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A NOTE ON A BROKEN LAYER
IN AN ORTHOTROPIC LAMINATE COMPOSITE
K. ARIN

Lehigh 'Iniversity, Bethlehem, Pa., 18015, U.S.A.

ABSTRACT

An orthotropic laminate composite containing a completely
broken layer is considered. The problem is formulated in
terms of integral transforms and then reduced to a singular
integral equation which is solved numerically. The strength
of stress singularity at the crack tip is determined from a
characteristic equation which is obtained by studying the dom-
inant part of the singular integral equation near the end points.
The stress intensity factors are given for various material

properties.

1. INTRODUCTION

In a previous work by Arin [1l], the problem of an ortho~
tropic laminate composite containing a layer with a crack and
bonded to two half-planes of dissimilar materials has been
solved and the effect of the material properties as well as
various crack sizes on the stress intensity factor at the tip
of the crack illustrated. It has been shown that there are
basically two types of. orthotropic materials. The results were
given for two different cases (Materials Type I and II}). It

was concluded that the decrease in the stress intensity factors



was apparent in the case of a matrix of stiffer material.

This is meaningful from the point of view of crack arrest.

In this paper, the limiving case for which the crack
reaches the interface will be investigated. It can be shown
that the Fredholm kernels in [l] become unbounded as the crack
touches the interface, hence reguiring a separate treatment
of the problem. Extracting the additional singularities, the
singular integral equation of [l] can be solved in a similar
manner. Here, only the material Type I will be considered.
The solution for material Type II can be obtained similarly.
The notation and certain results of [1] wiil be used wherever
necessary. Both the plane strain and the generalized plane

stress conditions are studied simultaneously.

The isotropic counterpart of this problem has been solved

by Gupta [2] and Ashbaugh [3].

2. FORMULATION OF THE PROBLEM AND THE SOLUTION

The singular integral equation of the problem of an or-
thotropic laminate composite containing a layer with a crack

of length 2a is given as [1]:

{(l-v__v__)
L2aledt | oy ppieiae = - 45 pex), |xl<a
207y
subject to
2 d(e)at = 0 (2.1)
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where

Bvl(t,O)
$(t) = —g— lt|<a , y=0 (2.2)
and vl(x,y) is the displacement component in y direction corre-
sponding to the layer. Here, Ex, Ey are the Young's Moduli;
are Poisson's ratios and G,, is the shear modulus. The

Y
hielastic constants Y; are given in Appendix A and [1] and the

Vey, Vyx

kernel k(x,t) is given in Appendix B. The input function p(x)

is the crack surface pressure and corresponds o the perturbation
problem. (2.1) is given for the generalized plane stress. The
plane strain case Es obtﬁined by simply_ipterchanging certa;n

constants (see [11).

However, the Fredholm kernel k(x,t) becomes unbounded for

a = h which represents a broken laminate. It can easily be
shown that in this case, the part of k(x,t) which contributes

to further singularities can be expressed as (see Appendix B)
ng. F et (x,n) e (=EInVB5/ Lo |

k (x,t) =
s 20 o

+ k;(x,n)e"h‘t’”“EEVIWBI]dn (2.3)

where ki(x,n) and ¥*(x,n) are the asymptotic expressions of

*
2

kj{x,n) and ky(x,n) as n =+ .

Hence, equations (2.1) can now be written as

1 h fb(t)dt 1’ v . h
T in TEec f 4y R P otle(e)dat + I kelx,t)o(E)dt
{1-v_ v _.)
Xy v¥¥X
= ! p(x) , [|x|<h
szony
Li ¢(t)dt = 0 (2.4)



where

=]

g Il Geym) - k;(x,n)]

ke (x,£) = K(x,£) - Kg(x,£) =

o (h=t)nvBs/|ug| [k (x,n) -~ k;(x,n)]e-(h-t)n/ﬁgylm3]
} dn ‘)

It is quite easy to show that kf(x,t) is a bounded kernel and

thus can be evaluated numerically from (2.5).

On the other hand, ks(x,t) can be obtained in closed form.
From the Appendix B, the asymptotic expressions of kl(x,n) and
kK, (x,n) can be given as follows:

'lmllnh -|m3|nh
YSle cosh(wlnx) + Ysze cosh(m3nx)

k;(x,n)

"'I“-‘llnh '|m3|nh
Yg53¢ cosh(mlnx) + Yga@ cosh(anx) (2.6)

k* (Xrn)
2

Hence, after intermediate manipulations we arrive at

1 1

: c'[t—(a h+b_x) + t-{a:n-b x)]
3 ETi840T0y 37775

3
220 j=1

ks(x,t) =
j=1,..4 (2.7)

where bielastic constants aj,bj and cy are given in Appendix A.

In dimensionless variables (2.4} hecomes

1
Y L

1 1
+ i}
T (ajHDjx) T (aj bjx)

[

bJ

3
1 .1 1
= fo {e=— 4 T c.
T =1 "T-Y j=1 J

20
b, (T)dT + h;% ke(hx,hr) ¢ (T)dT = g(x) Ix<1

[1 ¢ (Dat = 0 (2.8)



where

T=¢t/h , x = x/h
{(1-v__v__ )
—_—tY YX p(hy)

; (2.9)
ZYZOBY !

b0T) = ¢(t) , glx) = -

The solution of (2.8) can be expressed as follows [5]:
_ h¥r(t/n)e™Y
27.¥ ..
(l-17) _(t—h)Y(t+h)Y

where the unknown function F(t) is Holder continuocus in the in-

= ¢6(t) , [T|<l (2.10)

terval ~1<t<l and o<Re(y)<l.

The strength of singularity Y can be determined by investi-
gating the dominant part of (2.8) or (2.4) near the end } ints

(see [5])). Defining the sectionally holomorphic function

6(z) = _{Iﬁ _ql_(Et_)zdt (2.11)

following results can be obtained:

F(-1) _ F(1)

hY
¢(zl) = (3) cotmwy]

] + $,(z,) , ~h<z.=x<h
(h+x) Y (h-x) " 1l .
h F(1) _
®(2,.) = {(5—) —— + $n(2g.) h<z,.=a.h+b.x <
2] ij sinm((l‘lﬂt)'Y 2°72] ’ 213 ]
(1 + ij)h
_ _ (. h.Y F(1) = . heh .
@(z3j) = (55 =+ @3(z3j) . h-<z3j ajh bjx<

j sinmy (h-x)
(1 + 2bj)h (2.12)

3 =1,2,3
where ¢i’ i =1,2,3 are bounded functions everywhere except the

end points where they behave as follows:

d¥(z,) D
bq{z;) < T, e (29:) < L '
141 |zljh]al 2 j zzj-h 0y

R T- o ey



Dy

4’3(23:}) < Tém (2.13)

where o and Dj are real constants and aj<Re(Y). Also, ¢{(zl)

satisfies the Holder condition near and at the end points.

Substitution from (2.12) into the dominant part of either
(2.4) or (2.8) and considering that F(1) is an odd function,
the following characteristic equation is obtained to determine ¥:
3 C.
cosmY + 52— —L =0 (2.14)
Y20 §=1 ij

which can be shown to have at least one real root.

After determining vy, (2.8) can be solved using the numeri-

cal method given in [4], i.e.

N
1 1 _
3 ?_ F(Tj)Wj[T._x. - whks(hxi,th) + ﬂhkf(hxi,th”
j=1 i i
= g(xi) i = lp‘--pN_l
N r
where
PN(—Y’-Y)(Tj) = 0 j=1,..,N
p ‘1"Y'1"Y’(xi) =0 i=1,..,N-1 (2.16)

N-1

and the Wj are the corresponding weights., From (2.15) N unknowns

F(Tj), j =1,..,N can be determined.

3. THE STRESS INTENSITY FACTOR

The stress intensity factor at the crack tip will be de~
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fined as follows [Txyz(x,o) = 0]:

K= lim [2(x~h)]Y0 (x,0) (3.1)
x-+h Y2
*>h

where cyztx;Y) corresponds to the matrix. 2(x,O) can be ob-

c
4
tained in terms of ¢(t) starting from the expressions given in

[1]. Hence, after intermediate steps we obtain,

TYqq (1=VX VX ) 7
191 Txy yx_ 0y, (%,0) = I ¢(t)at f:?&i
O

E*
Y
- (h-t)nvBg/ |, | -luf| (x-h)n  vig -|w}| (x~h)n
{e [Visflg(n)e ?;I fl7(ﬂ)e ]
- (h-t)nvBs/ |w,| -|wk| (x=h)n  y¥
te ’ [Y;6f14(n)e 3 + Vi% £1g(n)

-|w*| (x-h)n (3.2)
e 1 1}

where

B
_ 1
fll(n) = ?;I"?Yzz tanh(wlnh)
B
- 8 y
flz(n) = YEI.FYZZ tann(wsnh)

£15) = Yaf(n) + £,(n}Ey4(n) + £5(n)£;,5(n)

£i4(n) = Y, £(n) + £g(n) £ (M) + £,,(M L ,(n) (3.3)
£,5(n) = By + BE sign(mg)'tanh(wlnh)
flG(n) = Ba + BE sign(wg) tanh(wanh)

le(n) = Yszf(n) - fg(n)flsin) - flo(n)fls(n) (3-4)
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However, the right hand side of (3.2) becomes unbounded
near the tip of the crack. Hence, the dominant part which con-
tributes to the singular behavior can be extracted in a manner
similar to the procedure used to obtain {(2.4). Thus, Uyztx,o)

can be expressed as:

(1-v¥ v¥ ) 4 ck
YR (x,0) =5 2 p —RIEAE_ 55 (x,0)
E* ¥y2 j=1 t"‘(a;jh'*'ij)

{(3.5)
where ogz(x,o) is a bounded function.

To determine the stress intensity factor K, the behavior
of the Cauchy integral in (3.5) near the end points has to be
investigated. Following the method given by Muskhelishvili [5],
the sectionally holomorphic function defined in (2.11l) can be

expressed near X = h as follows (h<x<=):

oz ) = - (hyY __P(1)

+¢ (24') I

4] 2by  sinm (x-m)’ 0%
<z, .=a¥htbix < o
h <z, =ath+blx (3.6)

Here, ¢o(z4j) is bounded everywhere except the end points, and

near x = h

C

— ’ o_<Rely)

[95 (2 50 | < o

where C and . are real constants. Hence from (3.1), (3.5) and

(3.6) we obtain



hYr(1)E" 4
K=~ o Y. z 7 generalized (3.7)
(1"“xy“yx)51n"7 j=1 (bj) plane stress
1-v* v* *
For plane strain ___§¥_Z§ = E; A* should be replaced hy l/A22
(see [1]). By

4. NUMERICAL RESULTS AND CONCLUSION

The numerical results will be given for p(x) = P, = constant
which corresponds to uniform crack surface pressure. K/pohY
values as well as y will be given for different material combi-
nations,

The following materials will be selected:

(A) Boron~Epoxy:

E, = 3.5 x 10%si E, = 3.24 x 10 psi

Vg = 0.23 , G = 1.23 x 10%psi
and for the plane strain
= 6rnai - -
Ez = 3,5 x 10%psi , Vo = uzy = 0,23
(B} Boron-Epoxy:
E, = 2.72 x 10'psi, B, = 5.5 x 10%psi
- _ 5 _.
vyx'" 0.22 , ny.- 7.0 x 107psi
and for the plane strain
- . Tnai = -
E, = 2.72 % 10'psa Vox = vzy = 0.22

{(C) Boron—-Epoxy:

7

E, = 5.5 x 10%psi B, = 2.72 x 10 psi
- _ 5
and for the plane strain
~ 6. - -
Ez = 5.5 x 10 psi ., Voyu = uzy = 0.1084
(D) Glass-Fiber (20% volume fraction):
E, = 6.6 x 10°psi B, = 2.52 x 10%psi
- _ 5 .
vyx = 0,32 , ny = 2.9 x 107psi
and for the plane strain
= 5.c1 - =
Ez = 6.6 x 1l0"psi , Vpy = Uzy 0.32

9
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Both y and K/pohT are given in Table 1 for various material
combinations, As seen from the equation (3.7), the stress in-
tensity factor is determined in terms of F(l). Since the un-
knowns obtained from (2.15) are F(Tj)(j =1l,..,N), F(l) is found
by an extrapolation. Hence, three different values for K/pth
are given in Table 1 to illustrate the effect of extrapolation.
Columns 1, 2 and 3 are obtained by extrapolating F(Tj) (3 =1,..,N),
(j = 1,2,3) and (j = 2,3,4) respectively. PFrom these results, it
appears that F(Tl) (as well as F(TND has a significant effect on
the stress intensity factor. It is also observed that the ¥y

and the K/pth values are quite sensitive to the material properties.
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APPENDIX 2

For Material Type I:

Dimensionless bielasti¢ constants v, (i = 46,70):
(see reference [l] for the constant3 Yl - Y45).

Yag = [Ya7 + Yo signluwy) llvys + vy, sign(w,)]

[¥p9 + Yyg sign(wa) 1Y,y +vY,, sign{w))]

n

Y3g T Y39 Sign(uw,)

1l

Y40 * Y41 Sign(w,)
Yag = Yqp * Y43 signluy)
Y50 = Y44 t Y45 sign(u,)
Y51 = Y7 Y49/ (V19" 74e)
Tg Y48/ (Y19 46)
Y53 = Y7 Y49/ (Y1974¢)
Y54 = Yg Y50/ (Y19746)

= P - pk o4 *
Y55 = 69 51gnlwl) BB sxgn(mB)

Y11
= ae— * 3 * - '
Y56 19 [BB SLgn(w3) Blo smgn(wB)]
= _ 1 .
Y57 = Yoo o1 Bg 31gn(wl)
Y
1l 1 R
Yeq = == [- Yy + =— B sign(uw,)]
58 le 22 Y2l 10 3
B
= 7 ;

12



B

- _ 8 .
Y60 = y,; * Yaz sign(ug)
Ye1 = By + BE sign{w}) sign(w,)
762 = BB + Bg sign(wg) sign(w3)
Y63 T Y57Y46 * Ya7V59 t Y4g¥eq

Y64 = Ys5g¥4e * Y49Ys50 * V50760
T55Y46 = Ye1Va7 = Ye2Y4g
Ys6Ya6 ~ Y61Ya9 ~ Vg2Tsg
Te7 = Y1g¥63/ (Y4¥19)

Y68 = Y65 Y15/ (Y46719721)

Y69 = YigYea / (V4g7¥19)

Y70 = Yeg¥1s/ (Y46V19Ya1)

Bielastic constants c,, b., and a; (i =1,3):

w w, 2
cl = - .L_l..l_ -Ysl ' bl = .__:_L._...
/By VBs
+
e, = - 191s2%| V53 b, = LU11%3]
/Bs /B
W., wa2
03 = - .‘—3_1. -Y54 ’ b3 = ——.3._
/B /By

13
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APPENDIX B

Fredholm kernel {(Bielastic constants Yi are defined in [1]):

8

~(h=t)nvB./|u, |

k(x,t) = ,,leo [ty (xime
'(h't)n\/é*s-/l“"BI
+ ky(x,m)e ] dn

1 _
ky(x,n) = Ty £ (Y [Y,£5(x,n)£,(n) + vgfe(x,m}Eg(n)]
1 :
ky(x,n) = E?E;?THT [Y4f5(x,n)Eq(n) + Ygfg(%em)£y5(M1
£(n) = £ £ (n) = £,(n)E, (M)

fl(n) = Y5 + Y24tanh(w3nh)

£5(n) = yyq * sttanh(w3nh)

£3(n) Yy9 + Ypgtanh(wynh)

f4(n) = Yyq detanh(mlnh)

£z {n,x) = cosh(w;nx}/cosh(w,nh)

i1

fs(n,x) cosh(manx)/cosh(MBnh)

f7(n) = Y3g * Y 3gtanh (w3nh)

fB(n) Y40 + Y4ltanh(mlnh)

i1

£q(n) Y49 + Ygztanh{wsnh)

flo(n) = Y4 * y45tanh(wlnh)
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Figure 1.

Geometry of the problem.
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