General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

NASA TECHNICAL
 MEMORANDUM

EFFICIENCY AND WEIGHT OF VOLTAGE MULTIPLIER TYPE ULTRA LIGHTWEIGHT D.C. -D. C. CONVERTERS
by W. T. Harrigill, Jr., and I. T. Myers Lewis Research Center
Cleveland, Ohio 44135

TECHNICAL PAPER to be presented at
Power Electronics Specialists Conference sponsored by the Institute of Electrical and Electronics Engineers
Culver City, California, June 9-11, 1975

W. T, Harrigill, dr., and L. T. Hyers
National Neromauticis and space Administration
Lewis Research center
cleveland, olito 44135

sUMMARY

This paper preqents an analytical and experiiontal utudy of a capacitor-diode voltage multiplier without a transformer which offers the posbibility of high efficiency with light weight. D.e.-d.c. conversion efficiencies of about 94 percent were fahicived at output powers of 150 wates at 1000 volta uaing $8 \times$ multipilcation. A detailed Identiffeation of lusece was made, including forward drop losses in component, switching losses, reverse junction capacitance charging losses, and clarging losses in the main ladder capacitors.

INTRODUCTION

power processing equipment uated in space flight applications should be lightweight, and have the ability to deliver a wide range of output power while raintaining a high efficiency, presently available equipment, which typically is a d.c.-d.c. converter including a transistor chopper with a transforner for voltage transformation, does not completely natet these requirements. Systems with high efficiency (90 to 95 percent) can be designed and built, but the total system weight is substantialiy higher than dusired. The volted. multiplier concept, which uses capacitors and diodes for voltage transformation, appears attractive as an alternative.

This paper extends the concept of the transistor chopper driven capacitor diode voltage multiplier (CDVM) d.c.-d.c. converter (Refs. 1 to 4) to a wide range of weights, efficiencies, and output power by explorling the tradeofis between the CDVM converter design parameters. This investigation indicates that it is possible to design either a very lightweight converter with somewhat reduced efficiency, a very high efficiency converter with a somewhat increased weight, or an inbetween converter where the effiefency and weight can be tallored to a given applieation.

A 100-watt, 1000 -volt experimental model with a chopping frequency of 70 kHz was used for all testing. Efficfenctes as high as $94 \frac{1}{2}$ percent were attained at 100 watts output with a component weight of about $2 \mathrm{~kg} / \mathrm{kW}$ and a $92 \frac{1}{2}$ percent effiefency at a component weight of $1 \mathrm{~kg} / \mathrm{kW}$. Thus
the CDVM d.e.od.e. converter offers a bettor combinatien of efficioncy and weight, compared to conventional power processing, and also has the eapability of a wide range of weight and effeciency to fit a given appilication.

EXPRRIMENTAL MODEL

Figure 1 shows a eireuit dagrati of the experimental CDVM converter used to obtain the data in this report. The converter consiate of a transistor chopper (driven at 70 kliz) connected ulreetiy into a voltage multiplier with $N=8$. No transformer is required, which is a major advantage from a weight, eost, and efficiency standpoint. Two d.c. power supplies were used in the experimental setup for versatil"ty and conventence. One supply could be used (with a voltage of $2 \mathrm{~V}_{1}$) without affecting the converter performance. The nominal output voltage of the experimental model was 1000 voits with the input power suppices at +130 volts and -130 volte,

LOSSES AND EYFICIENCY

The tradeoff between efficiency, weight, and output pawer in the CDVM converter can be determined from a study of the losses involved in the Bystem. These losses along with approximate expressions for their value, are listed in ten categories. They are;
(1) Capacitance charging losses (Ref. 5) In the voltage multipiler capacitors wifle the diodes are conducting. This includes series resistance losses in the leads, and in the equivalent beries resistance of the capacitors. It is treated in detail in Ref. 5 and will not bu derived here. Both losses in charging. a capacitor from another capacitor, and in charging a capacitor from a power source are included as appropriate. Stray series inductance is ignored in this treatment. The expression for this lose (P_{1}) for a voltage multiplier with N diodes and N capacitors, a load current I_{l} and unit capacitors C_{u} operated at a frequency f is

$$
\begin{equation*}
P_{1}=\frac{1_{L}^{2} N\left(N^{2}+\frac{1}{2}\right)}{12 \mathrm{EC}_{\mathrm{u}}} \tag{1}
\end{equation*}
$$

(2) Charging losses of the reverse biased

Junction capaeitance of the covN diodes during the time when the diodes are not conducting. This loss (P_{2}) is siven by

$$
\begin{equation*}
\mathrm{F}_{2}=4 \mathrm{NC}_{\mathrm{pR}} v_{\mathrm{I}}^{2} \mathrm{f} \tag{2}
\end{equation*}
$$

Where $C_{D R}$ is the junction capacitance of each diode in the voltage multiplier. AB the diode function begins to block where the input voltage swings from $+V_{i}$ to $-V_{i}$ or vice versa, the diode voltage changes from about a valt in the forward direction to $2 V_{i}$ in the revarae. The charge taken from the capacitors C_{u} and the voltage bources to charge $C_{D R}$ to $2 V_{1}$ is then $2 C_{p R} V_{i}$, Since tho battery and/or capacitors supply the charge at a voltage $2 v_{i}$, the amount of entergy uaed in this junction capactance charging is $4 \mathrm{C}_{\mathrm{pK}} \mathrm{V}_{1}^{2}$ per diode. The togal energy loss for the N dJodes is then $4 \mathrm{C}_{\mathrm{DR}} \mathrm{NV}_{\mathrm{I}}$ for each charging cycle, which occurs it times per becond. The power foss due to this cause is therefore $4^{4} \mathrm{CRRN}^{2} \mathrm{E}$.
(3) Charging losses of the chopping transiator junction capacitance (output eapacitance) during the transistor "off" period, This loss $\left(\mathrm{P}_{3}\right)$ is given by

$$
\begin{equation*}
y_{3}=8 C_{T R} v_{i}^{2} f \tag{3}
\end{equation*}
$$

It is siadar to \mathbf{P}_{2}. The fanction capacitance $\mathrm{C}_{T R}$ of the individul teansiator is charged to $2 V_{1}$ each eycle, with a consequent energy loss of $4 \mathrm{C}_{\mathrm{rR}} \mathrm{V}^{2}$. Since there are two transistors operating at a frequency f, the total power loss is as given in E4. (3),
(4) Forward conduction lostes of the CDVM diodes. This loss is due to the forward voltage drop across the diodus during their "on" time. ThLs pover 108 s (I_{4}) is therefore

$$
\begin{equation*}
\mathrm{p}_{4}=N \mathrm{~V}_{\mathrm{DF}} \mathrm{I}_{\mathrm{L}} \tag{4}
\end{equation*}
$$

since the average diode current must be equal (ignoring leakages) to the load current. V $V_{D F}$, the forward drop of the conducting diode varies somewhat with load current, but was taken as a constant for this treatment. The factor N enters because there are N diodes, each of which must carry the load current i_{L} as an average current.
(5) Tranalstor forward conduction losses in the transistor chopper. As in the case of the diode, this is due to the saturation voltage across the transistors during the conduction cycle. This power loss (P_{5}) is given by

$$
\begin{equation*}
P_{5}=2 V_{T F}{ }^{N I_{L}} \tag{5}
\end{equation*}
$$

where $V_{T F}$ is the forward conduction drop of the transistor. The number of diodes enter because the transistor current is Ni_{L}, neglecting second order effecte, and the factor of 2 is needed because two transistors are used.
(6) Reverse blas d.e. leakage lodeed in the conm diodee caused by reversed eurrent flow whise the dioder are off, this power loas (19) in given by

$$
\begin{equation*}
p_{6}=2 v_{1} i_{b R}^{N} \tag{6}
\end{equation*}
$$

and is due to the use of N diodos, eharged to a voltage $2 V_{1}$, wilh a leakage current ${ }^{1}$ DR Por good diofes, the leakage current is in the miteroampere range, fo that P_{6} is usually negligitue compared to other lossos.
(7) D.C. leakage loases of the trambicuors in the "off" state, This loss is comparable to I^{\prime} g for the diodes. The expression for it is

$$
\begin{equation*}
P_{7}=2 V_{i} i_{T, O F F} \tag{7}
\end{equation*}
$$

where ${ }^{1} \mathrm{~T}, \mathrm{OFF}$ is the residual eurrent flowing through the transistor when it is off. This current is of the order of milliamperes so that Py cannot be fgnored as P_{6} was. Again, the factor of 2 is necessary because the chopper has two tranaiators.
(8) Transiator base driva losses, This is about 1 watt at 100 watts output. An approximate expression for this loss is

$$
\begin{equation*}
v_{8}=\frac{1_{1} N V_{d}}{B} \tag{8}
\end{equation*}
$$

where V_{d} is in the transiator drive voltage. The average transistor collector current is Ni_{L}, so that the average base current is approximately $i_{\text {L }} N / \mathrm{A}$ and the base drive power is as given in Eq. (8). Again, second order effecto were ignored. It is believed that this loss can be decreased as the output power is reduced.
(9) Switehing losses in the chopper transistors. This power loss P_{9} is for curn on only, since the current goes to :rero as capacitor charging is completed, and this oceurs before the square wave voltage output from the chopper changes sign. The current drawn through the transistor is approximately a half sine wave (positive for ane transistor, negative for the other) with a hale period in each case of about 3.5 mieroseconds ($\mathrm{I}_{\mathrm{It}}=7 \mathrm{sec}$). The switehing loss was calculated by assuming a linear switehing decrease in voltage across the transibtor from V_{1} to zero in the turn on time of the transistor $T \mathbb{T}$, Integrating these two together over the transistor switching time rr, and multiplying by the chopping fre.. quency f gives the power lose P_{g}.

$$
\begin{equation*}
p_{9}=\frac{\pi^{2} V_{1} i_{L}{ }^{N}}{3}\left(\frac{\tau_{T}}{\tau_{I T}}\right)^{2} \tag{9}
\end{equation*}
$$

This uwitching loss is unusual in that it does not depend on the chopping frequency f. The reason for this is that peak value of the transistor current wave shape with period T_{IT} is inversely proportional to f Bo that the factor drops out

In the final result.
(10) Swithing lowaes in the CllM diodea. The diode ewteching loss Plo is negligible, blace the switehing thee for turn on fa substanw tially legs for good diodes than for tranefietors. The uquation fiven for tio in Tabile lis an upper 1imit: for the case of eero rive these on the dlade volts.

Tabie I llsts these lobsees, the equation which characterizes each losis, and a caleulated value for each logs (for an outpat powor of 100 W) as a percentage of the output powar. Transistor losses made up about 60 percent of the total. second ordor effects have not bean included, since the individuil 'osses are spall. The dofinition of symbols used in the equations are shasm in Table Ir, The values of the parametera noeded for the ealeulations were efther deterained from a direet laboratary measurement or obtained from the manufacturer's specification. The values used are given in Table ith. The values shown ate for conmercially available componenta. Further belection or special development of componente could bring further reduction of losses or wefght. 'this is especially true of the capacitors, which make up the bulk of the weight of the converter.

With the above losses it is possible to write an overall efficiency equation at follows:

$$
{ }_{1}=\frac{P_{L}}{P_{L}+P_{1}+P_{2} \cdot P_{10}}
$$

If the experimental test model values are used in the above equation, a value of 94 percent is obtained for the overali efficiency at an output of 100 watte. The measured efficiency of the experimantal model checks closely with this figure.

EXferimental resulits

because of the lower frequencies normally used in conventional d.e. -d.c. converters, the reverse junction capacitance chareing losses ($\mathrm{F}_{2}, \mathrm{P}_{3}$ Table I) have little effect on conversion effieiency, and are not normally treated, Because the CDVM eonverter operates at a lifger frequency (70 kHz) these louses do contribute to the total. loss of the system. Therefore they were experimentally verified by adding extra capacitance across the diodes and/or transistors to simulate larger junction capacitance. The results of these masuremente (Fig, 2) show that effiefency is reduced linearly with an increase in capatitasee, which demonstrates the importance of $\boldsymbol{i}^{\text {bestgith }}$ with low junction capacitance transiewne it th diodes.

The effect of these losses is rustitier illustrated in Fig. 3 where edficiency of the experimental model is shown as a function of output power for various embinations of junction capacitance and unit caproitance (C_{u}) values. The lowest efficiencies occur for high values of junction capacitance and low values of C_{u}. The maximum
valut of efflefoncy was obtained (about $95 \frac{1}{2}$ per-
 fed during the testes from 14 if to 4 wif whth weightis and efflefencies at 100 watts output varyling frome $0 \mathrm{~kg} / \mathrm{kW}$ at 86 percent to mbout $2 \mathrm{~kb} / \mathrm{kin}^{2}$ at $95 \frac{1}{2}$ pereent, respectively. The transietor base drive efremst loses (1 ge pable it) is not ino eluded in chin figares, hut and estimate indicates that this loges will lower tho efficienetes by about 1 percent. The experimental data also indientes that the everand effichency remafer rolam cively eunstant over a wide range of output power, bince the uffefency varles only 2 pereme between 25 and 150 watts ($\mathrm{C}_{11}{ }^{\text {口 }} 4 \mathrm{duF}$; top curve wis. 3). Because the woight of the CIWM is strongly dependent on the value of \mathbb{c}_{4}, and alnee the effim ciency inereases with lurger values of C_{u}, it is posailice to use these tradedfos to uptimize a bystem for a particular applieation.

For a value of C_{4} of 2 microtarads the capacitors C_{1} to C_{n} make up about two thirde of the total waight, with the rest being due to transistore, divedes, and other componentes. For the case when fia is equal to 4 microfarads, the capaciter watigh fes five axthe of the total. Reducing the capacitance value \mathcal{C}_{u} reducea the weight, but increases the losses due to capacitor charging. Clearly, what is needed here is a lifger energy density (ilghter weight) capacitor, so that it would be possibla to keep the efficiency high with large values of C_{u}, without paying a corresponding waight penalty.

SUMMARY OF RESULTS

An amalytical and experimental investigation of a d,e,-d.c. converter using a capacitor-diode voltage multiplier was made with the following results.

1. Ten eneprate losses were fdentified in the CDVM converter.

2. Losses are a function of:

(a) Chopping frequency
(b) Capacitance size (C_{u})
(c) Transistor junction capacitance
(d) Diode junction capacitance
(e) Transistor forward voltage drop
(f) Diode forward voltage drop
(g) Transistor switching upeed
(h) Diode switching speed
(i) The number of stages in the CDVM
(j) Dutput voltage and output current
(k) Chopper transistor base drive losses
3. - 60 parcent) of tho Lodses wore in the traneiators,
4. The Jutiction capacitance charging from varied Innearly with the Junction capacitance,
5. It is possible to use the tradeofts to obtain an optimun aystem deaign for a given convorcer application.
6. A better combination of waight and officiency are available witl voltage multiplier d.c.-d.c. converters than with prefently avallable converters.
7. Efficiecey is relatively inuensitive to output power. 1
8. Most of the walght of tha converter in in the muitiplier capacitors.

Difficult design protlems are not anticipated when tha CDVM converter is extended to a power processing aystem. The input filter design should be straightforward and have a luw component weight due to the higher chopping frequency, and the output filtering should be minimal due to tho filtering action of tha CDVH.

REPERENCES

1. R. Rufer, "Battery Powered Convertor Rune Multiplier fhotutube," electronies, vol. 33. p. 51, July 1960.
2. 6. 01won, "ilec. to d, e, convertor offers Pesitive pr Negativa Blas," Electronies, vol. 43, P. 45, May 1970.
1. K. N. Pal, "Traneformerleas Voltage Doubler Has Good Output Regulation, "Eloetronde Degign, vol. 26. p. 64, Dec. 1972.
2. C. B. Wheler, "Power supplies for Continuaus Gas Lasers and similar Dlacharges," I. Physies, Part E, Scientifie Ingtru, vol, 4, p7. 159-164, Mar, 1971 .
3. W. T. Harrigill and i. T. Myers, "lifh Performane D.C.-D.C. Conversion with Voltage Multipliers," In IEEE Power Electronies Speedalist Conference, June 1974, pp, 91-96.

TABLE R. - LOSS suorces
Loss type Pormula for losu percent leas (2) 100 H

1. covm capmeitor clarging loses	$p_{1}=\frac{i_{1}^{2}\left(N^{2}+\frac{1}{2}\right)}{12 \pi}$	1.5
2. Diede reverse junction charging loss		. 3
3. Trangistar reverse junetion charging loss		. 7
4. Dlode forward conduction louses	$\mathrm{F}_{4}=\mathrm{NV}_{\text {DF }} \mathrm{I}_{L}$. 8
5. Transistor forward conduction losses	$V_{5}=2 V_{T F} \mathrm{NL}_{6}$	1.3
6. DLode reverse bias d.c. leakage losses	$\mathrm{P}_{6}=2 \mathrm{~V}_{1} \mathrm{i}_{\mathrm{pR}} \mathrm{N}$	-0
7. Trunsistor "off" d.e. 1eakage losses	$\mathrm{P}_{7}=2 \mathrm{~V}_{1} \mathrm{i}_{\mathrm{T}, \mathrm{OfP}}$. 3
$\begin{gathered} \text { 8. Transistor base drive } \\ \text { lose } \end{gathered}$	$q_{8}=\frac{L_{L} N V_{d}}{G}$	-1
9. Tranaistor switehing losses	$q_{9}=\frac{q^{2} i_{1} 1_{L}}{3} N\left(\frac{\varepsilon_{r}}{\tau_{I T}}\right)^{2}$. 4
10. Dlode switching Losses	$p_{10}<\frac{r^{2} v_{1} L^{N}}{6}\left(\frac{\pi_{n}}{\gamma_{1 D}}\right)^{2}$	-0
Total losses		6.3\%
Elficiency		94.3\%

ORIGINAU PAGE IS OF POOR QUATITIT

TABLE IL, - OEFINITION OF SYMUORS

c_{DR}	reverse junction eapacitance of Hede. Aasuriod to be the same for all diodes, y	B_{5}	power lood due to forward tranalator eppo duction dropa
$t_{\text {TH }}$	```transistur "of!" funetlon capaci- tance. Average value for the two transistore, F```	p_{6} p_{7}	power lase due to reverne blas lakage of diedes prower luse due to transistor "off" A.c. leakage
$\mathrm{E}_{\mathbf{u}}$	unft CDVA capaeltance (value for eatl capacitor for casu where $\left.c_{1}=c_{2} \ldots, \ldots c_{N}\right), p$	P_{8}	tramslatur base drive puter loss
$\mathrm{c}_{1}, \ldots . . \mathrm{c}_{\mathrm{N}}$	CDVM eapacitores, ${ }^{\text {P }}$	P_{y}	trandentor sultehame lows
f	quenty, Hz	P_{10}	diode switching losa
		$v_{\text {DF }}$	diode conductiosi drap, V
${ }^{\text {d }}$ DK	revarge leakage euryent of biodes at voltage $2 V_{i}$	v_{d}	
1_{L}	load current, A	v_{1}	input voitage
${ }^{1} \mathrm{~T}$, OFP	transistor "off" d.e. lenkage curreit, A	$V_{\text {Tl }}$	$\underset{V}{\text { transistor averge forward conduetion drop, }}$
N	number of diodes (also voltage multiplication factor)	的	chopper transistor current galm
P_{1}	power loss due to CovM capacitor eharging lusa	${ }^{1} \mathrm{D}$ ${ }^{1} \mathrm{ID}$	diode switching time, see period of diode current, see
P_{2}	powar loss dae to reverse junctann capacitance charging of diodes	${ }^{1}{ }_{1 T}$	pirfod of transiator input current, Bee
P_{3}	power lose due to transistor "off" function capacitance charging	${ }^{T} \mathrm{~T}$	thansistar turn of time, sec
P_{4}	power losis due to forward diode cons. duction dropa		!

table ink. - parameter values

Paramater	Valus
$C_{\text {dR }}$, Jiode reverso bias junetion eapacitance	7 pr
CTR, traneistor "off" junction capacitance	80 mm
$\mathrm{V}_{\text {fe }}$, diodo conduetion drop	2.4 V
$V_{T r}$, tranesistor forward conduction Jrup	0.8 V
$\mathrm{I}_{\text {T, OrF }}$, transistor "off" leaknge current	1.60 ma
V_{d}, traneistor drive voltage	10-15 V
W, chopper transistur current galn	10
$\mathrm{r}_{\mathrm{g}} \mathrm{c}$ transistor turn on time	0.25 whee
${ }^{2} \mathrm{D}$, diode switching time	c0.1 urse
${ }^{T} 10$, prorlud of diode current	2 usee
${ }^{T} \mathrm{~B}^{\text {c }}$ preriod of transiator input current	7 wree
N, number of capaciters or diodes in CDVM	8
V_{i}, input voltage	130 v
\mathfrak{f}, operating frequeney	$70 \mathrm{kH2}$

Figure 1. - Transformless capacitor diode voltage multiplier $D C$ - $D C$ converter, Either $V_{1 i}$ or $V_{2 i}$ can be zero or chosen arbitrarily within component ratings.

Flgure 2. - Efficiency versus added capacity. Output power, 60 watts. $\mathrm{Cu}=1 \mu \mathrm{~F}$

Figure 3. - Efficiency versus output power. High capacity diodes, 25 PF; low capacity diodes, 7 PF.

