
. - -2 
- 

N A S A  T E C H N - I - C  

R E P . O R ~  
, s , - 

N A S A  TR R-443 

SUPERGQNWCTING SPHERE 
i 

- 
I v -. 

, ,' \ L a -- i 

2 -- - -  

https://ntrs.nasa.gov/search.jsp?R=19750016430 2020-03-22T21:16:17+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42888707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 .  REPORT NO. 

NASA TR R-443 

19. PERFORMING ORGANIZATION N A M E  AND ADDRESS 110. WORK U N I T  NO. 

7. AUTHDR(S) 

Louis B. Holdeman 

George C. Marshall Space Flight Center 
Marshall Space Flight Center, Alabama 35812 

2. GOVERNMENT ACCESSION NO. 

8. PERFORMING ORGANIZATION REPOR r 
MI38 

I I. CONTRACT OR GRANT NO. 

3. R E C I P I E N T ' S  CATALOG NO. 

4 T I T L E  AND S U B T I T L E  

Magnetic Torqne on a Rotating Superconducting Sphere 

5. REPORT D A T E  

MAY 1975 
6. PERFORMING ORGANIZATION CODE 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

1 2 .  SPONSORING AGENCY NAME AND ADDRESS I- 
1.1. SPONSORING AGENCY CODE 

13. T Y P E  OF REPOR;' 8: PERIOD COVERE 

1 15. SUPPLEMENTARY NOTES 

I Prepared by Space Sciences Laboratory, Science and Engineering 

Using the London tlleory of superconductivity, the torque on a superconducting sphere 
rotating in a uniform applied magnetic field is calculated exactly. The London theory is combined 
with classical electrodynaniics for a calculation of the direct effect of excess charge on a rotating 
s~~perconducting sphere. Classical electrodynamics with tlie assumption of a perfect Meissner effect is 
used to  calculate tile torque on a superconducting sphere rotating in an arbitrary magnetic induction; 
this "macroscopic" approach yields results which are correct t o  first order in AIR, where h is the 
London penetration dept!l and R is tlie spllere radius. Using the same approacli, the torque due to a 
current loop encircling tlle rotating spllere is calculated. 

Unclassified-Unlimited 

I Cat. 76 

I 

19, SECURITY  C L A S S I F .  (of thin rnPcrtj 

Unclassified 
u 

For sale by National Technical Information Service, Springfield, Virginia 22 I 51  

20. SECURITY  C L A S S I F .  (of thls page) 

Unclassified 

2 1 .  NO. O F  PAGES 

50 

2 2 .  P R I C E  

$3 75 



ACKNOWLEDGMENTS 

The author would like to thank Dr. J. T .  Holdeman, Jr., of the Oak Ridge 
National Laboratory for helpful suggestions and illuminating discussions; his critical 
review of the manuscript is gratefully acknowledged. A critical review of the manuscript 
by Dr. E. W. Urban of Space sciences ~ a b & a t o r y ,  MarShall Space Flight Center, was also 
greatly appreciated. The author is indebted to  the Associateship Office of the National 
Academy of Sciences/National Research Council and to  NASA, George C. Marshall Space 
Flight Center, for their support. 



TABLE OF CONTENTS 

Page 

I . SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

11 . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . .  1 

I11 . CALCULATIONS BASED ON THE LONDON THEORY . . . . . . . .  2 
A . Introduction to  the London Theory . . . . . . . . . . . . . .  2 
B . Rotating Superconducting Sphere . . . . . . . . . . . . . . .  4 
C . Torque on a Rotating Superconducting Sphere in a Uniform 

Applied Field . . . . . . . . . . . . . . . . . . . . . . . .  11 
D . Rotating Superconducting Spherical Shell . . . . . . . . . . . .  16 
E . Effect of Excess Charge on the Rotor . . . . . . . . . . . . .  18 

IV . CALCULATIONSUSING CLASSICAL ELECTRODYNAMICS WITH THE 
. . . . . . . . .  ASSUMPTION OF A PERFECT MEISSNER EFFECT 22 

A . Introduction to a Macroscopic Approach . . . . . . . . . . . .  22 
B . Torque on a Rotating Superconducting Sphere in an Arbitrary 

Magnetic Field . . . . . . . . . . . . . . . . . . . . . . .  29 
C . The Infinite Superconducting Plane . . . . . . . . . . . . . .  34 

. . . . . . . . . .  D . Torque due to  a Current in the Readout Loop 34 
E . Torque due to  a Flat Region in the Superconducting Shield . . . . .  37 
F . Discussion . . . . . . . . . . . . . . . . . . . . . . . .  40  

V . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . .  42 



LIST OF ILLUSTRATIONS 

Figure Title Page 

1. Coordinate system for a stationary superconducting sphere in a 
+ A + 

uniform applied field (B + zBo as I r l + =J) . . . . . . . . . . .  8 

2. Coordinate system for a rotathg superconducting sphere with no 
field applied . . . . . . . . . . . . . . . . . . . . . . .  10 

3. A current loop around the rotor . . . . . . . . . . . . . . .  3 5 

4. A proposed shield design . . . . . . . . . . . . . . . . . .  37 

5 .  Image method for calculating torque due to  the flat spot in the 
point dipolelinfinite superconducting plane approximation . . . . .  3 8 



DEFINITION OF SYMBOLS 

Definition Symbol 

A London penetration depth; the characteristic distance over which currents 
a n d  magne t i c  f i e l d s  v a r y  wi th in  a supe rconduc to r .  In the  London theory,  
h2  = m* c2 /47~n,e*~ 

0 = 111; a symbol introduced for mathematical convenience 

coherence length; the characteristic distance over which superconducting 
properties vary within a superco~~ductor  

density (number per unit volume) of supercond,ucting electrons 

electronic charge (note that e < 0) 

charge on  a superelectron (Cooper pair); e* = 2e 

mass of the electron 

mass of a superelectron; m*  = 2m 

speed of light 

electrical conductivity 

magnetic permeability 

Angstrom unit; a unit of length equal t o  lo-' O meter 

angular frequency of rotation 

a vector directed along the spin axis having magnitude w 

unit vectors in a Cartesian coordinate system (coordinates x, y ,  z) 

unit vectors in a spherical coordinate system (coordinates r, 8 ,  $J) 

London Moment; the magnetic field outside a rotating superconducting 
sphere is the same as that due to a 2o in t  dipole located at  the center of 
the sphere having a magnetic moment M = (m*c/e*)[ 1 - (3coshpR/PR sinhpR) 
+ (3/d2 R2 ) I  R~ z 2.: ( m * c / e * ) ~ ~  3 



DEFINITION OF SYMBOLS (Concluded) 

Symbol Definition 

pQ(x> Legendre polynomials; functions orthogonal on the interval [-1 ,I 1 

Y m ( , )  spherical harmonics; functions orthonormal on the surface of the unit 
sphere [ O < @ <  2 ~ 1 ,  [ O < 8  Girl 

P electric charge density 
+ -+ 
B, H magnetic induction, magnetic field intensity, respectively; related by the 

-- - constituitive relation 3 = p8 
++* 
e, 11, J local values of the electric field, magnetic field, and current density, 

respectively . 
+ 
N torque 

i2 angle between the gyro spin axis and the z-axis of the coordinate system 



MAGNETIC TORQUE ON A ROTATING SUPERCONDUCTING SPHERE 

I. SUMMARY 

The London theory is reviewed in Section IIIA, and a theorem extremely useful 
for calculating torque on a rotating superconducting sphere is proved in Section IIIB. The 
torque on a rotating superconducting sphere due to a uniform applied field is then 
calculated exactly in Section IIIC. The rotating superconduc ting shell is considered in 
Section IIID and an estimate of the minimum thickness of the superconducting coating 
for the rotor is obtained. The direct effect of excess charge on the rotor is calculated in 
Section IIIE. 

r 

A macroscopic approach is introduced in Section IVA and is shown to  give results 
for fields, currents, and torques which are correct t o  order X/R; the torque in an 
arbitrary magnetic field is then calculated in Section IVB. It  is pointed out  in Section 
IVC that problems for which the only superconductor present is an infinite 
superconducting plane can be solved by image methods; in Section IVD this fact is used 
to calculate the torque on the rotor due to  a current flowing in the readout loop. In 
Section IVE the torque due to  a flat spot in the superconducting magnetic shield 
surrounding the rotor is discussed, and the torque is calculated for the limiting case of a 
very large flat spot. The results of the calculatio~ls are discussed in Section IVF. 

I I. INTRODUCTION 

The scientific goal of the Stanford gyroscope relativity experiment,is a test of 
general relativity through measurement of relativistic precessions of Earth-orbiting 
gyroscopes [ I ] .  The concepts and ideas for implementation of the experiment have been 
described in an earlier document [2]. . . 

Fundamental design requirements for the experiment are: 

1. Development of a spin-axis readout with sufficient stability and sensitivity t o  
measure the small relativistic precessions. 

2. Reduction of all nonrelativistic torques to less than 2 x lo-' N m t o  achieve 
a design goal of less than 1 ms of arc per year residual error. 

Since an asymmetry of  some sort is necessary for readout, requirement (2) adds the 
constraint that no  significant torque be introduced through the asymmetric feature added 
for this purpose. 



The proposed rotor is a fused quartz ball coated with a thin layer of 
superconducting niobium. The asymmetry for readout is to be the magnetic moment 
generated by a rotating superconductor along its instantaneous spin axis (London 
Moment). Precession will be measured by measuring changes in magnetic flux through a 

I 
I superconducting loop encompassing the rotor. 

This report presents results of the author's calculation of certain torques coupled 
to the rotor through its London Moment. A calculation of the direct effect of excess 
charge on the rotor is also included. 

Ill. CALCULATIONS BASED ON THE LONDON THEORY 
I .  

I , A. Introduction to the London Theory 

There 'are two fundamental . lengths associated with superconductivity. The 
characteristic distance over which. currents and magnetic fields vary within a 
superconductor is called the penetration depth, X(T). In the superconducting state, the 
velocities of two electrons are correlated if the distance between them is less than a 
certain range [. This length, [(T), is the characteristic distance over which superconducting 

I 4 

properties [for example, the pair potential A(r)] can change and is called the coherence 
length of the superconductor. It should be emphasized that both A arid [ are temperature 

I and material dependent. 

In 1934, F: and H. London introduced a theory of electrodynamics for super- 
conductors in order t o  explain the Meissner effect [ 3 ] .  This theory has since been 
shown to  follow from the condition of minimum free energy (in the limit of weak fields 
and currents) provided the criterion A >> is satisfied [ 4 ] .  It has f ~ ~ r t h e r  been 
shown [4] that the lnicroscopic (quantum mechanical) theory of superconductivity 
reduces to  the Landau-Ginzburg theory for temperatures near the transition temperature 
Tc, and the Landau-Ginzburg theory in turn reduces to  the London theory for X >> [. 

I 

T h e  L o n d o n  t h e o r y  pe rmi t s  a complete phenomenological description of 
superconductivity which is in accord with the principles of thermodynamics and classical 
electrodynamics. 

The London theory is applicable to the calculation of magnetic torques on the 
gyro: The transition metals generally have large penetration depths (A - 1000 A) and 
small coherence lengths ([ - 100 A) at  T = 0 ;  niobium is in this class'. Superconducting 
shields around the gyro will ensure that the weak field condition is met. 

1. Actually, for bulk pure niobium, A(0) - t (0)  -- 400 A [5-71. However, niobium films 
inevitably have trace impurities which increase X(0) to - 1000 A [6 ,8] ,  while the shortened 
mean free path decreases t (0)  t o  -- 100 A [91. 



The London theory assumes Maxwell's equations2 to be -valid inside a 
superconductor: 

+ 4s T, 1 a2 
I .  cur lh  = - J  + - - , 

c c a t  

-+ 1 aT: 
11. curl e = - - - 

.c a t  

-+ 
111. div h .  = 0 , 

IV. div = 47rp 

+ -+ + 
Here j is the total current density, p is the density of electric charge, and e and h are, 
respectively, the intensities of electric and magnetic fields3. The relationship between 

field intensities and the supercurrent density; is postulated to be: 

-+ C + 
V. curl (A2 jS) = - - h 

4n 

a ,, c2 + 
VI. - (A2 jS) = - e 

a t  47~ 

The final assumptions are that the total current density is a sum of a supercurrent " 7' 
density js and a normal current density jn which is connecfed to  the electric field 

through Ohm's law. Thus, 

+ +  -+ 
VII. j = js + jn 

+ + 
VIII. jn = oe 

2. The cgs Gaussian system of units will be used for calculations in this memorandum; key 
results will be expressed in the SI system of units. 

3. As in Lorenz's electronic theory, lower case symbols are used to denote local values of 
internal fields. 

3 



These equations can ,be combined t o  give 

and 
I 

+ 1 +  aT: azi :  
c2 (curl curl h + - h)  + 4na  - + - - x2 a t  a t2  

- 0 2 

+ + + 
with equations for j and e identical to the one for 11. For quasi-stationary conditions 
(that is, for frequencies w satisfying the inequality w <<c2/4naX2 - 1012 s-I), 

+ -+ 
div e = 4np -- 0. The equation for  h reduces to 

3 1 + 
curl curl h + - h = 0 

h2 
, 

+ + , with identical equations for j and e 

T o  complete the theory, boundary conditions must be given for all surfaces of 
discontinuity where different bodies border each other and where the constants 
characteristic of the material change discontinuously. The boundary conditions are that 
h l l ,  ell, and hl,jl must be continuous; 111 is continuous because the permeability p has 

been taken as unity. Finally, (X2js)ll must be continuous at  the boundary between two 
different superconductors. 

This brief review of the London theory was included to make this memorandum 
self-contained;. a f~lller presentation with sample calculations is given in the excellent 
monograph by F. London [ 3 ] .  

I c 

B. Rotating Superconducting Sphere 

For the case of a rotating superconductor, i t  is assumed that equations (V) and 
(VI) for the supercurrent are still valid. Using the relations X2 = m * ~ ~ / 4 7 r n ~ e * ~  and 
7-, -+ + 
js = e*nsvs, these equations can be rewritten in terms of the velocity field vs of the 

I superelectrons: 



+ -+ 
curl vs = -(e*/m*c) h 

where e* = 2e and m* = 2m are the charge and mass, respectively, of a superelectron 
T, 

(Cooper pair). The charge density p and the total current density j are 

where ns is the density of superelectrons ,in the rotating superconductor, nso is the 
A 

density in the same superconductor when stationary, and iO is the local state of motion 
of the body. 

Consider now the rotating superconducting sphere. To balance the centrifugal 
force on the electrons, the internal electric field must be 

+ 
Note that p = (1/4n)div e = ( m u 2  /2ne) = (m*w2 /2ne*), so that 

Thus (ns - nsO)/nsO is much less than 1 even for very large w,  and to an excellent 

. approximation 



I Then 

+- +- + + +- 
curl j = e*nsO(curl vs - curl vo) = e*nsO(-e*/m*c)h - e*nso(2w) . 

Neglecting the displacement current in the Maxwell equation (I) and operating through 
with the curl, one has (using the above): 

+- + 2m*c += 

A2 curl curl h + h = - - w 
e * 

I , Also, 

+ + + 
I curl curl j = -e*nso(e*/m*c) curl h = - ( 4 ~ n ~ ~ e * ~  /m*c2) j , 

I so that* 

A 2  curl curl j + j = 0 C I Z l  
Since boundary conditions are the same for the rotating superconducting sphere as for 
the stationary sphere, one can now prove a simple theorem which will be extremely 
useful for torque calculations: 

Theorem : 

-+ --f 
Let ho and j0 be the solutions to London's equations for a stationary 

+- +- --f 

superconducting sphere- in an arbitrary field B, and let hL and jL be solutions for the 

rotating sphere in zero applied field. Then the solutions to  the London equations for the 
--f + +  +- f ? f  

sphere rotating in the field B are h = ho + hL and J = J O  + JL. 

Proof: 

? .  + i ? Tf - Tt h2 curl curl j = h2 curl curl jo + h2 curl curl jL = - j0 - J L  - - J , 



-+ -+ -+ 
h2 curl curl h = h2 curl curl ho + h2 w l  curl hL = - ho - hL + z )  +- + -  e* 

It is clear from symmetry that the theorem also holds in the case of a spherical 
superconducting shell. 

The current and field solutions for the rotating superconducting sphere, and for 
the stationary sphere in a uniform4 applied field, are derived in London's book [ 3 ] .  For 

-+ ' 

the stationary sphere in a uniform applied magnetic induction Bo, one has (with the 
+- 

z-axis parallel t o  Bo as in Figure 1 ): 

2A' 
hrO = - (sinh pr - pr cosh or) cose 

D2 r3 

h,. = ( B i  + ~ ) c o s e  

1lo0 = (- Bo + 5 )  sine 

, 

llmO = 0 
I 

+- + 
4. Because of the diamagnetism of the superconductor, 11 # Bo outside the sphere. 

+ -+ -+ 
However, i t  is required that h -+ Bo as Irl + 00. 

> 



I C  FIELD LINES 

Figure 1. Coordinate system for a stationary superconducting sphere in a uniform 
+ A + 

applied field (B + zBo as Irl + m). 

and 

(sinh pr - pr cosh fir) sine > 



M' = -- ,OR, ( I  - 3 cosh PR 
2 PR sinh PR P2 R2 

and 

~ B O  R A' = --  - 
2 sinh OR 

+ 
For the rotating sphere, one has (with the z-axis chosen along w as in Figure 2): 

2A I [2u + ;i (sinh Pr - or cosh Pr) cos8 

b 

e* 

L - m*c A 118 - - e * ( 2  + r < R ,  



Figure 2. Coordinate system for a rotating superconducting sphere wit11 n o  field applied. 
(The X axis of the coordinate system points ou t  of the page in this figure.) 

and 

-+ 3 nse"wR 1 
cosh or  - - sinh or 

J~ = - [ sinh PI3 ( or 
> 

where 

3 w R  
A = o2 sinh OR 



and 

M = -  UR. ( I  - 
e * OR sinh OR P2 R2 

(M is called the London Moment.) In both cases the origin of the coordinate system is in 
the center of the sphere. These solutions will be ~ s e d  in ensuing calculations. 

C. Torque on a Rotating Superconducting Sphere in a Uniform 
Applied Field 

Although the rotor will be enclosed in a superconducting shield, the shield will 
have holes for electrode leads, pump out lines, gas spin-up ports, etc.; magnetic field 
could possibly enter through these holes. To obtain an estimate of the torque due to  
leakage field, the torcfue on a rotating superconducting sphere in a uniform applied field 
+ 
Bo will be calculated. This problem can be solved exactly. 

+ ++ ++ 
The torque N on a current distribution j(r) in a magnetic flux density h(r) is given 

by [ l o ] :  

T , ?  T, + +  + - ? - ? - +  
Appealing to the theorem, one writes j = j0 + JL and h = h0 + hL, where JO, JL, hO, 

+ 
and hL are rfhe solutions quoted at the end of the last section. Substituting, one has 

+ 1 + + +  1 + + +  N = -  I d 3 r  [ r x  ( lox ho)l + - 1 d 3 r  [ r x ( l L x  hL)] 
C C 



It is easi to  show by straightforward substitution that the first two integrals are zero, so 
that 

+ In a coordinate system with the z-axis chosen parallel to  Bo, J O  has the form (see 
Section IIIB) 

r;, A 
jo = fo(r) sine @ 

+ 
and ho has the form (r < R) 

+ A A A . A  
ho = h: (r, 0)r + he0 (r, 0)8 = Fo(r) cost9 r + Go(r) sine 0 . 

+ + 
Similarly, in a coordinate system with the z-axis chosen along w, jL has the form 

r;, A 
J L  = fL(r) sine @ 

+ 
and hL has the form 

6 

+ L A A A A 
hL = 11, (r, 8)r + heL (r, 8 )  8 = FL(r) cose r + CL(r) sine 0 

Now torque is a pseudovector and, hence, is invariant under coordinate rotations. 
Therefore, in evaluating the integrals, the orientation of the coordinate system may be 

+ A + A 
chosen for mathematical convenience. In the integral ~ ( l ) ,  choose z parallel to  w with y 

+ + + A 
perpendicular to the plane defined by w and Bn; in the integral N ( ~ ) ,  clloose z parallel to  
+ " 

A + + 
Bo with y again perpendicular to  the plane defined by w and Bo. (After calci~lations are 

complete, the results must be expressed in the same coordinate system before being 
added.) 



Thus in each integral the field has the form previously indicated, and the current 
+= += 

must be rewritten in the new coordinates. If S2 is the angle between w and Bo, then in 

either case the transformation represents a rotation through angle S2 about the y-axis: 
Clockwise (+a) for one integral and counterclockwise ( - a )  for the,other .  In Cartesian 

+ 
coordinates, one has for either integral (since r = Irl is invariant under rotation) 

+ A 
h = sin0 cqs0 cos@ [F(r) + G(r)l x + sin0 cos0 sin@ [F(r)  + G(r)] 

A A A A 
+ [cos20 F(r) - sin20 G(r)l z = x hx + y hy  + z h, 

and 

(Since the two integrals have the same mathematical form, the subscripts will be 
+= += ? +  

temporarily suppressed, with the pairings j0-hL and j L ~ h 0  understood.) Then for 
either integral, 



T ' - f  
Substituting for the components of J and h from above and integrating over 8 and 

$J gives 

Thus each of the torques lies along the y-axis of its coordinate system. Since i11e 
y-axes coincide, the two torques call be added (after the change 42 + -42 for the second 
integral) to give the total torque: - 

3 

The term ~ ( l )  can be viewed as the shielding current interacting with the London field 
+ 

and the term N(*) as the London current interacting with the external field penetrating 
the superconductor. 

Substituting from Section IIlB yields 

and 

R 
m"c 

= - - 3 R2 dr  
w Bo sin42 1 - (sinh or - or C O S ~  or)' 

e" P2 sinh2 OR r2 
0 



Thus, 

R ' 
+ III * c R 
I N I  = ~ ( 1 )  + ~ ( 2 )  = - w B~ s i n n  * sinh PR 1 r(sin11 or - pr cosh or) d r  

0 

Carrying out  the integration, one obtains the exact result: 

+ m*c 3 cosh ,3R 
IN1 = - R3 w Bo sin52 

+A)  e* OR sinh PR P2 R2 

The result can be written in vector form as: 
- 

- ~ ~ ~ - p ~  -- -p 

-+ 9 -+ 
N = M x B 0  

+ M =  ( 1 -  3 cosh PR 

* 

+ 
where M is the London moment. 

For a rotation frequency of 200  Hz (w = 400n rad/s), a field strength of 1 
microgauss, and a rotor radius of 2 cm, the maximum torque is 

n ~ * c  
Nmax 

1: - R3 w Bo 5 x lo-' dyne-cm 
e* 

, 

Note that 



which means that the interaction of the London current with the external field 
penetrating the s~~perconductor  is negligible in comparison with shielding currents 

+ -+ + 
interacting with the London field. This is quite reasonable: In ~ ( ' 1 ,  jL and h0 both 

become exponentially small at distances from the surface which are large compared to A, 
--+ T, 

but in N( ' )  only jo becomes exponentially small. 

D. Rotating Superconducting Spherical Shell 

The solution to London's equations for a hollow superconducting sphere rotating 
with constant angular velocity (no external fields) has been calculated by J .  H. 
Derrickson5 of NASA and others6 [ 111. The results are: 

rise* 
r, A 
J = -  [A(sinh or - or cosh or) + B(cos11 fir - or sinh $r)] sin8 4 ; r 

m*c 2 A 2 B  
11, = - [2v + ;i (sin11 fi - /3r cosh pr) + - (cosh pr -fir  sin11 

e * r 

B 
+ - [(I + p2r2) cash fir - pr sinh pr] 

r 

5. Derrickson, J .  H.: The Magnetic Field Generated by a Superconducting Spherical Shell 
Rotating with Constant Angular Velocity. MSFC IN-SSL-N-70-9, July 27, 1970. 

6. Pondrom, W. L., Jr.: London Moment of a Rotating Hollow Superconducting Sphere. 
Unpublished Report. 



Here Ro is the outer radius of the shell, Ri is the inner radius and tile constants M, A, B, 

and Ho are given by: 

3 0 R 0  . [(3 + P2 R~~ ) cosh PRi - 3 PRi sinh ORi] 
A = -  

p2 [(3 + p2Ri2)  sinh P(RO - Ri) + 3 ORi cosh P(RO - Ri)l 
' 

3wR0 [ 3  ORi cod1 /3Ri - (3 + p2 R ~ ' )  sinh ORi] 
B = - 

p2 [(3 + p2 Ri2 ) sinh P(RO - Ri) + 3 PRi cosh P(RO - Ri)l 
, 

21n*cw 3 PRO 
Ho = 

e* (3 + p2 Ri2)  sinh P(RO - Ri) + 3 ORi cosh P(RO - Ri) I , 
m*c w % ~  3 (3 + p2 R~ ' )  cosh /3(% - 5 )  + 3 0% sinh /3(% - 5 )  

M = 
e * (3 + p2 Ri2) sinh P(RO - 5)  + 3 (3Ri cosh.p(Rg - 5) 

In the limit Ri + 0, these results approach those 'computed by London for a rotating 

solid sphere of radius Ro (see Section IIIB). In the limit PRi >> 1 and P(RO - Ri) >> I 

the result approaches that for a solid sphere whose radius is much larger than the 
penetration depth. 

A limit of special interest is PRO >> 1 with Ri + Ro. Calling Ro - Ri = d ,  one has 



In this limit the current density and fields approach those of a rotat i~ig charge 
shell of density a = -nse*d and total chcrge Q = 4.rrRO2 dnse*. The superelectrons are thus 

nearly stationary in the lab frame and move with a velocity vs=  -wRo sin 8 with respect 

to the lattice, so that a reasonable requirement is that the current density not exceed tlle 
critical current density; i.e., i t  is required that Inse*wRol < jc, where jc is the critical 

current density. From tlle Landau-Ginzburg theory for a thin plane superconductor, one 
obtains [4] : 

jc(T) = 
a 0  

3 

1 2 f l  .rr2 X2 (T) g(T) 

where aO is the flux quantum. Using nse*wRo = m*c2 w ~ ~ / 4 . r r e * X ~ ,  the requirement 

becomes 

Therefore, it appears that a thin rotating shell gives the f ~ ~ l l  London moment, provided 
the rotation frequency is not too large and provided the pair density is essentially that of 
a bulk superconductor. The latter condition is equivalent t o  the requirement that 

E. Effect of Excess Charge on the Rotor 

An excess charge on a superconducting sphere at  rest will be uniformly 
distributed on the surface. The requirement that the tangential component of 3 be 



continuous at the surface means this will also be true for a rotating superconducting 
sphere. If the total charge is Q, the surface charge density is a = Q/4nR2. At steady state 
this charge rotates with the lattice, constituting a current density 

+ 
The vector potential A is then 

+ + 
The expansion of ir - rfl-' in spherical harmonics is [ 101 : 

+ A A A 
where r< (r>) is the smaller (larger) of lrl and $1. Using the relation @ = - sin@ x + cosg y, - - ++ 
the evaluation of the integral for A(r) is straightforward. The result is 

+ 4 n a w R 4  A 
A(r) = - - sine 4 , r > R  

c 3r2 

and 

+ 471 uwRr A 
A(r) = - - sine @ , r < R  

c 3 

+ -+ 
From B = curl A the magnetic field is 



-+ 
The field inside the charge shell is a uniform field parallel t o  w ;  since this field is 

due to  "external" sources, the solutions t o  the London equations are those of a sphere 
rotating in a uniform applied field. By appeal to the theorem, one can then write down 
the solution from the results of Section IIIB: 

For r <  R, 

The field outside the rotating superconductor will be the superposition of the ~ field due to  the supercurrent and the field due  to the rotating charge layer: 



3 C O S ~  PR + 2) C O S ~  

e* OR sinh OR p2 R2 

3 cosh PR + -  - L) C O S ~  
OR sinh PR P2 R2 3 Rc 

, 

m *  ( )  ( - 3 cosh OR 3 
he = - 

e * JR sinh OR + m) 
3 cosh PR - I) sine 

3 Rc PR sinh OR P2 R2 
9 

For Q = Ne the relative magnitudes are 

1 9 u R 3  1 
Qw R3 3 cosh OR 

3Rc PR sin11 PR l- 
so the direct effect of a small excess charge is negligible. These results are easy to  
understand: The rotating surface charge generates a dipole field outside -and a uniform 
field inside the superconductor; a supercurrent flows to  exclude (cancel) the uniform 
magnetic field from the interior of the superconductor, generating a uniform field inside 
and a dipole field outside. The net result is that these fields cancel everywhere to at  least 
order AIR. 

-+ 
For completeness, the current density j in the superconductor is 

-? 
3 rise* wR A 

(l - s) (sinh or - Or cosll Pr) sin0 4 ' = P2r2 sinh PR 

Josephson has argued [12]  that m* is the rest mass corrected by the work 
function W, the energy difference between free space and the Fermi surface; i.e., that it 
is the total energy, m*c2 = 2mOc2 - 2W, ~!ecessar~ to create a pair in tlze metal which 

determines the relevant mass m*. Since the addition of charge Q t o  an isolated 
superconducting sphere increases the potential by Q/R,  the work function becomes 



W = Wo + Qe*/2R. If Josephson's argument is correct, this means the addition of charge 

could significantly change the London moment through m*. 

IV .  CALCULATIONS USING CLASSICAL ELECTRODYNAMICS WITH THE 
ASSUMPTION OF A PERFECT MEISSNER EFFECT 

A. Introduction to a Macroscopic Approach 

+- 
The Meissner-Ochsenfeld experiment indicated that the magnetic induction B 

vanishes inside an ideal superconductor. Meissner's result is contained in the London 
theory, with the plausible restriction that the magnetic induction does not vanish 
discontinuously at the surface, but instead it decreases to nearly zero over a distance of 
order A, the penetration depth. The F_rmodynamic magnetic induction 3 is defined as 
the volume average of the local field h(r), so that for large bodies, 3 = 0 in the interior. 

+- 
The general boundary condition for the magnetic induction B at  a surface is 

A .  +- 
where n is a unit vector normal to the surface. If the Meissner result is used, then, with B 

A 
the external induction and n the outward normal, the boundary condition at the surface 

+ A 
of a superconductor becomes B n = 0. Use of this boundary condition f o r  
superconductors whose dimensions R are large compared to X gives values for the 
external magnetic induction which are correct to order X/R. 

+- 
As an example, consider the case of the sphere in uniform applied field Bo. The 

external magnetic induction can be derived from a scalar potential O. Choosing the origin 
+ 

of the coordinate system at the center of the sphere with the z-axis parallel to  Bo, 
symmetry requires that O have the form 

+- 
where the functions P2(cos0) are the Legendre polynomials [ 101 . As Irl + w, 

+ A 
B = -grad Q, + - a 1  z - grad 



+ + + 
but as irl+ m, B + Bo, which requires that a1 = -Bo and a2 = 0 for P > 1. Thus, 
becomes 

+ A 
At the surface of the sphere, B . n = Br(r = R) = 0,  so that 

Orthogonality of  the Legendre polynomials gives PQ = 0 for IZ f 1, and P I  = -(BOR3 12). 
Hence the result 

It is seen that this result agrees with the exact result (Section 111B) to order X/R. 

+ A 
The condition B . n = 0 holds only for externally applied fields in the case of a 

rotating superconductor; the rotating superconductor generates a magnetic induction 
which has a nonzero normal component. For a rotating superconducting sphere with the + 
origin of the coordinate system at  the center of the sphere, the boundary condition for B 
becomes 



-+ A 
where M = (m* c/e*)wR3. This reduces to B . n = 0 for w = 0. Inside the rotating sphere, 
the thermodynamic magnetic induction is 

-+ .-+ 
which reduces to B = 0 for o = 0. 

+ 
In the complete Meissner region, the tllermodynamic magnetic field H is 

-+ + 
undefined. One may define H [and concomitantly the magnetization m through 

-+ ++ 
4nm = (B-H)] so long as the definition. is consistent wit11 t l~ermody~~amics and 
macroscopic electromagnetic theory. From Maxwell's equation (1) at steady state, one has 
for any surface S bounded by a curve C, 

-+ 
In a superconductor, currents flow within order X of the surface, so that j = 0 deep within 
the s~~perconductor. Then for any arbitrary small closed path C deep within the 

-+ -+ -+ -+ 
buperconductor, 6 H . dQ = 0, and the.choice H = B = 0 in the interior is self consistent. 

C 

-+ 
The general boundary condition for H is 

-+ 
where K is the surface current density. The boundary condition thus becomes 

-+ 
at the surface of a superconductor, where H is the external magnetic field. 



-+ + 
Continuing with the example of the sphere, one has H = B (p = 1) outside the 

superconductor, so that 

From Section IIIB, one has for the current density 

? 3-30 R A 
J = - - -  - (sinh pr - or cosh pr) sine @I 

47r 2r2 sinh PR 

Integrating 

R R 
c 3B0 R sin0 I jo dr = - -  - - I (r-' sinh pr - or-' cosh Or) dr  

4n 2 sinh PR 
0 0 

4 
The current density j is appreciable only within a distance of order X of the surface, and 

+ C A 3  
the equation K = - [ n x  HI implies that this current is treated as a true surface current. 

4n -+ 
That is, to  within h/R,  K is just the integrated value of the current density obtained by 
solving London's equations. (The apparent difference in sign is caused by the fact that? 
is the electron current density Cj a e* < O), whereas the macroscopic theory, as usual, 
assumes positive charge carriers.) 



I + + 
For the rotating sphere i t  will also be assumed that p = 1 (i.e., take B = H) in the 

interior, so that the boiuidary condition becomes 

+ 
where H is the external field. The choice p = 1 is consistent with the London theory as 
well as thermody~~amics  and classical electrodynamics. It is seen that the stationary 
superconductor (a = 0) is a special case of the above. 

The+niode of attack for torque calculations will be as follows: The magnetic 
induction B in the region between the rotor and the shield will be calculated as the 
gradient of a scalar potential and will be evaluated using the boundary conditions: 

A 
r) a t  the surface of the rotor, 

A 
B . n = 0 a t  other superconducting surfaces. 

+ -+ + 
Since B = H, the rotor surface currents can be calculated when B is known: 

The torque can then be calculated using 

As a final example, the torque on  a superconducting sphere in a uniform applied 
A -+ A 

field is calculated. Choose z parallel to  Bo and y perpendicular to  the plane defined by 
-+ 3 + + 3 
Bo and w .  Requiring B + Bo as r + and using the bo~undary condition 
+ A A A 
B . n = ( 2 ~ 1 ~ ~ )  (w . r) at the surface of the sphere, the scalar potential is 



B ~ R ~  4~ M 
a = - Bo r COSB - - cose + - - * 

2r2 3 r2 C Ylm(n,O)  Ylm(e,@) 

+ + 
where is the angle between BO and w ,  and thd functions Ypm(8,@) are the spherical 

harmonics as defined by Jackson [ 101 . 
+ 

The components of  the magnetic induction B = -grad are 

2M 
B, = (I - T) B~ C O S ~  + - ( s inn  sine COSG .+ C O S ~  C O S ~ )  , 

r3 

M 
Bo sine - - ( s inn  cost9 cos@ - cosn  sine) 

r3 , 

In vector notation, 

+ + + 2M A 
The internal magnetic field H is H = (2 m*c/e*)o = - a, so that the surface current is 

R3 



+ 
‚ he' torque N is then given by 

2lT 71 
+ N = - R3 I d@ dB sine r x (I[':O - (r A x z) - 3 M  - (r x w)  A ]  

c 4 l ~  R3 f#J=o e=o 

+ 
There are six vector products in N: 

A A A  A A A 
2. r x [(r x z) x r] = (r x z) , 

A  A A  A  A A A A  
3.  r x [(r x Z) x w ]  = (w - r) (r x Z) , 

A  A A  A  A A A  A  
4. r x [(r x w) x z] = (r . z) (r x w)  , 

A  A A A  A  A  
5. r x [(r x w) x r]  = (r x w)  , 

A  A A  A  A A A  A  
6. r x [(r x w) x a ]  = (w . r) (r x w )  . 

Terms 1, 2, 5, and 6 integrate to  zero. Integrating 3 gives 



Similarly, integrating 4 gives 

+ 
Thus the torque N is 

In vector notation, 

which agrees with the exact solution to  order h/R. 

B. Torque on a Rotating Superconducting Sphere in 
an Arbitrary Magnetic Field 

Using this macroscopic theory, the rotor torque in an arbitrary magnetic field can 
be calculated. Let S be the distance between the center of the rotor and the nearest 
external current or superconducting surface. Then in the volume defined by R < < S, 
the magnetic induction B can be derived from a scalar potential @ through B = -grad @. 
The boundary condition 

at the surface of the rotor requires the scalar potential to  have the general form 



+ 
where 52 is the angle between w and the z-axis, GO is the angle between the x-axis and 

2 

the projection of ; in the x-y plane, M is the London moment [M = (m* c/e*)wR3], 
and the functions Ygm(8,#) are the spherical harmonics. 

The scalar potential for an isolated rotating sphere is 

9 -+ 
so that one can write 6 = 6~ + 8 0 .  The magnetic induction B is B = -grad@ = -gradOL 

+ + + + +  
-grad60 = BL + Bo. (Bo B - BL should not be confused with the uniform applied field 

-+ 
considered earlier.) The components of B are 



-+ * 
Since BO is real, a ~ ,  = (- 1 )m ap,-, . 

+ - +  + 
Because B = Bo + BL, K = KO + KL, where 

Quite generally, 

A +  + c 3 M +  A A A 
where dS2' is the differential of solid angle. But r x (KL x Bo) = -- - (Bo . r) (r x w)  = 0, 

4n R3 + A 
since Bo . r = 0 at r = R. Thus 

Since 



The evaluation of the integral is straightforward but tedious. Recall that 

A A A A A A 
r . x = sine cos+ 8 . x = cose cos$ + . x = - sin+ 

A A A A A A 
r . y = sine sin+ 0 . y = cose sin+ + . y = cos+ 

A A A A A A 
r . z = cose 8 z = - sine 0 . z  = 0 

+ + 
Substituting for the components of BL and Bo, one has in rectangular coordinates: 

for +O = 0 ; 

- 22 + 1 * cose cos+ 
Nx - - 3 C C z R'-' (-)aRrn y lk  (n,+o) 

sine Y l k  ' ~ m  
k R m  

* 
~x = M i 1; ( a l  1 - a1 1) for +O = 0 > 



Using this general result the previous calculation can be verified. For a uniform applied 
field, 

so that a 1 0  3 -BO and aQm = 0 for Y # I ,  m # 0 . Then 

Ny = - M Bo sin L? , 

as before. 

One additional point should be mentioned. Because a superconductor is 
diamagnetic, it experiences a force when immersed in a nonuniform magnetic field. This 
force can cause a torque if the center of support is not the center of mass. Using the 

+ A 
boundary condition B . n = 0 a t  the surface, the force on a superconducting sphere in an 
arbitrary magnetic field has been calculated by Harding [ 131 . 



C. The Infinite Superconducting Plane 

Assume that the half-space defined by the equation x < 0 is occupied by a 
semi-infinite superconducting slab and that there are no  other superconductors in the 

+= 

half-space x > 0. One asks for the induction B due to the infinite superconducting plane 
and an arbitrary current distribution in the region x > 0. 

-+ A 
Since the boundary condition is B . n = Bx = 0 at  x = 0 and since there are no  

other superconductors present, this problem is a simple image problem. The solution is 
found by replacing the superco~iductor by the image of  the current distribution mirrored 

3 

in the y-z plane. The solution for B in the region x > 0 is then the superposition of the 
fields due to the original current distribution and the image current distribution. 

D. Torque due to a Current in the Readout Loop 

Choose a coordinate system with the origin at the center of the sphere and with 
z-axis perpendicular to the plane containing the readout loop. The center of the sphere is 
assumed to lie in this plane. Let the radius of the readout loop be R + E,  where R is the 
radius of the superconducting sphere. The loop itself is assumed to  have negligible cross 
section so that the current density of the loop is 

where I is the current in the readout loop and 6(x) is the Dirac delta function. 

Assume for the moment that the rotor is stationary. Shielding currents flow in 
the rotor-to exclude the field of the current loop. In the limit of tight coupling ( E  4 O), 
the rotor appears locally to be an infinite superconducting plane. In other words, to have 
a perfect Meissner effect, the field of the supercurrent must cancel the field of the 

-+ 
readout loop, so that in the limit E -t 0, the supercurrent density jo is just 

Appealing to the theorem, for the rotating sphere, one has 



A1 in the coordinate system with z parallel to $ (see Figure 3), the. London field has 
the form 

A A, A " I  

Denoting the angle between z and z by !2 and choosing y and y to coincide, the 
+ +I components of hL(r ) can be rewritten in terms of the unprimed coordinates: 

Figure 3. A current loop around'the rotor. (The center of the sphere coincides with 
the center of the loop; the Y,Yr axes coincide and lie in the plane of the loop. 

The Z axis is perpendicular to the plane of the loop; the Z' axis 
lies along the spin axis of the rotor.) 



(hL), = [ F  + GI cosn- (sins2 sin0 cos) + cosn cos~)(cosi2 sine cos) - s inn c o d )  

+ ,[F + GI s inn (sinn sine cos) + cosn c0s6)~  - G sinn , . . 
.. _ :  . : 

. .%. . . .>. . . .  . 

. . = -  . . . - .... . . 8 . . 

(hL) = [ F  + GI sin0 sin) (sinn sine cos) + cosn lose) , 
Y 

(hL), = -[F + GI s inn (sinn sin0 cos) + cosa  cose)(cosn sine cos) - s inn cose) 

The torque on the rotor is 

+ 1 + + +  1 + + +  
N = - j d 3  r[r x (j x h)] = - Jd3 r[r x (jO x hL)] . 

C C 

+ + 
Substituting the expressions for jo and hL into the above, carrying out the vector 

multiplication, and then integrating, one obtains the result 

Now 

2m*cw 
F(R) = - + terms of order X/R 

e* 

so that to lowest order in h/R the torque is 

+ nR21 2m*c 
N = 

- C (--) (? w) sinn 



Thus to lowest order in AIR, the torque is the same as that on a current loop of radius R 
in a uniform magnetic field equal to  the London field. With I = 0.5 PA, R = 2 cm, and 
w = 400 .rr s-' , the maximum torque is 

E. Torque due to a Flat Region in the Superconducting Shield 

A change in the gyro housing design was proposed in order to reduce difficulties 
in the precision machining of certain parts. However, the change in design necessitated 
departure from spherical symmetry for the superconducting magnetic shield, which would 
introduce extraneous torque on the rotor. In the new design, the superconducting shield 
would be spherical except for a flat spot of half angle 00, as shown in Figure 4. 

Figure 4. A proposed shield design. (The shield is spherical except for a flat spot which 
subtends a half-angle O 0  at the center of the spherical portion. The 

spherical part of the shield is concentric with the rotor.) 



The torque for this shield design with the spin axis at a small angle L? with the 
respect to the axis of symmetry has been calculated by C. Ebner and C. C. Sung7. Their 
result is expressed in the form 

Here R is the ball radius and R' is the radius of the spherical section of the shield. 
(Actually the coefficient C depends on the angle C2 also, but is rather insensitive for spa11 
Q.) Ebner and Sung provided numerical values of C ( B 0 , ~ ' / ~ )  for 15" < BO < 45" and 
1.5 < R'IR < 3.0. 

To get a better physical feeling for the problem and to gain insight into the above 
result, an approximate calculation for the limiting case of a large flat spo twas  carried 
out. 

Since the London field falls off as a dipole outside the rotor, the currents in the 
flat part of the shield should fall off rapidly away from the center of the flat. Therefore 
for a large flat spot in a large shield (R << R' cosO0 << R'), the torque should be 
approxima'tely that on a point dipole near an infinite superconducting plane (Fig. 5), a 
problem easily solved by image methods. 

SUPERCONDUCTOR 

+ 

Figure 5. Image method for calculating torque due to the flat spot in the point 
dipole/infinite superconducting plane approximation. 

7. Karr, G. R. and Hendricks, J .  B.: Fourth Quarterly Progress Report, Contract NAS8- 
293 16, Appendix I - Magnetic Shielding Calculations, by C. C. Sung and C. Ebner. 



The torque is given by 

+ + + 
N = M x B (image dipole) 

- M2 - -  A 
sin 252 y 

1 6d3 

A 
where y is a unit vector ou t  of the page in Figure 5. Substituting d = R'  cosOO and 
M = (m*cw/e*)R3 yields the approximation 

For R = 1.9 cm, R' = 4.3 cm, O0 = 57 deg, and w = 400n Hz, one has 

in good agreement with the Ebner-Sung result of N r 1.6 x 10" sin52 N m for these 
values. 

Since the actual rotorlshield arrangement has the same symmetry as the point 
dipolelinfinite plane, it can be concluded that the torque will be zero for 52 = n /2  as well 
as for 52 = 0 and 52 = n, a result not  foreseen from the small angle result of Ebner and 
Sung. This observation is important because, after the Ebner-Sung calculation had been 
completed, the design was changed again; in the new configuration i t  is planned to  have 
the spin axis such that S2 ' n/2 rather than S2 " 0. 



F. Discussion 

As noted in the introduction, one of the design goals of the gyroscope relativity 
experiment is that tlle precession due to nonrelativistic torques be less than 1 ms of arc 
per year. This requires that the magnitude of the residual torque be less than 2 x 10-l8 
N m. 

. The preceding calculations show that to meet this objective, the superconducting 
shielding must be designed so as t o  reduce the magnetic field in the interior t o  
approximately 1 0-7 gauss (1 0-' ' tesla) or  less, and the field due to trapped flux must be 
equally small. These restrictions were noted earlier by C.W.F. Everitt [14 ,15] .  It should 
be possible t o  eliminate trapped flux by careful cooling in a sufficiently low field; with 
special techniques, field levels as low as 6 x gauss have been obtained [ 161. 

Since the magnetic flux through a hole in a superconductor cannot change, any 
magnetic field leaking through a hole in the superconducting shield surrounding the rotor 
will be strongly attenuated. A ballpark estimate can be obtained for leakage of magnetic 
field through a hole in a spherical shield from data for superconducting cylinders. For a 
cylinder of radius a, the axial field decreases as B = Bo exp(- 3.4 z/a) and the transverse 

field decreases as B = Bo exp(- 1.8 z/a), where z is measured from the end of the cylinder 

[17] .  If one lets z = Rr-R, the distance between rotor and shield, then for a transverse 
attenuation of lo-' an estimate of a - (Rr-R)/9 for the radius of the largest permissible 
hole is obtained. For R r  = 4.3 cm and R = 1.9 cm, this gives amax- 0.3 cm. Since each 

hole attenuates more or  less independently and since the torque calculation assumed a 
uniform field, the number of holes should not be critical. The exponential z-dependence 
above results from separation of variables in cylindrical coordinates and the vanishing of 

+ 
the normal component of B at  the inner cylinder wall; a different functional dependence 
for the variable r would certainly be expected for a hole in a spherical superconducting 
shell. Moreover, the a'ttenuation should depend on the size of the hole relative t o  both 
the shield thickness and the shield radius, probably through multiplicative factdrs. 
Finally, holes remove spherical symmetry and, like the flat spot, produce a diamagnetic 
torque. Clearly a more precise calculation of the hole problem should be undertaken. 

The torque due to the flat spot will depend on tlie pointing accuracy. For 

R = 0 + 6R (or R = 41 + 6R), one has for e0 = 57 deg: N - 2.8 x lo-' N m for 6R = 1 
\ 2 

deg, N - 4.7 x 1 0 - 2 0 \ ~  m for 6 R =  1 min, and N 7.8 x N m for 6R = 1 s. Thus 
for a pointing error of less than 1 min of arc, the torque due to the flat spot will be 
completely negligible. 

8. Hendricks, J .  B.: A SQUID Readout System for a Superconducting Gyroscope. 1974 
Applied Superconductivity Conference, Sept. 30-Oct. 2, 1974, Oakbrook, 111. (Proc. t o  be 
published). 



The magnitude of the torque due to a current in the readout loop is mildly, 
disturbing. In the direct SQUID configuration8, a dc current as large as that 
corresponding to  half a flux unit ( a O =  2.07 x lo-'' weber) can exist in the loop. For a 

SQUID inductance of 1.5 x lo-' henry, this current could be as large as 6.9 x A, 
with a corresponding torque of 1.2 x lo-' N m.  However, a slow roll of the spacecraft 
about the optical axis of the telescope is planned. If the spin axis of the gyro coincides 
with the optical axis of the telescope, the average torque due to  a current in the read-out 
loop will be zero. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama, February 1975 
1 88-78-5 1-0000-59-00-300 
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