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Abstract

We report calculations which suggest that there is a physically-important
four-atom exchange process in boo 3 H and thus an important four-spin term in
the exchange Hamiltonian. A simple, mean-field analysis of this Hamiltonian

appears to account for a number of the perplexing properties of bee 3He. An

understanding of other properties may require treatment of the exact four-spin

term. It is our hope to stimulate such effort by this Letter.
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We report the results of calculations which suggest there is a physically

important four-atom exchange process in bee solid 3lie. The process gives rise

to n four-spin term in the effective spin or exchange Hamiltonian with an

exchange energy comparable to the nearest-neighbor two-spin term. A simple-

minded mean-field treatment suggests this four-spin term could lead to a tcLp

erature-dependent exchange frequency which offers partial insight to the several

perplexing properties of bee solid 3Ile.1

To facilitate discussion we define the exchange Hamiltonian including

2
pair, triple, and the important cyclic quadruple exchange:

H = -2 CJl - 6J	 + 3Jex	 112	 1111,23) i<j li	
13

(2)	 ..,
-2 (J2 - 4J112 + J1111,231 i<j 

li • 1^
(1)

-4J1111,23	
E	 [(Ii Ii )(Ik IA) + (I^ 'k)( It

1<^Qc<,(

(li lk)a	 Y1.

The first two-spin term involves nearest-neighbor spins (the "(1)" over the sum),

while the second involves next-nearest neighbor spins (the "(2)"). Finally the

one four-s pin term involves four atoms located at the corners of the rhombus,

lying in the (110) plane, whose sides 1j, jk, kj„ ki are first-neighbor dis-

tances (the subscript "1111" in J1111 23) and whose diagonals ik, J.2 are second-
..	 ,

and third-nearest neighbors (the 23 after the comma).

Later in this letter we will present a summary of the calculations for

the various exchange constants. The relative large size of J 	 appears to
1:111,23

arise from the generally larger amplitude of atomic vibrations associated with

transverse phonons. Moreover the ratio of J1111,23/1 
is-  further enhanced by

making the atomic wavef unction less localized than is indite€,tad by most calculations.
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of the ground state energy, which are relntively insensitive to the degree of

localization.

First we want to briefly discuss the anomalies in 3lie solid within the con-

text of a mean-field approximation for (1) in which, for simplicity, we ignore

the next-nearest-neighbor exchange terms except to indicate those situations

where they may play a noticeable role. Then (1) reduces to

where

(1)
H = - 2J1 (T)	 E Ii	Ij	(2)

i<j

11(T) = J  - 6J112 + 3J1111,23(1 + 4 (I 	 t/ 1 ).	 (3)

In (3) the term (I	 I/ 1 corresponds to the thermal expectation value of the

scalar product of nearest-neighbor spins. Since we expect 3 H solid to become

anti-ferromagnetic at low temperatures, then (I • I) 1 will change from zero at
high temperature to something like -(3/4) in the ordered phase. Taking a simple

analytic form for this switching behavior, and using numbers we have calculated,

we might approximate (3) above the transition.by

11(T) p - 0.65 + 0.4 tanh (2/T)
	

(4)

where JI and T are measured in mK. (The factor 2 in the tanh (2/T) is an esti-

mate of the transition temperature in the absence of J1111,23*)

There are several puzzling anomalies in the 3 H solid data which we discuss

in terms of (2) and (4). we restrict ourselves to a single density, corresponding

to a molar volume of 24.0 cc/mole.

High temperature results (T > 20 mK): In this regime, JI is a temperature-

independent constant. High temperature susceptibility measurements  indicate

it is negative (anti-ferromagnetic), with its best value of -0.65 mK coming

from the pressure measurements.
4 When the pressure measurements are extended

to finite magnetic fields, 5 it appears necessary to assume an additional

ferromagnetic next-nearest neighbor interaction of strength , /J1 -0.2. 6'7
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All of the high temperature data can be reconciled within such a two-parameter

model, in which J1 is still approximately -0.65 mK, and J2 is ferromagnetic,G,7

Ratios in the vicinity of -0.2 have been theoretically calculated. 6'8'1 In the

present work we can only specify +0.03 >J 2 rJ I  > -0.2 because of 10% or so

uncertainties in the various exchange frequencies, and large cancellations in

J2 - 4J112 + J1111,23 (the high temperature value of J2(T)).

Low temperature results (T <20 mK):

(i) Transition temperature. A constant first-neighbor exchange frequency of

-0.65 mK corresponds (via TN = 2.75IJI) to an anti-ferromagnetic transition

temperature of 1.8 mK (a bit higher if J2 > 0), whereas the first observed

transition in the solid is I.1 mK. 9 Clearly (4) would produce a lower transi-

tion temperature.

(ii) Specific heat. A high temperature expansion for the specific heat in

powers of T-1  using an anti-ferromagnetic Heisenberg Hamiltonian results in a

T-3  term with a positive coefficient, (even larger if J2 > 0); whereas the

experiments 9210 indicate a negative one. A temperature-dependent exchange such

as (4) can result in a negative coefficient, although our crude agrument appears

to give too small a coefficient.

Near the transition temperature of the solid the specific heat has a pro-

pounced bump 9,10 near 2 mK prior to the entropy anomaly at 1.1 mK. Our mean

field model cannot explain this structure. On the other hand, the original

llwiii.ltonian (1) we propose may be able to explain it. Specifically we propose

3.r; the phase transition theory community the following question: does HeX (1)

with its four-spin tern have the same behavior as a Heisenberg Hamiltonian in

the vicinity of the (depressed) transition temperature? Or can it exhibit

structure consistent with that observed in bee 3lie?

(iii) Spin Diffusion. - As additional evidence that something extraordinary is

occuring at about 2 mK in the solid, there is the fact that the spin diffusion



coefficient D drops sharply by over 30% for decreasing temperature about 2 mK,11

leading once again to the idea that the effective J (o: D) is strongly temperature

dependent.

(iv) II-T phase boundary. In terms of a mean-field model, an external magnetic

field would iiavor n positive (I • 1) l in (3) and hence increase V11. Pre-

sumably this effect would increase the magnetic field at which the spin-flop

to paramagnetic-solid transition occurs over that predicted by a Heisenberg

Ilamiltonian. Only preliminary experimental data 
12 exist for the H-T phase

boundary.

Finally we turn to the actual calculation of 31111,23 
and the other exchange

frequencies. There is an extensive literature 
:3 

which underpins our calculation.

The exchange frequencies can be written in terms of integrals involving the

Jastrow-Gaussian ansatz for the many-body wave function in solid 3Ile:

TT e JA( ri - 
R i )	 it f(rij),	 (5)

1	 i<3

where r  and R  specify the atom and lattice site positions, respectively.

The scalar coefficient A is proportional to the (Einstein) frequency

describing the harmonic motion of an atom about its lattice site. In our calcu-

lation we generalize A to a matrix 
14 in order to take into account a more

realistic description of the atomic motion based on a self-consistent calculation is

of the phonon frequencies. Accordingly the Aeff listed in Table I for the four

largest exchange frequencies reflects phonon frequencies which predominate in

that exchange process.

The Jastrow function f(r
ij

) is roughly a step function used to describe

the short-range correlations, by prev:nting two atoms from approaching closer

than their hard-core diameter. The energy of solid He can be written in terms

of integrals involving *. Various calculations 16 which in effect minimize the

=

energy with respect to functional form and parameters of (5), yield very similar
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Jastrow functions. On the oti t hand the energy is not very sensitive to A. Never-

theless, it now appears on the basis of recent Monte Carlo calculations, 8 that

A may be 300 smaller than the range of values previously accepted. 	 We exploit

this possibility in our work.

In terms of the wave function (5) the exchange frequency for a given ex-

change p of atoms is

Jp . -ap
 e A dp2/4 I

p(A, tt])
	

(G)

where d  is a distance in configuration space between the original and exchanged

atoms. Values of d  in units of the nearest neighbor distance H are given for

various exchanges in Table I. The attempt frequency for the exchange process,

within the Einstein approximation for the atomic motion, is given by

0 = (h M) d  (A3/Tf) i .

The exchange frequencies are dominated by the other two factors in (G).

Gaussian overlap. The exponential factor is a measure of the overlap of the

wavefunctions of the original and exchanged atoms. Note that it is a very

sensitive function of the frequencies of the exchanging atoms. In Table I Aeff

for next-nearest-neighbor exchange is smaller than for nearest-neighbor which

is a measure of the relative ease of distortions for exchange in (100) as

opposed to (111) directions.

Hard-core effects. The final factor I corrects for the fact that the Gaussian
p

overlap overestimates the probability for atoms to exchange by not excluding

routes of exchange forbidden by the hard-core repulsion of the atoms. This

effect is most important for pair exchange where straight-line exchange would

have the atoms sitting on top of each other. In this case I 1 includes the

dominant factor exp (- 2 a2) 25 where Q is the hard-core radius. This strong
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dependence on A does not occur in I  for three- and four-atom exchange, where

the short-range correlation effects are largely geometric in nature. 1 The

values for I  in Table I are extrapolated from the results of Ref. 1 based on

Monte Carlo integrations (for the Einstein case), with the exception of the

last (and crucial) entry which has been estimated on the basis of the experience

gained from three-atom exchange.

In the next to the last column of Table I are the results for J 	 It is
P

clear that J1111 23 is too small but so is J 1 by at least a factor of 20, ii' it

is to agree with the high temperature measurements. At this stage we take

advantage of the fact that the more accurate Monte Carlo work  suggests that

the true A values may be 30%, or so smaller than those consistent with Ref. 15

on which our work is based. Accordingly we decrease A, or more accurately,

rescnle downwar the phonon frequencies until the value of (J l = 6J112 + 3J1111 23 )r

(see (1)] agrees with the exchange frequency deduced from high temperature

measurements. i7 The resulting numbers are shown in the last column. We note

that 
9IJ1111,23I 

is _.4 mK, the factor used in (1). As a result of these cal-

culations we argue that this four-atom exchange (the next largest one is an

order of magnitude smaller) must be taken into account in any treatment of the

phase transition of bee 3He.

We gratefully acknowledge the construdtive comments and continuous encourage-

ment of R. C. Richardson. In addition the assistance of W. P. Ralperin, D. R.

Nelson, and M. E. Fisher is much appreciated.
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TABLE I

Pair	 (1)

(2)

Triple "(112)

Quadruple 1111,23

scaled

(dP/21t)2 Aeff (A 2)
n e AeffdP /4	 1 JP(mK) JP(nix)
P

1/2 1.350 2.00 .014 -.02B -1.02

2/3 1.129 .602 .0067 -.0040 -	 .25

5/6 1.295 .0104 .086 -.00089 - .085

1 1.136 .0042 .09 -.00038 - .045

Table I. Exchange frequencies and related intermediate numbers for bee 3Ile

(24.0 cc/mole).
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