General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

COPERNICUS OBSERVATJONS OF
BEYELGLUSE AND ANTARES
A. P. Bernat*
and
D. T. Lambert*:

Department of Astionomy
University of Texas
Austinn, Texas: 78712
(Received
)
*Guent Investigator with the Princeton University telescope on the Copennicus satellite, which is sponsored and operated by the National Aeronautics and Space Administration.

COPERNICUS OBSERVATIONS OF

BETELGEUSE AND ANTARES

A.P. Bernat*
 and

D.L. Lambert*

Department of Astronomy
University of Texas
Austin, Texas, 78712
(Received)
*Guest Investigator with the Princeton University telescope on the Copernicus satellite, which is sponsored and operated by the National Aeronautics and Space Administration.

ABSTRACT

Copernicus observations of the M-supergiants, α Ori and α Sco, ave presented. The MgII h and k resonance lines are strongly in emission in both stars. The k line is highly asymetric in both stars but the h line is symnetric. Upper limits for several other resonance lines are given for 0 Oni.

The possibility is explored that the k line asymetry is caused by overlying resonance lines of MnI and FeI. formed in the cool. circumstellar gas shells around these stars. Obsenvations of the MnI 4030-4033 \AA lines are used to show that circumstellar shell absorption is too weak to explain the asymetry. However, the overlying lines of MnI and FeI do appear to be responsible because selected FeJ. lines in the visible spectum appear weakened by fluorescent emission driven by the MgII emission line. It is suggested that the absorption occurs in a cool turbulent region between the base of the circunstellar shel. 1 and the top of the chromosphere.

Subject headings: Circumstellar shells - emission-line stars luminous stars - stars, individual

I. JNTROIUCCTION

Stellar chnomospheres have long been inferred for the M-supergiants from the prosence of CaII H and K in emission. In any study of theso chromospheres it is important to obtain as much observational data as possible in order to accurately determine the physical structure. Since most of the expected species have resonance lines in the ultraviolet, we have used the NASA-Princeton satellite Copernicus (Rogerson et al., 1973a) to search for these lines in two M-supergiants, Betelgeuse (α Ori, M2Iab, $m_{V}=0.8$) and Antares (α Sco, MLIb, $M_{V}=1.1$). Both stans are small amplitude variables; in addition, Antares has a B-type companion ($B 4 V, M_{V}=6.6$), at 3 arc-sec separation, which appears to be both the center of a nebula (5 arc-sec diameter. Stone and Struve, 1954) and a radjo souvee (Hjellming and Wade, 1971).

The MgII h and k lines have previously been observed in a Ori by Kondo et al. (1972) who found a striking asymetry in the k ($2795 \circ$) component while the h component ($2802 \AA$) was symmetric. These observations were confimed by Kondo, Morgan and Modisette (1975). Observations of K-stars (Moos et_al., 1974) have not revealed a difference between the h and k lines. In addition to observing the MgII h and k lines in α Ori, we have observed these lines in α Sco and have searched in the ultraviolet spectrum of α Ori for other possible chromospheric indicators. The MgII lines were observed strongly in emission in both stars and these observations and their possible interpretation are the main subject of this paper. None of the other lines we searched for in α Ori wene detected.

From our null vesults, we have set upper limits upon the fluxes in these various lines as discussed in § II. These calculations are given in table 2. In $\oint I I$, we discuss our observations of the MgrI lines, cur calculation of the error limits of our observations and give various parameters caleulated from the line profiles. We discuss possible interpretations of the asymmetry in the k line in \oint III and SIV.
II. OBSENVATITONS

Our observations of α Ori and α Sco MgIT. h and k are presented in Figures 1 and 2. These figures represent the auerages of 12 scans for α Ori and of 30 scans for α Sco obtained with the V2 system. The resolution is $0.4 \AA$. The B star companion to a Sco may be expected to contribute up to 1000 counts/integration period in the 2800 A region to the count rate obtained with Copernicus if: the narrow (0.3 arc-sec) sfectrometer slit were to include both stars. No positive evidence for this was seen in individual scans. lowever, some scans show a steep increase in count rate across the scan.

The noise estimate, σ, given in the figgures and used subsecjuently in this paper is based upon two separate calculations. First, the estimated error in the background level is calculated by measuring the rms deviation of a series of points which appear to contain no significant stellar signal. Second, the standard \sqrt{N} error is calculated and the two comblat to give our estimated σ. This is not strictly valid since the erwors are not independent. In addition, there are unknown errors arising from the different satellite orientations during the scanning. We feel that our formal crror calculated
as described above gives a fairly accurate picture of our relative uncertainties, but wish to stress that is is purely a formal one.

We collect in Table 1 vaxious parameters calculated fyom oun observations of MgIT. In particular, we varify the striking asymetry in the k line as contrasted with the symmetric h line. Assuming that the absolute response of the satellite remained constant from orbit: 8330 (α Ori observations) to omit 10730 (α Sco observations) (Snow, 1974), the observed MgII emission in a Sco j.s 80% that in a Ori. I'o estimate absolute fluxes, we must know the angular diameters of these two stans. The angulay diameter of α Ori has been found to be wavelength dependent (Bonneau and Labeyrie, 1973). We use the observed value of 0.069 for $4220 \AA$, although this can at best be only a rough indicator of the value for the chromosphere. For $a \operatorname{Sco}$, we use 0!042 (Gezari, Labeysie and Stachnjk, 1972). The satellite calibration corresponding to an efficiency of 0.64% at $2800 \AA$ was provided by Snow (1974). This absolute detemination of the chromospherie fluxes does not include a correction for interstellar and circumstellar reddening.

We note that our measured values for the widths of the h and k lines do not follow a Wilson-Bappu relationship. The absolute visual magnitudes for the two stans are M_{V} (α Ori) $=-6$ (Keenan and Morgan, 1951) and $M_{V}(\alpha \operatorname{Sco})=-5.2$ (Stone and Struve, 1954) while the line widths are slightly larger in a Sco. The two stars do follow the CaII Wilson-Bappu relationship. We attribute this to the difficulty in measuring these widths from noisy data and to the possibility that the B star companion to α Sco contributes sufficient signal to distort the
line profiles rather than to a breakiown of the Wilson-13appa relatiunship.

The upper limits which we have been able to place upon the other chromospheice lines, Iable 2 , serve to eliminate extensive and/or hot regions surrounding this M-supergiant:

III. INTERPREJA'ITONS OF THE k LINE ASYMLIRY

The outstanding feature of the MgII lines is the contrast between the $\lambda 2795$ and $\lambda 2802$ lines; the former is strongly asymetric and the latter is symetric. The h and k lines are expected to be fomed in a chromosphere; a static chromosphere would give rise to symmetric salf-aleversed line profiles. An explanation for the asymetric k line midet be provided by an extonded, expanding eliromosphere according to calculations by Kunasz and Hunner (1.974; also Kunasz, 1973). Such chromospheres give rise to selfmeversed lines with the intensity of the red peak greater than that of the blue peak. However, the regions of fomation of the two NigII lines must surely overlap sufficiently that an expanding chromosphere cannot be modelled such that expansion effects appear in the k line (oscillator strength twice that of the h line) and not in the h line. The symnetry of the h line is most simply interpreted in terms of a stationary chromosphere and we have sought an altemative explanation for the asymetric k line. The k line asymnetry has been seen in each of the three separate observations. This repeatability would suggest that it cannot be attributed to peculiar line formation conditions in a bright active region which happened to dominate the chmosphere at the time of observation.

Modise te, Nichols and Kondo (1.973), exploring a suggestion by Herlsig, proposed that the asymmetry be attributed to absorption by an overlying FeI resonance line ($2795.006 \AA$, a ${ }^{5} \mathrm{D}_{\mathfrak{l}}-z^{3} \mathrm{G}^{\circ}{ }_{\mathrm{q}}$, multiplet UV3). By assuming an opticaily thin ehromosphere, Gaussian line profiles and neglecting any other overlying lines, they ware able to calculate the reguised stuength in the Fel line to prodnce the observed asymetry. Their overlying fell line has a very large halfwidth of: $\sim 3 \AA$, greater than that of the MgII lines, and an eguivalent width of 2500 min . The location of the absorbing FeI layen was not discussed.

We propose a different approach. Jho M-supergiants are known to possess substantial circumstellar shells (Deutsch, 1956 and Weymam, 1962). We use the observed properties of these circumstellan shells to estimate the amount of absortion expected. This will be done without reference to the observed MgII lines.

Our search for coincident atomic and molecular lines (see also Gahm, 1974 and Greve, 1974) showed that a MnI resonance transition (a ${ }^{6} S_{5 / 2}-{ }^{6}{ }^{P^{\circ}}{ }_{7 / 2}$ multiplet UV1) at $2794.817 \AA$ would also contribute to the absorption in the k line. There are many othes lines within the required wavelength interval but to obtain the large colum density required to produce a strong absorption line in the cool circumstellar shell, we are concerned only with absorptions out of: levels with very small energjes ($G 0.1 \mathrm{eV}$). Both the FeI and the MnI transitions arise from their respective ground states. The only additional line in this region is a zirconium transition at $2795.14 \AA$ but due to the low cosmic abundance of zirconiun ($\mathrm{Zr} / \mathrm{Fe} \sim 3 \times 10^{-5}$),
the relatively high lower state energy $(0.07 \mathrm{eV})$ and the small oscillator stwength (Kurucz [1974] gives gi=4. 8×10^{-2}) any effect of this line will be guite small. We center our attention upon the FeI 2795.006 \AA and the MnI $2794.817 \AA$ lines.

Another FeI Line from multiplet UV Falls at 2803.169 \AA within the long wavelength peak of the h line. At an excitation temperature $T \sim 1000^{\circ} \mathrm{K}$ the optical depth in this line \mathbf{j} s 9% that of the Fer 2795 line according to calculated oscillator strengths (Kuruce, 1974). If Fel absorption is important in the interpretation of the MgII lines, this line at $2803 \AA$ will reduce any expansion asymuetry in the h line. Tinis line would have a considerable influence on the profile according to the modelling by Modisette ot al, but they overlooked this possibility.

The MnI absolute oscillator strencrth, gfe3.70, was adopted (Ostrovsky and Penkin, 1957; Bell et al. 1959). The MnT line is broadened by hyperfine structure (hfs) splitting. The a ${ }^{6} S$ ground state has a negligible splitting. We estimated the hfs splitting of the ${ }^{6}{ }^{6}{ }^{0}{ }^{0} 7 / 2$ state from Rottmann (1958). The $2795 \AA$ line is composed of 6 hfs components with a total width of $0.017 \AA$ or $1.8 \mathrm{~km} \mathrm{~s}^{-1}$; the 3 strongest components representing 60 percent of the total line strength span only $0.9 \mathrm{~km} \mathrm{~s}^{-1}$. Since our adopted Doppler velocity parametrer for the shell is $v_{D}=4 \mathrm{~km} \mathrm{~s}^{-1}$, we can neglect the hfs splitting. Inis MnI line is a strong resonance transition. With oscillator strengths from Blackwell and Collins (1.972), we calculate that the probability of a reemission at $2795 \AA$ following absorption is 0.987 ; the MnI photons must scatter many times before they can escape the shell in a longer wavelength transition for which the shell is optically thin.

The FeI line is a weak intercombination transition. Kurucz has
calculated an oscillator strength (gf $=.000410$) from intemediate coupling line strengths and a radial integral obtenined using Thomas-Fermi-Disuc wavefunctions. Comparison of these ealeulations with experimental results (see, for example, Blackwell et nil., 1975; shows good agrement. However, the largest discrepancies are anticipated for the weak intercombination transitions; a factor of two uncertainty is probably an upper limit.

Our observations (sec below) provide a direct measure of the column density of neutral Nn in the shell. We adopt the reasonable assumption that the degree of ionization for Mn and Fe is similar. We estimate that the optical depths at the line centers are T (MI)

- $\sim 220 \mathrm{~T}$ (FeI) . The large difference in the cosmic abundances, $N(\mathrm{Fe}) / \mathbb{N}(\mathrm{Mn}) \sim 73$, is offset by the oscillator strengtt ratio. We assune a kinctic temperature of $1000^{\circ} \mathrm{K}$ and cajculate the partition function of the neutral iron to be 3.6 . Although the FeI transition is weak, "it is an efficient route for ultraviolet photons to be converted to visible photons which can escape directly from the shell; the probability of a return emission at $2795 \AA$ is only 0.40%.

Two properties of the observed circunstelilar shell are parti.cularly important. Weymann (1962) calculated that the minimum shell radius for α Ori was about 16 stellar radii, based on the assumption of plane-parallel geometry. Our reanalysis (Bernat and Lambert, 1975) confirms this value for α Ori, and we find a shell radius for a Sco of about 4 stellar radii. Hence, the shell must be treated assuming spherical not plane-parallel geometry and, for α Oni, any oceultation effeets by the star are minimal and the net
eguivalent width of a pure seattering line will be zero; i.e. if the photons absorbed in a strong pesonance transition are not converted to others for which the shell is optically thin, we shall see no overlying absorption provide that the observations refer to the entine shell. For a Sco, oceultation of the far side of the shell by the stellar surface will incroase the not equivalent width, Secondly, Weymann derived a Doppler velocity of about $4 \mathrm{~km} / \mathrm{sec}$ for the a Ori shell, a value we find also for the KI 7699 A line. Absorption be the shell is limited to a few Doppler widths from line eenter or about: $0.12 \AA$ at $2800 \AA$.

III. THE COOL CIRCUMSTBELAR SHELL

Iwo direct methods of establishing the effects of the circunstellas shell suggest themselves. The most diseet wolld be the observation at high resolution of the region around $2795 \AA$. Since the shell lines would be guite sharp, this requires an instrumental. resolution of better than $0.1 \AA$, which is possible with Copemicus. We intend to undertake this observation as soon as possible.

A second possibility involves the observation of shell lines which anise from the same lower level as the ultraviolet lines. In particular, we have observed the MnI lines $4030.755 \AA$ $\left(a^{6} S_{5 / 2}-z{ }^{6} P_{6 / 2}\right.$, multiplet 2) and $4033.074 \AA\left({ }^{6}{ }^{6} S_{5 / 2}-z^{6} P^{0}{ }_{5 / 2}\right.$, multiplet 2); which have oscillator strengths 0.099 and 0.069 that of the $\operatorname{MnI} 2795 \AA$ line. Each of these line is also composed of six hfs components with a total splitting of $.05 \AA$ and $.04 \AA$. The most

Intense components are separated by lese than half this amount and ve again negleet the hyperfine structure. Our observational data consists of $0.07 \AA$ resolution seans obtained with the Iull (1972) coude' sennner for α Oxi and $3 \AA /$ min plates for a Sco. llo model the $4030 \AA, 4033 \AA$ and $2795 \AA$ profiles, we have used a modification of Kunasz and llumer's technigue for solving the jadiative transfer equation in an expandirg, spherieal atmosphere (Kunasz and hmmer, 1974; Kunas\%, 2973). Our modification (Bernat, 1975) seplaces the hollow core with an opaque, emitting core; i.e., the radiation emerging from the stellar core would be the ehromospheric MgII k line in the case of the 279% A line and the photospheric MnI line in the case - of the 4030 and $4033 \AA$ lines.

The profiles of the undemlying photosphex:ic Mill linos were estimated; calculations based upon a model photosphere camot be considered reliable for these strong lines. Ihe profile estimation was facjilitated by a lower resolution scan ($\Delta \lambda \sim 0.15 \AA$) covering about $1.5 \AA$ and centered on the MnI tripJet ($1030,4033^{\circ}, 4034 \AA$). The weakest line at $4034 \AA$ elearly shows the deepest "photospherie" core sugrasting that shell memission is filling in these cores with the greatest effect on the strongest $4030 \AA$ line. In Figure 3, we show predieted shell profiles for α Ori. Since seeing conditions at the time of obsenvation were poor, we assume that the observed profiles represent an integration over the shell and star. Detajil.s of the line profile fitting will be given elsewhere (lernat, 1975). We note that the depth of the narrow displaced core jes primarily a monitor of the optical depth and the height and extent of the
redward remission is a measure of the shell dianeter. These parameters were adjusted to obtain the fit to the stronger 40308 Line. Then, the $1033 \AA$ Iine was predieted from the relative oscillator strongths without fuxther parameter adjustment. This profile fitting for α Ori gives an optical depth $\tau(4030) \sim 1.2$ ox a column density $N(M \operatorname{LI}) \sim 1.5 \times 10^{13} \mathrm{~cm}^{-2}$. A similar malysis of the photographice profiles for α Sco sugests $T(11030) \sim 0.3$ on $N(\mathrm{MnI}) \sim 3.8 \times 20^{12} \mathrm{~cm}^{-2}$. We calculate shell optical depths for the 2795 MnI line renter: $\tau(2795)=8.4\left(\alpha O_{r i} i\right)$ and $=2.1(\alpha \operatorname{seo})$. For the JeI 2795 A ine center, ve estimate $\tau=.04$ (a Ori) and $=.01$ (α Seo).

Our interpretation of the MaI core profiles as a composite absorption-mission Feature (a P Cygni profile) produced by the circumsteman shelj. differs substantially from an earlies interpretattion by Adams (1956). He jdentified two absorption conponents: the violet displaced shell component and a red displaced broad component which originated in the stellar photosphere. llere, we suggest that this second component be given an altemative interpretation as a blend of shell emission concentrated near the photospheric velocity and the broad underlying photospherje line (see Figure 3). Our interpretation will explatin the correlations noted by Adans. For example, the intensity of the emission component (or, equivalently, the strength of the red absoxption component) will vary with the photospheric velocity. The intensity will bra a minimum when the photosphere shell velocity difference is a minimum and the shell sees the deep core of photospheric line. As the velocity difference inereases, the shell can scatter a grenter intensity of light from the line wings and the emission intensity inereases. A more detailed discussion
of Adans' correlations will be presented elsowhere (Bernat, 2975).
With the shell colunn densitios and the rospactive probublilities for veemission at $2795 \AA$, we have culculated the line profiles of the $2795 \AA \mathrm{AcI}$ and NaI lines, Figure 5 shows the NnI profiles whes bhe observations refer to the entire shell. Our theoretienl profile are guite similar to the shell profile dexived from the $\mathrm{KI} 7099 \AA$ resonance line by Goldberg at al. (1975). The net (absorption minus the redward reemission) equivalent width for the Mill line is small: $W_{\lambda}=32$ and 13 m for α Ori and α Sco respectively. Since the Copernieus spectrometery slit width corresponds to only 0.3 are-see (a small fraction of the predicted and observed shell - dianeter for α Ori, Bernat and Lambert, 1975), the observations canrett include all the reemission. Reemission would have beer thenered along the slit. our calculated maxinum equivalent width refers to the absorption core without the reemission and j.s 84 and 40 mA for α ori and a Sco respectively. The equivalent widths of the FeJ. line are less than 1 mA in both shells. These computed shell absorption lines are insufficient to explain the observed asymnetry in the MgII k line (see Figure 5). The diserepancy is especially manked for $\alpha \mathrm{Sco}$; the asymetry is pernaps strongen than for a Ori but the cireumstellar shell is much less evident in all the resonance lines (CaI 421G \AA, CaII 11 and K, HinJ y 030 ette.).

The shell will also scatter photons in the Mg.II h and k lines, The resultant profiles will look similar to those given in Figure 1 for the MnI lines, although the optical depth in the MgII lines will be much larger and the conversion probability will be zero. Thus,
parte of the h_{3} and k_{3} minima will be due to photons scattered by the shell but with our resolution we are unable to separate the shell's effects from the "nomal" minima. At the very large optical depths in the $\operatorname{Mg} I \mathrm{I}$ lines, the effect of the shell wald be similar for the I und k lines, i.e., we would not be able to produce the observed different profiles.

We have also investigated the effects of interstellar absorption on the MgII k linc profile. Clearly, if the interstellar mediun vere to absorb the k-line wing producing the obsenved asymatry, the h line shotid also be asymmetric. In addition, Holbs' (1969) observations of Nat in stars near α Sco and α Oxi show velonjties relative to the - star in the -18 to $+9 \mathrm{kn} / \mathrm{sec}$ range. In our observations, any interstellar MgII absorption wouid not: be resolved from the "normal" h_{3} and k_{3} central reversals.

I'o aseribe the large asymetry observed to interstellar MiI $2795 \AA$ would reguine that interstellur absorption be detectable in the Mn'I 4030 A line. There is no evidence for interstellar absorption in the MnI $4030 \AA$ line in either a Oni and a Sco. We may also calculate the expected interstellar equivalent widths in the following manner. Boksenberg et al. (1972) derive a col.unu density $\mathrm{N}(\mathrm{MgI}) \sim 3 \times 10^{12} \mathrm{~cm}^{-2}$ for several stars in Orion; logerson et al. (1973b) dexive N(MgI) $\leqslant 7 \times 10^{10}$ for two stars in Scorpio. By allowing for the distance differences between the various staxs and for the Mn to Mg abundance rat:io of ~ 300 and assuning $N(M n I) / N(\operatorname{MgI}) \sim N(M n) / N(N g)$, we derive $N(\mathrm{MnI}) \sim 10^{10} \mathrm{~cm}^{-2}$ and $N(\mathrm{MnI}) 10^{8} \mathrm{~cm}^{-2}(\alpha \mathrm{Sco})$ or equival.ent widths $W_{\lambda}(\alpha, O H) \sim 3 m \AA$ and $W_{\lambda}(\alpha S C O) \sim 0.03 m i$. Thus, we conclude that
interstellay absorption will have an entirely negligjole effect on our observed MgII profiles. "At much higher resolution, it may be possible to detect interstellar MgII absorption in the cores of the h and k lines.

IV. FeI FLUORESCING TRANSIIIONS

If: the MnI and FeI trensitions are responsible for the k line asymuetry, we can expect to observe fluorescing MnI and FeI emission lines in the visual.

The MnI line has a small (1.3% branching ratio with the
 The large number of satterings required to convert a Mn photon enhance the probability that the photon will not be converted at all (for example, the ultraviolet photons might be extinguished on dust grains within the shell). In addition, the relevant visual. Mn lines are blended making unambiguous determination of any emissisn difficul.t. The FeI line is an intercombination transition with a 59\% probability of emission in the $4307.91 \AA\left(a^{3} \mathrm{~F}^{0}{ }_{3}-a^{3} G_{4}\right.$, multiplet 42) line. Fluorescence in Fel and MnI in long-peniod variables through wavelength coincidences with the MgII h and k lines was first discussed by Thackeray (1937).

Tracings of 3 members of multiplet 42 in α Ori from a $3 \AA / m m$ plate are shown in figure 5. The 4272 and 4326 A lines should be unaffected by the fluorescence in the $4307 \AA$ line, The gitvalues are in the ratio $0.74(4326 \AA): 0.83(1307 \AA): 1.0(4272 . \AA)$ and, at photospheric temperatures, the small differences in excitation potential may be ignored, Clearly, the $4307 \AA$ line is weaker tinati expucted and we attribute this to filling in of the line by the emission arising
from absorption in the $2795 \AA$ intercombination transition. Anothes line at $4202 \AA$ is similarly affeeted. This observation was finst made by Spitzer (1939) who drew attention to the possibility of fluorescence. Our photographic spectra for α Seo show a similar but: weaker effect. We assume that the α Oni and α Sco observations approximate averages over the star and the entire shell.

The flux absorbed by the FeI 2795.006 \AA line may be estimated from the olserved fluorescence at $4306 \AA$. The enission was estimated using the $4272 \AA$ line as the undistorted photospheric line profile and converted to an absolute flux using spectrum scans (Fay and Honeycutt, 1972; Fay and Johnson, 1973). We estmate that filux of about 3.600 ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ at $2795 \AA$ is needed to account for the Fluorescence in a Ori.

The k line asymetry in a Oni comesponds to a flux defjeiency of 3000 ergs $\mathrm{on}^{-2} \mathrm{~s}^{-1}$ at the stellar surface. An optically thick FeI 2795 A line with a large Doppler width ($v_{D} \sim 10 \mathrm{~km} \mathrm{~s}^{-1}$) would account for about 50% of this deficiency or a flux of 1500 ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$. This Flux i.s in good agreement with the estimate based upon the observed fluorescence. A similar conclusion holds for α Sco. These calculations suggest that the overlying fel, and MnI lines are responsible for a major part of the observed k line asymnetry. As shown in $\oint 3$, the circumstellar shell is not responsible for the fluoresconce and an alternative site must be found.
.The FeI line at $2803 \AA$ overlying the MgII h line appears not: to produce fluorescence in the appropriate visible lines. Since the optical depth in this line is about 10% that of the $2795 \AA$ line, the latter can have a substantial optical depth ($\tau \sim 5$) and provide an asymnetric k line. The non-appearance of fluorescence via the $2803 \AA$ line does exclude very large optical depths ($T \sim 50$) in the $2795 \AA$ line. There remains the possibility that the $2803 \AA$ line may be marginally affecting the h line and that the intrinsic chromospheric MgII profililes are both asymuetric in the sense, predicted by an expanding chromosphere.

v. conclustions

The observed weakening by fluorescence of the FeI $4307 \AA$ line is good evidence that the MnJ. and FeI resonance transitions overlyjing the MgII k line profile are responsible for the strong asymuetry of this line in α Ori and α Sco. However, our quantitative study shows that the absorption provided by the cool circunstellar sheils is insufficient to provide the observed asymetry. The discrepancy is especially marked for α Sco for which the circumstellar shell is vely tenuous.

One possible location for an additional cool layer would be the top of the chromosphere. The chromospheric temperature must peak and fall to the low kinetic temperature of the shell. The shell is distinguishable because it is expanding relative to the photosphere at about $10 \mathrm{~km} \mathrm{~s}^{-1}$; i.e. the narrow shel.3. absorption cores are displaced to the violet relative to the broader photospheric lines. If the top
of the chromosphere vere turbulent and approximately stationary relative to the photosphere, its eflect on the absorption cores could go unnoticed. Of course, it would symetrically broaden and deepen the cores of the photospheric lines but their profiles cannot be predicted with sufficient precision to detect this additional absorption, Boasgaard and Magnan (1975) discuss the ultraviolet FeIJ emission lines and propose that they are produced by infalling gas about 1.5 stellar radii above the surface. This chromospheric gas is presumably also responsible for the MgII emission whose formation we have not discussed. These authors suggest that the chromosphere may contain large scal.e inhomogenicties of hot and cool gas. The FeI fluorescence must occur in the cool gas. If the excitation temperature is moderately high, excited lines may also affect the MgII line profiles. Further observational evidence for this chromospheric structure is needed.

In this study, we have not given serious consideration to alternative explanations of the k line asymuetry (e.g. an expanding chromosphere). A test of our suggestion that the asymnetry is the result of overlying, MII and Fel resonance transitions will be possible when high resolution scans of the k line are obtained; the MnI and FeI lines should show up as deep absorption features wi.thin the MgII. profile. High resolution scans should also be made of the h line in order to assess the contribution from the $2803 \AA \mathrm{Fel}$ line. These scans will also enable a better assessment to be made of the symmetry of the chromospheric MgII profiles.

$$
-19
$$

Thanks are due to Drs. Ted Snow and Don York for thein assistance in obtaining the Copernicus" scans. We thank Dres. Yoji Kondo and Tony Brooke for helpful discussions and Dr. Paul Kunasa for a copy of the computer code which was the basis for line profile modelling and for helpful discussions about radiative transfer in spherical geonetry. We are indebted to Dr. S. G. Ijilfond for a cor of a high resolution spectrum of the solar MgII lines. Our research has been supported in part by the National Acronauties and Space Administration through grant NSG-5005.

REPCRENCES

Arams, W. S. 1956, Ap. J., 123, 189.
Bell, G. D., Davis, M. H., King, R. B., and Routly, P. M. J.959, AD. J., 139, 43%.

Bernat: A. P. 1.975, in preparation.
Bernat, A. P., and Lambert, D. L. .1975, in preparation.
Blackwell, D. E., and Collins, B. S. 1972, M.N.R.A.S., 1.57, 255.
BJ.ackwell, D. E., lbbetson, P. A., and Petford, A. D. 1975, M.N.R.A.S., 171, 195.

Boesgaard, Λ. M., and Nagnan, C. 1975, Ap. X., in press.
Boksenberg. A., Kirldhem, B., 'lowlson, W. A., Venis, I'. E., Bates, B., Courts, G. R., and Carson, P. P. D. J.972, Natume Phys. Sei., $240,127$.

Bonneau, O., and Labeyrie, A. 1.973, Ap. J., 181, 61.
Deutsch, A. J. 1956, Ap. J., 123, 21.0.
Fay, T. D., and Honeycutt, K. 2972, A. J., 77, 29.
Fay, I'. D., and Johnson, H. R. 197~, Ap. J., 181, 851.
Gehm, G. F. 1974, Astron. Astrophys. Suppl., 18, 259.
Gezari, D. Y., Labeyrie, A., and Stachmik, R. V. 1972, Ap._J., 178, L71.

Goldberg, L., Ramsey, L., Testerman, L., and Carbon, D. 1975, Ap. J., in press.

Greve, A. 1971, Astron. Astrophys., 36, 135.
Hobbs, L. M. 1969, Ap. J., 1.58, 461.
Keenan, P. C. and Morgan, W. W. 1951, Astrophysics, J. A. Hynek, ed., New York: MeGraw-Hill Book Co.

Kondo, Y., Giuli, R. T., Modisette, J. L., and Rydgren, A. E. 1972, Ap. J., 176, 153.

Kondo, Y., Morgan, T. H., and Modisette, J. L. 1975, Ap. J. (Lettexs), 196, L125.

Kunasz, P. G. 1973, unpublished Pl_{1}.D. thesis, University of Colorado.
Kunasz, P. B., and Hummer, D. G. 1.974, M.N.R.A.S., 166, 57.

Kurucz, R. L, J.974, SAO Sprecial Reports \#359 and 360 .
Modisette, J. L., Nichols, R. E., and Kondo, Y. 1973, Ap. J., 186, 219.
Moos, H. W., Linsky, J. L., Henry, R. C., and MeClintock, W. .1974, Ap. J. (Letters), 188, L93.

Ostrovsky, Y. I., and Penkin, N. P. 1957, Optics and Spectrosc., 3, 193.
Rogerson, J. B., Spitzer, L., Drake, J. F., Dressler, K., Jenkins, E.B., Mortion, D. C., and York, D. G. 1.973a, Ap. J. (r.etters), 181, L,97.

Kogerson, J. B., York, J. G., Drake, J. F., Jenkins, E. J., Morton, D. C. and Spitzer, L., 1973b, AD. J. (Letters), J.81, L,L10.

Roteman, H. R. 1958, Z. Phys., 1.53, 1.58.
Snow, T. P. 1974, Private commmication.
Spitzer, L. 1939, Ap. J., 90, 494.
Stone, $\mathrm{r} . \mathrm{N}$. , and Struve, 0.1954, P.A.S.P., 66, 257.
Thackeray, A. D. 1937, Ap. J., 86, 499.
Tull, R. G. l972, Proceedings ESO/CERN Conference on Auxiliary Instrumentation for Large Telescopes, Geneva, p. 259.

Weymann, R. 1962, Ap. J., 136, 814.
A.p. Bemat and D.L. Lambert Department: of Astronomy University of texas Musti:in, Jexas, 78712

TABLS 3.

The NgII h and k lines in α Ori. and α Sco

	a Oni			α Sco		
	h	k	k_{1}	h	k_{v}	k_{r}
Line Counts/14 see	11420	3975	6970	. 9230	2700	6350
	± 500	± 350	± 350	± 300	± 21.0	± 270
Observed Flux $\left(\mathrm{ph} \cdot \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	43.7	15.2	26.7	35.4	10.3	24.3
Stellar surface flux $\left(10^{3} \operatorname{erg~cm}^{-2} \mathrm{~s}^{-1}\right)$	11.1	3.85	6.8	24.2	7.1	16.7
Full width at base of line (A)	3.6			4.6		

TAME 2

Upper Limits to Line Flux from a Ori

NOMES JO TMMIE 2

1. The count vate vefers to the menn baekground rate outejade the expected position of the line. the predicted bnekground count rate has been subtracted for lines below $1200 \AA$.
2. The Copemieus efficiency figures are from Snow (1974).
3. The $C 0$ observation includes the part of the $(0,0)$ band of the Hoplicld-Birge ($C^{l} \Sigma^{+}=X^{l} \Sigma^{+\dagger}$) systen.

FIGURE CAPMIONS

Fig. 1. - Copernieus sean of the Merl doublet in Metelgense. The background level (ashed line) is attributable to noise events and does not represent the steduar contimum. positions of the Mnl and Fel resonmee transtions diseussed in the text are shown above the speetrum.

Fig. 2 - Copermicus scan of the Nert doublet in Antaros.
Fig. 3 - The coves of MnI resonance lines in a Ori at (a) 11030.88 and (b) 4033.1. The interpolated core of the photospheric line is shown by the dashed line. The predicted shell absorption core with redwara emission is shown by the solid line. The intensity scales for the two lines are not identical.

Fig. 4 - Predieted profiles for the mi 27958 line fomed in the circumstellar shells of α Ori and α Seo.

Fig. 5 - MgIt K line profiles for α Ori and a Sco showing the maxinum effect of the overlying circunstellar MI 2795 line. The dashed line shows the observed profile (solid line) after comection for the MnI line.

Fig. 6 - The α Oni photospheric spectrun nean the Fel lines at 4272, 4307, and 5326月, The local continum for these three lines is at the top of the figure. The cof line in the left hand panel shows a narrow displaced core arising in the circunstellar shell.

ORIGINAL PAGE IS
OR POOR QUALITY

OETCINAL PAGE IS
OF POUR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORTMNTAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

