start time.                                                                                                |
| STØRE          | 1/0              | С                   | Blank common variables.                                                                                                            |
| <b>TARPA</b> R | 0                | С                   | Target values of the most recent-<br>ly generated trajectory.                                                                      |
| TCA            | 0.               | С                   | Osculating time of closest approach.                                                                                               |
| TEVNT          | O                | С                   | Event time to be monitored by TRAJ.                                                                                                |
| TM             | I                | С                   | Number of seconds in a day.                                                                                                        |
| TRCA           | 0                | С                   | Time of closest approach deter-<br>mined by TRAJ if KUTØFF equals<br>5 or 6, otherwise set to TCA.                                 |
| TREF           | O                | С                   | Reference time used by TRAJ to begin trajectory propagation.                                                                       |

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                            |
|---------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| TS <b>Ø</b> I | 0                | С                   | Time at sphere of influence determined by TRAJ if KUTØFF equals 7, otherwise set to TSI.                                              |
| TSTART        | I                | С                   | The reference trajectory start time.                                                                                                  |
| TSTØP         | 0                | С                   | The actual trajectory termina-<br>tion time.                                                                                          |
| UREL          | 0                | C                   | Array containing the position components of the S/C relative to the bodies flagged in the NB array.                                   |
| URELM         | 0                | С                   | Vector containing the magni-<br>tude of the position com-<br>ponents of the S/C relative<br>to the bodies flagged in the<br>NB array. |
| UTRUE         | 0                | C                   | S/C position components relative to the primary body.                                                                                 |
| VCA           | 0                | c                   | Osculating velocity at closest approach.                                                                                              |
| VRELM         | 0                | С                   | Vector containing the magnitudes of the velocity components of the S/C relative to the bodies flagged in the NB array.                |
| VTRUE         | 0                | С                   | S/C velocity components relative to the primary body.                                                                                 |
| BDR           | o                | С                   | Osculating B-plane element orthogonal to the ecliptic plane.                                                                          |
| BDR           | o                | С                   | Osculating B-plane element in the ecliptic plane.                                                                                     |
| IASTM         | I                | С                   | Flag designating the method of computing the target sensitivity matrix.                                                               |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                          |
|----------|------------------|---------------------|-----------------------------------------------------------------------------------------------------|
| LISTAR   | 1                | С                   | Array of indices identifying selected target variables.                                             |
| NT       | I                | c .                 | Number of target variables.                                                                         |
| TSI      | 0                | С                   | Time of sphere of influence crossing based upon osculating B-plane conditions.                      |
| TUG      | 0                | <b>C</b>            | Logical flag determining whether injection conditions should be calculated.                         |
| VHP      | o                | С                   | Hyperbolic excess velocity.                                                                         |
| VREL     | I                | С                   | Array containing the velocity components of the S/C relative to the bodies flagged in the NB array. |

## Local Variables

| Variable | Definition                                                                                           |
|----------|------------------------------------------------------------------------------------------------------|
| JUMP     | Index on the thrust controls (THRUST $(I, J)$ ) chosen to be elements of $\underline{u}$ .           |
| MISS     | Flag set to 1 if osculating elements are calculated outside the target planet's sphere of influence. |
| NPRIO    | Primary body at time TSTART for the reference trajectory.                                            |
| NTPHC    | Thrust control phase number at time TSTART for the reference trajectory.                             |
| REFMO    | S/C initial mass at time TSTART for the reference trajectory.                                        |
| REFXO    | S/C initial state at time TSTART for the reference trajectory.                                       |

Subroutines Called: BPLANE, COPY, VECMAG, TUGINJ, PRINT3, TCOMP1

Calling Subroutines: FEGS, STMTAR

Common Blocks: (BLANK), CONST, EDIT, EPHEM, GRID, PRINTH, TARGET,

TIME, TOP1, TOP2, TRAJ1, TRAJ2, WORK, IASTM, TUG

Page 182 has been deleted.













3.2.17 Subroutine: WEIGHT (DU1, DU2, DU, SINV, WG, WS, WU, NUD, NTD)

Entry Points: UNWATE

Purpose: To perform the appropriate control and target

space transformations by weighting and unweight
ing the controls, gradients, sensitivities, and

targets.

Method: Several different weighting algorithms have been

devised to transform the control and target

spaces in order to facilitate targeting and

optimization. The weights are applied to

"condition" the effects of selected controls

when targeting and optimizing. The weighting

algorithms are as follows:

1. User input weighting

WU (J) = 
$$\frac{1}{\text{UWATE (J)}}$$
.

2. Unitized control weighting

$$WU (J) = \frac{1}{U(J) + UWATE(J)}$$

3. Sensitivity weighting

WU (J) = MAX 
$$\left\{ \left| \frac{S(I, J)}{UWATE(J)} \right| , i = 1, NT \right\}$$

 Combined sensitivity, target error, and control weighting

WU (J) = 
$$\sum_{T=1}^{NT} \left| \frac{S(I, J) * ETR(I, 1)}{U(J) * UWATE(J)} \right|$$

5. Target gradient weighting

G2 (J) = 
$$2\sum_{I=1}^{NT}$$
 S (I, J) \* ETR (I, 1)

WU (J) = 
$$\frac{|G2|(J)|}{\sqrt{G2^T|G2}}$$

6. Averaged gradient and control weighting

WU (J) = 
$$\frac{(10 * U(I) * UWATE(J) + \frac{1}{G2(J)})}{(UWATE(J) * U(J)^2 + \frac{1}{G2(J)^2})}$$

#### Remarks:

This routine is used to weight controls and targets before the control correction is calculated and to unweight the same variables and certain additional parameters before the trial trajectories are made.

### Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                           |
|----------|------------------|---------------------|------------------------------------------------------|
| DPSI.    | I                | c                   | Target error to be removed during current iteration. |
| מם       | 1/0              | A                   | Total control correction.                            |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                          |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|
| DU1      | 1/0              | . <b>A</b> ,        | Performance correction.                                                                                             |
| DU2      | 1/0              | A                   | Constraint correction.                                                                                              |
| ETØL     | I                | C                   | Target tolerances.                                                                                                  |
| ETR      | I                | С                   | Array of trial trajectory errors.                                                                                   |
| G        | I                | С                   | Performance gradient.                                                                                               |
| IWATE    | I                | C                   | Flag specifying type of weighting.                                                                                  |
|          | ,                |                     | 1, User input weighting                                                                                             |
| •        |                  |                     | <ol><li>Unitized control weighting</li></ol>                                                                        |
|          | ·                |                     | 3, Sensitivity weighting                                                                                            |
|          |                  | · · · · ·           | <ul><li>4, Combined sensitivity, target error, and control weighting</li><li>5, Target gradient weighting</li></ul> |
|          |                  |                     | 6, Averaged gradient and control weighting                                                                          |
| IWATE    | I                | C                   | Flag specifying target weighting.                                                                                   |
| NT       | I                | c                   | Number of targets.                                                                                                  |
| NTD      | I                | A                   | Integer variable used to dimension arrays in the argument list (number of targets).                                 |
| NU       | I                | С                   | Number of controls.                                                                                                 |
| NUD      | I                | Ý                   | Integer variable used to dimension arrays in the argument list.                                                     |

| <b>Va</b> riable | Input/<br>Output | Argument/<br>Common | Definition                                                         |
|------------------|------------------|---------------------|--------------------------------------------------------------------|
| S                | I                | . с                 | The sensitivity of targets to changes in controls.                 |
| SINV             | 1/0              | A                   | Pseudo inverse of the sensitivity matrix.                          |
| U                | 1/0              | C                   | The control vector.                                                |
| UWATE            | I                | <b>c</b>            | User input weights on controls (used in each weighting algorithm). |
| WG               | Ø                | A                   | Weighted performance gradient.                                     |
| WØRK             | I                | С                   | Temporary working storage.                                         |
| WS               | o                | A                   | Weighted sensitivity matrix.                                       |
| WU               | I                | A                   | Control weighting vector.                                          |

# Local Variables:

| Variable Definition |                                   |
|---------------------|-----------------------------------|
| G2                  | Target gradient.                  |
| G2MAG               | Magnitude of the target gradient. |
| STØRE               | Temporary storage location.       |

Subroutines Called: AMAX1, MMATB

Calling Subroutines: SIZE

Common Blocks: EDIT, TØP1, TØP2, WØRK

Logic Flow:





3.3 Program: GØDSEP

<u>Purpose</u>: Executive control for error analysis.

Input/Output: Inputs are all trajectory data provided by

DATAM. Outputs are all error analysis data.

Local Variables: None

Subroutines Called: BLKDTG, COPY, COVP, DUMP, MASSIG, MATOUT,

SCHED, SETEVN, SETGUI, STMGEN

Calling Subroutines: MAPSEP

Common Blocks: WORK, (BLANK), DIMENS, EDIT, ENCON, LABEL,

LØCATE, LØGIC, SCHEDI, SCHEDR, TRAJ1, TRAJ2

Logic Flow:







Pages 196-B and 196-C have been deleted.

3.3.1 Subroutine:

AUGCNV (CØVIN, CØVØUT, IØPT)

Purpose:

To convert internal storage format of the augmented state covariance information from "block" (see Remarks) to augmented (see Remarks) form.

The augmented covariance form is assumed as follows, where the individual matrix partitions or subblocks are defined in Input (Vol. II,

Remarks:

 $\begin{bmatrix} P & CXS & CXU & CXV & CXW \\ CXS^T & PS & CSU & CSV & CSW \\ CXU^T & CSU^T & PU & CUV & CUW \\ CXV^T & CSV^T & CUV^T & PV & CVW \\ CXW^T & CSW^T & CUW^T & CVW^T & PW \\ \end{bmatrix}$ 

User's Manual, Sec. 2.3):

The "block" form assumes that all active partitions are stored contiguously in packed form in the following order:

P, CXS, CXU, CXV, CXW, PS, CSU, CSV, CSW, PU, CUV, CUW, PV, CVW, PW.

COVIN and COVOUT may share the same location.

Therefore, in order to prevent writing over elements which have not been properly relocated in going from block to augmented form, PW is relocated first, then CVW and so on up the abovementioned ordering of the block form. For the same reason, in going from augmented to block

form the forward ordering (P, CXS, etc.) sequence is followed in relocating.

# Input/Output:

| <u>Variables</u> | Input/<br>Output | Argument/<br>Common | Definition                     |
|------------------|------------------|---------------------|--------------------------------|
| CØVIN            | I ·              | Α                   | Augmented covariance in        |
|                  |                  |                     | either block or augmented      |
|                  |                  |                     | form according to IØPT         |
| CØVØUT           | 0                | A                   | Augmented covariance in        |
|                  |                  |                     | opposite form from CØVIN,      |
|                  |                  |                     | according to IOPT              |
| <b>I</b> ØPT     | I .              | A                   | Conversion control flag        |
|                  |                  |                     | =1, augmented to block form    |
|                  |                  |                     | =-1, block to augmented form   |
| <b>LØCAU</b> G   | I                | C                   | Array locating first word of   |
|                  |                  | •                   | each covariance partition      |
| -                |                  |                     | within augmented form          |
| <b>LØ</b> CBLK   | I                | С                   | Array locating first word of   |
| •                |                  |                     | each covariance partition      |
|                  |                  |                     | within block form              |
| NAUGʻ            | I                | C                   | Length of augmented state      |
|                  |                  |                     | vector                         |
| NDIM             | I                | C                   | Array of lengths of individual |
|                  |                  |                     | state vector partitions        |

# Local Variables:

| Variable | Definition                              |
|----------|-----------------------------------------|
| ISUB     | Subscripts used for locating elements   |
| JSUB (   | at LØCAUG and LØCBLK                    |
| NCØL     | Number of columns in current covariance |
|          | sub-block                               |
| nrøw     | Number of rows in current covariance    |
|          | sub-block                               |

Subroutines Called: MPAK, MUNPAK, SYMUP

Calling Subroutines: PPAK

Common Blocks: WORK, DIMENS

Logic Flow: None

3.3.2 Subroutine:

BLKDTG

Purpose:

To initialize label arrays in common /LABEL/

by DATA statements.

# Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                |
|-----------------|------------------|---------------------|---------------------------|
| AUGLAB          | 0                | С                   | Augmented state vector    |
|                 |                  |                     | element labels            |
| EVLAB           | 0                | C                   | Event labels              |
| MESLAB          | 0                | c                   | Measurement labels        |
| PGLAB           | 0                | _ <b>C</b>          | Control covariance parti- |
|                 |                  | ·                   | tion labels               |
| PLAB            | 0                | С                   | Knowledge covariance par- |
|                 |                  |                     | tition labels             |
| VECLAB          | 0                | C                   | Augmented state vector    |
|                 |                  |                     | partition labels          |

Local Variables:

None

Subroutines Called:

None

Calling Subroutines:

GØDSEP

Common Blocks:

LABEL

Logic Flow:

None

3.3.3 Subroutine: BØMB

Purpose: To force abnormal termination with traceback.

Method: BØMB computes and attempts to use the square

root of -1.0.

Remarks: On CDC 6000 series computers any attempt to use

the square root of a negative number when op-

erating with real variables causes program

termination and provides a traceback to the

main program of subroutines called and the

location called from each. BØMB is called

from several places in GØDSEP and its associated

secondary overlays to indicate an unresolvable

conflict of control variables.

Input/Output:

None

Local Variables:

None

Subroutines Called:

None

Calling Subroutines:

STMRDR, GAINF, DEFALT, DIMENS, NMLIST, ØUTPTG

Common Blocks:

None

Logic Flow:

None

3.3.4 Subroutine: CØRREL (PVAR, IØPTN, PUNCH, CØVLAB)

Purpose: To compute, print, and optionally, punch stand-

ard deviations and correlations coefficients

from an input covariance matrix.

Remarks: Since VARSD (covariance to standard deviations

and correlation coefficients) operates strictly

on the upper triangle of a covariance matrix,

only the diagonal of PVAR need be saved outside

PVAR. The remaining lower triangle terms are

then copied into the upper triangle.

### Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                     |
|----------|------------------|---------------------|------------------------------------------------------------------------------------------------|
| PVAR     | I                | A                   | Input covariance matrix.                                                                       |
| IØPTN    | I                | <b>A</b>            | Option flag.                                                                                   |
|          |                  | ·                   | = 1, PVAR in covariance form                                                                   |
|          |                  |                     | = -1, PVAR already in<br>standard deviations<br>and correlation<br>coefficients                |
| PUNCH    | I                | A                   | Logical flag indicating if standard deviations and correlation coefficients are to be punched. |
| CØVLAB   | I                | A                   | Array of labels to be used for punching, if PUNCH = .TRUE.                                     |
| AUGLAB   | I                | · с                 | Augmented state vector                                                                         |

| Variab <u>le</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                               |
|------------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| LØCAUG           | I                | С                   | Array locating partitions of augmented covariance matrix.                                                                |
| LØCLAB           | I                | С                   | Array locating state vector partition labels in AUGLAB.                                                                  |
| NAUG             | I.               | c ·                 | Length of augmented state vector.                                                                                        |
| NDIM             | · I              | C                   | Array of dimensions of augmented state vector partitions.                                                                |
| PRNCØV           | . <b>I</b>       | c .                 | Logical array denoting which partitions of stand-<br>ard deviations and correla-<br>tion coefficients are to be printed. |

### Local Variables:

| Variable | Definition                           | _ |
|----------|--------------------------------------|---|
| PØS      | 1 $\sigma$ RSS position uncertainty. |   |
| VEY      | 1 or RSS velocity uncertainty.       |   |

Subroutines Called:

MPAK, VECMAG, VARSD, PRSDEV, PUNSD, PRCØRR, PUNCØR, SYMLØ, MUNPAK

Calling Subroutines:

SETEVN, GUIDE, MEASPR

Common Blocks:

WORK, DIMENS, LABEL, LOGIC

### Logic Flow:







3.3.5 Subroutine:

COVP (T, TF, STMRD, PIN)

Purpose:

To propagate a covariance between two time points.

Method:

Three options are available:

- propagation by transition matrices read from STM file;
- 2) propagation by transition matrices computed as needed and not saved; or
- propagation by integration of covariance variational equations.

Remarks:

Independent of propagation method, the output of COVP is always stored in blank common located by the integer variable PTEMP. This is true even for zero length propagation intervals, in which case the input covariance is merely copied to that location.

Additionally, when the option to read the STM file is exercised, COVP automatically propagates the control covariance if control propagation is indicated (logical variable PROPG).

When COVP is called with both STMRD and PDOT false (nominally for prediction events only) tests are made to subdivide the complete propagation interval into as many subintervals as necessary

to guarantee that no transition matrix propagation crosses a thrust phase change, since that would violate effective process noise model assumptions.

# Input/Output:

| <u>-, </u> |                  | •                   | •                            |
|------------|------------------|---------------------|------------------------------|
| Variable   | Input/<br>Output | Argument/<br>Common | Definition                   |
| T          | I                | A                   | Beginning time of propa-     |
| 1          |                  |                     | gation interval              |
| TF         | I.               | A                   | End time of propagation      |
|            |                  |                     | interval                     |
| STMRD      | I                | . Ч                 | Logical variable indicat-    |
|            |                  | •                   | ing source of transition     |
|            |                  |                     | matrices if transition       |
| •          | -                |                     | matrices are to be used      |
|            |                  | •                   | =T, read transition          |
|            |                  |                     | matrices from STM file       |
|            |                  |                     | =F, generate transition      |
|            | •                |                     | matrices by calling          |
| ·          |                  |                     | TRAJ overlay                 |
| PIN        | I                | <u>A</u>            | Input augmented covariance   |
| DELTIM     | 1/0              | C                   | Propagation interval length  |
| DXDKST     | 0                | С                   | Keplerian to cartesian       |
|            |                  |                     | transformation for ephemeris |
|            | •                | •                   | body                         |

| Variable       | Input/<br>'Output | Argument/<br>Common | Definition                    |
|----------------|-------------------|---------------------|-------------------------------|
| DYNØIS         | I                 | c                   | Dynamic noise flag            |
| GT             | 1/0               | c ·                 | Transformation matrix         |
| -              |                   |                     | from thrust cone-clock        |
|                |                   |                     | system to heliocentric        |
|                |                   |                     | ecliptic coordinates          |
|                |                   |                     | evaluated at end of prop-     |
|                |                   |                     | agation interval              |
| GTSAVE         | 0                 | С                   | Same transformation matrix    |
|                |                   |                     | as GT, but evaluated at       |
|                |                   |                     | beginning of propagation      |
|                | ·                 |                     | interval                      |
| IAUGDC         | I                 | С                   | Dynamic augmentation vector   |
| ICALL          | 0                 | C                   | Initialization parameter      |
|                |                   |                     | for TRAJ (sec. 3.5)           |
| IEP            | I                 | С                   | Locator in UP, VP of          |
|                |                   |                     | elements corresponding to     |
|                |                   |                     | ephemeris planet              |
| IEPHEM         | I                 | , c                 | Flag indicating form of       |
|                |                   |                     | ephemeris elements, if any    |
| INTEG          | 0                 | C                   | Control parameter for TRAJ    |
| •              |                   |                     | (sec. 3.5)                    |
| IS <b>TØ</b> P | 0 .               | С                   | Control parameter for TRAJ    |
|                |                   |                     | (sec. 3.5)                    |
| LIST           | I                 | C                   | Array of state vector augmen- |
|                |                   |                     | tation parameter numbers      |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                      |
|----------|------------------|---------------------|---------------------------------|
| LISTDY   | I                | С                   | Array of dynamic parameter      |
|          |                  |                     | numbers included in transi-     |
|          |                  | ·                   | tion matrices                   |
| LØCFØ    | I "              | C 3                 | Location in blank common        |
|          |                  |                     | of covariance matrix to be      |
|          |                  |                     | integrated when PDØT option     |
|          |                  |                     | is selected                     |
| løctc    | ı                | С                   | Location in blank common        |
|          |                  |                     | of either transition matrix     |
|          |                  |                     | or covariance matrix returned   |
|          |                  | •                   | by TRAJ (sec ) after            |
|          |                  |                     | integration                     |
| LPDØT    | I                | С                   | Ordered list of parameters      |
|          |                  |                     | expected by TRAJ (sec. 3.5)     |
|          |                  |                     | when covariance integration     |
|          |                  |                     | option is selected. LPDØT       |
|          | ·                |                     | is equivalenced to IGPØL        |
|          |                  |                     | array in common /SCHEDI/        |
|          |                  |                     | since no guidance events are    |
|          | ,                |                     | permitted when integrating      |
| •        |                  |                     | covariance variational equa-    |
|          |                  |                     | tions                           |
| MEVENT   | o                | · c                 | Control flag for TRAJ (sec 3.5) |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                   |
|----------|------------------|---------------------|------------------------------|
| NAUG     | Ţ                | С                   | Length of total augmented    |
| ·        |                  |                     | state vector                 |
| NEPHEL   | I                | С                   | Number of ephemeris elements |
| •        |                  |                     | augmented to state vector    |
| NTPHAS   | I                | . C                 | Number of current thrust     |
|          |                  |                     | phase                        |
| PDØT     | I                | С                   | Logical flag                 |
|          |                  |                     | =T, integrate covariance     |
|          |                  |                     | variational equations        |
|          |                  | •                   | =F, propagate covariances    |
| •        |                  |                     | by transition matrices       |
| PG       | ı                | C                   | Location in blank common     |
| i        |                  |                     | of control covariance        |
| PHI      | ı ·              | C                   | Location in blank common     |
|          |                  | •                   | of transition matrix         |
| PLØCAL   | I                | С                   | Location in blank common     |
|          |                  |                     | of working storage block     |
|          |                  |                     | as large as the augmented    |
| •        |                  |                     | covariance matrix            |
| PRØPG    | I                | С                   | Logical flag, operative      |
|          |                  |                     | only if PDØT = FALSE and     |
|          | ~ * ;            |                     | STMRD = TRUE                 |
|          |                  |                     | =T, propagate control co-    |
|          |                  |                     | variance simultaneously      |
|          |                  |                     | with knowledge               |

| Variable_ | Input/<br>Output | Argument/<br>Common | Definition                   |
|-----------|------------------|---------------------|------------------------------|
| 741145    |                  |                     | =F, do not propagate con-    |
| •         |                  |                     | trol covariance              |
| Q         | 0                | C                   | Effective process noise      |
| 4         |                  |                     | matrix                       |
| SMASS     | I                | С                   | Mass of Sun.                 |
| STATEO    | 0                | С                   | Initial heliocentric         |
|           |                  |                     | ecliptic S/C state for       |
|           |                  |                     | TRAJ (sec 3.5) when ICALL =  |
| ,         | -                |                     | 1                            |
| TCURR     | ı                | С                   | Current trajectory time      |
| TEVNT     | o                | С                   | Event time for propagation   |
|           |                  |                     | (either of covariance or     |
|           | ,                |                     | transition matrix) to by     |
| -         |                  |                     | TRAJ (sec 3.5)               |
| TG        | I                | · c                 | Epoch of input control co-   |
|           |                  |                     | variance referenced to TLNCH |
| TM        | I                | C                   | Conversion factor, seconds/  |
|           |                  |                     | day                          |
| TREF      | o                | Ç.                  | Reference time for TRAJ      |
|           |                  |                     | (sec 3.5)                    |
| TTHRST    | I                | c                   | Array of thrust event times  |
| UP        | I                | С                   | Array of n-body heliocentric |
|           |                  | •                   | position vectors             |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                   |
|----------|------------------|---------------------|------------------------------|
| UTRUE    | I                | С                   | S/C heliocentric position    |
|          |                  |                     | vector                       |
| VP       | I                | С                   | Array of n-body heliocentric |
|          |                  |                     | velocity vectors             |
| VTRUE    | I                | С                   | S/C heliocentric velocity    |
|          |                  |                     | vector                       |

### Local Variables:

| <u>Variable</u> | Definition                            |  |  |
|-----------------|---------------------------------------|--|--|
| FRSTIM          | Logical flag used when PDØT = TRUE    |  |  |
| •               | to control one-time only initializa-  |  |  |
|                 | tion of parameters for TRAJ (sec 3.5) |  |  |
|                 | =T, first pass through CØVP           |  |  |
|                 | =F, not first pass through COVP       |  |  |
| ILIST           | List of augmented dynamic parameters  |  |  |
| <sup>T1</sup> ( | Start and stop times respectively     |  |  |
| <sub>T2</sub> ( | for propagation subintervals as       |  |  |
|                 | governed by thrust events (see        |  |  |
|                 | Remarks)                              |  |  |

Subroutines Called: AMABT, CARKEP, COPY, DYNO, LOADRC, MMAB, MMABT, MUNPAK, PROP, STMPR, STMRDR, STMUSE, ZEROM

Common Blocks: WØRK, (FLANK), CØNST, DIMENS, KEPCØN, LØCATE,
LØGIC, MEASI, PRØPI, PRØPR, SCHEDI, SCHEDR,
EPHEM, TIME, TRAJ1, TRAJ2

ic Flow:









3.3.6 Subroutine:

CYEQEC (STACYL, GRLØN, ECEQ, ØMEGA, GEQSTA, GECSTA, SPHERE)

Purpose:

To compute instantaneous geocentric Cartesian coordinates of a geographic location in both the equatorial and ecliptic systems.

Method:

Given either spherical  $(r, \phi, \chi)$  or cylindrical  $(r_s, \chi, z)$  coordinates, as specified by the input flag, SPHERE, the Cartesian equatorial coordinates are computed as indicated in Section 6.3 of the Analytic Manual. The corresponding ecliptic position and velocities are obtained by application of the equatorial to ecliptic transformation, i.e.

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ (ecliptic)} = E \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ (equatorial)}$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} \text{ (ecliptic)} = E \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} \text{ (equatorial)}$$

where

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos E & \sin E \\ 0 & -\sin E & \cos E \end{bmatrix}$$

# Input/Output:

| Variable         | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                                      |
|------------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STACYL           | Ι                | A                   | Geographic coordinates for the station location. Input as radius, latitude, and longitude when spherical coordinates are being used. Input as spin radius, longitude, and z-height for cylindrical coordinates. |
| GRLØN            | I                | А                   | Instantaneous sidereal hour angle of Greenwich.                                                                                                                                                                 |
| ECEQ             | I                | А                   | Equatorial to ecliptic trans-<br>formation E.                                                                                                                                                                   |
| <b>Ø</b> MEGA    | Ι.               | <b>A</b>            | Sidereal rotation rate of the Earth.                                                                                                                                                                            |
| GEQSȚA<br>GECSTA | 0                | Α                   | Geocentric equatorial position<br>and velocity of the station<br>specified by STACYL.<br>Geocentric ecliptic position                                                                                           |
|                  |                  |                     | and velocity of the station.                                                                                                                                                                                    |
| SPHERE           | I                | A                   | Logic flag to identify whether STACYL is in spherical coordinates (SPHERE = .TRUE.) or cylindrical coordinates (SPHERE = .FALSE.).                                                                              |

Subroutines Called: None.

Calling Subroutines: ØBSRAD, ØBSAEA, TSCHED

Common Blocks: None.

Logic Flow: None.

3.3.7 Program:

DATAG

Purpose:

Executive control of GØDSEP data overlay.

Remarks:

DATAG performs no computations. It merely

calls three separate subroutines to break the

data overlay coding into more easily managed

blocks.

Input/Output:

All initialization parameters for GØDSEP.

Local Variables:

None

Subroutines Called:

DEFALT, INPUTG, ØUTPTG

Calling Subroutines:

GØDSEP

Common Blocks:

None

Logic Flow:

None

3.3.8 Subroutine:

DEFALT

Purpose:

To establish default values for all error

analysis inputs.

Remarks:

Only those variables not having default values

defined in GØDSEP input (Vol. II, User's Manual,

Section 2.3) will be included in the following

Input/Output list.

| Variables | Input/<br>Output | Argument<br>Common | Definition                   |
|-----------|------------------|--------------------|------------------------------|
| ЕРØСН     | I                | С                  | Julian date of launch        |
|           |                  |                    | epoch                        |
| GHZERØ    | O                | С                  | Greenwich hour angle eval-   |
|           |                  |                    | uated at time EPØCH          |
| IAUGDC    | I                | С                  | Array of flags controlling   |
|           |                  |                    | dynamic parameter augmen-    |
|           |                  |                    | tation for transition        |
|           |                  |                    | matrices                     |
| IAUGJ2    | 0                | С                  | Location of J2 augmentation  |
| IAUGST    | О                | С                  | Location of station location |
|           |                  |                    | parameter flags in IAUG      |
|           |                  |                    | array                        |
| IBAZEL    | 0                | С                  | Location of azimuth and      |
|           |                  |                    | elevation angle measurement  |
|           |                  |                    | bias flags in IAUG array     |

| <u>Varia</u> bles | Input/<br>Output | Argument<br>Common |                                           |
|-------------------|------------------|--------------------|-------------------------------------------|
| IBD IAM           | 0                | С                  | Location of apparent planet               |
|                   |                  |                    | diameter measurement bias                 |
|                   |                  |                    | flag in IAUG array                        |
| IBSTAR            | 0                | С                  | Location of star-planet                   |
|                   |                  |                    | angle measurement bias                    |
|                   |                  |                    | flags in IAUG array                       |
| IB2WAY            | 0                | С                  | Location of 2-way range                   |
|                   |                  |                    | and range-rate measurement                |
|                   |                  |                    | bias flags in IAUG array                  |
| IB3WAY            | 0                | С                  | Location of 3-way range                   |
|                   |                  |                    | and range-rate measurement                |
|                   |                  |                    | bias flags in IAUG array                  |
| IDMAX             | 0                | С                  | Maximum allowable parameter               |
|                   |                  |                    | number for any dynamic param-             |
|                   |                  |                    | eter in IAUG array                        |
| ІВНСО2            | 0                | С .                | Location of CO <sub>2</sub> altitude bias |
|                   |                  |                    | flag in the IAUG array for                |
|                   |                  |                    | horizon sensor measurements.              |
| IBHZS             | 0                | C                  | Location of horizon sensor                |
|                   |                  |                    | angle bias flags in the IAUG              |
|                   |                  |                    | array.                                    |

| Variables      | Input/<br>Output | Argument<br>Common | Definition                  |
|----------------|------------------|--------------------|-----------------------------|
| LIST           | o                | С                  | Array listing parameter     |
|                |                  | •                  | numbers of augmented state  |
|                |                  |                    | vector. For first six       |
|                |                  | t · ·              | locations (for basic S/C    |
|                |                  |                    | state) LIST(I) = -I         |
| LISTDY         | · <b>o</b>       | C                  | List of parameter numbers   |
|                |                  |                    | of all dynamic parameters   |
|                |                  |                    | augmented to S/C state for  |
|                |                  |                    | transition matrices. De-    |
| . <del>.</del> |                  | •                  | fining values determined    |
|                |                  |                    | by IAUGDC array.            |
| LØCS           | o                | С                  | Parameters locating first   |
| -              |                  |                    | word of blank common avail- |
|                |                  |                    | able to TRAJ (sec. 3.5 )    |
|                |                  |                    | default value,              |
|                |                  |                    | = 1                         |
| MAXAUG         | o                | C                  | Maximum allowable length    |
|                |                  |                    | of augmented state vector.  |
|                |                  |                    | Determined by dimensions    |
|                |                  |                    | of LIST and AUGLAB arrays.  |
| •.             |                  |                    | Default value, = 30.        |

| Variables | Input/<br>Output | Argument<br>Common | Definition                     |
|-----------|------------------|--------------------|--------------------------------|
| MAXDIM    | 0                | C                  | Array of maximum allowable     |
| •         |                  |                    | dimensions on individual_      |
|           |                  |                    | state vector partitions.       |
|           |                  | ·                  | Values set are governed        |
|           |                  |                    | by dimensions of input co-     |
| •         |                  |                    | variance matrices in sub-      |
|           |                  | •                  | routine NMLIST (sec 3.3.25).   |
|           |                  |                    | Default values are:            |
|           |                  |                    | (1) = 6, S/C state vector      |
|           |                  | •                  | (2) = 11, solve-for parameters |
|           |                  |                    | (3) = 13, dynamic consider     |
|           |                  |                    | parameters                     |
| •         |                  |                    | (4) = 15, measurement con-     |
|           |                  |                    | sider parameters               |
|           |                  | ,                  | (5) = 10, ignore parameters    |
| MAXSTA    | 0                | С                  | Largest station number         |
|           |                  |                    | allowed for augmenting         |
|           |                  |                    | 2-way or 3-way range or        |
|           |                  |                    | range-rate bias to the S/C     |
|           |                  |                    | state vector                   |
| NPHSTM    | o                | C                  | Length of augmented state      |
|           |                  |                    | vector of dynamic parameters   |
|           |                  |                    | used in transition matrices    |

| Variable <u>s</u> | Input/<br>Output | Argument<br>Common | Definition                    |
|-------------------|------------------|--------------------|-------------------------------|
| ØMEGAG            | 0                | С                  | Earth sidereal rotation       |
|                   |                  | •                  | rate default value            |
| ·                 |                  |                    | = 6.300388099 rad/day         |
| RAD               | 1                | С                  | Conversion factor, degrees/   |
|                   |                  | •                  | radian.                       |
| TEND              | I                | , <b>c</b>         | Trajectory end time in        |
|                   |                  |                    | days referenced to EPØCH      |
|                   |                  |                    | as defined in \$TRAJ name-    |
|                   |                  |                    | list (Vol. II, User's         |
|                   |                  |                    | Manual, sec. 2.1)             |
| THRUST            | I                | С                  | Array defining thrust con-    |
| IIIICOI           | -                |                    | trol policies, phase end      |
|                   |                  |                    | times and specific param-     |
|                   | •                | . * *              | eter values (see common       |
|                   |                  |                    | /TRAJ1/)                      |
| mM                | 1                | C                  | Conversion constant, seconds/ |
| TM                | ī                |                    | day                           |
| ence a tree       | т                | С                  | Trajectory start time in      |
| TSTART            | I                |                    | days referenced to EPØCH,     |
|                   |                  |                    | as defined in \$TRAJ namelist |
|                   |                  |                    | (Vol. II, User's Manual,      |
|                   |                  |                    | •                             |
|                   |                  |                    | Sec. 2.1)                     |

| Variables | Input/<br>Output | Argument<br>Common | Definition                  |
|-----------|------------------|--------------------|-----------------------------|
|           |                  |                    |                             |
| XLAB      | . 0              | С                  | Six-character Hollerith     |
|           |                  |                    | labels corresponding to     |
|           |                  |                    | input parameters as defined |
|           |                  |                    | by IAUG array (see Vol. II, |
|           |                  |                    | User's Manual, Sec. 2.3)    |

| <u>Variable</u> | Definition                             |  |  |
|-----------------|----------------------------------------|--|--|
| MAXPAR          | Maximum number of parameters available |  |  |
|                 | for augmentation. Governed by dimen-   |  |  |
|                 | sions of IAUG and XLAB arrays. Current |  |  |
|                 | default value = 50.                    |  |  |
| TFRAC           | Fraction of a day the initial Julian   |  |  |
|                 | date, EPØCH, is away from midnight     |  |  |
|                 | Greenwich Mean Time. Used in computing |  |  |
|                 | GHZERØ.                                |  |  |

Subroutine Called:

BØMB, LØCATE

Calling Subroutines: DATAG

Common Blocks:

WØRK, (BLANK), CØNST, DATAGI, DATAGR, DIMENS,

GUIDE, KEPCØN, LABEL, LØCATE, LØGIC, MEASI,

MEASR, PRØPI, PRØPR, SCHEDI, SCHEDR, TIME,

TRKDAT, TRAJ1, TRAJ2

Logic Flow:

None

3.3.9 Subroutine: DIMENS

Purpose: To define dimensions and locations of all

matrices located in blank common.

Remarks: Blank common locations set aside by the

variables PHI, PLØCAL and PTEMP are normally

allocated the same number of words of storage

as for a covariance matrix. There are, how-

ever, two exceptions to this standard. If

the dimensions of transition matrices to be

read from the STM file are greater than those

of the augmented covariance matrix, or if both

the transition matrices from the STM file and

the augmented covariance are smaller than 9x9

and guidance events are to be executed. The

second case requires a minimum 9x9 area since

thrust bias sensitivities are required for low

thrust guidance maneuver evaluations.

Since only one secondary overlay may reside in core at any one time, all blank common locations associated only with secondary overlays begin at the same address. Therefore, LØCS (trajectory), H (measurement) and PG1 (guidance) are set to the same location.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                          |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------|
| AUGLAB   | 0                | С                   | Hollerith labels for all parameters augmented to state vector.                      |
| CØNRD    | . I              | С                   | Logical flag indicating if control uncertainties read in.                           |
| Н        | 0                | С                   | Location in blank common of observation matrix.                                     |
| IAUG     | I                | С                   | Array of parameter augmentation flags.                                              |
| IAUGDC   | 0                | С                   | Dynamic parameter augmen-<br>tation flags.                                          |
| IAUGJ2   | I                | С                   | Location in IAUG array of J2 parameter flag.                                        |
| IDMAX    | Ι                | С                   | Maximum parameter number allowed for a dynamic parameter in IAUG array.             |
| IGAIN    | I                | С                   | Integer flag for OD algorithm.                                                      |
| IGFØRM   | I                | <b>C</b> .          | Integer flag indicating input form of control uncertainty matrices.                 |
| IPFØRM   | I                | С                   | Integer flag indicating input form of knowledge uncertainty matrices.               |
| LIST     | 0                | С                   | Array containing parameter numbers for all parameters in augmented state vector.    |
| LISTDY   | 0                | С                   | Dynamic parameter augmentation numbers.                                             |
| LØCAUG   | o                | С                   | Array locating sub-blocks within augmented covariance. (See AUGCNV, Section 3.3.1). |
| LØCBLK   | 0                | С                   | Array locating covariance sub-blocks within block form (See AUGCNV, Section 3.3.1). |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                         |
|----------|------------------|---------------------|----------------------------------------------------------------------------------------------------|
| LØCLAB   | 0                | С                   | Array locating state vector partitions within LIST and AUGLAB arrays.                              |
| LØCFØ    | 0                | С                   | Location in blank common where TRAJ (Section 3.5) picks up covariance matrix to be integrated.     |
| LØCS     | 0                | С                   | Location in blank common of areas available to TRAJ (Section 3.5).                                 |
| MAXAUG   | I                | С                   | Maximum allowable length of augmented state vector.                                                |
| MAXDIM . | I                | С                   | Array of maximum allowable dimensions of individual state vector partitions.                       |
| NAUG     | 0                | C ·                 | Length of augmented state vector.                                                                  |
| NAUGSQ   | 0                | С                   | NAUG*NAUG.                                                                                         |
| NBLK     | 0                | С                   | Number of words occupied by augmented covariance stored in block form (See AUGCNV, Section 3.3.1). |
| NDIM     | o                | С                   | Array of current dimensions of individual augmented state vector partitions.                       |
| NGUID    | I                | С                   | Number of guidance events to be executed.                                                          |
| NPHSTM   | 0                | С                   | Number of dynamic parameters included in transition matrices on STM file.                          |
| nsølve   | 0                | С                   | Total number of parameters to be solved-for by filter (including S/C state).                       |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                 |
|----------|------------------|---------------------|----------------------------------------------------------------------------|
| P        | 0                | <b>c</b>            | Location in blank common of knowledge covariance.                          |
| PDØT     | I                | C                   | Logical flag for covariance propagation.                                   |
|          |                  |                     | <pre>=T, integrate covariance =F, use state transition     matrices.</pre> |
| PG       | 0                | <b>c</b> ·          | Location in blank common of control covariance.                            |
| PG1      | 0                | c }                 | Location in blank common of NAUG X NAUG storage                            |
| PG2      | . <b>O</b>       | c                   | blocks used for guidance.                                                  |
| PG3      | 0                | С                   |                                                                            |
| PG4      | o                | c )                 |                                                                            |
| PHI      | · O              | C                   | Location in blank common of transition matrix.                             |
| PLØCAL   | 0                | C                   | Working locations in blank common for intermediate                         |
| PTEMP    | 0                | <b>C</b>            | operations on covariances and transition matrices.                         |
| PWLS     | <b>o</b> .       | С                   | Location in blank common of weighted least squares reference covariance.   |
| XLAB .   | ı                | C                   | Array of Hollerith labels for all parameters available for augmentation.   |

None

Subroutines Called:

вØмв

Calling Subroutines: INPUTG

Common Blocks:

WØRK, (BLANK), DATAGI, DATAGR, DIMENS, LABEL, LØCATE, LØGIC, MEASI, SCHEDI, TRAJ2





3.3.10 Subroutine: DYNØ (T, DT, PHIMAT)

<u>Purpose</u>: To compute effective process noise.

Method: See Volume I, Analytical Manual, Section 6.2.

Remarks: For PDOT, DYNØ is used to modify the thrust bias

and noise partitions of the augmented covariance

when the number of thrusters has changed (at

thrust switching events).

To change the process noise model, subroutines DYNØ, ØUTPTG, and LØADFM (in TRAJ) may be affected for PDOT, and subroutines DYNØ and STMUSE may be affected for STM usage (effective process noise).

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                           |
|-----------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Т               | I                | A                   | Trajectory time at begin-<br>ning of propagation<br>interval (STM only)                                                              |
| DT              | I                | A                   | Interval length (days).                                                                                                              |
| PHIMAT          | I .              | A                   | Augmented transition matrix over propagation interval.                                                                               |
| EPTAU           | I                | С                   | Array of process noise correlation times.                                                                                            |
| EPVAR           | I                | С                   | Array of process noise variances.                                                                                                    |
| GT              | ı                | С                   | Transformation matrix from magnitude and direction to ecliptic cartesian coordinate system evaluated at end of propagation interval. |
| GTSAVE          | I                | С                   | Same as GT matrix, only evaluated at beginning of propagation interval                                                               |
| ITVERR          | I                | С                   | Second process noise type.                                                                                                           |

|      | <u>Variable</u> | Input/<br>Ou <b>tp</b> ut | Argumer<br>Commor |                                                                                                                     |
|------|-----------------|---------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------|
|      | NA UG           | I                         | C                 | Length of augmented state vector.                                                                                   |
|      | NTPHAS          | ī                         | С                 | Number of current thrust phase.                                                                                     |
|      | P               | I                         | С                 | Location in blank common of knowledge covariance.                                                                   |
|      | PTEMP           | I                         | С                 | Location in blank common of temporary covariance.                                                                   |
| •    | Q               | 0                         | С                 | Effective process noise matrix (6x6).                                                                               |
|      | SIGØN           | I                         | С                 | Thrust start time uncertainty                                                                                       |
|      | THRUST          | I                         | С                 | Array of thrust phase definition parameters.                                                                        |
|      | TM              | I                         | С                 | Conversion constant, seconds/day.                                                                                   |
|      | VTRUE           | I                         | С                 | S/C velocity vector.                                                                                                |
| Loca | el Variables:   |                           |                   |                                                                                                                     |
|      | <u>Variable</u> |                           | <del></del>       | Definition                                                                                                          |
| •    | NCPHAS          |                           | Numb              | er of next thrust phase                                                                                             |
|      | ØMEC ØV         |                           |                   | ctive velocity covariance in itude and direction.                                                                   |
|      | PHISUB          |                           | sens<br>at e      | sub-block of PHIMAT representing itivity of position and velocity and of interval to velocity at nning of interval. |
|      | THRSTR          |                           | Rati<br>char      | o of operating thruster at phase<br>ge.                                                                             |
|      | VEFF1           |                           |                   | ctive ecliptic cartesian velocity riance at beginning of interval.                                                  |
|      | VEFF2           |                           |                   | ctive ecliptic cartesian velocity riance at end of interval.                                                        |

Subroutines Called: ADD, AMABT, EP, LØCLST, MMABT, MMABAT, MPAK,

MUNPAK, SCALE, SDVAR, SYMUP, VARSD, ZERØM

Calling Subroutines: COVP, GUIDE, SETEVN

Common Blocks: WØRK, (BLANK), CØNST, DIMENS, LØCATE, LØGIC,

PRØPR, TRAJ1, TRAJ2



3.3.11 Subroutine: EIGPRN (A, N, PVSUB, PZERØ, VZERØ)

Purpose: To compute and print eigenvectors and eigen-

values of an input matrix.

Remarks: Two options on computing eigenvalues and

vectors are provided. The first operates on

the complete input matrix. The second operates

on the 3x3 position and velocity sub-blocks

only, which are assumed to be the first and

second 3x3 diagonal sub-blocks, respectively.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                              |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| A .      | I                | A                   | Input matrix.                                                                                                           |
| N        | 1                | Å                   | Dimension of input matrix (assumed to be square).                                                                       |
| PVSUB    | ī                | <b>A</b>            | Logical flag controlling computation option.                                                                            |
|          |                  |                     | <ul><li>=T, operate on position and velocity sub-blocks.</li><li>=F, operate on complete matrix.</li></ul>              |
| PZERØ    | I                | A                   | Off-diagonal annihilation value for complete matrix if PVSUB = .FALSE. or for position sub-block only if PVSUB = .TRUE. |
| VZERØ    | I                | A                   | Off-diagonal annihilation value for velocity sub-<br>block if PVSUB = .TRUE.<br>Not used if PVSUB = .FALSE.             |

| Variable | Definition                                                                                           |  |  |
|----------|------------------------------------------------------------------------------------------------------|--|--|
| ICYCLE   | Cycle control flag when PVSUB = .TRUE. indicating whether processing position or velocity sub-block. |  |  |
| ØDZERØ   | Off-diagonal annihilation value given to EIGENV.                                                     |  |  |
| VALPV    | Array of eigenvalues returned by EIGENV.                                                             |  |  |
| VECPV    | Array of eigenvectors returned by EIGENV.                                                            |  |  |

Subroutines Called: EIGENV, MATØUT, SQRT, MPAK

Calling Subroutines: SETEVN, RELCØV

Common Blocks: None

### Logic Flow:





3.3.12 Subroutine: ESCHED (KIND, NCNT, NSTØP, TIME)

Purpose:

To modify event counters to guarantee that of all events requested in namelist \$GØDSEP, only those occurring between the initial and final times of the present error analysis are scheduled.

Method:

If five events of a single type are scheduled according to namelist \$GØDSEP, three of which occur before trajectory time TCURR, the remaining two events are not shifted into the first two locations for that event. Rather, the event counter is set to 3, informing the scheduler that the fourth event of that type will be the first scheduled.

Remarks:

If any guidance events are scheduled, but the last is not scheduled within .5 day of error analysis final time, this subroutine automatically schedules an additional guidance event of policy zero. This merely forces a print of all control uncertainties at the final time.

Also, to minimize complexity of SCHED (Section 3.3.36), guidance event times are adjusted by the delay time in this subroutine.

| Variable | Input/<br>Output | Namelist/<br>Common | Definition                                                                                                          |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|
|          |                  |                     |                                                                                                                     |
| KIND     | I                | A                   | Event code.                                                                                                         |
| ·        |                  | , ··                | <pre>= 2, eigenvector = 3, thrust = 4, guidance = 5, prediction</pre>                                               |
| NCNT     | 0                | <b>A</b> .          | Event counter, set equal to number of events scheduled by namelist \$GØDSEP which must be skipped during execution. |
| nstøp    | 1/0              | <b>A</b>            | Total number of events of type KIND, including those skipped according to NCNT.                                     |
| TIME     | I                | A                   | Array of scheduled event times.                                                                                     |
| EVLAB    | I .              | , <b>c</b>          | Array of Hollerith event labels.                                                                                    |
| IGPØL    | I                | С                   | Array of guidance policy flags.                                                                                     |
| IGREAD   | I .              | <b>C</b> .          | Array of guidance namelist read control flags.                                                                      |
| TCURR    | I                | C                   | Current (and initial) tra-<br>jectory time.                                                                         |
| TCUTØF   | I                | С                   | Array of guidance event cutoff times.                                                                               |
| TDELAY   | I                | С                   | Array of guidance event delay times.                                                                                |
| TFINAL   | I                | С                   | Trajectory final time.                                                                                              |
| TPRED2   | I                | C                   | Array of times predicted to                                                                                         |

<u>Variable</u>

Definition

NUMBER

Actual number of events of code KIND to be executed.

Subroutines Called: None

Calling Subroutine: ØUTPTG

Common Blocks:

LABEL, SCHEDI, SCHEDR

Logic Flow:

None

3.3.13A Subroutine: ESLE (P, N)

Purpose:

To load equivalent station location errors

into augmented covariance matrix.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P        | 1/0              | Α                   | Augmented covariance matrix still in standard deviations and correlation coefficients.                                                                                                    |
| N        | I                | Α                   | Dimension of augmented covariance matrix.                                                                                                                                                 |
| CØRLØN   | I                | С                   | Station-to-Station longi-<br>tude correlation coeffi-<br>cient.                                                                                                                           |
| IAUG     | I                | С                   | Parameter augmentation list.                                                                                                                                                              |
| IAUGST   | Τ                | С                   | Location of station loca-<br>tion parameter flags in<br>IAUG array.                                                                                                                       |
| LIST     | I                | С                   | List of parameters contained in augmented state vector.                                                                                                                                   |
| NST      | I                | С                   | Number of tracking stations                                                                                                                                                               |
| SIGLØN   | I                | С                   | Standard deviation in station longitude.                                                                                                                                                  |
| SPHLØC   | I<br>`           | С                   | Input logical variable to identify whether the station location coordinates and error covariances are in a spherical (SPHLOC = .TRUE.) or cylindrical (SPHLOC = .FALSE.) representations. |

| Variable | Definition                                                                                                                                                                      |       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| EQSLE    | Local array equivalenced to station location standard deviation terms.                                                                                                          | 1     |
|          | (Spherical) (Cylindri                                                                                                                                                           | ical) |
|          | EQSLE(1)= SIGR = SIGRS<br>EQSLE(2)= SIGL $\emptyset$ N = SIGL $\emptyset$<br>EQSLE(3)= SIGLAT = SIGZ<br>EQSLE(4)= C $\emptyset$ RL $\emptyset$ N = C $\emptyset$ RL $\emptyset$ | ØN    |
| ILØC     | Counter for number of stations whose location uncertainties are included in the augmented state.                                                                                |       |
| LØCATE   | Array used to locate off diagonal positions where longitude correlations must be loaded if more than one station's location errors are augmented.                               |       |

Subroutines Called: None

Calling Subroutines: INPUTG

.....

Common Blocks: WORK, DATAGI, DATAGR, DIMENS, MEASI, MEASR, TRKDAT

Logic Flow: None

3.3.13B Subroutine: FBURN (SMAT, UMAX, NTARG, NCON, CONWT, TARWT,

TECOV, GAMMA, VMAT, BURNP, LTARG, LABS, LABCON,

VTA, NAUG, TBURN, LPØN)

<u>Purpose</u>: To compute the low thrust guidance matrix and

associated guidance parameters.

Method:

See Analytic Manual, Section 6.6 (Guidance)

| <u>Varia</u> ble | Input/<br>Output | Argument/<br>Common | Definition                                                         |
|------------------|------------------|---------------------|--------------------------------------------------------------------|
| AUGLAB           | . I              | C                   | Vector of labels for augmented state.                              |
| BURNP            | I                | A                   | Mass and thrust accelera-<br>tion at guidance epoch and<br>cutoff. |
| C <b>Ø</b> NWT   | I                | A                   | Control parameter weights.                                         |
| ENGINE(10)       | o                | A                   | Exhaust velocity.                                                  |
| GAMMA            | o                | A                   | Guidance matrix.                                                   |
| LABC <b>Ó</b> N  | I                | A                   | Vector of control parameter labels.                                |
| LABS             | 1                | A                   | Vector of printout labels.                                         |
| LPØN             | I                | Ċ                   | Location in blank common of knowledge covariance.                  |
| LTARG            | · I              | A                   | Vector of target lables.                                           |
| NAUG             | I.               | A                   | Dimension of augmented state.                                      |
| NCØN             | I                | A                   | Number of control parameters.                                      |
| NTARG            | I                | Α                   | Number of target parameters.                                       |
| PTEMP            | I                | <b>c</b>            | Location in blank common of temporary (working) covariance,        |
| SMAT             | I                | A                   | Sensitivity matrix of target WRT control parameters.               |

| Variable       | Input/<br>Output | Argument/<br>Common | Definition                                                |
|----------------|------------------|---------------------|-----------------------------------------------------------|
| TARWT          | · I              | Α                   | Target parameter weights.                                 |
| TBURN          | I                | A                   | Duration of guidance burn.                                |
| TEC <b>Ø</b> V | · I              | A                   | Target error covariance before guidance.                  |
| UMAX           | I                | A                   | Vector of maximum control corrections allowed.            |
| VMAT           | I .              | A                   | Variation matrix of target WRT state (at guidance epoch). |
| VTA            | I                | Α                   | Logical flag for variable time of arrival guidance.       |

| <u>Variable</u> | 'Definition                                                                     |  |  |
|-----------------|---------------------------------------------------------------------------------|--|--|
| CGAM            | Guidance matrix for constrained control parameters,                             |  |  |
| CSWATE          | Weighting factor for time parameters.                                           |  |  |
| DC <b>∮</b> N   | Scaling factor.                                                                 |  |  |
| GAMT            | Guidance matrix transpose used as working array.                                |  |  |
| LCØN            | Local vector of control labels (LABCØN).                                        |  |  |
| LISTC           | Vector of control parameter numbers (new ordering).                             |  |  |
| LISTU           | Vector of control parameters numbers (old ordering).                            |  |  |
| NCU             | Number of constrained controls.                                                 |  |  |
| NUN -           | Number of unconstrained controls.                                               |  |  |
| STEMP           | Local sensitivity matrix (SMAT).                                                |  |  |
| TRC∳V           | Target error covariance resulting from residual (non-removeable) control error. |  |  |

| <u>Variable</u> | Definition                               |  |  |
|-----------------|------------------------------------------|--|--|
| u :             | Control parameter correction matrix.     |  |  |
| UMAXI           | Local vector of control bounds (UMAX).   |  |  |
| UWATE           | Local vector of control weights (CØNWT). |  |  |

Subroutines Called: ADD, AMAB, AMABT, COPY, COPYT, GENINV, ICOPY, IDENT, LØADRC, MATØUT, MMABT, MMATBA, NEGMAT, PRSDEV, SCALE, VARSD, ZERØM

Calling Subroutine: GUIDE

Common Blocks:

(BLANK), CONST, LABEL, LØCATE, TRAJI, WØRK

### Logic Flow:







3.3.14 Subroutine: FILTR (P, PCØN, H, R, N, NS, NR, GAIN, RESID, PP)

Entry Point:

FILTR2

Purpose:

To compute the orbit determination filter gain for a measurement and update the knowledge covariance using that gain.

Method:

A general purpose filtering routine (See
Analytic Manual, Sections 6.4 and 6.5) which
nominally computes the Kalman-Schmidt (KS)
gain and updates the knowledge covariance.
Alternately, via the entry point, FILTR2, the
covariance can be updated with an input gain.

Remarks:

Several places in FILTR computations require
the use of sub-blocks of an input or intermediate matrix. Wherever possible, advantage
is taken of internal storage formats so that
the full matrix may be accessed using only the
correct sub-block dimensions, eliminating
requirement for pulling out the sub-block and
storing it in an intermediate array.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition.                              |
|-----------------|------------------|---------------------|------------------------------------------|
| P               | Ţ                | A                   | Knowledge covariance before measurement. |
| н .             | I                | A                   | Observation matrix.                      |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                           |
|----------|------------------|---------------------|--------------------------------------------------------------------------------------|
| GAIN     | 0                | A                   | Gain matrix.                                                                         |
| PP       | 0                | A                   | Knowledge covariance after measurement.                                              |
| N ,      | I                | A                   | Dimension of augmented covariance.                                                   |
| NR       | I                | A                   | Dimension of current measurement.                                                    |
| ns       | I                | A                   | Total number of variables and parameters being estimated by filter.                  |
| PCØN     | I                | A                   | Location in blank common of working storage as large as augmented covariance matrix. |
| R        | I                | <b>A</b> '          | Measurement white noise matrix.                                                      |
| RESID    | 0                | <b>A</b>            | Measurement residual matrix.                                                         |

| Variable | Definition                                                          |
|----------|---------------------------------------------------------------------|
| нР       | Product of observation matrix and input covariance matrix.          |
| INVRES   | Location in common/WORK/ of inverse of measurement residual matrix. |
| INVRS2   | Location in common /WORK/ of working storage.                       |

Subrountines Called: AMABT, AMATBT, COPY, INVSQM, MMAB, MMATB, SCALE, SYMTRZ

Calling Subroutines: MEAS

Common Blocks:

WØRK

## Logic Flow:



Pages 247 and 248 are deleted.

3.3.15 Subroutine: GAINF (K, RDWRIT)

Purpose:

To read gain matrix from or write gain matrix

to GAIN file (TAPE 4).

### Input/Output:

| Variable   | Input/<br>Output | Namelist/<br>Common | <u>Definition</u>                                                                     |
|------------|------------------|---------------------|---------------------------------------------------------------------------------------|
| K          | 1/0              | A                   | Gain matrix (real).                                                                   |
| RDWRIT     | I                | <b>A</b>            | Read/write control flag                                                               |
|            | ·                |                     | <ul><li>4HREAD, read gain matrix</li><li>5HWRITE, write gain<br/>matrix.</li></ul>    |
| CHEKPR (4) | I                | <b>c</b>            | Logical check print flag, operative for both read and write modes.                    |
|            |                  |                     | <ul><li>T, print gain matrix to output</li><li>F, do not print gain matrix.</li></ul> |
| mesevn ·   | I                | C                   | Measurement code corre-<br>sponding to gain matrix.                                   |
| NR .       | 1                | C                   | Number of columns in gain matrix.                                                     |
| nsølve     | ı                | C                   | Number of rows in gain matrix.                                                        |

### Local Variables:

| <u>Variable</u> | Definition                                                                                                     |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| MEV             | Measurement code read from GAIN file. MEV is compared to MESEVN, the code provided from SCHED (Section 3.3.36) |  |  |  |
|                 | to guarantee proper meshing of gain with its original data type.                                               |  |  |  |

Subroutines Called: MATØUT, BØMB

Calling Subroutine: MEAS

Common Blocks:

LØGIC, MEASI, SCHEDI

Logic Flow:

None

3.3.16 Subroutine: GAINUS (K)

Purpose: To be replaced by user if any gain matrix

algorithm is desired other than Kalman-Schmidt,

sequential weighted least squares, or read

from GAIN file.

Remarks: Users-supplied gain is expected to be an infre-

quently exercised option. The user who wishes

to incorporate his own algorithm should be

very familiar with filtering theory. Though

there are no "wrong" algorithms, any algorithm

not carefully thought out -- and many that are --

will generally be meaningless and harmful. The

only absolute rule is that the gain matrix has

dimensions NSØLVE by NR (common/MEASI/).

Calling Subroutine: MEAS

3.3.17 <u>Subroutine</u>: GUIDE

Purpose: To perform all computations and printout for the

execution of a guidance maneuver.

Method: Both low thrust and impulsive ΔV guidance are

available. See Vol. I, Analytical Manual, Sec.

6.6 for details.

| <del></del>     |                  |                     | •                                                                                                                                                                                                                                                   |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                                                                          |
| AUGLAB          | I                | С                   | Hollerith label array for all augmented parameters.                                                                                                                                                                                                 |
| CHEKPR (5)      | I                | C                   | Check print flag  =T, low thrust guidance - print knowledge and control uncertainties at end of burn interval and transition matrix over burn interval.  ΔV guidance - prints eigenvalues and eigenvectors of ΔV covariance.  =F, no optional print |
| CHEKPR(7)       | I                | С                   | Print (if TRUE) equatorial state covariance.                                                                                                                                                                                                        |
| CØNWT           | 1/0              | C ·                 | Array of control weights.                                                                                                                                                                                                                           |
| DELAY           | I                | С                   | Guidance delay time for current maneuver.                                                                                                                                                                                                           |
| DYNØIS          | I                | С                   | Dynamic noise flag                                                                                                                                                                                                                                  |
| FØV             | I                | С                   | Velocity covariance off-<br>diagonal annihilation value<br>for eigenvalue/vector compu-<br>tation.                                                                                                                                                  |
| GT ·            | 1/0              | С                   | Transformation matrix for dynamic noise computation.                                                                                                                                                                                                |
| GTBURN          | I                | С                   | GT matrix evaluated at be-<br>ginning of burn interval.                                                                                                                                                                                             |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                               |
|----------|------------------|---------------------|------------------------------------------------------------------------------------------|
| GTDLAY   | I                | С                   | GT matrix evaluated at beginning of guidance delay period.                               |
| GTSAVE   | 1/0              | С                   | Transformation matrix for dynamic noise computation.                                     |
| IPØL     | I                | С                   | Guidance policy for current maneuver.                                                    |
| IREAD    | I                | С                   | Namelist \$GEVENT read control flag for current maneuver.                                |
| ITP      | I                | С                   | See UREL, VREL below.                                                                    |
| LØCTC    | I                | С                   | Location in blank common of transition matrix from cutoff time to target condition time. |
| NAUG     | I                | С                   | Length of augmented state vector.                                                        |
| NCNTG    | I                | C .                 | Number of current guidance maneuver.                                                     |
| ncøn     | I                | С                   | Number of low thrust controls.                                                           |
| NPHSTM   | I                | С                   | Dimension of state transition matrix from TRAJ (Sec. 3.5 ) with dynamic parameters only. |
| NTP      | I                | С                   | Code number for target body.                                                             |
| P        | I                | С                   | Location in blank common of knowledge covariance at beginning of guidance delay period.  |
| PG       | I                | С                   | Location in blank common of control covariance at beginning of guidance delay time.      |
| PG1      | I                | С                   | Locations in blank common                                                                |
| PG2      | I                | С                   | for intermediate covariances required for guidance computations.                         |

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                                      |
|---------------|------------------|---------------------|---------------------------------------------------------------------------------|
| РНІ           | I                | <b>c</b> .          | Location in blank common of transition matrix over delay period.                |
| PI            | I                | С                   | Mathematical constant, $\pi$                                                    |
| PLAB          | I                | С                   | Array of knowledge covariance labels.                                           |
| PLØCAL        | I                | С                   | Location in blank common of covariance-sized working storage.                   |
| PTEMP         | I                | С                   | Same as PLØCAL.                                                                 |
| RAD           | I                | C .                 | Conversion constant, degrees/radian.                                            |
| S             | I                | С                   | Sensitivity matrix, cutoff state w.r.t. controls.                               |
| SMAT          | 1/0              | C                   | Sensitivity matrix, targets WRT controls.                                       |
| TBURN         | Ι                | C                   | Burn interval duration for current maneuver.                                    |
| TIMFTA        | I                | С                   | Target condition evaluation time for fixed time of arrival guidance.            |
| TM            | I                | С                   | Conversion constant, seconds/day.                                               |
| т <b>ø</b> ff | I                | С                   | Cutoff time for current maneuver.                                               |
| TØN           | I                | C                   | Startup time for current maneuver.                                              |
| TSTM          | I                | С                   | Most recent STM file time point.                                                |
| TST ØP        | I                | С                   | Trajectory stop time from integrator for B-plane or closest approach targeting. |
| UREL(1,ITP)   | Ι                | С                   | S/C position vector at target condition time.                                   |
| VARDV         | I                | С                   | Array of execution error variances.                                             |
| VARMAT        | 1/0              | С                   | Variation matrix, sensitivity of target conditions to cutoff state.             |
| VREL(1,ITP)   | I                | С                   | S/C velocity vector at target condition time.                                   |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                        |
|----------|------------------|---------------------|-----------------------------------------------------------------------------------|
| VRNIER   |                  | C                   | Logical flag = T, current maneuver is vernier. = F, current maneuver not vernier. |

| Variable       | Definition                                                              |
|----------------|-------------------------------------------------------------------------|
| LABCØN         | Array of control Hollerith labels.                                      |
| CSWATE         | Dimensional weighting for start-up and cutoff time controls.            |
| DELTAV         | Expected velocity update for $\Delta V$ guidance                        |
| DVCØV          | Impulsive $\Delta$ V covariance                                         |
| DVM            | Mean △V magnitude.                                                      |
| ETA            | Variation matrix, target conditions wrt state at target condition time. |
| GAMMA          | Guidance matrix                                                         |
| LABS           | Labelling array                                                         |
| ITARG          | Input parameter to ECOMP (Sec. 3.6.5)                                   |
| <b>JSTØ</b> P  | Input parameter to ECØMP (Sec. 3.6.5)                                   |
| LPGØFF         | Location in blank common of control covariance at cutoff time.          |
| L <b>PGØ</b> N | Location in blank common of control covariance at startup time.         |
| LPØFF          | Location in blank common of knowledge covariance at cutoff time.        |
| LPØN           | Location in blank common of knowledge covariance at startup time.       |
| NTARG          | Number of targets.                                                      |
| PH IBRŅ        | 6 x 6 state transition matrix over burn interval.                       |
| PHITAR         | 6 x 6 state transition matrix from cutoff to target condition time.     |

| Variable            | Definition                                                                                                                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIGDV               | Standard deviation in &V.                                                                                                                                        |
| LABTAR              | Array of target labels.                                                                                                                                          |
| TARTIM              | Target condition evaluation time.                                                                                                                                |
| TEMP                | Hollerith prefix.                                                                                                                                                |
| LTARG               | Current target label.                                                                                                                                            |
| TRS                 | Trace of AV covariance.                                                                                                                                          |
| VMAT                | Variation matrix, target parameters WRT state at guidance epoch.                                                                                                 |
| VTA                 | Logical flag for variable time of arrival low thrust XYZ guidance (if TRUE).                                                                                     |
| Subroutines Called: | ADD, CØPY, CØRREL, DYNØ, ECØMP, EIGENV, FBURN, GENINV, ICØPY, MATØUT, MMAB, MMABAT, MPAK, MUNPAK, NEGMAT, PRØP, PRSDEV, PUNCØR, RELCØV, SCALE, SUB, VARSD, VERR. |
| Common Blocks:      | WØRK, (BLANK), CØNST, DIMENS, GUIDE, KEPCØN,<br>LABEL, LØCATE, LØGIC, MEASI, PRØPR, SCHEDI,<br>SCHEDR, TIME, TRAJI, TRAJ2.                                       |

: -4







. .. ...







3.3.18 <u>Subroutine</u>: INPUTG

Purpose: To control all inputs to GØDSEP

Remarks: Common/LØCAL/ appears in this subroutine only and

is an ordering artifice to equivalence its elements

to the array LØCATE.

## Input/Output:

| TIED | <u>ae/oucpae</u> . | Input/ | Argument/ |                                                                                      |
|------|--------------------|--------|-----------|--------------------------------------------------------------------------------------|
|      | <u>Variable</u>    | Output | Common    | Definition                                                                           |
|      | CØNRD              | Ø      | С         | Logical flag =T, control uncertainties read in =F, control uncertainties not read in |
|      | IGFØRM             | Ø      | С         | Flag indicating form of input control uncertainties.                                 |
|      | 1PF <b>Ø</b> RM    | Ø      | С         | Flag indicating form of input knowledge uncertainties.                               |
|      | ISTMF              | I      | С         | STM file usage flag                                                                  |
|      | MAXDIM             | I      | C         | Array of maximum dimensions allowed on input covariance sub-blocks.                  |
|      | NAUG               | Ø      | С         | Length of augmented state vector.                                                    |
|      | P                  | Ø      | С         | Location in blank common of knowledge covariance.                                    |
|      | PG                 | Ø      | С         | Location in blank common of control covariance                                       |
|      | XLAB               | I      | С         | Array of Hollerith labels for all possible augmentation parameters.                  |
|      |                    |        |           |                                                                                      |

#### Local Variables:

| Variable                                                    | Definition                                                                            |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------|
| CXS, CXU, CXW, PS, CSU, CSV, CSW, PU, CUV, CUW, PV, CVW, PW | Locations in blank common of input covariance matrix sub-<br>blocks of the same name. |

<u>Variable</u>

Definition

NTØT

Total number of words allocated for each of knowledge and control uncertainties to be read in namelist

\$GØDSEP.

Subroutines Called:

NMLIST, DIMENS, PPAK, ESLE, SYMUP

Calling Subroutines:

DATAG

Common Blocks:

WØRK (BLANK), DATAGR, DATAGI, DIMENS, LØCATE,

MEASI, TRAJ2, LØCAL

Logic Flow:

None

3.3.19 Subroutine: LØADRC (A, MA, NA, LISTA, C, M, N, LISTC, LTRAN)

Entry Points:

LØDCØL, LØDRØW

Purpose:

To load selected rows or columns from one matrix to another.

Method:

A list of codes (LISTA for matrix A and LISTC for matrix C) is associated with either column entries, row entries or both. The two matrix codes are compared and rows or columns having common codes are loaded from A to C.

LøDCØL uses LISTC to define the columns of C.

Letting the index J run from 1 to N, for each

value of J, LISTA is searched for an element

JJ such that LISTC(J) = LISTA(JJ). If no

equality is found, no operation is performed

on column J of matrix C. If an equality is

found, the elements of row JJ in matrix A

are copied into row J of C.

LØDRØW functions the same way for the rows of C as LØDCØL does for columns. LISTC and LISTA are then assumed to define the rows of C and A, respectively.

LØADRC loads rows and columns simultaneously for square matrices where a single list can

denote ordering for both rows and columns, such as covariance and transition matrices. For the simultaneous loading, an intermediate transformation array LTRAN is used. LTRAN(I) is zero if the I<sup>th</sup> parameter of LISTC does not appear in LISTA, or is equal to II if LISTA(II) = LISTC(I). Individual elements are transferred from A to C by

C(I,J) = A(LTRAN(I)), LTRAN(J))

if LTRAN(I) > 0 and LTRAN(J) > 0, otherwise element C(I,J) is not changed from input value. The argument LTRAN is working storage and is used only when LØADRC is called. It must have a length at least as great as LISTC. The inputs NA and N are ignored for LØADRC, A is assumed to be MAXMA and C to be MxM.

# Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                         |
|----------|------------------|---------------------|----------------------------------------------------|
| A        | I                | A                   | Input matrix.                                      |
| MA       | · I              | <b>A</b>            | Number of rows in A.                               |
| NA       | I                | <b>A</b>            | Number of columns in A.                            |
| LISTA    | 1                | A                   | Vector list of code numbers for rows/columns of A. |
| С        | 0                | A                   | Output matrix.                                     |

#### Remarks:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                       |
|-----------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M               | I                | <b>A</b> .          | Number of rows in C.                                                                                                                                             |
| И               | I                | A                   | Number of columns in C.                                                                                                                                          |
| LISTC           | I                | A                   | Vector list of code numbers for rows/columns of C.                                                                                                               |
| LTRAN           | 0                | A                   | Transformation list from A to C in LØADRC designed as working storage with no specific output function. Must have length greater than or equal to that of LISTC. |

| Variable | Definition  LØDCØL - minimum of (M, MA)  LØDRØW - minimum of (N, NA)                                                                                         |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MIN      |                                                                                                                                                              |  |  |
|          | When copying rows or columns MIN is<br>the row or column length. It guar-<br>antees that the length of rows or<br>columns in neither A nor C is<br>exceeded. |  |  |

Subroutines Called: None

STMRDR, GUIDE, CØVP, PRED, STMUSE, RELCØV Calling Subroutines:

None Common Blocks:

Logic Flow: None

3.3.20A Function: LØCLST (IPARAM)

Purpose:

To locate the position of a parameter in the

augmented state vector.

#### Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument<br>Common |                                            |
|-----------------|------------------|--------------------|--------------------------------------------|
| IPARAM          | I                | A                  | Code number of parameter to be located.    |
| NAUG            | I                | С                  | Dimension of augmented state vector.       |
| LIST            | I                | С                  | Vector of code numbers in augmented state. |
| LØCLST          | 0                | F*                 | Parameter location, if in augmented state. |

Local Variables:

None

Subroutines Called:

None

Calling Subroutines:

ØBSERV

Common Blocks:

DIMENS

Logic Flow:



\*Function Value Output

3.3.20B <u>Subroutine</u>: MASSIG (IFLAG, P, PG, DT)

<u>Purpose</u>: To compute the estimated and cumulative

spacecraft mass variances.

Method: See Analytic Manual, Section 6.2 (Covariance

Propagation).

| Variable   | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                    |
|------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DT         | I                | A                   | Propagation interval.                                                                                                                                         |
| ENGINE(10) | I                | С                   | Exhaust velocity.                                                                                                                                             |
| EPTAU      | I                | С                   | Thrust noise correlation times,                                                                                                                               |
| EPVAR      | I                | С                   | Thrust noise variances.                                                                                                                                       |
| IAUGDC     | I                | . с                 | Vector of flags for dynamic parameters.                                                                                                                       |
| IFLAG      | I                | A                   | Flag for computational control.  = 0, do not average acceleration.  = 1, initialize SAVACC.  = 2, update mass variance,  = 3, update and print mass variance. |
| NAUG .     | I                | С                   | Dimension of augmented state.                                                                                                                                 |
| NTPHAS     | I                | c                   | Current thrust phase number.                                                                                                                                  |
| P          | I                | . А                 | Knowlege covariance.                                                                                                                                          |
| PG         | I                | A                   | Control covariance,                                                                                                                                           |
| SAVACC     | 1/0              | С                   | Previous thrust acceleration.                                                                                                                                 |
| SCMASS     | I                | C                   | Current S/C mass.                                                                                                                                             |
| SCMVAR     | 1/0              | C                   | Current mass variance,                                                                                                                                        |
| THRACC     | I .              | Ç                   | Thrust acceleration vector,                                                                                                                                   |
| THRUST     | I                | . С                 | S/C thrust array.                                                                                                                                             |

Variable

Definition

S/C mass flow rate.

INITA

Initialization flag
= 0, do not average acceleration.
= 1, use average acceleration.

TAMAG

Thrust acceleration magnitude.

Subroutines Called: COPY, LOCLST, VECMAG

Calling Subroutines: GØDSEP, SETEVN

Common Blocks: CONST, DIMENS, LOGIC, PROPR, TRAJI, TRAJI, WORK

Logic Flow: None.

3.3.21 Program: MEAS

Purpose:

Executive control for measurement processing.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                           |
|-----------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| GAIN            | Ø                | С                   | Location in blank common of                                                                                                                          |
|                 |                  |                     | gain matrix.                                                                                                                                         |
| Н               | ø                | С                   | Location in blank common of observation matrix.                                                                                                      |
| IDATYP          | Ø                | С                   | See ØBSERV, 3.3.26.                                                                                                                                  |
| IGAIN           | . I              | c                   | <pre>Gain matrix flag. = 1, Kalman-Schmidt (KS) = 2, sequential weighted     least squares (WLS). = 3, user-supplied. = 4, read from GAIN file</pre> |
| ISTA3           | Ø                | С                   | See ØBSERV, 3.3.26.                                                                                                                                  |
| NAUG            | · I              | С                   | Length of augmented state vector.                                                                                                                    |
| NR              | Ø                | · с                 | Length of measurement vector.                                                                                                                        |
| P               | I                | C                   | Location in blank common of knowledge covariance after measurement.                                                                                  |
| PRINT           | Ø ·              | <b>C</b>            | Logic flag  =T, full print for current  measurement  =F, do not give full print  for current measurement.                                            |
| PTEMP           | I                | C.                  | Location in blank common of knowledge covariance before measurement.                                                                                 |
| PWLS            | I                | С                   | Location in blank common of WLS reference covariance.                                                                                                |
| SUMMARY         | I                | C                   | Logical flag  T, summary print for all  measurements.  T, no summary print.                                                                          |

None

Subroutines Called:

FILTR, GAINF, GAINUS, MEASPR, MNØISE, ØBSERV,

PCNTRL

<u>Calling Subroutines:</u>

GØDSEP

Common Blocks:

WØRK, (BLANK), DIMENS, LABEL, LØCATE, LØGIC,

MEASR, MEASI

#### Logic Flow:





3.3.22 Subroutine: MEASPR(TYPE)

Purpose:

To control all measurement print

| Variable  | Input/<br>Output | Argument/<br>Common | Definition                                                                       |
|-----------|------------------|---------------------|----------------------------------------------------------------------------------|
| TYPE      | I                | A                   | Print type =6HBEFORE, before measurement print =5HAFTER, after measurement print |
| AUGLAB    | I                | С                   | Array of augmented parameter Hollerith labels.                                   |
| AZMTH2    | I                | С                   | S/C azimuth angle from station ISTA2.                                            |
| AZMUTH    | I                | С                   | S/C azimuth angle from station ISTA1.                                            |
| CHEKPR(3) | I                | С                   | Print covariance before and after measurement (if TRUE).                         |
| DELT IM   | ı                | С                   | If > 0, print transition matrices.                                               |
| ELEV      | I                | C                   | S/C elevation angle from station ISTAl                                           |
| ELEV2     | I .              | Ċ                   | S/C elevation angle from station ISTA2                                           |
| GAIN      | I                | С                   | Location in blank common of gain matrix.                                         |
| н         | I                | С .                 | Location in blank common of observation matrix.                                  |
| IDATYP    | I                | C                   | General data type flag (See ØBSERV, (Section 3.3.26).                            |
| ISTA1     | I                | С                   | )                                                                                |
| ISTA2     | I                | С                   | See ØBSERV, Section 3.3.26.                                                      |
| ISTA3     | I                | С                   | )                                                                                |
| LØCLAB    | I                | С                   | Array locating state vector partitions in AUGLAB.                                |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                          |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------|
| MESEVN          | ı.               | С                   | Measurement code for current data type.                                                             |
| MESLAB          | I                | C                   | Array of measurement Hollerith labels.                                                              |
| NAUG            | I                | С                   | Length of augmented state vector.                                                                   |
| NDIM            | I                | C                   | Array of lengths of individual state vector partitions.                                             |
| NR              | I                | С                   | Length of current measurement vector.                                                               |
| nsølve          | I                | С                   | Total number of variables and parameters being estimated by filter.                                 |
| P               | I                | С                   | Location in blank common of knowledge covariance after measurement.                                 |
| PHI             | I                | С                   | Location in blank common of transition matrix.                                                      |
| PLAB            | I                | С                   | Array of knowledge covariance sub-block Hollerith labels.                                           |
| PLØCAL          | I .              | С                   | Location in blank common of covariance-sized working storage.                                       |
| PRINT           | I                | С                   | Print control flag =T, full print =F, not full print                                                |
| PTEMP           | I                | С                   | Location in blank common of knowledge covariance before measurement.                                |
| R               | I                | C                   | Before measurement, measurement white noise matrix; after measurement, measurement residual matrix. |
| SCDEC           | I.               | С                   | S/C geocentric equatorial declination.                                                              |

|               | <u>Variable</u> | Input/<br>Output |                                       | gument/<br>ommon          | Definition                                                                                    |
|---------------|-----------------|------------------|---------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|
| ÷             | SCGLØN          | I                |                                       | С                         | S/C geocentric longitude                                                                      |
|               | SCMASS          | I                |                                       | С                         | S/C mass                                                                                      |
|               | SUMARY          | I                |                                       | C                         | Print control flag =T, summary print =F, no summary print                                     |
|               | TCURR           | I                |                                       | С                         | Current trajectory time                                                                       |
|               | TPAST           | I                |                                       | С                         | Previous trajectory time                                                                      |
|               | VECLAB          | I                |                                       | С                         | Array of state vector partition Hollerith labels.                                             |
| Local         | Variables:      |                  |                                       |                           | •                                                                                             |
| •             | Variable        | <del></del>      | · · · · · · · · · · · · · · · · · · · |                           | Definition                                                                                    |
|               | AZ              |                  |                                       | "Azimuth"                 | Hollerith label                                                                               |
|               | BLANK           |                  |                                       | Hollerith                 | "blank"                                                                                       |
|               | DEC             |                  |                                       | "Declinat                 | ion" Hollerith label                                                                          |
|               | EL              |                  |                                       | "Elevation                | n" Hollerith label                                                                            |
|               | FSTA            |                  |                                       | "From Star                | tion" Hollerith label                                                                         |
|               | FULPR           |                  |                                       | If full p                 | UMARY print file<br>rint is made for current data type<br>HPRINT; otherwise FULPR = Hollerith |
|               | HØLNUM          |                  |                                       | Array of I                | Hollerith numbers                                                                             |
|               | LØN             |                  |                                       | "Longitude                | e" Hollerith label                                                                            |
| Subrou        | itines Called:  |                  |                                       | JØBTLE, PI<br>, MATØUT, I | RINTT, STMPR, CØRREL, PRNEQ,<br>PRPART                                                        |
| <u>Callir</u> | ng Subroutines  | : MEAS           |                                       |                           |                                                                                               |

WØRK, (BIANK), DIMENS, KEPCØN, LABEL, LØCATE, LØGIC, MEASI, MEASR, SCHEDI, SCHEDR, TRAJ1, TRAJ2

Common Blocks:



3.3.23 Subroutine: MNØISE

Purpose: To define the measurement white noise matrix.

Method: Required elements from the measurement variance

array, VARMES, are loaded into the measurement

noise matrix, R.

### Input/Output:

Calling Subroutines:

MEAS

| Variable                 | Input/<br>Output | Argument/<br>Common | Definition                                                                                            |
|--------------------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------|
| IDATYP                   | I                | C                   | Basic data type                                                                                       |
|                          | ·                |                     | <pre>= 1, doppler = 2, range = 3, azimuth-elevation = 4, star-planet angle = 5, apparent planet</pre> |
| ISTA3                    | I                | С                   | Data sub-type for range and doppler.                                                                  |
|                          | ·                |                     | = 0, 2-way<br>= 1, 3-way<br>= 2, simultaneous 2-way/<br>3-way<br>= 3, differenced 2-way/<br>3-way     |
| NR                       | I                | С                   | Dimension of measurement noise matrix.                                                                |
| R                        | 0                | С                   | Measurement noise matrix.                                                                             |
| VARMES                   | I                | C                   | Array of measurement white noise variances.                                                           |
| <u>Local Variables</u> : | No               | one                 | ·                                                                                                     |
| Subroutines Calle        | <u>d</u> : No    | one                 |                                                                                                       |

Common Blocks:

MEASI, MEASR

Logic Flow:

None

3.3.24 Subroutine: MSCHED

Purpose: To set up measurement and propagation event

information for use by the scheduling routine

SCHED (Section 3.3.36).

Remarks: If the current error analysis reads gain matrices

from the gain file (generalized covariance run)

all scheduling and measurement print control

information will also be read from the gain

file and any scheduling cards in input will be

ignored. MSCHED automatically writes this

information on the gain file if gain file

creation has been specified in namelist \$GØDSEP.

Each card read is assumed to contain four variables - START, STØP, DELT, MESCØD (for input format see GØDSEP input, Section 2.3). If the interval (START, STØP) is not completely contained in the interval (TCURR, TFINAL), the values of START and/or STØP will be adjusted so that only those events within the (TCURR, TFINAL) interval will be scheduled. Measurement events are denoted by MESCØD equal to the number of the data type, and propagation events by MESCØD equal to zero. An additional

option is also available to schedule measurements in any sub-interval of (TCURR, TFINAL). When any input card contains a value for DELT less than or equal to zero, all succeeding event cards are scheduled in the (START, STØP) interval defined by that card until a new card with DELT less than or equal to zero is encountered.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IGAIN    | I                | С                   | Integer flag controlling filtering algorithm                                                                                                                              |
|          |                  |                     | IGAIN = 4 means read gain from gain file.                                                                                                                                 |
| GAINCR   | I                | C                   | Logical flag controlling gain file creation.                                                                                                                              |
| ÷        |                  |                     | <ul><li>TRUE., create gain file.</li><li>FALSE., do not create gain file</li></ul>                                                                                        |
| MPFREQ   | 1/0              | С                   | Array of measurement print control flags.                                                                                                                                 |
| MCØDE    | 0                | С                   | Array of measurement and propagation event codes.                                                                                                                         |
| NSCHED   | 1/0              | С                   | Input as number of scheduling cards to be read. Output as number of entries in SCHEDM MCØDE arrays to be operated on for scheduling current run.                          |
| SCHEDM   | 0                | C                   | Array defining scheduling of events found in MCØDE. Each MCØDE (I) will be scheduled starting at SCHEDM (1, I), stopping at SCHEDM (2, I), in increment of SCHEDM (3, I). |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                     |
|-----------------|------------------|---------------------|----------------------------------------------------------------|
| TCURR           | I                | С                   | Trajectory start time, lower bound for measurement scheduling. |
| TFINAL          | r                | С                   | Trajectory stop time, upper bound for measurement sched-uling. |

| <u>Variable</u> | Definition                                                                                    |
|-----------------|-----------------------------------------------------------------------------------------------|
| BEGMES          | Beginning of allowable event scheduling interval, initially set to TCURN.                     |
| DELT            | Scheduled time interval between measure-<br>ments.                                            |
| ENDMES          | End of allowable event scheduling inter-<br>val, initially set to TFINAL.                     |
| IBIAS           | Running counter of number of schedule cards read but not loaded into SCHEDM and MCØDE arrays. |
| MESCØD          | Measurement code read from input card.                                                        |
| START           | Beginning of scheduling interval for measurement type MESCØD.                                 |
| STØP            | End of scheduling interval for measure-<br>ment type MESCØD.                                  |

Subroutines Called:

None

Calling Subroutines:

**ØUT**PTG

Commor Blocks:

CØNST, SCHEDI, SCHEDR, MEASI, LØGIC, WØRK





Subroutine: NMLIST 3.3.25

Purpose:

Read \$GØDSEP namelist

Remarks:

All knowledge and control covariance matrix partitions are provided as arguments to NMLIST in order to minimize the number of modifications necessary in the event maximum dimensions of any sub-block are changed. Dimensions of these arrays in NMLIST must correspond to those specified for MAXDIM array in

subroutine DEFALT (Sec. 3.3.8)

If GAIN file is being created, NMLIST writes all variables in namelist \$GØDSEP to GAIN file (TAPE 4) in binary format. Similarly, if GAIN file is being read, NMLIST reads default values for namelist \$GØDSEP in binary format from GAIN file (TAPE 4) and then reads normal namelist \$GØDSEP from input to modify defaulted values as desired.

Input/Output:

See GØDSEP Input, Volume II, User's Manual Sec. 2.3

Local Variables:

None

Subroutines Called:

JØBTLE, BØMB

Calling Subroutines: INPUTG

Common Blocks:

DATAGI, DATAGR, DIMENS, GUIDE, LABEL, LØGIC, MEASI,

MEASR, PRØPI, PRØPR, SCHEDI, SCHEDR, TRAJ2

Logic Flow:

None

3.3.26 Subroutine: ØBSERV (HMAT)

<u>Purpose</u>: To compute the observation matrix for a given

data type at a measurement.

Method: ØBSERV is actually a master routine controlling

the calls to subordinate routines where the

observation matrix (HMAT) is calculated for

range, doppler, azimuth-elevation, star-planet

angle, apparent planet diameter, and horizon sensor measurements. Depending on the measure-

ment type code (IDATYP), ØBSERV calls (1) OBSRAD

to calculate range and doppler observation

partials, (2) ØBSAEA for azimuth-elevation

partials, (3) ØBSSPA for star-planet angle

(i.e., star-Earth horizon angle) observation

partials, (4) ØBSAPD for apparent planet

diameter observation partials, and (5) ØBHZS

for horizon sensor partials. The details of

the mathematical models are given in the

Analytic Manual, Section 6.3.

Remarks: Rather than explicitly documenting ØBSRAD,

ØBSAEA, ØBSAPD, and ØBSHZS, the key functional

description and calculations for each of these

routines will be discussed here in ØBSERV.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                       |
|-----------------|------------------|---------------------|----------------------------------|
| HMAT            | Ø                | A                   | Observation matrix               |
| AZMTH2          | Ø                | С                   | Azimuth angle from station ISTA2 |

| Variable | Input/<br>Output | Argument/<br>Common | Description                                                                                                   |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------|
| AZMUTH   | Ø                | С                   | Azimuth angle from station ISTA1                                                                              |
| ECEQ     | I                | С                   | Rotation matrix from equatorial to ecliptic coordinates.                                                      |
| ELEV     | Ø                | С                   | Elevation angle from station ISTA1                                                                            |
| ELEV2    | Ø                | С                   | Elevation angle from station ISTA2                                                                            |
| GHZERØ   | I                | С                   | Greenwich hour angle at launch                                                                                |
| IAUGST   | I                | C                   | Location in IAUG array of station location flags.                                                             |
| IBAZEL   | I                | С                   | Location in IAUG array of azimuth-elevation angle meas-<br>urement bias flags.                                |
| IBDIAM   | I                | С                   | Location in IAUG array of apparent planet diameter measurement bias flag.                                     |
| IBSTAR   | I .              | С                   | Location in IAUG array of star-<br>planet angle measurement bias<br>flags.                                    |
| IB2WAY   | ı ·              | С                   | Location in IAUG array of 2-way range and range-rate measure-ment bias flags.                                 |
| IB3WAY   | I                | С                   | Location in IAUG array of 3-way range and range-rate measure-ment bias flags.                                 |
| ІВНСО2   | I                | С                   | Location in IAUG array of<br>the CO <sub>2</sub> altitude bias flag<br>for the horizon sensor<br>measurement. |
| IBHZS    | 1                | С                   | Location in IAUG array of<br>the horizon sensor angle<br>biase flags.                                         |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                                                             |
|----------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IDATYP   | Ø                | C                   | General data type decoded from MESEVN.                                                                                                                                                                                                 |
|          |                  |                     | <pre>=1, range-rate measurement =2, range measurement =3, azimuth-elevation anble     measurement =4, on-board optics, star-     planet angle =5, on-board optics, apparent     planet diameter =7, horizon sensor observations.</pre> |
| ISTA1    | · Ø              | С                   | For IDATYP = 1,2,3 ISTA1 = station number of first station. For IDATYP=4 Number of first star. For IDATYP=5 ignored.                                                                                                                   |
| ISTA2    | Ø                | C                   | For IDATYP=1,2,3 ISTA2 = station number of second station (if data type requires) For IDATYP=4 number of second star. For IDATYP=5 ignored.                                                                                            |
| ISTA3    | Ø                | С                   | Ignored if IDATYP=3,4,5  If IDATYP=1,2: =0, 2-way data from station ISTA1 =1, 3-way data from stations                                                                                                                                 |
| LIST     | I .              | <b>C</b>            | List of augmented parameter numbers.                                                                                                                                                                                                   |
| MAXSTA   | I                | С                   | Maximum station number for which station location errors and 2-way or 3-way biases are allowed.                                                                                                                                        |
| mesevn   | I                | С                   | Measurement code of current data type.                                                                                                                                                                                                 |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                  |
|----------|------------------|---------------------|-------------------------------------------------------------|
| NAUG     | I                | С                   | Length of augmented state vector.                           |
| NB       | I                | С                   | Array of bodies used in traj-<br>ectory integration.        |
| NBØD     | I                | С                   | Number of bodies used in trajectory integration.            |
| NR       | Ø                | С                   | Length of current measurement vector.                       |
| ØMEGAG   | ı                | С                   | Earth sidereal rotation rate.                               |
| PRADIS   | I                | С                   | Array of planetary radii                                    |
| RAD      | I                | C                   | Conversion constant, degrees/radian                         |
| RANGE    | Ø                | С                   | Range from station ISTA1 to S/C or range from S/C to Earth. |
| RANGE2   | Ø                | С                   | Range from station ISTA2 to S/C                             |
| SCDEC    | Ø                | С                   | S/C geocentric equatorial declination.                      |
| SCGLØN   | Ø                | С                   | S/C geocentric longitude.                                   |
| STALØC . | I                | С                   | Array of station location geographic coordinates.           |
| STARDC   | I                | С                   | Array of star direction cosines.                            |
| STPANG   | Ø                | C                   | Array of star planet angles.                                |
| TCURR    | I                | С                   | Current trajectory time.                                    |
| TM       | I                | С                   | Conversion constant, seconds/day.                           |
| UP       | I                | С                   | Position array of bodies used in trajectory integration.    |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                           |
|-----------------|------------------|---------------------|----------------------------------------------------------------------|
| UREL            | I                | С                   | Relative position array of S/C to bodies for trajectory integration. |
| VP              | I                | С                   | Velocity array of bodies used in trajectory integration.             |
| VREL            | I,               | C                   | Relative velocity array of S/C to bodies for trajectory integration. |

For all variables and equations, see Volume 1,

Analytical Manual, Section 6.

| Variable | Definition                                                                         |
|----------|------------------------------------------------------------------------------------|
| CACB     | COS (azimuth) x COS (elevation)                                                    |
| CALPHA   | COS (azimuth)                                                                      |
| CBETTA   | COS (elevation)                                                                    |
| CGAMMA   | COS (star-planet angle)                                                            |
| DABDX    | d(4,6)/10                                                                          |
| DABDXS   | ع (هر ع) ع الم                                                                     |
| DELR     | Vector position difference between stations ISTA1 and ISTA2.                       |
| DELRHØ   | ۵6                                                                                 |
| DIFF23   | Logical flag =T, differenced 2-way/3-way data =F, not differenced 2-way/3-way data |
| DØPLER   | Logical flag =T, range-rate measurement =F, not range-rate measurement             |
| GECSTA   | Geocentric ecliptic coordinates of ISTA1                                           |
| GECST2   | Geocentric ecliptic coordinates of ISTA2                                           |
| GECV     | S/C geocentric ecliptic coordinates                                                |
| GEQSTA   | Geocentric equatorial coordinates of ISTA1                                         |

| Variable | Definition                                                                                                                                                                                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GEQV     | S/C Geocentric equatorial coordinates                                                                                                                                                      |
| HECE     | Heliocentric ecliptic coordinates of Earth.                                                                                                                                                |
| HECV     | S/C Heliocentric ecliptic coordinates.                                                                                                                                                     |
| HV       | Observation partials for ISTAl station location parameters.                                                                                                                                |
| HV2      | Observation partials for ISTA2 station location parameters.                                                                                                                                |
| нх       | 2-way observation partials for S/C state from ISTAl.                                                                                                                                       |
| HX2      | 2-way observation partials for S/C state from ISTA2.                                                                                                                                       |
| ISTA     | Number of station or star for which partials are currently being computed.                                                                                                                 |
| NTEMP    | When multi-station data is used, information for ISTA2 is computed first in locations HX,HV,RHØHAT, and GECSTA. NTEMP is number of words which must be copied from HX, etc. into HX2, etc. |
| PECCYL   | Partial of instantaneous station geocentric ecliptic to geographic coordinates.                                                                                                            |
| PEQCYL   | Partial of instantaneous station geocentric equatorial to geographic coordinates.                                                                                                          |
| RHO      | Range vector from station ISTA to S/C or from S/C to the Earth.                                                                                                                            |
| RHØDØT   | Relative velocity vector from station ISTA to S/C.                                                                                                                                         |

| <u>Variable</u>      | Definition                                                                                                                                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| RHØHAT               | Unit vector in RHØ direction from ISTA1                                                                                                       |
| RHØHT2               | Unit vector in RHØ direction from ISTA2                                                                                                       |
| SALPHA               | $sin \alpha$                                                                                                                                  |
| SBETA                | sin $\beta$                                                                                                                                   |
| SGAMMA               | sin y                                                                                                                                         |
| sgncøs               | Signum (COS 3)                                                                                                                                |
| SIML23               | Logical flag =T, simultaneous 2-way/3-way data =F, not simultaneous 2-way/3-way data                                                          |
| SINE                 | Sin (apparent planet diameter angle)                                                                                                          |
| TATB                 | tan $oldsymbol{\mathcal{G}}$ tan $oldsymbol{eta}$                                                                                             |
| THRWAY               | Logical flag =T, 3-way data only =F, not 3-way data only                                                                                      |
| TWØWAY               | Logical flag =T, 2-way data only =F, not 2-way data only                                                                                      |
| WHAT                 | w                                                                                                                                             |
| XSHAT                | $\hat{\mathbf{x}}_{s}$                                                                                                                        |
| Subroutines Called:  | ZERØM, CYEQEC, VECMAG, UNITV, UDØTV, ASIN, LØCLST, PARSTA, MMAB, NEGMAT, MMATB, ATAN2, CØPY, ADD, MUNPAK, SUB, UXV, SQRT, MMABT, ACØS, LØDCØL |
| Calling Subroutines: | MEAS                                                                                                                                          |

WØRK, (BLANK), CØNST, DIMENS, EPHEM, MEASI, MEASR, SCHEDI, SCHEDR, TRAJ1, TRAJ2

Common Blocks:















ØBSERV-13





3.3.27 Subroutine: ØUTPTG

Purpose:

Print out for user information of options

selected and initial values. Conversion of

input to internal units as necessary.

| Vowichlo        | Input/ | Argument/<br>Common | Definition                                                                                                   |
|-----------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------|
| <u>Variable</u> | Output | Сошшоп              | Definition                                                                                                   |
| BIG             | I      | С                   | Large constant, 1.E20.                                                                                       |
| CØNRD           | I      | С                   | Logical flag.                                                                                                |
|                 |        |                     | <ul><li>T, control uncertainties read in.</li><li>F, control uncertainties not read in.</li></ul>            |
| CØRLØN          | I      | С                   | Station longitude correlation coefficient.                                                                   |
| DCDQ            | 0      | C                   | Transformation matrix, ecliptic to equat.                                                                    |
| DOPCNT          | I      | С                   | Average number of range-rate measurements taken per day during tracking arc.                                 |
| dynøis          | I      | С                   | Logical flag.                                                                                                |
|                 |        |                     | <ul><li>= T, compute effective process noise.</li><li>= F, do not compute effective process noise.</li></ul> |
| EPSIG           | I      | С                   | Array of process noise stand-<br>ard deviations.                                                             |
| EPTAU           | I      | C                   | Array of process noise cor-<br>relation times.                                                               |
| EPVAR           | I      | С                   | Array of process noise variances.                                                                            |
| GAINCR          | I      | С                   | Logical flag.                                                                                                |

<sup>=</sup> T, create GAIN file.
= F, do not create GAIN file.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                |
|-----------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| GENCOV          | ı                | c ·                 | Logical flag.                                                                                                                             |
|                 |                  |                     | <ul> <li>= T, generalized covariance analysis on current run.</li> <li>= F, no generalized covariance analysis on current run.</li> </ul> |
| GTAU1           | Ø                | C                   | Array of negative inverse primary process noise correlation times for TRAJ (Section 3.5) Operative only if PDØT = .TRUE.                  |
| GTAU2           | Ø                | С                   | Array of negative inverse secondary process noise correlation times for TRAJ (Section 5) Operative only if PDØT = .TRUE.                  |
| IAUGST          | I                | С                   | Location in IAUG array of station location parameters.                                                                                    |
| IGAIN           | I                | <b>c</b>            | Gain matrix algorithm flag.                                                                                                               |
| ISTMF           | I                | С                   | STM file usage flag.                                                                                                                      |
| LIST            | I                | <b>C</b>            | Array of augmented parameter numbers.                                                                                                     |
| LPDØT           | Ø                | <b>C</b> .          | Array of dynamic parameters to TRAJ (Section (5)) Operative only if PDØT = .TRUE.                                                         |
| MCØUNT          | Ø                | c ·                 | Measurement counter.                                                                                                                      |
| MPFREQ          | 1/0              | C .                 | Measurement print frequency control array.                                                                                                |
| NAUG            | <b>I</b>         | C                   | Length of augmented state vector.                                                                                                         |
| NCNTE           | ø                | C                   | Eigenvector event counter.                                                                                                                |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                          |
|-----------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NENTG           | Ø                | · c                 | Guidance event counter.                                                                                                                                             |
| NCNTP           | Ø                | С                   | Prediction event counter.                                                                                                                                           |
| NCNTT           | Ø                | С                   | Thrust event counter.                                                                                                                                               |
| NEIGEN          | I/Ø              | С                   | Total number of eigenvector events to be scheduled.                                                                                                                 |
| NGUID           | I/Ø              | c                   | Total number of guidance events to be scheduled.                                                                                                                    |
| NPRED           | 1/ø              | c                   | Total number of prediction events to be scheduled.                                                                                                                  |
| NTHRST          | I/Ø              | С                   | Total number of thrust events to be scheduled.                                                                                                                      |
| NST             | ĭ                | C                   | Number of tracking stations defined.                                                                                                                                |
| P               | I                | C                   | Location in blank common of knowledge covariance.                                                                                                                   |
| PDOT            | I                | C                   | Logical flag.                                                                                                                                                       |
|                 |                  |                     | <ul> <li>T, covariance propagation<br/>by integration of variational equations.</li> <li>F, covariance propagation<br/>by state transition<br/>matrices.</li> </ul> |
| PG              | I                | С                   | Location in blank common of control covariance.                                                                                                                     |
| PGLAB           | I                | <b>c</b> .          | Array of control covariance sub-block Hollerith labels.                                                                                                             |
| PLAB            | I                | . <b>C</b>          | Array of knowledge covariance sub-block to Hollerith labels.                                                                                                        |
| PRNCØV          | I                | С                   | Logical array controlling covariance sub-blocks printed.                                                                                                            |
| PRØPG           | Ø                | С                   | Logical flag.                                                                                                                                                       |

| <u></u>         | Input/ | Argument/  | Definition                                                                                                                                                                                              |
|-----------------|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Variable</u> | Output | Common     | Delimition                                                                                                                                                                                              |
|                 |        |            | <ul> <li>T, propagate control         covariance simultane-         ously with knowledge.</li> <li>F, do not propagate con-         trol covariance simul-         taneously with knowledge.</li> </ul> |
|                 |        |            |                                                                                                                                                                                                         |
| QNØISE          | Ø      | <b>C</b> · | Array of process noise variances provided to TRAJ (Section $3.5$ ) when PDØT = .TRUE.                                                                                                                   |
| RAD             | . 1    | C          | Conversion constant, de-<br>grees/radian.                                                                                                                                                               |
| SCHFTL          | I      | С          | Logical flag.                                                                                                                                                                                           |
| ·               |        |            | <ul><li>= T, mesh failure on reading<br/>STM file is fatal.</li><li>= F, mesh failure on reading<br/>STM file is not fatal.</li></ul>                                                                   |
| SIGLØN          | I      | С          | Standard deviation in sta-<br>tion longitude.                                                                                                                                                           |
| SIGMES          | I      | <b>c</b>   | Array of measurement white noise standard deviations.                                                                                                                                                   |
| SIGRS           | ĭ      | <b>. c</b> | Standard deviation in sta-<br>tion spin radius.                                                                                                                                                         |
| SIGZ            | I      | С          | Standard deviation in sta-<br>tion z-height.                                                                                                                                                            |
| STALØC          | I      | C          | Array of tracking station cylindrical coordinates.                                                                                                                                                      |
| TCURR           | I      | <b>c</b> . | Current (and initial) tra-<br>jectory time.                                                                                                                                                             |
| TDUR            | I      | С          | Trajectory final time (seconds) for TRAJ (Section 35)                                                                                                                                                   |
| TEIGEN          | I      | C          | Array of eigenvector event times.                                                                                                                                                                       |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                 |
|-----------------|------------------|---------------------|------------------------------------------------------------|
| TFINAL          | ī                | С                   | Error analysis final time.                                 |
| TG              | Ι                | С                   | Epoch for input control uncertainties if $CONRD = .TRUE$ . |
| TGUID           | I                | С                   | Array of guidance event times.                             |
| TM              | I                | С                   | Conversion constant, seconds/day.                          |
| T <b>ØL</b> BAK | I                | С                   | Backward tolerance on STM file mesh.                       |
| tølf <b>ø</b> r | I                | С                   | Forward tolerance on STM file mesh.                        |
| TPRED           | I                | С                   | Array of prediction event times.                           |
| TTHRST          | r                | С                   | Array of thrust event times.                               |
| VARMES          | Ø                | С                   | Array of measurement white noise variances.                |

None

Subroutines Called: MSCHED, ESCHED, SCHED, BØMB, ATAN, ZERØM, CØRREL,

PRNEQ, SDVAR, COPY

Calling Subroutines: DATAG

Common Blocks: WØRK, (BLANK), CØNST, DATGI, DATGR, DIMENS, LABEL,

LØCATE, LØGIC, MEASI, MEASR, PRØPI, PRØPR, SCHEDI,

SCHEDR, TIME, TRAJ1, TRAJ2



Page 301 has been deleted.

3.3.29 Subroutine: PARSTA (GEQSTA, STALØC, ECEQ, PECCYL, SPHERE)

Purpose: To compute the partials of station instantaneous geocentric ecliptic cartesian state with respect to equatorial geographic coordinates, either spherical or cylindrical.

Method: Analytical expressions for these partial derivatives have been evaluated in the Analytical Manual, Section

G, and are coded here for numberical calculations.

Input/Output: Argument/ Input/ Definition Output Common Variable Instantaneous geocentric Α Ι GEQSTA equatorial cartesian state vector of the station. Geographic coordinates of Ι Α STALØC the station. Radius, latitude and longitude for spherical coordinates. Spin radius, longitude, and Z-height for cylindrical conditions. Rotation matrix from equator-Ι Α ECEQ ial to ecliptic cartesian frame. Partial derivatives of instan-Α Ø PECCYL taneous ecliptic state of the station with respect to the geographic coordinates of the station. A Logical flag to determine Ι SPHERE whether the input/output is in terms of spherical (SPHERE=.TRUE.) or cylindrical (SPHERE=.FALSE.) station coordinate variables.

VariableDefinitionCØSEPS, SINEPSCOS and SIN of Earth obliquity to ecliptic.CØSPHI, SINPHICOS and SIN of instantaneous station equatorial longitude.

CPØMEG, SPØMEG COS and SIN of Earth inertial rotation rate.

Subroutines Called: None

Calling Subroutines: OBSRAD

Common Blocks: None

Logic Flow: None

3.3.30 Logical Function: PCNTRL (ITYPE, ISUB)

Purpose: To control measurement print.

Method: Each general data type (e.g., 2-way range,

simultaneous 2-way/3-way doppler, azimuth-

elevation angles) is assigned a print fre-

quency (MPFREQ) and a counter (MPCNTR).

A test is made on the counter for the

input data type defined by ITYPE, ISUB.

If the MPCNTR, modulo its MPFREQ, is zero,

the measurement is printed.

Remarks: Two additional features are provided. The

first processed measurement of any data

type whose corresponding MPFREQ element

is non-zero is printed. Also, the final

measurement, independent of the data type,

is printed.

| Variable | Input/<br>Output |   | Argument/<br>Common | Definition                                                                                                                |
|----------|------------------|---|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| ITYPE    | I                | 1 | A                   | Basic data type, corresponds<br>to IDATYP in common block<br>MEASI.                                                       |
|          |                  |   |                     | <pre>= 1, doppler = 2, range = 3, azimuth-elevation     angle = 4, star-planet angle = 5, apparent planet diameter.</pre> |
| ISUB     | ī                | A | ·                   | Sub-data type for doppler and range, ignored if ITYPE > 2.                                                                |

| Variable             | Input/<br>Output | Argument/<br>Common | Definition                                                                                                      |
|----------------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
|                      |                  |                     | = 0, 2-way<br>= 1, 3-way<br>= 2, simultaneous 2-way/<br>3-way<br>= 3, differenced 2-way/<br>3-way               |
| PCNTRL               | 0                | <b>F</b> *          | Logical print control variable.                                                                                 |
|                      |                  |                     | <ul><li>TRUE., if measurement to<br/>be printed</li><li>FALSE., if measurement<br/>not to be printed.</li></ul> |
| MPCNTR               | 1/0              | С                   | Array of data type count-<br>ers.                                                                               |
| MPFREQ               | I                | С                   | Array of data type print frequencies.                                                                           |
| TFINAL               | I                | С                   | Trajectory final time.                                                                                          |
| TMNEXT               | · <b>I</b>       | С                   | Time of next scheduled measurement.                                                                             |
| <u>l Variables</u> : |                  |                     |                                                                                                                 |

# Loca1

| <u>Variable</u> | Definition                                                 |
|-----------------|------------------------------------------------------------|
| ICØDE           | Integer subscript locating data type in MPFREQ and MPCNTR. |

Subroutines Called:

None

Calling Subroutines:

MEAS

Common Blocks:

SCHEDR, SCHEDI

<sup>\*</sup>Function Value Output.

Logic Flow:



3.3.31A Subroutine: PPAK (PBLØCK, IFØRM, PAUG)

Purpose:

To load input covariances from either packed

or unpacked input form to block form (See

AUGCNV, Section 3.3.1).

# Input/Output:

| <u>Variable</u>  | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                          |
|------------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PBL <b>Ø</b> CK  | I                | A                   | Array containing all input covariance information.                                                                                                                                  |
| IFØRM            | I                | A                   | Flag indicating input form of individual sub-blocks within PBLØCK.                                                                                                                  |
|                  |                  |                     | <ul><li>= 1, sub-blocks are packed.</li><li>= -1, sub-blocks are not packed.</li></ul>                                                                                              |
| PAUG             | Ø                | A                   | Output covariance in "block' form.                                                                                                                                                  |
| LØCBLK           | I                | С                   | Array locating covariance sub-blocks in "block" form (PAUG).                                                                                                                        |
| MAXDIM           | I .              | С                   | Array of dimensions of covariance sub-blocks in PBLØCK. MAXDIM remains at input values if input sub-blocks are not packed and MAXDIM is adjusted to NDIM if sub- blocks are packed. |
| NDIM             | I                | С                   | Array of assumed sub-block dimensions on output.                                                                                                                                    |
| Variables:       |                  |                     |                                                                                                                                                                                     |
| Variab <u>le</u> |                  |                     | Definition_                                                                                                                                                                         |

#### Loc

| Variab <u>le</u> | Definition |
|------------------|------------|
|                  |            |

IBLØCK

Running counter locating current covariance sub-block within PBLOCK.

<u>Variable</u>

Definition

MAXSAV

Array saving input values of MAXDIM.

Subroutines Called: MPAK, SYMLØ, AUGCNV

Calling Subroutine:

INPUTG

Common Blocks:

WØRK, DATAGI, DIMENS

Logic Flow:

None

3.3.31 B Subroutine: PRNEQ (PIN, IGIN)

<u>Purpose</u>: To transform the 6x6 state error covariance

from ecliptic to equatorial coordinates, and

to print the equatorial covariance.

### Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                     |
|-----------------|------------------|---------------------|----------------------------------------------------------------|
| AUGLAB          | I                | С                   | Vector of printout labels.                                     |
| DCDQ            | I                | С                   | Transformation matrix from ecliptic to equatorial coordinates. |
| IGIN            | I                | A                   | Logical flag to print eigenvectors and eigenvalues.            |
| NAUG            | I                | С                   | Dimension of PIN.                                              |
| PIN             | I                | Α                   | Ecliptic covariance.                                           |

Subroutines Called: EIGPRN, MMABAT, MPAK, PRSDEV, VARSD

Calling Subroutines: GUIDE, MEASPR, SETEVN

Common Blocks: CØNST, DIMENS, LABEL, PRØPR, WØRK

Logic Flow: None.

3.3.32 Subroutine: PRØP (PIN, PHIMAT, NP, WLSREF, PØUT)

Purpose: To propagate an augmented covariance matrix

between time points.

Method: State transition matrix with effective process

noise model.

Remarks: PIN and POUT may not share the same location.

This routine also propagates the reference

covariance for sequential weighted least

squares (WLS) filtering.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                  |
|----------|------------------|---------------------|-----------------------------------------------------------------------------|
| PIN      | I                | <b>A</b> .          | Input covariance to be propagated.                                          |
| PHIMAT   | I                | A                   | Transition matrix over time interval.                                       |
| NP       | 1                | A                   | Demension of input transition matrices.                                     |
| WLSREF   | I                | <b>A</b>            | Logical flag controlling propagation of WLS reference covariance.           |
|          | ,                | •                   | <pre>= .TRUE. and IGAIN = 2, WLS reference propagated, otherwise not.</pre> |
| PØUT     | 0                | <b>A</b>            | Output covariance.                                                          |
| DYNØIS I | I                | С                   | Logical flag controlling addition of effective process noise.               |
| . •      |                  |                     | = .TRUE., add Q                                                             |

<sup>= .</sup>FALSE., do not add Q

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                  |
|----------|------------------|---------------------|-----------------------------------------------------------------------------|
| IGAIN    | . 1              | С                   | <pre>Integer flag controlling filtering algorithm</pre>                     |
|          |                  |                     | = 2, use WLS<br># 2, do not use WLS.                                        |
| NSØLVE   | I                | c                   | Total number of variables solved-for (=6 + number of solve-for parameters). |
| PWLS     | I                | c                   | Location in blank common of WLS reference covariance.                       |
| Q        | I                | С                   | Effective dynamic noise matrix.                                             |
|          |                  |                     |                                                                             |

None

Subroutines Called:

ZERØM, MUNPAK, MPAK, SYMTRZ, AMABAT

Calling Subroutines:

CØVP, PRED, GUIDE

Common Blocks:

(BLANK), DIMENS, LØCATE, LØGIC, MEASI, PRØPR





3.3.33 Subroutine: PRPART (A, MAXRØW, NRØW, NCØL, LABEL)

Entry Points:

PRCØRR, PUNCØR

Purpose:

To print or punch the transpose of any subblock or partition of a matrix with column labels for printing and a single matrix name for punching.

Remarks:

This routine was designed primarily for printing partitions of covariance and transition matrices and punching covariance partitions.

However, it has general applications to any matrix. PRPART and PRCORR are functionally equivalent - the difference in output being E format by PRPART for general matrices and F format by PRCORR for easy reading of correlation coefficients. PUNCOR punches, and is valid for general matrices. The calling sequence requires that the argument A be the first word of the partition of interest. For example, given a 9 x 9 state transition matrix, PHI, which is theoretically partitioned as

PHI = 
$$\begin{bmatrix} \Phi_{6x6} & \theta_{6x3} \\ 0_{3x6} & I_{3x3} \end{bmatrix}$$

to print the transpose of the  $\Phi_{6x6}$  partition we would use

CALL PRPART (PHI, 9, 6, 6, LABEL1) where LABEL1 is a 6-vector of Hollerith labels for the columns of  $\Phi_{6x6}$ . Similarly to print the transpose of  $\theta_{6x3}$ , we would use

CALL PRPART (PHI (1, 7), 9, 6, 3, LABEL2) where PHI (1, 7) represents the first element of the  $\theta_{6x3}$  partition, and LABEL2 as a 3-vector of Hollerith labels for the columns of  $\theta_{6x3}$ . If PHI is not explicitly dimensioned 9 x 9 in the calling routine, this last call could also have been

CALL PRPART (PHI (NPHI \* (7-1) + 1), NPHI, 6, 3, LABEL2)

where the PHI subscript (NPHI \* (7-1) + 1) comes from the general formula for locating element (I, J) in a matrix dimensioned (M, N):

 $L\emptyset C = M * (J-1) + I.$ 

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                               |
|----------|------------------|---------------------|------------------------------------------------------------------------------------------|
| A        |                  | <b>A</b>            | First word of matrix sub-<br>block to be printed or<br>punched.                          |
| maxrøw   | I                | Α                   | Number of rows in complete matrix from which partition is being taken.                   |
| nrøw     | ı                | A                   | Number of rows in partition to be printed/punched, must be less than or equal to MAXROW. |

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                             |
|---------------|------------------|---------------------|------------------------------------------------------------------------|
| NC <b>Ø</b> L | I                | A                   | Number of columns in partition to be printed/punched.                  |
| LABEL         | Ι                | A                   | For PRPART and PRCORR an NCOL-vector of Hollerith labels for printing. |
|               | ·                |                     | For PUNCOR, a one-word Hollerith label for the matrix to be punched.   |

None

Subroutines Called:

None

Calling Subroutines:

CØRREL, STMPR, MEASPR, GUIDE

Common Blocks:

None

Logic Flow:

None

i wc

3.3.34 Subroutine: PRSDEV (SDCØR, MAXRØW, NRØW, LABEL)

Entry Points:

**PUNSD** 

Purpose:

To print (PRSDEV) or punch (PUNSD) a matrix of standard deviations and correlation coefficients.

Remarks:

The input matrix (SDCØR) may represent a complete covariance or any diagonal sub-block thereof. It is assumed to have standard deviations on the diagonal and correlation coefficients in the upper triangle. The lower triangle is ignored. For further remarks on locating the partition to be printed/punched, see Section 3.3.33, Subroutine PRPART under Remarks.

#### Input/Output:

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                                                                    |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------|
| sdcør           | I                | <b>A</b>            | First word of partition to be printed/punched.                                                |
| MAXR <b>Ø</b> W | I                | A                   | Total number of rows in matrix from which partition is taken.                                 |
| nrøw            | I                | A                   | Number of rows in partition.                                                                  |
| LABEL           | I                | A                   | PRSDEV - an NRØW-vector of Hollerith labels corresponding to the variables in the partitions. |
|                 |                  |                     | PUNSD - a one-work Hollerith label for the matrix partition.                                  |

Local Variables:

None

Subroutines Called: None

Calling Subroutines: CØRREL, GUIDE, RELCØV

Common Blocks: None

Logic Flow: None

Pages 317 through 319 are deleted.

3.3.36 Subroutine: SCHED (TLAST, TEVENT, DELT, JEVENT)

Purpose: To schedule for GØDSEP the next measurement

or event to be processed.

Remarks: During normal operation, SCHED returns a pre-

computed measurement or event and then computes

and stores locally the next measurement or

event to be processed. Therefore, two succes-

sive calls are required to initialize both the

measurement and event scheduling sequences.

The purpose in pre-computing times and event

codes is to minimize search time. When a mea-

surement is scheduled, only measurements need

be scanned for the next scheduling, not events.

The reverse, of course, is true when an event

is scheduled.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                  |
|----------|------------------|---------------------|-----------------------------------------------------------------------------|
| TLAST    | I .              | A                   | Time of previous measure-<br>ment/event.                                    |
| TEVENT   | 0                | <b>A</b>            | Time of new measurement/ _ event.                                           |
| DELT     | 0                | . <b>A</b>          | Time difference between previous and new measure-ment/event.                |
| JEVENT   | 0                | , <b>A</b>          | Integer code of new measure-<br>ment/event corresponding to<br>time TEVENT. |
| BIG      | I                | C                   | An awfully large number.                                                    |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                  |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------------|
| MCØDE    | I                | C                   | Array of measurement codes to be scheduled.                                                 |
| MCØUNT   | 1/0              | С                   | Measurement counter.                                                                        |
| NCNTE    | 1/0              | С                   | Eigenvector event counter.                                                                  |
| NCNTG    | 1/0              | C                   | Guidance event counter.                                                                     |
| NCNTP    | 1/0              | С                   | Prediction event counter.                                                                   |
| NCNTT    | 1/0              | С                   | Thrust event counter.                                                                       |
| NEIGEN   | I                | С                   | Total number of eigenvector events.                                                         |
| NGUID    | I                | <b>C</b> .          | Total number of guidance events.                                                            |
| NPRED    | I                | C                   | Total number of prediction events.                                                          |
| NSCHED   | I                | c                   | Number of schedule times in SCHEDM to be scanned for next measurement or propagation event. |
| NTHRST   | I                | C                   | Total number of thrust events.                                                              |
| SCHEDM   | I .              | C                   | Array of measurement sched-<br>ule times                                                    |
|          |                  | ,                   | SCHEDM(1,I) = Next time to<br>be scheduled for measurement<br>type MCØDE(I).                |
|          |                  |                     | SCHEDM(2,I) = Stop time for MCØDE(I).                                                       |
|          |                  |                     | SCHEDM(3,I) = Time increment for scheduling MCDE(I).                                        |
| TEIGEN   | I                | С                   | Array of eigenvector event times.                                                           |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                       |
|-----------------|------------------|---------------------|----------------------------------|
| TFINAL          | I                | C                   | Final time.                      |
| TGUID           | I                | c                   | Array of guidance event times.   |
| TPRED           | I                | , <b>C</b>          | Array of prediction event times. |
| TTHRST          | I                | C                   | Array of thrust event times.     |

| Variable | Definition                                        |
|----------|---------------------------------------------------|
| JENEXT   | Integer code of next event to be sched-<br>uled.  |
| MNEXT    | Integer code of next measurement to be scheduled. |
| TENEXT   | Time of next event to be scheduled.               |
| TMNEXT   | Time of next measurement to be sched-             |

Subroutines Called:

None

Calling Subroutines:

ØUTPTG, STMGEN, GØDSEP

Common Blocks:

CØNST, SCHEDI, SCHEDR



3.3.37 <u>Subroutine</u>: SETEVN

Purpose:

Event print control and propagation control

for prediction events.

| Variable     | Input/<br>Output | Argument/<br>Common | <u>Definition</u>                                                                                                                                            |
|--------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MESEVN       | I                | С                   | Event code.                                                                                                                                                  |
|              |                  |                     | <pre>= 1, propagation. = 2, eigenvector. = 3, thrust switching. = 4, guidance. = 5, prediction.</pre>                                                        |
| AUGLAB       | I                | С                   | Array of augmented parameter Hollerith labels.                                                                                                               |
| EVLAB        | I                | С                   | Hollerith event label array.                                                                                                                                 |
| F <b>Ø</b> P | I                | С                   | Final off-diagonal annihi-<br>lation value for position<br>eigenvalue computation.                                                                           |
| IPRØP        | Ĭ                | C .                 | Print control flag for propagation events.                                                                                                                   |
|              |                  |                     | <pre>= 0, no print = 1, print standard devia-     tions and correlation     coefficients for S/C     state only = 2, full eigenvector event     print.</pre> |
| NAUG         | I                | C                   | Length of augmented state vector.                                                                                                                            |
| NCNTP        | I                | С                   | Number of current prediction event.                                                                                                                          |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | <u>Definition</u>                                                                     |
|-----------------|------------------|---------------------|---------------------------------------------------------------------------------------|
| P               | I                | С                   | Location in blank common of current knowledge covariance.                             |
| PLAB            | I                | C                   | Array of Hollerith labels for knowledge covariance sub-blocks.                        |
| PLØCAL          | I                | С                   | Location in blank common of working storage provided to subroutine RELCOV.            |
| PTEMP           | I .              | С                   | Location in blank common of predicted knowledge covariance.                           |
| SCMASS          | I                | С                   | Current S/C mass.                                                                     |
| TCURR           | I                | С                   | Current trajectory time.                                                              |
| TDUR            | Ø                | <b>c</b>            | Maximum integration time (seconds) for TRAJ.                                          |
| TFINAL          | I                | С                   | Error analysis final time.                                                            |
| TGSTØP          | I                | С                   | Maximum integration time (days) if prediction event requires integration past TFINAL. |
| TM<br>·         | r ·              | С                   | Conversion constant, seconds/day.                                                     |

| <u> Variable</u> | <br><u>Definition</u>                  |     |
|------------------|----------------------------------------|-----|
|                  | · · · · · · · · · · · · · · · · · · ·  |     |
| LP               | Location in blank common of covariance | ice |

to be operated on by RELCOV and CORREL.

JØBTLE, MPAK, VARSD, PRSDEV, PRINTT, EIGPRN, RELCØV, CØRREL, CØVP, MASSIG, DYNØ, PRNEQ <u>Subroutines Called</u>:

Calling Subroutine: **GØDSEP**  Common Blocks:

WØRK, (BLANK), CØNST, DIMENS, GUIDE, KEPCØN, LABEL, LØCATE, LØGIC, MEASI, PRØPI, SCHEDI, SCHEDR, TIME, TRAJ1





3.3.38 <u>Subroutine</u>: SETGUI

Purpose:

Set up control for guidance event. Performs

all computations which must be done in primary

overlay which consists primarily of interfacing

with TRAJ.

| Variable  | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                            |
|-----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIG       | I                | С                   | Enormous constant, 1.E20                                                                                                                              |
| BURNP     | 0                | Ċ                   | Mass and thrust at guidance start                                                                                                                     |
| CHEKPR(8) | I                | С                   | Logical flag.                                                                                                                                         |
|           | :                |                     | <ul> <li>T, generate transition matrices for guidance by reading STM file.</li> <li>F, integrate transition matrices for guidance in TRAJ.</li> </ul> |
| DELAY     | Ø                | С                   | Guidance delay time for current event.                                                                                                                |
| DXDKAF    | Ø                | С                   | DXDKST evaluated at end of burn interval.                                                                                                             |
| DXDKBR    | Ø                | С                   | DXDKST evaluated at begin-<br>ning of burn interval.                                                                                                  |
| DXDKST    | I                | <b>C</b>            | Keplerian to cartesian ephemeris transformation from STMRDR, corresponds to beginning of guidance delay interval.                                     |
| GT        | I/Ø              | С                   | Transformation matrix for subroutine DYNØ evaluated at end of propagation interval.                                                                   |
| GŢBURN    | Ø                | C                   | GT matrix evaluated at begin-<br>ning of burn interval.                                                                                               |

|          | ,                |                     |                                                                                               |
|----------|------------------|---------------------|-----------------------------------------------------------------------------------------------|
| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                    |
| GTDLAY   | Ø                | С                   | GT matrix evaluated at beginning of delay interval.                                           |
| GTØFF    | Ø                | С                   | GT matrix evaluated at end of burn interval.                                                  |
| GTSAVE   | Ø                | c ·                 | GT matrix evaluated at begin-<br>ning of current propagation<br>interval for subroutine DYNØ. |
| IAUGDC   | 1/0              | С                   | Dynamic parameter augmentation flags.                                                         |
| ICALL    | ø                | С                   | Setup parameter for TRAJ (Section 3.5)                                                        |
| IEP      | I                | С                   | Set UP, VP below.                                                                             |
| IE PHEM  | I                | С                   | Ephemeris element coordinate system flag.                                                     |
| I GPØL   | I                | С                   | Array of guidance policy flags.                                                               |
| IGREAD   | I                | c .                 | Array of namelist \$GEVENT read control flags.                                                |
| INTEG    | ø                | С                   | Setup parameter for TRAJ (Section 3.5)                                                        |
| IPØL     | Ø                | С                   | Guidance policy flag for current event.                                                       |
| IPRINT   | Ø                | С                   | Setup parameter for TRAJ (Section 3.5)                                                        |
| IREAD    | Ø                | C                   | SCEVENT read policy for current event.                                                        |
| I STØP   | Ø                | С                   | Stopping condition parameter for TRAJ (Section 3.5)                                           |
| KUTØFF   | Ø                | C                   | Flag indicating actual integrator stopping conditions.                                        |
| LISTDY   | I                | C                   | List of dynamic parameters contained in transition matrix generated either                    |
|          |                  | -                   | from STM file or TRAJ.                                                                        |

SETGUI-3

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                               |
|----------|------------------|---------------------|--------------------------------------------------------------------------|
| LØCTC    | I                | С                   | Location in blank common of transition matrix returned by TRAJ.          |
| MEVENT   | ø <sub>.</sub>   | С .                 | Setup flag for TRAJ (Section 3.5)                                        |
| NAUG     | I                | С                   | Length of augmented state vector.                                        |
| NCNTG    | I                | С                   | Number of current guidance event.                                        |
| NPHSTM   | I                | С                   | Dimension of transition matrix returned by subroutine STMRDR or by TRAJ. |
| NPRI     | I                | С                   | Body number of primary integration body.                                 |
| NTPHAS   | I                | C                   | Number of current thrust phase.                                          |
| PG1      | I                | С                   | Locations in blank common of working storage for                         |
| PG2      | I                | С                   | guidance related covariance computations.                                |
| PHI      | I                | С                   | Location in blank common of transition matrix.                           |
| PL#CAL   | I                | С                   | Location in blank common of covariance working storage.                  |
| PTEMP    | ľ                | С                   | Location in blank common of covariance working storage.                  |
| S        | Ø                | . <b>C</b>          | Guidance sensitivity matrix, cutoff state wrt controls.                  |
| SCMASS   | I                | С                   | S/C mass.                                                                |
| SMASS    | I                | С                   | Mass of sun.                                                             |
| STATEO   | Ø                | C<br>~              | Initial integration state for TRAJ.                                      |
| TBURN    | Ø                | C                   | Length of burn interval for current event.                               |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                      |
|-----------------|------------------|---------------------|-------------------------------------------------------------------------------------------------|
| TCUTØF          | I                | С                   | Array of guidance event cutoff times.                                                           |
| TDELAY          | Ø                | С                   | Guidance delay time for current event.                                                          |
| TDUR            | Ø                | C                   | Maximum integration time (seconds) for TRAJ.                                                    |
| TEVNT           | ø                | C                   | Event time for TRAJ.                                                                            |
| TFINAL          | I                | C                   | Error analysis final time.                                                                      |
| TGSTØP          | I                | С                   | Maximum integration time if guidance event needs transition matrices evaluated past final time. |
| TGUID           | I                | C                   | Array of guidance event scheduled times.                                                        |
| THRACC          | I ·              | С                   | Thrust acceleration vector.                                                                     |
| TIMFTA          | I                | С                   | Target condition evaluation time for fixed time of arrival guidance.                            |
| TM              | I                | C .                 | Conversion constant, seconds/day.                                                               |
| <b>TØ</b> FF    | Ø .              | C                   | Cutoff time for current event.                                                                  |
| T <b>Ø</b> N    | Ø                | c                   | Maneuver execution time for current event.                                                      |
| TREF            | Ø                | C                   | TRAJ reference time for integration initialization.                                             |
| TSTM            | 1                | С                   | STM file time.                                                                                  |
| UP (1,IEP)      | I                | С                   | Position of ephemeris body.                                                                     |
| VP (1, IEP)     | Ţ                | С                   | Velocity of ephemeris body.                                                                     |
| UTRUE           | I .              | С                   | S/C heliocentric ecliptic position vector used to define STATEO for TRAJ initialization.        |

| Variable | Input/<br>Output | Argument/<br>Common | . Definition                                                                             |
|----------|------------------|---------------------|------------------------------------------------------------------------------------------|
| VTRUE    | I                | <b>c</b>            | S/C heliocentric ecliptic velocity vector used to define STATEO for TRAJ initialization. |
| VRNIER   | Ø                | . С                 | Logical flag.                                                                            |
|          |                  |                     | <pre>= T, current maneuver is     vernier = F, current maneuver is     primary.</pre>    |

| Variable                                         | Definition                                                                                     |
|--------------------------------------------------|------------------------------------------------------------------------------------------------|
| IHOLD1, IHOLD2, IHOLD3<br>IHOLD4, IHOLD5, IHOLD6 | Locations for saving parameter values which will be changed by calls to either STMRDR or TRAJ. |
| TSTMSV                                           | Saves STM file time (TSTM) when generating state transition matrices by calling STMRDR.        |

CØPY, ZERØM, STMRDR, MPAK, STMUSE, STMPR, PARKEP, BØMB, JØBTLE Subroutines Called:

Calling Subroutine: **GØDSEP** 

WØRK, (BLANK), CØNST, DIMENS, EPHEM, GUIDE, KEPCØN, LØCATE, LØGIC, MEASI, PRØPI, PRØPR, SCHEDI, SCHEDR, Common Blocks:

TIME, TRAJ1, TRAJ2

### Logic Flow:



3.3.39 Subroutine: STMGEN

Purpose:

Generate STM file.

Remarks:

For effective process noise computation subroutine DYNØ requires the evaluation at beginning and end of a propagation interval of the rotation matrix from body-centered magnitude, pitch, yaw system to heliocentric ecliptic cartesian coordinates. This transformation must be saved on the STM file. At thrust phase change two such transformations are required, one for each phase evaluated at the same time point. Calls to the trajectory overlay are generated to guarantee that this transformation is always evaluated for the interval just ending, and an extra call to subroutine EP is required to evaluate the transformation at the beginning of the new thrust phase. This pertains to statements between statement numbers 300 and 400.

| Variable . | Input/<br>Output | Argument/<br>Common | Definition                                                                                                             |
|------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------|
| CHEKPR (1) | I                | С                   | Check print flag.                                                                                                      |
|            |                  |                     | <ul> <li>T, write to output all trajectory information written on STM file.</li> <li>F, no write to output.</li> </ul> |
| DELTIM     | İ.               | С                   | Time difference between previously and currently scheduled events.                                                     |

| Variable               | Input/<br>Output | Argument/<br>Common | Definition                                             |
|------------------------|------------------|---------------------|--------------------------------------------------------|
| <b>г</b> øсм           | I                | C                   | Location as blank common of current S/C mass.          |
| LØCTC                  | I                | C                   | Location as blank common of current transition matrix. |
| MESEVN                 | I                | С                   | Current event code.                                    |
| NCNTT                  | I                | <b>.</b> c          | Number of current thrust event.                        |
| NPHSTM                 | I                | С                   | Dimension of transition matrix.                        |
| TCURR                  | I                | С                   | Currently scheduled tra-<br>jectory time.              |
| TF I NAL               | I                | С                   | Stop time for STM file generation.                     |
| TM                     | I                | C                   | Conversion constant, seconds/day.                      |
| TPAST                  | I                | С                   | Previously scheduled tra-<br>jectory time.             |
| INTEG                  | <b>\</b>         |                     |                                                        |
| ISTØP                  | 1                |                     | Initialization parameters                              |
| ICALL                  | <b>&gt;</b> Ø    | С                   | for TRAJ.                                              |
| MEVENT                 | \                |                     |                                                        |
| TREF, TEV              |                  |                     |                                                        |
| TCURR, TP              | 1                |                     | The factor in Compation                                |
| NPRI, NTP<br>APERT, AP |                  |                     | Trajectory information written to STM file. See        |
| CØMMØN (L              | 1                | c ·                 | common block descriptions                              |
| RPACC, TH              |                  | •                   | for individual variable                                |
| UP, VP, U              | 1                | ·                   | descriptions.                                          |
| URELM, VR              | l                |                     |                                                        |
| VRELM, UI              |                  |                     | •                                                      |
| 11011119 01            | ·                |                     |                                                        |

| <u>Variable</u>            | Input/<br>Output | Argument/<br>Common | <u>Defi</u> nition        |
|----------------------------|------------------|---------------------|---------------------------|
| VTRUE, UTRI                | JEM ]            | •                   | Trajectory information    |
| VTRUEM, WPO                | wer Ø            | <b>c</b>            | written to STM file. See  |
| GT, GTSAVE,                | . \ .            |                     | common block descriptions |
| GT, GTSAVE,<br>CØMMØN (LØC | CTC)             |                     | for individual variable   |
|                            | •                |                     | descriptions.             |

Local Variables: None

Subroutines Called: COPY, SCHED, EP

Calling Subroutine: GØDSEP

•

Common Blocks: WØRK, (BLANK), CØNST, DIMENS, LØGIC, PRØPR,

SCHEDI, SCHEDR, TIME, TRAJ1, TRAJ2

Logic Flow: None

STMPR (T, TF, PHIMAT) 3.3.40 Subroutine:

Purpose:

To print state transition matrix partitions

and effective process noise covariance if

computed.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                              |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T        | I                | A                   | Trajectory time at beginning of propagation interval.                                                                                                                   |
| TF       | 1                | A                   | Trajectory time at end of propagation interval.                                                                                                                         |
| PHIMAT   | I                | · <b>A</b>          | Augmented transition matrix over propagation interval.                                                                                                                  |
| AUGLAB   | I.               | c                   | Array of augmented parameter Hollerith labels.                                                                                                                          |
| DYNOIS   | I                | С                   | Dynamic noise flag.                                                                                                                                                     |
| LØCAUG   | : I              | C                   | Array locating sub-blocks within augmented transition matrix.                                                                                                           |
| LØCLAB   | I                | <b>c</b>            | Array locating state vector partions within AUGLAB array.                                                                                                               |
| NAUG     | I .              | C                   | Length of augmented state vector.                                                                                                                                       |
| NDIM     | I                | С                   | Array of lengths of individual state vector partitions.                                                                                                                 |
| PRNSTM   | . I              | С                   | Output control flag determin-<br>ing sets of transition matrix<br>sub-blocks to be printed.                                                                             |
|          |                  |                     | <ul> <li>T, print sensitivities of relevant state vector partition to entire augmented state.</li> <li>F, no sensitivities printed for relevant state vector</li> </ul> |

partition.

| Variable       | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                          |
|----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                  |                     | <ul> <li>(1) - S/C state</li> <li>(2) - Solve-for parameters</li> <li>(3) - Dynamic consider parameters</li> <li>(4) - Measurement consider parameters</li> <li>(5) - Ignore parameters.</li> </ul> |
| Q <sub>.</sub> | I                | . с                 | Effective process noise covariance.                                                                                                                                                                 |
| VECLAB         | I                | c                   | Array of state vector partition Hollerith labels.                                                                                                                                                   |

None

Subroutines Called:

PRPART, MATØUT

Calling Subroutines: MEASPR, STMRDR, GUIDE, SETGUI

Common Blocks:

WØRK, DIMENS, LABEL, LØGIC, PRØPR

Logic Flow:

None

.3.3.41 Subroutine: STMRDR (T, TF, IØPT)

Purpose: To read transition matrices and trajectory

information from STM file (TAPE 3).

Remarks: During STM file creation the user should have

scheduled as fine a time grid of trajectory

points as will ever be necessary for the par-

ticular mission. Therefore, situations will

occur during STM file reading where many time

points are encountered on the file between

time points requested by the scheduler for

the current error analysis. In this situation

transition matrices over the short time inter-

vals are chained to produce the required transi-

tion matrix over the complete time interval.

| Variable     | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                        |
|--------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T            | I                | A                   | Trajectory time at beginning of propagation interval.                                                                                                                                             |
| TF           | 1                | A                   | Scheduled trajectory time at end of propagation interval.                                                                                                                                         |
| <b>IØ</b> PT | I                | A                   | Option flag.                                                                                                                                                                                      |
| ·            |                  |                     | <ul> <li>= 0, normal read.</li> <li>= +1, count number of records read for future backspace capability.</li> <li>= -1, same as +1 but compute guidance sensitivity matrix in addition.</li> </ul> |
| CHEKPR(1)    | I                | c                   | Check print flag.                                                                                                                                                                                 |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                             |
|-----------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                  |                     | <ul> <li>T, print all trajectory information read from</li> <li>STM file and all intermediate products in transition matrix chaining.</li> <li>F, no print.</li> </ul> |
| DELTIM          | 1/0              | C                   | Input as scheduled interval length. If STM file is already positioned within forward tolerance DELTIM is set to 0.                                                     |
| LISTDY          | I                | С                   | List of dynamic parameters included in transition matrix read from STM file.                                                                                           |
| MESH            | Ø                | С                   | Logical flag.                                                                                                                                                          |
|                 |                  | ,                   | <ul> <li>T, successful mesh of scheduled trajectory times with STM file times.</li> <li>F, unsuccessful mesh.</li> </ul>                                               |
| NAUG            | I                | С                   | Length of augmented state vector.                                                                                                                                      |
| NPHSTM          | I .              | C                   | Dimension of transition matrix read from STM file.                                                                                                                     |
| PHI             | I                | С                   | Location in blank common of output transition matrix.                                                                                                                  |
| PLOCAL          | I                | С                   | Location in blank common of transition matrix working storage for chaining.                                                                                            |

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                                                                  |
|-----------------|------------------|---------------------|---------------------------------------------------------------------------------------------|
| PTEMP           | I                | С                   | Location in blank common of transition matrix work-ing storage for chaining.                |
| S               | Ø                | С                   | Guidance sensitivity matrix computed if IOPT = 1.                                           |
| SCHFTL          | I                | С                   | Logical flag.                                                                               |
|                 |                  |                     | <ul><li>= T, failure to mesh is fatal.</li><li>= F, failure to mesh is not fatal.</li></ul> |
| SMASS           | I                | С                   | Mass of sun.                                                                                |
| t <b>øl</b> bak | I                | С                   | Backward tolerance on file time meshing.                                                    |
| tølfør          | I                | С                   | Forward tolerance on file time meshing.                                                     |
| TSTM            | ø                | С                   | Current STM file time.                                                                      |
| UP(1,IEP)       | Ø                | С                   | Heliocentric position of the Earth.                                                         |
| VP(1,IEP)       | Ø                | С                   | Heliocentric velocity of the Earth.                                                         |
| NPRI, NTPHA     | 1                |                     |                                                                                             |
| SCMASS, RPA     | - I              |                     | Trajectory related informa-                                                                 |
| THRACC, UP, V   | 'P               |                     | tion read from STM file.                                                                    |
| UREL, URELM     | ı <b>\</b> ø     | С                   | See individual parameter                                                                    |
| VREL, VRELM     | 1 1              |                     | definitions in common                                                                       |
| UTRUE, VTRU     | JE \             |                     | block descriptions.                                                                         |
| UTRUEM, VTF     | RUEM             |                     |                                                                                             |
| wpøwer, gt      | ·                |                     |                                                                                             |
| GTSAVE          |                  |                     |                                                                                             |

| Variable            | Definition                                                                    |
|---------------------|-------------------------------------------------------------------------------|
| IHOLD               | Intermediate holding variable used when exchanging values of IPHI2 and IPHI3. |
| IPHI2               | Initially set to PLOCAL and PTEMP respectively. Values are switched to        |
| ІРНІЗ               | avoid copying of intermediate transi-<br>tion matrices used in chaining.      |
| . NBACK             | Number of records read when $IPT = 0$ to be used for backspacing.             |
| NUPPER              | Upper word limit for reading STM record.                                      |
| TSTMO               | Last Value of TSTM when $I\emptyset PT = 0$ .                                 |
| Subroutines Called: | VECMAG, PARKEP, BØMB, MMAB, MATØUT, MPAK, STMUSE,                             |

STMPR

Calling Subroutines: COVP, SETGUI

Common Blocks: WØRK, (BLANK), CØNST, DIMENS, EPHEM, GUIDE,

KEPCØN, LØCATE, LØGIC, MEASI, PRØPR, SCHEDI,

SCHEDR, TIME, TRAJI, TRAJ2





3.3.42 <u>Subroutine</u>: STMUSE (THRNUM, DXDK, STMIN, NIN, LISTIN, STMØUT, NØUT)

Purpose:

To convert state transition matrix as read from STM file to state transition matrix as needed by augmented covariance matrix.

Remarks:

There are two possible operations required to convert STM file transition matrices to the augmented transition matrix required for covariance propagation:

- (1) ordering of rows and columns with insertions

  for measurement parameters and deletions

  for unused dynamic parameters as necessary
- (2) scaling of thrust parameter sensitivities to account for number of thruster operating over current phase;

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                     |
|-----------------|------------------|---------------------|----------------------------------------------------------------|
| THRNUM          | I                | А                   | Number of thrusters operating over transition matrix interval. |

|   | Vaniak 1 -      | Input/ | Argument/ | Definition                                                                          |
|---|-----------------|--------|-----------|-------------------------------------------------------------------------------------|
| _ | Variable        | Output | Common    | Definition                                                                          |
|   | STMIN           | I      | A         | Input transition matrix.                                                            |
|   | NIN             | I      | A         | Dimension of input transition matrix.                                               |
|   | LISTIN          | I      | A         | List of parameters included in input transition matrix.                             |
|   | STM <b>Ø</b> UT | Ø      | A         | Output transition matrix.                                                           |
|   | n <b>¢</b> ut   | Ø      | A         | Dimension of output transition matrix (required only variably dimensioning STMØUT). |
|   | LIST            | I      | С         | Parameter List for output transition matrix.                                        |
|   | LISTPH          | I      | С         | Parameter list of possibl ephemeris elements.                                       |

Subroutines Called: IDENT, LØADRC, SQRT, LØCLST, SCALE, LØDCØL, MMAB

Calling Subroutines: STMRDR, SETGUI

Common Blocks: WØRK, DIMENS, MEASI

None

Logic Flow: See List

Logic Flow:



3.3.43 Subroutine: VERR (VARDV, DV, COVERR)

Purpose: To compute the  $\Delta V$  execution error covariance.

Method: Variances in  $\Delta V$  proportionality, resolution

and two pointing angles are applied to the input

W to form the execution error covariance (See

Section 6.3 of the Analytic Manual).

## Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                              |
|-----------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| VARDV           | · I              | A                   | $\Delta v$ execution error variances: $\sigma_{PR0}^2$ , $\sigma_{RES}^2$ , $\sigma_{\alpha}^2$ , $\sigma_{\epsilon}^2$ |
| DV              | I .              | A                   | $\Delta \underline{v} = (\Delta v_x, \Delta v_y, \Delta v_z)$                                                           |
| CØVERR          | 0                | A                   | Execution error covariance                                                                                              |

Subroutines Called: None

Calling Subroutines: GUIDE

Common Blocks:

None

Logic Flow:

None

3.4 Subroutine: SIMSEP

Purpose: To control the overall logic flow of the trajec-

tory simulation mode.

Method: SIMSEP is the main subroutine in the trajectory

simulation mode. Its primary function is to

control the execution of algorithms and logic

according to the operation and option flags

specified during input. This is done in two

basic cycles within the program. The first,

or outer cycle, is the so-called Monte Carlo

mission cycle where a complete actual trajectory

is propagated from beginning to end. Included

within the mission cycle is the guidance event

loop where trajectory estimation and guidance

are performed to keep the "actual" trajectory

on course. After many sample missions have been

flown, certain statistical parameters are com-

puted to aid in the deduction of expected trajec-

tory characteristics and system performance.

One of the key operations performed in SIMSEP

and its subordinate routines is the propagation

of trajectories from one time point to another.

This operation may simultaneously include the

generation of state transition matrices. Since

all communications with the integrator are by

Remarks:

variational equations are

to be integrated.

common block variables, the explicit in line initialization of integrator control variables prior to calling the trajectory routine is evident throughout SIMSEP. A list of variables which must be defined to properly initialize the trajectory is given below. This list should clarify how SIMSEP's interface with TRAJ is performed.

| Variable                              | Definition                                                    |  |  |
|---------------------------------------|---------------------------------------------------------------|--|--|
| ЕРØСН                                 | Initial trajectory epoch, a Julian date.                      |  |  |
| TREF                                  | Trajectory starting time (in seconds) measured from EPØCH.    |  |  |
| TDUR                                  | Trajectory termination time (in seconds) measured from EPØCH. |  |  |
| STATEO                                | State vector specified at TREF.                               |  |  |
| SCMASS                                | S/C mass specified at TREF.                                   |  |  |
| NTPHAS                                | Thrust phase number of TREF.                                  |  |  |
| NPRI                                  | Primary body number at TREF.                                  |  |  |
| ICALL                                 | Trajectory initialization flag.                               |  |  |
| · · · · · · · · · · · · · · · · · · · | <pre>ICALL = 1, the trajectory is ini-</pre>                  |  |  |
| INTEG                                 | Flag indicating which equations are to be integrated in TRAJ. |  |  |
|                                       | INTEG = 1, equations of motion and                            |  |  |

| <u>Variable</u> | Definition                                                                                     |
|-----------------|------------------------------------------------------------------------------------------------|
| ·               | <pre>INTEG = 2, only the equations of     motion are integrated.</pre>                         |
| IST <b>Ø</b> P  | Trajectory stopping condition flag.                                                            |
|                 | IST $\emptyset$ P = 1, the trajectory integration is ended at TDVR.                            |
|                 | ISTOP = 2, the trajectory integration is ended when closest approach is detected at the Earth. |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                              |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NREF            | I                | C                   | State vector read-in flag.                                                                                                                                                              |
| UREL            | Ĭ                | C                   | Relative s/c position vectors.  UREL (i,1) for i = 1, 2, 3 is the heliocentric position vector of the s/c.  UREL (i, ITP) for i = 1, 2, 3 is the position vector relative to the Earth. |
| VREL            | I                | <b>C</b>            | VREL (i,1) for i = 1, 2, 3 is the heliocentric velocity vector of the s/c.  VREL (i, ITP) for i = 1, 2, 3 is the velocity vector relative to the Earth.                                 |
| BLANK<br>(LØCM) | I                | С                   | Current s/c mass at any given instant along the trajectory integration.                                                                                                                 |
| TST <b>Ø</b> P  | I                | c                   | Trajectory stop time relative to EPØCH.                                                                                                                                                 |

|          |                  |                     | SIMSEP-4                                                                                                                                                                                                                         |
|----------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                                                       |
| ЕР∳СН    | ī                | С                   | Initial epoch of the mis-<br>sion. A Julian data corre-<br>sponding to the launch of<br>the mission.                                                                                                                             |
| TGE      | I                | C                   | Epoch of a guidance event.                                                                                                                                                                                                       |
| IRAN     | I                | С                   | Random number seed.                                                                                                                                                                                                              |
| nøised   | I                | С                   | Thrust process noise flag.  If NøISED = 1, time-varying dynamic noise is activated in the trajectory integrator. If NøISED = 0, there is no dynamic noise.                                                                       |
| PG       | Ţ                | c                   | Initial s/c control cov-<br>ariance in eigenvector/<br>eigenvalue form.                                                                                                                                                          |
| KTERR    | I                | C ·                 | Flag to indicate whether or not a trajectory is to be propagated after a given guidance correction to the designated target to evaluate target errors. If KTERR = 1, target errors are computed. If KTERR = 0, no target errors. |
| NSAMP    | I                | С                   | Previous number of Monte<br>Carlo cycles that have been<br>processed for a given<br>guidance event.                                                                                                                              |
| мс       | <b>I</b> '       | · c                 | Previous number of Monte Carlo cycles that have been processed for the total mission.                                                                                                                                            |
| rxge     | I                | С                   | Reference trajectory state vectors at guidance events.                                                                                                                                                                           |
| RMGE     | i<br>I           | C                   | Reference s/c mass at guid-<br>ance events.                                                                                                                                                                                      |
| RXTAR    | I                | С                   | Reference trajectory state at the target time.                                                                                                                                                                                   |
| RMTAR    | I                | , <b>€</b> ∼        | Reference s/c mass at the target time.                                                                                                                                                                                           |

| Variable         | Input/<br>Output | Argument/<br>Common  | Definition                                                               |
|------------------|------------------|----------------------|--------------------------------------------------------------------------|
| THRUST           | I                | С                    | Thrust control array.                                                    |
| мтрн             | · I              | С                    | Thrust control phase number at guidance events.                          |
| STHRT3           | I                | С                    | Stored thrust control array for the reference trajectory thrust profile. |
| NGUID            | I                | С                    | Number of guidance events for this mission.                              |
| NCYCLE           | I                | С                    | Number of Monte Carlo cycles for this SIMSEP run.                        |
| Local Variables: |                  |                      |                                                                          |
| Variable         |                  |                      | Definition                                                               |
| IC               |                  | Monte Ca<br>missions | rlo cycle counter for complete                                           |
| IMAN             |                  | Guidance<br>guidance | event counter for completed events within a mission.                     |
| XREFO .          |                  | Initial vector.      | reference trajectory state                                               |
| XA               |                  | Actual t             | rajectory state vector.                                                  |
| XE               |                  | Estimate             | d trajectory state vector.                                               |
| XT               | :                | Actual t<br>ables.   | rajectory final target vari-                                             |
| IPRNT            |                  | Print o              | utput flag.                                                              |
| ICNVEG           |                  | Guidance             | convergence flag.                                                        |

Definition Variable Guidance control corrections computed DELTAU at a guidance event.

IGUID Guidance law flag.

COPY, CSAMP, DATAS, EPHSMP, ERRSMP, EXGUID, Subroutines Called: LGUID, NLGUID, NOISE, OD, PSTAT, TRAJ, REFRTJ, SET, SPRNT1, STAT, TCOMP, VECMAG,

ZERØM

MAPSEP Calling Subroutines:

CONST, CYCLE, DYNOS, EDIT, EPHEM, IASTM, Common Blocks: SIM1, ISIM1, SIM2, ISIM2, SIMLAB, STØREC, TIME, TRAJ1, TRAJ2, WORK, (BLANK)











3.4.1 Subroutine: CSAMP (EVEC, NN, REFVEC, SMPVEC, IRAN)

Purpose:

To sample a n-dimensional covariance matrix in order to formulate a zero-mean, Gaussian, error vector which is added to the reference value.

Method:

From an input array of eigenvalues corresponding to a specified covariance matrix in an uncorrelated representation, a standard Monte Carlo sampling technique is used to define a random vector. This random vector is then multiplied by the modal matrix of eigenvectors to rotate it back into the original state space. It is added to the reference vector to obtain a sample vector.

Remarks:

This routine is used in SIMSEP for constructing random actual state vectors relative to the reference state at the initial time from the input control error covariance. It is also used to compute an augmented estimated state vectors from the input knowledge covariances at guidance events. The maximum dimension a covariance matrix may have is 20 X 20.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                           |
|----------|------------------|---------------------|------------------------------------------------------|
| EVEC     | I                | A                   | Variably dimensioned (NN X (NN+1)) array of eigen-   |
|          |                  | •                   | vectors and eigenvalues. The (NN X NN) square matrix |

| Variable     | Input/<br>Output | Argument/<br>Common |                                                                                                                                     |
|--------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|              |                  |                     | is the so-called modal matrix which has eigen-vectors as columns. The (NN + 1) column vector is the (NN X 1) vector of eigenvalues. |
| NN           | 1                | <b>A</b>            | Dimensionality of the EVEC matrix.                                                                                                  |
| REFVE        | C I              | A                   | Reference state vector to<br>the sampled error vector is<br>added.                                                                  |
| SMPVE        | 0                | <b>A</b> ' .        | Sampled state vector which is different from REFVEC by the sampled error vector.                                                    |
| IRAN         | I                | Α                   | Random number generator used.                                                                                                       |
| Local Variab | les:             |                     |                                                                                                                                     |
| . Variable   | es               |                     | Definition                                                                                                                          |

the WØRK common.

Sampled error vector to be added to REFVEC. Equivalences to elements in

Subroutines Called: RNUM, MMAB, ADD

Calling Subroutines: SIMSEP, ØD, EPHSMP

Common Blocks: WØRK

Logic Flow:

D



3.4.2 Subroutine: DATAS

Purpose: To make calls to SDAT1 and SDAT2 in order to

read the SIMSEP input.

Method: DATAS is a macro-logic routine which serves

exclusively to call SDAT1 and SDAT2 in suc-

cession.

Input/Output:

None

Local Variables:

None

Subroutines Called: SDAT1, SDAT2

Calling Subroutines: SIMSEP

Common Blocks:

None

Logic Flow:

None

Pages 364 through 374 have been deleted.

3.4.4 <u>Subroutine</u>: EPHSMP (IPRNT)

<u>Purpose</u>: To make random samples from the input ephemeris

planet error covariances and the gravitational

constant uncertainties.

Method: A standard Monte Carlo sampling procedure is

used to form discrete errors in the Cartesian

state vector of the ephemeris planets. This

sampling is made at a specified epoch and is

transformed into changes in the Keplerian orbital

elements. The analytic ephemeris is modified to

reflect these ephemeris errors. Likewise, errors

are computed for the solar and ephemeris planet

gravitational constants.

| Variable   | Input/<br>Output | Argument/<br>Common | Definition                              |
|------------|------------------|---------------------|-----------------------------------------|
|            |                  |                     |                                         |
| SMASS<br>: | 1/0              | C                   | Solar gravitational constant.           |
| PMASS      | I/O              | <b>C</b> .          | Planetary gravitational constant.       |
| PLANET     | I                | С                   | Hollerith array of planetary names.     |
| CSAX       | 1/0              | С                   | Analytic ephemeris semi-<br>major axes. |
| ÇECC       | 1/0              | С                   | Analytic ephemeris eccen-<br>tricities. |
| CINC       | 1/0              | C                   | Analytic ephemeris inclinations.        |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                               |
|----------|------------------|---------------------|--------------------------------------------------------------------------|
| сøмес    | 1/0              | С                   | Analytic ephemeris arguments of the ascending mode.                      |
| CØMEGT   | 1/0              | <b>C</b>            | Analytic ephemeris argu-<br>ments of the apsis.                          |
| CMEAN    | 1/0              | <b>C</b> -          | Analytic ephemeris mean anomalies and mean motions.                      |
| GMERR    | I                | C                   | One sigma uncertainties in the gravitational constants.                  |
| ХЕРН     | 1/0              | C                   | Ephemeris planet state vector at epoch.                                  |
| NEP2     | I                | C                   | Flag array specifying the ephemeris planets.                             |
| EPHERR   | I                | С                   | Eigenvector/eigenvalue representation of the ephemeris error covariance. |
| ТЕРН     | I                | С                   | Epoch at which the ephemeris errors are evaluated.                       |

# ocal Variables:

| Variable   | Definition                                                          |
|------------|---------------------------------------------------------------------|
| GMUS       | Temporary storage for the solar gravitational constant.             |
| GMU        | Sum of sampled solar and planetary masses.                          |
| <b>x</b> x | Temporary storage for the sampled Cartesian ephemeris planet state. |
| EL         | Temporary storage for the sampled orbital elements.                 |

<u>Subroutines Called:</u>

RNUM, CSAMP, CØNIC, CØPY, ZERØM

Calling Subroutines: SIMSEP

Common Blocks: CØNST, DYNØS, EPHEM, SIM1, ISEM1, WØRK



Page 379 has been deleted.

3.4.5 Subroutine: ERRSMP

Purpose:

To make random samples from input SEPS parameter errors, thrust biases and thrust process noise in order to formulate actual values for these parameters used during the propagation of an

actual trajectory.

Methods:

A standard Monte Carlo sampling procedure is used to compute random errors which are added to the reference values to form "actual" parameter values.

| Variable                 | Input/<br>Output | Argument/<br>Common | Definition                                                                |
|--------------------------|------------------|---------------------|---------------------------------------------------------------------------|
|                          |                  | •                   |                                                                           |
| SCMASS                   | 1/0,             | С                   | Initial S/C mass.                                                         |
| ENGINE (10)<br>(=EXHVEL  |                  | C                   | Thrust exhaust velocity.                                                  |
| ENGINE(1)<br>(=PØWERO)   | I/O<br>)         | С                   | Electric power at 1. A.U.                                                 |
| ENGINE (11)<br>(=THREFF) |                  | С                   | Thruster efficiency.                                                      |
| ENGINE (15)<br>(=CRA)    | ) 1/0            | С                   | Radiation pressure coeffi-<br>cient.                                      |
| THRUST                   | 1/0              | С                   | Thrust control array.                                                     |
| TNØISE                   | o                | · <b>c</b>          | Thrust control noise,                                                     |
| GTAU1                    | O                | С                   | Thrust control noise time correlation coefficients for the first process. |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                 |
|----------|------------------|---------------------|----------------------------------------------------------------------------|
| GTAU2    | 0                | c                   | Thrust control noise time correlation coefficients for the second process. |
| SCERR    | I                | С                   | SEPS parameter errors.                                                     |
| TCERR    | I                | C                   | Thrust control biases.                                                     |
| TVERR    | I                | <b>c</b>            | Time varying thrust control errors.                                        |
| JMAX     | I                | С                   | Total number of active thrust phases.                                      |
| JMIN     | I                | <b>c</b> `          | Thrust phase number for the first active phase                             |

Subroutines Called: RNUM

Calling Subroutines: SIMSEP

CØNST, DYNØS, SIM1, ISIM1, TIME, TRAJ1, TRAJ2, WØRK Common Blocks:





3.4.6A Subroutine: EXGUID (XA, DELTAU, IMAN, IPRNT)

Purpose:

To execute commanded thrust control changes or impulsive delta-velocity corrections which have been computed by the guidance algorithm.

Method:

For a low thrust guidance event, the actual thrust controls are changed according to the commanded corrections computed by the guidance algorithm. These updated thrust controls still reflect thrust biases which were determined as random samples from the input error sources.

For an impulsive guidance event, the commanded delta-velocity is corrupted by randomly sampled execution errors and is then added to the actual state vector as an instantaneous velocity change.

| <u>Variables</u> | Input/<br>Output | Argument/<br>Common | Definition                                                    |
|------------------|------------------|---------------------|---------------------------------------------------------------|
| · XA             | 1/0              | A                   | Actual s/c state vector.                                      |
| DELTAU           | I                | A                   | Commanded thrust control correction or delta-velocity change. |
| IMAN             | Ĭ                | Α .                 | Number of the current guidance event.                         |
| <u>I</u> PRNT    | I                | A                   | Print output flag.                                            |
| EXVERR           | I                | С                   | Impulsive maneuver execution errors.                          |
| THRUST           | 1/0              | С                   | Thrust control array.                                         |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                            |
|-----------------|------------------|---------------------|---------------------------------------|
| NTC             | I                | С                   | Number of active thrust controls.     |
| IGL             | I                | С                   | Guidance law specifica-<br>tion flag. |

#### Local Variables:

| Variable | Definition                                                                                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------------------|
| EDVM     | Magnitude of the commanded delta-<br>velocity correction.                                                                   |
| ADVM     | Magnitude of the actual delta-<br>velocity correction.                                                                      |
| UEDV     | Unitized estimated delta-velocity vector.                                                                                   |
| AE       | Angle measured in the ecliptic plane from the positive X-axis to the projection of the commanded delta-velocity correction. |
| BE       | Angle measured out of the ecliptic plane to the commanded delta-velocity correction.                                        |
| AA       | Angle measured in the ecliptic plane from the positive X-axis to the projection of the actual delta-velocity correction.    |
| BA       | Angle measured out of the ecliptic plane to the actual delta-velocity correction.                                           |

Subroutines Called: VECMAG, UNITV, RNUM, ZERØM, ADD, SET, MATØUT, CØPY

Calling Subroutines: SIMSEP

Common Blocks: CONST, DYNOS, IASTM, SIM1, ISIM1, SIMLAB, STOREC, TRAJ1





387-B GUIDMX-1

3.4.6B Subroutine: GUIDMX (FRI, THETA, ETA, GAMMA, NC, NT, IGUID,

IMAN, CØNWT)

Purpose: To calculate the guidance matrix used by the

linear guidance algorithm.

Method: The guidance matrix, ↑, is computed from tra-

jectory sensitivities evaluated about the

reference trajectory according to the guidance

policy specified during input. The computational

steps in formulating  $\Gamma$  are discussed in the

Analytic Manual, Section 7.3.1. Once the guid-

ance matrix has been determined, it is stored

and used on successive Monte Carlo cycles, thus

eliminating the need to re-evaluate trajectory

sensitivities.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                         |
|----------|------------------|---------------------|------------------------------------------------------------------------------------|
| РНІ      | I .              | A                   | State to state transition matrix,                                                  |
| THETA    | I                | <b>A</b>            | Control variable to state component transition matrix, $\boldsymbol{\theta}_{u}$ . |
| ETA      | I                | <b>A</b>            | State to target variable transformation matrix, 🥎 .                                |
| GAMMA    | 0                | <b>A</b>            | Guidance matrix, $\Gamma$ .                                                        |
| NC       | I                | A                   | Number of control variables.                                                       |
| NT       | I                | A                   | Number of target variables.                                                        |
| IGU ID   | I                | ~ <b>A</b>          | Guidance maneuver type flag.                                                       |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                   |
|----------|------------------|---------------------|----------------------------------------------|
| IMAN     | I                | A                   | Guidance event number.                       |
| CØNWT    | I.               | A                   | Weighting factors for the control variables. |

## Local Variables:

| Variable       | Definition                                            |  |
|----------------|-------------------------------------------------------|--|
| TMX1 TMX2 TMX3 | Temporary matrices storing intermediate calculations. |  |

Subroutines Called: GENINV, MMAB, MPAK, SCALE

Calling Subroutine: REFTRJ

Common Blocks: None

## Logic Flow:



3.4.6C Subroutine: GRVSMP

<u>Purpose</u>: To make random samples from the input gravitational

uncertainties.

Method: A standard Monte Carlo sampling procedure is used

to form discrete errors in the masses of the Earth

and sun and in the  $J_{\gamma}$  harmonic coefficient appearing

in the gravitational potential.

Input/Output:

|   | Variable | Output | Argument<br>Common | / Definition                                                             |
|---|----------|--------|--------------------|--------------------------------------------------------------------------|
| • | SMASS    | 1/0    | С                  | Solar gravitational constant.                                            |
|   | PMASS(3) | 1/0    | С                  | Earth gravitational constant.                                            |
|   | GMERR    | I      | С                  | One sigma Uncertainty in the gravitational constant.                     |
|   | J2       | I/O    | c ·                | J <sub>2</sub> coefficient in the gravita-<br>tional potential function. |
|   | J2ERR    | I.     | С                  | One sigma uncertainty in J <sub>2</sub> .                                |

Load Variables: None

Subroutines Called: Ri

RNUM

<u>Calling Subroutines</u>:

SIMSEP

Common Blocks:

DYNØS, EPHEM, SIM1, ISIM1

Flow Diagram:

See Listing

3.4.7 Subroutine: LGUID (XE, IMAN, IPRNT, DELTAU)

Purpose: To compute low thrust or impulsive guidance

corrections using a linear, non-iterative

guidance law.

Method: Using the linear guidance matrix, \( \infty \), formu-

lated in GUIDMX, LGUID computes a set of low

thrust or impulsive corrections according to

the matrix equation

$$\Delta \underline{u} = \Gamma \delta \underline{x}_{E}$$
,

where  $\{ \underline{X}_{\underline{E}} \}$  is the state vector difference between the estimated and reference trajectory state at the guidance point.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                     |
|----------|------------------|---------------------|----------------------------------------------------------------|
| XE       | I                | A                   | Estimated S/C state vector.                                    |
| IMAN     | I                | A                   | Number of the current guid-<br>ance event.                     |
| IPRNT    | I                | A                   | Print output flag.                                             |
| DELTAU . | 0                | · <b>A</b>          | Output vector of low thrust or impulsive velocity corrections. |
| SMAT     | I                | С                   | Saved guidance matrix pre-<br>viously computed.                |
| NTC      | Ī                | С                   | Number of control variables.                                   |
| RXGE     | I                | С                   | Reference trajectory state vector at the guidance point.       |

## Local Variables:

Definition

DXE

Deviation of the estimated state vector relative to the reference trajectory at the guidance point.

GAMMA

Guidance matrix, 
The contract of the estimated state vector relative to the reference trajectory at the guidance point.

GAMMA

Guidance matrix, 
The contract of the estimated state vector relative to the guidance point.

Subroutines Called: C

COPY, MMAB, SUB

Calling Subroutines:

SIMSEP

Common Blocks:

IASTM, SIM1, ISIM1, SIMLAB, STØREC, TIME, WØRK

computed control correction.

Logic Flow:

None

390 NLGUID-1

3.4.8 Subroutine: NLGUID (XE, IMAN, IPRNT, DELTAU, ICNVEG)

Purpose: To compute low thrust or impulsive guidance cor-

rections using a nonlinear guidance algorithm.

Method: The estimated state is propagated to the designated

target time where target errors relative to the reference target conditions are evaluated. State variations with respect to guidance controls are computed with the estimated trajectory propagation. From the target errors and the resultant sensitivity matrix, a linear control correction is calculated and applied as an update to the current controls. This process is repeated until the target errors are within specified tolerances. If the target tolerances are not satisfied after NMAX iterations, further guidance corrections for the current Monte Carlo mission are aborted and the mission is ended. A more complete discussion of the nonlinear guidance problem and the method of solution which has been implemented here is given

in the Analytic Manual, Section 7.3.4.

| INPUT/OUTPUT:<br>VARIABLE | INPUT/<br>OUTPUT | ARGUMENT /<br>COMMON | DEFINITION                                                                                                                                 |
|---------------------------|------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| XE                        | I                | A                    | Estimated S/C state vector.                                                                                                                |
| IMAN                      | I                | A                    | Number of the current guidance event.                                                                                                      |
| IPRNT                     | I                | A                    | Print output flag.                                                                                                                         |
| DELTAU                    | 0                | A                    | Computed low thrust or impulsive control corrections.                                                                                      |
| ICNVEG                    | 0                | A                    | Convergence flag.                                                                                                                          |
| •                         |                  |                      | = 0, No convergence after ITMX<br>iterations or after the quadratic<br>error function, Q, has increased<br>on three successive iterations. |
|                           |                  |                      | = 1, Weak convergence after ITMX<br>iterations and Q being less than<br>AOK.                                                               |
| <u>.</u>                  |                  | ·                    | = 2, Strong convergence (Q ≰ 1).                                                                                                           |
| TØL                       | I                | С                    | Array of target error tolerances used in computing the quadratic error function.                                                           |

| VARIA BLE     | INPUT/<br>OUTPUT | ARGUMENT<br>COMMON | DEFINITION                                                                                                                                          |
|---------------|------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| IGL           | I                | С                  | Flag designating the type of guidance correction to be computed. If IGL = +2, the guidance is low thrust. If IGL = -2, the guidance is impulsive.   |
| ITMX          | I                | С                  | Maximum number of guidance iterations allowed. (Input as NMAX).                                                                                     |
| AØK           | I                | C .                | Weak convergence tolerance.                                                                                                                         |
| ISTM          | ī                | c                  | Flag to indicate whether the trajectory sensitivities are to be computed by numerical differencing (ISTM=0) or by integrating variational equations |
| NTAR          | I                | С                  | Number of target variables.                                                                                                                         |
| NTC           | I                | С                  | Number of control variables.                                                                                                                        |
| TGE           | I                | С                  | Time of the guidance event.                                                                                                                         |
| T <b>T</b> AR | I                | С                  | Designated target time.                                                                                                                             |
| LSTAR         | I                | С                  | List of target variable codes.                                                                                                                      |
| XTARG         | I                | C ·                | <ul> <li>Reference trajectory target con-<br/>ditions at the designated target<br/>time.</li> </ul>                                                 |
| SMAT          | I                | C                  | Stored sensitivity matrix.                                                                                                                          |
| CØNWT         | I                | · C                | Control variable weights.                                                                                                                           |
| THRUST        | I                | С                  | Array of thrust controls.                                                                                                                           |
| STHRT2        | I                | C                  | Stored array of estimated thrust controls.                                                                                                          |
| RXTAR         | I                | С                  | Reference trajectory state at the designated target time.                                                                                           |
| UNTAR         | Ι                | С                  | Conversion factor which convert target variables from internal to external units.                                                                   |
| DVMXN         | I                | С                  | Maximum delta-velocity magnitude change.                                                                                                            |

| VARIABLE         | INPUT/<br>OUTPUT     | ARGUMENT<br>COMMON                                                                             | DEFINITION                                                                                                              |  |
|------------------|----------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| IJĦ              | I                    | С                                                                                              | Array of indices which identify the position in the THRUST array of the active controls.                                |  |
| PHI              | 0                    | C                                                                                              | State to state transition matrix between TGE and TTARG.                                                                 |  |
| THETA            | 0                    | С                                                                                              | Controls to state transition matrix between TGE and TTARG.                                                              |  |
| LOCAL VARIABLES: |                      |                                                                                                |                                                                                                                         |  |
| · VAR LABLE      |                      | DEFINITION                                                                                     |                                                                                                                         |  |
| ww               |                      | ratic error                                                                                    | atrix used in formulating the quad-<br>function. WW is diagonal with the<br>target tolerances squared for the<br>tries. |  |
| XXE              |                      | Estimated to                                                                                   | rajectory state vector at TSTØP.                                                                                        |  |
| ITER             |                      | Current iteration counter.                                                                     |                                                                                                                         |  |
| Q2               |                      | Value of the quadratic error function evaluated on two previous iterations.                    |                                                                                                                         |  |
| Q1               |                      | Value of the quadratic error function evaluated on one previous iteration.                     |                                                                                                                         |  |
| QO               |                      | Current value of the quadratic error function.                                                 |                                                                                                                         |  |
| ETA              |                      | Transformation matrix mapping differential state variables into differential target variables. |                                                                                                                         |  |
| EDV              |                      | Delta-veloc<br>rent iterat                                                                     | ity guidance correction at the curion.                                                                                  |  |
| EDU              |                      | Delta-thrust-control guidance correction at the current iteration.                             |                                                                                                                         |  |
| TARGX            |                      | Target variables evaluated on the estimated trajectory at TSTOP.                               |                                                                                                                         |  |
| TARERR           |                      | Target erro                                                                                    | r at TSTØP.                                                                                                             |  |
| GAMMA            |                      | Guidance ma<br>control var                                                                     | trix which maps target errors into iables.                                                                              |  |
| Subroutines Call | <u>ed</u> : ZE<br>SC | RØM, MATØUT,<br>ALE, ADD, TH                                                                   | COPY, SET, MMAB, GENINV, VECMAG, COMP, TCOMP, SUB, MMATBA, ECOMP,                                                       |  |

Calling Subroutines: SIMSEP

Common Blocks: CØNST, TRAJ1, TRAJ2, SIM1, ISIM1, TIME, (BLANK)





Pages 396 through 402 have been deleted

3.4.9A Subroutine: ØD (XA, XE, IMAN, IPRNT)

Purpose:

To estimate the s/c state vector and parameters which have been augmented to the state at a guidance event.

Method:

Since an explicit orbit determination process and measurement models are not included in SIMSEP, ØD, in effect, performs the state estimation function. A knowledge covariance, which has been transformed into an eigenvector/ eigenvalue representation, is randomly sampled to form an error,  $\boldsymbol{\xi}$   $\boldsymbol{x}_{\mathrm{E}}$ , in the estimated state vector relative to the actual, i.e.,  $\mathbf{S} \mathbf{X}_{E}$  =  $X_{E}^{-}$  -  $X_{A}^{-}$ . If parameters such as gravitational constants thrust biases, etc., have been augmented to the six-component Cartesian state, estimated errors for these parameters are simultaneously computed by sampling an augmented knowledge covariance. The formulated error vector is added to the corresponding actual values to define an estimated state and estimates of the augmentation parameters to be used in calculating guidance corrections.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                       |
|-----------------|------------------|---------------------|--------------------------------------------------|
| XA              | I                | A                   | Actual s/c state vector (position and velocity). |

| Variable:                 | Input/<br>Output | Argument/<br>Common | Definition                                                                                |
|---------------------------|------------------|---------------------|-------------------------------------------------------------------------------------------|
| XE                        | 0                | A                   | Estimated s/c state vector (position and velocity).                                       |
| IMAN -                    | I .              | A                   | Number of the current guid-<br>ance event.                                                |
| IPRNT                     | I                | A                   | Print cutput flag.                                                                        |
| BLANK                     | I                | C                   | Array of eigenvector and eigenvalues corresponding to the augmented knowledge covariance. |
| ENGINE(1)<br>( = PØWERO)  | 0                | С                   | Estimated electric power at 1 A.U.                                                        |
| SPO3                      | I                | C                   | Saved reference value of the electric power at 1 A.U.                                     |
| ENGINE(10)<br>( = EXHVEL) |                  | С                   | Estimated thrust exhaust velocity.                                                        |
| SEXV3                     | I                | C                   | Saved reference value of the thrust exhaust velocity.                                     |
| ENGINE(11)<br>( = THREFF) |                  | С                   | Estimated thruster efficiency.                                                            |
| STEFF3                    | I                | C                   | Saved reference value of the thruster efficiency.                                         |
| ENGINE(15)<br>( = CRA)    | 0                | С                   | Estimated radiation pressure coefficient.                                                 |
| SCRA3                     | I                | C                   | Saved reference value of the radiation pressure.                                          |
| SCMASS                    | 0 (              | С                   | Estimated SEPS mass.                                                                      |
| RMGE                      | I                | , <b>c</b>          | Reference SEPS mass.                                                                      |
| THRUST                    | 0                | С                   | Estimated thrust control array.                                                           |
| STHRT3                    | I                | С                   | Saved reference thrust control array.                                                     |

Page 405 has been deleted.

| <u>Variab1e</u>    | Input/<br>Output  | Argument/<br>Common    | <b>D</b> efinition                                                                                 |
|--------------------|-------------------|------------------------|----------------------------------------------------------------------------------------------------|
| KĎÍM               | I                 | С                      | Dimension of the augmented knowledge covariance.                                                   |
| SMASS              | 1/0               | С                      | Estimated solar gravita-<br>tional constant.                                                       |
| PMASS              | 1/0               | С                      | Estimated Earth grav-<br>itational constant.                                                       |
| GMERR              | I                 | С                      | Solar and planetary gravita-<br>tional constant uncertain-<br>ties.                                |
| Local Variables:   |                   |                        |                                                                                                    |
| <u>Variable</u>    | <del></del>       |                        | Definition                                                                                         |
| AXA                |                   | _                      | d actual state vector. The n and packing are determined                                            |
| AXE                |                   | Like AXA               | d estimated state vector.<br>, the dimension and packing<br>rmined by KTY.                         |
| INDEX1             |                   | EVEC mati<br>correspon | entifying the position in the rix of the first element adding to the current augmented covariance. |
| Subroutines Caller | i: ZER <b>Ø</b> M | . CSAMP, CØPY,         |                                                                                                    |

Subroutines Called:

ZERØM, CSAMP, CØPY,

Calling Subroutines:

SIMSEP

Common Blocks:

CØNST, TRAJ1, EPHEM, TIME, SIM1, STØREC, WØRK, ISIM1

(BLANK)



Set Thrust Controls Equal
To The Nominal
Mission Controls:
THRUST = STHRT3

Set Basic S/C Parameters
Equal To The Nominal Values:
SCMASS = RXGE
PØWERO = SPO3, EXHVEL = SEXV3, ETC

**A** 



3.4.9B Subroutine: ØPSTAT

Purpose: To output statistics evaluated during the

Monte Carlo mission simulations.

Method: After completion of Monte Carlo cycles in

SIMSEP,  $\phi$ PSTAT transforms variances and

covariances which characterize the statistics

of the "real world" trajectories into standard

deviations and correlation coefficients. The

standard deviations, correlations, and means

are printed as a part of the standard SIMSEP

output whenever the number of Monte Carlo

cycles is greater than one. Arrays of these

numbers are also punched (if requested by the

user) in a format ready to initialize a sub-

sequent SIMSEP run.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------|
| NGUID    | I                | С                   | Number of guidance events occurring on the mission.                                       |
| NSAMP(i) | I                | С                   | Number of Monte Carlo cycles executed in accumulating statistics for ith guidance events. |
| GCCØV(i) | I.               | С                   | Control error covariance and vector mean evaluated at the i <sup>th</sup> guidance event. |
| GMCØV(i) | I                | С                   | S/C mass variance and mean evaluated at the i <sup>th</sup> guid-ance event.              |

| Variable  | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                  |
|-----------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
| DVCØV(i)  | Ι                | С                   | Delta-velocity covariance<br>and vector mean evaluated<br>for impulsive maneuvers at<br>the i <sup>th</sup> guidance event. |
| DVMAGS(i) | Ĩ                | С                   | Delta-velocity magnitude variance and mean for impulsive maneuvers at the ith guidance event.                               |
| CNCØV(i)  | I                | С                   | Thrust control correction covariance and means evaluated for low thrust maneuvers at the ith guidance event.                |
| NTC(i)    | I                | <b>C</b>            | Number of low thrust controls active for the i <sup>th</sup> guidance event.                                                |
| TCCØV(1)  |                  | C                   | Control error covariance and vector mean evaluated at the target time on the ith guidance event.                            |
| TMCØV(i)  | I                | <b>C</b>            | S/C mass variance and mean evaluated at the target time on the i <sup>th</sup> guidance event.                              |
| TERCØV(i) | Ι                | С                   | Target error covariance and means evaluated at the target time on the i <sup>th</sup> guidance event.                       |
| NTAR(i)   | I                | c ·                 | Number of target variable for the i <sup>th</sup> guidance event.                                                           |
| MC(i)     | I                | С                   | Number of Monte Carlo cycles executed in accumulating statistics.                                                           |
| ENDCØV    | I                | <b>c</b>            | Control error covariance and vector mean evaluated at the trajectory end time (TEND).                                       |
| AMASS     | I .              | С                   | S/C mass variance and mean evaluated at the trajectory end (TEND).                                                          |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                              |
|----------|------------------|---------------------|---------------------------------------------------------------------------------------------------------|
| ADVT     | I                | С                   | Delta-velocity magnitude variance and mean evaluated for all impulsive maneuvers.                       |
| ATHCØV   | I                | С                   | Covariance of active thrust controls used throughout the mission for all low thrust maneuvers executed. |
| KATHC    | I                | С                   | Dimension of the ATHCOV matrix.                                                                         |

Local Variables:

None

Subroutines Called: MATØUT, SYMUP, VARSD

<u>Calling Subroutines</u>: SIMSEP

Common Blocks:

SIM1, ISIM1, SIM2, ISIM2

Logic Flow:

None

### 3.4.9C Subroutine: REFTRJ

#### Purpose:

(1) To compute reference trajectory conditions, e.g., state, mass, sensitivities, etc., at the guidance points; (2) to evaluate reference trajectory target conditions at designated target times; and (3) to compute the guidance matrix to be used at linear guidance events.

#### Method:

REFTRJ performs the trajectory calculations necessary whenever INREF is read as zero during the \$SIMSEP namelist input. These calculations are done by repetitively calling either the TRAJ overlay or the THCØMP subroutine. In addition, REFTRJ prints and punches the reference trajectory data so that they may be used to initialize subsequent SIMSEP runs (with INREF = 1).

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                     |
|-----------------|------------------|---------------------|--------------------------------|
| TGE             | I                | С                   | Epoch of a guidance event.     |
| TTAR            | I                | С                   | Designated target epoch.       |
| NGUID           | Ι.               | С                   | Number of guidance events.     |
| NTAR            | I                | С                   | Number of target variables.    |
| NTC             | I                | С                   | Number of controls.            |
| IGL             | I                | C                   | Guidance law flag.             |
| LSTAR           | I                | C                   | List of target variable codes. |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | <b>Pefinition</b>                                               |
|-----------------|------------------|---------------------|-----------------------------------------------------------------|
| RXGE            | 0                | C                   | Reference trajectory state at the guidance event.               |
| RMGE            | o                | С                   | Reference S/C mass at the guidance event.                       |
| RXTAR           | 0                | С                   | Reference trajectory state at the target time.                  |
| RMTAR           | O                | С                   | Reference S/C mass at the target time.                          |
| XTARG           | 0                | C .                 | Reference target conditions at the target time.                 |
| XEND            | 0                | <b>c</b>            | Reference trajectory state at the final trajectory time (TEND). |
| MEND            | o                | C                   | Reference S/C mass at the final trajectory time.                |
| SMAT            | 0                | C                   | Sensitivity or guidance matrix for guidance maneu-<br>vers.     |
| PHI             | 0                | С                   | State to state transition matrix.                               |
| THETA           | 0                | С                   | Thrust controls to state transition matrix.                     |

## Local Variables:

| Variable | Definition                                      |  |  |
|----------|-------------------------------------------------|--|--|
| ETA      | State to target variable transformation matrix. |  |  |
| GAMMA    | Linear guidance matrix.                         |  |  |
| TMX1     | Temporary storage of intermediary calculations. |  |  |

Subroutines Called: COPY, ECOMP, GUIDMX, MMAB, MPAK, TRAJ, TCOMP, THCOMP

Calling Subroutines: SIMSEP

Common Blocks:

CØNST, EPHEM, IASTM, SIM1, ISIM1, SIMLAB, TIME, TRAJ1, TRAJ2, (BLANK)



#### 3.4.9D Subroutine: SDAT1

To read input data from the \$SIMSEP namelist and Purpose:

to initialize the trajectory simulation mode.

Once the default values have been initialized, the Method:

\$SIMSEP namelist is read from input. Names, dimensions, and definitions for variables contained in \$SIMSEP are discussed in the User's Manual (Section 2.4, page 37). The input data are processed and stored in common blocks so that they may be used by Monte Carlo cycle logic in SIMSEF. Variables contained in this namelist control the degree of data preparation and computational operations performed

within the main cycle of the program.

Many of the variables appearing in SDAT1 are initial-Remarks:

ized from namelist with units specified in the User's Manual. Before they are transmitted to other routines and used by the program, they are converted to internal units which are kg, kw, km, sec, km/sec, and

radians.

| <u>Variable</u> | Input/<br>Output | Namelist/<br>Common | Definition                                                 |
|-----------------|------------------|---------------------|------------------------------------------------------------|
| A <b>Ø</b> K    | 1/0              | N/C                 | Backup convergence tolerance for weak convergence test.    |
| CPMA            | 1/0              | N/C                 | Computer processing time limit for the current SIMSEP run. |
| DVMXN           | 1/0              | N/C                 | Maximum delta-velocity magni-<br>tude step.                |
| INREF           | 1/0              | N/C                 | State vector and trajectory parameter read-in flag.        |
| I <b>Ø</b> UT   | 1/0              | N/C                 | Print output flag.                                         |
| IPUNCH          | 1/0              | N/C                 | Punch output flag.                                         |
| IRAN            | 1/0              | N/C                 | Random number seed.                                        |
| NCYCLE          | 1/0              | N/C                 | Number of Monte Carlo cycles to be run.                    |

| <u>Variable</u> | Input/<br>Output | Namelist/<br>Common | Definition                                                                                  |
|-----------------|------------------|---------------------|---------------------------------------------------------------------------------------------|
| NGUID           | I/O              | N/C                 | Number of guidance events<br>to be executed on each<br>Monte Carlo mission simu-<br>lation. |
| J2ERR           | 1/0              | n/c                 | Uncertainty in the J2 coefficient in the gravitational potential function.                  |
| PG              | 1/0              | N/C                 | S/C control error matrix.                                                                   |
| EXVERR          | 1/0              | n/c                 | Midcourse velocity correction execution errors.                                             |
| SCERR           | 1/0              | N/C                 | SEP and S/C errors.                                                                         |
| TCERR           | 1/0              | N/C                 | Thrust bias errors.                                                                         |
| TVERR           | 1/0              | N/C                 | Thrust process noise.                                                                       |
| ADVT            | 1/0              | N/C                 | Total delta-velocity magni-<br>tude statistics.                                             |
| ENDCØV          | 1/0              | N/C                 | Accumulated S/C control error statistics at TEND.                                           |
| AMASS           | 1/0              | N/C                 | Accumulated S/C mass statistics at TEND.                                                    |
| ATHCØV          | 1/0              | n/C                 | Accumulated total thrust control statistics.                                                |
| XEND            | 1/0              | N/C                 | Reference trajectory state vector at TEND.                                                  |

| <u>Variable</u> | Input/<br>Output | Namelist/<br>Common | Definition                                                                                        |
|-----------------|------------------|---------------------|---------------------------------------------------------------------------------------------------|
| MEND            | 1/0              | N/C                 | Reference S/C mass at TEND.                                                                       |
| SPFIMP          | 1/0              | N/C                 | Chemical propulsion system specific impulse.                                                      |
| DVMDØT.         | 1/0              | N/C                 | Chemical propulsion system mass flow rate.                                                        |
| MC              | 1/0              | N/C                 | Number of previous Monte<br>Carlo cycles.                                                         |
| KATHC           | 1/0              | N/C                 | Dimension of the ATHCOV matrix.                                                                   |
| JMAX            | 0                | C                   | Number of the last active<br>thrust control phase between<br>trajectory times TSTART and<br>TEND. |
| JMIN            | 0                | С                   | Number of the first active thrust control phase after TSTART.                                     |

Local Variables:

None

Subroutines Called: COPY, EIGENV, EPHEM, MATOUT, SDVAR, ZEROM.

Calling Subroutines: DATAS

Common Blocks:

CØNST, CYCLE, DYNØS, EDIT, EPHEM, SIM1, ISIM1, SIM2, ISIM2, SIMLAB, TIME, TRAJ1, TRAJ2.

Logic Flow:

### Logic Flow:



3.4.9E Subroutine:

SDAT 2

Purpose:

To read input data from the \$GUID namelist and to define the guidance philosophy, guidance control variables, targets, etc., at each guidance event.

Method:

Since the number of guidance events considered for a given SIMSEP run has been specified by the NGUID variable which was read in SDAT1, the SDAT2 subroutine reads the \$GUID namelist NGUID-times. Names, dimensions, default values, and definitions for the variables contained in \$GUID are discussed in the User's Manual (Section 2.4, page 37). The input data from \$GUID are stored in common blocks for subsequent usage during the execution of guidance maneuvers. The user specifies through input the type of guidance, duration of the guidance event, target variables and controls.

Remarks:

Variables appearing in SDAT2 are initialized from namelist in external "user" units. As was done in SDAT1, these variables are converted to internal units before being transmitted to the rest of the program.

### Input/Output:

| Var <u>i</u> abl <u>e</u> | Input/<br>Output | Namelist/<br>Common | Definition                                                                         |
|---------------------------|------------------|---------------------|------------------------------------------------------------------------------------|
| TGUID                     | I                | и                   | Guidance event epoch                                                               |
| TGE                       | 0                | c J                 |                                                                                    |
| XGREF                     | I                | и 5                 | Reference trajectory state vector at the guidance                                  |
| RXGE                      | 0                | c <b>∫</b>          | point.                                                                             |
| MGREF                     | I                | n ]                 | S/C mass at the guidance point.                                                    |
| RMGE                      | 0                | c s                 | point.                                                                             |
| S                         | I                | n ]                 | Sensitivity or guidance matrix.                                                    |
| SMAT                      | 0                | c S                 | maclin.                                                                            |
| Н                         | I                | N                   | Array of on/off flags used to identify active thrust controls at a guidance event. |
| IJĦ                       | 0                | · C                 | Matrix of active control variable indices.                                         |
| HPERT                     | Ø                | С                   | Numerical perturbation values used in computing numerically differenced            |

sensitivities.

| Variable        | Input/<br>Output | Namelist/<br>Common | Definition                                                                        |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------------|
| UWATE           | I                | N Z                 | Control variable weights.                                                         |
| CØNWT           | 0                | c                   |                                                                                   |
| IGUID           | I                | N ]                 | Guidance law flag.                                                                |
| IGL             | 0                | c                   |                                                                                   |
| NMAX            | I                | N }                 | Maximum number of iterations                                                      |
| ITMX            | 0                | $c \cdot \int$      | in the nonlinear guidance algorithm.                                              |
| IASTM           | I                | n 2                 | Flag indicating whether trajectory sensitivities are                              |
| ISTM            | 0                | c S                 | are to be computed by numerical differencing or integrated variational equations. |
| NTAR            | 0                | С                   | Number of target variables.                                                       |
| NTC             | 0                | С                   | Number of control variables.                                                      |
| TTARG           | I                | и Ј                 | Target epoch.                                                                     |
| TTAR            | 0                | c J                 |                                                                                   |
| TARGET          | I                | 'n ]                | Target variables evaluated                                                        |
| XTARG           | 0                | c <b>5</b>          | on the reference trajectory.                                                      |
| XTREF           | · <b>I</b>       | n J                 | Reference trajectory state                                                        |
| RXTAR           | 0                | c }                 | at the target epoch                                                               |
| MTREF           | I                | N J                 | S/C mass at the target                                                            |
| RMTAR           | 0                | c                   | epoch.                                                                            |
| TART <b>Ø</b> L | <b>I</b>         | и }                 | Target variable tolerances.                                                       |
| TØL             | 0                | c                   |                                                                                   |
| ITARGT          | I                | N }                 | Target variable selection                                                         |
| LSTAR           | 0                | c                   | flags.                                                                            |

| <u>Variable</u> | Input/<br>Output | Namelist<br>Common | :/       | Definition                                  |
|-----------------|------------------|--------------------|----------|---------------------------------------------|
| P               | I                | N                  | <u> </u> | Augmented knowledge error                   |
| PS              | ı                | N                  | }        | covariance at a guidance event.             |
| cxs             | I                | N                  | J        |                                             |
| BLANK           | 0                | С                  |          | Eigenvectors and eigenvalues.               |
| KDIMEN          | I                | N                  | 7        | Dimension of the augmented                  |
| KDIM            | 0                | C                  | }        | knowledge covariance.                       |
| KTER            | I                | N                  | 7        | Option flag for computing                   |
| KTERR           | 0                | С                  | }        | target errors.                              |
| CCØVG           | I                | N                  | 7        | Accumulated control error                   |
| GCCØV           | 0                | С                  | }        | statistics at the guidance point.           |
| GMS CØV         | I                | N                  | 7        | Accumulated S/C mass                        |
| GMCØ∇           | 0                | С                  |          | statistics at the guidance point.           |
| CNTCØV          | I                | N                  | 1        | Accumulated active thrust                   |
| CIN COPV        | 0                | С                  | }.       | control error statistics.                   |
| DVMCOV          | I                | N                  | ้า       | Accumulated delta-velocity                  |
| DVCOV           | 0                | C                  | }        | vector statistics at the guidance event.    |
| <b>DVMA</b> G   | I                | N                  | ,        | Accumulated delta-velocity                  |
| DVMAGS          | 0                | C                  |          | magnitude statistics at the guidance event. |
| CO#VT           | I.               | N                  | 7        | Accumulated control error                   |
| TCOØV           | 0                | С                  | }        | statistics at the target point.             |
| TMSCØV          | ī                | N                  | 7        | Accumulated S/C mass                        |
| TMCOV           | 0                | С                  | }        | statistics at the target point.             |
| TARCØV          | I                | N                  | 7        | Accumulated target error                    |
| TER <b>C</b> ØV | 0                | С                  |          | statistics.                                 |

| Variable | Input/<br>Output | Namelist/<br>Common | Definition                                    |
|----------|------------------|---------------------|-----------------------------------------------|
| MSAMP    | I                | и                   | Number of previous Monte                      |
| NSAMP    | 0                | c }                 | Carlo samples on the accumulated statistics.  |
| мтрн     | 0                | С                   | Thrust phase number at a guidance event.      |
| ICYCLE   | 0                | С                   | Recycle flag.                                 |
| UNTAR    | 0                | С                   | Vector of target variable conversion factors. |

# Local Variables:

| Variable | Definition                                                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| PP       | Temporary storage for the augmented knowledge covariance matrix.                                                                             |
| IMAN     | Guidance event counter.                                                                                                                      |
| INDEX 1  | Index marking the position in blank common after which eigenvectors corresponding to a particular augmented knowledge covariance are stored. |
| INDEX 2  | Index like INDEX1 except it marks where eigenvalues are stored.                                                                              |

Subroutines Called: COPY, EIGENV, ICOPY, MATOUT, MPAK, MUNPAK, SDVAR, SYMLØ, SYMLØ, SYMUP, ZERØM.

Calling Subroutines: DATAS

CYCLE, EDIT, EPHEM, IASTM, SIM1, ISIM1, SIM2, ISIM2, Common Blocks:

SIMLAB, TIME, TRAJÍ, TRAJÍ, (BLÁNK).

Logic Flow:





3.4.10A Subroutine: SET (ISTØRE)

Purpose:

To set and store physical parameters (ephemeris, gravitational, etc.) and SEPS parameters (thrust controls, mass, exhaust velocity, etc.) needed by the trajectory integration routine for generating the actual, estimated, and reference trajectories.

Method:

SET simply performs multiple copy operations in transferring the working values used by the trajectory integrator into designated storage arrays, S1, S2 and S3. By calling SET with ISTØRE equal to +1, +2 or +3, the corresponding S1, S2 or S3 array is equated to whatever is in the regular working arrays. If ISTØRE equals +4, all three S-arrays are set. When SET is called with ISTØRE equal to -1, -2, or -3, then the working arrays are re-set to whatever is stored in S1, S2 or S3, respectively.

Remarks:

This routine is essential to SIMSEP in that it allows the program to use the same trajectory integrator to evaluate each of the different types of trajectories needed for a mission simulation.

| <u>Variables</u>        | Input/<br>Output | Argument/<br>Common | Definition                                 |
|-------------------------|------------------|---------------------|--------------------------------------------|
| TSTØRE                  | I                | A                   | Flag controlling the SET logic flow.       |
| ENGINE (1)<br>(=PØWER   |                  | С                   | Electric power at 1 A.U.                   |
| ENGINE(10<br>(=EXHVE    | •                | С                   | Thrust exhaust velocity.                   |
| ENGINE (11)<br>(=THREF) |                  | С                   | Thruster efficiency.                       |
| ENGINE (15<br>(=CRA)    | -                | C                   | Radiation pressure coeffi-<br>cient.       |
| SCMASS                  | 1/0              | С                   | SEPS mass.                                 |
| SMASS                   | 1/0              | С                   | Solar gravitational constant.              |
| PMASS                   | 1/0              | С                   | Planetary gravitational constants.         |
| NT PHAS                 | 1/0              | С                   | Current thrust control phase number.       |
| THRUST                  | 1/0              | С                   | Thrust control array.                      |
| SSM1                    | 1/0              | С                   | Stored solar gravitational constant.       |
| SSCM1                   | 1/0              | С                   | Stored SEPS mass.                          |
| SEXV1                   | 1/0              | С                   | Stored thrust exhaust velocity.            |
| STEFF1                  | 1/0              | С                   | Stored thruster efficiency.                |
| SCRA1                   | 1/0              | С                   | Stored radiation pressure.                 |
| SPO1                    | 1/0              | C                   | Stored electric power to 1. A.U.           |
| SPM1                    | 1/0              | С                   | Stored Earth gravita-<br>tional constants. |
| STHRT1                  | 1/0              | С                   | Stored thrust controls.                    |

Page 410 has been deleted.

(Comment: In addition to these storage arrays and variables, there are also corresponding S-2 and S-3 arrays.)

Local Variables:

None

<u>Subroutines Called:</u>

CØPY

Calling Subroutines:

SIMSEP, NLGUID

Common Blocks:

EPHEM, SIM1, ISIM1, STØREC, TRAJ1, TRAJ2





3.4.10B Subroutine: SPRNT1 (XA, XE, XREFO, IC, IMAN)

Entry Points: SPRNT2, SPRNT3, SPRNT4

Purpose: To print actual, estimated, and reference

trajectory data computed during Monte Carlo

mission simulations.

Method: SPRNT1, or one of its various entry points,

is called from SIMSEP whenever printout of

trajectory information is desired. A call

to SPRNT1 results in the "Output Data for

the Actual Trajectory Initialization". (See

the sample case in the User's Manual, Pages

119 through 132.) SPRNT2 generates the

"Output Data for Guidance Event" which

includes printout for actual, estimated,

and reference trajectory data. SPRNT3

generates the "Output Data at the Designated

Target Time" when KTER = 1 and the corrected

trajectory is propagated after a guidance

event. At the end of each Monte Carlo mission

simulation, SPRNT4 is called to display the

"Monte Carlo Mission Summary".

| Variable | Input/<br>Output | Argument/<br>Common | Definition                   |
|----------|------------------|---------------------|------------------------------|
| XA       | 1                | A                   | Current actual S/C state.    |
| XE       | I                | A                   | Current estimated S/C state. |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                      |
|----------|------------------|---------------------|-------------------------------------------------|
| XREFO    | I                | А                   | Current reference S/C state.                    |
| IC       | I                | A                   | Current Monte Carlo cycle number.               |
| IMAN     | I                | A                   | Current guidance event number.                  |
| TCERR    | I                | С                   | Thrust bias errors.                             |
| SCERR    | I                | С                   | S/C and SEP errors.                             |
| GMERR    | I                | C                   | Gravitational constant errors.                  |
| GTAU1    | I                | С                   | Negative reciprocal of the                      |
| GTAU2    | I                | С                   | correlation times for the thrust process noise. |
| TNØISE   | I                | С                   | Vector of random thrust control perturbations.  |
| TGE      | I                | С                   | Guidance event epoch.                           |
| TTAR     | I                | С                   | Target epoch.                                   |
| XTARG    | I                | С                   | Reference target variables.                     |
| UNTAR    | I                | C                   | Vector of target variable conversion factors.   |
| SSCM1    | I                | С                   | 7 Actual, estimated, and                        |
| SSCM2    | I                | С                   | reference S/C mass.                             |
| SSCM3    | Ι                | С                   | )                                               |
| SEXV1    | I                | С                   | Actual, estimated, and                          |
| SEXV2    | . <b>I</b>       | · C                 | reference exhaust velocity.                     |
| SEXV3    | I                | С                   | )                                               |
| SPO1     | 1                | C                   | Actual, estimated, and                          |
| SPO2     | I                | С                   | reference electric power,                       |
| SP03     | I                | C                   | <b>J</b>                                        |
| STEFF1   | I                | С                   | 7 Actual, estimated, and                        |
| STEFF2   | 1                | C                   | reference thruster                              |
| STEFF3   | I                | C                   | efficiency.                                     |
|          |                  |                     |                                                 |

| <u>Variable</u>            | Input/<br>Output | Argument/<br>Common | Definition                                                             |
|----------------------------|------------------|---------------------|------------------------------------------------------------------------|
| SCRA1<br>SCRA2<br>SCRA3    | I<br>I<br>I      | c ;                 | Actual, estimated, and reference radiation pressure co-efficient.      |
| STHRT1<br>STHRT2<br>STHRT3 | I<br>I<br>I      | c ;                 | Actual, estimated, and reference thrust controls.                      |
| SSM1<br>SSM2<br>SSM3       | I<br>I<br>I      | c<br>c<br>c         | Actual, estimated and reference solar gravitational constant.          |
| SPM1<br>SPM2<br>SPM3       | I<br>I<br>I      | c                   | Actual, estimated, and reference gravitational constant for the Earth. |

### Local Variables:

| <u>Var<b>ia</b>ble</u>  | Definition                                                                    |           |
|-------------------------|-------------------------------------------------------------------------------|-----------|
| DXE                     | Vector deviation of the estimate from the reference and actual.               |           |
| DXA                     | Vector deviation of the actufrom the reference.                               | ıal state |
| ELACT<br>ELEST<br>ELREF | Keplerian elements correspont the actual, estimated, and recorded to the S/C. | reference |
| EMASS                   | Actual S/C mass evaluated at                                                  | TEND.     |

Subroutines Called: CØNIC, SUB

Calling Subroutines: SIMSEP

Common Blocks: CONST, DYNOS, EPHEM, SIM1, ISIM1, SIMLAB, STOREC,

TIME, TRAJ1, TRAJ2, (BLANK)

Logic Flow: None.

3.4.11 Subroutine: STAT (XA, XR, N, N1, ACØV, M, PCØV)

Purpose: To compute a covariance matrix and mean,

recursively, from a sequence of error vectors.

Method: For the Mth Monte Carlo cycle, an error vector,

 $\mathbf{X}_{\mathbf{M}}$ , is computed as the difference between an

actual and a reference vector. This error

vector updates the previous mean based on (M-1)

samples according to the equation

$$\overline{X}_{M} = (X_{M} + (M-1) \overline{X}_{M-1})/M$$

for  $M = 1, 2, 3, \ldots$  The covariance matrix is also updated by the relation,

$$c_{M} = \left[\frac{M-2}{M-1}\right] c_{M-1} + \left[\overline{x}_{M-1} \overline{x}_{M-1}^{T}\right]$$

$$+ \frac{1}{M-1} x_{M} x_{M}^{T} - \frac{M}{M-1} \overline{x}_{M}^{T} \overline{x}_{M}^{T}$$

for M = 2, 3, 4, ..., where  $C_{M-1}$  is the previous covariance matrix and  $C_M$  the new covariance.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition              |
|-----------------|------------------|---------------------|-------------------------|
| XA              | I                | A                   | Actual sampled vector.  |
| <b>X</b> R      | I                | A                   | Reference vector.       |
| N.              | ı                | A                   | Dimension of XA and XR. |
| N1              | I                | A                   | N1 = N + 1.             |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                            |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACØV     | I                | <b>A</b>            | A-prior covariance matrix and mean, based on M-l samples. This is a (NxN1) array with the variances and covariances being stored in the first N-columns and the means being stored in the N1-columns. |
| М        | 1                | <b>A</b>            | Number of Monte Carlo sam-<br>ples used to formulate the<br>updated covariance matrix.                                                                                                                |
| PCØV     | I                | A                   | Updated output covariance matrix and vector of means. The storage is in the same format as ACØV. ACØV and PCØV may, in fact, share the same core locations.                                           |

# Local Variables:

| Variable         | Definition                                                   |  |  |
|------------------|--------------------------------------------------------------|--|--|
| x                | Error vector, $X = XA - XR$ .                                |  |  |
| XX               | Temporary storage for the new means.                         |  |  |
| XXT <sub>.</sub> | Temporary storage for the outer prod-<br>uct of two vectors. |  |  |

Subroutines Called: SUB

Calling Subroutines: SIMSEP

Common Blocks: WØRK



THCPND (XIN, MIN, NPRIN, NATC, IJH, TGØ, THALT, 3.4.12 Subroutine: IMAN, XØUT, MØUT, THETA, PHI) To compute the partials of state variable changes Purpose: with respect to thrust control perturbations, i.e., the matrix, by numerical differencing. Small perturbations are forced to each active Method: control variable and a trajectory is propagated to the designated target time. The final state vector of each variant trajectory is differenced with the standard, or nominal, state to form numerical approximations for the partial derivatives. This routine is analogous in function and format Remarks: to THCØMP, a utility routine. However, it is used exclusively in SIMSEP in the linear and nonlinear guidance algorithms.

|          | •                |                     | •                                                                                                                 |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|
| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                        |
| XIN      | I                | A                   | Initializing S/C state vector (position and velocity) for the trajectory propagations.                            |
| MIN      | I                | A                   | Initial S/C mass.                                                                                                 |
| NPRI     | I                | A                   | Body number for the primary body.                                                                                 |
| NATC     | I                | A                   | Number of active thrust controls.                                                                                 |
| IJĦ      | I                | A                   | Matrix of thrust control indices which identify the active thrust controls to be used for numerical differencing. |

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                                                            |
|---------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------|
| TGØ           | I                | . <b>A</b>          | Initial trajectory time.                                                                              |
| THALT         | I                | A                   | Final trajectory time.                                                                                |
| IMAN          | I                | A                   | Maneuver number.                                                                                      |
| хøит          | ø                | A                   | Output S/C state on the nominal trajectory evaluated at THALT.                                        |
| м <b>ø</b> uт | Ø                | A                   | Final S/C mass.                                                                                       |
| тнета         | Ø                | A                   | Output @ matrix of state changes w.r.t. control changes.                                              |
| РНІ           |                  |                     | Output $oldsymbol{\Phi}$ matrix of final state changes w.r.t. initial state changes.                  |
| LØCTC         | I                | С                   | Location in blank common of the state transition matrix, $\Phi_{\rm A}$ .                             |
| UREL          | I                | С                   | S/C position vector at final trajectory time.                                                         |
| VREL          | I                | С                   | S/C velocity vector at final trajectory time.                                                         |
| HPERT         | I                | , <b>c</b>          | Array of numerical perturbations to be applied to each thrust control as identified by the IJH array. |

Local Variables:

None.

<u>Subroutines Called:</u>

COPY, ICOPY, IZEROM, OVERLAY (TRAJ)

<u>Calling Subroutines:</u>

NLGUID, REFTRJ

Common Blocks:

(BLANK), CØNST, TIME, TRAJ1, TRAJ2, SIM1, ISIM1,

WØRK



3.5 Subroutine: TRAJ

Purpose: To control the overall trajectory initialization

and propagation.

Remarks: Since TRAJ is used by the three modes, it must

be capable of reproducing the same trajectory

for each mode, independent of the augmented state

form, event times or print times. Special prob-

1ems arise when the equations to be propagated

include the transition matrix or covariance

between events. For example, at the beginning

of an event either the transition matrix must be

reset to an identity or an updated covariance

must be given to TRAJ. To solve these problems,

logic was incorporated into TRAJ to make use of

event logic in the subroutine PATH with an entry

point FLIGHT.

Beginning at the trajectory epoch  $t_o$ , the transition matrix or covariance is initialized and is propagated to the first event  $(E_1)$ . MAPSEP logic returns to the calling routine which performs its operations. Upon reentering TRAJ, the transition matrix or covariance is again reinitialized and



propagated from  $E_1$  to  $E_2$ . In order to propagate the transition matrix or covariance from  $E_2$  to  $E_3$  and preserve the trajectory grid, the special logic in TRAJ calls FLIGHT to propagate the appropriate matrix from  $E_2$  to  $E_3$ . Then the spacecraft state is propagated from  $E_3$  to  $E_3$ . Now having the state and transition matrix or covariance at  $E_3$ , the appropriate matrix is propagated to  $E_3$ . This process is continued until all events have been satisfied.

#### Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | . Definition                                                                                                                                                                                                                 |
|----------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICALL    | I                | c                   | <ul> <li>= 1, initialize the trajectory and propagate to an event or stopping condition.</li> <li>= 2, initialize the trajectory only.</li> <li>= 3, propagate from a previously defined point in the trajectory.</li> </ul> |
| INTEG    | I                | C .                 | <ul> <li>= 1, propagate the state and transition matrix.</li> <li>= 2, propagate the state.</li> <li>= 3, propagate the state and state covariance matrix.</li> </ul>                                                        |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                               |
|-----------------|------------------|---------------------|------------------------------------------------------------------------------------------|
| DSC             | Ι                | C                   | The blank common array. The following flage will be used to locate specific information. |
| LØCET           | ı                | С                   | Previous event.                                                                          |
| LØCX            | · i              | С                   | Trajectory time.                                                                         |
| LØСН            | i                | С                   | Integration stepsize.                                                                    |
| <b>LØCTC</b>    | I .              | <b>C</b> .          | State transition matrix or Covariance.                                                   |
| LØCFØ           | I                | С                   | Deviations (from conic) of state (reference).                                            |
| LØCDY           | I                | С                   | Deviations (from conic) of state derivatives (reference)                                 |
| LØCYT           | ı ·              | c ·                 | Deviations of state (event).                                                             |
| LØCDT           | I                | c                   | Deviations of state derivatives (event).                                                 |
| MEQS            | . I              | C                   | Dimensions of the covariance or transition matrix.                                       |
| TEVNT           | I                | С                   | Next event time.                                                                         |
| IAUGDC          | <b>1</b>         | С                   | Flags used to augment the covariance or transition matrix.                               |

## Local Variables:

| <u>Variable</u>     | Definition                        |
|---------------------|-----------------------------------|
| TEVNTS              | Stored value of TEVNT.            |
| IAUGDS              | Stored value of IAUGDC.           |
| Subroutines Called: | PATH, FLIGHT, IDENT, COPY, LOADFM |

Calling Subroutines: TOPSEP, GODSEP, SIMSEP

Common Blocks: TRAJ2, WØRK, (BLANK), CØNST, EDIT, EPHEM, TIME,

TRAJ1







3.5.1 Subroutine: DNØISE (T)

Entry Point:

NØISE

Purpose:

To compute thrust acceleration perturbations due to time-varying process noise.

Method:

A vector of thrust control perturbations,  $\S_{\underline{u}}$ , is computed during the trajectory integration at the beginning, middle, and end of each integration step. The time correlated thrust noise is assumed to be a Gauss-Markov sequence according to the equation

$$\delta_{\underline{u}_{i+1}} = A \delta_{\underline{u}_i} + \underline{\omega}_{i+1}$$

where 
$$A = \begin{bmatrix} e^{-\Delta t/T_1} & 0 \\ & \Delta^{t/T_2} & e \\ & \ddots & \\ 0 & & A^{t/T_N} \end{bmatrix}$$

and  $\Delta t = t_{i+1} - t_i$ . The factors  $T_1, T_2, \ldots$ ,  $T_N$  are the correlation times associated with each stochastic process,  $\delta u_j$ . The vector  $\delta \underline{u}_i$  is assumed to remain constant over the interval  $\Delta t$  with its effect on  $\delta \underline{u}_{i+1}$  being diminished

by the exponential decay terms in A.  $\omega_{i+1}$  is a vector of independent random variables which have Gaussian distributions. The standard deviation,  $\sigma_{\omega_i}$ , is given by

$$\sigma_{\omega_j} = (1-e^{-2\Delta t/T_j})^{\frac{1}{2}} \sigma_{u_j}$$

in order to satisfy the requirement that the process be stationary.

#### Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                           |
|----------|------------------|---------------------|----------------------------------------------------------------------|
| T        | I                | A                   | Current trajectory time.                                             |
| GTAU1    | I .              | c                   | Negative reciprocal of the correlation times for the first process.  |
| GTAU2    | I                | C                   | Negative reciprocal of the correlation times for the second process. |
| TVERR    |                  | C                   | One-sigma values for the time-varying thrust control errors.         |
| IRAN     | I                | C                   | Random number seed.                                                  |
| TNØISE   | 1/0              | <b>C</b> .          | Vector of thrust control perturbations.                              |

#### Local Variables:

| Variable |   | Definition                                                        |
|----------|---|-------------------------------------------------------------------|
| T1       | ; | Trajectory time at the previous point of thrust noise evaluation. |

Variable Definition

H

Time increment since the previous thrust noise evaluation.

Subroutines Called:

RNUM

Calling Subroutines:

EP, SIMSEP

Common Blocks:

TRAJ1, DYNØS, TRAJ2



3.5.2 Subroutine: DPHI (T, DS, DSTM, M, N, LØC)

Purpose: To compute the time derivative of the State Transition

Matrix (ø)

Method:

 $\phi = F \phi$ 

#### Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                 |
|-----------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| IAUCDC          | I                | C                   | Flag indicating the augmentation of the STM and covariance Matrix.                                                                         |
| T               | I                | A                   | Trajectory time                                                                                                                            |
| DS              | I                | A                   | Independent variables                                                                                                                      |
| DSTM            | 0                | A                   | Differential equations                                                                                                                     |
| M               | ı                | <b>A</b> .          | Number of rows in DS and DSTM                                                                                                              |
| N               | I                | A                   | Number of columns in DS and DSTM                                                                                                           |
| lo¢             | I ···            | A                   | Routing flag                                                                                                                               |
| INTEG           | · I              | C                   | Set = 1 Propagate the State and<br>Transition Matrix<br>Set = 2 Propagate the State<br>Set = 3 Propagate the State and<br>State Covariance |
| IRECT           | ī                | С                   | Index used to check whether the current call to DPHI is for rectification purposes only (i.e. IRECT = 1)                                   |

#### Local Variables:

IAUGS

Index used to check whether the F matrix needs to be

augmented.

Calling Subroutines: NUMIN

Subroutines Called: MOTION, LOADFM, GRAVAR

Common Blocks: TRAJ2

#### Logic Flow:



#### 3.5.3 Subroutine: EP (T, CMASS)

Purpose:

To compute the effective low thrust acceleration vector and matrix of partial deviatives for transition matrix or covariance propagation in a control phase.

Method:

After the available thruster power, orbital eccentric anomaly, and thrust policy type are computed, the following sequence of parameters is computed (assuming non-coast policy):

- o thrust acceleration magnitude (ACCEL),
- o thrust pointing angles (either AIN and AØUT, or PITCH and YAW), and their noise contributions (if SIMSEP),
- o body thrust acceleration vector (ASC),
- o rotation matrix from body to inertial frame (RØTMAT),
- o inertial thrust acceleration (THRACC),
- o rotation matrix from thrust controls to inertial thrust acceleration (GT).

See also Analytic Manual, Section 4.1

Pages 434 and 435 have been deleted.

# Input/Output:

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                  |
|-----------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| T               | I                | С                   | Trajectory time in seconds.                                                                                                                 |
| CMASS           | I                | С                   | Current spacecraft mass.                                                                                                                    |
| EXHVEL          | Ι                | С                   | Exhaust velocity (c), (Equivalenced to ENGINE(10) Thruster efficiency (7), (Equivalenced to ENGINE(11)                                      |
| NTPHAS          | I                | С                   | Current thrust phase number                                                                                                                 |
| wp <b>ø</b> wer | 0                | С                   | Power available (P).                                                                                                                        |
| UREL            | I                | c                   | Heliocentric position vector.                                                                                                               |
| URELM           | I                | C                   | Position magnitude array.                                                                                                                   |
| n <b>ø</b> ised | I                | С                   | Flag that causes EP to add noise to the controls.                                                                                           |
| THRUST          | I                | С                   | Matrix that contains a set of controls for each seg-<br>ment. (THRUST (i, NTPHAS)) where i is the desired information for the NTPHAS phase. |
|                 |                  |                     | <pre>i = 1, thrust policy</pre>                                                                                                             |
|                 |                  |                     | <pre>i = 2, phase end time in</pre>                                                                                                         |
|                 |                  |                     | i = 3, thrust scale factor                                                                                                                  |
|                 |                  |                     | <pre>i = 4, 5, 6, 7, 9, 10     thrust policy coef-     ficients</pre>                                                                       |
|                 |                  |                     | i = 8, number of thrusters                                                                                                                  |
| A1              | 1                | С                   | S/C mean motion.                                                                                                                            |
| EZ ERØ          | I                | С                   | Reference eccentric anomaly.                                                                                                                |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                              |
|----------|------------------|---------------------|---------------------------------------------------------|
| PHAS     | I                | С                   | Phase angles for thrust controls.                       |
| PITCH    | 0                | С                   | Thrust pitch angle.                                     |
| YAW      | o                | C                   | Thrust yaw angle.                                       |
| ZK       | I                | С                   | Reference orientation vector.                           |
| GT       | <b>0</b>         | С                   | Transformation matrix from thrust controls to ecliptic. |
| THRACC   | 0                | С                   | Thrust acceleration.                                    |
| UTRUE    | I .              | С                   | Position vector relative to the primary body.           |
| VTRUE    | I                | С                   | Velocity vector relative to the primary body.           |

#### Local Variables:

| Variable       | <u>Definition</u>                                          |
|----------------|------------------------------------------------------------|
| ACCEL          | Thrust acceleration.                                       |
| AIN            | In-Orbit plane thrust angle.                               |
| AØUT           | Out of plane thrust angle.                                 |
| ASC            | Thrust acceleration vector (body coordinates)              |
| ean <b>ø</b> m | Eccentric anomaly.                                         |
| RØTMAT         | Transformation matrix from body to ecliptic.               |
| ITYPE          | Thrust policy for the NTPHAS segment = THRUST (1, NTPHAS). |
| DELTAT         | Time from the beginning of the control phase.              |

Subroutines Called:

ANGMØD, PØWER, DNØISE, UNITV, UXV, MMAB, NEGMAT,

ZERØM

<u>Calling Subroutines</u>:

MØTIØN, DYNØ

Calling Blocks:

CØNST, EPHEM, TRAJ1, TRAJ2, WØRK, ENCØN

Logic Flow:

None.

Pages 438 and 439 have been deleted.

3.5.4 Subroutine: EPHEM (NØ, DJ, R, V)

Purpose:

Method:

To compute the heliocentric position and velocity vectors of a given planet or body. The orbital elements (a, e, i,  $\Omega$ ,  $\Xi$ , M) of the desired body are computed from time varying expressions, for example, the semi-major axis

$$a(t) = a_0 + a_1 t_J + a_2 t_J^2 + a_3 t_J^3$$

where  $a_0$  is the value at the ephemeris epoch 1900, January 0.5,  $t_J$  is the time from the epoch, and  $a_1$ ,  $a_2$ ,  $a_3$  are constant coefficients.  $t_j$  is measured in days for all elements except mean anomaly of the planets where  $t_j$  is measured in units of  $10^{-4}$  days. After the osculating orbital elements are computed, they are transformed into cartesian position and velocity vectors.

A unique case occurs when EPHEM is used to compute the position and velocity vectors of the earth's moon. The position  $(\underline{r}_E)$  and velocity  $(\underline{V}_E)$  vectors of the earth are computed and added to the position  $(\underline{r}_M)$  and velocity  $(\underline{V}_M)$  vectors of the moon relative

6-6

to earth. The heliocentric position  $(\underline{r})$  and velocity  $(\underline{V})$  are

$$\underline{\mathbf{r}} = \underline{\mathbf{r}}_{\mathbf{E}} + \mathbf{r}_{\mathbf{M}}$$

$$\underline{\mathbf{y}} = \underline{\mathbf{v}}_{\mathbf{E}} + \underline{\mathbf{v}}_{\mathbf{M}}$$

# Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                      |
|----------|------------------|---------------------|---------------------------------------------------------------------------------|
| nø       | I                | A                   | Number of the planet for which $\underline{r}$ and $\underline{v}$ are desired. |
| DJ       | ı                | A                   | Trajectory time in Julian<br>Days from launch.                                  |
| R        | Ø                | A                   | <u>r</u> .                                                                      |
| V        | ø                | À                   | <u>v</u> •                                                                      |
| SMASS    | I                | C                   | Gravitational constant of the sun.                                              |
| PMASS    | Ι.               | C                   | Array of gravitational constants for the planets and the moon.                  |
| CSAX     | I                | <b>c</b>            | Semi-major axis constants (a)                                                   |
| CESS     | I                | . <b>C</b>          | Eccentricity constants (e).                                                     |
| CINC     | I                | С                   | Inclination constants (i).                                                      |
| CØMEG    | I                | · C                 | Longitude of the Ascending Node constants ( $\Omega$ ).                         |
| CØMEGT   | I                | C                   | Longitude of Periapsis constants (%).                                           |
| CMEAN    | I                | c                   | Mean Anomaly constants (M)                                                      |

| <b>Variabl</b> e | Input/<br>Output | Argument/<br>Common | <u>Definition</u>                                   |
|------------------|------------------|---------------------|-----------------------------------------------------|
| EMN              | ı .              | C                   | Array of constants for the moon.                    |
|                  | •                |                     | 1-4 Longitude of the Ascend-<br>ing Node constants. |
|                  |                  | •                   | 5-8 Longitude of<br>Periapsis constants.            |
|                  | ,                |                     | 9-12 Mean Anomaly constants.                        |
|                  |                  |                     | 13 Inclination constants.                           |
| ,                |                  |                     | 14 Eccentricity constants.                          |
|                  |                  |                     | 15 Semi-major axis con-<br>stants.                  |
| PI ,             | I.               | C                   | 3.14159( <b>1</b> 7)                                |
| DJ1900           | r                | С                   | 2415020.                                            |
|                  | •                |                     |                                                     |

# Local Variables:

| Variable | Definition                                                        |
|----------|-------------------------------------------------------------------|
| XPLAN    | Array used to store $\underline{r}_{E}$ and $\underline{v}_{E}$ . |
| NP       | Planet code, initially set equal to NØ.                           |
| P12      | $\frac{\mathfrak{A}}{2}$ .                                        |
| <b>A</b> | a.                                                                |
| E        | е.                                                                |
| XI       | i.                                                                |
| ØMEGA    | Ω                                                                 |
| SØMEGA   | $\Omega - \tilde{\omega} = \omega$                                |
| XMEAN    | $M_{ullet}$                                                       |

| Variable | Definition                                                                                   |
|----------|----------------------------------------------------------------------------------------------|
| GMU      | SMASS + PMASS(NP), for the planets.<br>PMASS(3) + PMASS(11), for the moon.                   |
| PØLY3    | Statement function that performs $\alpha_{i}(t) = a_{i} + t_{J}(b_{i} + t_{J})$              |
| ·        | (c <sub>i</sub> + d <sub>i</sub> t <sub>J</sub> ))                                           |
| PØLY1    | Statement function that performs $\mathbf{q}_{i}(t) = \mathbf{a}_{i} + \mathbf{b}_{i} t_{J}$ |
| D        | Days from 1900.                                                                              |
| DD       | D/10000.                                                                                     |
| T        | D/36525.                                                                                     |
|          |                                                                                              |

Subroutines Called: CARTES

Calling Subroutines: SØLAR

Common Blocks: CONST, EPHEM

### Logic Flow:





3.5.5A Subroutine: FIND

Entry Points:

FIND1, FIND3

Purpose:

(1) To compute the location in Blank Common arrays that will be used by TRAJ and the number of equations to be integrated, (2) to copy integrated parameters into mode accessible locations, and (3) to initialize the F matrix.

Method:

None

Remarks:

All LØCXX variables indicate locations within

Blank Common

#### Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                      |
|-----------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|
| LØCS            | I                | С                   | Location in Blank Common where TRAJ can start array                                                                             |
| INTEG           | I                | С                   | allocation.  Set = 1 Propagate State & Transition Matrix  Set = 2 Propagate State only  Set = 3 Propagate State and  Covariance |
| IAUGDC          | I                | С                   | Flag array determining the components of the Transition Matrix or Covariance to be propagated.                                  |
| ME Q            | Ø                | С                   | Total number of equations to be integrated.                                                                                     |
| ME Q8           | Ø                | С                   | ME Q-8                                                                                                                          |
| MEQS            | Ø                | C                   | √MEQ8°                                                                                                                          |
| LØCH            | Ø                | С                   | Integration stepsize                                                                                                            |
| LØCX            | Ø                | С                   | Trajectory time in seconds                                                                                                      |
| LØCPT           | Ø                | С                   | Trajectory print time                                                                                                           |
| LØCET           | Ø                | С                   | Trajectory event time                                                                                                           |
| LØCPR           | Ø                | С                   | Trajectory time for print                                                                                                       |
| LØCT            | <b>ø</b>         | С                   | Trajectory time stored for interpolation                                                                                        |

# Input/Output: (Continued)

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                  |
|----------|------------------|---------------------|---------------------------------------------|
| LØCR     | Ø                | C ,                 | Position magnitude stored for interpolation |
| LØCYC    | Ø                | С                   | Dependent variables                         |
| LØCDY    | Ø                | С                   | Differential equations                      |
| LØCYT    | Ø                | С                   | Dependent variables for print and events    |
| LØCDT    | Ø                | С                   | Differential equations for print and events |
| LØCYP    | Ø                | С                   | Temporary locations for integration         |
| LØCTE    | Ø                | С                   | Future modifications                        |
| LØCFI    | Ø                | С                   | F matrix, ♦ = F ♦                           |
| LØCM     | ø                | С                   | Mass                                        |
| LØCDM    | Ø                | С                   | Mass variation                              |
| LØCTC    | Ø                | С                   | Transition or Covariance matrix             |

#### Local Variables:

|           | •          |
|-----------|------------|
| Variables | Definition |

ISTATE

Array containing size of augmented dynamic parameters

Subroutines Called: COPY, IDENT, MUNPAK, ZEROM

Calling Subroutines: PATH

Common Blocks:

(BLANK), DIMENS, TRAJ1, TRAJ2, WØRK

#### Logic Flow:



3.5.5-B Subroutine: Flux

Purpose: To compute the power degradation factor due

to proton/electron bombardment of the solar

cells in the Earth's radiation field.

Method: See Analytic Manual, Section 4.1.

Remarks: Flux is updated only after each normal, that

is, non-event related, integration step in

subroutine PATH. Flux is integrated by modified

Euler method.

#### Input/Output:

| <u>Variable</u>          | Input/<br>Output | Argument/<br>Common | Definition                                    |
|--------------------------|------------------|---------------------|-----------------------------------------------|
| CØM(LØCX)                | I                | С                   | Current flight time.                          |
| CØM(LØCH)                | · I              | С                   | Integration step size.                        |
| ECEQ                     | I                | С                   | Ecliptic to equatorial transformation matrix. |
| FLX                      |                  | С                   | Cumulative particle fluence.                  |
| F <b>L</b> XD <b>Ø</b> T |                  | С                   | Flux rate.                                    |
| GH <b>ZE</b> RØ          | I                | С                   | Greenich hour angle at launch.                |
| ITP                      | ı                | С                   | Target planet code.                           |
| ØMEGAG                   | I                | С                   | Earth rotation rate.                          |
| PRADIS                   | I                | С                   | Planetary radii.                              |
| SCD                      | o                | C                   | Power degradation factor.                     |
| UREL                     | 1                | С                   | Body relative position vectors.               |

#### Local Variables:

| Variable      | <u>Definition</u>                 |
|---------------|-----------------------------------|
| AI            | Power degradation constants.      |
| CMLAT         | Cosine of magnetic S/C latitude.  |
| DLAT          | Latitude of North magnetic pole.  |
| dløn          | Longitude of North magnetic pole. |
| ERAD          | S/C radius.                       |
| FI            | Degradation functions.            |
| GHA           | Greenich longitude.               |
| GLAT          | Geographic S/C latitude.          |
| g <b>lø</b> n | Geographic S/C longitude.         |
| SMLAT         | Sine of magnetic S/C latitude     |
| U             | Intermediate variable.            |

Subroutines Called: ANGMØD, MMATB, VECMAG

Calling Subroutines: PATH

Common Blocks: (BLANK), CØNST, EPHEM, TRAJ1, TRAJ2, WØRK

Logic Flow: None.

#### 3.5.6-A Subroutine: GRAVAR

<u>Purpose</u>: GRAVAR computes the variational matrices, with the exception of the gravity gradient matrix (G11), needed to formulate the matrix differential equations which integrate into the augmented state transition matrix.

Method: The variational matrices are formulated as follows
(Reference 1, p 122):

G12 = k = 
$$\frac{\partial \dot{\underline{r}}}{\partial \underline{r}_e}$$
 =  $\frac{\mu_e}{r_e^5}$   $\left[3\underline{r}_e\underline{r}_e^T - \underline{r}_e^2\right] - \frac{\mu_s}{\rho_e^5} \left[3\underline{\rho}_e\rho_e^T - \rho_e^2\right]$ 

G22 = p = 
$$\frac{\partial \underline{\underline{r}_e}}{\partial \underline{\underline{r}_e}}$$
 =  $-\frac{\mu_e}{\underline{r_e}} \left[ 3\underline{\underline{r}_e} \ \underline{\underline{r}_e}^T - \underline{\underline{r}_e}^2 \ I \right]$ 

$$GM11 = m = \frac{\partial r}{\partial \mu_c} = -\frac{r}{r^3}$$

$$GM12 = d = \frac{\partial \frac{\ddot{\rho}_e}{\partial \mu_e}}{\partial \mu_e} = -\frac{\rho_e}{\rho_e^3}$$

$$GM21 = s = \frac{\partial \dot{\underline{r}} \dot{e}}{\partial \mu_s} = -\frac{\dot{\underline{r}} \dot{e}}{r_s^3}$$

$$GM22 = q = \frac{\partial \dot{r}_{e}^{i}}{\partial \mu_{e}} = -\frac{\dot{r}_{e}^{i}}{r_{e}^{3}}$$

#### where:

 $\underline{\mathbf{r}}$  is the s/c heliocentric position vector

 $\underline{\underline{r}}_{e}$  is the heliocentric ephemeris planet position vector

 $\mu_{
m e}$  is the gravitational constant of the ephemeris planet

 $\mu_{_{
m S}}$  is the gravitational constant of the sun

 $ho_{\!
m e}$  is the position vector of the s/c WRT the ephemeris planet

| In | put | /0u | t | рu | t | : |
|----|-----|-----|---|----|---|---|
|    |     |     |   |    |   |   |

| Input/Outp        | ut:              |                     |                                                                                  |  |  |
|-------------------|------------------|---------------------|----------------------------------------------------------------------------------|--|--|
| <u>Variable</u>   | Input/<br>Output | Argument/<br>Common | Definition                                                                       |  |  |
| UP                | I                | c                   | Heliocentric position vectors of all bodies in the integration                   |  |  |
| IAUGDC            | I                | , <b>c</b>          | Array of flags used to augment<br>the state for STM or covariance<br>integration |  |  |
| PMASS             | 1                | С                   | Planetary gravitational constants                                                |  |  |
| SMASS             | 1                | C                   | Solar gravitational constant                                                     |  |  |
| UREL              | I                | С                   | Position vector of s/c relative to all bodies considered in the integration      |  |  |
| UREIM             | I                | c                   | Magnitudes of UREL                                                               |  |  |
| G12               | Ø                | · c                 | k                                                                                |  |  |
| G22               | Ø                | С                   | p                                                                                |  |  |
| GM11              | Ø                | С                   | m                                                                                |  |  |
| GM12              | Ø                | C ·                 | ď                                                                                |  |  |
| GM21              | Ø                | E                   | s                                                                                |  |  |
| GM22              | ø                | C                   | <b>q</b>                                                                         |  |  |
| IEP               | I                | С                   | Ephemeris body identification                                                    |  |  |
| Local Varia       | ables:           |                     |                                                                                  |  |  |
| Variable          |                  |                     | Definition                                                                       |  |  |
| UPM ( = WORK(10)) |                  |                     | Magnitude of position vector of the ephemeris planet.                            |  |  |
| SMUK ( = WORK(4)) |                  | Gravita             | Gravitational constant of ephemeris planet                                       |  |  |

Subroutines Called: VECMAG

Calling Subroutines: DPHI, PDOT

Common Blocks: EPHEM, TRAJ1, TRAJ2, WORK

#### Logic Flow:



3.5.6-B Subroutine: GRAVFØ (UA)

Purpose:

The subroutine GRAVFØ has two principal purposes. The first is the calculation of differential accelerations acting on the s/c due to gravitational bodies being considered in the analysis. The second purpose is the computation of the gravity gradient matrix, Gll, which is used in the algorithm determining the step size for the trajectory integrator (PATH). Gll is used also with the other variational matrices, G12, G22, GM12, GM12, GM21, and GM22 (all computed in GRAVAR) to formulate the matrix differential equations which integrate into the augmented state transition matrix. In addition, GRAVFØ performs many auxilliary calculations which determine the relative geometrics among all planetary bodies and the s/c. These geometricl quantities are stored in common blocks accessible to other routines where they may be used without further computational expense.

Method:

TRAJ uses Encke's formulation of the equations of motion for propagating trajectories, (Section 4.1, Reference 1). The differential acceleration computed by GRAVFØ is

$$\delta \underline{r} = -\frac{\mu}{r_c^3} \left[ f(\alpha) \cdot \underline{r} + \delta \underline{r} \right] - \sum_{i=1}^N \frac{\mu}{\varrho_i^3}.$$

$$\left[\begin{array}{c} \underline{r} + f(\boldsymbol{\alpha}_{i}) \cdot \underline{r}_{i} \end{array}\right]$$

$$\frac{\mathbf{r}}{\mathbf{r}} = \frac{\mathbf{r}}{\mathbf{c}} + \delta \mathbf{r}$$

$$\frac{\mathbf{r}}{\mathbf{r}} = \frac{\mathbf{r}}{\mathbf{c}} + \delta \mathbf{r}$$

$$\mathbf{f}(\alpha) = \frac{\alpha (3 + 3\alpha + \alpha^{2})}{1 + (1 + \alpha)^{3/2}}$$

$$\alpha = \frac{(\delta \mathbf{r} - 2\mathbf{r}) \cdot \delta \mathbf{r}}{\mathbf{r}^{2}}$$

$$\underline{e}_{i} = \underline{r} + \underline{r}_{p} - \underline{r}_{i}$$

$$f(\alpha_i) = \alpha_i \left[ \frac{3+3\alpha_i + \alpha_i^2}{1+(1+\alpha_i)^{3/2}} \right]$$

$$\alpha_{i} = \frac{r}{\varrho_{i}} \left[ \frac{r}{\varrho_{i}} - \frac{2 r}{r \varrho_{i}} \right]$$

reference conic position vector of the spacecraft.

 $P_i$  - position vector of the spacecraft relative to the  $i\frac{th}{t}$  body.

 $\underline{\underline{r}}$  - heliocentric position vector of the space-craft.

r - heliocentric position vector of the ith body.

N - number of bodies included in the integration other than the sun.

 $\frac{\mathbf{r}}{\mathbf{p}}$  - heliocentric position vector of the primary body.

 $\mu$  - gravitational constant.

GRAVF also computes the gravity gradient matrix, Gll, which is used for state transition matrix propagation and as a determinant in the integrator step size logic. (Reference 1, p 122)

G11 = f = 
$$\left(\sum_{i=1}^{N} f_{i}\right) + f_{p}$$

$$= \left(\sum_{i=1}^{N} \frac{\partial \ddot{\rho}_{i}}{\partial \rho_{i}}\right) + \frac{\partial \ddot{\rho}_{p}}{\partial \rho_{p}}$$

$$= \left(\sum_{i=1}^{N} \frac{\mu_{i}}{\rho_{i}^{5}} \left[3\rho_{i} \rho_{i}^{T} - \rho_{i}^{2}\right]\right)$$

$$+ \frac{\mu_{p}}{\rho_{p}^{5}} \left[3\rho_{p} \rho_{p}^{T} - \rho_{p}^{2}\right]$$

The subscript i refers to the i<sup>th</sup> perturbing body and the subscript p refers to the primary body.  $\underline{\rho}$  indicates body relative position vectors while  $\mu$  is the gravitational constant.

## Input/Output:

| <u>V</u> <u> </u> | riable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                |
|-------------------|--------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | UA     | I                | A                   | The first three elements contain $\delta \underline{r}$ .                                                                                                                 |
|                   |        |                  |                     | The second three elements contain $\delta \dot{\underline{t}}$ .                                                                                                          |
|                   | UENC   | I                | С                   | <u>r</u> c                                                                                                                                                                |
|                   | UENCM  | I                | С                   | r <sub>c</sub>                                                                                                                                                            |
|                   | VENC   | I .              | <b>C</b> .          | <u> </u>                                                                                                                                                                  |
|                   | UTRUE  | 0                | C ,                 | <u>r</u>                                                                                                                                                                  |
|                   | UTRUEM | 0                | С                   | r                                                                                                                                                                         |
|                   | VTRUE  | 0                | С                   | <u> </u>                                                                                                                                                                  |
|                   | VTRUEM | <b>o</b> .       | С                   | <del>i</del>                                                                                                                                                              |
|                   | APERT  | 0                | С                   | Array that contains the perturbing acceleration vector for each body included in the integration. APERT (I, IPRI) I = 1.3 contains the vector sum of these perturbations. |
|                   | SMASS  | Ī                | С                   | Solar gravitational constant.                                                                                                                                             |
|                   | PMASS  | I                | C                   | Array of planetary gravita-<br>tional constants.                                                                                                                          |
|                   | UREL   | 0                | С                   | Array containing each $\frac{\rho}{-i}$ .                                                                                                                                 |
|                   | URELM  | 0 .              | С                   | Array containing each $ ho_{\!_{\! 1}}$ .                                                                                                                                 |
|                   | VREL   | 0                | С                   | Array containing each $\frac{\dot{\rho}}{2}$ .                                                                                                                            |
|                   | VRELM  | 0                | С                   | Array containing each $\stackrel{\bullet}{ ho}_1$ .                                                                                                                       |
|                   | UP     | I                | С                   | Array containing each ri.                                                                                                                                                 |
|                   | VP     | I                | C                   | Array containing each $\dot{\underline{r}}_i$ .                                                                                                                           |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                      |
|----------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| NB       | ī.               | С                   | Array containing planet codes of each body in the integration.                                                  |
| APRIM    | 0                | c                   | <u>r</u> p                                                                                                      |
| ATØT     | 0                | С                   | δ <u>r</u>                                                                                                      |
| G11      | 0                | С                   | f                                                                                                               |
| MPLAN    | I .              | C                   | N + 1                                                                                                           |
| IPRI     | I                | С                   | Flag used to locate information concerning the primary body in the UP, UREL, URELM, VP, VREL, and VRELM arrays. |

#### Local Variables:

| Variable                     | Definition                                                                                                    |
|------------------------------|---------------------------------------------------------------------------------------------------------------|
| ADEL (= $WØRK(I)$ , I = 1,3) | $-\frac{\mu}{r_{e^{3}}} \left[ f(\alpha) \underline{r} + \delta \underline{r} \right]$                        |
| APERT (J, IPRI),<br>J = 1,3  | $-\sum_{i=1}^{N} \frac{\mu_{i}}{\rho_{i}^{3}} \left[ \underline{r} + f(\alpha_{i}) \underline{r}_{i} \right]$ |
| F(X)                         | Statement function equivalent to $f(\boldsymbol{a})$ and $f(\boldsymbol{a}_i)$ .                              |
| Q (= WORK(21))               | α                                                                                                             |

Subroutines Called:

VE CMAG

Calling Subroutines:

møtiøn

Common Blocks:

EPHEM, TRAJ1, TRAJ2, WØRK



#### 3.5.6C Subroutine: GRVPØT

#### Purpose:

To evaluate perturbing accelerations due to the J2 term in the gravitational potential and to calculate variational partial derivatives appearing in the variational differential equation which generates the augmented state transition matrix.

#### Method:

is computed as outlined in the Analytic Manual, Section 4.1. This acceleration vector is rotated from the equatorial to the ecliptic frame and is transmitted to subroutine GRAVFØ where it is added to ATØT, the differential acceleration vector. When the nonspherical mass model is being considered, variational partials are also computed in GRVPØT by analytic formulae which are given in Section 9.4 of the Analytic Manual. These partials are added to the a appropriate partition of the F<sub>A</sub> matrix.

#### Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                              |
|-----------------|------------------|---------------------|---------------------------------------------------------|
| <b>J2</b>       | I.               | С                   | J2 coefficient in the gravitational potential function. |
| PRADIS          | I                | С                   | Planetary radii (Earth).                                |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                    |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------|
| PMASS           | I                | C                   | Planetary gravitational constants (Earth).                                                    |
| UTRUE           | I                | C                   | Geocentric S/C position vector, ecliptic reference frame.                                     |
| EC EQ           | I                | С                   | Rotation matrix for trans-<br>forming a vector from<br>equatorial to ecliptic<br>coordinates. |
| GPERT           | Ø                | С                   | Vector of perturbing accelerations due to the nonspherical mass distribution of the primary.  |
| G11             | 1/0              | С                   | Variational partials of S/C acceleration changes w.r.t. changes in the position.              |
| IAUGDC          | I                | С                   | Flag vector identifying augmented dynamic parameters.                                         |
| GJ2             | 0                | С                   | Variation partials of S/C acceleration change w.r.t. changes in J2.                           |

## Local Variables:

| <u>Variable</u> | Definition                                                                              |
|-----------------|-----------------------------------------------------------------------------------------|
| UTRUEQ          | S/C position vector relative to the primary body's equatorial system.                   |
| GPRTEQ          | Perturbing acceleration vector due to a nonspherical mass distribution.                 |
| GEQ             | Variational partials expressed relative to the geocentric equatorial coordinate system. |

Subroutines Called: ADD, MMAB, MMABAT, MMATB, ZERØM

Calling Subroutines: GRAVFØ

Common Blocks: CØNST, EPHEM, TRAJ1, TRAJ2, WØRK





## 3.5.7 Subroutine: LØADFM (DS, DP, INDEX)

Purpose: To compute the F matrix and the matrix of deriv-

atives  $\dot{\Phi} = F\Phi$  or  $\dot{P} = FP + PF^T + Q$  for

transition matrix or covariance, respectively.

(Sections 4.5 and 4.6, Reference 1).

Method: The non-zero components of F are stored in appro-

priate sub-matrices, according to the degree the

state is augmented.

Remarks: <u>Case 1</u>: State transition matrix.

Given the augmented state vector

$$\underline{x} = \begin{bmatrix} \underline{r} \\ \underline{\dot{r}} \\ \underline{u} \\ \underline{r}_{e} \\ \underline{\dot{r}}_{e} \\ \underline{\rho}_{e} \\ \underline{\rho}_{s} \end{bmatrix}$$

where

r - spacecraft position vector.

† - spacecraft velocity vector.

u - constant spacecraft controls.

relative to the ephemeris body.

 $\dot{\underline{r}}_{e}$  - velocity vector of the spacecraft relative to the ephemeris body.

The linearized equations of motion for the augmented state are

$$S \times F S_{\underline{x}}$$

where

$$F = \frac{3 \times x}{3 \times x}$$

$$\mathbf{F} = \begin{bmatrix} 0 & \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{f} & \mathbf{0} & \mathbf{g} & \mathbf{k} & \mathbf{0} & \mathbf{d} & \mathbf{m} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{P} & \mathbf{0} & \mathbf{q} & \mathbf{s} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

where I is a 3x3 identity matrix and

$$f = \frac{\partial \ddot{x}}{\partial x} \qquad m = \frac{\partial \ddot{x}}{\partial y_s}$$

$$g = \frac{\partial \ddot{x}}{\partial y_s} \qquad p = \frac{\partial \ddot{x}}{\partial x_s}$$

$$k = \frac{\partial \ddot{x}}{\partial y_s} \qquad q = \frac{\partial \ddot{x}}{\partial y_s}$$

$$d = \frac{\partial \ddot{x}}{\partial y_s} \qquad s = \frac{\partial \ddot{x}}{\partial y_s}$$

Case 2: Covariance matrix.

Given the augmented state vector

$$\underline{x} = \begin{bmatrix} \underline{r} \\ \underline{r} \\ \underline{u} \\ \underline{\omega} \\ \underline{r}_1 \\ \underline{r}_2 \\ \underline{r}_3 \end{bmatrix}$$

where

ω - time varying thrust parameters.

 $\underline{\mathbf{r}}_{i}$  - tracking station position vectors.

and

where I is a 3x3 identity matrix,

$$f = \frac{\partial j}{\partial z}$$

$$g = \frac{3\pi}{3\pi}$$

and h is the matrix of process noise correlation times

$$h = \begin{bmatrix} \frac{-1}{T_1} & 0 & -\cdots & 0 \\ 0 & \frac{-1}{T_2} & -\cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & -\cdots & \frac{-1}{T_6} \end{bmatrix}$$

The matrix Q is the process noise,

The dimensions of  $\overline{\Phi}$ ,  $\overline{\Phi}$ , P, P, F and Q are determined by the highest degree of augmentation of the state vector. The flag array that controls the augmentation is the IAUGDC array.

## Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| INDEX    | I                | A                   | = 1, Load the F matrix and compute P. = 2, Load the F matrix and compute 2. = 3, Use current F, compute P. = 4, Use current F, compute 2. |
| DS       | I                | A                   | <ul><li>P for Covariance propagation.</li><li>for Transition Matrix propagation</li></ul>                                                 |
| DP       | 0                | A                   | <pre>= P for Covariance propaga-<br/>tion, for transition<br/>matrix</pre>                                                                |
| F(LØCFI) | I                | С                   | Location in Blank Common to use for F matrix storage.                                                                                     |
| IAUGDC   | I                | C                   | Array of flags where each element determines what is to be loaded in the F matrix.                                                        |
| G11      | I                | С                   | f                                                                                                                                         |
| GT       | I                | · с                 | g                                                                                                                                         |
| G12      | I                | C                   | k                                                                                                                                         |
| G22      | I                | С                   | p·                                                                                                                                        |
| GM12     | I                | С                   | ď                                                                                                                                         |
| GM22     | I                | C                   | q                                                                                                                                         |
| GMI1     | I                | С                   | m ·                                                                                                                                       |
| GM2 1    | I                | C ,                 | s                                                                                                                                         |
| GTAU1    | I                | C                   | Upper left 3x3 of h                                                                                                                       |
| GTAU2    | I                | . <b>C</b>          | Lower right 3x3 of h                                                                                                                      |
| QNØISE   | I                | С                   | Q = process noise                                                                                                                         |
| ME QS    | I                | С                   | Dimensions of $\mathbf{p}$ , $\mathbf{g}$ , $\mathbf{p}$ , $\mathbf{p}$ , and $\mathbf{F}$ .                                              |

Subroutines Called:

MMAB, MUNPAK, SCALE, SYMTRZ, ZERØM

Calling Subroutines:

DPHI, PDØT, TRAJ

Common Blocks:

(BLANK), TRAJ1, TRAJ2, WØRK

#### Logic Flow:





3.5.8 Function Routine: LØCATE (INDEX)

Purpose: To locate the target body, ephemeris body,

launch body or primary body in the NB array.

Method: None

Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                     |
|-----------------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------|
| INDEX           | I                | A                   | <pre>SET = 1 Locate target body = 2 Locate ephemeris body = 3 Locate launch body = 4 Locate primary body</pre> |
| NTP             | I.               | С                   | Number of the target body                                                                                      |
| NEP             | <b>1</b> .       | C                   | Number of the ephemeris body                                                                                   |
| NLP             | ı                | С                   | Number of the launch body                                                                                      |
| NPRI            | I                | C                   | Number of the primary body                                                                                     |

Local Variables:

None

Subroutines Called:

None

Calling Subroutines:

PATH, GRAVFØ

Common Blocks:

TRAJ 2

Logic Flow:



3.5.9 Subroutine: MØTIØN (T, DS, DSD, M, N, LØC)

Purpose: To compute the S/C accelerations and to rectify

the reference conic.

Method:

Encke's formulation of the equations of motion.

Input/Output:

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                            |
|---------------|------------------|---------------------|-----------------------------------------------------------------------|
| T             | · I              | A                   | Trajectory time                                                       |
| DS            | I                | A                   | Dependent variable                                                    |
| DSD           | Ø                | A                   | Differential equations                                                |
| M             | I                | A                   | Number of rows in DS and DSD                                          |
| N             | I                | A                   | Number of columns in DS and DSD                                       |
| <b>LØ</b> C   | I ·              | <b>A</b> .          | Routing flag                                                          |
| <b>ЕР</b> ØСН | I                | . <b>c</b>          | Julian Date of Launch                                                 |
| TM            | I                | C                   | Conversion from seconds to days                                       |
| EXHVEL        | I                | C                   | Exhaust velocity                                                      |
| ATØT          | I                | С                   | Differential acceleration plus perturbing gravitational accelerations |
| THRACC        | I <sub>.</sub>   | C                   | Thrust accelerations                                                  |
| RPÁCC         | I                | C ·                 | Radiation Pressure acceleration                                       |

Local Variables:

None

Subroutines Called: REFINE, SØLAR, ØSCUL, GRAVFØ, EP, RPRESS, ADD, CØPY

Calling Subroutines: NUMIN, DPHI, PDØT

Common Blocks: CØNST, TIME, TRAJ1, TRAJ2, WØRK

#### Logic Flow:



3.5.10 Subroutine: NEWTON (XVALUE, YVALUE, X, Y, INDEX)

Purpose:

To fit a third Order Polynomial through 4 data points for either interpolation or finding the

minimum of the polynomial.

Method:

Newton's third Order Divided Difference Interpolation

Polynomial. (See Appendix 3, Reference 1)

#### Input/Output:

|                 | Input/ | Argument/<br>Common | Definition                                                                                                               |
|-----------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| <u>Variable</u> | Output | OONAROH             |                                                                                                                          |
| XVALUE          | ı      | A                   | Table of independent values                                                                                              |
| YVALUE          | · I    | <b>A</b> .          | Table of dependent values                                                                                                |
| x               | 1/0    | A                   | For interpolation, the value of X for which Y is desired. (Input) For a minimum, the value of X at the minimum. (Output) |
| Y               | 1/0    | A                   | For interpolation, the interpolated value of Y. (Output) For a minimum, the value of Y at the minimum. (Output)          |
| INDEX           | ı      | A                   | Set = 1, Find the minimum<br>Set = 2, Interpolate                                                                        |

## Local Variables:

| Variable | Definition |
|----------|------------|
| Variable | Definition |

DDX

The Divided Differences

A, B, C, D

Coefficients of a 3rd Order Polynomial

Subroutines Called:

None

Calling Subroutines:

PATH

Common Blocks:

None

# Logic Flow:



3.5.11A Subroutine: NUMIN (M, N, X, H, YC, YP, F, DERIV)

Entry Points:

SETUP, RUNG2, RUNG4

Purpose:

To integrate an MxN matrix of first order

differential equations.

Method:

4th Order Runge-Kutta formula (RUNG4) and 2nd Order (RUNG2)

Input/Output:

| Variable | 1/0 | Argument/<br>Common | Definition                    |
|----------|-----|---------------------|-------------------------------|
|          |     |                     |                               |
| M        | I   | A                   | Number of rows                |
| N        | I   | Α                   | Number of columns             |
| X        | I/Ø | · <b>A</b>          | Independent variable          |
| Н        | I   | A                   | Integration step-size         |
| YC       | I/Ø | A                   | Matrix of dependent variables |
| YP       | Ø   | A                   | Temporary storage matrix      |
| F        | Ø   | A                   | 4 - Temporary storage         |
|          |     |                     | matrices                      |
| DERIV    | I   | A                   | Name of the subroutine        |
|          |     |                     | containing the                |
|          |     |                     | differential equations.       |

### Local Variables:

| Variable | Definition                                                   |
|----------|--------------------------------------------------------------|
| ALPHA    | Array of 4 integration constants                             |
|          | $(0, \frac{1}{2}, \frac{1}{2}, 1)$ or $(0, 1, 0, 0)$         |
| BETA     | Array of 4 integration constants                             |
|          | $(0, \frac{1}{2}, \frac{1}{2}, 1)$ or $(0, 1, 0, 0)$         |
| CHI      | Array of 4 integration constants                             |
| •        | $(1/6, 2/6, 2/6, 1/6)$ or $(\frac{1}{2}, \frac{1}{2}, 0, 0)$ |
| LØC      | Output flag to DERIV                                         |
|          |                                                              |

Subroutines Called: DERIV (defined by argument, e.g., DPHI, MØTIØN, PDØT)

Calling Subroutine: PATH

Common Blocks: None

Logic Flow:



3.5.11-B Subroutine: ØCCULT (A, E, USV, XMU, RS, BØDY, T, F)

<u>Purpose</u>: To compute the entrance and exit true

anomalies of occultation.

Method:

A quartic equation in the cosine of the entrance and exit true anomalies is

formulated as follows:

$$\mathcal{S} = c_1 \cos^4 f + c_2 \cos^3 f + c_3 \cos^2 f + c_4 \cos f + c_5$$

The coefficients are derived from the orbital geometry and the anti-sun vector as described in Appendix 8 of the Analytic Manual. The equation  $\mathcal{L} = 0$  is the condition for shadow entrance and shadow exit. If the S/C is entering the shadow,  $\mathcal{L}$  must change from minus to plus. Exit from the shadow will be characterized by  $\mathcal{L}$  changing from plus to minus. Spurious roots of the above equation are eliminated by enforcing the physical constraint that

$$\underline{s} \bullet \underline{r} > 0$$

where  $\underline{S}$  is the anti-sun vector and  $\underline{r}$  is the position vector to shadow entrance (or exit) in the orbit.

Remarks:

Refer to Appendix 8 of the Analytic Manual

for a complete discussion of the shadow model.

## Input/Output:

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                           |
|---------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A             | I                | A                   | Semi-major axis.                                                                                                                                                                     |
| E             | I                | A                   | Orbital eccentricity.                                                                                                                                                                |
| USV           | I                | A                   | 6 vector; first 3 components define a unit vector in the direction of periapsis; the second three components define a unit vector in the direction of the periapsis velocity vector. |
| XMU           | . I              | A                   | Gravitational constant of the central body.                                                                                                                                          |
| RS            | I                | A                   | Radius of occulting body.                                                                                                                                                            |
| в <b>Ø</b> DY | I                | A                   | A unit vector toward the sun.                                                                                                                                                        |
| Т             | Ø                | A                   | T(1) is entrance time (sec) into shadow and t(2) is exit time (sec) from shadow as measured from periapsis crossing.                                                                 |
| F             | Ø                | A                   | F(1) is entrance true anomaly (rad) into shadow and F(2) is exit true anomaly (rad) from shadow.                                                                                     |
| НМ            | I                | С                   | Angular momentum.                                                                                                                                                                    |

## Local Variables:

| Variable             | Definition                                                                        |  |  |
|----------------------|-----------------------------------------------------------------------------------|--|--|
| BETA                 | $\widetilde{S} \circ \widetilde{P}$ , where $\overline{P} = USV(I)$ , $I = 1$ , 3 |  |  |
| C1, C2, C3<br>C4, C5 | Coefficients to the quartic equation                                              |  |  |

| Variable | Definition                                                             |  |  |  |
|----------|------------------------------------------------------------------------|--|--|--|
| СРНІ     | Test angle to eliminate spurious roots                                 |  |  |  |
| P        | Semi-latus rectum                                                      |  |  |  |
| R        | Position magnitude                                                     |  |  |  |
| XXI      | $\tilde{S} \cdot \tilde{Q}$ , where $\tilde{Q} = USV(I)$ , $I = 4$ , 6 |  |  |  |

Subroutines Called: ANGMØD, QARTIC, UDØTV

Calling Subroutines: SHADØW

Common Blocks: CØNST, ENCØN, SHADØW, WØRK

Logic Flow: See listing.

472 PATH-1

3.5.12 Subroutine: PATH

Entry Point: FLIGHT

<u>Purpose</u>: PATH initializes all trajectory routines, while

FLIGHT controls trajectory propagation.

Remarks: Based upon input flags, PATH determines how

FLIGHT will function as well as all the other

trajectory routines. FLIGHT tests for and

executes trajectory rectification, primary body

changes, thrust control and shadow phase changes,

trajectory termination conditions, trajectory

print and trajectory events.

The most significant feature of PATH is the use of blank common as a working area for the Fourth Order Runge-Kutta numerical integration routine (Appendix 2, Reference 1), applied to a matrix of first order differential equations.

$$Y_{k+1} = Y_k + \frac{h_k}{6} \quad (F_1 + 2 \cdot F_2 + 2 \cdot F_3 + F_4)$$

where

$$F_1 = F'(x_k, Y_k)$$

$$F_2 = F'(x_k + \frac{h_k}{2}, Y_k + \frac{h_k}{2} \cdot F_1)$$

$$F_3 = F'(x_k + \frac{h_k}{2}, Y_k + \frac{h_k}{2} \cdot F_2)$$

$$F_4 = F'(x_k + h_k, Y_k + h_k \cdot F_3)$$

The values of Y and F are stored in a blank common array (DSC) and their order depends upon whether some or no events are processed within the normal integration step  $(h_k)$ .

Case 1: If no events occur between  $X_k$  and  $X_{k+1} = X_k + h_k$ , then a normal integration step will be taken. The values of  $Y_k$  and  $Y_k$  and  $Y_k$  are used for the Runge-Kutta integration and at the completion of the step the DSC array appears as

DSC = 
$$Y_{k+1}$$
,  $F_1(X_k + h_k, Y_{k+1})$ ,
$$F_2, F_3, F_4, ---, ---, Y_{k+1}$$

where the first two entries (Y and  $F_1$ ) are at the updated  $X_{k+1}$  point, the next three entries contain values of F in the  $h_k$  interval, there are two unused storage arrays, and the last entry is a running value of Y (which becomes  $Y_{k+1}$  at the end of the step). The next

474 PATH-3

integration step  $(h_{k+1})$  can now be taken and starts with  $Y_{k+1}$ ,  $F_1$ .

Case 2: If an event or print has been specified by either the calling mode or TRAJ itself, and it occurs between  $X_k$  and  $X_{k+1}$ , then a short integration step (\*h) is taken to the event. The resultant blank common storage at the event  $(X_k + *h)$  is then

DSC = 
$$Y_k$$
,  $F_1$ ,  $*Y_{k+1}$ ,  $*F_1(x_k + *h_k, *Y_{k+1})$ ,  
 $*F_2$ ,  $*F_3$ ,  $*F_4$ ,  $*Y_{k+1}$ 

where asterisks (\*) refer to values for the event integration step. The first two entries are stored values of Y and F at  $X_k$ , to preserve values such that a normal integration step can be taken after the event has been processed. The next six entries are used for the event integration step. If no more events occur before  $X_k + h_k$ , then normal integration resumes with the stored values  $Y_k$  and  $F_1$ , and the results are shown in Case 1. If more events occur before  $X_k + h_k$ , then the process of Case 2 is repeated using  $Y_{k+1}$  and  $Y_{k+1}$ 

transition matrix or covariance in addition to the state deviation from the reference conic, an additional array is needed. This array is used to store the partial deviatives contained in the F matrix (Appendix 4, Reference 1). The locations for the F matrix begin after the last word of  $Y_k$  (or  $Y_k$ ). The amount of blank common used by TRAJ varies with the number of equations to be integrated. For the state only case,

$$Y = \begin{bmatrix} S\underline{r} \\ S\underline{v} \\ m \\ \delta m \end{bmatrix}$$

where  $\S_{\underline{r}}$  and  $\S_{\underline{v}}$  are deviations from the conic state, m is the spacecraft mass and  $\S_{\underline{m}}$  is the mass variation. When the transition matrix  $(\P)$  or the covariance (P) are to be integrated

or

$$Y = \begin{bmatrix} S \underline{r} \\ S \underline{v} \\ m \\ S m \\ P \end{bmatrix}$$

For state only integration, Y is an 8 x 1 matrix. When the transition matrix or covariance is to be integrated, the dimension of Y varies with  $\underline{\Phi}$  and P. The dimensions of  $\underline{\Phi}$  and P are those for the highest degree of augmentation. The subroutine FIND determines the number of equations to be integrated, the dimensions of  $\underline{\Phi}$  or P and the number of locations in blank common needed for numerical integration.

Other information stored in blank common are:

- X Current trajectory integration
  k time (t);
- h Integration stepsize;
- t<sub>n</sub> Integration event time;
- t Next mode event time;
- tpR Next mode print time;
- Four stored times used for interpolation;
- r<sub>i</sub> Four stored position magnitudes corresponding to the t<sub>i</sub>'s, also used for interpolation;

## Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                           |
|----------|------------------|---------------------|------------------------------------------------------|
| INTEG    | Ι.               | C                   | Flag that determines the equations to be integrated. |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                             |
|-----------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------|
|                 | ·                |                     | <pre>= 1, State and transition           matrix; = 2, State; = 3, State and covariance.</pre>                          |
| IPRINT          | I                | <b>. 'C</b>         | Flag that determines when to print.                                                                                    |
|                 | •                |                     | <pre>= 1, Every IPRINT integra-</pre>                                                                                  |
| MPLAN           | I                | С                   | Total number of bodies to be considered in the NB array.                                                               |
| Løcs            | I                | <b>C</b>            | First location the integration routine can use for storage.                                                            |
| ISTØP           | ı.               | С                   | Flag that determines trajectory termination.                                                                           |
|                 |                  |                     | <ul><li>1 - Final trajectory time (TDUR);</li><li>2 - Radius of Closest Approach to the target body;</li></ul>         |
|                 |                  |                     | <ul><li>3 - Sphere of influence of the target body;</li><li>4 - Stopping radius relative to the target body.</li></ul> |
| KTRAJ           | I                | С                   | Flag used to test for control phase change.                                                                            |
| ·               |                  |                     | <pre></pre>                                                                                                            |
| MEVENT          | I                | C                   | <pre>0 - Do not test for events; 1 - Test for events.</pre>                                                            |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                               |
|-----------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| NPHASE          | <b>I</b>         | C                   | <ul><li>0 - Primary Body Changes.</li><li>1 - No Primary Body Changes.</li></ul>                                         |
| IPFLAG          | 1/0              | <b>C</b>            | <ol> <li>No Thrust Phase Change<br/>has occurred.</li> <li>Thrust Phase Change has<br/>occurred.</li> </ol>              |
| JPFLAG .        | 1/0              | С                   | <ol> <li>No Primary Body Phase<br/>Change has occurred.</li> <li>Primary Body Phase<br/>Change has occurred.</li> </ol>  |
| IRECT           | 0                | С                   | <ul> <li>0 - Rectification due to primary body or control phase change.</li> <li>1 - Trajectory rectification</li> </ul> |
| ISTEP           | o                | · . <b>c</b> · ·    | Number of integration step.                                                                                              |
| NB              | ı                | C ·                 | Array containing the bodies to be cosidered in the integration.                                                          |
| NBØD -          | I                | c                   | Total number of non-zero entries in the NB array.                                                                        |
| NPRI            | 0                | С                   | Number of the primary body.                                                                                              |
| IPRI            | <b>o</b>         | С                   | Location of NPRI in the NB array.                                                                                        |
| ntphas          | 1/0              | С                   | Number of the current control phase.                                                                                     |
| NEP             | I                | С                   | Number of the ephemeris body.                                                                                            |
| IEP             | o                | c                   | Location of NEP in the NB array.                                                                                         |
| DRMAX           | I                | C                   | Maximum deviation from the reference conic before rectification.                                                         |
| STATEO          | I                | C                   | Initial state vector.                                                                                                    |

| •                     | Input/<br>Output | Argument/<br>Common | Definition                                                                                      |
|-----------------------|------------------|---------------------|-------------------------------------------------------------------------------------------------|
| UTRUE                 | 1/0              | C                   | Position vector relative to the primary body.                                                   |
| VTRUE                 | 1/0              | С                   | Velocity vector relative to the primary body.                                                   |
| ACC                   | I                | .c                  | Trajectory Accuracy level.                                                                      |
| FRCA                  | I                | С                   | Percentage of the semi-<br>major axis of target body<br>to begin closest approach<br>detection. |
| SCMVAR                | I                | C                   | Initial mass variation.                                                                         |
| SCMASS                | I                | <b>C</b> .          | Initial S/C mass.                                                                               |
| THRUST<br>(2, NTPHAS) | I                | С                   | End of the current control phase.                                                               |
| VTRUEM                | I                | , <b>C</b>          | Magnitude of VTRUE.                                                                             |
| UTRUEM                | I                | c ·                 | Magnitude of UTRUE.                                                                             |
| XPRINT                | I                | С                   | Time increment of Print (seconds).                                                              |
| G11                   | I                | C                   | The gravity gradient.                                                                           |
| TDUR                  | Ι.               | C                   | Trajectory stopping time in seconds.                                                            |
| TEVNT                 | I                | С                   | Event time in seconds.                                                                          |
| TCP                   | 0                | C                   | Total integration time.                                                                         |
| TREF                  | I .              | <b>C</b> .          | Initial Trajectory Starting time in seconds.                                                    |
| ТЅТØР                 | 0                | C                   | Time that a stopping criteria has been reached in days.                                         |
| NRECT                 | I                | C                   | Number of Rectifications.                                                                       |
| ALPHA                 | I                | C                   | Inverse of semi-major Axis.                                                                     |
| BIG                   | 1                | c                   | 10 <sup>20</sup>                                                                                |

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                                               |
|---------------|------------------|---------------------|------------------------------------------------------------------------------------------|
| GTAU1         | I                | C                   | Thrust noise correlation times.                                                          |
| GTAU2         | I                | C                   | Thrust noise correlation times.                                                          |
| NTP           | I.               | C                   | Number of the target body.                                                               |
| ITP           | I                | C                   | Location of target body in the NB array.                                                 |
| QNØISE        | I                | C                   | Process noise matrix.                                                                    |
| rstøp -       | I                | . <b>c</b>          | The stopping radius relative to the target body.                                         |
| SPHERE        | Ι.               | С                   | Array containing all the sphere's of influence.                                          |
| TSØI          | <b>o</b>         | <b>c</b> .          | Time at the sphere of influence of the target body.                                      |
| TM            | .1               | С                   | 86400 seconds.                                                                           |
| TRCA          | Ø                | <b>c</b>            | Time at the closest approach to the target body.                                         |
| UREL          | I                | С                   | Relative position vectors of the spacecraft.                                             |
| VREL          | I                | C                   | Relative velocity vectors of the spacecraft.                                             |
| DSC           | 1/0              | C                   | The blank common array where the following flags (LØCH to LØCX) are used to locate data. |
| <b>LØ</b> CH  | I .              | C                   | Integration step-size (h).                                                               |
| LØCM          | I                | С                   | Spacecraft mass (*m).                                                                    |
| <b>LØ</b> CFI | I                | С                   | F matrix (F).                                                                            |
| <b>LØCP</b> R | I                | С                   | Trajectory integration print time $(t_{PR})$ .                                           |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                               |
|-----------------|------------------|---------------------|--------------------------------------------------------------------------|
| LØCPT           | · I              | · C                 | Trajectory print time $(t_p)$ .                                          |
| <b>LØ</b> CDM   | I                | С                   | Mass variation ( $\delta$ m).                                            |
| LØCDT           | I                | С                   | Differential equations for events and print (*F <sub>i</sub> ).          |
| <b>LØ</b> CDY   | Ι                | С                   | Differential equations for the reference $(F_i)$ .                       |
| LØCET           | I                | C                   | Event integration time $(t_e)$ .                                         |
| LØCFØ           | I                | С                   | Location of the input covariance.                                        |
| LØCR            | I                | С                   | Location of the stored position magnitudes $(r_i)$ .                     |
| L <b>Ø</b> CT   | I                | С                   | Location of the stored position trajectory times (t <sub>i</sub> ).      |
| L <b>ØC</b> TC  | I                | С                   | Location of the output transition matrix or covariance (*P or $*\Phi$ ). |
| LOCYC           | I                | С                   | Integrated equations for the reference $(Y_{k+1})$ .                     |
| LØCYP           | I                | С                   | Integrated equations working array $(Y_k)$ .                             |
| LØCYT           | I                | С                   | Integrated equations for events and print $(*Y_{k+1})$ .                 |
| LØCX            | I                | С                   | Trajectory time (X <sub>k</sub> ).                                       |
| MEQ             | I                | С                   | Total number of equations to be integrated.                              |
| MEQ8            | I                | С                   | MEQ-8.                                                                   |
| MEQS            | I                | С                   | √MEQ8                                                                    |

Τ.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                     |
|-----------------|------------------|---------------------|------------------------------------------------------------------------------------------------|
| PØLICY          | I/Ø              | С                   | The thrust policy in effect during occultation.                                                |
| LITE            | I/Ø              | С                   | Flag directing computational flow for shadow changes.                                          |
| IPHAS3          | 1/Ø              | С                   | Flag which determines whether trajectory information is to be printed at shadow phase changes. |
| NITE            | <b>Ø</b>         | С                   | Flag indicating no orbital rectification for shadow phase changes.                             |
| TSHADØ          | I                | С                   | Time at which coarse shadow tests are to be made.                                              |
| TQ              | I                | С                   | Time at which refined shadow tests are to be made.                                             |
| TPHASE          | Ø                | С                   | Time of next phase change (i.e., thrust, shadow-in, or shadow-out phase changes).              |
| T <b>Ø</b> FF   | I.               | С                   | Time of shadow entrance.                                                                       |
| T <b>Ø</b> N    | I                | С                   | Time of shadow exit plus the thruster warm-up time.                                            |
| KIND            | o                | С                   | Flag indicating kind of approaching phase change.                                              |

|                 | -                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                                                                                                                                                                                                                                                     |
| KUTØFF          | ø                | C                   | This flag indicates to the mode calling TRAJ why the trajectory was terminated. Other than termination on final time and an event, the other terminations, closest approach, sphere of influence and stopping radius are not always satisfied. Therefore this multivalued flag gives a different value for the actual stopping condition. The following table shows the relationship between KUTØFF and ISTØP. |

| Requested           | <u>ISTØP</u> | Actual              | KUTØFF                                  |
|---------------------|--------------|---------------------|-----------------------------------------|
| Final Time          | 1            | Final Time          | 1                                       |
| Closest Approach    | 2            | Final Time          | 2                                       |
| Sphere of Influence | 3            | Final Time          | 3                                       |
| Stopping Radius     | 4            | Final Time          | 4                                       |
| Closest Approach    | 2            | Closest Approach    | 5                                       |
| Sphere of Influence | 3            | Closest Approach    | 6                                       |
| Sphere of Influence | 3            | Sphere of Influence | 7                                       |
| •                   | - 42         | Stopping Radius     | <b>8</b>                                |
| Stopping Radius     | NA.          | Event Time          | 9                                       |
| Event Time          | NA           | PACHE TIME          | · • • • • • • • • • • • • • • • • • • • |

# Local Variables:

| <u>Variable</u> | Definition                                    |
|-----------------|-----------------------------------------------|
| HEVNT           | Event integration step-size.                  |
| HPRNT           | Print integration step-size.                  |
| IRSTP           | Indicates termination for determining KUTØFF. |

The following variables are used in assigned GØ TØ statements and are in the TRAJ1 common block. When these statements are used in FLIGHT, there are implicit tests made. The majority of the tests are made in PATH. ITRAJ, IPHASO, IPHAS1, IPHAS2, JPHAS1, JPHAS2, JPHAS3, JTEST, KSTØP, LØCAL, MSTØP, NSTØP, IEVNT1, IEVNT2, IEVNT3, INTEG2, INTEG3, IPHASE, IPRT, IEVENT.

Subroutines Called: COPY, DPHI, FIND, FIND1, FIND3, IDENT, LOCATE,

MØTIØN, NEWTØN, PDØT, PRINTT, RUNG2, RUNG4,

SETUP, UDØTV, VECMAG, ZERØM, FLUX, PUNCHR,

SHADØW

Calling Subroutines: TRAJ

Common\_Blocks: (BLANK), CONST, EPHEM, TIME, TRAJ1, TRAJ2,

WØRK, SHADØW

Logic Flow: The functional flow of PATH and FLIGHT is given

on the next two pages, followed by a more

detailed logic flow.



PATH-13



Detailed Logic Flow:



















3.5.13 Subroutine: PDØT (T, DS, DP, M, N, LØC)

Purpose:

To compute the time derivative of the state

covariance (P)

Method:

 $\dot{P} = FP + PF^{T} + Q$ 

## Input/Output:

| Variable     | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                 |
|--------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| T            | I                | A                   | Trajectory time                                                                                                                            |
| DS           | I                | A                   | Independent variables                                                                                                                      |
| DP           | Ø                | A                   | Differential equations                                                                                                                     |
| M            | I                | A                   | Number of rows in DS and DP                                                                                                                |
| N            | I                | A                   | Number of columns in DS and DP                                                                                                             |
| r <b>o</b> c | I                | A                   | Routing flag                                                                                                                               |
| INTEG        | I                | c                   | Set = 1 Propagate the state<br>and Transition Matrix<br>Set = 2 Propagate the state<br>Set = 3 Propagate the state<br>and state covariance |
| IAUGDC       | I                | С                   | Flag indicating the augmentation of the STM and covariance matrix                                                                          |
| IRECT        | I                | С                   | Index used to check whether the current call to PDØT is for rectification purposes only (i.e. IRECT = 1)                                   |

#### Local Variables

| Variable | Definition                                                     |
|----------|----------------------------------------------------------------|
| IAUGS    | Index used to check whether the F matrix needs to be augmented |

Calling Subroutines: NUMIN

Subroutines Called: MØTIØN, LØADFM, GRAVAR

Common Blocks: TRAJ2

#### Logic Flow:



3.5.14 Function: PØWER (R, TT)

Purpose: POWER computes the power available to the

thrusters of the low thrust spacecraft for

solar electric and nuclear propulsion.

Method: The power is computed from the following

expression.

$$P = \begin{cases} P_{o} \left[ \frac{A_{1}}{r^{2}} + \frac{A_{2}}{r^{5/2}} + \frac{A_{3}}{r^{3}} + \frac{A_{5}}{r^{5}} \right] \\ * \exp \left[ -P_{L}(t-t_{DL}) \right] - P_{HK}, & \text{solar electric} \end{cases}$$

$$P = \begin{cases} P_{max}, & \text{if } P > P_{max} \text{ or } r < r_{min}, & \text{solar electric} \end{cases}$$

$$P \exp \left[ -P_{L}(t-t_{DL}) \right] - P_{HV} & \text{nuclear} \end{cases}$$

P - Power available (at 1 AU for solar, at energization for nuclear)

i - (Empirical) Constants defining solar array characteristics

 Heliocentric position magnitude of the S/C

P, - Power decay constant

t - Time from epoch

t<sub>DL</sub> - Time delay

P - Housekeeping power

P - Maximum allowable solar electric power

 $r_{min}$  - Heliocentric distance for which P is less than  $P_{max}$ 

| <u>Variable</u> | Input<br>Output | Argument/<br>Common | Definition                                      |
|-----------------|-----------------|---------------------|-------------------------------------------------|
| R               | 1               | A                   | Heliocentric distance in A.U. (r)               |
| TT              | I               | <b>A</b>            | Trajectory time in seconds (t)                  |
| pøwero          | I               | С                   | P (Equivalenced to ENGINE(1))                   |
| РНК             | I               | c                   | PHK (Equivalenced to ENGINE(2))                 |
| PMAX            | I               | С                   | P (Equivalenced to ENGINE(3))                   |
| <b>A1</b>       | I,              | С                   | A (Equivalenced to ENGINE(4))                   |
| A2              | I               | <b>C</b> .          | A <sub>2</sub> (Equivalenced to ENGINE(5))      |
| <b>A3</b>       | <b>I</b> .      | c                   | A <sub>3</sub> .(Equivalenced to ENGINE(6))     |
| <b>A</b> 4      | I               | С                   | A <sub>4</sub> (Equivalenced to ENGINE(7))      |
| <b>A</b> 5      | I               | <b>c</b>            | A <sub>5</sub> (Equivalenced to ENGINE(8))      |
| RMIN            | I               | c                   | r (Equivalenced to ENGINE(9))                   |
| PLØSS           | I               | C                   | P <sub>L</sub> (Equivalenced to ENGINE(12))     |
| TDL             | I               | C                   | t <sub>DL</sub> (Equivalenced to<br>ENGINE(13)) |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                          |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------|
| IENRGY   | . I              | c                   | Flag that determines the type of power  0 - nuclear power  1 - solar electric power |
| pøwer    | Ø                | F*                  | Power available to the thrusters.                                                   |

### Local Variables:

| Variable | <u>Definition</u>                                                                   |
|----------|-------------------------------------------------------------------------------------|
| SR       |                                                                                     |
| SCALE    | $\frac{A_1}{2} + \frac{A_2}{5/2} + \frac{A_3}{3} + \frac{A_4}{7/2} + \frac{A_5}{5}$ |

Subroutines Called: None

Calling Subroutines: EP

Common Blocks: CØNST, TRAJ1, TRAJ2



500 PRINTT-1

3.5.15A Subroutine: PRINTT (TT, MASS)

Purpose:

To print trajectory and spacecraft related infor-

mation.

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                                  |
|-----------------|------------------|---------------------|-------------------------------------------------------------|
| NTPHAS          | I                | С                   | Number of the current thrust phase.                         |
| NPRI            | I                | С                   | Number of the current primary body.                         |
| NEP             | I                | С                   | Number of the ephemeris body.                               |
| NTP             | I                | С                   | Number of the target body.                                  |
| PLANET          | I                | C                   | Array containing the names of the planets.                  |
| MASS            | I                | A                   | Current spacecraft mass.                                    |
| wp <b>ø</b> wer | I                | С                   | Current power available to the spacecraft for thrust.       |
| TT              | I                | A                   | Trajectory time in days.                                    |
| TDUR            | I .              | С                   | Trajectory termination time in seconds.                     |
| ЕР <b>Ø</b> СН  | Ι.               | С                   | Trajectory initial time (Julian days).                      |
| TM              | I                | С                   | 86400. seconds.                                             |
| APRIM           | I                | С                   | Acceleration vector due to the gravity of the primary body. |
| THRACC          | 1                | С                   | Acceleration vector due to thrust.                          |
| RPACC           | I .              | С                   | Acceleration vector due to radiation pressure.              |

|          |                  | •                   |                                                                                                                                                                            |
|----------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                                                                 |
| IPFLAG   | I                | С                   | Flag that indicates control phase change.                                                                                                                                  |
| JPFLAG   | I                | С                   | Array containing only the names of the planets included in the integration.                                                                                                |
| APERT    | I                | C                   | Matrix containing the acceleration vectors due to the gravity of the non-primary bodies.                                                                                   |
| UREL     | I                | <b>c</b>            | Matrix of spacecraft position vectors relative to the bodies considered in the integration.                                                                                |
| URELM    | I                | С                   | Array containing magnitudes of the position vectors.                                                                                                                       |
| ····VREL | I                | c                   | Matrix of spacecraft veloc-<br>ity vectors relative to the<br>bodies considered in the<br>integration.                                                                     |
| VRELM    | I                | <b>c</b>            | Array containing magnitudes of the velocity vectors.                                                                                                                       |
| MPLAN    | Ï                | C                   | Total number of bodies included in the integration.                                                                                                                        |
| THRUST   | I                | C                   | Array containing the thrust control. To locate information for the current control phase NTPHAS is used as follows: THRUST (i, NTPHAS) where i is the desired information. |

## Local Variables:

| <u>Variable</u> | <u>Definition</u>                                                  |  |  |
|-----------------|--------------------------------------------------------------------|--|--|
| WØRK            | Temporary storage array.                                           |  |  |
| PHASE           | Array that contains headings for control and primary body changes. |  |  |

Subroutines Called:

None

<u>Calling Subroutines:</u>

PATH, MEASPR

Common Blocks:

CONST, EPHEM, TIME, TRAJI, TRAJ2

Logic Flow:





3.5.15-B Subroutine: QADRAT (A, B, C, X1, X2, KK)

Purpose: To solve for the roots of a quadratic

equation.

Method: The equation

$$A x^2 + Bx + C = 0$$
,

possesses two roots given by

$$x_{i} = -\frac{B \pm \sqrt{B^2 - 4AC}}{2A}$$

#### Input/Output:

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                   |
|-----------------|------------------|---------------------|----------------------------------------------|
| A, B, C         | I                | A                   | Coefficients of the quad-<br>ratic equation. |
| X1, X2,         | Ø                | A                   | Real roots of the equation.                  |
| KK              | Ø                | A                   | No. of real roots                            |

Subroutines Called: None

Calling Subroutines: QARTIC

Common Blocks: None

Logic Flow: See Listing

QARTIC (A, B, C, D, E, X1, X2, X3, X4, KK) 3.5.15-C Subroutine:

To solve for the real roots of a quartic Purpose:

equation.

Method: The equation

$$A_x^4 + B_x^3 + C_x^2 + D_x + E = 0$$
,

is solved in closed form by the method of

quadratic radicals.

A concise summary of the analytic approach Remarks:

may be found in Escobal's Methods of Orbit

Determination," Appendix III, on Pages 430-

434.

#### Input/Output:

| artic |
|-------|
| tic   |
|       |
|       |

<u>Subroutines Called</u>: QADRAT

Calling Subroutines: OCCULT

CØNST Common Blocks:

See Listing

Low Flow:

504 RPRESS-1

#### 3.5.16A Subroutine: RPRESS (CMASS)

<u>Purpose</u>: RPRESS computes the effective acceleration acting on a spacecraft due to radiation pres-

sure.

Method: The effective acceleration is computed from

the following expression.

$$\underline{a}_{R} = \frac{(1.024 \times 10^{8}) C_{r}A}{m r^{2}} \cdot \underline{r}$$

<u>r</u> - heliocentric position vector of the spacecraft.

m - spacecraft mass.

 ${c_r}^{\rm A}$  - coefficient of reflectivity multiplied by the effective area of the solar array.

In the event that  $r \leq r_{min}$ , where  $r_{min}$  is the distance at which the solar electric power is a maximum, the effective cross sectional area of the solar array is changed by tilting (or folding) them. Therefore, the effective acceleration is reduced,

$$\underline{a}_{R} = \underline{a}_{R} \cdot \cos \alpha$$

where & is the off-sun tilt angle.

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition               |
|-----------------|------------------|---------------------|--------------------------|
| CMASS           | I                | A                   | Current spacecraft mass. |

| Variable  | Input/<br>Output | Argument/<br>Common | Definition                                                  |
|-----------|------------------|---------------------|-------------------------------------------------------------|
| CRA       | I                | С                   | $C_{\mathbf{r}}^{\mathbf{A}}$ (Equivalenced to ENGINE(15)). |
| CTILT     | I                | С                   | cos <b>&lt; (</b> Equivalenced to ENGINE(16)).              |
| RMIN      | I                | С                   | r (Equivalenced to ENGINE(9)).                              |
| URELM(1)  | I                | С                   | Heliocentric position of the spacecraft.                    |
| UREL(I, 1 | .) I             | C                   | Heliocentric position vector of the spacecraft.             |
| RPACC     | Ø                | С                   | <u>a</u>                                                    |

# Local Variables:

| <u>Variable</u> | Definition   |
|-----------------|--------------|
| RPA             | 1 <u>a</u> 1 |

Subroutines Called:

None

Calling Subroutine:

møtiøn

Common Blocks:

CØNST, TRAJI

3.5.16B Subroutine: SHAD∲W

Entry Point: SHADE

<u>Purpose</u>: To determine the times of shadow entrance

and shadow exit.

Method: Coarse tests are made to determine whether

the osculating orbit intersects the Earth's

shadow. If an intersection exists, the

time of shadow entrance is predicted. At

that time an accurate, or refined, computa-

tion is completed to determine the actual

entrance and exit times. A quartic equation

in the cosine of the entrance and exit true

anomalies is solved and Kepler's equation

is applied to determine the entrance and

exit times.

Remarks: If the current thrust policy is an imposed

coast period the shadow logic is bypassed.

Refer to Appendix 8 in the Analytic Manual

for a complete discussion of the shadow model.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                  |
|----------|------------------|---------------------|-----------------------------|
| ALPHA    | I                | С                   | Inverse of semi-major axis. |
| A1       | I                | c                   | Orbital mean motion.        |
| BIG      | I                | c                   | 10 <sup>20</sup> .          |

| <u>Variable</u>        | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                        |
|------------------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| DELE                   | I                | С                   | See Page 535.                                                                                                                     |
| DLAY<br>(=ENGINE(18))  | 1                | C                   | Coefficients in the warm-up equation.                                                                                             |
| DLAYO<br>(=ENGINE(17)) | ) I              | С                   | If the shadow time is less than DLAYO, the warm-up time is considered to be nil.                                                  |
| ECCITY                 | I                | С                   | Orbital eccentricity.                                                                                                             |
| EV                     | I                | С                   | Laplace vector.                                                                                                                   |
| EZERO                  | I                | C                   | See Page 535.                                                                                                                     |
| НМ                     | I                | С                   | Angular momentum.                                                                                                                 |
| HV                     | I                | С                   | Angular momentum vector.                                                                                                          |
| ITP                    | I .              | С                   | Location of the target planet in the NB array.                                                                                    |
| LØCX                   | I                | <b>C</b>            | Location of the current trajectory time in blank common.                                                                          |
| MØRBIT                 | I                | ` C                 | Number of orbital revolutions<br>to be completed before further<br>coarse shadow tests are to be<br>made.                         |
| NTP                    | ī.               | С                   | Target planet code.                                                                                                               |
| NTPHAS                 | I                | С                   | Current thrust phase number.                                                                                                      |
| PERIOD                 | 0                | С                   | Osculating orbital period.                                                                                                        |
| PI                     | ı                | C                   | TT.                                                                                                                               |
| PMASS                  | I                | С                   | Planetary mass.                                                                                                                   |
| PRADIS                 | I                | С                   | Planetary radii.                                                                                                                  |
| THRUST                 | I                | С                   | Thrust profile.                                                                                                                   |
| TNITE                  | ø                | С                   | TNITE(1), shadow entrance time referenced from periapsis crossing; TNITE(2), shadow exit time referenced from periapsis crossing. |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                                   |
|-----------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------|
| T <b>ØFF</b>    | Ø                | С                   | Time from launch at which the shadow is entered and thrusters become inoperative.                            |
| TØN             | Ø                | С                   | Time from launch at which the shadow is exited and the thrusters become inoperative (includes warm-up time). |
| TQ              | Ø                | <b>C</b>            | Time at which the quartic equation is to be formulated.                                                      |
| TRUEAN          | Ø                | С                   | True anomalies of shadow entrance and shadow exit.                                                           |
| TSHADE          | Ø                | С                   | Actual time spent in shadow.                                                                                 |
| TSHADØ          | Ø .              | C                   | Time at which the coarse shadow tests will again be made.                                                    |
| WARMUP          | Ø                | С                   | Engine restart delay time.                                                                                   |
| Variables:      |                  |                     |                                                                                                              |

# Local Variables

| Variable | Definition                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------|
| BETA     | True anomaly of the projection of the anti-sun vector in the orbit plane.                                         |
| CAO      | Cosine of the angle between the S/C position vector and the anti-sun vector.                                      |
| CBETA    | Cosine of BETA.                                                                                                   |
| DBETA    | The transit angle through the shadow.                                                                             |
| ECCANS   | The eccentric anomaly of the projection of the anti-sun vector in the orbit plane.                                |
| ЕСТООР   | Transformation matrix from ecliptic to orbital plane coordinates.                                                 |
| P        | Unit vector in the direction of periapsis.                                                                        |
| PQ       | A six vector composed of the elements in vectors ${\bf P}$ and ${\bf Q}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$ |

| Variable             | <u>Definition</u>                                                                           |
|----------------------|---------------------------------------------------------------------------------------------|
| Q                    | Unit vector in the direction of the velocity <b>v</b> ector at periapsis.                   |
| RP                   | Periapsis radius.                                                                           |
| RS                   | Radial magnitude at a true anomaly of BETA in the osculating orbit.                         |
| S                    | Anti-sun vector.                                                                            |
| SMA                  | Semi-major axis.                                                                            |
| SPR <b>Ø</b> J       | Projection of the anti-sun vector in the orbital plane.                                     |
| TBETA                | Time from periapsis crossing at which the $S/C$ will pass through the center of the shadow. |
| TF R <b>Ø</b> MP     | Time from periapsis crossing locating the S/C in the orbit.                                 |
| W                    | Unit momentum vector.                                                                       |
| Subroutines Called:  | ANGMØD, MMATB, NEGMAT, ØCCULT, UDØTV, UNITV, UXV                                            |
| Calling Subroutines: | PATH                                                                                        |
| Common Blocks:       | CØNST, ENCØN, EPHEM, SHADØW, TRAJ1, TRAJ2, WØRK                                             |

Logic Flow:





3.5.17 Subroutine:

SØLAR (JDATE)

Purpose:

To compute the position and velocity of the planets.

Method:

None

Input/Output:

| Variables | Input<br>Output | Argument/<br>Common | Definition                                                              |
|-----------|-----------------|---------------------|-------------------------------------------------------------------------|
| NB        | I               | С                   | Array of bodies for which the position and velocity are to be computed. |
| JDATE     | I               | A                   | Julian Date at which the position and velocity are to be computed       |
| UP        | Ø               | C                   | Array of position vectors                                               |
| VP        | Ø               | С                   | Array of velocity vectors                                               |

Local Variables:

None

Subroutines Called:

EPHEM

<u>Calling Subroutine</u>:

MØTIØN

Common Blocks:

TRAJ1, TRAJ2

#### Logic Flow:



#### 3.6 Utility Routines

A number of subroutines and function routines are used in each mode that are (1) standard to many scientific computer programs, or (2) common to more than one MAPSEP mode. These utility routines are described in this Section. The first group (3.6.1) contain relatively minor and straightforward routines that perform matrix manipulation and vector operations. The second group (3.6.2 through 3.6.11) describe more complex utility routines, all of which apply standard mathematical techniques to compute specific parameters required by MAPSEP.

#### 3.6.1 Minor Subroutines

The following utility routines are straightforward in usage and internal computation. Their description consists of name (and any entry points), input and output arguments, and function. No common blocks are contained in these routines and all are subroutines except UDØTV and VECMAG which are function routines.

| Subroutine<br>(Entry Points) | Arguments                     | Function                                                                                                                                                                                                                                                                |
|------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADD                          | A, B, C,<br>M, N              | ADD performs the matrix operation [C] $_{M\times N}$ = [A] $_{M\times N}$ + [B] $_{M\times N}$ matrices.                                                                                                                                                                |
| ANGMØD                       | ANG                           | ANGMØD modulates the angle ANG so that its value is between 0. and $2\pi$ .                                                                                                                                                                                             |
| CØPY(ICØPY)                  | A, B, M, N                    | COPY copies a real matrix A into matrix B, where A and B are MxN.                                                                                                                                                                                                       |
| ·                            |                               | ICOPY assumes A and B are integer matrices.                                                                                                                                                                                                                             |
| CØPYT                        | CT, C, M, N                   | Copies the transpose of the matrix CT into matrix C, where CT is NxM and C is MxN.                                                                                                                                                                                      |
| EIGENV                       | A, N, FØD,<br>W2, V           | EIGENV computes the eigenvalues and eigenvectors of a N X N matrix A using Jocobi's method of successive rotations. FØD is the tolerance for the off diagonal elements of A. The eigenvalues and eigenvectors are returned in the vector arrays W2 and V, respectively. |
| IDENT                        | C, N                          | Creates an NxN identity matrix C.                                                                                                                                                                                                                                       |
| INVSQM                       | A, N, XB,<br>RTEST, IX,<br>IY | INVSQM inverts an NxN matrix A by the Gauss-Jordan elimination method. The results are returned in A. INVSQM requires four Nxl vectors, XB, RTEST, IX and IY, for temporary storage (to keep core requirements to a minimum).                                           |
| <b>JØBTLE</b>                | None                          | JØBTLE is used by GØDSEP to eject a page and to print out the job title, a row of asterisks and the trajectory time.                                                                                                                                                    |
| MATØUT                       | A, NRØW,<br>NCØL, LABEL       | MATOUT prints a matrix A, NROWXNCOL, with a 6 character Hollerith label, LABEL.                                                                                                                                                                                         |
| MMAB (AMAB)                  | A, B, C, M,<br>L, N           | MMAB performs the matrix operation [C] $_{MxN} = [A]_{MxL} * [B]_{LxN}$ .                                                                                                                                                                                               |
|                              |                               | AMAB performs the matrix operation $\begin{bmatrix} C \end{bmatrix}_{M\times N} = \begin{bmatrix} C \end{bmatrix}_{M\times N} + \begin{bmatrix} A \end{bmatrix}_{M\times L} * \begin{bmatrix} B \end{bmatrix}_{L\times N}$                                              |

|                           | •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subroutine (Entry Points) | Arguments           | Function                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MMABAT<br>(AMABAT)        | A, B, C,<br>M, L, N | MMABAT performs the matrix operation $[C]_{MxM} = [A]_{MxL} *$ $[B]_{LxL} * [A]_{MxL}^T$ (Note: N is not used).  AMABAT performs the matrix operation $[C]_{MxM} = [C]_{MxM} +$ $[A]_{MxL} * [B]_{LxL} * [A]_{MxL}^T$                                                                                                                                                                                                                  |
| MMABT (AMABT)             | A, B, C,<br>M, L, N | MMABT performs the matrix operation $[C]_{M\times N} = [A]_{M\times L}$ * $[B]_{N\times L}^T$ .  AMABT performs the matrix operation $[C]_{M\times N} = [C]_{M\times N}$ + $[A]_{M\times L}$ * $[B]_{N\times L}^T$ .                                                                                                                                                                                                                   |
| MMATB (AMATB)             | A, B, C,<br>M, L, N | MMATB performs the matrix operation $[C]_{M\times N} = [A]_{L\times M}^T *$ $[B]_{L\times N}$ .  AMATB performs the matrix operation $[C]_{M\times N} = [C]_{M\times N}^T +$ $[A]_{L\times M}^T * [B]_{L\times N}$ .                                                                                                                                                                                                                   |
| MMATBA (AMATBA)           | A, B, C,<br>M, L, N | MMATBA performs the matrix operation $[C]_{MxM} = [A]_{LxM}^T *$ $[B]_{LxL} * [A]_{LxM}.$ Note: N is not used.  AMATBA performs the matrix operation $[C]_{MxM} = [C]_{MxM} +$ $[A]_{LxM}^T * [B]_{LxL} * [A]_{LxM}.$                                                                                                                                                                                                                  |
| MMATBT (AMATBT)           | A, B, C,<br>M, L, N | MMATBT performs the matrix operation $\begin{bmatrix} C \end{bmatrix}_{M \times N} = \begin{bmatrix} A \end{bmatrix}_{L \times M}^{T} *$ $\begin{bmatrix} B \end{bmatrix}_{N \times L}^{T}$ AMATBT performs the matrix operation $\begin{bmatrix} C \end{bmatrix}_{M \times N} = \begin{bmatrix} C \end{bmatrix}_{M \times N} +$ $\begin{bmatrix} A \end{bmatrix}_{L \times M}^{T} * \begin{bmatrix} B \end{bmatrix}_{N \times L}^{T}$ |

| Subroutine (Entry Points) | Arguments             | Function                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NE GMAT                   | A, C, M, N            | NEGMAT negates a matrix such that $[C]_{MxN} = -[A]_{MxN}$ .                                                                                                                                                                                                                                                                                                                                                                           |
| SCALE                     | FACTØR, A,<br>M, N, B | SCALE multiplies a matrix A by a scalar FACTØR and returns the result in a matrix B, $\begin{bmatrix} B \end{bmatrix}_{M\times N} = FACTØR * \begin{bmatrix} A \end{bmatrix}_{M\times N}$ .                                                                                                                                                                                                                                            |
| SDVAR (VARSD)             | CØVIN,<br>CØVØUT, N   | SDVAR takes an NxN matrix COVIN of standard deviations and correlation coefficients, and operates on the lower triangle of COVIN to create a full covariance matrix COVOUT. VARSD takes an NxN covariance matrix COVIN and operates on the upper triangle to create a matrix COVOUT, where only the upper triangle contains the correlation coefficients, the diagnal the standard deviation and the lower triangle remains unchanged. |
| SUB                       | A, B, C,<br>M, N      | SUB subtracts matrix B from matrix A and returns the results as matrix C. The dimensions of A, B, and C are MxN.                                                                                                                                                                                                                                                                                                                       |
| SUBT                      | A, B, C,<br>M, N      | SUBT subtracts matrix B from matrix A and returns the results as matrix C. The dimensions of A and C are MxN, B is NxM.                                                                                                                                                                                                                                                                                                                |

|                          | 511              |                                                                                                                                                                                                                                                                                       |
|--------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                  |                                                                                                                                                                                                                                                                                       |
| •                        |                  |                                                                                                                                                                                                                                                                                       |
| Subroutine               |                  |                                                                                                                                                                                                                                                                                       |
| (Entry Points)           | Arguments        | Function                                                                                                                                                                                                                                                                              |
| SYMTRZ<br>(SYMLØ, SYMUP) | PSYM, N          | SYMTRZ takes an NxN matrix PSYM and makes it symmetric by averaging each corresponding off-diagonal pair. SYML takes an NxN matrix PSYM and makes the upper triangle equal to the lower triangle. SYMUP takes an NxN matrix and makes the lower triangle equal to the upper triangle. |
| UD <b>Ø</b> TV           | U, V             | UDØTV performs the vector operation $\underline{U} \cdot \underline{V}$ , for three dimensional vectors.                                                                                                                                                                              |
| UNITV                    | u, uv            | UNITY take a three dimensional vector U and makes it a unit vector UV.                                                                                                                                                                                                                |
| uxv                      | U, V, W          | UXV performs the vector operation $U \times V = W$ , for three dimensional vectors.                                                                                                                                                                                                   |
| VECMAG                   | U                | VECMAG computes the magnitude of a three dimensional vector.                                                                                                                                                                                                                          |
| ZERØM                    | A, mrøw,<br>mcøl | ZERØM creates a MRØW x MCØL<br>null matrix A.                                                                                                                                                                                                                                         |

.

•

3.6.2 <u>Subroutine</u>: BPLANE (R, V, TO, NTP, IEQ)

Purpose: To compute the trajectory termination

conditions relative to the target body

(i.e., Earth)

Method: Given the spacecraft planetocentric ecliptic

position and velocity vectors,  $\underline{r}$  and  $\underline{v}$ 

respectively, at time t relative to the

Earth, compute all trajectory termination

conditions. Using the orbital elements

(a, e, i, , , M), calculated from the

conic formulas of Section 3.6.4, the

closest approach, or periapsis, conditions

may be formulated.

$$r_{CA} = a(1 - e)$$

$$V_{CA} = \sqrt{\mu \left(\frac{2}{r_{CA}} - \frac{1}{a}\right)}$$

Delete Pages 513 and 514.

$$cosE = (1 - \frac{r}{a})$$

$$e \cdot sinE = \frac{r \cdot v}{\sqrt{m a}}$$

$$tanE = \frac{sinE}{cosE}$$

$$M = E - e sinE$$

$$t_{CA} = t - \frac{M}{n}$$

The apoapsis conditions are then

$$R_{FA} = a (1 + e)$$

$$V_{FA} = ((1 + e) \mu/R_{FA})^{\frac{1}{2}}$$

$$P = 2 \pi \left(\frac{a^3}{\mu}\right)^{\frac{1}{2}}$$

$$T_{FA} = T_{CA} + P/2$$

Remarks: B-PLANE also contains the necessary logic to compute B-plane parameters if the orbit is hyperbolic.

### Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                              |
|----------|------------------|---------------------|-------------------------------------------------------------------------|
| R        | I                | A                   | Position vector relative to the target body.                            |
| v        | I.               | A                   | Velocity vector relative to the target body.                            |
| то       | I                | A                   | Time associated with R and $V_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$ |
| BDT      | 0                | С                   | <u>B</u> • <u>T</u> •                                                   |

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                                                            |
|-----------------|------------------|---------------------|---------------------------------------------------------------------------------------|
| IEQ             | I                | С                   | Flag indicating whether the input state is ecliptic (IEQ = 0) or equatorial (IEQ = 1) |
| RFA             | Ø                | С                   | Apoapsis radius.                                                                      |
| VFA             | Ø                | С                   | Apoapsis velocity.                                                                    |
| TFA             | ø                | С                   | Time of apoapsis crossing.                                                            |
| PERE <b>Ø</b> D | Ø                | С                   | Orbital period.                                                                       |
| REQ             | Ø                | С                   | Equatorial position to S/C.                                                           |
| VEQ             | Ø                | С                   | Equatorial velocity of S/C.                                                           |
| eql <b>ø</b> n  | Ø                | С                   | Equatorial geocentric longitude.                                                      |
| EQLAT           | Ø                | С                   | Equatorial geocentric latitude.                                                       |

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                                                                                      |
|---------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|
| BDR           | o                | С                   | <u>B</u> • <u>R</u> •                                                                                                           |
| TSØI          | 0                | С                   | Time at the sphere of influence, t <sub>SOI</sub> .                                                                             |
| NTP           | I                | A                   | Number of the target body. This flag is used to locate the SOI size and mass of the target body in the SPHERE and PMASS arrays. |
| VHP           | O                | С                   | Hyperbolic excess velocity, $v_{ m hp}^{ m v}$                                                                                  |
| PI            | .I               | С                   | 3.14159                                                                                                                         |
| PMASS         | I                | С                   | Array containing the masses of the planets.                                                                                     |
| SPHERE        | I                | С                   | Array containing the sphere sizes of the planets.                                                                               |
| VCA           | 0                | С                   | Velocity at closest approach.                                                                                                   |
| RCA           | 0                | С                   | Radius of closest approach.                                                                                                     |
| TCA           | 0                | С                   | Time of closest approach.                                                                                                       |
| A             | 0                | С                   | Semi-major axis of the osculating conic.                                                                                        |
| Ε .           | o                | С                   | Eccentricity of the osculating conic.                                                                                           |
| XINC          | 0                | С                   | Inclination of the osculating conic.                                                                                            |
| <b>Ø</b> MEGA | 0                | С                   | Longitude of the ascending node.                                                                                                |
| SØMEGA        | 0                | С                   | Argument of periapsis.                                                                                                          |
| XMEAN         | 0                | С                   | Mean anomaly.                                                                                                                   |

| Variable | Input/<br>Output | Argument/<br>Common | Definition         |
|----------|------------------|---------------------|--------------------|
| . TA     | 0                | С                   | True anomaly.      |
| BIG      | I                | С                   | 10 <sup>30</sup> . |

# Local Variables:

| Variable      | Definition                                                 |
|---------------|------------------------------------------------------------|
| GMU           | Mass of the target body.                                   |
| RS            | SOI size of the target body.                               |
| XN            | Inverse of the mean motion, n                              |
| sv            | ŝ                                                          |
| в٧            | B                                                          |
| В             | <u> B </u>                                                 |
| TMAG          | <u> s </u>                                                 |
| RVX, RVY, RVZ | Components of R                                            |
| THETA         | Angle between $\underline{B}$ and the $\overline{T}$ axis. |
| CØSHF1        | cosh F                                                     |
| CØSH2         | cosh F <sub>SOI</sub>                                      |
| SINF1         | sinh F                                                     |
| SINF2         | sinh F <sub>SOI</sub>                                      |
| F1            | F                                                          |
| F2            | FSOI                                                       |
| DT            | Time from the sphere to $\underline{r}_{\bullet}$          |
| CE            | cos E                                                      |
| SE            | sin E                                                      |
| ECC           | E                                                          |
| XM            | Mean anomaly, M                                            |

Subroutines Called: CØNIC, ANGMØD

Calling Subroutines: TCØMP,

Common Blocks: CONICS, CONST, EPHEM, TARGET

## Logic Flow:



<-7

3.6.3 Subroutine: CARTES (A, E, XI, Ø, W, XM, GMU, R, V)

Purpose: To compute the cartesian state vector corresponding to a set of orbital elements at a given time. Time is implicit in the Mean Anomaly XM.

Method: Conic Formulae for Elliptic and Hyperbolic

Motion.

# Input/Output:

| Variab <u>le</u> | 1/0 | Argument/<br>Common | Definition                        |
|------------------|-----|---------------------|-----------------------------------|
| A                | I   | A                   | Semi-major Axis (a)               |
| E                | I   | A                   | Eccentricity (e)                  |
| XI               | I   | <b>A</b>            | Inclination (i)                   |
| ø                | I   | A                   | Longitude of the Ascending        |
| ·                |     |                     | Node ( $\Omega$ )                 |
| W                | · I | A                   | Argument of Periapsis $(\omega)$  |
| GMU              | I   | A                   | Gravitational Constant (µ)        |
| R                | 0   | A                   | Position Vector $(\underline{r})$ |
| V                | 0   | A                   | Velocity Vector $(\underline{v})$ |
| PI               | I _ | C                   | 3.14159                           |
| XM               | · I | A                   | Mean Anomaly (M)                  |
|                  |     |                     |                                   |

# Local Variables:

| <u>Variable</u> | Derinition                                  |
|-----------------|---------------------------------------------|
| ITT             | Iteration counter for Kepler's Equation     |
| NITT            | Maximum iterations for Kepler's Equation    |
| FP              | Derivative of Kepler's Equation $(f'(x_n))$ |

| <u>Variable</u> | <u>Definition</u>                |
|-----------------|----------------------------------|
| ECC             | Eccentric Anomaly $(x_n)$        |
| FN              | Kepler's Equation $(f(x_n))$     |
| SQE             | $\sqrt{\frac{1+E}{ 1-E }}$       |
| TA              | True Anomaly                     |
| · RM            | Magnitude of the Position Vector |
| SINHE           | XM/E                             |
| CØSHE           | $\sqrt{1+\text{SINHE}^2}$        |
| SINHEC          | Hyperbolic Sine of ECC           |
| <b>C</b> ØSHEC  | Hyperbolic Cosine of ECC         |
| P               | Semi-latus Rectum                |
| тн              | Argment of Latitude              |
| CØSTH           | Cosine of TH                     |
| SINTH           | Sine of TH                       |
| cøsø            | Cosine of $\phi$                 |
| SINØ            | Sine of $\phi$                   |
| cøs₩            | Cosine of W                      |
| <b>cø</b> si    | Cosine of XI                     |
| SINI            | Sine of XI                       |
| VA              | √GMU/P                           |
| VB              | SINTH + E * SINW                 |
| <b>v</b> c      | CØSTH + E * CØSW                 |

#### Remarks:

Given: The orbital elements a, e, i,  $\Omega$ ,  $\omega$  and the

gravitational constant µ.

Find: The position  $\underline{r}$  and the velocity  $\underline{v}$ .

First we must find the eccentric anomaly E for the elliptical case and H for the hyperbolic in terms of M, the mean anomaly. For the elliptical case

 $M = E - e \sin E$ 

and for the hyperbolic case

M = e sinh H - H

Since both equations are transcendental we must solve them interatively. The method used to solve these equations is Newton's Method of

the form

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Therefore, for the elliptical case the expression is

$$E_{n+1} = E_n - \frac{E_n - e \cdot \sin E_n - M}{1 - e \cdot \cos E_n}$$

and for the hyperbolic case the expression is

$$H_{n+1} = H_n - \frac{e \cdot \sinh H_n - H_n - M}{e \cdot \cosh H_n - 1}$$

Depending on the kind of orbit defined by the orbital elements, the appropriate equation is iterated upon until

$$|f(x)| \leq 10^{-10}$$

or

$$\left|\frac{f(x)}{f'(x)}\right| \le 10^{-10}$$

for a finite number of iterations.

Now that we have E or H we can find  $\underline{r}$  and  $\underline{v}$  from the following equations:

# Elliptical

$$\tan \left(\frac{f}{2}\right) = \left(\frac{1+e}{1-e}\right) \cdot \tan \left(\frac{E}{2}\right)$$

$$r = a (1-e \cdot cosE)$$

$$p = a (1-e^2)$$

### Hyperbolic

$$\tan \left(\frac{f}{2}\right) = \left(\frac{e+1}{e-1}\right)$$
.  $\tanh \left(\frac{H}{2}\right)$ 

$$r = a (1-e \cdot \cosh H)$$

$$p = a (e^2 - 1)$$

$$\underline{\mathbf{r}} = \mathbf{r} \begin{bmatrix} \cos\Omega \cdot \cos\theta - \sin\Omega \cdot \sin\theta \cdot \cos i \\ \sin\Omega \cdot \cos\theta + \cos\Omega \cdot \sin\theta \cdot \cos i \\ \sin\theta \cdot \sin i \end{bmatrix}$$

where 
$$\Theta = \omega + f$$

$$\underline{\mathbf{v}} = \mathbf{p}$$

$$\begin{bmatrix}
\cos\Omega(\sin\theta + e \cdot \sin\omega) + \sin\Omega \cdot \cos i & (\cos\theta + e \cdot \cos\omega) \\
\sin\Omega(\sin\theta + e \cdot \sin\omega) - \cos\Omega \cdot \cos i & (\cos\theta + e \cdot \cos\omega) \\
- & (\cos\theta + e \cdot \cos\omega) \cdot \sin i
\end{bmatrix}$$

Subroutines Called: None

Calling Program: EPHEM

Common Block: CØNST

Logic Flow:





3.6.4 Subroutine: CONIC (R, V, GMU, A, E, KINC, OMEGA, SOMEGA,

XMEAN, THETA)

Purpose: To compute the orbit elements given a state

vector and the corresponding time.

Method: Conic Formulae for Elliptic and Hyperbolic

motion.

Remarks:

Given: The position vector  $\underline{\mathbf{r}}$ , the velocity vector  $\underline{\mathbf{v}}$ 

and the gravitational constant  $\mu$ .

Find: The orbital elements a, e, i,  $\Omega$   $\omega$  and M

and also  $\theta$ 

 $h = r \times v$ 

 $\underline{\mathbf{w}} = \underline{\mathbf{h}}/\mathbf{h}$ 

 $r_v = \underline{r} \cdot \underline{v}$ 

 $\underline{e} = \frac{1}{\mu} (\underline{v} \times \underline{h}) - \underline{r}/r$ 

 $p = h/\mu$ 

 $\alpha = (\frac{2}{r} - \frac{v^2}{\mu})$ 

 $\rho = e/e$ 

 $\underline{\mathbf{q}} = \underline{\mathbf{w}} \times \underline{\mathbf{p}}$ 

 $\sin\theta = \frac{h \cdot r_v}{r}$ 

 $\cos\theta = \frac{h^2 - \mu}{2}$ 

Now

$$a = \frac{1}{\alpha}$$

$$e = |\underline{e}|$$

$$i = \cos^{-1}(w_z)$$

$$\Omega = \tan^{-1}(w_x/-w_y)$$

$$\omega = \tan^{-1}(\rho_z/q_z)$$

$$\theta = \tan^{-1}(\sin\theta/\cos\theta)$$

$$\cos E = 1 - r \cdot \alpha$$

$$\sin E = \frac{r_v \cdot \alpha}{\mu}$$

# Input/Output:

| Variable | 1/0 | Argument/<br>Common | Definition                                                |
|----------|-----|---------------------|-----------------------------------------------------------|
| R        | I   | <b>A</b> :          | Position Vector $(\underline{r})$                         |
| V        | I   | Α .                 | Velocity Vector $(\underline{v})$                         |
| TO       | I   | A                   | Time Corresponding to $\underline{r}$ and $\underline{v}$ |
| GMU      | 1 . | A                   | Gravitational Constant $(\mu)$                            |
| A        | 0   | A                   | Semi-Major Axis (a)                                       |
| E        | o   | A                   | Eccentricity (e)                                          |
| XINC     | 0   | A                   | Inclination of the orbit                                  |
|          | •   |                     | plane (i)                                                 |

| <u>Variable</u> | <u>1/0</u> | Argument/  | <u>Definition</u>                    |
|-----------------|------------|------------|--------------------------------------|
| OMEGA           | 0          | · A        | Longitude of the Ascending           |
|                 |            |            | Node ( $\Omega$ )                    |
| SOMEGA          | 0          | Α          | Argument of the Periapsis $(\omega)$ |
| XMEAN           | 0          | · <b>A</b> | Mean Anomaly                         |
| PI              | I          | С          | 3.14159                              |
|                 |            |            |                                      |

# Local Variables:

| Variable  | Definition                                        |
|-----------|---------------------------------------------------|
| н         | Magnitude of the Angular Momentum                 |
|           | Vector (h)                                        |
| ну        | Angular Momentum Vector (h)                       |
| wv        | Unit Vector in the direction of $(\underline{w})$ |
| RM        | Magnitude of $\underline{\mathbf{r}}$             |
| VM        | Magnitude of $\underline{\mathbf{v}}$             |
| RDV       | <u>r•v</u>                                        |
| EA        | <u>e</u>                                          |
| <b>AA</b> | $\frac{1}{a}$                                     |
| P         | Semi-Latus Rectum                                 |
| PV        | <u>e</u> /e                                       |
| QV        | $\underline{h} \times (\underline{e}/e)$          |
| THETA     | Argument of latitude                              |
| STH       | Sine of THETA                                     |
| СТН       | Cosine of THETA                                   |
| ECC       | Eccentric Anomaly                                 |
| CE        | Sine of ECC                                       |

| <u>Variable</u> | <u>Definition</u>        |
|-----------------|--------------------------|
| SE              | Cosine of ECC            |
| FCC             | Hyperbolic Anomaly       |
| CHF             | Hyperbolic Sine of FCC   |
| SHF             | Hyperbolic Cosine of FCC |

Subroutines Called: UXV, VECMAG, UNITV, UDØTV

Calling Subroutines: BPLANE, PROP, EPHERR, OD, PGM, DATAT, FEGS

Common Blocks:

CONICS, CONST



530 ECØMP-1

3.6.5 Subroutine: ECOMP (XX, VV, TSTOP, NTARG, NTP, LISTAR, ETA)

Purpose:

To compute the transformation matrix which transforms state vector deviations into target variable deviations at the target time; namely

where m is the number of target variables.

Method:

Small changes to the trajectory state vector at the target time permit this transformation matrix to be computed by numerical differencing. Central difference partial derivatives are used.

Remarks:

Currently, the state vector deviations used to generate the numerical partials are 10 km for position and 10 m/sec for velocity. For some applications, in particular for missions to the inner planets (Mercury and Venus), these values may have to be reduced.

#### Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                        |
|----------|------------------|---------------------|-----------------------------------|
| XX       | I                | <b>A</b>            | State vector position components. |
| vv       | I                | A                   | State vector velocity components. |

| Variable      | Input/<br>Output | Argument/<br>Common | Definition                                                   |
|---------------|------------------|---------------------|--------------------------------------------------------------|
| TST <b>ØP</b> | I                | A                   | Epoch of state vector evaluation; generally the target time. |
| LISTAR        | I                | A                   | List of target variable codes to be passed to TCØMP.         |
| NTARG         | 1                | A                   | Number of target variables.                                  |
| NTP           | I                | A                   | Target planet number.                                        |
| ETA           | 0                | . A                 | 7 - matrix of partial derivatives.                           |

## Local Variables:

| Variable | Definition                      |  |  |
|----------|---------------------------------|--|--|
| DEL      | State vector perturbations.     |  |  |
| XT1      | Backward step target variables. |  |  |
| XT2      | Forward step target variables.  |  |  |

Subroutines Called: TCØMP

Calling Subroutines: LGUID, NGUID, GUIDE, NLGUID, REFTRJ, STMTAR

Common Blocks: WORK

Logic Flow:





3.6.6 Subroutine: ENCON (T)

Entry Points: REFINE, ØSCUL

Purpose: To propagate the reference conic from rectification

to time t.

Method: Conic equations for elliptical and hyperbolic orbits.

See MAPSEP Analytic Manual (Reference 1),

Appendix 1 (Section 9.1).

### Input/Output:

| 77 - 4 7 7 | Input/ | Argument/ | •                                                                                     |
|------------|--------|-----------|---------------------------------------------------------------------------------------|
| Variable   | Output | Common    | Definition                                                                            |
| T          | ı      | А         | Trajectory time in seconds                                                            |
| TSTØP      | I      | С         | The sign of TSTØP determines whether the propagation is backwards (-) or forwards (+) |
| NPRI       | I      | С         | A flag that is used to locate the mass of the primary body in the PMASS array.        |
| PMASS      | I      | С         | Array containing the masses of all the bodies.                                        |
| ALPHA      | Ø      | С         | Inverse semi-major axis $(\frac{1}{a})$ .                                             |
| UTRUE      | I      | С         | Position vector at rectification $(r_0)$ .                                            |
| VTRUE      | I      | С         | Velocity vector at rectification $(V_0)$ .                                            |
| UENC       | Ø      | С         | Osculating conic position vector at time t.                                           |
| UENCM      | Ø      | С         | Magnitude of UENC.                                                                    |
| VENC       | Ø      | C         | Osculating conic velocity vector at time t.                                           |
| Yencm      | Ø      | С         | Magnitude of VENC.                                                                    |

### Local Variables:

| <u>Va</u> | riable | Definition                  |
|-----------|--------|-----------------------------|
| *         | TZERØ  | Time of rectification (to). |
|           | GMU    | Mass of the reference body. |

<sup>\*</sup> actually contained in CØMMØN/ENCØN/

| <u>V</u> a | riable        | Definition                                                                     |
|------------|---------------|--------------------------------------------------------------------------------|
| *          | uzerø         | Position vector at $t_0$ , $(\underline{r}_0)$ .                               |
| *          | vzerø         | Velocity vector at $t_0$ , $(\underline{r}_0)$ .                               |
|            | czer <b>ø</b> | $1 + e \cos E_o$ for the elliptical case.                                      |
|            |               | 1 + e cosh H for the hyperbolic case.                                          |
|            | UALPHA        | $1$ - e cos $E_0$ for the elliptical case.                                     |
|            |               | e cosh $H_{o}$ - 1 for the hyperbolic case.                                    |
| *          | UBETA         | Absolute value of UALPHA.                                                      |
|            | BETA          | Absolute value of ALPHA.                                                       |
| *          | A1            | Mean angular motion (n).                                                       |
| *          | A2            | e sin E for the elliptical case.                                               |
|            |               | e sin H for the hyperbolic case.                                               |
| *          | A3            | e cos E for the elliptical case.                                               |
|            |               | e cosh H for the hyperbolic case.                                              |
|            | C1            | e exp [Ho]for the hyperbolic case.                                             |
|            | C2            | e $\exp \left[-H_{0}\right]$ for the hyperbolic case.                          |
| *          | DELE          | E -E for the elliptical case.                                                  |
| *          | Х             | exp $\left[ H - H_{o} \right]$ -1 for the hyperbolic case.                     |
| *          | HV            | The angular momentum vector $(\overline{r}_0 \times \overline{v}_0)$ .         |
| *          | ECCITY        | Orbital eccentricity of reference conic.                                       |
| *          | EV            | "Eccentricity" vector.                                                         |
| *          | EZ ERØ        | Reference eccentric anomaly.                                                   |
| *          | HM            | Magnitude of HV.                                                               |
|            | ARG1          | $1 - \frac{a}{r_0} \left[ 1 - \cos(E - E_0) \right] $ for the elliptical case. |

<sup>\*</sup> actually contained in CØMMØN/ENCØN/

#### Variable

#### Definition

$$1 - \frac{a}{r_0}$$
 [ cosh (H -H<sub>o</sub>) -1] for the hyperbolic case.

$$\frac{1}{n} \left[ \sin(E - E_0) - e \left( \sin E - \sin E_0 \right) \right]$$
for the elliptical case.

$$\frac{1}{n}$$
 [e (sinh H -sinh H<sub>o</sub>) -sinh (H -H<sub>o</sub>)] for the hyperbolic case.

$$-\frac{\sqrt{ma}}{rr_0}$$
 sin (E -E<sub>0</sub>) for the elliptical

$$-\frac{\sqrt{\text{ma}}}{\text{rr}_0}$$
 sinh (H -H<sub>0</sub>) for the hyperbolic case.

$$1 - \frac{a}{r} \left[ 1 - \cos (E - E_0) \right]$$
 for the elliptical case.

$$1 - \frac{a}{r} \left[ \cosh (H - H_0) - 1 \right]$$
 for the hyperbolic case.

Subroutines Called:

VECMAG, UXV, UDØTV

<u>Calling Subroutines:</u>

MØTIØN

Common Blocks:

CØNST, ENCØN, EPHEM, TIME, TRAJ1, TRAJ2







3.6.7 Subroutine: GENINV (A, M, N, B)

Purpose: To compute an inverse B for any m x n matrix A.

Remarks: There are three cases for which GENINV will

compute an inverse.

<u>Case 1</u>: m < n

 $B = A^{T}[A A^{T}]^{-1}$ 

Case 2: m = n

 $B = A^{-1}$ 

Case 3: m > n

 $B = [A^T A]^{-1} A^T$ 

The matrices A and B can share the same location only if m = n.

### Input/Output:

| Variable       | Input/<br>Output | Argument/<br>Common | Definition                          |
|----------------|------------------|---------------------|-------------------------------------|
| A              | I                | A                   | The matrix to be inverted.          |
| M              | I                | . A                 | Number of rows in A (Columns in B). |
| N <sub>.</sub> | · .              |                     | Number of columns in A (Rows in B). |
| . В            | I                | A                   | Inverse of A.                       |

#### Local Variables:

Variable Definition

WØRK Array used for temporary calculations.

|    |   |   |   |   | - |   |
|----|---|---|---|---|---|---|
| Va | r | 1 | а | n | 1 | e |

Definition

MIN

. Number of needed locations for temporary calculations.

LØC

Number of needed locations for the inverse.

Subroutines Called:

COPY, MMABT, MMATB, INVSQM

Calling Subroutines:

GUIDE, LGUID, NLGUID

Common Blocks:

WØRK

## Logic Flow:





3.6.8 Subroutine: MPAK (A, M, N, ASUB, MSUB, NSUB)

Purpose:

MPAK is used to (1) copy subblocks of matrix A into a matrix ASUB, (2) copy the diagonal elements of matrix A into ASUB which can be a vector (or row matrix) or (3) "pack" the matrix A. M and N are the dimensions of A, and MSUB and NSUB are the dimensions of ASUB. An mxn matrix is stored internally in the computer by

Method:

columns. Take the 3 x 3 matrix

$$E = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix}$$

In the computer, E is stored as

Column 1 e<sub>11</sub>. e<sub>21</sub> e<sub>31</sub> Column 2 e<sub>12</sub> e<sub>22</sub> e<sub>23</sub> Column 3 e<sub>13</sub> e<sub>23</sub> e<sub>33</sub>

MPAK uses this information to perform one of the three following cases, (1) to copy sub blocks of E, (2) to copy the diagonal elements of E, and (3) to pack E.

Case 1: Given a 3 x 3 matrix

$$E = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix}$$

copy the sub block

$$\mathbf{F} = \begin{bmatrix} \mathbf{e}_{21} & \mathbf{e}_{22} \\ \mathbf{e}_{31} & \mathbf{e}_{32} \end{bmatrix}$$

into the 2 x 2 matrix F. In order to accomplish this, MPAK must know the first element of the sub block to be copied. For this problem, it is  $\mathbf{e}_{21}$ . The FORTRAN call to MPAK must transmit this information. Such a call would be

CALL MPAK (E(2,1), 3, 3, F, 2, 2)

# Case 2: Given a 2 x 2 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

copy the diagonal terms  $a_{11}$  and  $a_{22}$  into the 2 x 1 row vector B. The call to MPAK is

CALL MPAK (A, 3, 2, B, 1, 2)

The dimension of A is given as 3 x 2. Internally in the computer, A is thought of as being stored

This particular call makes MPAK copy the elements all and a<sub>22</sub> into B.

#### Given the $3 \times 3$ matrix Case 3:

$$A = \left[ \begin{array}{ccc} a & c & o \\ b & d & o \\ o & o & o \end{array} \right]$$

pack it so that
$$A = \begin{bmatrix} a & d & 0 \\ b & 0 & 0 \\ c & 0 & 0 \end{bmatrix}$$

Pack as used here, means to order the nonzero elements of A into consecutive locations internally.

than packing A would result in

The appropriate call to MPAK would be

CALL MPAK (A, 3, 3, A, 2, 2)

for the first example (3  $\times$  3 A), and for the second example:

CALL MPAK (A, 4, 4, A, 3, 3)

### Input/Output:

| <u>Variable</u>      | Input/<br>Output | Argument/<br>Common | Definition                    |
|----------------------|------------------|---------------------|-------------------------------|
| <b>A</b> '.          | ı                | A                   | The matrix to be operated on  |
| Mí                   | I                | A                   | The number of rows of A       |
| N.                   | ŗ                | Á                   | The number of columns of A    |
| ASUB                 | O                | <b>A</b> .          | The resultant matrix          |
| MSUB                 | I                | A                   | The number of rows of ASUB    |
| NSUB                 | ı                | A                   | The number of columns of ASUB |
| Local Variables      | ·<br>•           | None                |                               |
| Subroutines Called:  |                  | None                |                               |
| Calling Subroutines: |                  | SIZE, SDAT,         | (GODSEP, et al.)              |
| Common Blocks:       |                  | None                |                               |

3.6.9 Subroutine: MUNPAK (ASUB, MSUB, NSUB, A, M, N)

Purpose:

MUNPAK is used to copy a matrix ASUB into a large matrix A, to copy a row matrix ASUB onto the diagonal of A or to "unpack" the matrix ASUB.

Method:

MUNPAK, like MPAK takes advantage of the way a matrix is stored internally in a computer.

MUNPAK performs the reverse function of MPAK:

(1) copy a matrix into a larger matrix, (2) copy a row matrix onto the diagonal of a matrix or (3) unpack the matrix.

Case 1: Copy a 2x2 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

into a 3x3 matrix B so that

$$\begin{bmatrix} B & = & \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & a_{11} & a_{12} \\ 0 & a_{21} & a_{22} \end{bmatrix}$$

This is accomplished by specifying where the first element of A is to be located in B. The FORTRAN call to MUNPAK is

CALL MUNPAK (A, 2, 2, B (2, 2), 3, 3)

Case 2: Copy the 1x2 row matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \end{bmatrix}$$

into the 2x2 matrix B. In the call to MUNPAK, the dimensions of B are given as a 3x2. The net result is

$$B = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{12} \end{bmatrix}$$

The call to MUNPAK is

CALL MUNPAK (A, 1, 2, B, 3, 2).

Case 3: Given the 3x3 matrix

$$A = \begin{bmatrix} a & d & 0 \\ b & 0 & 0 \\ c & 0 & 0 \end{bmatrix}$$

"unpack" it so that

$$A = \begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The call to MUNPAK to accomplish this operation is

CALL MUNPAK (A, 2, 2, A, 3, 3).

# Input/Output:

| Variable | Input/<br>Output | Argument/<br>Common | Definition                     |
|----------|------------------|---------------------|--------------------------------|
| ASUB     | I                | A                   | The matrix to be operated on.  |
| MSUB     | I                | <b>A</b>            | The number of rows of ASUB.    |
| NSUB     | I                | <b>A</b>            | The number of columns of ASUB. |
| A ,      | 0                | A                   | The resultant matrix.          |
| <b>M</b> | I                | A                   | The number of rows of A.       |
| N        | Ť                | A                   | The number of columns of A.    |

Local Variables:

None

Subroutines Called:

None

Calling Subroutines:

SIZE, SDAT, (GØDSEP, et al.)

Common Blocks:

None

3.6.10 Function:

RNUM (SIGMA, IRAN)

Purpose:

To sample a uniform distribution and generate random samples on a Gaussian distribution.

Method:

Two random samples from a uniform distribution are made to form a random sample on a zero-mean, Gaussian distribution which has a unit standard deviation. The random variable on the Gaussian distribution is scaled according to the input standard deviation, SIGMA. For IRAN equal to zero, a one-sigma, forced Monte Carlo sample is computed and returned.

#### Input/Output:

| Variable | Input/<br>Output | -Argument/<br>Common | Definition                                                                     |
|----------|------------------|----------------------|--------------------------------------------------------------------------------|
| SIGMA    | I                | <b>A</b>             | Standard deviation of the random variable being sampled.                       |
| IRAN     | I                | <b>A</b>             | Flag to indicate whether or not a forced Monte Carlo sample is to be returned. |
| RNUM     | o                | A                    | Resultant random variable.                                                     |

#### Local Variables:

| Variable | Definition                                       |  |  |
|----------|--------------------------------------------------|--|--|
| D1       | First random sample from a uniform distribution. |  |  |
| D2       | Second random sample from a uniform              |  |  |

Subroutines Called:

RANF

Calling Subroutines:

CSAMP, EXGUID, EPHSMP, ERRSMP, DNØISE

Common Blocks:

**CØ**NST

Logic Flow:



3.6.11 Subroutine: TCØMP (XX, VV, TSTØP, NTP, NTARG, LESTAR, XTARG, IPASS)

Method: The BPLANE utility routine is called to compute osculating values of target variables corresponding to a given state vector. Individual target values are loaded into a target vector according to the target codes in the LISTAR array.

551

| <u>Variable</u> | Input/<br>Output | Argument<br>Common | Definition                                                          |
|-----------------|------------------|--------------------|---------------------------------------------------------------------|
| XX              | ı                | A                  | State vector position components                                    |
| VV              | I                | Α .                | State vector velocity components                                    |
| TSTØP           | I                | A                  | Epoch corresponding to the state vector; generally the target time. |
| NTP             | I                | Α                  | Number of the target planet.                                        |
| NTARG           | I                | A                  | Number of target variables.                                         |
| LISTAR          | I                | A                  | List of target variable codes.                                      |
| XTARG           | o                | <b>A</b>           | Target vector.                                                      |
| IPASS           | I                | A                  | Flag to control logic transfer.                                     |
| VHP             | I                | С                  | Hyperbolic excess velocity.                                         |
| RCA             | I                | С                  | Radius of closest approach.                                         |
| BDT             | I                | С                  | T-coordinate in the B-plane.                                        |
| BDR             | I                | С                  | R-coordinate in the B-plane.                                        |
| TSØI            | I                | С                  | Conically interpolated time of arrival at the sphere of influence.  |

| Variable | Input/<br>Output | Argument<br>Common | Definition                                                                |
|----------|------------------|--------------------|---------------------------------------------------------------------------|
| TCA      | I                | С                  | Conically interpolated time of arrival at the radius of closest approach. |
| A        | I                | С                  | Semi-major axis evaluated on an osculating conic.                         |
| E        | I                | C                  | Eccentricity evaluated on an osculating conic.                            |
| XINC     | I                | С                  | Inclination evaluated on an osculating conic.                             |
| ØME GA   | I                | С                  | Argument of the ascending node evaluated on an osculating conic.          |
| SØME GA  | I                | С                  | Argument of periapsis evaluated on an osculating conic.                   |
| XME AN   | I                | C                  | Mean anomaly evaluated on an osculating conic.                            |
| TA       | I                | C                  | True anomaly evaluated on an osculating conic                             |

None

Subroutine Called:

BPLANE, VECMAG

Calling Subroutines: ECØMP, NLGUID, REFTRJ, SIMSEP, STMTAR, TREK

Common Blocks:

CØNST, TARGET

Logic Flow:

See Listing

Page 553 has been deleted.

3.6.12 <u>Subroutine</u>: THCØMP (XIR, MIN, NPRIN, NATC, LIH, TGØ, THALT, IMAN, XØUT, MØUT, THETA, PHI)

Purpose: To complete the  $\hat{\pmb{\phi}}_u$  and  $\pmb{\Phi}$  matrices which are used for trajectory targeting over a specified trajectory arc.

Method:

THCØMP computes and stores certain partitions

of the augmented state transition matrix into

the augmented state transition matrix into

the matrices as outlined in Appendix

of the Analytic Manual.

Remarks: This routine is used by TOPSEP and SIMSEP for evaluating  $\hat{\mathbf{D}}_{\mathbf{u}}$  and  $\mathbf{\mathbf{\Sigma}}$ . TOPSEP also has an alternate set of logic which uses a numerical differencing algorithm for the same purpose. SIMSEP uses THCOMP exclusively.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                    |
|----------|------------------|---------------------|-----------------------------------------------|
| XIN      | I                | A                   | Initial state vector.                         |
| MIN      | Ĭ                | Α                   | Initial S/C mass.                             |
| NPRIN    | 1                | Α                   | Primary body code to which XIN is referenced. |
| NATC     | I                | Α                   | Number of active thrust controls.             |
| IJŪ      | I                | Α                   | Array of active thrust control codes.         |
| TGØ      | I                | A                   | Initial trajectory time.                      |

| <u>Variable</u> | Input/<br>Output | Argument/<br>Common | Definition                                                                                       |
|-----------------|------------------|---------------------|--------------------------------------------------------------------------------------------------|
| THALT           | I                | A                   | Final trajectory time.                                                                           |
| IMAN            | I                | A                   | Guidance maneuver number.                                                                        |
| XØUT            | O                | Α                   | Output state vector.                                                                             |
| MØUT            | 0                | Α                   | Output S/C mass.                                                                                 |
| THETA           | 0                | Α                   | Output control to state transition matrix, $\hat{\boldsymbol{\Theta}}_{u}$ .                     |
| PHI             | 0                | <b>A</b>            | Output state to state transition matrix, 5                                                       |
| THRUST          | · I              | С                   | Array of thrust controls.                                                                        |
| BLANK           | I                | С                   | Blank common storage of trajectory variables, i.e, the augmented state transition matrix.        |
| TEVNT           | I                | С                   | Trajectory event time.                                                                           |
| MEVENT          | I                | С                   | Trajectory event test flag.                                                                      |
| L <b>Ø</b> CTC  | Ι                | С                   | Location in blank common of<br>the first element in the<br>augmented state transition<br>matrix. |
| IAUGDC          | I.               | <b>C</b> .          | Flag used to augment the transition matrix for integration.                                      |
| TREF            | I                | C                   | Initial trajectory time transmitted to TRAJ in seconds.                                          |
| TDUR            | I                | С                   | Final trajectory time trans-<br>mitted to TRAJ in seconds.                                       |
| INTEG           | I                | C                   | Flag to indicate to TRAJ that the augmented state transition matrix is to be integrated.         |
| ICALL           | I                | C                   | TRAJ initialization flag.                                                                        |

| Variable                    | Definition                                                                         |
|-----------------------------|------------------------------------------------------------------------------------|
| NPHI                        | Dimension of the augmented state transition matrix.                                |
| JJ0<br>JJ1<br>JJ2           | Logic control flag.                                                                |
| PHI21<br>PHI32              | Temporary storage for the matrices output from TRAJ.                               |
| THET21<br>THET32            | Temporary storage for the $oldsymbol{\hat{\Theta}}_{u}$ matrices output from TRAJ. |
| <u>Subroutines Called</u> : | CØPY, ICØPY, IDENT, IZERØM, MMAB, MPAK, TRAJ,<br>ZERØM.                            |
|                             |                                                                                    |

Calling Subroutines: STMTAR, REFTRJ, NLGUID.

Common Blocks: CØNST, TIME, TRAJ1, TRAJ2, WØRK, (BLANK).

# THCØMP Logic Flow: Initialize TRAJ control variables (IAUGDC, TDUR, TREF, INTEG, MEVENT, etc) for integrating the augmented state transition matrix. Compute next TEVNT from the list of active thrust control indices, IJH. TRAJ Propagate the trajectory to next event and compute the augmented state transition matrix. Store partitions of the augmented state transition matrix, BLANK, into PHI32, THET32.



3.7 Subroutine: REFSEP

<u>Purpose</u>: To monitor the subroutine flow in the REFSEP mode

of MAPSEP.

Remarks: A complete view of the REFSEP hierarchy is revealed

in Section 2.3, page 12-B of this manual.

Subroutines Called: DATREF, TRAK

Calling Subroutines: MAPSEP

Logic Flow: See macrologic listing

#### 3.7.1 Subroutine: DATREF

<u>Purpose</u>: To initialize REFSEP parameters and the trajectory propagator.

Remarks: Proper initialization of the scheduler requires two consecutive calls to subroutine SCHED. Also, TRAJ is called only to inialize parameters not to propagate the trajectory.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                     |
|----------|------------------|---------------------|----------------------------------------------------------------|
| GAINCR   | 0                | С                   | GODSEP variables which are de-                                 |
| IGAIN    | 0                | С                   | faulted in DATREF to avoid in-<br>correct computations in sub- |
| NCNTE    | o                | С                   | routine SCHED. None of these variables is relevant to execu-   |
| NCNTG    | o                | , с                 | tion of REFSEP.                                                |
| NCNTP    | 0                | С                   |                                                                |
| NCNTT    | 0                | С                   |                                                                |
| NEIGEN   | 0                | С                   |                                                                |
| NGUID    | 0                | С                   | •                                                              |
| NPRED    | 0                | С                   |                                                                |
| NTHRST   | 0                | С                   |                                                                |
| ICALL    | 0                | C                   | Flag used to initialize TRAJ.                                  |
| INTEG    | o                | Ċ                   | Flag indicating the equations to be integrated in TRAJ.        |
| KARDS    | I                | C                   | Number of print schedule cards.                                |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                         |
|----------|------------------|---------------------|----------------------------------------------------|
| LABET,   | 0                | c                   | Hollerith names of all possible target parameters. |
| MEVENT   | 0                | С                   | Flag used to set event detection logic in TRAJ.    |
| MNEXT    | 0                | С                   | Next scheduled print code.                         |
| NSCHED   | 0                | С                   | Number of print schedule cards.                    |
| TCURR    | 0                | С                   | Current trajectory time.                           |
| TEND     | I                | С                   | Trajectory end time.                               |
| TFINAL   | o                | С                   | Trajectory end time.                               |
| TM       | - I              | . С                 | Time conversion constant (days to seconds).        |
| TMNEXT   | 0                | С                   | Time of next print code execution.                 |
| TREF     | o                | С                   | Initial trajectory time.                           |
| TSTART   | I                | С                   | Initial trajectory time.                           |

Local Variables: None

Subroutines Called: SCHED, TRAJ

REFSEP Calling Subroutine:

CØNST, EDIT, LØGIC, MEASI, PRINTH, SCHEDI, SCHEDR, TIME, TRAJ1, TRAJ2, TRKDAT, WØRK Common Blocks:

See listing. Logic Flow:

#### 3.7.2A Subroutine: DETAIL (IT)

To print trajectory information at the times designated on Purpose:

the formatted schedule cards.

The blocks of trajectory information to be printed are cued Remarks:

by the print code which is stored in the variable IT. A discussion of the print code may be found in the User's

Manual, Section 2.5, page 52-B.

| Input/C | utput: |
|---------|--------|
|---------|--------|

| nput/(     | Output:      |                  |                     |                                                                  |
|------------|--------------|------------------|---------------------|------------------------------------------------------------------|
| <u>V</u> a | ariable      | Input/<br>Output | Argument/<br>Common | Definition                                                       |
| Al         | PERT         | I                | С                   | Gravitational acceleration vectors due to the perturbing bodies. |
| A.         | r <b>ø</b> t | ī                | C                   | Total differential acceleration vector.                          |
| В          |              | I                | C                   | Magnitude of the B-vector.                                       |
| ВІ         | DR           | I                | С                   | <u>B</u> • <u>R</u>                                              |
| ВІ         | DT           | r                | C                   | <u>B • T</u>                                                     |
| В          | ØDY          | I                | С                   | Hollerith label of the planets in-<br>cluded in the integration. |
| Β/         | V            | I                | С                   | Unitary B-vector.                                                |
| CA         | A            | I                | C                   | Closest approach radius computed in BPLANE.                      |
| E          | cc           | I                | C                   | Eccentricity.                                                    |
| El         | РØСН         | I                | C                   | Launch epoch                                                     |
| F          | 1            | I                | С                   | Hyperbolic anomaly                                               |
| 1          | PRI          | I                | С                   | Flag used to locate information about the primary body.          |
| I          | STEP         | I                | С                   | Number of integration steps taken.                               |
| I.         | Г            | I                | A                   | Print code.                                                      |
| ľ          | TP           | I                | С                   | Flag used to locate information about the target body.           |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                           |
|----------|------------------|---------------------|----------------------------------------------------------------------|
| T&CH '   | I                | C                   | Blank common location of the step size.                              |
| LØCM     | I                | С                   | Blank common location of the S/C mass.                               |
| LØCYT    | I                | С                   | Blank common location of the temporary integrated solution.          |
| MPLAN    | I ·              | С                   | Number of bodies included in the integration.                        |
| NPRI     | I                | c .                 | Planet code of the primary body.                                     |
| NRECT    | I                | C                   | Number of rectifications executed during the trajectory integration. |
| NTP      | ı                | С                   | Target planet code.                                                  |
| ntphas   | I                | С                   | Number of the current control phase.                                 |
| ØME GA   | I                | С                   | Longitude of the ascending node.                                     |
| PV       | I                | C .                 | Unitary peripoint vector.                                            |
| QV       | I                | С                   | Unitary peri-velocity vector.                                        |
| RAD      | I .              | С                   | Angular conversion constant (radians to degrees).                    |
| SMA      | Ι.               | С                   | Semi-major axis.                                                     |
| SØMEGA   | I                | С                   | Argument of periapsis.                                               |
| sv       | I                | С                   | Unitary hyperbolic excess velocity vector.                           |
| TA       | I                | c                   | True anomaly.                                                        |
| TAIM     | Ţ                | · c                 | Angle between B-vector and T-axis,                                   |
| TCA      | I                | С                   | Time of closest approach computed in BPLANE.                         |
| TCURR    | I                | С                   | Current event time,                                                  |
| TEVNT    | · I              | С                   | Current trajectory time.                                             |

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                    |
|----------|------------------|---------------------|-------------------------------------------------------------------------------|
| THRACC   | I                | С                   | Acceleration vector due to thrust.                                            |
| TM       | I                | <b>C</b> .          | Time conversion constant (days to seconds).                                   |
| TSI      | I                | C                   | Time of SOI crossing as computed in BPLANE.                                   |
| VENC     | I                | С                   | Reference conic position vector.                                              |
| UP       | ľ                | C .                 | Position vectors of all bodies included in the integration.                   |
| UREL     | I                | <b>C</b>            | Position vectors of S/C relative to all bodies considered in the integration. |
| UTRUE    | I                | С                   | S/C position vector relative to primary body.                                 |
| VCA      | I                | C                   | Velocity at closest approach as computed in BPLANE.                           |
| VENC     | I                | C                   | Reference conic velocity vector.                                              |
| VHP      | I                | С                   | Magnitudue of hyperbolic excess velocity.                                     |
| VP       | I .              | С                   | Velocity vectors of all bodies considered in the integration.                 |
| VREL,    | I                | <b>C</b>            | Velocity vectors of S/C relative to all bodies considered in the integration. |
| VTRUE    | I                | С                   | S/C velocity vector relative to the primary body.                             |
| WV .     | · I              | С                   | Unitary momentum vector.                                                      |
| XINC     | I                | c                   | Ecliptic inclination.                                                         |
| XME AN   | I                | С                   | Mean anomaly.                                                                 |

| Variable        | Definition                                                                |
|-----------------|---------------------------------------------------------------------------|
| ATØTM           | Magnitude of total differential acceleration vector.                      |
| BVEC            | B-vector.                                                                 |
| DJ              | Julian date of current trajectory time.                                   |
| IBØD            | Primary body code for BPLANE calculations.                                |
| KRAK            | Intermediate print code.                                                  |
| LBØD            | Location of IBØD in the NB array (i.e. $IBØD = NB (LBØD)$ ).              |
| PFV             | Peri-point vector.                                                        |
| PVV             | Peri-velocity vector.                                                     |
| UA              | Delta-position vector and delta-velocity vector.                          |
| UAM             | Magnitude of delta-position vector.                                       |
| UPM             | Heliocentric position magnitudes of bodies considered in the integration. |
| UR              | Unitary position vector of the S/C relative to the primary body.          |
| yu              | Unitary velocity vector of the S/C relative to the primary body.          |
| ;<br>Vam        | Magnitude of the delta-velocity vector.                                   |
| VH              | Hyperbolic excess velocity vector.                                        |
| VPM             | Heliocentric velocity magnitude of bodies considered in the integration.  |
| outines Called: | BPLANE, COPY, PRINTT, TSCHED, UDOTV, UNITY, VECMAG                        |

Calling Subroutine: REFSEP

(BLANK), CØNICS, CØNST, EDIT, SCHEDR TARGET, TIME, TRAJ1, TRAJ2, WØRK Common Blocks:

Logic Flow:







3.7.2-B Subroutine:

PUNCHR (MTPHAS)

Purpose:

To punch the THRUST array (i.e., an array in the \$TRAJ namelist) on cards.

Remarks:

Each column of the THRUST array represents a thrust phase in the mission control profile. Each time a phase change is encountered during the trajectory integration of a REFSEP run a column of the thrust profile is punched on four cards by subroutine PUNCHR. If the shadow logic is being executed in the trajectory propagator, the shadow-in and shadow-out phases are also punched on cards. Thus, PUNCHR provides a convenient means of incorporating shadow phase changes in the thrust profile so that the shadow logic need not be executed in future GODSEP error analysis runs.

| Variable | Input/<br>Output | Argument/<br>Common | Definition                                                                                                              |
|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| MTPHAS   | Ø                | A                   | Number of the thrust phase which will be punched.                                                                       |
| PØLICY   | I                | С                   | Thrust policy which has been suspended during occultation periods                                                       |
| TPHASE   | I                | С                   | The current phase end time (also the time during trajectory integration at which the columns of THRUST will be punched) |

Definition <u>Variable</u> The initial in-orbit-plane angle (or ANGLE1 pitch angle) which will be effected at the beginning of a shadow-out change. ANGLE2 The initial out-of-plane angle (or yaw angle) which will be effected at the beginning of a shadow-out phase change. A flag which is set to one to indicate ISHADØ that the next thrusting phase will be a shadow-out phase

Subroutines Called: ANGMØD, COPY, ZERØM

<u>Calling Subroutines</u>: PATH

Common Blocks: CONST, SHADOW, TRAJ1, TRAJ2, WØRK

Logic Flow: See Listing.

#### 3.7.2-C Subroutine: TØRQUE

Purpose:

To compute and print out supplementary thrust related data such as solar array rotation angle, roll angle, thrust attitude rates and required torques (for PITCH/YAW thrust policies only)

Analytical expressions dependent upon thrust

Method:

Analytical expressions dependent upon thrust policy are used to compute attitude rates and torques. Roll angle and solar array rotation (&) are given by

| Variable            | Input/<br>Output | Argument/<br>Common | Definition                   |
|---------------------|------------------|---------------------|------------------------------|
| DELE                | I                | С                   | Change in eccentric anomaly. |
| EZER <b>Ø</b>       | ı .              | С                   | Reference eccentric anomaly. |
| PHAS                | I                | С                   | Thrust control phase angles  |
| PITCH               | ı                | С                   | Pitch angle.                 |
| PITCHI              | I                | С                   | Pitch moment of inertia      |
| RØLLI               | I                | <b>C</b> .          | Yaw moment of inertia.       |
| THRUST<br>(1,NTPHAS | )<br>)           | С                   | Thrust policy.               |
| YAW                 | I                | С                   | Yaw angle.                   |
| YAWI                | I                | С                   | Yaw moment of inertia.       |

| Variable       | Definition                       |
|----------------|----------------------------------|
| ALPHE          | Solar array rotation angle.      |
| EA             | Eccentric anomaly of S/C.        |
| ITYPE          | Thrust policy type.              |
| ₽ <b>DØ</b> T  | Pitch time derivative.           |
| PD <b>Ø</b> T2 | Second time derivative of pitch. |
| PT <b>Ø</b> RQ | Pitch torque.                    |
| rdøt           | Roll time derivative.            |
| RØLL           | Roll angle.                      |
| r <b>tø</b> rQ | Roll torque.                     |
| Y <b>DØ</b> T  | Yaw time derivative.             |
| Y <b>DØ</b> T2 | Second time derivative of yaw.   |
| YTØRQ          | Yaw torque.                      |

Subroutines Called:

None.

<u>Calling Subroutines:</u>

DETAIL

Common Blocks:

CØNST, ENCØN, TRAJ1, TRAJ2, TRKDAT, WØRK

Logic Flow:

None.

#### 3.7.3 Subroutine: TRAK

<u>Purpose</u>: To control the point to point (event time to event

time) integration of the trajectory propagator.

Remarks: The event times which are input into the trajectory

propagator are obtained from the scheduling subroutine SCHED. After TRAJ performs the integration to the desired event time, subroutine DETAIL is called to

print detailed trajectory information.

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                            |
|-----------------|------------------|---------------------|-------------------------------------------------------|
| BDR             | o                | С                   | $\underline{\mathbf{B}} \cdot \underline{\mathbf{R}}$ |
| BDT             | <b>o</b> .       | C                   | $\underline{\mathtt{B}} \cdot \underline{\mathtt{T}}$ |
| CA              | 0.               | С                   | Closest approach radius as computed in BPLANE         |
| ECC             | o                | С                   | Eccentricity                                          |
| ISTØP           | I                | С                   | Desired trajectory termination flag                   |
| ITP             | I                | С                   | Target body index (i.e. NTP=NB(ITP))                  |
| KUT <b>Ø</b> FF | o                | <b>C</b> -          | Actual trajectory termination flag                    |
| LABEL           | I                | С                   | Hollerith labels for terminal conditions              |
| LØCM            | I                | С                   | Blank common location of S/C mass                     |
| NPRI            | I/Ø              | C                   | Primary body code                                     |
| NTP             | I                | <b>C</b> ,          | Target body code                                      |
| ØME GA          | 0                | С                   | Longitude of ascending node                           |
| RAD             | I                | С                   | Angular conversion constant (radians to degrees)      |
| RCA             | <b>o</b> .       | С                   | Radius of closest approach computed in TRAJ           |
| SMA             | o                | E                   | Semi-major axis                                       |

| Variable    | Input/<br>Output | Argument/<br>Common | Definition                                                                   |
|-------------|------------------|---------------------|------------------------------------------------------------------------------|
| S ØMEGA     | 0                | С                   | Argument of periapsis                                                        |
| TA          | o                | С                   | True Anomaly                                                                 |
| TCA         | О                | С                   | Time of closest approach computed in BPLANE                                  |
| TCURR       | . 0              | Ċ                   | Current event time                                                           |
| TEVNT       | 0                | С                   | Next event time                                                              |
| TM          | I                | С                   | Time conversion constant (days to seconds)                                   |
| TRCA        | 0                | С                   | Time of closest approach computed in TRAJ                                    |
| TSI         | 0                | С                   | Time of SØI crossing computed in BPLANE                                      |
| TOOT        | . 0              | С                   | Time of SØI crossing computed in TRAJ                                        |
| TSTART      | I                | C.                  | Trajectory start time                                                        |
| TSTØP       | 0                | c                   | Trajectory stop time                                                         |
| UREL        | 0                | С                   | Position vectors of S/C relative to all bodies considered in the integration |
| URELM       | 0                | С                   | Magnitudes of UREL vectors                                                   |
| VCA         | 0                | c ·                 | Velocity at closest approach                                                 |
| VHP         | 0                | С                   | Hyperbolic excess velocity                                                   |
| <b>VREL</b> | <b>0</b>         | C                   | Velocity vector of S/C relative to all bodies considered in the integration  |
| VRELM       | 0                | С                   | Magnitudes of VREL vectors                                                   |
| XICA        | 0                | С                   | Inclination of orbit relative to target body                                 |
| XINC        | 0                | С                   | Inclination                                                                  |
| XMEAN       | 0                | С                   | Mean anomaly                                                                 |

Variable Definition DELT Time between events IST PN Hollerith labels of requested stopping conditions **JEVNT** Print code KØFF Hollerith labels of actual stopping conditions MISS Flag indicating whether the target body is the primary body at the trajectory end time

Subroutines Called: BPLANE, DETAIL, SCHED, TRAJ

Calling Subroutine: REFSEP

Common Blocks: (Blank), CØNST, EDIT, EPHEM, PRINTH, SCHEDI,

SCHEDR, TARGET, TIME, TRAJ1, TRAJ2, WORK





3.7.4 Subroutine: TSCHED

Purpose:

To compute and print S/C tracking information

Method:

S/C rise and set times are computed for a selection of tracking stations. The primary assumption, which has been made to simplify the computations, is that the S/C moves very slowly across the celestial sphere. Thus, the rise and set times are poor approximations

for near-Earth orbital missions.

| t/Output:       | Input/ | Argument/  |                                                         |
|-----------------|--------|------------|---------------------------------------------------------|
| <u>Variable</u> | Output | Common     | Definition                                              |
| ECEQ            | . I    | С          | Equatorial to ecliptic trans-<br>formation matrix       |
| ELVMIN          | I ·    | С          | Minimum elevation angle                                 |
| GHZE R <b>Ø</b> | I      | <b>c</b> . | Greenwich hour angle at launch                          |
| IØBS            | I      | c          | Index of astronomical observator in STALOC              |
| ITP             | ī      | С          | Index of target planet in NB                            |
| MPLAN           | I      | С          | Number of bodies considered in the integration          |
| NB              | I      | С          | Vector identifying bodies considered in the integration |
| NSTA            | I      | C          | Number of S/C tracking stations                         |
| NTP             | I      | С          | Target planet code                                      |
| ØMEGAG          | I      | С          | Earth rotation rate                                     |
| PI              | I      | С          | $\pi$                                                   |
| RAD             | I      | С          | Angular conversion constant (radians to degrees)        |
| STALOC          | I      | С          | Station location coordinates                            |
| TCURR :         | I      | <b>C</b> , | Current event time                                      |

| Variable        | Input/<br>Output | Argument/<br>Common | Definition                                                               |
|-----------------|------------------|---------------------|--------------------------------------------------------------------------|
| TM ·            | I                | C                   | Time conversion constant (days to seconds)                               |
| UP              | I                | С                   | Heliocentric positions of bodies considered in the integration           |
| UREL            | I                | С                   | Position vectors of S/C relative to bodies considered in the integration |
| URELM           | I                | С                   | Magnitudes of UREL vectors                                               |
| VP              | <b>I</b>         | C                   | Heliocentric velocities of bodies considered in the integration          |
| VREL            | . I              | C                   | Velocity vectors of S/C relative to bodies considered in the integration |
| VRELM           | I                | С                   | Magnitudes of VREL vectors                                               |
| al Variables    | :                |                     |                                                                          |
| Variable        |                  |                     | Definition                                                               |
| Variable AZMUTH |                  | Azimuth             | Definition  of S/C relative to the tracking                              |

# Loca

| <u>Variable</u> | Definition                                      |  |
|-----------------|-------------------------------------------------|--|
| AZMUTH          | Azimuth of S/C relative to the tracking station |  |
| DEC             | Declination of S/C                              |  |
| ELEV            | Elevation of S/C                                |  |
| GECSTA          | Geocentric ecliptic station coordinates         |  |
| GEQSTA          | Geocentric equatorial station coordinates       |  |
| GHA             | Greenwich hour angle                            |  |
| GHZE RØ         | Greenwich hour angle at launch                  |  |
| LAMDA           | Right ascension minus Greenwich hour angle      |  |
| RANGE           | S/C range from Earth                            |  |

| Variable            | Definition                                            |  |  |
|---------------------|-------------------------------------------------------|--|--|
| RHO                 | S/C range vector                                      |  |  |
| RISE                | S/C rise time at each station                         |  |  |
| RRATE               | S/C range rate from Earth                             |  |  |
| RTA                 | Right ascension                                       |  |  |
| RVIANG              | Range-velocity included angle                         |  |  |
| SESANG              | Sun-Earth-S/C angle                                   |  |  |
| SET                 | S/C set time at each station                          |  |  |
| SINELV              | sin (ELV)                                             |  |  |
| SLAT                | Station latitude                                      |  |  |
| STATE               | S/C equatorial state                                  |  |  |
| TM                  | Time conversion constant (days to seconds)            |  |  |
| TWØPI               | 2 x 71                                                |  |  |
| UPM                 | Magnitude of planet position vectors                  |  |  |
| Subroutines Called: | CYEQEC, MMATB, SUB, UDØTV, UNITV, UXV, VECMAG         |  |  |
| Calling Subroutine: | DETAIL                                                |  |  |
| Common Blocks:      | CØNST, EDIT, SCHEDR, TIME, TRAJ1, TRAJ2, TRKDAT, WØRK |  |  |

See listing

Logic Flow:

# 4.0 REFERENCES

- "MAPSEP, Volume I Analytical Manual and Volume II -User's Manual," P. Hong, et al, Final Report for NAS8-29666, December, 1973.
- "Low Thrust Orbit Determination Program Final Report, NAS1-11686," P. Hong, et al, NASA CR-112256, December, 1972.