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ABSTRACT

The presence of H20 and CO2 in the earth's atmosphere has for centuries

frustrated astronomers in their attempt to "see" objects'radiating outside the

visible window. Recently, NASA has outfitted a modified C141 transport with

a 91.5 cm reflector telescope designed to view in the infrared range from li

to 1000P. The telescope is situated in a cavity which (because of the lack

of infrared-passing windows) is operated open port. Spoilers have been

designed which reduce turbulence-induced excitation of the cavity.

Since the aircraft is designed to operate at altitudes up to 15 km, the

effect of the H20 and CO2 is reduced significantly. Furthermore, the optically

degrading influence of the large scale atmospheric turbulence on land-based

telescopes is thus replaced by the, as yet little understood, effect of the

turbulent shear layer resulting from the spoiler upstream of the cavity. The

purpose of this report is to establish a mathematical model appropriate to

describe the effect of turbulent shear layers on imaging systems as well as to

examine the parameters of interest relevant to potential wind-tunnel experimen-

tation.

Because of the relative thinness of the turbulent shear layer, it is

argued that the zeroth order geometrical optics plane wave approximation

adequately describes the radiation field in the vicinity of the telescope.

With rather mild assumptions, one then finds the following expressions for the

average and mean square of the optical transfer function:

LL

<t( -, )> = (1/A) G0 ( j+x)GO(X1)exp{-k2K2/2 h (t,u;v,w)dzldz2}dxl
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and

< T(k 2> (1/A) G(1+x)G(x)G(ux)O(

LL

Xexp{-k2K2/2 [(t,u;v,w)+(t,s;v,q)+(r,u;p,w)+(r,s;pq)]dzldz2 }dxdu1l

where D is defined in terms of the density correlation function, R , by

V(t,u,;v,w) = R (v;w) - R (t;w) - R (u;v) + R (t;u)

and p=(u+x,zl), q=(ul+x,z 2 ),r=(ul,zl), s=(ul,z 2 ), t=(x+x,zl), u=(x +x,z2),

v=(x1,zl), and w=(x 1 ,z2). In the special case that R is Gaussian, <T> can

be found explicitly in closed form, and a bound for <ITi 2> obtained.

I. INTRODUCTION

The adverse effect of the earth's atmosphere on man's study of celestial

bodies has been of concern since the first telescopes were built in the

seventeenth century. Electromagnetic waves traverse the universe relatively

unhindered in their travels only to be absorbed or dispersed in the last few

kilometers of their journey to man's eye. For example, the presence of H20

and CO2 in the atmosphere accounts for the absorption of essentially all

infrared radiation (1 to 1000P) except for several narrow windows in the

spectrum up to 20 microns.

An observatory at an altitude of 15 km would be above 95% of the H20 and

75% of the CO2 in the atmosphere and objects emitting in the infrared would

be detectable. With this in mind, NASA has installed a 91.5 cm reflector

telescope in a C-141 aircraft (ref. 1). Though not matching the height advan-

tage of satellites, the aircraft has some advantages in cost and flexibility.
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Since no known material is transparent to radiation at all wavelengths in the

infrared range, the airborne telescope is designed to operate open port. This

circumstance has created the potential for acoustic resonance of the telescope

cavity. To avert the concomitant telescope vibrations, spoilers were placed

just upstream of the cavity (ref. 2), and, in this configuration, the telescope

is able to "see" in the infrared portion of the spectrum. However, the quality

of seeing varies randomly in time due to the refractive index fluctuations

introduced by the spoilers. Thus, the large scale turbulent fluctuations of

the atmospheric boundary layer, which are responsible for such phenomena as

the twinkling of stars, have been replaced by the relatively small scale

fluctuations in the spoiler-induced free shear layer.

The phenomenon just described is similar to optical degradation experienced

by photo reconnaissance or earth resources missions as well as in the use of

laser beams for communication systems. The occurrence of optical degradation

due to "thin" turbulent boundary layers and shear layers common to so many

varied endeavors has stimulated much work, both experimental and theoretical.

It is the purpose of this paper to summarize and develop the requisite mathe-

matical models which will provide a basis for an experimental investigation

of the fundamental nature of the influence of turbulent shear layers on

electromagnetic wave propagation, especially in the infrared range.

What follows is a short history of relevant work performed during the

last 20 years. The most thorough experimental investigation of the effect of

turbulent boundary layers on light propagation has been that of Stine and

Winovich (ref. 3) in 1956. Their results indicate that the loss in resolution

due to turbulent boundary layers can be several times that experienced by
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land-based telescopes resulting from atmospheric turbulence. Hufnagel and

Stanley (ref. 4) showed theoretically that the optical degradation due to

turbulence can be related to the distribution of the mutual intensity function

across the aperture of the telescope. Fried (ref. 5) further distinguishes

between "long-exposure" (corresponding to Hufnagel and Stanley's results) and

"short-exposure" average optical transfer functions. In the present paper,

the author will describe those aspects of the theoretical models devised thus

far which are particularly relevant to propagation of infrared radiation

through turbulent shear layers.

II. THE ELECTROMAGNETIC FIELD

The electromagnetic field is a vector field satisfying Maxwell's equations

together with appropriate constitutive relations. (See Born and Wolf (ref. 6,

pp. 1-3)). By assuming that the magnetic permeability is constant and that

the dielectric constant does not vary appreciably over times of order X/c

or distances of order X, the electric and magnetic vectors are found to satisfy

identical wave equations. (A represents the wavelength and c the free space

propagation speed.) Hence, each component of the field vectors satisfies the

scalar wave equation:

V2 V - (n/c) 2 V = 0, (2.1)

where V= V(x,t) represents any of the components of the electromagnetic field

vectors, x is the position vector in the field, t represents time, and

n= n(x,t) is the refractive index. If there is no preferential polarization

direction, then the study of the scalar equation (2.1) suffices to yield the

measurable quantities of interest, such as intensity or mutual coherence.

(See Born and Wolf (ref. 6, pp. 387-392).)
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Assuming V is polychromatic, and assuming further that V is square

integrable, we have the following Fourier representation:

V(x,t) u(x,w)e d. (2.2)

In the form (2.2), V is in general complex, which proves to be convenient.

However, in the physical problem we will, of course, be interested in the

real part of V.

Substituting (2.2) into (2.1) we have

2  -i t n2  ( -iwt2.3)
V u(x,w)e  d - dt 2 u(x,w)e dw=O. (2.3)

Assuming the required uniform convergence of the improper integrals involved,

the order of integration and differentiation in (2.3) may be interchanged to

give

[V2u+(n/c) 22 u]e-itd = 0. (2.4a)

If we define k = w/c to be the free space wave number (rad/m), then

(V2u+k2n2u)e- dw = 0. (2.4b)

Finally, we have

V2u+k2n2u = 0; (2.5)

that is, each Fourier component of the complex signal, V, satisfies the

Helmholtz time-independent wave equation. If the Fourier components u(x,w)

are known, then the signal V is given by (2.2). Furthermore, if polarization

is neglected, then intensity, I(x), at a point satisfies the relation

5



I(x) c f u(I.W)2dw ([6, p.392]).

-00

We will henceforth concentrate our attention on u(x,w) rather than V(x,t)

since one determines the other.

We wish now to specialize the problem to that of a plane wave propagating

through a turbulent shear layer of thickness, L. The turbulence will be

considered to occupy the infinite layer bounded by the planes z=0 and z=L.

The undistorted plane wave travels in the positive z direction, entering the

shear layer at the plane z=0 and exiting at z=L. It will furthermore be

assumed that the wave radiates to o in the positive z direction, unaffected

except for the turbulent region just described; in particular, it is assumed

that the body which borders the shear layer does not reflect any of the

incident radiation. (This is sometimes referred to as the Sommerfeld

radiation condition.) With these boundary conditions understood, each Fourier

component of the radiation satisfies the Helmholtz equation (2.5).

It should be pointed out that since the refractive index n varies

randomly in space, equation (2.5) is a random partial differential equation

with variable coefficient, and hence it would be fruitless to seek an exact

solution. However, in most cases of practical interest, one can write

n(x) = l+nl(x), (2.6)

where InlI<<l; i.e., the refractive index is perturbed only slightly from

its free space value. Because of this fortuitous circumstance, perturbation

solutions of (2.5) abound. Most of these methods are described in references

7 and 8. Because of the thinness of the turbulent layer under consideration,
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however, it is the author's opinion that diffraction effects can be ignored,

and a geometrical optics description suffices. Evidence to support this

contention follows in section III.

Tatarski (8, p. 174] seeks a solution of (2.5) of the form:

4 1 i ikO ()

u() = [U( + ul() + 2 u2 (x) + ...]eik

(The dependence of u on w will henceforth be implied rather than explicitly

stated.) He finds the following expressions for u0 , ul, and 8:

z

u 0 (x,y,z) = A0 exp{-( (z-)VinI(x,y, )d0}

0

iA z

ul(x,y,z) = - (z-) V[V2n(x,y,)]d

0

O(x,y,z) = an(x,y,L)d = z +{ nl(x,y, )d

0

where V2 denotes the lateral (perpendicular to the direction of propagation)

Laplacian operator

2 + 82
TX = 2 + y2

and A0 denotes the initial undistorted wave amplitude. Tatarski argues that

terms higher than u0 can be neglected if (i) 1/k<<l. and (ii) V5JT<<li, where

ii denotes the Kolmogoroff inner scale of turbulence. Condition (i) places

an upper limit on the wavelength

X<<2n ii ,
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whereas (ii) essentially restricts the thickness of the shear layer as

follows:

L<<1/X.

(Restated, condition (ii) requires that the radius of the first Fresnel

zone, v/T, be much less than the inner scale of turbulence.) In the analysis

which follows, then, we will take:

u(x,y,z) = u (x,y,z)eik6(xyz) (2.7)

= Aoeikz eX(x,y,z)+ikY(x,y,z)

where
z

X(x,y,z) = - (z-i)Vnl(x,y,C)dC

0

and
z

Y(x,y,z) = f nl(x,y,r)dg .

0

III. THE OPTICAL TRANSFER FUNCTION

The question of how to describe the effect of turbulence on the quality

of an imaging system is, to some extent, a matter of taste. Several para-

meters have been used by designers to describe optical quality depending on

the design aspect of interest. A description of several of these quality

factors is given by O'Neill [9, Ch. 7]. With few exceptions, all can be

related to the so-called optical transfer function (OTF), T, which is defined

to be the normalized two-dimensional spatial Fourier transform of the image

plane intensity distribution due to a monochromatic point source; viz:
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-m gs(x,y)e-i(fx+gY)dx dy (3.1)
'r(f,g) =

jJ s(x,y) dx dy

where f and g are spatial frequencies with units, radians per meter. In

(3.1), the function s(x,y), which denotes the intensity at the point (x,y)

in the image plane due to a point source at (0,0) in the object plane, is

sometimes referred to as the point spread function. If one views an extended

object emitting incoherent light, then

I(f,g) = T(f,g) 0(f,g) , (3.2)

where I and O are the two-dimensional spatial Fourier transforms of the

intensity distributions in the image and object planes respectively. If

one were viewing an object with randomly varying intensity distribution,

then instead of (3.2), one has:

0ii(f,g) = IT(f,g)1 2 %00(f,g) , (3.3)

where Dii and 00', which denote the Fourier transforms of the intensity

autocorrelation functions in the image and object planes respectively, are

the image and object Wiener spectra respectively. (O(f,g) corresponds to

the power spectral density for time varying random functions.) To summarize,

then, for incoherently illuminated objects, the optical transfer function

relates the Fourier transforms of image and object intensities in a linear

manner.

Let us define the pupil (or aperture) function, G(x,y), to be the

complex disturbance at the point (x,y) in the aperture plane due to a point

source; G(x,y) will be defined to be zero if (x,y) lies outside the aperture.

(Note that we restrict our source to lie within an isoplanatic patch of the
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working field.) It can be shown (see, for example, Born and Wolf [6, p.485]

or O'Neill [9, p. 77]) that the optical transfer function is related to G as

follows:

kx k f G(x'+x,y'+y)G*(x',y') dx'dy'
R R , (3.4)

f G(x',y')G*(x'y') dx'dy'

where R denotes the focal length of the system. (Note that the integrations

in (3.4) are only formally infinite since G vanishes identically outside the

aperture.) The representation (3.4) will be particularly convenient as we

now proceed to describe the effect of the turbulent layer on optical quality.

If we assume that a point source is located at a distance far removed

from the optical system under consideration, then the radiation entering the

turbulent layer is, to good approximation, a plane wave. But then we have:

T( >,2) = -9 0(x'+x,y'+y)GO(x',y')u(x'+x,y'+y,L)u*(x',y',L)dx'dy' (3.5)
R R o

G2(x',y')u(x',y',L)u*(x',y,L)dx'dy'

where

Sl, (x,y) in the aperture
G0 (x,y)

, (x,y) not in the aperture

and u(x,y,z) is given by (2.7).

Before proceeding further, a word is in order here regarding the efficacy

of T as a measure of optical degradation due to turbulence. By definition,

T is the transfer function relating the intensity distribution in an extended

object to that of the image. Its value as a transfer function is thus limited
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to incoherently illuminated objects. On the other hand, if one observes a

star with a telescope, then the intensity distribution in the focal plane

is exactly the point spread function, whose normalized Fourier transform

is given by (3.1). Hence, even though the use of T as a transfer function

must be limited to the ideal, and rarely realized, case of incoherent illu-

mination, its usefulness as a measure of optical degradation is broader.

(The derivation of transfer functions appropriate to coherent or partially

coherent extended objects is given in Born and Wolf [6, Sections 9.5.1 and

10.5.3 respectively].)

Since, by (2.7), u depends on n1 , which varies randomly with position

in the turbulent field, then (3.5) implies that for each fixed spatial

frequency, T is a complex random variable. Hence, a complete description of

T requires determination of its probability density, or, equivalently, its

moments. In practice, one is fortunate to determine the first two moments,

namely the mean, or expectation, and the mean square. If we denote mean by

< >, then from (3.5),

kxI G (2)(x',y';x,y)M (x',y';x,y) dx'dy'

R 'R (3.6)

G 2)(x',y';0,O)M2(x',y';0,0) dx'dy'

where
G(2)(x ',y';x,y) = GO(x'+x,y'+y)GO(x',y')

and

M2(x',y';x,y) = <u(x'+x,y'+y,L) u*(x',y',L)>.

An exact equality is, unfortunately, not realized since, in general, the

mean of a quotient is not equal to the quotient of the means. It is reason-

able, however, to accept (3.6) as a first approximation. (See [10, p. 151]
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for the derivation of a series expansion for <T> of which (3.6) gives the

first term.) Similarly, the mean square of T is given by:

Gkx kyG)(x',y';u',v';x,y)M4(x'y';u',v';x,y)dx'dy'du'dv'
'____ R_ _ (3.7)

G( )(x',y' ;u',v';0,0)M4(x',y';u',v';0,0)dx'dy'du'dv'
-00

where

G 4)(x',y';u',v';x,y)=G0 (x'+x,y'+y)G0 (x'y')G O(u'+x,v'+y)G0 (u',v')

M4 (x',y';u',v';x,y)=<u(x'+x,y'+y,L)u*(x',y',L)u(u',v',L)u*(u'+x,v'+y,L)>.

Note that the influence of the turbulence on <T> is felt through the second

moments of the disturbance in the aperture plane, namely the mutual intensity

(in the numerator) and intensity (in the denominator), whereas the stochastic

contribution to < T 2> arises from the fourth order moments of the disturbance

in the aperture plane. Although the expectations or means which occur here

are ensemble averages, they may be calculated in practice by taking time

averages if the light disturbance can be assumed stationary, an assumption

almost surely warranted.

Equations (3.6) and (3.7) are quite general, and do not depend on the

particular model of the disturbance. If we utilize the geometrical optics

approximation, described in section II, then the mutual intensity is given by:

M2 (x',y';x,y) = A0 2<e A+ i B >, (3.8)
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where

A = X(x'+x,y'+y,L) + X(x',y',L)L
= - 4 (L-;)[V2ni(x'+x,y'+y,) + V2n 1 (x',y', )]d3

0

and
B = k[Y(x'+x,y'+y,L) - Y(x',y',L)]

= k [nl(x'+x,y'+y,i) - n 1 (x',y',c)] dc.

Similarly, the fourth order correlation function occurring in (3.7) is

given by:

M4 (x',y';u',v';x,y) = IA0 14 <eA'+iB'>, (3.9)

where

L

A' = - ( (L-C) [Vnl i(x+x,y+y,C)+V n(x' ,y',C)+Vn (u ,v', )+Vn (u'+x,v'+y,C)C

and

B'=k [nl (x'+x,y'+y,C)-nl(x',y', )+nl(u',v',vC)-nl(u'+x,v'+y, )]dC.
0

Unless we know the probability density for n1 , we have reached an impasse.

However, if we are willing to assume that the variables A, B, A', and B' are

Gaussian, then further progress can be made. In particular, we will assume

that A and B are jointly Gaussian and similarly for A' and B'. (From the

definitions of A, B, A', and B', an appeal to the central limit theorem

seems to lend credence to such an assumption.) Then, by carrying out the

integration inferred by < > with respect to the Gaussian density, one finds

<eA+iB> = e<A>+i<B>e(aA - aB)ei cov(A,B) C3,10a)
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and, similarly,

A'+iB' <A'>+i<B'> #(oAc- a2,) i cov(A',B')
<e >=e e e , (3.10b)

where a2 denotes variance and cov denotes covariance. In order to carry out

the calculations indicated by (3.10), we proceed to determine the joint

moments for A and B. (Exactly similar results will follow for A' and B'.)

For convenience in notation, we make the definitions:

R(xlY 1,z1;;x2,y2, 2) <nl (x1'Y 1,zl)nl(x 2,y2'Z2)> (3.11a)

P(X 1 'YIz 1;x2,y2,z 2) = <Vnl(xl,Yl,z1)V2nl(x 2 ,y2 ,z2)> (3.11b)

Q(Xl1 Yl,Zl;X 2,y2, 2 ) = <[VUnl(xl,l,zl)]nl(x 2 ,y2 ,z2)>. (3.11c)

Because the operation of ensemble averaging is commutative with both inte-

gration and differentiation, then from (3.8)

L

<A> = - (L-C)[V2<nl(x'+x,y'+y, )>+V2<n(x',y',)>]d
(3.12)

<B> =kJ [<nl(x'+x~y?+yC)> -,<n 1 (x',y', )>]d4

Note that if one assumes <n1> = constant throughout the turbulent field

(a not unreasonable assumption), then <A> <B> = 0. Furthermore, from

(3.8) and (3.11) one finds:
LL

00 +P(x'+x,y'+y, ;x' ,y', C2)+P(x',y', 1 ;x'+x,y'+y,'2 ) (3.13a)

+PC '+x,y'+y, 1 ;x'+x,y'+y, 2 )] dGld42
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LL

<B2 > = k2 jf [R(x',y',I;x',y', 2 )-R(x'+x,y'+y,i;x',y',' 2 )

00

-R(x',y',4 ; x'+x,y'+y, 2) (3.13b)

+R(x'+x,y'+y, 1 ;x'+x,y'+y, 2 )] drid 2

and LL

<AB> = k/2 (L-Cl)[Q(x'',~';x',y', 2)

00 +Q(x'+x,y'+y, i;x',y', " 2)-Q(x',y',Cli;x'+x,y'+y, 2 )

-Q(x'+x,y'+y, 1;x'+x,y'+y, 2)] dl d 2. (3.13c)

Similar expressions hold for A' and B'. Clearly, without further simplifying

assumptions the problem remains, in a practical sense, intractable. To

elaborate, observe that from (3.11)

4 R 9R a4R 4R
P(xl 1 ,Y1Zl;x 2 , y2, z2)= + - + +

ax2ax ay2ax2 ax2y2 ay1 ay

(3.14)

D2R 92R
Q(xl'Y1 ,zl;x 2 ,Y 2,z 2 ) X2R + 2

Hence, even if one were able to experimentally determine the refractive

index (density) correlation function, evaluation of <A2> and <AB> would

require a numerical differentiation of fourth order and second order respec-

tively. Although this is feasible in principle, it is very difficult to do

with any accuracy in practice, without a very fine mesh measurement scheme.

To conclude our general discussion, it should be noted that in practice

(see, for example, [11]), it is the modulus of the OTF, called the modulation

transfer function (MTF), which is measured, rather than the OTF itself. The
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statistics of the MTF are related to those of the OTF as follows:

0~ ]<<>l <I'r> < . (3.15)

Hence, if the expressions for <T> obtained in this section are used to

estimate the average MTF, <ITI>, the estimate can be expected to be con-

servative. Furthermore, the variance of the MTF is bounded as follows:

0 2 <1T2> _-<IT> 2  I<T> 2  a2. (3.16)
I T

Knowledge of the variance, together with application of Chebyshev's

inequality (see, for example, [12, p. 20]), yields information about the

variability of "seeing" conditions. In particular,

Pr(Ir - <T> I> a) 1 1/. 2

and

for the OTF and MTF respectively.

In concluding this discussion, it is interesting to note that from

(3.15), the MTF suffers less degradation on the average than the OTF.

Furthermore, from (3.16), the variance of the MTF is, in general, smaller

than that of the OTF.

Homogeneous Turbulence. If one is willing to assume that the refractive

index spatial variations are statistically homogeneous, then certain simpli-

fications can be made. In particular, <nl> = constant and, hence, from

(3.9) and (3.12),

<A> = <B> = <A'> = <B'> = 0.

16



Furthermore, the correlation function R is now a function only of the

difference in the coordinates rather than the actual coordinates of the two

points under consideration; i.e.,

R(x1 ,y1,zl;x 2 ,y2,z2 ) = R(x 2-xl,y 2- 1,z2-z1 ). (3.17)

Then, the relations (3.13) become:

L

<A2> = ;<A2> = L-(L- )(L-C2)[2P(0,O;C 2-C)+P(x'yC2GY (3,8a)0J (3.18a)

+P(-x,-y, 2-1)] dCldC2

L

<B2> =k2 [2R(0,0,C-C1)-R(x,y,C2- 1)-R(-x,-yi,C 2-cl]dCjd 2 (3.18b)<B2 > = k 2

0

L

<AB> = (k/2) (L-C)[Q(-x,-y,' 2 -Yl)-Q(x,y,C 2 -C 1)] dCId 2, (3.18c)

0

where, if R=R(E,n,), then

82R _4R _4R
P(,n,) =--+ 2 +

a54 a22 an4

(3.19)
92R @2R

32 aTn2

Hufnagel and Stanley [4, Theorem II, p. 61] have shown that

Q(-x,-Y, 2-l ) = Q(xYC2-Y1 )

which implies that <AB> = 0 and, hence, that A and B are uncorrelated. Some

simplification in the expressions for <A2> and <B2> can be achieved by making

a change of variable (see Appendix). In particular, the double integrals

are reduced to single integrals as follows:

17



L

<A2> = (1/12) f (2L+z)(L-z)2 [2P(,0,z)+P(x,y,z)+P(x,y,-z)]dz

0 (3.20)
L

<B2> = 2k2  (L-z)[2R(0,0,z)-R(x,y,z)-R(x,y,-z)] dz.

0

If we should assume further that isotropic conditions prevail, then

R(x,y,z)=R(x,y,-z) and P(x,y,z)=P(x,y,-z) and (3.20) can be simplified even

further. (In fact, one need only assume that the correlation function is

an even function of z to obtain the same result.)

Similarly, from (3.9), one finds:

L

<A'2> = 2<A 2> + (1/12) (2L+z)(L-z)2{2[P(u'-x',v'-y',z)

+P(u'-x' ,v'-y',-z)] +P(u'-x'-x,v'-y'-y,z)
(3.21a)

+P(u'-x'-x,v'-y'-y,-z) +P(u'-x'+x,v'-y'+y,z)

+P(u'-x'+x,v'-y'+y,-z)} dz

and
L

<B 2 > = 2<B2 > - 2k 2 f (L-z){2[R(u'-x',v'-y',z)+R(u'-x' ,v'-y',-z)]

0

-R(u'-x'-x,v'-y'-y,z)-R(u'-x'-x,v'-y'-y,-z) (3.21b)

-R(u'-x'+x,v'-y'+y,z)-R(u'-x'+x,v'-y'+y,-z)} dz

Finally, combining (3.6), (3.7), (3.8), (3.9), (3.10), (3.20), and

(3.21) we have:

<T> = T R , (3.22)o R

where L

TRexp{- J(2L+z)(L-z)2 1 (xy,z)+2k2(L-z)G1(x,y,z)j]dzR e12 1

Fl(x,y,z) = 2P(0,0,z) - P(x,y,z) - P(x,y,-z)

Gl (x,y,z) = 2R(0,0,z) - R(x,y,z) - R(x,y,-z) 18



and TO denotes the diffraction limited transfer function of the imaging

system. The function TR, representing the random influence of the turbu-

lence, is independent of properties of the imaging system. This decomposition

of <T> into the product of the diffraction limited OTF and a turbulent de-

gradation is, in general, possible only if an assumption like homogeneity

(or local homogeneity) is invoked. Furthermore,

G 4 ) (x',y';u',v';x,y)e U(xy',u',v;xyL)dx'dy'du'dv'

<IT 2>= T2A2  - , (3.23a)

G 4) (x',y';u',v';0,0)eU(x ' ,y',u',v';O,O,L)dx'dy'du'dv'

where

U(x',y',u',v';x,y,L)=4 {[<A' 2 >-<B' 2 >]- 2[<A2 >-<B2 >]},

and A denotes the aperture area. If we invoke the second mean value theorem
p

for integrals, then (3.23a) can be rewritten as follows:

<1T12 >_ 2T 2  2L+z) (L-z

< >=ORexp {(2L 2 F 2 [F(sl,tl ;xy,z)-F 2 (s 2 ,t 2 ;0,0,z)]

+2k2 (L-z)G2 (s,tl;x,y,z)}dz , (3.23b)

where

F 2 (s,t;x,y,z) = P(s-x,t-y,z) + P(s-x,t-y,-z) + P(s+x,t+y,z)

+P(s+x,t+y,-z) -2[P(s,t,z) + P(s,t,-z)]

and

G2 (s,t;x,y,z) = 2[R(s,t,z) + R(s,t,-z)] -R(s-x,t-y,z)

-R(s-x,t-y,-z) -R(s+x,t+y,z) -R(s+x,t+y,-z).
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Since the mean value theorem is nonconstructive, we can guarantee the

existence of s. and t. (i=1,2) which validate (3.23b), but no algorithm
1 1

exists for determining their values. For circular and rectangular apertures,

one can argue, however, that

0 s 2 + t 2 < (D-r) (D+r) ( tD )

and

0 s + t  - (D -x) 2 +(D -y) 2  ( D)
1 1 x Y

D
x

respectively, where r2=x2+y2 . Clearly, equation (3.23b) is suggestive,

but not computationally useful. On the other hand, in the following

example, (3.23b) will be helpful in constructing an interesting upper

bound for <Inr2>.

Homogeneous Turbulence with Gaussian Correlation. Suppose the

refractive index correlation function is Gaussian; i.e.,

X2 2 2

R(x,y,z)= a 2 e b +<n >2
n I

(A brief discussion of this example can be found in [13, p.46].) Then

from the definition (3.19) of P, one finds

P(xyz) 2 2 2 x x +31 +2 [-2

1
•2)[4( 2 x2 y 2  z 2

+ (2) ) -12xp{-[( ) +)
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It might be noted that unless a=b=c, this model is homogeneous, but not

isotropic. Even so, the correlation function is even in its arguments and

so R(x,y,z)=R(x,y,-z) and P(x,y,z)=P(x,y,-z). Then, calculation of the

constituents of TR as given by (3.22) gives:

L 02

(2L+z)(L-z)2  n(xy)d 22 2 2 2
12 6 a

0

2 2 4 2 2 2 2z2
+( -2) [4( ) -12(---) +3] + 2(-2)(-2)[1-2(-) 1[1-2( 12 (3.24)

+(2) 2 [4(-) -12(-)2+3]} exp{-[( )2+ ()2] z

where
L

Iz dz

0

=3c4 { ( 3) (L/c) 3rf(L/c)(1/3)[ (L/c) 2_- e-(L/c)2+(1/6)- (L/c) 2.

(NOTE: erf denotes the error function, which is defined in the usual way as:

x

erf(x) = ( 2 //p) eu du. )
0

Similarly,

2k 2 (L-z)Gl(x,y,z)dz 4k 2 nl[1-exp{-[()+ ) ] JL 1 J (3.25)
0

where

- ( z / c ) 2

Jz f (L-z)e dz
0

= (c2/2){/ L/c)erf(L/c) - 1 + e- ( L / c ) 2
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In the special case a=b, then, from (3.22), (3.24), and (3.25), we find

TR =exp nl4() [2(ea ]I/3c

(3.26)

+2k2c2(l-e - (r/a)2) J /c2)}

Several calculations of <T> for this case were carried out on a CDC 3300, and

the results are illustrated in figures 1 through 3. Some tentative conclusions

can be drawn. In particular, high degradation can be attributed to:

(i) large diameter optics,

(ii) low altitudes,

(iii) thick shear layers,

and

(iv) short wavelengths.

As might have been anticipated, the contribution of the Fl term appearing

in the integral in (3.22) (or the Iz term in (3.26)) is negligible. The term

containing the wave number, k, which is very large in the geometrical optics

approximation, essentially "swamps" the result. It is to be expected that,

similarly, the F2 term occurring in (3.23b) will prove negligible when com-

pared with the k2 term. If one ignores the contribution of the F2 term in

(3.23b), it is easily seen that

,<i> < TR ex4k nl[1-exp{-[(Ga) +/ )} 2  (327a)
n a b (3.27a)

and, hence, in the special case a=b,

<I1 2> <*T2O (3.27b)

22



Finally, for the case a=b, from (3.16), (3.22), and C3.27b1, we have

Sa' -t 2  = 2(1-TR2) < T. (3,28)

It follows that

3 a < 3 T ol-T2. (3.29)
| |o R

It is the bound (3.29) which gives the 3o boundaries of figure 4. Equation

(3.29) leads to the interesting conclusion that the smaller the influence of

the turbulence (TR-z 1) on the average MTF, the smaller the variance of the

MTF. Indeed, in addition to the data presented in figures 1 to 4, the author

performed calculations for propagation at A = 1001i for all permutations of

the parameters D= .01 and .915 meters, a=b=2c = .007 and .2 meters, L = .1

and .3 meters, and <p> = .905 kg/m3 (3km) and .187 kg/m3 (15km). The influence

of the turbulence in these configurations was found to be negligible, and so

the optical system is diffraction limited within small fluctuations. Finally,

note that figures 1 through 4 are conservative in the sense that the correct

MTF would, in general, be larger and the true deviations smaller than

illustrated.

The influence of scale of turbulence is somewhat more complicated than

the effects described above. In particular, an asymptotic analysis of the

expression containing k 2 on the right hand side of (3.26) leads to the follow-

ing representations of TR:
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TR - exp{-a} ; L/c<<l, D/a>>l,

TR ~ exp{-B(r/D)2 (D/a)2 }; L/c, D/a<<l,

TR ~ exp{-8(L/c)-[/r - (L/c)-l]}; L/c, D/a>>l,

TR ~ exp{-B(r/D)2(D/a)2(L/c)-l[/V - (L/c)-1)}; L/c>>l, D/a<<l,

where

8 = [2n n (L/X)]2 .
1

If B>>1, then clearly the first case cited experiences the worst degradation.

That is, if the upstream spoiler induces a shear layer which exhibits rela-

tively low frequency fluctuations in the propagation direction and, at the

same time, relatively high frequency fluctuations in the plane perpendicular

to propagation, then degradation can be quite large. On the other hand, the

converse situation (i.e., L/c>>1 and D/a<<l) tends to mitigate against large

optical degradation.

Locally Homogeneous Turbulence. It is, of course, rare that turbulence

satisfies exactly the homogeneous hypothesis. Perhaps the simplest variety

of nonhomogeneous turbulence is that labeled locally homogeneous. In this

case, it is assumed that while the refractive index field is not necessarily

homogeneous, the spatial increments of n1 are. The relevant correlation

function is then

DXx2;x3,x) = <[n (x3)-nl(x)][n (C4)-nl(2)]>, (3.30)
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which can be rewritten as follows:

D(xl,x2;x3,x ) = {D(xI,x )+D(x2,x3)-D(XlX2)-D(x3,x )}, (3.31)

where

D(xi,x) = <[nl(x )-nl(x )]>

is called the structure function of the random field, nl. If the field

n, is locally homogeneous, then

D(xi,x) = D(xj-xi,yj-yi, zj-zi). (3.32)

Our purpose here is to calculate the statistics for the OTF in terms of the

structure function.

Based on the results for homogeneous turbulence discussed above, it

seems reasonable to assume <nl> = constant, and, hence, that

<A> = <B> = <A'> = <B'> = 0.

Furthermore, we will ignore the (presumably small) contributions of <AB>,

<A'B'>, <A2>, and <A'2> to the statistics of T. Hence, we need only derive

expressions for <B2> and <B' 2>. But, from (3.8),

L

<B2> = k2 D(x',y', 1 ;x',y',~ 2 ;x'+xy'+y, 1 ;x'+xy'+y )d d 2

0 (3.33)

L

= 2 ff [D(xy, 2- )+D(-x,-y, 2-I 1)-2D(0,0'02-C 1)]dld d2'
0

By a change of variables (see Appendix), we can write:
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<B2> = k 2 j (L-z)[D(x,y,z)+D(x,y,-z)-2D(0,0,z)]dz. (3.34)

Similarly, one finds:

L

<B' 2 > = 2<B 2> + k2 f (L-z) (2D(u'-x',v'-y',z)+D(u'-x',v'-y',-z)]

-D(u'-x'-x,v'-y'-y,z)-D(u'-x'-x,v'-y'-y,-z) (3.35)

-D(u'-x'+x,v'-y'+y,z)-D(u'-x'+x,v'-y'+y,-z) dz.

Finally, combining equations (3.6)-(3.10), (3.34), and (3.35), we have:

<T> i TOT R , (3.36)

where

TR = exp{-k2/2 (L-z)[D(x,y,z)+D(x,y,-z)-2D(0,0,z)]dz};

also,

<IC12> = (TR/A 2 ) ff G (4 ) (x',y';u',v';x,y) eV(x',y',u',v';x,'yL)dxtdy'du'dv',

(3.37a)

where

V(x',y',u',v';x,y,L) = -4[<B' 2> - 2<B 2>].

If we again invoke the second mean value theorem for integrals, then

L
2 2 2

<1102> = OR exp{-k2/2 (L-z) H(s,t;x,y,z) dz} , (3.37b)

where

H(s,t;x,y,z)=2[D(s,t,z) + D(s,t,-z)] - D(s-x,t-y,z)

-D(s-x,t-y,-z) -D(s+x,t+y,z) -D(s+x,t+y,-z). 2626



The remarks following equation (3.23b) concerning s and t are applicable

here.

If the turbulence is assumed to be locally isotropic as well as locally

homogeneous, then (3.34) and (3.35) become

L

<B 2 > = 2k 2  (L-z)[D(x,y,z) -D(0,0,z)] dz

0

and L

<B' 2 > = 2{<B2 > + k2f (L-z)[2D(u'-x',v'-y',z)

-D(u'-x'-x,v'-y'-y,z) -D(u'-x'+x,v'-y'+y,z)]dz},

respectively. Hence, the above results for <T> and < Ti
2 > simplify to:

L

<T> = TOR= T exp{-k2J (L-z)[D(x,y,z) -D(0,O,z)] dz}

and

<IT 2 > = (TR/A 2) G (4)(x',y';u',v';x,y)

m0

L

X exp{-k 2  (L-z)[2D(u'-x',v'-y',z) -D(u'-x'-x,v'-y'-y,z)

-D(u'-x'+x,v'-y'+y,z)] dx'dy'du'dv'}

L

S2T2 exp{-k 2  (L-z)[2D(s,t,z) -D(s-x,t-y,z) -D(s+x,t+y,z)]dz}.
00

A few remarks are in order here concerning the relation between correla-

tion functions and structure functions. If the correlation function is known,

then the structure function is given by:

- -4 ++ -

D(x 1 ,x 2 ) = R(x 1 ,x 1 ) + R(x 2 ,x 2 ) - 2R(x 1 ,X 2 ). (3.38)
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Unfortunately, there is no analogue for recovering the correlation function

from a measured structure function (unless the turbulence is homogeneous,

in which case the two statistics are equivalent). Hence, in general, it is

recommended that the correlation function be measured, rather than the

structure function. The structure function can be calculated using (3.38)

if it should prove of interest. If the sole object is to verify the simpli-

fied model presented here, then either correlation or structure functions are

acceptable, since the structure function occurs naturally in <B2> and <B' 2>

(see equations (3.34) and (3.35)). A thorough discussion of structure

functions and their relation to correlation functions can be found in

[14, p. 86] and [8, pp. 13-38].

IV. CONCLUDING REMARKS

Several conclusions and recommendations can be drawn, and observations

made, based on the above analysis:

1. If one assumes from.the start that

(i) <nl> = constant,

and

(ii) <A2>, <A'2>, <AB>, and <A'B'> << 1,

then the plane wave solution of the geometrical optics approximation yields:

0 L

< 1 T()xky )>=(y/A. G(x'+x,y. x,'yy)G( ,')exp{-k2/2 J D(tu;v,w)d 1d 2} dx'dy',
S0 

(4.1)
where t=(x'+x,y'+y,~ 1 ), u=(x'+x,y'+y,c 2 ), v=(x',y',S 1 ), and w=(x',y',2).

From the definition, (3.30), D is clearly related to the correlation function

of n1 as follows:
28



D(t,u;v,w) = R(v;w) - R(t;w) - R(u;v.)+ R(t;u).

Similarly, the mean square <IT 2> is given by

<IT k, ) 12> = (1/A2) G (4)x',y';u',v';x,y)

L

X exp{-k 2 /2 [I [(t,u;v,w)+ D(t,s;v,q) (4.2)

+ D (r,u;p,w)+ V(r,s;p,q)]dC 1dC2 dx'dy'du'dv',

where t, u, v, and w are defined as above, and p=(u'+x,v'+y,Cl) ,

q=(u'+x,v'+y,C2), r=(u',v',C~), and s=(u',v',C 2). Hence, by measuring

correlation functions for n1 (or, equivalently, density) on an appropriate

mesh, one can evaluate <T> and <1T1 2> by the quadratures (4.1) and (4.2).

If the density fluctuations are homogeneous or locally homogeneous, then,

of course, the simpler relations (3.22)-(3.23) or (3.36)-(3.37), respectively,

hold. It might be noted that the more realistic spherical wave approximations

could be expected to imply less serious degradation than indicated by the

plane wave theory discussed here. (See [4, figure 8, p. 60].)

2. Since n1 is related to the density of the shear layer by

n = Kp ,

where K=.000223 m 3/kg is the Gladstone-Dale constant, then

R(x;x j ) =K 2 R (x i;x.).

Hence, all of the results discussed above can be written in terms of density

correlations instead of correlations of n,. The measurement of the statistics
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of p is a nontrivial endeavor, and much activity has been devoted toward

that end. Hot wire anemometers [15], laser velocimeters [16], crossed beam

techniques ([17], [18], [19]) and sphere probes [20] all offer (either

separately or jointly) some hope for carrying out such measurements.

3. As noted earlier (see (3.6) and (3.7)), determination of the mutual

intensity, M2, and fourth order moments, M, of the light disturbance in

the aperture plane yields the pertinent statistics of T. Hence, the moments

of the disturbance provide an even more fundamental description of optical

degradation than does the OTF. Some effort has been expended towards the

measurement of such statistics. Typical results are described in [21], [22],

[23], [24], and [25]. It might be noted that Kelsall's shearing interfero-

meter [11] is capable of measuring the mutual intensity, M2, under certain

conditions.

4. It is interesting to conjecture that if the influence of the turbulence

on the optical performance were known, then the resulting image might be

"corrected" and the turbulence influence eliminated. In fact, research has

been carried out to just this end ([261, [27], and [28]). Korff [27] makes

the argument that <ITr 2 > may provide more useful information than does <T>

in that signal/noise is reduced for high spatial frequencies.

5. As remarked earlier, the choice of the OTF, T, as the indicator of

optical quality is somewhat arbitrary. In fact, if one were concerned with

propagating, rather than imaging, systems, the Strehl intensity, S, is perhaps

more appropriate. It is defined to be the ratio of the maximum intensity (in

a particular plane of observation) to the maximum intensity which would have
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been obtained had no disturbance been present. (See, for example, Born

and Wolf [6, p. 462) and O'Neill [9, p. 106]). In terms of OTF, we have

ffT(f,g) df dg

S = '

fi '0 (f,g) df dg

(The definition of S is thus the analog of system bandwidth for time-varying

systems.) Hence, if one can calculate T and its moments, similar results

can be obtained for S. In particular,

<T (f,g)> df dg

JI 0(f,g) df dg
00

and

JIi f <T(f,g)T*(f',g')> df dg df' dg'

<1.12> -0

(fg)(f',g') df dg df' dg'

Note that <Isj2> is not directly related to <IT 2>

6. Finally, the evaluation of experimental results and comparison with

full scale results requires knowledge of scaling laws. A derivation of such

similarity laws is given in [13, p. 100]. In addition to the usual aero-

dynamic parameters such as Mach number and Reynolds number, it is clear from

the analysis of part III that the ratio of model characteristic length to

the diameter of the receiving optics should be maintained.
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V. APPENDIX

We wish to derive the following formulae:

LL L

fF(y-x) dx dy = (L-) [F(-) + F(-E)] dE (A.1)

00 0

LL L

(L-x)(L-y)G(y-x)dx dy = (1/6) 0f (2L+)(L-C)2[G(E)+G(-)]d . (A.2)

To this end, we make the change of variables

= y-x, n L -(x+y)/2. (A.3)

Then, in the -n plane, the double integrals (A.1) and (A.2) are performed

over the area indicated in figure Al.

LI

-LT

FIGURE Al 32



From (A.3), we have

x-= L-n - 5/2, y= L-n + /2 ;

Since the Jacobian J = a(x,y)/a( ,n) = 1, then the double integrals of

(A.1) and (A.2) can be written:

LL 0 L+ /2 L L-E/2

f F(y-x)dx dy = F(E) [ I d dE+ I F(d) dI ] d (A.4)

00 -L -~/2 0 5/2

L L-C/2

= f[F(E)+F(- )][ f dn ] dE

0o /2

L

= (L-E)[F(E)+F(-E)] dE

and

LL 0 L+/2

f (L-x)(L-y)G(y-x)dx dy = G(() [ (r +/2)(n-E/2)dn d (A.5)

00 -L -E/2

L L-/2

+G()C (n+E/2)(n- /2)dn dE

0 -5/2

L L-E/2

f G()+G;(-)] (n+ /2)(n- /2)dn dE

0 5/2

ButL-/2

But (n+/2)(n-5/2)dn = (1/6)(2L+ )(L-E) 2 , and, from (A.4) and (A.5),

/2

formulae (A.1) and (A.2) follow immediately.
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Figure 1.- The effect of telescope diameter and altitude

on the average OTF
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Figure 2.- The effect of shear layer thickness on average OTF
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Figure 3.- The effect of wavelength on average OTF
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Figure 4,- A typical average OTF with 3-a band
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