General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-

DEVELOPMENT OF A THREE-DIMENSIONAL

TLME-DEPENDENT FLOW FIELD MODEL

```
(NASA-CR-120762) DEVELOPMENT OF A N75-24070
THREE-DIMENSIONAL TIME-DEPENDENT FLON FIELD
MODEL (Louisiana State Univ.) 95 p HC $4.75
                                    CSCL 08H Unclas
                                    G3/43 22759
```


by

R. C. Farmer, W. R. Waldrop,
F. H. Pitts \& K. R. Shah

Prepared under Contract No. NAS8-30380

January, 1975

by

R. C. Faxmer, W. R. Waldrop,
F. H. Pitts \& K. R. Shah

Prepared under Contract No. NAS8-30330

Department of Chemical Engineering Loulsiana Stat.e University Baton Rouge, La. 70803

January, 1975

R. C. Farmer, W. R. Waldrop, F. H. Pitts \& K. R, Shah

Prepared under Contract No. NAS8-30330

Department of Chemical Engineering
Louisiana State University
Baton Rouge, La. 70803

January, 1975

This report was prepared by Loulsiana State University under contract NAS8-30380, DEVELOPMENT OF A THREE-DIMENSIONAL FLOW FIELD MODEL, for the George C. Marshall Space Flight Center of the National Aaronautics and Space Administration. The contracting officer's representative was Mr. H. B. Wilson, Jr.

ABSTRACT

A three-dimensional, time-dependent mathematical model to represent Mobile Bay was developed. The objective of this study was to develop computer programs which would numerically solve the appropriate conservation equations for predicting bay and estuary flow fields. The model will be most useful for analyzing the dispersion of sea water into fresh water and the transport of sediment. Also, the model serves as a useful tool for relating field and physical model data. The unique feature of this model is that it correctly accounts for momentum transfer in the governing flows; thereby, making it far more realistic than any previously devised. NASA's ERTS and Skylab programs resulted in high quality photographs of Monile Bay. U.S. Army Corps of Engineers have also studied this bay estensively. All these data have been reviewed for comparison to this mathematical model.

TABLE OF CONTENTS

PAGE
ABSTRACT 1
LIST OF FIGURES iii
LIST OF TABLES iii
NOMENCLATURE iv
INTRODUCTION 1
SUMMARY OF FIELD DATA 2
PHYSICAL MODEL DATA 5
THE MATHEMATICAL MODEL 9
Model Development 9
Solution Technique 13
Boundary Conditions 18
RESULTS 21
REFERENCES 24
APPENDIX 25

LIST OF FIGURES

PAGE
Figure 1. Mobile Bay 3
2. River Inlets 4
3. IR Photograph of Mobile Bay from NASA's SRTS . .

Program 6
4. Black and White Photograph of Mobile Bay from

NASA's ERIS Program. 7
5. Tide Heights at Various Bay Stations 8

6a. Boundary Conditions and Grid Locations 19
6b. The Vertical Grid System 20
LIST OF TABLES

NOMENCLATURE

English Letters:	
c	heat capacity
C_{1}, C_{8}	stretching constants
E	sum of specific internal, kinetic, and potential energy
g	gravity force
h	free surface height
I	unit tensor
J	diffusion - flux with respect to number-average velocity
K	diffusion - flux with respect to massmaverage velocity
M	molecular mass (or weight)
N	molarity
P	pressure
q	heat-flux vector
q_{E}	heat-flux vector due to radiation
S	concentration of salt-water in a binary mixture of fresh water salt-water
t	time
T	temperature
U	number-average velocity
V	mass-average velocity
x x	
y $\}$	Cartesian coordinates
Y	transformed y coordinate
Greek Letters:	
μ	viscosity
ρ	density
T	shear-stress tensor
Ω	earth's rotation vector
Φ	viscous generation of heat
Subscripts:	
f	fresh-water prcierty
8	sea-water property
x)	
$\left.\begin{array}{l}y \\ z\end{array}\right\}$	component of property in specified direction
Mathematical:	
-	vector
=	2nd order tensor
∇	de1 operator
Σ	summation
д	partial
D ()/Dt	```substantial derivative with respect to number-average velocity```
1	variable preceding symbol is evaluated at the location which follows the symbol

INIRODUCTION

This report describes the development of a three-dimensional, time-dependent flow field model to represent Mobile Bay. This model is a mathematical representation of the appropriate conservation equations which has been evaluated with a digital computer. Since all important physical phenomena cannot be mathematically modeled in a definitive fashion, the ervors introduced by approximations made to maike the model tractable must be evaluated. Therefore, the model was prepared specifically to represent Mobile 3ay.

Mobile Bay is not only a commercially important but also a technically interesting bay to study. The bay is connected by a tidal inlet to the Gulf of Mexico, thereby forming a region in which sea water is measurably diluted with land water drainage. Such a region is called an estuary. The drainage occurs by several large rivers discharging both water and sediment into the bay. A ship channel extends from end-to-end of the bay; the channel is dredged and maintained by the Corps of Engineers. The bay is shallow and therefore greatly affected by prevailing winds.

All estuaries are so complex that any mathematical model which may currently be implemented on a computer will contain certain simplifications to make a solution of the model tractable. These simplifications are so severe that once the model is developed it must be tested to prove that it is a valid representation of the estuary. Ideally, one would like to have sufficient experimental data from direct field measurements to test the model. Usually, sufficient data are not available. Even when they are, initial attempts at modeling will invariably show some discrepancy, then the model will have to be "improved".

Methods of making such improvements are not, usually, obvious, because the very complexity of estuaries defies establishing cause and effect phenomena. Results from physical model studies contiribute much more to this stage of mathematical model development. This is due to the fact that physical model experiments can be designed to emphasize specific study of select phenomena, f.e. complicating factors can simply be eliminated in these studies. Use of only "real world" field data cannot be so utilized because our environment cannot be so controlled. Of course, physical model data is also often used without collaborating field or mathematical model data.

These general comments concerning the interactions of field, mathematical model, and physical model data precisely describe our current state-of-knowledge of Mobile Bay. Several attempts have been made to measure the flow properties within the bay; the most complete and recent study was performed by the Corps of Engineers to provide verification data for a physical model study which is being conducted, also by the Corps at Vicksburg, Mississippi. The purpose of the physical model experimente is to study the impact of opening another ship channel within Mobile Bay. Photographic data from NASA are alac available.

This report summarizes the Corps of Engineers data pertinent to Mobile Bay, deecribes the mathematical model which has been developed to describe Mobile Bay, and conpares data from all three sources.

SUMMARY OF FIELD DATA

Results from several field studies of Moblle Bay have been reported (1,2). Although these reports present many measurements descriptive of the flow-field, there is not sufficient information at any given instant of time to constitute adequate boundary condiw. tions and check-points to be compared to a mathematical model. An adequate experiment was performed by the Mobile District Corps of Engineers for verifying the physical model study which will be described in the next section of this report.

These verification measurements (3) consisted of flow and tide level data through the four major river inlets to the north and the two mafor passes in the south for a complete tldal cycle. At the passes, vertical salinity profile data were also collected. Crossgectional areas fur the inlet and outlets were determined. Finally, tide, volocity, and sallnity vertical-profile data were also taken at select stations within the bay. These regions are shown in Figure 1.

There are other rivers which were not measured during this study, presumably because there is little flow through them. However, what was measured corresponds exactly with the streams which are included in the physical model. Also, no data on winds or on flow into or out of the northern marshes are given. There is an , airport weather station nearby from which some wind data may be obtained.

The four river inlets were taken to be where the highway crosses the north end of the bay. These inlets and cross-sectional areas were the: Mobile, $2,120 \mathrm{sq} . \mathrm{m}\left(22,810 \mathrm{sq} . \mathrm{ft.}_{\mathrm{p}}\right)$; Tensaw, 2,850 sq. $\mathrm{m}(30,660 \mathrm{sq} . \mathrm{ft}$.$) ; Apalachee, 2,013 \mathrm{sq} . \mathrm{m}(21,660 \mathrm{sq} . \mathrm{ft}$.$) ; and$ Blakel.ey, $2,499 \mathrm{sq} . \mathrm{m}(26,880 \mathrm{sq}$. ft). These rivers are shown in Figure 2. Notice that part of the flow from the upper Mobile kiver passes into the bay through the Tensaw inlet, and that all of the flow from the upper Tensaw enters through the Tensaw, Apalachee, and Blakeley.

The mouth of Mobile Bay is $30,265 \mathrm{sq}$. m ($325,600 \mathrm{sq}$. ft.) in cross-section. The pass connecting Mcbile Bay to the Mississippi sound between Cedar Point and Dauphin Island is $6,144 \mathrm{sq} . \mathrm{m}(66,100$ sq. ft.) in cross-section. All cross-sections are the area between mean-sea level and the bottom. The bottom location changes significantly with time, probably because of sediment deposition.

The previously mentioned data are available for further study. Onl.y two points need further comment at this time. Low tide at

Figure 1. Mobile Bay

Figure 2. River Inlets

Mobile Point occirs some 4 hours before low tide at the Mobile River inlet; high tide about 2.5 hours before. This demonstrates that there ire significant tidal phenomena within the bay.

The second point is that the high tide causes flow reversal in the river inlets at the north end of the bay. This impiies that one would have to go up-stream before the rivers would be discharging, i.e. the bay, marshes, and lower river channels are filling with water on a rising tide. This fact complicates the mathematical specification of boundary conditions at the northern end of the bay. These marsh regions ars clearly discernible in the ERTS IR photograph shown in Figure 3. The dark regions in the river valleys north of the bay are the marshes. Notice that these marshes do not extend down either side of the bay.

14 gure 4 is a companion picture to Figure 3, but it was taken at visual wavelength. Although quantative data cannot be obtained from such photographs, the long distances over with the river plumes retain their shape and the dead water region in Bon Secour are clearly evident. Similar data in true color from Skylab photographs are also available.

PHYSICAL MODEL DATA

In order tc estimate possible effects caused by building a new ship channel, to be named Theodore Channel, the Corps of Engineers have performed physical model studies of Mobile Bay. First a set of base data for the Bay as it now exists was collected, then the new channel and several possible new islands which serve as spoil. age banks were modeled and studied. The base data are of interest to this study; such data were made available to these investigators by the Mobile District Office of the Corps (4).

The region of the Bay which was physically modeled is shown in Figure 1. Salinities and velocities at the numbered surface locations during a tide cycle are reported for the "surface" and "bottom" elevations. The Mobile and Tensaw Rivers flows were metered and reported, presumably well. up-stream of the northern reaches of the Bay. Note this does not correspond to the location where the field data are reported. The river volumetric flow rates were reported as (cubic feet/second) of prototype flow, and tide levels in (ft) of prototype surface elevation. The scaling laws used for such unit conversions are not presently known to these investigators. Note also should be made that "turbulence strips" were used in these model studies. Therefore, the physical model data will be considered as its representation of the actual Bay, which is hew the modelers intended it should be used.

Tide data at the north, south, and middle points of the Bay are shown in Figure 5. Note that high tide occurs about 3 hours later at the state docks location than at Dauphin Island. This difference between physical model and field data is thought to be significant.

Figure 3. IR Photograph of Mobile Bay from NASA's ERTS Program

ORIGINAL PAGE IS
OF POOR QVALITY

Figure 4. Black and White Photograph of Mobile Bay from NASA's ERTS Program

All velocities are reported as north or south velocity components only. Data are available at many more model stations than field stations. Interior stations at $\mathrm{B}-12$ and $\mathrm{B}-32$ are the only two field stations.

THE MATHEMATICAL MODEL

The philosophy of developing and using a mathematical model is that a certain set of equations represents the phenomena of interest in the region of interest and that these equations may be solved for a particular eet of auxiliary conditions. The solution would represent the behavior that one wishes to predict, and the auxiliaxy conditions and/or apecified parameters in the equations would represent alternatives that one wishes to either understand or control.

Any and all errors which might be in the model would manifest themseives as inaccuracies in the flow description, hence, calculated results should be verified beitore a model is used. All known information concerning the flow region of interest should be considered to establish this verificarion. It is impossible to either completely measure or model a large, complex flow-field; therefore, model development and verification proceed in a "hand-over-fist" fashion. That is, as more is learned of the flow better predictions can be made, and as better predictions are made the more important regions of the flow can be identified for further field study.

Any model study is bounded by the desire for completeness and the necessity for economy; therefore, a modeling scheme which attemps to optimize this balance was developed. Since flow within the ship channel is believed to exert a dominating influence on the flow of sea water into the bay and on the sediment deposition trends within the bay, a three-dimensional, time dependent flow field model was deemed essential to describe the type flow found in Mobile Bay.

Mode1 Development

All solutions to fluid mechanics problems are based on conservation principles. These principles, usually expressed as a conservation of mass, momentum and energy, are presented in most standard texts of fluid mechanics for single-component flows. The phenomena of interest is that involving the relative motion and the mixing of fresh and saline water. Sediment transport is also of interest, but its study will be postponed to a future time.

Because the fluid in the mixing region may have two components some care must be exercised to insure that the most useful form of the pertinent conservation laws is determined. Also, it is fruitful to consider and compare experimental results and analytical methods which arise from studies of heated water discharges. The relationship between the mass density of fresh water and sea water
and various mixtures of the same may be represented as a linear function of the amount of salt in the mixture, but the number of moles (or particles) in a unit volume is a constant. This means that any diffusion which occurs must behave as a replacement process, i.e. a molecule of "salt-water" replaces a molecule of fresh water. Furthermore, by introducing a fictitious molecular weight for salt water, the fluid may be described as a binary mixture of fresh water molecules and salt-water molecules. This behaviour of the number density allows one to specify the condition for incompressible flow by stating that the substantial derivative of the number density of fluid particles with respect to a number average velocify is zero, or that the divergence of the number average velocity is zero for an isothermal fluid. A similar relationship for the effect of modest temperature changes on the density of water exists. Now all the conservation laws may be stated.

Very generally, the conservation of mass equation states that the amount of mass accumulated in a given volume is equal to the dffference between the mass convected out of the volume and the mass convected in. For multicomponent fluids, the net flux of mass into the volume by diffusion must also be considered.

The conservation of momentum is derived from Newton's second law of motion. Expressed for fluids, this states that the rate of change of momentum of the fluid in a given volume is equal to the summation of the vector forces acting on the fluid. Pertinent forces may consist of pressure forces, shearing stressed, and gravity forces. An apparent force known as the Coriolis force may also be included when the equation is expressed in:a coordinate system which is moving relative to an inertially fixed system. Unfortunately, the momentum and energy equations are cumbersome when written in terms of the number average velocity; therefore, both the number average velocity and the mass average velocity will be used in formulating the conservation laws.

The conservation of energy equation results from applying the first law of thermodynamics to the moving fluid; it states that the rate of increase in total energy is equal to the sum of the rate of work done on the fluid and the rate of heat added from external sources. The total energy of a given volume of fluid consists of three types: internal energy which may be expressed as a function of the temperature, kinetic energy due to velocity of the fluid, and potential energy which is a function of elevation of the particles of fluid. The rate of work done to the fluid results from pressure forces, gravity forces, and viscous and turbulent shearing forces.

The energy equation reduces to a trivial form for incompressible, isothermal flows when velocities are such that there is little heat generated by viscous dissipation. Thus, the conservation of mass and momentum equations produce an independent and complete set.

In addition to the general conservation equations, an equation of state is required to express density as a function of composition
and temperature. For liquids, density and temperature are usually independent of pressure, i.e. incompressible.

The conservation laws and equations are summarized in Table 1. Note that interpretation of the transport coefficients as either molecular or eddy values allows the stated equations to be used for both laminar and turbulent flows. The complete conservation equations just described represent a complex set of second order, nonlinear partial differential equations. Even so, these equations do not precisely describe certain types of flow. This inexactness is due to lack of properly specifying specific terms of these equations as certainly the basic laws must be observed. It is an easy matter to indicate turbulent transport with a coefficient; specifying the local value of such a coefficient is another matter entirely. Furthermore, the microscopic interaction of the fluid particles and solid material (i.e. sediment) is not completely known, and is not, therefore, represented by the equations in Table 1.

The actual solution of these equations will use an approximation presented by Frank-Kamenetskii (Ref 5) and utilized by Daly and Pracht (Ref 6) which states that negligible differences result from using the number average velocity instead of the mass average velocity in the conservation of momentum and energy equations. This then yields a set of equations with only one velocity.

Another approximation suggested by Yih (Ref. 7) is quite useful in simplifying the conservation equations. Yih recognizes that the coefficient of expansion $\partial \rho / \partial T$ is very small compared with unity for most liquids and, through a perturbation analysis, shows that $\nabla \cdot \bar{U} \cong 0$ when the range of temperatures are small relative to the mean absolute temperature. The implication of this assumption is that the volume dilation due to thermal expansion is negligible. This approximation is analogous to that involving the use of number-average velocity to simplify the solution of the two-component system of equations.

Before the equations are solved, one must choose a suitable coordinate system. A Cartesian system was chosen.

The resulting equations, including the approximations described above, which apply directly to non-isothermal, two-component fluid motions for the case of interest are may be solved by the method reported herein. The transport co-efficients may differ in each of the spatial directions. It should also be noted that the radiative heat flux vector q_{r} of the energy equation need only be considered at the surface of the fluid; hence, it could be justly considered as a boundary condition. Furthermore, the two most common situations arise when the fluid is one-component ($\delta=0$) or is isothermal ($\mathrm{T}=$ constant); seldom must both variations be considered simultaneously.

Although the species continuity equation of Table 1 is written for the salt concentration S, it is equally applicable for the

Table 1. General Conservation Laws for Modeling Bays and Estuaries

Overall Continuity Equation.
$\frac{\partial \rho}{\partial t}+\bar{U} \cdot \nabla \rho+\rho(\nabla \cdot \bar{U})=\rho \nabla \cdot(\bar{U}-\bar{V})$
Approximate Equation of State.
$\rho=\rho_{E}+\left(\frac{\partial \rho}{\partial S}\right)_{T} S+\left(\frac{\partial \rho}{\partial T}\right)_{S}\left(T-T_{o}\right)$
Diffusive Behavior.
$\rho \nabla \cdot(\bar{U}-\bar{V})=\left(\frac{\partial p}{\partial S}\right)_{T}\left(\frac{\partial S}{\partial t}+\bar{U} \cdot \nabla s\right) ;$
Compressive Behavior.
$\rho(\nabla \cdot \bar{U})=-\left(\frac{\partial \rho}{\partial T}\right)_{S}\left(\frac{\partial T}{\partial t}+\bar{U} \cdot \nabla T\right) ;$
Momentum Equation.
$\frac{\partial(\rho \overline{\mathrm{V}})}{\partial t}+\overline{\mathrm{V}} \cdot(\nabla \rho \overline{\mathrm{V}})=-\nabla P+\nabla \cdot \mu \nabla \overline{\mathrm{V}}-\rho \overline{\mathrm{g}}-\rho(2 \Omega \mathrm{x} \overline{\mathrm{V}})$
Energy Equation.
$\frac{\partial(\rho E)}{\partial t}+\nabla \cdot(\rho E \bar{V})+\nabla \cdot \bar{q}+\nabla \cdot(\overline{\bar{T}}-\overline{\bar{I}} P) \cdot \bar{v}-\Sigma \bar{g}_{i} \cdot \bar{J}_{i}=0$
Relationship Between Mass-Average and Number-Average Velocity.
$\overrightarrow{\mathrm{U}}-\overrightarrow{\mathrm{V}}=\overline{\mathrm{J}}_{\mathrm{s}} /\left[\mathrm{s}_{\mathrm{s}}+\left(\mathrm{M}_{\mathrm{s}} \rho\right) /\left(\mathrm{M}_{\mathrm{f}}-\mathrm{M}_{\mathrm{s}}\right)\right]$
Relationship Between Mass Flux Vector and Molar Flux Vector.

$$
\begin{equation*}
\bar{J}_{s}=\bar{K}_{s}\left[1+(S / \rho)\left(M_{f}-M_{s}\right) / M_{s}\right] \tag{8}
\end{equation*}
$$

conservation of any chemical or biological species with the inclusion of a rate of generation (or degeneration) term. These equations could then be applied to the dispersion of any pollutant discharged into a river or bay. Should the species have a negligible effect upon the density as is often the case, then the species continuity equation could be decoupled from the other conservation equations. For this case, the flow fleld could be computed and the resulting velocities used to compute the advection, diffusion and generation of the species. For cases where the density is affected by the concentration of the species, this decoupling is not applicable. The species continutty equation should then be solved simultaneously with the other conservation equations.

To model Mobile Bay, the flow is considered isothermal and to be a binary mixture of salt and water; therefore, the equations given in Table 2 apply. Furthermore, the viscous terms in the z-momentum equation were also negletet, since an order of magnitude analysis showed them to be two orders lower than the pressure and gravity terms in this equation.

Solution Technique

The set of equations as presented in Table 2 is sufficient to describe all the dependent variables for a given set of eddy coefficients, but the equations are in a form for which there is no known analytical solution. These equations will be approximated by a set of finite-difference equations and solved by using a timedependent technique. Before writing the equations in finite-dife ference fosm, a stretching transformation that will create a more efficient use of grid points is suggested. For example, by letting

$$
\begin{equation*}
y=\frac{1}{C_{1}} \tan \frac{Y}{C_{2}} \tag{15}
\end{equation*}
$$

where C_{1} and C_{2} are arbitrary constants, the equations of Table 2 can be expressed as functions of Y instead of y. The implications of this transformation can be more easily understood by rewriting it ds

$$
\begin{equation*}
Y=C_{n} \tan ^{-1}\left(C_{2} y\right) \tag{16}
\end{equation*}
$$

When $y=0$, then $Y=0$. Grid planes located at even increments of ΔY will produce ever-increasing increments of Δy. This tranformation will increase resolution where it is most needed and make specifying boundary conditions less critical.

The philosophy of using this numerical procedure is to begin with a set of initial values of the dependent variables at all grid intersections and allow the flow field to adjust asymtotically until all the conservation equations and boundary conditions are satisfied. The final result will be a steady-state flow fleld. Naturally, the better the estimate for the initial data, the more rapid the convergence, but even a crude guess, one conveniently

Table 2. Specific Conservation Laws for the Proposed Mobile Bay Model

Species Continuity Equation.

$$
\begin{equation*}
\frac{D S}{D t}=D_{x} \frac{\partial^{2} S}{\partial x^{2}}+D_{y} \frac{\partial^{3} S}{\partial y^{2}}+D_{z} \frac{\partial^{2} S}{\partial z^{2}} \tag{9}
\end{equation*}
$$

Equation of State.
$\rho=\rho_{i}+\left(\frac{\partial \rho}{\partial S}\right)_{T} S$
Compressive Behavior.
$\nabla \cdot \bar{U}=\frac{\partial U_{x}}{\partial x}+\frac{\partial U_{y}}{\partial y}+\frac{\partial U_{z}}{\partial z}=0$
Momentum Equation.

$$
\begin{align*}
\frac{D\left(\rho U_{x}\right)}{D t}= & -\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}\left(\mu_{x} \frac{\partial U_{x}}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu_{y} \frac{\partial U_{x}}{\partial y}\right)+\frac{\partial}{\partial z}\left(\mu_{z} \frac{\partial U_{x}}{\partial z}\right) \\
& +2 \rho \Omega_{z} U_{y} \tag{12}\\
\frac{D\left(\rho U_{y}\right)}{D t}= & -\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}\left(\mu_{x} \frac{\partial U_{y}}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu_{y} \frac{\partial U_{y}}{\partial y}\right)+\frac{\partial}{\partial z}\left(\mu_{z} \frac{\partial U_{y}}{\partial z}\right) \\
& -2 \rho \Omega_{z} U_{x} \tag{13}
\end{align*}
$$

$$
\begin{equation*}
\frac{D\left(\rho U_{z}\right)}{D t}=-\frac{\partial p}{\partial z}-\rho g_{z} \tag{14}
\end{equation*}
$$

specified, is sufficient. The boundary conditions will then be replaced with conditions which depend on time, and the asymptotic solution will become an initial condition. An unsteady solution will result from further calculations. An efficient wethod for specifying initial conditions when making a series of calculations with similar geometry is to store the results of one run on tape and recall these data as initial conditions for the next run. Experience has shown that this can reduce computation times for subsequent runs by a factor of four.

The numerical technique for calculating the dependent variables actually involves a sequence of calculations for each time step. The first step of the sequence involves computing new values of U_{x}, U_{y}, and S (and T, when needed) at each grid intersection by stepping forward in time by Δt. This is best explained by considering the following truncated Taylor series;

$$
\begin{equation*}
U_{x}\{n+1, i, j, k\}=U_{x}[n, i, j, k\}+\frac{\partial U_{x}}{\partial t}\{n, i, j, k\} \Delta t \tag{17}
\end{equation*}
$$

The braces indicate functionality, \mathfrak{n} is the index of the time step, and i, j, k indicate specific x, Y, and z grid planes, respectively. A finite difference approximation to the transformed right-hand side of the x-momentum equation of Table 2 can be substituted Eor $\partial U_{x} / \partial t$. Similar expressions can be written for U_{Y} and S or T.

The maximum possible time step for this type of numerical scheme is approximately given by the Courant-Friedricks-Lewy (CFL) condition, but in actuality this maximum time step is seldom obtained. There are various procedures for increasing the stable time step of a truncated Taylor's serias such as the one shown, but they all pay a penalty in computation time per step and/or computer core storage. A method which has proven quite useful to these authors is best explained by considering another truncated Tay1or series:

$$
\begin{align*}
U_{x}\{n+1,1, j, k\}= & U_{x}\{n, i, j, k\}+\left[\frac{\partial U_{x}}{\partial t}\{n, 1, j, k\}\right] \Delta t \\
& +\left[\frac{\partial^{2} U_{X}}{\partial y^{j}}\{n, i, j, k\}\right] \frac{(\Delta t)^{a}}{2} \tag{18}
\end{align*}
$$

The braces indicate functionality, n is the index of the time step, and $1,1, k$ indicate specific x, Y, and z grid planes, respectively. When ($\left.\partial^{\square} U_{x}\right) /\left(\partial t^{\square}\right)$ is approximated by a forward difference as a function of $\left(\partial U_{x}\right) /(\partial t)$, one has

$$
\begin{align*}
& U_{x}\{n+1,1, j, k\}=U_{x}\{n, 1, j, k\}+\left[\frac{\partial U_{x}}{\partial t}\{n, 1, j, 1\}+\right. \\
& \left.\frac{\partial U_{x}}{\partial t}\{n+1,1, j, k\}\right] \frac{\Delta t}{2} \tag{19}
\end{align*}
$$

The $\left(\partial u_{x}\right) /(\partial t)\{n, i, j, k\}$ can easily be computed from a finitedifference approximation to Equation 12. Upwind differencing was used for the convective terms. For the case of positive U_{x} and negative U_{1} and U_{z} components of velocity at grid point $1, j, k$, the finite difference approximation of Equation 12 becomes

$$
\begin{align*}
& \frac{\partial U_{x}}{\partial t}\{n, i, j, k\}=-\left[\frac { 1 } { \Delta x } \left(\left[U_{x}^{2}\{n, 1+1, j, k\}-U_{x}^{a}\{n, 1, j, k\}\right]\right.\right. \\
& \left.-\frac{0 . j}{\rho\{n, i, j, k\}}[P\{n, i+1, j, i\}-P(n, i-1, j, k\}]\right) \\
& \left.\left.+\frac{Y\{j\}}{\Delta y}\right\}_{U_{x}}\{n, i, j, k\} U_{Y}\{n, 1, j, k\} \cdots U_{x}\{n, 1, j-1, k\} \quad U_{Y}\{n, i, j-1, k\}\right) \\
& \left.\dot{+} \frac{1}{\Delta z}\left(U_{x}\{n, 1, j, k\} U_{z}\{n, i, j, k\}-U_{x}\{n, 1, j, k-1\} U_{z}\{n, i, j, k-1\}\right)\right] \\
& +\epsilon_{H}\left[\frac{1}{(\Delta x)^{2}}\left(U_{x}\{n, i+1, j, k\}-2 U_{x}\{n, i, j, k\}+U_{x}\{n, 1-1, j, k\}\right)\right. \\
& +\frac{Y^{\prime}\{j\}^{2}}{\Delta y}\left(U_{x}\{n, 1, j+1, k\}-2 U_{x}\{n, 1, j, k\}+U_{x}\{n, 1, j-1, k\}\right) \\
& \left.+\frac{Y^{\prime \prime}\{j\}}{2 \Delta y}\left(U_{x}\{n, i, j+1, k\}-U_{x}\{n, i, j-1, k\}\right)\right] \\
& +\epsilon_{z}\left[\frac{1}{(\Delta z)^{2}}\left(U_{x}\{n, 1, j, k+1\}-2 U_{x}\{n, 1, j, k\}+U_{x}\{n, i, j, k=1\}\right)\right] \tag{20}
\end{align*}
$$

where

$$
Y^{\prime}\{j\}=\frac{d Y}{d y}\{j\}
$$

and

$$
Y^{\prime \prime}\{j\}=\frac{d^{2} Y}{d y^{2}}\{j\}
$$

Computing $\partial U_{x} / \partial t\{n+1, i, j, k\}$ is more difficult: because dependent variables at time $n+1$ are required but are not known. For this reason, solutions of Equation 19 usually fall into two classes: the implicit sonemes which involve matrix inversion, and twomstep schemes which estimate provisional values at time step $n+1$. From a practical istand-point, the primary reason for including $\left(\partial^{a} U_{x}\right) /$ $\left(\partial t^{2}\right)$ term of Equation 18 is to dampen numerical oscillations of $\left(\partial U_{x}\right) /(\partial t)$ by averacint gradients at time n and $n+1$, as shown in Equation 19. This effect may also be effectively accomplished by averaging gradients at times n ard $n-1$, which would give

$$
\begin{equation*}
U_{x}\{n+1,1, j, k\}=U_{x}\{n, 1, j, k\}+\left[\frac{\partial U_{x}}{\partial t}\{n, i, j, k\}+\frac{\partial U_{x}}{\partial t}\{n-1, i, j, k\}\left[\frac{A t}{2}\right.\right. \tag{21}
\end{equation*}
$$

Equation 21 was, therefore an efficient method for camputing $\mathrm{U}_{\mathrm{x}}\{\mathrm{n}+1, \mathrm{i}, \mathrm{j}, \mathrm{k}\}$. Since $\left(\partial \mathrm{U}_{\mathrm{x}}\right) /(\partial \mathrm{t})\{\mathrm{n}-1,1, j, k\}$ was already available, less manipulation per time step was required than for other commonly used procedures. Equation 21 provided stability comparable 10 that of a two-step technique. Both techniques have time ste'p limitations as determined by the Courant-Friedericks-Lewy conditions,

It is conceded that using Equation 21 Instead of Equation 19 possibly sacrifices some accuracy in describing unsteiady behavior, but if a steady-gitate solution is the desideratum, then lagging (∂u)/(∂t^{\prime}) by half a time step is inconsequential besause all partials with respect to time should asymptotically approact, zero.

Once new values of U_{x} and U_{y} have been computied at each grid intersection U_{z} may be calculated from a finite-difference representation of equation 11. Spatial marching can be ised in the vertical direction, beginning at the bottom, where $U_{z}=C$.

The free surface height h at each horizon':al grid intersection may then be calculated. The incompressibility of the fluid requires that the net masa of fluid convected Into a volume of fixed horizontal dimensions near the surface has to be actompanied by a comparable adjustment to the surface height of the volume. Since U_{X}, U_{Y} and U_{2} at time $\mathrm{n}+1$ have already been computed ta the previous sequence, sufficient data are avallable to calculate $(\partial h) /(\partial t)\{n+1, i, j\}$. The new surface height can be computed from:

$$
\begin{equation*}
h\{n+1,1, j\}=h\{n, 1, j\}+\left[\frac{\partial h}{\partial t}\{n, 1, j\}+\frac{\partial h}{\partial t}\{n+1,1, j\}\right] \frac{\Delta t}{2} \tag{22}
\end{equation*}
$$

The gradient $(\partial h) /(\partial t)\{n, i, j\}$ will be known from the previous time step. Note that h is related to the size of the grid cells which contain the surface; therefore, these cells change volume during the course of the calculations.

The size of the surface elements may be accounted for by identifying ($h-z_{a x-1}$) $\equiv a$ and then writing the divergence and momentum equations as follows:

$$
\begin{equation*}
\frac{u_{x i}-U_{x i-1}}{x_{i}-x_{i-1}}+\frac{U_{y j}-U_{y j-1}}{y_{j}-y_{j m!}}+\frac{U_{z h}-U_{z \max -1}}{a}+\frac{\Delta a}{a \Delta t}=0 \tag{23}
\end{equation*}
$$

x - momentum (y - momentum is transformed version of this equation)

$$
\begin{align*}
& \frac{\langle\rho a\rangle_{t}}{a} \frac{\Delta U_{x}}{\Delta t}+\left\langle\rho U_{x}\right\rangle_{x}\left(\frac{U_{x i}-U_{x i-1}}{x_{i}-x_{i-1}}\right)+\left\langle\rho U_{y}\right\rangle_{y}\left(\frac{U_{y j}-U_{y j-1}}{y_{j}-y_{j-1}}\right) \\
& +\left\langle\rho U_{z}\right\rangle_{z}\left(\frac{U_{x h}-U_{x z \max -1}}{a}\right)=-\frac{\left(p_{x i+1}-P_{x i-1}\right)}{2 \Delta x}+\left(\frac{\left.T_{x x}\right|_{x i}-\left.\tau_{x x}\right|_{x i-1}}{x_{i}-x_{i-1}}\right) \\
& +\left(\frac{\tau_{y x}\left|\frac{1 j}{}-\tau_{y x}\right| y j-1}{y_{j}-y_{j-1}}\right)+\left(\frac{\left.r_{z x}\right|_{h}-\left.\tau_{z x}\right|_{z \max -1}}{a}\right) \tag{24}
\end{align*}
$$

- momentum

$$
\begin{align*}
& \frac{\langle\rho a\rangle_{t}}{a} \frac{\Delta U_{z}}{\Delta t}+\left\langle\rho U_{z}\right\rangle_{z}\left(\frac{U_{z h}-U_{z \max -1}}{a}\right)+\frac{\left\langle\rho U_{y}\right\rangle_{y}\left(\left.U_{z}\right|_{y j}-\left.y_{z}\right|_{y j-1}\right)}{y_{j}-y_{j-1}} \\
& +\left\langle\rho U_{x}\right\rangle_{x}\left(\frac{\left.U_{z}\right|_{x i}-\left.U_{z}\right|_{x i-1}}{x_{i}-x_{i-1}}\right),=^{\prime}-\left(\frac{p_{h}-p_{z \max -1}}{a}\right)-\rho_{y} \tag{25}
\end{align*}
$$

where 〈 > means the average of the quantity within the brackets in the direction of the subscript on the last bracket. The stretched coordinate and the salt continuity equation could have been shown also but these add nothing to the discussion at this point. If $h=z \max , a=\Delta z$, these equations are identical to the interior equations. If the surface does not coincide with a z grid point (as it never would), the $\left.U_{2}\right|_{h}=0$. This is the normal behavior of these equations. For convenience, a certain number of z-grid points, zmax, are always used, in which case a might be negative. This feature imposed the condition that "a" never excedes $\left[z_{a_{a x}}-z_{n a x-1}\right]$ in magnitude. This creates no problem; it is merely described so that the logic of the calculation may be understood.

Pressure, the last dependent variable to be calculated in the sequence of each time step, can be computed by a spatial marching procedure similar to that used to calculate U_{z}. At the free surface the presoure will be known, and pressure at lower grid rows can be computed from an integrated form of the z-momentum equation. An initial adjustment must be made to the pressure at the top grid plane to account for the free surface height.

Boundary Conditions

Boundary conditions for each dependent variable must be enforced after the sequence in which the variable is computed during the time step. Boundary conditions were applied as shown in Figure 6.

A no-silp condition was enforced along the bottom by forcing the velocity at grid points adjacent to the bottom to fit a boundary-layer-type profile. Grid points lying under the bottom were bypassed. The vertical shear component was set equal to zero as a boundary condition. Wind shear at the surface was empirically related to wind velocity. Heat flux to and from the atmosphere, although neglected in this analysis, could have been included as surface boundary conditions.

Reflection principles were used along the bay banks, where it was felt that the coarse horizontal grid spacing was insufficient to enforce a no-slip condition.

Velocities through the tidal inlets were obtained by extmpolation, for a given tide level and cut-point on the salinity distribution. The cut-point is defined as a level below which there is pure salt water. These conditions could be held constant with

Figure Ba. Boundary Conditions and Grid Locations.

$$
I=8
$$

I $=12$

time to obtain a steady-state solution, or varied as a known function of time to obtain a time-dependent solution. The tidal effects will be modeled by imposing time varying boundary conditiona at the seaward inlets to the harbor. Over part of the tide cycle the river flows will also have to be time dependent. Flows to and from marshes should also be included as part of the specified boundary conditions. These latter two efficts have not yet been included in the model.

RESULTS

The equations presented in the previous chapter consfitute the mathematical model of Mobile Bay. The solution technique. rgented has been implemented with a computer program; this progra... is listed in the Appendix. Mathematically, the model is a set of partial differential equations which are solved for a particular set of auxiliary conditions. Since the desired solution is a function of time, initial conditions throughout the bay are required; these are not available. In fact, one of the major benefits of uaing a model is to first predict a quari-steady or a periodic motion such that an accurate statement of initial conditions is not required. A proposed scheme of generating the necessary initial conditions is presented. The speed and economy of obtaining a solution with this method can now be determined. Initial calculations indicate that more improvement in efficiency is warranted before extensive calculations are made. Severat methods of accomplishing this improvement are outlined.

The concept for modeling Mobile Bay is that the three-dimensional, unsteady conservation laws are solved for a set of boundary conditions and an arbitrary set of assumed initial conditions. The boundary conditions are held fixed such that the solution to the equation is driven to an asymptotic limit. This limit then becomes an initial value for a truly unsteady solution. This idea was presented in (8) and applied to modeling a bayou flow problem in (9). The river flows are held fixed. The tide level and a cut-point belou which there is only sea water is fixed at the Mobile Point entrance to the bay. Flow through the Cedar Point - Dauphin Island entrance is obtained by extrapolation. These boundary conditions and an initial estimate of all dependent variables are sufficient to begin the sequence of calculations.

The program to perform these calculations is listed as CHANNEL. CHANNEL describes the bay for the stated type of boundary conditions and, in addition, places a specified wind shear on the surface and a no slip condition on the bottom. CHANNEL is a combination of MOBILE 2 and the bayou program from ref. (9). The bayou calculation is Included as a description of the ship channe1. MOBILE 2* is also
*The 2 in its name means it is the second grid conflguration which has been used. Generaily, there is no difficulty in changing the number of grid points in a calculation, but for this bay calculation some care is necessary, because internal program logic requires that adjacent boundary grids differ by no more than one. This means that the ratios of grid points used should be kept roughly the same.
a three-dimensional, unsteady bay model, but the somewhat more simple bottom location specification allows an overall more simple solution. This development of programs by addition of pre-tested subroutines to a basic main program is by design; this allows one to test and incorporate \cdots features into the calculation without undue program rewriting.

It should be noted that CHANNEL is the culmination of several previous studies which has resulted in significant improvements in this basic analytical approach. Specifically, these improvements are:

1) An equation set which has been optimized to run faster by eliminating terms which an order of magnitude analysis showed to be of neglible magnitude.
2) A windward differencing scheme was used since it appears to be the fastest explicit scheme yet devised.
3) Wind-shear is included as a surface boundary condition.
4) The method of applying tidal conditions has been proved to be adequate on the more simple bayou analysis.

Starting with these program features a grid system was developed for Mobile Bay as shown in Fig. 6. Calculations were then initiated to describe the Bay.

A zero mean-sea-level tide condition and a set-point corresponding to field observations at Mobile Point were used as boundary conditions to seek an asymptotic solution. The constancy and smallness of the program generated error functions indicate that suitable progress has been made to begin seeking an unsteady solution. The error functions (SBAR, UBAR, VBAR) are gross measures of the changes in S, U_{x}, U_{Y} between computation steps.

Study of the calculations and review of som; of the development steps necessary to obtain these calculations yield the following resulta.

Stable calculation time is about 0.5 seconds, Modest changes in the grid system point density and using MOBILE 2 rather than CHANNEL does not appreciably change this step size; however, both of these changes do affect the total amount of time necessary to perform a given number of calculation steps. The significant factor which must be considered is the amount of real time which is modeled in a unit of computation time. For CHANNEL and MOBILE 2, these numbers are, about 6^{-1}, for grid system number 2 ($12 \times 20 \times 9$). (Actually, the nine is an eight in MOBILE 2.) Grid system 1 (17 x 30×15) gives about 25^{-1} as the real time to computing time ratio.

Data at intermediate numbers of calculation steps reveal that velocity and surface elevation fields establish before concentration
fields. As expected for the case run the velocities are small, probably because the major driving force in creating flow is the tidal oscillation which have not yet been calculated.

Initially guessed fields take a long time to change - of the order of hours of real time.

The most significant result is that the program has been developed, is running without apparent errors, and is responding as expected to applied boundary conditions.

An unsteady solution has not yet been sought, mainly because the program has only now been developed and run to obtain these initial conditions. Secondly, several observations can be made on the calculations and available experimental data which have a bearing on the immediate ateps which need to be made in rescarching this problem.

River flows as boundary conditions need to be specified so that they can reverse. This means specifying them as a function of time during a tide cycle. Experimental field data at one river stage condition are available and can be used for such a specification.

The ratio of real time to computer time needs to be improved by some or all of the following means.

1) Determining if using a larger number of time steps in the species equation then in the momentum equations improves computational efficiency.
2) Running on a faster computer. Some runs on machines available to NASA would expedite this study.
3) Transform the time variable to reduce the real time length of a tide cycle. Reductions in cycle from 24 hours to about 4 (the lag time for a tidal flucturation to travel from the south to the north end of the Bay) should prove feasible.
4) Devise an improved computation procedure. Possibilities from the simple expedient of devising a new guessing procedure for inftialization to using a new differencing formulation will be considered.

In summary, a mathematical model of Mobile Bay has been developed. This model is now ready to use for parametric studies to predict the bay's dynamic behavior. Economy dictates that the exact procedure for accomplishing the required computation be carefully planned and executed.

REFERENCES

1. Austin, G. B., "On the Circulation and Tidal Flushing of Mobile Bay, Alabama, Part I", Ref. 54-20T, Texas A\&M, April, 1954.
2. McPhearson, Jr., R. M., "The Hydrography of Mobile Bay and Mississippi Sound, Alabama", J. Marine Science, 1, pp. 1-83, August. 1970.:. .
3. Kerr, A. W., Mobile District, Corps of Engineers personal communications of Seftember 10 and November 14, 1974.
4. Drago, E. A., Mobi.le District, Corps of Engineers, personal communication of August 16, 1974.
5. Frank-Kamenetskii, D. A., translated by J. P. Appleton, Diffusion and Heat Transfer in Chemical Kłnetics, Plenum Press, New York, 1969.
6. Daly, B. J. and W. E. Pracht, _"Numerical Study of DensityCurrent Surges", che Physics of Fluids, 11, pp. 15-30, 1968.
7. Yih, Chia-Shun, Dynamics of Nonhomogeneous Fluids, The MacMillan Co., New York, 1965.
8. Waldrop, W. R. and R. C. Farmer, "Three-Dimensional Flow and Sediment Transport at River Mouths", Louisiana State University. Coastal Studies Institute, TR-150 Sept. 1973.
9. Waldrop, W. R., R. C. Farmer and P. A. Bryant, "Saltwater Intrusion into a Flowing Stream", Louisiana State University. Coastal Studies Institute, TR-161, May, 1974.

APPENDIX

Discussion of the Program: This appendix describes a computer program which can be used for modeling a bay or estuary with a shipping channel. The mathematical model used in this program is a threedimensional, time-dependent flow field model which can be used to describe the type flow found in any bay or estuary by changing appropriate boundary conditions and geometry.

Mobile Bay was selected as the bay to be modeled. The computational techniques and equations solved are presented in the chapter on model techniques of the main paper. Comment cards are used throughout in the computer program to indicate which operations are being performed. A simplified flow sheet is presented in Figure 1.

Input Guide: All data cards to be used in the program are read by SUBROUTINE PRELIM. Proceeding eaci READ statement are comment cards which define each term to be read and specify the appropriate units. These data are nondimensionalized before using them for computations. Two basic formsts are used for input, 110 and F10.5. The IIO is an integer format consisting of 10 columns right justified; the F10.5 fis a floating point format occupying 10 columns with a decimal point punched on the card.

At the completion of the run, data are written on a tape in SUBROUTINE ECRIRE. This provides data for a restart capability or a plot program.

When the restart capability is used, data are read from a tape by SUBROUTINE LIRE. The option of calling this subroutine is controlled by a data card as described in SUBROUTINE PRELIM.

Table 1 provides the details of the card input.
Description of Printout: This section presents a description of the CiANNEL program output.

Initially, the input parameters are printed in order to f.dentify the problem and to verify that correct values were used. Then a complete description of the grid systems in the three coordinate directions are printed. This description includes index numbers and dimensionless and dimensional values for the locations of the grid planes as well as stretching function values where applicable.

The physical location of the boundaries of the bay are printed as it was read into the program and as the program describes it in terms of the above grid systems. If desired, a description of the floor of the bay can be printed. This portion of the printout is generally suppressed by branching around it with a G \emptyset T ϕ statement because of its excesaive length and low uage. This same comment also applies to a portion of the printout that describes the heights of the banks along the boundaries of the bay. Then the maximum velocities, east and west bank locations and depths of the rivers entering the north end of the bay are printed.

Next, terms monitoring the overall changes in the salinities and horizontal components of velocity for a single time step are printed for selected time steps. If the number of time steps specified in the input data is achieved, a message stating that a stable run was made is given and then values of the flow field variables are printed at selected $Y-Z$ grid planes ${ }^{1}$ with velocities in M / S, salinities as fractions of Gulf water salinity and pressures in nondimensional form. If the surface becomes too rough or a negative pressure below the surface is encountered, a message identifying the cause for premature termination along with its location in the grid system is given. Values of the flow field variables are then printed as above. Finally, the free surface beights relative to the top horizontal grid plane are printed in $C M$ in the form of a map for ease of interpretation.

Program Listing: The following pages contain a listing of CHANNEL and the required input data.

[^0]FIGURE 1
SIMPLIfIED FLOW CHART FOR CHANNEL

TABLE 1
INPUT PARAMETERS FOR CHANNEL

COMMON/GRID/OX.DY,DZ,DT,DTOZ,DXINV.DYINV,DZINV,SYJ.SYZ,SYJPI,SYJMI COMMON/VELCTY/UNEW, UOLD,UIPI.UIMI,USPI.UJMI.UKPI.UKMI.
$\varepsilon \quad$ VNEW, VOLD,VIPI,VIMI,VJPI,VJMI,VKPI,VKMI.
COMMON/STEP/N, MN,MC,NBAR,NPRINT, NMAX, KEYOUT,LTAPE
COMMON/COORD/SOUTH (22),FAST (22). WEST (22), JEAST (22), JWEST(22)
COMMON/MISC/TOPLYR, SBAR, UBAR, VBAR,VISC, DIFFUS, PREFIX, ACCEL
COMMON/WEDGE/ZW(17)
COMMON/CODES/LW,LR,LT
DIMENSION NI(21)
CALL PRELIM
RHO $=1 \cdot 0+B E T A$
$10 \mathrm{~N}=\mathrm{N}+1$
$M O=3-M O$
$M N=3-M N$
2
THE
FOR
FOR

$$
\begin{aligned}
& \text { CALL PRESCI } \\
& \text { IF KEYOUT. NE }
\end{aligned}
$$

C DATA IS WRITTEN ON TAPE HERE FOR RESTART OR PLOTTING.
CALL ECRIRE
100 WRITE(LW, 1000)N: SBAR, UBAR, VBAR
WRITE LH. 10011
$00101=1.1$
DO $110 \mathrm{I}=1$ IIMAX
JW=JWEST(I)
DO $110 \mathrm{~J}=\mathrm{JW} . \mathrm{JE}$
KBOT=KFLOOR (I,J)
DO $110 \mathrm{~K}=\mathrm{KBOT}, \mathrm{KMAX}$
SNEW=S(MN,I,J,K)
PNEW=P(I,J,K)
UNEW=U(MN.I.J.K)*VREF
$W N E W=W(I, J, K) * V R E F$
C VELICITIES ARE PRESENTED IN METERS/SEC.
WRITE (LW, 1002)UNEW, VNEW, WNEW. SNEW, PNEW,I.J.K
110 CONTINUS CONTINUE
DO $106 \mathrm{I}=1$. IMAX
DO $106 \mathrm{~J}=1$. JMAX
SURF $(I, J)=(\operatorname{SURF}(I, J)-D Z)$ \#HREF* 100.0
CONTINUE
WRITE 6.1500$)$
DO $16 \quad I=1 . I M A X$
16 NI(I) $=I$
WRITE(6.1501)(NI(I).I=1.IMAX) DO $17 \mathrm{JJ}=1 . J M A X$
$J=J M A X+1-J J,(\operatorname{SURF}(I, J), I=1, I M A X)$ WRITE(LW. 1011) DO $210 \mathrm{~K}=1 . \mathrm{KMXC}$
$0230 \quad I=1$.IMAX
IF (ZC(K).GT.ZB(I,JWAG)) GO TO 210
UI $=\mathrm{UC}(M N, I, K) \neq V R E F$

- $1=\mathrm{WC}(I, K) \neq V R E F$
WFITE(LW, 1012)I,K,U1,W1.SC(MN,I.K),PCYI,K) CONTINUE
CONT INUE
ERITE(LW. 1013)
$00220 I=1$. IMAX
ZB1=ZBC(I)*HREF
XTRUE $=x(I)$ *HREF
WRITE(LE, 1014)I.Z81.XTRUE.KFLORC(1).ZWI
CONTINUE
230
220
1000
1000 FORMAT $5 X, 2 H N=14,5 X, 5 H S B A R=1 P E 13.6,5 X, 5 H U B A R=1 P E 13.6,5 X, 5 H V B A R=1 P E$ ع 13.61 $\varepsilon \quad$ EX,1HI,5X,1HJ,5X,1HK,/1
FORMAT(5(7X,1PE 13.6), $3(3 X, 13)$
FORMAT $/ / / 2 X, 2 O H Y * A L L$ DID JUST FINE
$\varepsilon / .2 x_{0}$ YOU HAD A STABLE RUN AND YOU WROTE ON THE TAPE.:.
$\varepsilon / .2 X, 33 H Y \cdot A L L$ CCME SEE US AGAIN. BYE NOW..//)
1004 FORMAT(/)

 ε 'Z-WEDGE-METERS•・ノ)

1015 FORMATC/1
HEIGHTS IN
U URF A $116.1 / 1$
$3 x, F 5.2,20(1 X, F 5.2))$ $\sim N$ CM. $1 / 11$

SUBRDUTINE PRELIM
COMMON/DIMENI/U(2,12.20.11).V(2.12.20.11).W(12.20.11) COMMON/DIMEN2/S(2.12.20.111),P(12.20.11)
COMMON/DIMEN4/UC(2.12.11),WC(12.11),SC(:.12.11).PC(1?.11):
E DUCDT(12.11)

> ε KMXCM1,KCHANL

> COMMON/GRIDDX, DY COMMON/LN/FUNLNI,FUNKAP

> COMMON/STEP/N, MN,MO, NBAR, NPRINT, NMAX, KEYOUT, LTAPE COMMCN/FORCES/FWINDX,FWINDY,F
> COMMON/TURB/COEF VH, COEFVZ, COEFDH, COEFDZ, RICH,CRICH COMMON/RIVERS/YW(4), YE (4), DEPTH(4), URIV(4), RMOMAF (4), JRIV(4) COMMON/COORD/STUTH (22), EAST (22), WEST(22), JEAST (22), JHEST (22) COMMDN/MISC/TORLYQ, SBAR, URAR, VBAR,VISC, DIFFUS.PRFFIX, ACCEL COMMON/CODESALW,LR.LT
COMMON/PASS/XBANKN, XBANKS.CUTPT.KCUT
IF A COLD START IS DESIRED, SET LTAPE $=0$
IF YOU WANT TO READ FROM THE TAPE, SET LTAPE

READILR， 1000 JNMAX，NPRINT，NBAR FETCH IS THE LENGTH OF THE BAY FRDM NORTH TO SOUTH IN KILOMETERS TO THE EAST BANK．
ymax should be slightly greater than the distance FROM THE SHIP CHANNEL TO THE EAST BANK OF THE BAY IN KILOMETERS
REAO（LR． 1001 ）FETCH，YMAX
XBANKN AND XBANKS ARE LOCATIONS OF THE NORTH AND SOUTH BANKS OF A pass opening to a large bay to the west of the bay being ANALYZED－－－IN KILOMETERS
READ（LR， 1001 ）XBANKN XBANK
ACCEL IS AN ACCELERATION FACTOR EXPEDITING CONVERGENCE OF THE SALT
CONSERVATION EGUATION．
SEE SUBROUTINE RUBER FOR DEFINITIONS，E ADJUST AS REQUIRED，BUT ALWAYS
MAKE YKZ LESS THKN PI／2．0．YKI IS CALC．IN SU日ROUTINE RUBER
HREF IS THE DEPTH IN METERS WHICH IS SLIGHTLY DEEPER THAN THE DEEPEST
POINY IN THE BAY EXCLUSIVE OF THE SHIP CHANNEL．THIS DEPTH CORRESPONDS
TO K＝0
TO K＝0
SIGMAT
SIGMAT SPECIFIES DENSITY OF SEA WATER RELATIVE TO FRESH WATER
DENSITY OF FRESH WATER $=1.0$ GM PER CUEIL GM．
SIGMAT $=$（DENSITY OF SEA HATER－ 1.0 ）$* 1000.0$
PERIOD IS THE TIME REQUIRED FOR A COMPLETE TIDAL CYCLE IN hOURS
tide is height difference in cm．between high and low tide
ROUGH IS THE DIAMETER OF THE AVERAGE PARTICLE THICH GENERATES THE
TURBULENCE ON THE BOTTOM．ROUGH IS MEASURED IN MILLIMETERS．
READ（LRAR ICOI）ROUGH，VOAKAR UNIVERSAL BOUNDARY LAYER CONSTANT．
VWIND IS THE WIND SPEED IN CM／SEC MEASURED 10 METERS ABOVE THE SURFACE
DIRECT IS THE DIRECTION WHICH THE WIND IS BLOWING MEASURED IN DEGREES AND COUNTERCLOCKWISE FROM THE POSITIVE XAXIS
PHI IS THE AVERAGE LATITUDE OF THE bay．
READ（LR，IOOII VWIND．DIRECT，PHI

3．THE DISTANCE FRON THE SHIP CHANNEE TO THE WESTERN BOUNDARY OF THE
BAY $N O T E$ ．．ALWAYS NEGATIVE）
READ I DATA CARD TO SPECIFY THE CONVERSION FACTOR OF THE UNITS ABOVE
TO METERS．
READ（LR， 1000 I IIMAX
XBANKN $=(1000.0 *$ XRANKN $) / H R E F$ XBANKS $=\{1000.0 * \cdot \lambda B A N K S) / H R E F$

DO 2 II $=1$ ，IIMAX
2 READ（LR： 1001 ）SOUTH（II）．EAST（II）．WEST（II）
N

IMAXMI $=$ IMAX -1
IMAXMI
IMMAX
KMAXM1＝JMAX－1
KMXCM1＝KMXC－1
KMXCM $1=K M X C-1$
CALL RUBER
CALL RUBER
CUTP $T=C U T P T / H R E F$
$K=0$
$K=K+1$
IF $Z(K$ ）．LE．CUTOT）GO TO I
KCUT＝ゲー
VREF＝SORT（GRAV＊HREF）
WRITE（LW． 1010 ）
DO III＝1．IIMAX
OQUTHEII）＝SOUTH（II）\＆CONVRT／HREF EAST（II）＝EAST（II）＊CONVRT／HREF EST（II）＝WEST（II）＊CONVRT／HREF SOUTHI＝SOUTH（II）＊HREF
EASTI＝EAST（II）＊HREF
WRITE\｛LW．IO11）IE．SOUTHI EASTI，VESTI WRITE（2W．1012）
$I=1$
$J=J W A G$

IF（Y（J）
IF（Y（J）•LT•E
JEAST（I）$=J-1$
JEASWAG
$J=J-1$
IF（Y（J）．GT．WEST（1））GO TO 8 JWEST（I）$=j+1$
YW1＝ 1 UEST（ 1 ）＊HREF YE1＝EAST（1）＊HREF
YEAST＝EAST（1）
YWEST＝WEST（1）
CALL 8OTTOM（YEAST，YW，1013）I，YW1，YE1，JWEST（1），JEAST（1）
DO $16 \mathrm{r}=2$ ，IMAX
$\mathrm{I}=1$
$I I=I I+1$
IF SOTE（X（I）－SOUTH（II－1））／（SOUTH（II）－SOUTH（II－1）） YEAST＝EAST（II）＊WATE＋EAST（II－1）＊（1－0－WATE） YWEST＝甘EST（II）＊＊ATE＋WEST（II－1）＊（1．0－WATE） $J=J$ WAG
$J=J+1$
IF(Y(」).LT.YEAST) GO TO 12

WRITE(LN,10ISX
ZBREAL $=$ ZB(1, J) \#HRFF
WRITE(LW, 1016)I,J,KFLOOR(I,J),ZB(I, J). XREAL, YREAL, ZBREAL continue
\circ
N
응 ANT TO READ THE THE RIVERS FLOWING INTO THE NORTH END OF THE BAY. USE THE SAME UNITS FOR THE EAST AND WEST COORD. AS FOR THE SHORE WITH THE SHIP CHANNEL AS $Y=0.0$, AND INPUT THE DEPTH IN METERS. MUM RIVER VELOCITIES IN METERG/SEC.
COEFDH $=0.0025$
READ(LR, 1001$)$ YW(I).YE(II. DEPTH(I),URIV!I).RIV JRIV(I)=IFIX(RIV+0.5)
웅 JEAST(I)=Jー1 14

[^1]
subroutine lire

COMMON/DIMEN1/U(2.12.2C.11), V(2.12.20.11),W(12,20.11)	
COMMON/DIMENE/S(2.12,20.11).P(12.20,11)	
COMMON/DIMEN3/DUDT(12,20,11).DVDT(12,20,11), DHDT(12,20).	
	$\operatorname{SURF}(12,20)$
COMMON/DIMEN4/UC(2,12.11), WC(12,11).SC(2,12,11), PC(12,11),	
$\varepsilon \quad$ DUCDT(12.11)	
COMMON/FLOOR/KFLOOR (12,20),2B(12.20).KFLGRC(12), ZBC(12)	
COMMON/LIMITS/IMAX, IMAXMI, JMAX, JMAXMI, KMAX,KMAXMI, JWAG, KMXC,	
ε KMXCM1,KCHANL	
COMMON/COORD/SOUTH(22), FAST(22), WEST (22). JEAST(22), JWEST (22)	
COMMON/PUL/X(12),Y(20),Z(11),SY(20),SYY(20),YK2,ZC(11)	
COMMON/STEP/N,MN,MC.NBAR, NPRINT, NMAX,KEYOUT, LTAPE	
COMMON/RIVERS/YW(4), YE (4), DEPTH (4), URIV(4), RMOMAF (4), JRIV(4)	
COMMON/SHORE/ZBANKN(31), ZBANKS(31), ZBANKE(31), ZBANKW(31)	
REWIND 3	
READ (3)	IMAX, JMAX,KMAX,KMXC, JWAG,
(URIV(I),RMOMAF(I).JR	
READ (3)	(ZBANKN(J), J=1, JMAX)
READ (3) (ZBANKS (j), $j=1, J$ MAX)	
READ (3) (ZBANKE (J), $J=1, J M A X)$	
READ (3) (ZBANKw(J), J=1, JMAX)	
READ (3) ($\mathrm{DHDT}^{\text {(}}$ (, J), I $\left.\left.=1, \mathrm{IMAX}\right), \mathrm{J}=1, \mathrm{JMAX}\right)$	
READ (3) (($\left.\left.\left.\mathrm{V}^{\text {(MMN, }} \mathrm{I}, \mathrm{J}, \mathrm{K}\right), \mathrm{I}=1, \mathrm{IMAX}\right), \mathrm{J}=1, \mathrm{JMAX}\right), \mathrm{K}=1, \mathrm{KMAX}$	
READ (3) ($\left(\begin{array}{l}\text { (M }(1, J, K), I=1, I M A X), J=1, ~ J M A X), ~ K=1, ~ K M A X) ~\end{array}\right.$	
READ (3) (((S MA, , I, J,K), $1=1, \mathrm{I}$ MAX), J=1, JMAX), $\mathrm{K}=1, \mathrm{KMAX}$)	
READ (3) (($(P(1, J, K), I=1, I M A X), J=1, J M A X), K=1, K M A X)$	
READ (3) ($(\operatorname{SURF}(\mathrm{I}, \mathrm{J}), \mathrm{I}=1, \mathrm{IMAX}), \mathrm{J}=1 . J M A X)$	
READ (3) ((ZB $(1, J), I=1, I M A X), J=1, J M A X)$	
READ (3)	((XFLOOR (I, J), $\mathrm{I}=1, \mathrm{IMAX}$) , J=1, JMAX)

AN ENTRY TO WRITE UPDATED DATA ON THE TAPE

((${ }^{(D V D O}(I, J, K), I=1, I$ MAX), $\left.J=1, J M A X\right), K=1$, KNAX)
$(((U) M N, I, J, K), I=1, I$ MAX $), J=1, J$ MAX $), K=1, K$ MAX $)$

$(()(W), J, K), I=I, I M A X), J=1, J M A X), K=1, K M A X)$
(((S(MN,I,J,K), $I=1, I M A X), J=1, J M A X), K=1, K M A X)$ $(((P) I, J, K), I=1, I$ MAX $), J=1, J M A X), K=1, K M A X)$ ((SURF $(I, J), I=I, I M A X), J=1, J$ MAX $)$
((zB ($1, j$), $1=1, I$ MAX). $J=1$, JMAX)
($(K F L O O R(I, J), I=1, I M A X), J=1, J M A X)$ ((UC (MN,I,K), I=I,IMAX),K=1,KMXC)
($(W C(I, K), I=1, I M A X), K=1, K M X C)$
((SC $(M N, I, K), I=1, I M A X), K=1, K M X C)$
(MAX) $, K=1, K M X C)$
((DUCDT(I,K), I=1,IMAX),K=1,KMXC) (ZBC(I): I=1.IMAX)
REWIND 3

IMAX, JMAX,KMAX•KMXC,JWAG, (URIV(I), RMOMAF (I),JRIV(I), $I=1,4)$

 (ZBANKN(J), J=1, JMAX)(ZBANKS (J). J=1, JMAX)
(ZBANKE (J), J=1, JMAX)
(ZBANKW(J), J=1,JMAX)

WRITE (3)
WRITE 3)
WRITE (3)
WRITE (3)
WRITE WRITE(3)
 YRITE(3)
 WRITE (3)号告

 WRITE(3) ω
SUBROUTINE RUBER SUBROUTINE RUBER
COMMON/PULL/X(12),Y(20), Z(11), SY(20),SYY(20),YK2,ZC?11)
COMMON/LIMITS/IMAK,IMAXMI,JMAX, JMAXMI, KMAX,KMAXMI,JWAG,KMXC,
E KMXCMI,KCHANL
COMMON/GRID/DX, DY,DZ, DT, DTO2, DXINV, DYINV, DZINY, SYJ, SYZ,SYJPI,SYJMI
COMMON/UNITS/VREF,HREF,GRAV,PI, BETA,FETCH, YMAX, OMEGA, CDEYTH COMMON/UNITS/VREF, HREF, GRAV, PI , BETA.FETCH, YMAX, OMEGA. CDEOTH
COMMON/CODES/RW,LR,LT COMMON/CODES/LW,LRっLT
WRITE(LW. 1000)
WRITE (LW. 1000)
OX=(FETCH* 1000
OX=(FETCH*1000.0/HREF)/FLDAT(IMAXM1)
$D X I N V=1.0 / D X$
$D X I N V=1 \cdot 0 / D X$
$X I=-D X$
DO $10 \quad I=1$. IMAX $x 1=x 1+0 x$
X(I): X 1

$$
\text { XREAL }=\times 1 * \text { HREF }
$$

WRITE(LW. 1001)I, XI, XREAL
WRITE(LW. 1002)
DY=1.O/FLOAT(JMAX-JWAG)
WRITE(LW. 1001)I $\times 1$ = XREAL
WRITE(LW. 1002)
DY=1.O/FLOAT(JMAX-JWAG)
0
SY(J)=(1.0/YK2)*YK1/DENOM
SYY(J)=-(2.0/YK2)*YKI*Y1/(DENOM*DENOM)
20 WRITE(LW, 1003$) J, Y 1, S Y(J), S Y Y(J)$.YREAL WRITE (LW, 1004) $D Z=1.0 / F L O A T(K M A X)$
$D Z I N V=1.0 / D Z$ DZINV=1.0/0Z
DO $30 K=1$, KMAX DYINV=1.0/DY
YK $1=($ YMAX $* 1000.0) /(H R E F * T A N(Y K 2))$
CONSQ $=$ YK $1 \neq Y K 1$
DO $20 \quad J=1$. JMAX
CAPY=DY*FLOAT(J-JWAG)
YI=YKi*TAN(YKZ*CAPY)
$Y(J)=Y 1$
YREAL $=Y 1 *$ HREF
YSQ=Y $1 * Y 1$
$Y S Q=Y 1 * Y 1$
DENOM=CON
DENOM=CONSQミYSO
SY $(J)=(1.0 / Y K 2) *$
SY(J)=(1.0/YK2)*YKI/DENQM
SYY(J)=-(2.0/YK2)*YKI*Y1/(DENOM*DENOM)
20 WRITE(LW, 1003$) J, Y 1, S Y(J), S Y Y(J)$,YREAL

SUBROUTINE INITAL
COMMON/DIMEN $1 /$ U($2,12,20.11), V(2,12, C 0,11), W(12,20.11)$
COMMON/DIMEN2/S(2.12,20.11),P(12,20.11)

$$
\text { SURF }(12,20)
$$ E COMMON/FLOOR/KFLOOR

COMMOMIDIMEN3IDUDT(12,20.11), DVDT(12,20.11).DHDT(12,20),

$$
\begin{aligned}
& \text { COMMON/DIMENA/UC(2, } \\
& \varepsilon \quad \text { DUCDT(12.11) }
\end{aligned}
$$

(2.11).WC(12.11).SC(2.12.11). PC(12.11).

COMMON/FLOOR/KFLOOR(12,20),ZB(12,20), KFLORC(12), ZBC(12)
COMMON/PUL/X(12),Y(20), Z(11), SY(20),SYY(20),YK2,2C(1H) E KHXCMI, KCHANL
COMMON/STEPIN MN, MD NBAR NPRINT, HMAX,KEYOUT, LTAPE COMMON/GRID/DX,DY,DZ,DT,DTOZ.DXINV,DYINV,DZINV,SYJ.SY2,SYJPI,SYJMI COMMON/COORD/SOUTH (22), EAST (22), WEST (22), JEAST (22F. JWEST (22) COMMON/RIVERS/YW(4), YE (4), DEPTH (4), URIV(4), RMOMAF (4), JRIV(4) COMMON/SHORE/ZBANKN(31), ZBANIRS(31), ZEANKE(31), ZBANKW(31) COMMON/PASS/XBANKN, XEANKS,CUTPT, KCUT
 WILL PUT A FENCE AROUND THE BAY \& WILL LATER CUT HOLES WHERE
APPROPRIATE APPROPRIATE
DO $2 \mathrm{I}=1$, IMAX ZBANKW(I) $=1.01$ ZBANKE(I) $=1.01$

DO 4 J=1.JMAX ZEANKN(J)=1.01 ZBANKS $(J)=1.01$
N WANT TO SPECIFY
I=1 $14 \mathrm{NN}=1,4$

DO $14 \mathrm{NN}=1,4$
$\mathrm{YWW}=\mathrm{YW}(\mathrm{NN})$
YEE $=$ YE(NN) DEPTHH = DEPTH(NN) URIVV = URIV(NN
-IDTH: =YEE-YWK
AREAI $=$ WIDTHI $\#$ DEPTHH $J=J R I V(N N)$
KBOT

KBRT=KFLOOR (I.J)

ORIGINAL Page
OF POOR qUALIITY
280T=28(1.3)

SUBRDUTINE BOTTOM (YEAST.YWEST)

THE BOTTOM LOCATION IS COMPUTED

COMMON/UNITS/VREF, HREF,GRAV,PI, BETA,FETCH. YMAX, OMEGA, CDEPTH
ORIGINAL PAGE I:
OF POOR OUMLITY
THE BOTTOM LOCATION IS COMPUTED
COMMON/INDEX/I,J.K

SURROUTINE SETUP

ع. DUCDT(12.11)
 COMMON/GRID/DX,DY, DZ,DT,DTO2.DXINV,DYINV,DZINV,SYJ,SY2,SYJPI,SYJMI COMMON/STEP/N,MN,MC, NBAR, NPRINT, NMAX,KEYOUT, LTAPE COMMON/UNITS/VREF, HREF, GRAV,PI, BETA,FFTCH, YMAX, OMEGA, CDEPTH
COMMON/CONC/SNEW, SOLD, SIPI.SIMI, SJPI.SJMI.SKPI.SKMI. RHR, RHOINV COMMON/CONC/SNEW, SOLD, SIP1.SIMI, SJPI. SJMI.SKPI.SKMI. RHO, RHOINV
COMMON/VELCTY/UNEW, UOLD.UIPI.UIMI.UJPI.UJMI.UKPI.UKMI. VNEW,VOLD,VIPI,VIMI,VJPI,VJMI,VKPI,VKMI, WNEW,WIP1,WIM1,WJPI , WJM1 +WKP1, WKill
COMMON/PRES/PK,PIPI.PIMI.PJPI,PJMI
COMMON/TURB/COEFVH, COEFVZ, COEFDH, COEFDZ,RICH, CRICH COMMON/SHORE/ZBANKN(31).ZBANKS(31).ZBANKE (31), ZEANKW\{31) COMMON/LN/FUNLNI,FUNKAP COMMON/INDEX/I,J,K
COMMON/MISC/TOPLYR, SBAR, UBAR, VBAR, VISC. DIFFUS. PREFIX, ACCEL.

[^2]ORIGINAL PAGE IS
OF POOR QUALITY OF POOR QUALITY

UIPI $=$ U(MD, IP $1, J, K$) (x*reldicow)n=ldin PIPI=D(IP1,J.K)
7 GOTP TO 8
GO TO 8
7 SIP $1=1.0$
UIP $\operatorname{VIP}=$ VOLD
VIPI=VOLD

$7 \begin{aligned} & \text { GOTO } 8 \\ & \text { SIP1=1.0 }\end{aligned}$

$$
=\quad N
$$

$V(M N, I, J, K)=V N E W$
VBAR = VBAR +ABS(VNE -VCLD)

ORIGINAL PAGE IS OF POOR QUALITY

THIS IS A SPECIAL ENTRY FOR THE SURFACE

12 CONTINUE
13 GO TO 11 GO TO 14

COMPU2 $=0.5 *$ RHOINV* (PIP1-PIM1)
COMPV2=0. 5 *RHOINV* $\{$ PJP1-PJM1) IF (VOLD.GT.O.O) GO TO 20
S' $1=0.5 \neq(S Y J+S Y J P 1)$
COMPU3=UJP I : VJP 1 -UOLD* VOLD
CONPV3=VJP $1 \neq V$ VP $1-$ VOLD*VOLD COMPS $3=0.5 *(V J P 1+V O L D) *(S J P 1-S O L D)$
20 SY $1=0$ - S\# (SYJ+SYJMI)

COMP ST=0.5* (VOLD+VJM1) * (S
IF (WNEW.GT.O.O) GO TO 30
COMPU4=UKP $\ddagger \div$ WKP $1 \cdots$ UOLD $\#$ WEW
COMPV4=VKP 1 \& $甘$ KP 1-VOLD* KNEW
COMPS $4=0.5 *(W K P 1+W N E W) *(S K P I-S O L O)$
GO TO 35
COMPU4 $=$ UOLD $\#$ WNE $W-$ UKM $1 \neq W K M 1$
COMP VA $=$ VOLD $\# W N E W-V K M 1 \neq W K M 1$
COMPS $4=0.5 *($ WNEW + WKM1) * $(S O L D-S K M I)$
CONTINUE
$D U / D T=-(D(U * U) / D X+D(U * V) / D Y+D(U * W) / D Z+(1.0 / R H O) * D P / D X)$ + COEFVX*(DSQU/DXSO) + COEFVY*(DSOU/DYSO) + COEFVZ*(DSOU/DZSO) + FWINDX/(RHO*DEPTH)
25
M

NO: SQLVING THE X-MOMEMTUM EQUATION.

DUODT $=-D X!N V *(C O N P U 1+C O M P U 2)-S Y 1 * D Y I N V * C O M P U 3$
ع $-D Z I N \forall * C O M P U A+V I S C+F * V O L D+W I N D X$
UNEW = UOLD + (DUODT +DUDT (I, J,K)) *DTO2
DUDT (I , J.K) = DUODT
NOW SOLVING THE Y-MOMEMTUM EOUATION.
CALL VVISC
$D V / D T=-(D(U * V) / D X+D(V * V) / D Y+D(V * W) / D Z+(1.0 / R H O) * D P / D Y)$

+ COEFVX* (DSQV/DXSQ) + COEFVY* (DSQV/OYSQ) + COEFVZ*(DSQV/DZSO)
DVODT $=-D X I N V * C O M P V I-S Y I * D Y I N V *(C O M P V 2+C O M P V 3)$
$\varepsilon-D Z I N V * C O M P V 4+V I S C-F * U D L D+W I N D Y$
VNEW=VOLD + (DVODT+DVDT(I, J.K)) *DTO2
DVDT(I,J.K)=DVODT
40 CALL DIFUSE

\cup

ecoy viscosity terms are calculated.
this section computes terms for the x-mom. ea.

THY VVISC
THIS SECT
THIS SECTION COMPUTES TERBS FOR THE Y-MOM. EQ.
TWOV=VOLD+VOLD
XCOMP=DXINV*DXINV\# YCOMP1=5Y2*0.5*DYINV* (VJP1-VJNI) YCOMP2=PREFIX*PREFIX*(VJPI-TWOV+VJM1)

ZCOMP=DZINV*DZINV\# (VKPI-TWOV+VKMI)

ENTRY DIFUSE

DAMPD $=1.0 /(1.0+3.333 * R(C H) * * 1.5$

SUERDUT INF VOLDIL

 COMMON/GRID/DX,DY,DZ,DT.DTOZ.DXINV,DYINV,DZINV,SYJ,SYZ,SYJPI,SYJMI COMMON/STEP/N, MN,MO, NBAR, NPRINT, NMAX, KEYOUT, LTAPE COMAMON/CODES/LW,LR,LT
DIMENSION TEMPRY(20).SAVE(20)

$$
Y 3 M 1=Y(J M 1)
$$

$$
\begin{aligned}
& Y J 41=Y(J M I) \\
& \text { DEL. } Y=0.5 \%(Y J P I-Y J M 1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { DEL } Y=0.5 \%(Y J P I-Y \\
& D E L Y I N=1.0 / D E L Y
\end{aligned}
$$

DELY1＝Y1－YJM1
DELY2＝YJP1－Y1
SURFJM＝SURFI $\operatorname{SURF} J P=\operatorname{SURF}(I, J P 1)$
SURF JP $=$ SURF $(I, J P 1)$
SURF IM $=$ SURF $(I M 1, J)$ $\operatorname{SURF} \operatorname{IP}=\operatorname{SURF}(I P 1, \mathrm{~J})$ KBOT＝KFLOOR（I，J） KBOTP $1=K B O T+1$ $K=K$ BOT UIMI $=U(M N, I M 1, J, K)$ UIP $I=U\left(M N, I P_{1}, J, K\right)$ $V 1=V(M N, I, J, K)$
VJMI $=V(M N, I, J M 1, K)$ VJPI $=V(M N, I, J P 1, K)$ z1＝Z＠ $\mathrm{ZBI}=\mathrm{ZB}(\pi .1)$ （（r．（WI） l $\left.\left(r^{2} 1 d 1\right) 日 z+18 z\right) * 5^{\cdot} 0=d I 8 z$ （（IWr＇1）$日 z+1 日 z) * S^{\cdot} 0=$ wrez $($（Idr＊（1） $8 z+i g z) * S \cdot 0=\operatorname{drgz}$ UIN $=0.25 *(U 1+U I M 1)$
$V I N=0.25^{+}\left(V_{1}+V J M 1\right)$
$V O U T=0.25 \#(V 1+V J P 1)$
VNE：$=D \times 1 N V \neq(U I N *(21-$
 IF（J．NE．JWAG）GO TO 6

$$
\begin{aligned}
& \text { W(I, } 1, K B O T)=\text { NEW } \\
& \text { DO } 10 K=K B O T P I \text {, KHAX } \\
& \text { KMI }=K-1
\end{aligned}
$$

UIMKMI=UIM1
UIMI =U(MN.IMI.J.K)
UIPKMI =UIP 1
UIPI $=U(M N, I P I, J, K)$
VJMKMI = VJMI
VJMI =V(MN.I.JMI,K)
VJPKMI =VJPI
(lnxwln+iwin)*ECANA
UQUT $=0.25 *\left(\right.$ UIP $^{2}+$ UIPKN1)
(IN=0.50*WNEM+0.125*((M(IM1, J,KM1) +W(IP1, J.KM1)) $\varepsilon+(W(I, J M 1, K M I) * D E L Y 1+W(I, 3 P 1, K M 1) * D E L Y 2) * D E L Y I N)$
WNEW=WIN-((UDUT-UIN)*DXINV+(VOUT-VIN) *DELYIN) *DZ
$10 W(I, J, K)=W N E W$
 $\varepsilon+(V I N *($ SURF $1+$ SURF JM $)-$-VOUT* (SURF $1+$ SURF JP) $) *$ DELYIN) SURF $2=$ SURFAV $+(D H O D T+D H D T(I, J)) * D T O 2$ OHDT $(I, J)=$ DHODT
IF (SURF2.GE.O.5*DZ) GO TO 20

VKMI $=$ V(MN, I, J,KMAXM1)
$V_{1}=V(M N$.I, J,KMAX)
UIN=0.25* (U1+UIMI+UKMI +UIMKMI) UOUT $=0 \cdot 25 *\left(U_{1}+\right.$ UIP $1+$ UKM $1+$ UI PKMI)
$V I N=0.25 *\{V 1+V J M 1+V K M 1+V J M K M 1)$
VOUT $=0.25 *(V 1+V J P 1+V K M 1+V J P K M 1)$
SURFAV $=0.5 *$ SURF $1+0.125$ * ((SURF

+ (SURFJM ${ }^{2}$ DELY $1+$ SURF JP*DELY2)
SURFAV $=0.5 *$ SURF $1+0.125 *($ (SURF I M + SURFIP)
ε +(SURFJM*DELY $1+$ SURF JP*DELY2) *DELYIN
DFODT=WIN+G.5*((UIN*(SURFI*SURFIM)-UOUT*(SURFI+SURFIP))*DXINN
DHDT(I,J)=DHODT
EMPRY(J)=SURF
IF (SURF2.GE.0.5*DZ) GO TO 20 KEYOUT=1
RETURN
20 continue
DO $21 \mathrm{~J}=\mathrm{JWIMI}$, JEIM1
(M1•J) =SAVE(J)
$J=J M \cdot J E$
SAUE\{J)=TEMPRY(J)
JYIM $1=J W$
JEIMI
SUE
$\begin{array}{ll}\boldsymbol{N} & N \\ N\end{array}$
1000 FORMAT(/.5X. " I AM GOING TO QUIT BECAUSE THE SURF IS TOD ROUGH AT' , $5 \mathrm{X}, 2 \mathrm{HN}=14,5 \mathrm{X}, 2 \mathrm{HI}=13,5 \mathrm{X}, 2 \mathrm{HJ}=13$)
号
SUBROUTINE PRESS

 $-1 \quad \omega$

 COMMON/PUL/X(12),Y(20),Z(11).SY(20).SYY(2C),YKZ.ZC(11) COMMON/PULL/X(12),Y(20),Z(11),SY(20),SYY(2C),YK2,ZC(11) COMMON/LIMITS/IMAX, IMAXMI JMAX, JMAXMI, KMAX,KMAXMI, JWAG.KMX.C.
GRAV,PI GETA FETCH,YMAX, CNEGA, CDEPTH COMMON/GRID CCMMON/CONC/SNEW, SOLD.SIPI.SIMI.SJPI.SJMI.SKPI, SKMI.RHC, RHOINY COMMON/STEP/N, MN, MC, NBAR,NPRTNT, NMAX, KEYOUT, LTAPE
THIS IS A SUBROUTINE TO CALCULATE PRESSURE DO $40 \quad I=1 . I M A X$
$\operatorname{IMI}=I-1$
$\operatorname{IP} I=I+1$ DO $40 \quad I=1$. IMAX
IM $1=I-1$
IP $I=I+1$

 $J E=J E A S T(I)$ JE=JEAST(I)

ORIGINAL PAGE IS
OF POOR QUALITY

SUBROUTINE StyEDGE

 COMMON/DIMENA/UC(2,
DUCDT(12.11)
ω
ω
IF(SC

SUGROUTINE SETUDC
VALUES ARE CALLED FROM DIMENSIONED VARIABLES AND ASSIGNED TO UNDIMENSIONED VARIABLES WHICH WILL BE USED TO CALCULATE NEW
VALUES OF UC AND SC COMMON/DIMEN $1 /$ U 2.12 .20

COMMON/OIMFN4/UC(2.12.111.WC(12.11).SC(2.12.11).PC(12.11). E DUCDT(12.11)

COMMON/PULL/X(12),Y(20),Z(111,SY(20),SYY(20),YK2.ZCC(11)
E KMXCM1, KCHANL
COMMON/GRID/DX,DY, DZ, DT,DTOZ,DXINV,DYINV,DZINV,SYJ,SYZ,SYJPI,SYJMI COMMON/STEP/N,MN,MC, NBAR,NPRINT,NMAX,KEYOUT,LT, APF COMMON/UNITS/VREF, HREF,GRAV,PI, BETA,FETCH. YMAY, OMEGA, CDEPTH
COMMON/CONCC/SCNEW.SCOLD.SCIMI,SCIPI,SCKMI.SCKPI, PHO, RHOINV COMMON/CONCC/SCNEK.SCOLD.SCIMI,SCIPI SSCKMI -SCKPI, PYO, RHOINV COMMON/VLCTYC/UCNE $\%$, UC OLD.UCIMI, UCIPI,UCKMI, UCKPI, WCNEW, YCKMI, KCKP E 1, WCIMI

COMMON/PRE SC/PCK,PCIPI,PCIMI COMMON/TURB/COEF VH.COEFVZ, COEFDH, COEFDZ.RICH,CRICM COMMON/LN/FUNLNI ,F UNKAP COMMON/INDEX/I,J.K COMMON/MISCC/SCEAR. UCBAR VI SCC.DIFUSC UCBAR $=0.0$ SCBAR $=0.0$

DO $30 \mathrm{I}=2$. IMAX
IP $1=I+1$
KBOT=KFLORC(I)
KBOTPI =KBOT+1
Z日1=2BC(I)
THIS IS A SERIES APPROXIMATICN OF A LN FUNCTIGN ALPHA1=5.0*(ZC(KBOTP1)-ZE1)-1.0 ALPHA2 =ALPHA1*ALPHAI ALPHA3=ALPHA2*ALPHAI
ALPHAA =ALPHAZ*ALPHA1
ALPHAS=ALPHA4*ALPHAI
FUNL_N2=ALPHA 1-0.5*ALPHA2 $+0.3333 * A L P H A 3-0.25 * A L P H A 4+0.2 * A L P H A S$ FUNLN $=(1 \cdot 0-D Z /((Z C(K A O T)-Z B 1+0.5 * D Z) *(F U N L N 1+F U N L N 2+F U N K A P)))$ SCOLD=SC(MO,I,KBOT)
UCOLD=UC (MO, I, KBDT)
WCNE:M=WC(I,KBOT)
SCKM $1=$ SCOLD
SCKP $1=$ SC (MO.I .KBПTP 1) JCKP1=UC(MO.I , KBOTPI)
WCKP $1=W C(I . K B O T P 1)$
SCIMI=SC(MO,IM1,KBCT)
UCIMI=UC (MO,IMI.KBCT)
IF II.EG.IMAX) GO TO,
SCIPI $=$ SC \{MO. IPI , KBOT
UCIPI $=$ UC $\{$ MO. IPI KBCT
GO TO
SCIP 1=1:0
ICIPI =UCOLD
CONTINUE
aヨ lndwas
CALL BTGRDC
SC(MN, I. KBOT)=SCNEW
SCBAR=ABS(SCNEW-SCOLD) + SCBAR
KCMXMI =KFLOOR $(I, J W A G)+K C H A N L-2$
DO $10 \mathrm{~K}=\mathrm{KBOTP}, \mathrm{KCMXM} 1$
$K P 1=K+1$
SCKM1=SCDLD
SCOLD $=$ SCKP 1
SCKP1 $=$ SC(MD.I.KP1)
UCKM $1=U C O L D$
(K) (KP1)
WCKM $1=$ WCNE W
WCNEW = WCKPI
WCKP $1=W C\{I, K P 1\}$

SCKPI=S(MO:I.JWAG.KPI) UCKM $1=U C O L D$
13
TO
0

subroutine viscsc
COMMON/GRID/DX,DY,DZ,DT, DTOZ, DXINV.DYINV, DZINV,SYJ, SYZ,SYJPI,SYJMI COMMON/MISCC/SCBAR, UCBAR,VISCC,DIFUSC COMMON/TURB/COEFVH, COEFVZ, COEFDH, COEFDZ,RICH, CRICH
COMMBN/VLCTYC/UCNEW, UCOLD, UCIM1, UCIPI, UCKMI, UCKPI, WCNEW, WCKMI,WCKP E1, WCIMI
EDDY VISCOSITY TERM FOR X-MCMENTUM FQUATION IS CALCULATED DAMPV $=1.0 / \operatorname{SQRT}(1.0+10.0 * R I C H)$ TVOUC=UCOLD+UCOLD
XCOMP $=$ DXINV*DXINV* (UCIPI-TWOUC+UCIMI) ZCOMP=DZINV*LEINV* (UCKPI-TWOUC+UCKMI) VISCC=COEFVH*XCOMF+COEFVZ\#DAMPV*ZCOMP RETURN

ENTRY DIFSEC

EDDY DIFFUSION TFRM FOR SALT CONSERVATION EQUATIONS IS CALCULA TED. TwOSC=SCOLD+SCOLD
XCOMP=DXINV*DXINV*(SCIPI-TWOSC+SCIMI) ZCOMP=DZINV*DZINV* (SCKPI-TWOSC+SCKMI) DIFUSC $=$ COEFDH* $\times C C M P+C O E F D Z$ *DANPD*ZCOMP RETURN
END ORIGINAL PAGE
${ }^{\text {OF POOR QUALITY }}$
COMMON/GRID/DX.DY,OZ.DT,DTOZ.DXINV,DYINV.DZINV,SY., SYZ.SYJPI.SYJMI COMMON/STEP/N,MN,ME,NBAR,NPRINT, NMAX,KEYOUT,LTAPE COMMON/CODESALW.LR.LT DO $30 \mathrm{I}=2$, IMAXMI
IM $1=1-1$
IP $1=1+1$
 SUBROUTINE VOLDLC
COMMON/DIMENA/UC(2.12.11),WC(12.11), SC(2.12.11), FC(12.11).
COMMON/FLOOR COMMON/PUL/X(12),Y(20), Z(11), SY(20),SYY(20),YK2,ZC(11)
COMMON/LIMITS/IMAX,IMAXM1, JMAX, JMAXM1,KMAX,KMAXM1, JWAG,KMXC,

$W C I N=0.50 * W C N E W+0.25 *(W C(I M 1, K M 1)+W C(I P 1, K M I))$ WCNEW= WCIN-(UCOUT-UCIN)*DXINV*DZ WC(I,K)=WCNE
CONTINUE
KKMAX $=$ KFL. DOR(1 , JWAG)+KCHANL-1 KBOT=KFLORC($\left.{ }^{2}\right)$ 웅
in

ORIGINAL PAGE IS
OF POOR QUALIT OF POR QUALITTY
 COMMON/STEP/N,MN.MC, NBAR, TNPRINT,NMAX,KEYOUT,LTAPE SYZ,SYJP1,SYJMI COMMON/STEP/N, MN, MC, NBAR, TNPRINT, NMAX, KEYOUT,LTAPE
COMMON/UNITS/VREF,HREF,GRAV,PI.BETA,FETCH, YMAX, CME
COMMON/UNITS/VREF, HREF, GRAV,PI •BETA,FETCH, YMAX, CMEGA, CDEPTH COMMON/CODESAW,LR,LT
DO $40 \mathrm{I}=1$ IMAX
IM $I=I-1$
IP $I=I+1$
$K C=K F L O O R(I, J W A G)+K C H A N L-1$
SCK $=$ SC(MN. I,KC)

ORIGINAL PAGE IS
OF POOR QUALITY

1000 FORMATY/. $5 X$, CONGRATULATIONS FRED. YOU HAVE DISCOVERED ANTIMATTER
END
BLOCK DATA

0
0
0
0 -

옹
\because

N

$\begin{array}{ll}0.213 & 13.0 \\ 0.168 & 17.0 \\ 0.229 & 18.0\end{array}$

¥:

[^0]: 2Which Y-Z grid planes are selected is controlled by LOGICAL IF statements that can be modified as needed.

[^1]:
 $\varepsilon 5 X$, "MAX. DIST. FROM CENTER OF SHIP CHANNEL TO EAST BANK $=$. $\%$ F9.4. E.KM.*./.EX.*YK2 $={ }^{*}$.F9.4)

[^2]: UBAR $=0.0$

 SO $30 \quad I=2$.IMAX
 $\times 1=x(I)$

 ## JW=JWEST(I)

