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I. INTRODUCTION

The Du Fort-Frankel difference scheme for solving parabolic
equations, see e.g. [S§], has the advantage of being explicit and
yet uncenditionally stable. The consistency requires that At goes
to zero faster than Ax does, but this requirement is in practice
not toc severe if the coefficient of the second derivative is
smali.

An analysis of a semidiscretized parabolic model problem,
performed along the same lines as in (2}, (3] for hyperbolic problems,
shows that higher order accurate approximations are more efficient
except for very low requirements on the accuracy of the results.
Therefore, in this paper the Du Fort-Frankel scheme will be
generalized to difference operators of arbitrary high order accuracy
in space and to arbitrary order of the parabolic differential
operator. The number of space dimensions is also arbitrary and so
is the number of equations in the system. The scheme is explicit
and unconditionally stable. Fcr a system with & differertial
equations we also avoid the solution of an £x% system of equations
for each gridpoint which would result from a straightforward
formulation of the scheme. In addition to finice differences,
spectral methods and finite element methods can also be used to
approximate the spatial part of the differential operator in our
scheme.

As for the original Du Fort-Frankel scheme, consistency impcses

a restriction on At in relation to Ax. However, for the type of



applications that we have in mind, like the viscous Navier-Stokes
equations, the dominating truncation error comes from the space dis-
cretization. Furthermore, when the time dependent equations are used to
obtain a steady state solution, the truncation error from the time
discretization is of no importance, assuming that the scheme

converges for t + =,

The generalization to higher order accurate approximations in
space was given by Swarz (8] for the scalar equation u, = ou with
periodic boundary conditions. Lc studied the efficiency for different
orders of accuracy and found e.g. that 12th order accurate operators
are optimal in a certain sense for a relative precisicr of 10'2.
and even higher order for higher ~recision. 1In real applications
with non periodic boundary conditions, we think that 4th or é6th
order operators are more realistic.

In section 2 the scheme will he prese ted for a ¢ :quence of
differential equations of increasing generality. In section 3 the
stability proofs are given, and in section 4 the so called Fourier
method is treated. In section 5 the stability of the mixed initial
boundary value problem is proven for two different 4th order accurate

space approximations. Section 6 contains a presentation of some

numerical experiments that were done for the Burger's equation.



2. THE DU FORT-FRANKEL AETHOD FOR FINITE DIFFERENCE SCHEMES

In order to illustrate the idea of the original Du Fort-Frankel

scheme we start from the simple equation:

(2.1) v, =ou, , 0> 0.

Witk u;' = u(jAx,nAt), it is well known that the scheme
n+1 n—l

—ii——Ji—- ‘-__f (u 2u +uj 1)

(Ax)
is unconditionally unstable. However, if we replace ug by

%( ?+1 g 1), the scheme becomes unconditionally stable. For

n

higher order approximations to U x it is not enough to replace uj

by some average. We adopt, therefore, another approach (see also

Swartz [8]).

2
2 2 be a 2p th order approximation to 3—7; then the

x

Let (Ax)
generalized Du Fort-Frankel scheme will be

n+l n—

g n+l n, n-1
(22)—371}- = %y o2l - X8y @i o2uleal™h

(Ax) (8x)

where vy is to be chosen such that the scheme is unconditionally

stable. The second term on the right hand side is a stabilizer,
2
and it is an approximation to y ¢ (%;) Upy- Therefore, consistency



requires that %; + 0; moreover, in order to minimize the truncation

error we would like to choose y as small as possible. It should be
noted that the operator Dgp is not necessarily a difference
operator; we can use any method of approximation such as spectral
methods [3], [S],and finite element methods [7]. Por.difference

approximations, vy is given by

= 1 52
(2.3) y >y, = gmax [Dy (0)]

[g]<n

where

(2.4) ng(z) = e'ikxngp 3K, £ = kax .
In the next section we will show that (2.3) yields unconditional
stebility. The original Du Fort-Frankel scheme corresponds to
Y=Yq- However, in this case the stability is‘not clear for
variable coefficients.

We would like to consider in detail some difference approxima-

tions for D%p, and the first one is the symmetric explicit operator.

n,n _n n_.n_n
Let D+uj uj+1 uj, D_uj ]j uj-l' Then
5 -l (i1)2 5
= -1)7
(2.5) D3=D,D_ [ (-1)7 x3imyTr5ery (PP-)
j=0

From (2.5) we deduce the following formula for the Fourier

transform
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It is obvious that Dgp(i) takes its maximum at £ = ¢+ . Therefore

p-1 .
) adn? ,
(23+1) 1 (3+1)

(2.6) Yo *

and for every y such that y 2 Yo (2.2) is unconditionally stable.

The operators Dg and Df are of special inte;est from the practical
point of view. Formula (2.5) yields

2 .
(2.7a) D3 = D,D_

2 1 i}
(2.7p) Dg = DD.(I- 3 D,D) = Q

For the first operator we have Yo = 1, and for the second one

T = %. Another operator which is of importance is the fourth

order implicit operator given by the following formula:

2 D,D

au . 1 + - n 1 n
(2.8) 4 : u? = Qu? .

ax? 0?1+ sop I (a2 23

It was shown by Kreiss (5] that this operator is more accurate
than the explicit operator defined in (2.7b). It is easily

verified that for this case Yo = % .



We consider now a parabolic system of equations of the

form

(2.9) y_ = A(x,t.u)uxx,

t

where u  is an £ component vector and A is an 2x% matrix.
The condition for uniform parsbolicity is:

(2.10) Real A{A) > &, > 0

for each eigenvalue A{A) of A. There ars two ways to extend the
method defined by (2.2). The first is:

n+l n-l1
Y4 M .1 .n.2 n_ n,n+¥l_, n_n-1
TX mlj sz\lj (—AiT!Aj(uj 2\!,4’“, ) »

which requiree the solution of an &x% system of equations in every
time step, and therefore, this method is not desired. A better
method can be obtained by:

n+l n-1

u Rl } 1

i i .1 n.2 n _ n, , n+l_, n. n-l1
(2.11) X3 (A;!-Ajbzpuj —1—-,;’(:5)(\:1 2uj+ul™)

where

(2.12) p(A) = max |x(W)],

and ) is given by (2.3). ' (Here we assume that p(A?) is known

explicitly, or that a good upper bound is known. The spectral



radius should not be computed numerically at each timestep.) A
stability analysis for certain classes of the matrix A will be

presented in the nex: section.

We will now discuss the two dimensional case for systems:

(2.13) ut = A(x,t,u)uxx + B(x,t,u)uxy + C(x,t,u)uyy.

The equation is said to be uniformly parabolic in the sense of

Petrovskii if there exists a constant 62 independent of x,t and

u such that:

2
(2.14) Real A (Am +Bwl 2 + sz) > 62 > 0 for all real ml,mz
with wi gsl. The Du Fort-Frankel scheme for (2.13) is:

o1
3 iL - 1 (D n -_._1__2.(: (D

24t (ax) 2 3‘ 2p’ x 38t (ay) Py jl

n n
. 1 o b T TS T

2.15 + = B, D *
( ) AxAy JL( 2p ) ( Zp)Yqu Y((Ax)z (AY)Z )
n+l o1
(ujl - 2uJ2 Ugg ) o

where (D)x means a difference operatcr in the x direction and
(D)y is a difference operator in the y direction. %p is any
approximation to the first derivative accurate up to 2pth order.
It should be noted that the stabilizing term, the last term in
(2.15), is independent of B . This means thac (2.15) is a very

simple explicit method that can be extended easily to more than



twc space dimensions. We can determine again v by (2.3).
The last problem to be treated is a general paratolic

differential equation of order 2m in s space dimensions:

) \
(2.36)  u = ) A (X t) 3,100 5%, X = (X000 ,%])
|n|=2m
8
v (upseeav) s vy 20, |y =z\'1 » &y = 5%;
=1

The equation is said to be parabolic if there is a constant 83

such that all the eigenvalues of

\}) V.
V. Av(x,t)(iml) 1... (1.5) S
|“|=2m

satisfy

(2.17) Real ) < -85 <0

for 211 @ = (oy,...,m;), ®; real and Sﬁm& = 1 « The scheme
for (2.16) will be

N+l Y1 s\
(2.18) u\’ T a (D, -)-x71 (p, ixg
Iv[-2m (8%3)1 (xg)7s ¥



where in the second sum all the terms with mixed derivatives

are excluded,

.
3. Stability for the initial value problem.

In this section it will be shown that the scheme presented
in the first section 1s unconditionally stable for the linear
pure initial value problem. We shall make use of the stability
theory developed by Widlund (10] and we will assume that the
recder is familiar with that paper.

We start with the following lemma:

Iemma 3.1. Consider the equation:

(3.1) 22 - 1= -2y - x(a-1)°
where
(3.2) x>¥%¥>0.

Then the roots )\, and \_ of (3.1) satisfy

+

(3.3) gl <1,

where the equality sign holds only if y = 0, and then only for
X, .

sfroof: The roots of (3.1) are

1

e =T LOey) £ 1 - y(ex-y) ] .

A



- 10 -

If 1-y(2x-y) > O then by (3.2) we get

Jr-y(ex-y) <1, |x-y| < x,

and therefore Ix*, < 1 . Equality holds in (3.3) omly if y=0 ,

in this case

x-1
A\, = 1 and |1-| = 'iTI, .

If now 1 - y(2x-y) < 0, then ), and \_ are complex and

therefore

2 x-1
IX*I = lml <1l.

This completes the proof.
We discuss first the method defined by (2.2). The Pourier
transform of (2.2) is exactly (3.1) with

B, 2 covg At
y = o y X =2vO .
() 2P (&x)°

Equation (3.2) yields the condition (2.3) and by lemma 2.1 only
ocne of the roots lies on the unit circle, which is sufficient for
stability. Moreover, since ﬁgp(g) =0 only if g =0, we

have also:
(3.4) I <1-6jg® .

The bound on |A| 4n (3.4) 4s important if lower order terms
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are included in (2.1). It should be noted that with v =1y_,
as in the original Du-Fort-Frankel scheme, ().4) is not fulfilled.,
In order to investigate the stability of (2.11) we make
several assumptions that simplify the analysis. We will assume
that A 1is independent of u and has real eigenvalues. The
second assumption applies to a large class of problems such as
the compressible viscous Navier Stokss equations. (We recognize,
though, that the Navier Stoxes equations are not uniformly
parabolic since the continuity equation does n¢t contain second
derivatives).
We shall show now that the scheme (2.11) is a parabolic
difference scheme in the sense of Widlund [10]. Rewrite first,

tne Fourier transform of (2.11) to get:

N\ N\
n+l n
u u
(3.5) ' n = G | pq
_u u
where
C At 2 At At
2 ADS_ + bvp(a)1 = 1 -2 o(A)I
()2 2 N 'ugccf
1l + 2vp(A)——, l - QY—'A-—Q'Q(A)
¢ - (ax)° (ax)
L 1 Y R

The eigenvalues 2z of G satisfy the equation (3.1) with X = z and

3.6 ==L s A)B?) (=
(3.6) y T2 (R)D5 (8
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and
3.7 = 2yAt A) .
e " A e oW

Again if (2.3) is satisfied we get:
2
12| < -8le® , el T .

It remains to check the root condition of widlund [10}, that is

e have to check that the eigenvalues of

22X l-X
1+X 14x
] 0

are not outside the unit circle and are simple on the unit circle.

X+l
x+]

condition is satisfied. This completes the proof that (2.11) is

Sut the efgenvalues »f H are and therefore, the root
uvnconditionally stable,

It should be noted that H defined in (3.8) satisfies a
stronger ccndition than the root condition since only one cf
the roots lies on the unit circle. In fact the conditions of
theorem 1.1 in [10] are satisfied. Thus the scheme is strongly
paraboslic in the sense of Varah [9], and we shall make use of
thi. fact when treating the boundary conditions,

We proceed by analyzing the scheme (2.15). We maxe the

additional assumption that the eigenvalues of

2

2
Aul + Bwlm2 + Cm2
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are real. This assumption is valicd for the Navier Stokes equations,
for example. Condition (1i) of theorem 1.1 in [10] is satisfied
because ncy H i3 given by (3.8) with

= 2yAt (—9-(—% —91-(-:% ,

(ax) (ry)

and therefore, only one root lies on the unit circle. It remains
to prove that the eigenvalues of the Fcurier trancform of (2.15)
do not lie ocutside the unit circle. These eigenvalues are given,

again, by (3.1) with

At At A2 Al
7= (Lpa(® ) + Ao (B2 ) + L 5B ) (1))
() 2‘”‘ (ay) 2Py AxAy epixTepy
and
QVM:(—QJ-A%‘F*P—(E%) s
(ax)" ()
A~
Note that (ﬁip and (Dgp)y are negative and (¢2p < 2nd

( 2p)y are purely imaginary. For usual difference approxim-ticnr
y 1is positive.

Condition (3.2) implies that v must be chosen such that

at Sy - st R At gy (B
(3.10) =~ M)2A(D2p)x —(:y—)gc\nzp)y AxAyB(LEF)X(D@'V

< byt —ﬂ-ﬂ,} 51y .

(ax) (ay)

By the parabolicity cordition (2.14) it is clear that (3.10) is

satisfied provided that:
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Ny . .1 . . >
DS il + 1o (w)]”
(z.11) Yy > v = usax 2p'5 12D

> lejgrw 4

For the approximaticns (2.7) one can prove that (3.10) is satisfied fer

A s_.ilar analysis :3ids for (2.18) and theivefore we have completed
‘he -~tability prcoc? of the generalized Du Fort-rfrankel methods.,

de will ncw discuss briefly the effect of lower o: ier terms
in the eaquation. The advantage of the Du FortFrankel cchezue is
that i{* can be combined in a natural! way with the Lea;->rog scheme
if the equationcs under consideration have lower order ter-s,

As an illustration we discuss the eqguation:

(3.12) u, = Aux + ou . -
The schemne will be
un+1 un-]
- . { - M 1l n 2 .n n+1 n n-1
el ————— 2= - -
(53.13) ™t gpuj + GUquJ Ya(u, 2uj-+u; ) .

The effect of the term AD;p on the amplification mat)ix will
be Gigf(g) in the upper left corner, wherz & 1is ve:ry small.
Therefore, due to the discussion i. (6,Sec.5.3], the schene
remains stable. Hcwever, if A depends on u and ¢ 1is very
small, we need a term that will maxe the scheme dissipative.

nreiss and Oliger (] suggested *he form

ORIGINAL PAGE IS
OF POOR QUALITY
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n+ n-1 t 1
™ o1+ &(D+D_)3)u + 2%—XADG(I-6-D+D_)u“ s
where n n

R L2 S

0 ., 2 N

A trivial calculation shows that a sufficient conditicn for

stability 1is

®

AtA , 1 -
Bezdsomd - oe<1 .

4, The Fourier method for periodic boundary conditions.

. 1 .
Let N be a natural qumber, Ax = N1 and xJ = JAX ,

J =0:,1,...,2N . Consider a function u(x; such that u{x+1l)}=u(x).

An accurate method of approximating Uy at x = xj is to
interpolate u(xj) by the “riguncmetric polynomial
N
. <A s
(4.1) u(xy) = . Ulelexp{iviex) ,

where

-
G(m) = &Y u(xi)exp(-Qwimxi) ’

Ao t

and to differentiate this polynzmial to get

2 l‘
4.2) Sy = ¥ 4%y l(mjexp(2Tinx,) .
ax~ lx=x, mmN J

This approximation can be achieved by two rast Fourier Transforms

and N complex multiplications.
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With

ﬁ.“ = (u(xo)!""“(xgn).).rs
V&

2 2
_ d"u(x,) d%u(x,,) T
= (—'—2—,000’ —__-2"—)
3x _x
the above method can be written as 5& = TﬁTﬁk = SNﬁk , where

(4.3) A = dlag(-47°N>, Hn°(§-1)°, ... , 47°,0,-47°,..., -br°N°)
and

(4.4) T., = VAx exp (-2wi(k-N)x,) .

K8

It is obvious that T is a unitary matrix and therefcre we have

Lemma 4.1: SN is Hermitian and its eigenvalues are 211 negative

except one which 15 zero,
Conslder now the ensuation

(4.5) u = ow,

]

u(x,0) = f(x) = E: 9(m)exp(2vimx) R
=-N
u{(o,t) = u(1,t) .
We approximate (4.5) by
a0+l -ﬁn-l
N _ =n _ -»n+tl __=sn_ <n-1
(4.6) oAt = Sy ayNz(uN Uy + Uy )

which can be written



=nil A
) [ vy "
. - G
Vr l N ‘-,0!1-1
| Yy N
where
i B :6‘; . . B 1-:( - ..!
A (spevi©) x|
481 oy = |
- '-‘ C l

"he eigenvalue: ., GN zre given by equzt® n (2.1) with

y = yw) = satowin? , X = 2yoAts .

£ now v > 7 » then by Lemma 2.1 all the eigenvalues o7 GN

except a simple nne, liec inside the unit circle. 1n order to

n-ove tiat

(5.9) Il ol

A
o

where kK is n.t z Zfunction of either n ~- N, we shall prove

that G can be diagonalized by a similarity transformation which

-

is independent ¢ K . DPlefine fi-st
A

Then

ORIGINAL PAGE IS
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[ 2(y(-N)-x 1-x ]
X 0 =1
A A - - A
TGT* = 0 2 fx" s G .

The eigenvectors of 6 are of the form

F 3
by 0 0

0 x§ .

[ ] L] *

0 0 <« Mya
1 0 0

0 1 )

. 0 .

0 0 1

where 1: are solutions of (3.1) with y = ywi, =N, -Nl,...,N.

AR A
R = »
I I

If

where
: % %
L* = dl&g (11,\23000"\2*'_1) ]

we have
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(Lt -17)? Lot -1yt
-1

-(L+-L.)-1 L+(L+-L-)-1

IR|| and || rR1 I are bounded independently of N and R~ 1Gr

is diagonal, which completes the proof.
The generalization of this method to variable ccefficients
is trivial. Moreover, because of the parabclicity there are no

stability problems. This is not the case for hyperbolic equations,

see [3].
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5. Boundary Conditions

In this section we will treat only 4th order approximations
to the scalar equation (2.1). The results can #lso be applied
to systems, but the boundary conditions must then be stated in
terms of those variables corresponding to the diagonalized
system (if such a form exists). We will always consider the
quarter space problem 0 <X <=, ¢t >0 and the theory by
Varah (9] will be used. We begin with the Dirichlet boundary

condition
u(o,t) = g(t)

The stability proof will be applied to the more general
scheme

L 2 ni-k
(5.1) kz-l (e, I + 8,0, ), " =0
where Duz is one of the U4th order accurate operators treated
in Sec. 2. (5.1) is assumed to be consistent with (2.1) and
stable for the initlal value problem. Furthermore we assume
strong parabolicity, which was shown to te fulfilied Ly the
Du Fort-Frankel scheme in Sec. 3. For the explicit operator
Q defined bty (2.7b), the numerical boundary conditions
will be

(5.2)  uy" = g"

(5.3) § [a,148,0,0 (T - 0 2,2)1u,"¥ = 0

ke-1
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In (5.3) the centered difference operator used for inner
points 1s substitutéd'bj & non-centered 3rd order accurate
operator. This lower order accuracy at the point x = Ax
should not effect the overall accuracy, (see Sec. 6).

Connected with (5.1) is the resolvent equaticn
-~ 1 A

(5.4%) t(z)uj - DD (I - 1% D*D_)uj =0, j=2,3,...
where

r by

-k r-=k

T(z) = a, 2% B .z z| > 1

I o™ 1 8Tzl >,

k=-1

and the characteristic equation‘
(5.5) t(z) - £(x) = O
where

2 2
() = L) L)

(5.5) has for |z| > 1 two roots K,» K, 1aside the unit

circle (see [9]). We can now prove

Theorem 5.1. Assume that at least one of the roots, «x,(z)

say, satisfies xz(z) ¥ 1, xz(z) ¥ x, for lz] > 1, where

o 1s the root to

4

(5.6) Ux" - 9x3 - 5:2 - 15¢ ¢+ 1 = 0,

2 .

which is inside the unit circle. Then (5.1) with Dy~ = Ql

is stable with boundary conditions (5.2), (5.3).
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Proof.

The homogenous boundary conditions for GJ are

(5.7) ug = 0

(5.8) t(z)d, +D,D_(I - g3D,5)d, =0

Looking for non trivial solutions in nz(o,a) (1.e.,

) lﬁjlex < w) for |z| > 1, we write GJ in the form
J=0

J

(5.9) u, = a(Kl - sz), Ky # K,

J

where x, are defined by (5.5).

Ky»
The condition for the existence of non trivial solutions 1is
obtained by inserting (5.9) into (5.8):

2 a2
(Kl-l) (K2—l)

(5.10) T(z)(k)x,) - [(;-1)2(1 - —Fy—) - (5,~1)%(1 =~ —F—)1 = ¢

By combining (5.10) with (5.5) it can be shown that Ky

must fulfill
5 5
(zl-l) (Kz-l)

(5.11) - = 0
<1 K2

together with one of the equations

(:1-1)2 (xz-l)z

(5.12) + = 12

or
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We begin with the system (5.11), (5.12). By defining

xl—l 5
c = E;:T' we get x; = ¢ Kos and from (5.11)
xz-l = -c(c+1)(c2+1).

(5.12) then gives the final polynomial for c:

c10 + c9 + 2c8 + 3c7 + 16c6 + 3c5 + 16cu + 303 + 2c2 +¢c+1 =20

The roots were obtained by a2 computer program. They are all

such that at least one corresponding « is outside the unit

i
circle, which 1s a contradiction

An easy calculation shows that the system (5.11), (5.13)
implies that «x; = x,, and in this case the form (5.9) of
the solutlion does not hold. For double r.ots of (5.5) the
form 1is GJ = ajxj. By inserting it irnto (5.8) and using

(5.5), we obtain immediately the condition
e - 13k 4 43 - 1062 4 16k - 1 = 0

for a nontrivial solution. k=1 is one root, but is ruled cut by cur
assumption. The remaining deflated polynomial is (5.6), and the
theorem is proved. (It should be noted that the assumptivcns in rn-
theorem could be weakened, since Varah's stability condit..n permits

non-trivial solutions of a certain type.)

ORIGINAL PAGE I3
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Corollary. The Du Fort-Frankel scheme 1s stable with boundary
conditions (5.2), (5.3).

Proof. «x=1 1s actually a double root of (5.5) for 2z=1 but
a perturbation calculation shows that only one of them 1s
inside the unit circle for |z| > 1. Therefore the first
assumption of the theorem 1s fulfililed.

The root x, of (5.6) with [k, <1 1s real and
located in the interval [0.06, 0.07]. This corresponds
to a value of f(x) which is less than the stability 1limit

16/3, and, therefore |z| <1 (see Sec. 3.).

It 1s easlly verified that the assumptions in the theorem

are fulfilled by, for example, the following schemes

+
u? 1. quun,

+
quun 1. un’

(I - 8uQ)u™! = (I + (1-8)uQ, ",
l ke

n+l

((140)T - u@ ™ + (1-20)u" + ou™t = o0,

where it 1s assumed that u = gat and 6 are in the

(Ax)
stabilisy intervals for the initial value problem. The
theoren can also be generalized to several space dimensions
in the sense that after a Fourier transformation over all
space variables except x, the stabllity conditlons of Varah

[9] still are fulfilled uniformly in the dual variables
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52’ 53,... . This depends on the fact that the Ei drop

out of our calculations as z and u do, and the final

polynomial will be independent of all parameters.

Next we will treat theoperator Q2 defined by (2.8)
One boundary condition for the difference scheme obviously
must be (5.2). This condition will also be sufficient to
define the solution if we multiply (5.1) by (I + I% D,D_)

and solve for un+l

directly. In this case stability

follows immediately, since the sclution to the resolvent
equation has the form GJ - aKJ, and it cannot satisfy GO = 0
if a # 0. However, this procedure will become inconvenient
for a real problem, where the coefficients depend on x, t

and very likely even on u.

In a practical application for an explicit scheme, the

second derivative (Ax)'zsjn is computed from udn by

solving the tridiagonal system,

T 1 n
(I + 13 D,D_)s," = D+D_ujn, i=1,2,...

For an implicit scheme, the system

1 n+l n+l _
(I + y3D,D_)S, - DD _u, 0
i=1,2,.
u,M1 4 g5, . § (a,u," K + g 5 0K
%0y 0% kio K k3
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is solved for an+1, SJn+1. In both cases, a boundary

condition 1s needed for So' One way of proviiing that is
to express So in terms of uJ, and this 1s also the simplest

way for an explicit scheme.

By using a 3rd order accurate one sided formula, w. get

the boundary condition

(5.14) S .0 = (35u0“ - 1ouu1n + 11uu2“ - 56u3“ + 11uu“)/12.

0

Theorem 5.2. The scheme (5.1) with Du2 = Q2 i1s stable with

the boundary conditions (5.2), (5.14).

Proof.

The resolvent equations for GJ, §J are
AN I§
r(z)uJ 3

u=l,2,...

1 A ~
(1 + g3 0,0 )&, = DD U,

with the homogenous boundary conditions
0 d 3

- 4
=0, 8,= JZ e,u

eJ being defined by (5.14). After eliminating §J’ these

equations can also be written
(5.15) T(I 4 {3 0,004, = D,D_&,, J%2,3,...

(5.16) uy = 0
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/]
~ 1 ~ -~ ~ ~ PS
(5.17) T, ¢+ Ii(tuz - 2ty + JZleduj) =u, - 20,.

The selution in 1£,(0,=) tc this system has for lz] > 1

the form
- -3 ,
(5.18) uy = alx GOj) (61J is the Kronecker symbol)
where « satisfies
(x-l)2

(5.19) w(o)x + &by - (x-1)% = 0

When using (5.18), (5.19) in (5.17) we obtain the condition
for a non trivial solution:

[}

(xz + 10 ¢ 1) e,x
A

-1 4 1my = 0
For our choice of eJ this equation is

(5.26) 11x> + 54k - 435¢3 + 980x2 - 926x + 1624 = 0

which has no root inside the unit circle, and the theorem
is proved.

We consider next the bounda:~y condition
u‘(o,t) 4+ bu(0.t) = g(t) .

For both of the operators Q1 and 'Qz, ux(O) is

approximated by a one-sided 4th order accurate formula
(5.21) (--25uO + H8ul - 36u2 + .3u3 - 3uu)/12Ax + bu, = g.

in connection with Q1 the second boundary cordition will



be (5.3). The stability of the scheme has not been verified
theoretically. However, numerical experiments show no
evidence of instability (see Sec. 6.).

For the 1implicit operator QZ’ the second boundary
condition will be (5.14), and in this case we can prove

the following

Theorem 5.3.

The scheme (5.1} with Du2 = Q2 1s stable with the

boundary conditions (5.14), (5.21).
Proof .

The proof follows the same lines as the proof of
Theorem 5.2, and we do not glve the details here. Keeping
the parameter a defined in (5.18), the final equation

corresponding to (5.20) now is
(5.22) Px)a = (602c> + 2376x" - 24064x3 + 56764k - T1546x + 353E3)a
30’

which has 4 roots outside the uni: circle, and one root

at «=1. By the assumption of strong parabolicity, the
correspcnding value of 2z obtalned from (5.13) is 1, and
for this z-value, «=1 1is a double root of (5.19).
Therefore k = 1 + G(fl—z:ﬂ'). The stability condition by
Varah 1s that tl.e parameter a can be estimated from
P(x)a = g by |a| < |g|/ /Tz-1]. This estimate is valid

for our case since «x=1 is a simple root of P(x).
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6. Numerical Experiments

The generalized Du Fort-Prankel scheme was tested for
the Burgers equation

(6.1) u, + (u-1/2)ux = M. “5<x<5, 0<t¢,

using the two 4th order accurate operators Ql’ Q2 defined
in Sec. 2. The initial function was

u(x,0) = 1 - (x-5)/10,

and the boundary conditions were

(6.2) u(-5,t) =1

(6.3) u(5,t) « 0

The problem (6.1), (6.2), (6.3) has the steady state solution

(6.8) v(x) = 31 - tarh = ).

The time integration was stopped when the condition

n+l

(6.5) max fu,"* - u,"| <8t - 107

was fulfilled. The error ¢ = maxlan - v(xJ)I 13 listed
J

in table 6.1. Paraaeter values used were o = 1/8,

Ax = At » 0.2, y = 4/3. £ dernotes the time when (6.5)

was first satisfied.
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- Qy Q,
£ 10.6 10‘" 3.4 10‘"
t 26.6 26.4

Table 6.1 The error € and steady state time t for the

different operators.

Our scheme was also run vith ax = &4t = 0.1, and the
error was found to be 16 times smaller in accordance with
the Uith order accuracy.

With the same initial function but with the boundary
condition u (-5) = 0 instead of (6.2), we obtained the
steady state solution u{(x,~) = 0 for toth operators Ql,
Q2. In both cas=es the scheme was not showing any signs of
instability, which possibly could have occurred from the

boundary condition at x = -5, when using the operator Ql.
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