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J

Resistive Networks

First of :ell ,i few definitions must be given.

Definition 1- A grnlh consists of vertices and ed e•s, each edge

connecting two vertices. A graph is connected if every pair of vertices

Laae be joined.

Definition 2- A tree of a connected graph is a connected subgraph

containing all the verticcti and no loops.

Defi nition is An oriented b r_aleh is a a r:aph in which each edge has

assumed an orientation.

De fini tion 4- An incidence ma trix _C (vertex matrix) for an

oriented graph with v vertices and e edges is a v by a matrix

whose i j th elc rYient is

+1 if edCe j i . connected to vertex i and directed
away

a i . -	 -1 if directed opposite to above
J

0 if edge j docs not touch vertex i

The following is an example of a connected graph and the corre-

sponding incidence matrix.

1a
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If a vector le is made up of edge currents then Kirchoff's

current law can be expressed as

.1;, 4e _ o

D efinition 5: A red uced incidence m atrix 14 is obtained by de-

leting one row of	 a'

Theorem 1: Reduced incidence matrices are of rank v-1 (v

being the number of vertices) .

P roof: Consider a tree of the graph. It will have v-1 branches

which czar. be numbered 1 , 2, ... , v-1 . Then the reduced incidence

matrix of this subgraph is nonsingular . But, the columns of this matrix

are a subset of the columns of part of A .

Thus, il is alsoof rank v-1

It is also true that

1 e	 o	 (2)

in fact, the extra row of 4 a is just a liner combination of the rows of

so there is no loss of information in using (2).

There exist voltages, denoted Y n , such that branch voltages

can be generated by -r 11 as follows

,4 to	 fe	 (3)

To demonstrate this relation break up g into .4 ,, the v-1 by v-1

nonsingular matrix which evolves from a tree of the graph, and 4.
made up of the remaining columns. With this partitioning of .4, and

by partitioning;	 into ^ 1 and^e2 associated with .4

,J4 2 , respectively, we have
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(4 )

L4	 L Y.

•	 Now since	 is invertible we immediately have a candidate for the

''node" voltages -rn in

*E^	 (.141 ) -1 Z-,. 1	 (5)

Since this assures the equality in (4) of the first v-1 voltages, tht,

tree voltages, the rest follow from the fact that thes" tree voltages

completely determine all of the voltages.

Introducing; now resistors and voltage sources as branch relations

z 1 {	 Y	 (^)e 

then we can replace T:-

44 ' Y	 9,. + ^,	 (')

and letting; 9 inverse be e , then

3 . ' 11	 9f, + V e	 (8)

(.,4	 ^^^) V	 19 E	 (9)

So if (.4f4) han an inverse then

Vri _ (.4 C 
4e)-l

456C 	(10)

r .	 .14 1 (4-2.+4 f ) 1.4 .71 C .	 (11)

Definition 6:	 ..et .Q,j ..!4' be called the node admi ttance matrix.

•

	

	 It can be sho%%n that if the branch edge conductances are positive

then the node admittance matrix is nonsingular.

This development does not exclude the possibility of voltage sources

linearly .lependent upon edge currents.
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The following diagram illustrates some of these ro•lationships

.4 ,	
.4

c^
r branch	 1)ranch 

^e	
KCL

voltages in	 relation
terms of t ree

voltages

From this it can be seen that

Yn)-f ^el^y'n 2'rri 0	 (ll)

So the edge currents lie in a subspace which is orthogorsl to the edge

voltages. In fact, together these subspaces cover the whole space

(Tellegen's theorem).

From Eq. 1 it was seen that Kirchoff's current law could be ex-

pressed in a very simple form. It is now shown that Kirchoff's volt-

:^b$ lz^w can be expressed in a similar equation

a 're = 0
	

(13)

where re are the voltages across the edges of the network.

The appropriate elements of the 4a matrix can be found by

numbering all the possible loops in the network and letting

+I if edge j is in loop i and oriented the same way

b..	 -1 if oriented in the opposite direction from above

0 if edge j is not in loop i

Because there is	 much duplication of information in ,,^.	 be-
-a

cause of the overlapping of loops, it becomes advantageous to find

linearly independent rows of -2 a'

If we have a tree of a network, then adding a link from the link

set forms a loop through that link and the tree. Choose the orientation

in the loop the same as that in the link. With a and v the number of



Recalling the form of Sf (Eq. 14) we see that
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•

edges and vertices we see that we have formed a - v+l loops by adding in

all of the a-v+l possible links.

Def inition 7	 Let .e f , the funda mental lc^ n ot rix, be the pat ion of

the	 matrix formed with
n	 ^

--loop 1

a^	 l oop 2

i

-loop a -v+l
f	 1	 f	 ^

link 1 link2 ... link a-v+ 1 tree^ edges

where loop i is associated with link i.

Th eorem 2- Fundamental loop matrices are of rank a-v+1, where e

and v are the number of edges and vertices. In fact, they are of the

form

- f = [ I -v+l' B z 1 (14)

where Ie-v+l is the a-v+1 identity matrix, and ,8 2 is a e-v+l by

v-1 matrix.

Proof-	 In the	 formation of , 	 the i th loop is obtained by

adding the i th link and taking the loop through just that link and the tree.

Thus, no other link can be involved in the loop, anci the orientation was

chosen in the positive sense. So the a-v+l identity matrix is shown to

be in &,. Thus, .$ f is of rank at least a-v+l. However, ,$i has

only a-v+l rows so that must be exactly its rank. The rest is obvious.

If the cs • rrents in the fundamental loops are numbered as in the

rows of $f , and denoted 	 (sometimes called the mesh currents),

then it can be shown that

J f U4m	 ^e	 (15)



t dill

[ ^ns ^rr, `^,	 •

^1.
A

t t^ m

but is this equal to >Q, Because we hawr•qua ►lity for a fundamental

set of currents, that is, Ji m
equals its respective portion of	 1 '.,

and since all the currents , an be expressed in terms of these, then

equality must hold throughout.

Now introducing resistors and voltage sources

+	 16

	

Y.	 7^y

then we can replace — c

Ye	 $f Y n s + 
"jry	(17)

multiplying by ,$f

Mef L e	 ,^t r̂ t ^ni	 ^f f s	 (1 A)

	

4411 -(zf Z	 -1
.22 ) --e, ry

We can now construct the following diagram

node edge edge
voltages .4'	 voltages 12 currents .14

Irn E 9e 0

branch branch KC 1,
voltages in relations

terms of trey
voltages 1

I (identity) 1 (identity)

t Z Zt
0 L

mesh
^—'-- +^m	 .currentsC

KV 1, branch brarch
relations curr•nts in

terms of loop
currents

Basic Diagram of R,•lationships

{ 19)
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For soin^- specific ports we wish now to synthesize a ne t.vurk

which yields
•

—PP'P

Considering branches of the types

e>,	 v	 --^	 vi	 =	 v s	 + r i i i (LL)
r	 t

(l3)
+-T ► ^	 ii	 is + g i v i

1

what sort of networks can be built°

First, assume we have an a --bitra ry n-port network. If we put

current sources on the ports we can Solve for the impedance of the

network by finding the voltages across the ports.

C: a know that

_r.'	 -4, -r (24)
F1

but with current sources now

+ r Y	 or	 + 	 ^'n (25)

.,4 tie + -41;A'^'^ (26)► ^

thus	 'y'n	 -	 -%114,1 -1.4 uy (27)

Define a new matrix	 K	 such that

9 y	 -K i (29)p

where the m i nun s i an comes from the reversed orientation at each

+	 0	 10

port :	 VP
I

i

1

i

i
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The refore , + I if port j is across branch i and oriented
I	 oppositely

k i i	 - 1 if oriented opposite to above

0 if port j is not across branch i

It can also be seen now that tht• relation

v = K' Ze	 (30)_p

holds,	 and so from Eqs. 29, 29 as:d 30

v_p = K' ^'(AGA') I .4Ki p	 (31)

or	 ZE,	 K' J'(4(;4'I Lq K	 (32)

What row can be said aoout this arbitrary Z 
P 

'7 In other words,

what statements	 can we make immediately abcout a g, p which can

be synthesized9

(I)	
P -
	 j) : Since G = G'

then	 4fl-AT I 1	 (.AGE')- 1 	 (33)

so	 ^E	 (K'^'(^r;^'1- L!^^51^ - K'.+4'I (g('') I^'	
K_i,

(34)

(2)	
P 

s nonrrkative definite-	 If the branch conductances are

nonnegative, then since G is diagonal G is nonnegative definite, i.e., G? 0.

Thus. .OGIf' > 0 because with x .^'^

y'.4 G4'y _ x IGx > 0 because G> 0 so .4(;4' > 0 (35)

If the minimum branch conductance is c > 0 th,-n

Y ' d I (—I + (G -EIl if ' Y = EY , is-e 'Y + Y4 (G - F I )^ Y	 (36)

But	 Eye ^-
(J4 'Y > 0	 (37)

and this equals zero only if y - 0 because 4 is of fell rink. The

f
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1

se.:ond expresmion on th y right side of ( 36) is at least > 0 so their Rum,

i.4	
-1

	

•	 d (;^r0^ ^ 0. S u (,I/C;,^q ,1

	 exists and is > 0 t,e,	 ;, c• since

then AGA)x > 0	 (39)

and for	 y (X	 x	 y'(,gG')-1 y > 0	 (40)

and thus

	

) j	 B 	 K> 0	 (41)

(3) If there is a conductance across each element i
IL 

then

.4(;.r4 	 0 and hence (,A c;,r{ 1 ) -1 existc This was provuln a bove,

(4) 1 Z i j I	 Z.	
nd ` i i > 0 (pro ven by voltage Rain considerations)

(^)	 is ,l 11,iraijimint matrix. ( Best	 necessary con-

dition  on9Wp 
known at this time.) This includes (4) as a special case.

Definition R- A matrix s iaramount if every one of its minor3

J	 is c the principle minor made up of the same rows.`

It should here be stressed that there are paramount matrices

which cannot be built. That is, paramountcy is only a n"CCSsary con•

dition for 
Z 
	 to be synthesizable.

There ar- n ports where there is no impedance formulation possible-,

bo let's look at admittance representations also(many times neither will e.—

ist and a "hybrid" formulation must be sought).

V;e make an argument analogous to that in Eqs. 24 through 30.

With branchrelations Z 19 + 'r.
5
	(42)

we define an L such that

Y -L v_p	 (43)

	

0	 then by KVL writing tb for Z f since there will be no confusion

with otht , r	 '

*See Karni, S., 	 twork Theory: Analysis and Synthesis, Allyn and Rscon
I g Af., P . 418.
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.? 7. 9 - k L v	 k y  - 0	 (441

	

-9 Z. ^5' am - 4 1- \11  P - 0	 (45)

IM	 (,0 / 12 )1) to L- V 	
(46)

v p	(47)

and with	 ip	 L 9	 (48)

ip 
_ L' 95 , 4ZA T l I^ L 

y 
	 (4 +)

or	
X	

L' & , (a 'O') l^ L	 (s0)

A diagram follows which will help with conceptual understanding

as well as being a n nemonic device. Assume all they sources are in

place, and assume that Tr and 
`9r 

are the voltages and currents

in the resistive branches. I' and 90 are not related physically to

any gw4ntities.

zz /ts-,4 	 A0 14,
^r

-,_B L	 - K:>

YPz^-P

Vp

Diarjram of Fundamcrital RvlationS±iI-"

J

A'
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r: >	 Vz

	

1	 0

le

rb	 i

r,
vt	 r	 V,

wing two networks and their matrices.

Now

11-

Definition 9: A.'► n by n real symmetric n ► atrix A is dominant	 !
n

if 2a.. > j2: 1 la.. I for all 0 < i < n. 	 (511

Gefinition 10: A matrix A is hye rdominant if it is dominant

and a.. <0 for
I  —

It is true that all the hyperdominant 	 5ynttnetric
mat riCes

matrices are contained in the space of all 	 !Positive stun ► -	 I

dominant matrices which is contained in
definite

Pa rarn4)tii^t
the set of all paramount matrices. The Dom i n:i lit

paramount matrices are a subset of 	 Hyper-
dominant

positive semi--definite matrices which area

a subset of all symmetric matrices.

Theorem 3:	 A necessary (and sufficient for n< 3) a ondition for

an n by n matrix to b  the impedance or admittance matrix of a

resistive n-port is the paramountcy of that matrix. A sufficient con-

dition for an n by n matrix to be the admittance matrix of a re-

sistive n-port is the dominance of that matrix.

Proof: The entire proof of this theorem is long; and tedious so

r
it will not be covered. However, two parts of the proof are constructive,

in that the	 matrices are Synthesized. These two r,_stilts follow.

Synthesis Result 1: A 2 by 2 matrix can be realized as an im-

pedance of a 2-port if and only if it is dominant. To show t%is consider
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v l 	r1+r2	 r2	 1'	 V 
	 r  + r 5	 - r5 1 i1

or	 I

rl	 r3+ r L	 ,L	 vL	 - r 5	 r6 +r 	 kL

(5L)

Since these are the only forms a L by L dominant matrix can take,

then we are finished.

Synthe sis_ R esult L: A matrix can be realized as an admittance

niatrix	 if (no only if)	 it is dominant.	 To show this note that any domi-

rant matrix can be decomposed as follows:

Y12 I Y12 0... rl IY1 3	 1 0	 y13	 ...	 0

Y 12 1y1L I

0...o 0 0	 0	 ...	 0

- 0 0 0...0 + y13 0	 IY 13 I	 ...	 0
+...	 (53)

0	 0	 0...0 J0	 0	 0
n

0	 0	 0	 L-

+	 I Y 1 ^ I O Yid	
+ ... +	 00 : 0 0 0	 0

y ij ° iy ij i

oj
0	 0

n

LY22 -Z1 1 YLi I ... 0

n
0	 Lyr.n - Ellyni

where IYijl occurs in the ii and jj positions, i.e., on the diagonal.

So we have	 (n L - n) terms plus one term to make up the missing

amounts on the diagonals. Consider now the following two networks of

conductances and their matrices

i t
	 2a

vi	 VL

o	 "^ V	 a

l^	 12

V,	 VZ

2b	 2b

v



1
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i 1 	rt	
^1	

it	 b	 h	 V

•	 -	 (5q)

i 2	 - .+	 ^ ,	 i ,	 I,	 1,	 v2

•
The claim now is that networks of these types may be superimposed to

take care of all but the last term in Eq. 53. This last term, however,

has all nonnegative elements because 
J 

is dominant. To take care

of this last term we simply take, for each i, a conductance of the same

value as the i th port. The critical point in this admittance synthesis is

the fact that when a number of ports are shorted, no current flows be-

tween any two of these ports. Because of this superposition can be

used. This is where resistive synthesis like this would fail.

Example s This is a 3 by 3 example of the second synthesis

result. Let 3 be dominant, then

^J	
Y 1 1

eT	 y l L

Y13

0	 0

0	 1Y23
0	

Y23

Y 12	 Y 13	 IY12I	 y12

Y22 Y23	 Y12	 IY121

Y23 Y33	
0	 0

0	 Yll-IYl2l_1y131

Y23	 +	
0

' Y23 1 	 0

0	
1Y 131 

0
	

Y13
0	 +	 0	 0

	
0	 +

0	 Y13	 0

	
IY13

0
	

0

Y12 - I 
Y12 

I - 
1Y23 1

	
0

0
	

y 33 _' y l3 l - 1 y 23 1

(55)

Assuming for the sake of example that Y12 < 0, Y 13 
> 0, y23 < 0 and

assume y22 - 1Y 12 1 - 1y 13 I = 0. Then the network will have the form

v

4^



Port I A

y1I- Iy,^1 -1y,t1

port 3

V33 - I v„1- ly?.,I

r ll	 r1L

	

N%	 0

v	 I' 
12	 r 22	 r23

i

n-1, n

r
nn

the network

(56)
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* port
2

Three-port Network Synthesized from a Dominant 'l(—T

The question arises: Can every dominant matrix be synthesized

as an impedance matrix ? This question has not yet been answered.

(Warning: although the inverse of a paramount matrix is paramount,

the g ame is not true for dominance) .

The synthesis of a particular type of matrix follows.

SLrnthesis Result of a Special Case:	 Any dominant matrix which

is in tri-diagonal form, that is
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r,,- i r e:I	 r22-Ir1z ► -Irl -,I

Network for a Tri-diagonal Dominant Matrix

The polarities at the ports are determined by the signs of the off-

diagonal terms. For example, if ri i+1- -Iri i+l I then the polarity

of port i+l is the same as the polarity of the i th port, if ri i+1

i r i, i+ 1 I the polarities are oppositely oriented.

H
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RC Ni-twui _, s

Consider now the addition of dynamics to the resistive

n-p , )r; network. Capacitors are used for these dynamic elements,
thus branch relations will depend on s, the Laplac transform
variable,

i = Cs v	 (1)

or	 i(t) - C cidtt	 (Z)

One method of analysis allows the branch relations to depend

on s as in Eq. 1 and then to proceed as before. This procedure is

huwever limited ir, that the resistanccj must be constant.
Another method of analysis -nvolves extracting capacitors

-ind considering the resulting capacitive n-port as coupled to a
resistive n-port. This is the method which will be used here.

^A11 Resistive
C1	 / /	 vl

C/	 v2
l

C 	 a

Extraction of Capacitors Leaving a Resistive Nt•twork
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Consider first the admittance form. With i p as the currents

in the capacitors and i s as the currents in the sours vs, the rt•sis-
tive network yields the admittance relations

I n	 G11 x'12
(3)

1 (^ 21 222

defining

	

C1 0	 "' U

0	 C	 "' U
C °	 2	 (^ )

0	 0	 C^

so, in matrix form

1 P	 dt C - (i
	 (5)

with this and the symmetry of the resistive network, G 21	 x'12

CL	 G11	 G1 2 	a

(6)

at C ^ 	 G 12 C22	 v^

Another form of Eq. 6 results trom making the substitutions

	

and	 v^= C l c1p	(7)

If new we can solve for i in terms of v we will have the

general ad . ittance relation of the RC network. It is important to

note, however, that this "extraction of capacitors" method is not

always topologically possible. However, in this analysis we 36sume

the capacitor currents to be independent, while in fact it is possible

to connect capacitors in such a way as to make their currents
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dependent on one another. When this problem occurs it can be

eleviaeed by introducing r resistors. and then letting; r approach
ze-ro after the analysis is completed.

To find the RC admittance formula first take the Laplae e
transform of the lower portion of matrix Eq. 6 (assurninx R's and
ms's constant).

- s Cv^(s) = G lL va (s) + G22v^(s)	 (h)

su v
3 
(S) _ - (C s +G2L)- 1 G12 ^a ( s )	 (9)

but again from Eq. 6

- a	 G11 v a (s) + 1-, 12 v p (%)	 (10)

thus	 i a ( s ) = G11 v a ( s ) - G 12 (C s + G22)- IG ,. va (s)	 ( 1 1 )

or	 Y(s) = G 11 - G12 (C s + G2L)- 1 GiL
	 ( 12)

What properties does this Y(s) have

(1) Y(s) is symmetric. Because G 11	 G ' I I and G 22 = 222
for the resisti-., e network we can see immediately by F;q. 12 that
Y(s) = Y'(S).

(2) All th e po le s of the entries in Y(s) are nonpositive real.
We will prove here: that these poles are real. From Eq. 12 notice
that the poles of Y(s) are the poles of (Cs + G 22 ) -l . However,
since the elements of adj(C s + G L2 ) are just polynomials, and since

adj (C s + G 
22)(C s + G22 ) 1 = det C s + G22)	 (13)

e

then the poles of Y(s) are the zeros of det ( C s + C,22 ). Define now
such that vrC ^C = C. Now det (C s + G2L ) = 0 if det (v/ C - 1 C s v'-C-

V(lc- 1 G22 v C - 1 ) = 0, that is if

t
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det (I s + VrZ, I G22 V^. 1 )	 0	 (I i)

So wt- have s hown that the poles of Y(s) are- the- vig-nvalues of

- 1 G22 VT 1 • But because C and G22 ere s ysr .netric then this
matrix is also, and since ell symmetric matrices have real eiKen-

values w-- are dune.

A slight mathematical digression is now necessary. The
following corollary will aid in the solution of the RC impedance
relation.

Coroll a ry 1 (Partial Inversion Formulas)

Given a matrix formula

	

^1	 ^ 1	 K11	 ^lZ	 11
R	 -	 (l5)

^ 2)	 1 2J	 ft 1 L ^^ Z Z 12

with R = Ik e and RZ2 invertible and given the matrix formula

	

^1	 11	 M11	 M1Z	 '-1

M (16)

	

i2	 KZ	 —12 —22 c^Z

with M1 1 = A1 i 1 and ML, = M22 which is invertible. then

-1	 -1
M 11	 Mlz+M 12 M2 L Mll 	 h1L2

	

R =	 (17)
-1	 -1

M22 M 12	 MZ2

and
-1	 -1

R I l - t 12 822	 1.'	 K12 R22

	

M =	 (18)

R22
-1	 ,	 -1

-	 K 12	 R22
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where the dirni-risiun of v  equals the• dimensiun of i I and the

dimension of v 2 equals that of 11.
Now for the RC impedance representation we again pull out

the • capaeiturs and find the relations

—̀Q	 ^t 1 I	 ft 12^ 1 n
1

(19)

v^

With the partial inversion formula of Eq. 18 and by replacing i
with - dt C v p we obtain

v a	 Mll	 MIL i u

(20)

_ dt C	 M12	 ML l 	v(3

Using a procedure very similar to that used in Eqs. 8 through 11
produces the impedance result

Z(s) = M 11 + M 12 (Cs + M2L ) -1 M1 L	(21)

What properties does this RC impedance, Z(s), have

(1) Z(s) is symmetric.

(L) The poles of the entries of 2(s) are real and nonpositive.

The proofs of these facts are nearly identical to those in the
admittance case.

More can be said about the properties of RC admittance and
impedances. In fact a.l the possible forms for the plots of th use
functions can be displayed once we know the result of the following
theorom.

Theorem 1 : The impedance of any RC network can be
expressed in the form
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n

!( a ) = ?( m ) +	 ,^ ♦ s	 R i 	 (LL)

where Ri = Ri > 0, "i > 0 and Z((s)) = M I I the symm etric matrix
of Eq 21.

Proof: Consider any symmetric matrix S. Since S = S'
then the_ re exists a matrix H which is orthogonal, i. e., H H' I
such that

0	 ...	 0

c	 0

HS H =	 (23)

0	 0
n

where the Xi are the eigenvalues of S. Now from Eq. 21 we can

write

Z(s) = M 11 + M 12 ( % Ic V'77Fj + M 22 ) IM12
	 (24)

so	 Z(s) - M 1 1 + M 12 fi- - 1 (I s + ^C - I M12'^ 
	 1^ - 1 i1^ (L5)

The matrix	 - I M 2L ^- 1 ;s symmetric, so there exists an

orthogonal 11 such that

E11^7c-1 M 22 ` - -1 H = D	 (26)

where D is diagonal with real, nonnegative entries (because M22 =
M22 > 0). From Eq. 25 it can be seen that

•	 Z(s) = M 1i + M 12 ^:(; -1 H(H'Hs + H ' v,-c--1 ML2`/C-I11) 'Ii - V 'M 12

(27)
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letting	 B 
f 

N ' vT - l M 12	 (28)

then	 ZOO - M I I + B ' (Is + D)^ 1 B	 (29)

If we let the diagonal cele ments of D be 8  than

( s +s l )^ l 	0	 0

M ll + B .	 2	 13	 (30)

0	 P	 • •	 (s +-4 )-1
n

hssume for the moment that the s 1 are distinct, then

n

Z(s)	 M11 +	 ti +s i B' E.. B	 (31)
i= 1

where E., is the zero matrix except for a one in the i, i position.
So this B I E 	 is the R  we sought and it is indeed symmetric and
nonnegative definite because E ii is.

On the other hand, if the s i are not distinct, then instead of

B^ E ii B we would have BE ii, JJ, ... , kk B where X i = X  = • • . _ X 
and E.. 

it, 1J.... , kk 
has "ones" in the indicated positions with zeros— 

elsewhere. But these new E matrices air: still symmetric and non-

negative definite so the reasoning used in the "distinct" case is still

valid.
Now for the special case of Z(s) a scalar we can show the

form of the plot of Z(s) versus s.

Le mma 1: If

n
ai

i= 1

q



^l

w
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with a l and 
9  

real, a  > 0, + 1 > 0 and ml I > 0, than the poles

and zeros of Z(s) are real and they interlace with a pole closest to

(or at) the origin.

Proof: Lest s be a real variable, then

n	 n

lds '
	

- ds	 s+yi + m I	 =	
(s+s .)l 	

0	
(33)

i= ► 	 i= 1	 i

and for s renal this derivative will exist for all s and will be strictly

less that -, zero. So Z(s) cannot cross the zero line more than once

betwe e n poles. Because Z(o) > 0 of all the poles and zeros there

must be a pole closest  to the origin.

Now by substituting into Eq. 32 Z(o) is either o0 or K I > 0

and Z((x)) is 0 or K Z > 0. And because Y(s) is Z(s) -I then Y(o)

is 0 or K 3 > 0 and Y(oo) is -ou or K 4 > 0. So we can graph these

functions.

	

I	 Zlyl

I
I
1

\	 V

KZ	 t	 Ke	 K.	 ,

or	 1	 er	 CX

0	 1	 w	 -w

	

I	 ^

	

I	 i

	

I	 ,^

General RC Impeiance and .'Admittance G r Aphs

•
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The general form of Y(s) comparable to Eq. 32 is

n
a.

Y(s) = a ss + bo +
E s +ls.	 (34)

 i

where a  < 0. That a  is indeed negative can be seen from Y(s)

monotone increasing so

dY(s
c,

s	
= a

re + En  - ai L
> 0

i- 1	 i
(s+s.)

(35)

and thus a. < 0.i
There arc four specific methods of realizing 7.(s) and Y(s)

which will be presented before covering the general form of all

realizations.

Foster's First Form : Consider the simple resistive

network

III-IC

1

C

O Z

t^

Cp

Resistive Network for Foster I
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The R matrix is then the R + 1 by Ji + 1 matrix

I
R	 I

ro +	 ri	 r l 	r2	 ...	 rR
i	 I	 I

R -	
r 	

i r1	 0	 ...	 0	
(30)

r l	 I 0	 rL	 • • •	 0
I
I

rR	 i 0	 0	 ...	 rR

See th( • M matrix is

r	 11	 1 •••	 1

I---r------------
i ll - -L 12R22 18 12 K 12R2.' 1 -L	 i	 l̂ rl	0 ...	 0

M = -
I

- 1	 I	 0	 I/r2 ...	 0
-1	 l

-R22 R 12
-1

RL2
I

-1	 0	 0 ...	 1A J(i

(37)

From Eq, 21, connecting capacitors across the vulLagcs of the

resistive network above

-1

C l s+ l/r l 	0	 0	 1

0	 Cgs+I/r2 •••	 0	 1
Z(s) = ro +f1	 1 ••• 1^

0	 0	 •••	
CRS+I/rR	

l
a
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Thus,

fi

Z(s) = ro +	
rl	

(39)
ri

and so any RC impedance, Eq. 32, can be synthesized by Foster I.

To put Eq. 39 in the general form of Eq. 32 set

a•

ro	 mll	 C  = 1/a i 	and	 r  = 11si

Foster's Second Form: Consider the admittance of the

resistance retwurk

is

+	 r1	 r2	 ...	 rR

ro	 it	 i2	 lei
va	 +	 +	

+	 - 
t
1	 r

v 1	 vZ	 ...	 v

t	
p	 ..

-	 _	 _	 _	 T T	 T
1	 I	 1	 1	 Co C1	 CR

Resistive Network for Foster I1

The R matrix is then P + 1 by P 1 1 as Is

matrix and these will have following form!

ro	
r 	 r 
	 ...	

r 

r	 i r+r2	 or	 ...	
r

o	 o
o

I
R _

	 ru I	 ru	 ro+rZ ...	 ru	
or G =

I
r o	 ro	 ro ••. ro+rp

the corresponding M

R	 1	 I	 1	 1	 1

	

1^ r I - / r l - /r2 ...	 /r p
0 1	 I----- -- — — — — — — — — — — —

	

- 1/r2 i 1/r	0	 0
i

- /r2	 I	 0	 1/r 2 ...	 0
I

I

1/r	 i	 0	 0	 ...	 1/r

(40)
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where G is the network ' s admittance matrix. The M matrix with

1^ 1a drive of 	 can be found from the G matrix by using partial

inversion formula (17), so

M = ^ r

1	 i	 1/r1 /r2

/r	

...	 1/r^i

I
- 1/r 1	 i I/r 1 i= 0 

1/r i
	r llr2	

...	 r llrp
i^ 1

I	 ^
1	 I	 1	 1	 ^	 l	 ...	 1

/rL 
I	 r2r1	

/r2 1- 

U 
/r 1 	 r2rp

I	
1	 2

I	 p
1	 I	 1	 !	 !	 ^	 !/r)j i	 rpr l	 r^3r2	

/rp 
1 - 

0 /ri

(41)

If we put capacitors C O , r; 1 , • • • , C  across the positions indicated
in the network diagram their we can solve for the admittance- at the
a-port directly in terms of the G matrix of Eq. 40.

Y(s) = G 1 1 - C; 12 (C s + G22)- 1 G12 + C o s (42)

Thus,

	

Cls+r	 0	 0	 -. r

	

1	 1

(J	
0	 Cgs+r^	 •	 0	 rn	 L

Y(s) _	 1_ l 1	 + C s

1 = o 
ri	

r 1 
r2 	rp	 o

0	 0	 ... Cp s + 1	 1

	

r	 rp

(43)



Z(s

And eventually we fine!

Y(s) = r +
0

and so any RC admittance. E
II method by letting;

1
ro b	 Co - °o0

ai
r  = I/a	and	 Ci =	 /si

i

Cauer's First Form: Consider the network represented by

the block diagram

Block Network for Cauer's First Form

By inspection the form of Z ( s) for this network can be seen
to be

Z(s) = Z0(S)+YI(s)+ 7..1 (s) +... 7.p_1 (s )+ Y^; (s)+7.; 1(s)1-I
l

(45)

which is called a continued fraction. If now the Z i 's and Yi(s)'s
are replaced by r  and C i s respectively then the network and
impedance equation become

F,

I 
L



r̂
	 I	 i

•
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ro	 r I	 rGi

0---M.-

7(y) 	
IR	

Cgs	 Cis

Network for Cauer I

	

7.(s) = r o +(C 1 (s) +(r 1 +	 (rR-1 +Cp s + r^i I \-I^-1	 \-1\-1

(46)

The values for r i and C  can be found for a specific 7( q ) by
repeatedly dividing; and inverting. The R and M matrices which
correspond to Cauer I can be found to be

rr r
L^ ri	 I	 L..I ri	

r,_l+ ro	 f'ra
i= 0	 i- l

^	 I	 ^
r i	 I	 i'i	 r^ t` I'^	 T;i

I

i= 1	 I	 i= 1

I

I

	

r^-1 ` ^ I	 r^ -1' r^ ...	 r^-1 rtj	 t'^

r
s

R (47)

I

A
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M=1

I
r0	 I	 I	 0	 0

I
- --- T ---- ------------- - ------
, 	̂ I	 1	 _ 1	 0	 ...	 0

r l	 rl

I

0	 I _	 1 +	 _	 0
I	 r l	 r l	 rL	 r2
I

0	 0- -1 	 +	 0

i	
rt	 rl r3

I
I

I
0	 1	 0	 0	 0	 •••	 l+

I	 r^-1	 rp

(4K)

Cauer's Second Form : This is the reversed form of Cauer I,

that is, Y i(s) replacing Z i(s) and Z i (s)'s replacing the Yi(s)'s.

Thus, capacitors and resistors exchange places, so

C l s	 C29

+	 +	 -	 ' +

VI-%	 r rP

(49)

r
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Again the value s of resistors and capacitors can be found from a

specific Y(s) by repeatedly dividing and inverting. They corres-

ponding R and M matrices are

r 0 	-r0	 0	 • • •	 0

-r 0 	r 0 + r I - rI	 ...	 0

R _	
0	 - rI	 rl + rZ	 0	 (50)

0	 0	 0	 r^ - I + rfj

I	 I^

1	 I _^ t	 ...	 _ I

I	 ri	 (3I	 i= l
---- -- - - - - - - - - - - - - - -

1	 I	 k- 1	 i
M	 r	 ri	 E11ii_1Ir

	
r	 k -^

i=U	 i=0
I	 { } k, .II	 j - 1	 !c

rl	 I	 ri	 ri	 ,	 k` 
(i	 i=0	 i=0

I

Suppose now that we have a realization of

Z(s)	 M11 + M 12 C'

	

(s + M22)-IM12	 (52)

We may ask when is the most general representation of 7(s)

possible. In what is to follow the intent is to find a form which

covers all possible representations although it may also include un-

realizable representations.
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The impedanc v in Eq. 52 remains unchanged if we change

the capacitance by

A

	

7.(s) - h111 + 
Mll
	 (Is + VC	 Mll 

fC-II	
-I Mll.

(53)

Now let T be• any n by n orthogonal matrix, i, e. , T T e = 1. For

L by L the most general T is, for any 0,

	

cos(f	 sines	 Cos0	 sinO
-	 or	 (54)

	

-sin g 	cos H	 4in0	 -cos 0

A 3 by 3 T can be (Euler)

cos 0	 sing	 0	 COs m
	

0	 sin ¢	 cos L	 sin,y	 0

	

T - ;:sinH icos H	 0	 0
	

1	 0	 :p;in,U *cos y	 0
0	 0	 1	 in 4

	 0 tcos	 0	 0	 I

(55)

fur any H, (0, anti 4).

So we can further generalize G(s) as

_	 1	 1	 l	 1 „	 -1Z(s) M 11 + M 1L ^ 'I ^ (is + T ^ MLL yr 	 T) - 1 fC NI,

(56)

Finally, to be completely general, instead of being confined to the
use of the identity as the capacitance matrix we may use any capaci-
tances we wish, say K, by noticing that

7(s) _ M11+M12	 -1 T ' 3F7(Ks+ 7Tr/r` r^ LL ^-1 T ' vI—Y,	 JR VT M IL

(57)

"Thus we have generated the form of all the possible • realizations
given a particular realization, i, e. , given an M and C.
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The matrix diagram which shows tK- relations, between

these different representations is given ort the previous page

Here, since M I I must be the same in any representation aeltne

— A A	 n

vP	

_

vP 
MI I 

^P

Cf course, there may not exist realizations for each possible T.

And, in fact. Riven a desired K it may be an involved process just

to find a T for which a realization < an be found. That is, we must

find a T for which

M 11	 MIL	 -1 r'^K

M = 1 	 1	

I	

(59)

-vKTfC -1 M 12	 ^TVZ M 22 v^ T r' 
J

or rather

(58)

•

M I I + M I Z -M2z M12
R=

fK - 'T IC M 2L 1 M1L

M12M22I^ T'VK
- I

(h0)

^K -1 T^—CM2L 1̂ C T'fK-1

is realizable.

We now look at an example of the realization of an impe-

dance using the two Foster forms and the two Cao !r forms. Then

we will see where these fit into the family of all realizations.

Example : Consider the impedance

s+^
Z(S) - (s+1)(s+3)	 (bI)

To find the Foster I realization notice that

!"
( s) -	

1s+2	 1 	 1/ L	
(hl)(s+1) s+3)	 s +1 + s+3 
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•

+
.

!.(s)

4

Foster I Realization

Thus, to see what the R matrix is for this network examine

Q
	 ;. vI	 _ 1 _	 T	 i i 2	 v '.. 1

1,2
	

1/6
a

therefore

2/3	 1 1/2	 I/6	 0	 1 1	 1
--------- — —L— -- —

R =	 1/2 1 112	 0	 M	 -1	 2	 0
I

1/6 1	 0	 1/6	 -1	 0	 6

We can now check this via Eq. 52 to sce if we have the c-Drrect

realization

Zs+2	 0	 -1	 1
7.(s) - 0 + [I	 I	 -	 24 + 2 +	 s- IT	 (64

0	 2s +0	 1

and this checks with Eq. 62.

(63)
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Now find the Foster II reni! v e tion for Z(s). Since

Y(s)	 s2s 
++49+3	 (65)

then

Y s	 s2 +4s+  3 I + 2s + 3	 I + 3 l + Ay—1.	 ((>6)s	 s si^	 s s+2 `	•+	 s+2

Y(s) = s + 3/2 + s + s 	 (67)

Therefore, the Foster 11 network is

F
oster 1I Realization

and the c orrespondinq R and M are

I	 I

	

2/3 1 2/3	 2/3	 0 1	 1	 0

	

R = 2/3 1 2/3	 2/3	 M - -1 1	 2	 - 1 /2	 (68)
I	 —	 I

	

2/3 1 2/3	 8/3	 0	 -1/2	 I/2

which also checks when M is put into Eq. 52.

w
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1'he Cauer 1 form of this impedance comes out of the cal-

culation

s2+4s+3	 1	 1y +3	 1	 s+L	 1	 1

	

`I.( s) - ( x+2 / - C F s -	 (s +Cam+)

	

z s ^` l i Ls+3)-1 ) I	 s +l	 (1s +	 (69)1 ) I ) I)1
(	 C	 \

'T-'♦ 	 1/2	 1/6

Z(S)	 1	 4

T T
Cauer I Realization

This network yields R and M matrices

	

2/3 I 2/3	 1/6

	

R = 2/3 I 2/3	 1/6
—	 I

1/6	 1/6	 I/6

	

0 I	 1	 0

4o	 M =	 - l I	 L	 -2	 (70)
—	 I

0	 -2

I#

Filially, the Cauer II form of Eq. 58 is generated from

_ 3+4s +s 2 	 3	 L. `»+a 2 _ 3	 2+s	 -1
— _ ^+	 +sY(s)	 2+s +^2.5sTs^^

2 
+(4

5s + 2. 5 +s) 1 ? + (5s + 
(^5 

+ CS ! 1
\ 1\ 

1	 (71)
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we do indeed

(73)

^r

therefore
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Cauer II Realization

2/3	 -2/3

— — ^R =	 -2/3 1	 56
75

	

I	 2

0	
I	 25

0	 0

-	 so	 M = 1 I 3/2	 312	 (" Z)
I

2
l5	

1	 I 3/2	 14

Notice that the Foster "series" form uses as little total
resistance as any of these realizations whereas Fo:-;ter's "parallel"
fern uses the minimum total capacitance.

As a final application of the transformation ideas consider
the following realization of the previous impedance whie h is not ene of
the standard forms

1/3	 1/3
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	2/3 1 2/3	 1/3	 0 1	 1	 0

	

rt -- -- . _ -- I - - - -

	

R = 2/3	 2/3	 1/3	 and	 M - -1	 2	 -1	 (74)

	

1/3	 1/3	 2/3 L 0 i -1	 2

We thus have five different realizations of this same impe-
dance and it is interesting to find the transformations T of Eq. 57
which relate these different representations. First we will norma-
lize all of these realizations so that they all are of the form of
Eq. 53, then we can easily compute the T's which transform one
into another.

We will call

	

Cos 0	 sin0

	

T =	 (75)

	

-sin0	 cos 0

a rotation of 0 degrees, and

	

cos 0	 sin H

	

T =	 (76)

	

sin 0	 -cos 0

a reflection of 0 degrees.

Thus, we notice from the table on the following page, that
the normalized, i. e. , unit capacitance , Foster II and Cauer I
forms are identical to the nonminimal form. Foster I is a 45 o rota-
tion of the nonminimal form and Cauer II is a reflection of about
243. 5 0 (180 0  + arctan 2) from the nonminimal form.

a
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Realization M C VIT	 M 12 V,C - I mut 
C - 1

0	 1	 0

- -- -- 1 0 I l -1
Non Minima - 1 2 -1

0 1	 -1 2 0 1 0 - 1 2

Foster 1
1 0

0	 1	 1
-------
-1	 2	 0

2-	 0 1/,/

-1 I	 0 6 0 L 1 ^^ 0 3

0 1 0
- - - - - - - - - , 0 1 2 -1

Foster II -1 2 - 1^2

0 ;	 - 1/2 1,2 LO 1,4 U - 1 2

0

- -
1	 0L - - - - 1 U 1 2 -1

Cauer 1 -1 2 -2

0 1	 -2I 8 0 4 j U j -1 2

0

Cauer II
- -I- - -

3/2
- - -

3/2
5/4 0 -2/^T 6/5 3,'5

1
I

I	 3/2 14	 IJ
0 5 - 1lrr-5 3/5 14/5

3ins
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Scaling Transformations

Recall the necessary aid sufficient conditions for some Z(s) to

be realizable as an PC driving point impedance:

( 1) The poles and zeros of Z(s) interlace and a pole is
closest to the origin.

(2) All poles are nonpositive real and the residues at the
poles are positive real.

An equivalent RC condition on Z(s) is

n

Z( s ) = Z(w) +	
al

1 = 1	 1

with a  and s  real, a  > 0, s  > 0 and 7(cz)) > 0.

Consider now an RLC network with impedance Z(s) and a fixed,
arbitrary topological arrangement of the system's elements. Denote
this network by (L, R, C_ 1 , Z(s)). Keeping the topology fixed there are
two fundamental types of transformations which can be performed:

(1) Magnitude Scaling
T(a): (L, R. C -1 , Z(s	 (a L, aR, aC - l , a7(s))	 (2)

(2) Frequency Scaling

P (P) : ( L , R, C -1 , 7(s)) z.. (PL, R, !C 1, 7 !0 s ))	 (3)

Case I : Given an arbitrary RC network consider the effect of
scaling its magnitude by s.

T(s): (0, R, C -1 , Z ( s )) z. (0, sR, sC 1 , s7.(s))
	

(4)

(R, C -1 , 0, sZ(s))
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because. all acts like the impedance of an inductor of value R, and
sC-1 s = C - 1 acts like the impedance of a C - 1 valued resistor. Notice
that what we have left is just an arbitrary RL network.

Thus, any RL network rrrust be such that 	 Z	 (s) is an RCRL
impedance. The interlacing property of the RC poles and zeros can
then he graphically interpreted for the RL case. There are two possi-
l^ilities

ZRC(s)

RC(s)
... 6 	14	 e	 s

M

ZRL(s) sZRC(s)
^ ...	 s

ZRL(s) _ szRC(s)

0	 M	 e	 s

Pole-Zero Plots for Topologically Equivalent RC and RL Net w orks

So the poles and zeros of Z RL(s) interlace with a zero closest

to the origin. In fact RL impedances will also have partial fraction

expansions as in Eq. I.

Case 2: Given an arbitrary RC network consider the effect of

scaling its magnitude by fs.

T(f^) : (0, R. C -1 . 7_(s)) -4 ( 0 . f R, ^C- 1 , ^ 7.(s))	 (5)

Substitute p for V, then f R = pR acts like an R inductor and
s C-1 s -- C -1 1 = C-1 

P 
acts like a capacitance of value C. Then

T(p) : (0, R, C -1 , Z(s)) -z-,(R, 0, C - 1 , pZ(P2 ))	 (6)

which is just an arbitrary LC network.
Therefore, any LC network must have an impedance ZLC(s)

such that Z LC(s) 8Z RC` s 2 )• The pole-zero configurations for an
arbitrary LC network can then be calculated graphically :



.
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/.RC(s)	 LC (S)sl.RCOf

t	 s	 5` ^ r

IRC(s)	 7 LC (S) = 8ZRC(82)

i

5 ^+	 s

Pole-hero Plots for Topologically Equivalent RC and LC Networks

Thus, the poles and zeros of an LC plot lie symmetrically along

the imaginary axis with a pole or a zero at the origin.

work with	 workwith
ZRL(s)	 1 Z (s)	 1 7.	 Ws- ;	 ZLC(s)
^L) be	 s RL	 ZRC(y)	 f LC	 to be
realized	 realized

Change
resistors R
to inductors R	 Change
and capacitors C	 resistors R
to resistors C-1	 to inductors R

Realization	 lealization	 Realization
of Z RL(s)	 ---^ of ZRC(s) 1	 0 of ZLC(s)

4	 All Two F,lement Synthesis in Terms of RC Synthesis

Example: Consider the LC impedance

Z (s) -	 s (s z +2)

(s 2 + 1) 
(s2 

+3)

(7)

1
i

f

^tl
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We can set- that they topologically equivalent RC impedance is:

I

In the example on page 19 of the previous section we have found five
realizations of this RC impedance. So we have immediately five
realizations of Eq. 7 merely by changing the resistors of the RC
realizations to inductors of the same values.

e

IJJ/2	 1/6

Z(s)	 2	 L
1/4

ZOO	 3	 1 T_	 T	 2
Foster I
	

Foster 1I

f
5/4	 5

7.(s)	 2/3	 2/25
+	 1/2	 i /6

Z(s)	 1	 4I	 T	 l
Caue r I	 Cauer II

..

+	 -L-
1/3	 I/i T

Z(s)	 ►	 1/3	 1

T
A Nonminir-nal Realiz ation

P



C P - n -
^t

-45-

•

•	 Minimal RLC Synthesis

The method which will be used here to analyze a general RLC
network will he similar to that used previously to examine RC Sys-
tems. This method involves extracting all the capacitors, inductors.
and sources and considering the properties of the resulting resistive

network.

l+
vl \	 L l	Vp+1

1+

V 

	
v +Z

+

vn

C,=

C;+^T

•v
' Y

y4 1

Y+Z

Extraction of Reactive Elements and Smirces Leaving a
Resistivc Network

R



-46-

No,^- let uc form the following vector quantities :

v l 	i I	 va+1	
is 1

"« J	 ' «	
v^	

' pJ 	 I-

and so forth. Thus, we can display the dynamics of the reactive ele-

nients in the pair of equations

	

tt 
C 

^P	
- i p	 (2)

	

d L i	 - v	 (3)

	

,it --Y	 -''Y

where C and L are the diagonal matrices with diagonal elements
equal to the values of the various reactances.

Assume now that the "a" and 11 6" portions of the network are
the ports, and that we have added sources onto them for the purpose
of calculating impedance (or admittance). Our objective now

i
	

r (I

is to find	 in terms of 	
L

Because of the purely resistive property of the "extracted

network" we can find a hybrid description of the form :

is
M11	 M12	 I	 M 13	 'N 1^1 vQ

1

I
121	 ML2 i	 123	 Mz4 ^/3

— ------	 ------ -- (4)
—Y

M31	 M32	 I	 133	 M3 . 1 —Yi
141	

M 
12	 I	 M43	 M44

1 `
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where the purely resistive nature of this "extracted network" assures

us of the symmetry conditions

'	 M13 M14
	

M31 M3L
(5)

M23 M24
	

M41 M 12

I
M 11 M1L
	

M 11 Ml2
> 0
	

(6)

MLI ML2
	

M 21 M2L

M33 M34
	

M33 M34
> 0
	

(7)

—143 ^4
	

N1 4 1 M 14

Substituting Eqs. 2 and 3 into a portion of Eq. 4

d
cit Cv(3	 M22 M 23	 M21 M 24	 n

dt L—i i	 M32 M33 i^	 M31 M 3 . 1 lb

and

n	 M 12 M 13	 M 1 1 M 14	 V n
i	 (9)

V	 M42 M 43 - I '	 M41 M 44	 —`b

Consider now the task of finding the impedance of the given RLC net-
work. In this case we would use the current sources i 

b 
at the

driving point ports and we would try to find v b in terms of i b . Thus,

v = 0. Taking the y Laplace transformation
—n —

`	 Gs+ M 22 M L3	 ^^3	 M21
(10)

hi 32	 L9+M33 i 
Y	 M 34

(K)

i
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A Cs + M 22 M 23 _ l	 14
^ib	 111)

M 32	 LstM S S	 M 3•1

From Eq. 9
A A

	

 M 43 1 Cs + M	 M	 1 M	 i 4  i	 112)—b	 —•^^ —43 — —22 — 23	 —2.1 —t, --44--b
M 32	 Ls+M 1 3	 M 34

	

L(s) - M 44"1M 4t M431 Cs4M22	 M23 -1	 M21	 (13)

M 32 Ls+M S 1	 M 34

This is then the impe - dance of the• RLC circuit provided the
I 'M description" is possible after the reactances have bren extracted.

In a similar fashion the admittance may be calculated as

	

Y(s) - -MM M 13 1 Cs+M 22	 M23 -I	 M21	 (14)

M32	 Ls + M 33	 M31

If we wish to leave the impedance (or admittance) in its most
general form, we may redefine Eqs. 8 and 9 such that with

C 0

	

Q 4^
	

— —	 (15)

0 L

v^	 v^	 v—a

dt	 Q	 Q t11 1	 +	 11 12	 i b	 (16)
iy

i	 v	 v

Q 
Fi t 1	 + H22	 (17)

v b	 iry	 ib

and then we see eventually that

!^	 n
1	 v

A	 { H22 H21(Qs + 11I I)	 11 12 } ^	 (i8)
v b	 i^
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It now becomes advantageous to put the symmetry conditions,

Eqs. S. 6 and 7, in terms of the H matricrs. First, however, a

small diversion ib necessary in the way of pr-•parmg a cunvvnu•nt

form for the sysimictry conditions.

A Lorentz transformation is a transformation, e. R. , T.
which transforms a four dimensional vector x = (x i , x20, x ; , xa)

into Y = (Y l , Y2' Y 3 , Y 4 ) and pro- se-rves the "pseudo-length"
1^2

(x^ + x2 + x3 - x a)
	 (y^	 + Y^ + Y i - Y 2) 

1/2	

(19)

where
	 Tx = y	 (20)

Definition 1:	 A pseudo -Euclidean space K n(q, ii-q) is a
space with th,- inne-r product defined as

< X' Y ^. n-q G x l y l + x2 y 2 t... + xgyq

- xq+ I yq+ I - xq+2 yq+2-. - . - x n y n 	(". 1)

Definition 2: The signature matrix L ( n l , n2 ) has all zero off-
diagonal terms with the first n 1 diagonal terms +1 and th,- other

n 2 diagona l terms -1.
So we can write

< X'Y q, n-q x .'_.(q, n - q ) y - < x,L( q , n-q) y>^	 (22)

Now the question which arises ix: What transformations will
preserve "length" in these psiudt,-Euclidean spaces? If we c huose our
transformation as A, then to preserve length we must have

.1'	 '(q, n-q)A x = xt(q, n - ( 1 ) x	 (Zi)

or	 l A: (q, n -9)A = :-' (q, n - q)	 (24)

So this is the condition required to preserve "length" in F. n(q, n-q).
Example: Find the "lc-ng.h" preserving transformations ini	

the pseudo-space F: 2 (2, 0). These transformations are gust the
rotations and reflections defined in Eqs. 75 and 76 of the secti on on

`	 RC synthesis.
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Example:	 Find the "length" preserving; transformations in

the pseudo-space E 2 (1, 1). Let a general transformation A be de-
noted by

b
A =

d

Su since	 1 0
E(l, l) =	 (2S)

0	 -1

then Eq. 24 yields the condition

a c	 1	 0	 a b	 l0
(2u)

!)	 d	 0	 -1	 c	 d	 0	 -1

thus	 a2-cz	 ab-cd	 1	 0

ab-cd	 b2 •d2	0 -1
	 (27)

"Therefore, a solution for the most general "length" preserving
transformation in E 2 (1, l) is

*1	 0	 cosh 0 sink 0	 *1	 0
A	 (2g)

0	 #1	 Binh 0	 cosh 0	 0	 tl

where the 0 is arbitrary and where all t signs are independently
arbitrary.

Transformations of this type are called "rotations". Unfortu-
nately, the general formulas for rotations become extremely compli-
cated as the dimension of E increases. One frequently encountered
case where a general expression is available ! is the case where the

rotations are in E 2n(n, n). For this space thc: rotations are of the
form

A1 0	 Cush A Binh A	 .A3	 0

A =	 (29)
0 A 2 sinh A cosh A	 0	 A4

where the A i 's are n by n orthogonal matrices and A is an arbi-
trary diagonal matrix.

It is interesting to note that if A and B are "rotations" in
the same pseudo-space, then A - B is a "rotation". The identity

1. Youla,
ilp
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1

n i

•

1.

matrix is also a " rotation", so these transformations form a multi-
plicative group with an identity.

Now we are prepared to set down the symmetry conditions in

Eqa. 5, 6 and 7 in a compact form and using the If matrices from
Eq. 18.

(i) E(O.-Y) F1 1 1 =(P. _Y) = H I 1
	 (30)

(ii) E( a . b )H21. 1;(a. b) = H22	 (31)

ti) H1L( n, b) = If
-	 -zl
	 (3z)

or in terms of the M matrix in Eq. A

(33)

and these symmetry conditions hold for time - varying as wall as

constant systems.
From Eq. l8 and substitutin

A
t	 v—a	 —a

n	 u	 .^
	 (34)

"6	 1 r J

then we obtain the representation

Y = [f12L	 11 21 (Qs + H l1 ) 1 11 12 ) u	 (35)

We now ask what sort of transformations can be made on the 11
matrices to generate new networks with the same impedance. The
intent here is to find families of transforms which cover all possible
minimal representations although there may also be inched-d %ome

unrealizable transformed systems.
'riw first step, since the impedance must remain une hanged,

is to define

L - y - H22 u
	 (36)

because H22 cannot be effected by any transformations which do not
change the total impedance.	 'hus,

z = -HL1 (Qs+11 11 j I I1 12 u (37)

I.
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If we normalize to obtain utiit inductors and capacitors we have

z = •H LI '70-4 4 f—Q -1 1i11 ^5 -1' 1 F -1 1112 u	
(38)

Now, as in the case of the KC transformations, let T be a non-
singular transformation then

1
z = -Ht l,: -" -lCls+'I V- -1H11,(-Q- - 1T. -1) T.1—Q -l li lL u	 (39)

Further restrictions will be required of the- T transformation,
but first to be completely general we can use an arbitrary reactance
matrix P by noticing

z - -IIZI;^^-li- 1^'(Ps+3—PT	 -11111 J^-1T,

• v'-P-  T JQ -1 1i 1L u	 (40)

Thus, we have generalized the form of all the possitle reali-
zations given a particular realization, i, e. , given a Q and a set of
H matrices. The only problem which remains is that of placing; the
extra necessary conditions on T .

Let us hypothesize that a sufficient condition to be required of
T is

T 'E(a. y ) T - 2=((3,1')
	

(41)

That this is also a necessary condition to relate any reali-
zat ns of the same dimension is here only asserted, but let us at
least prove that all of the symmetry conditions of Eqs. 30, 31 and
32 hold.

I-
	 ( i) 2:(P, 7) P̂ T fQ -1H1 I VQ -1 T,-1 3P 2J (P. -y)

? J , ,T -1 ^ -1H11
	

-1 rte,'	 (4L)

^—P T -1"^—Q -1 111 1 v'—Q -1T'^P	 (43)

because of the fact that the P and Q matrices are diagonal. Also

from this fact

7)TF - 
l ll l 1 F -1 T -12; P, 7)

o	 '
T.-1 ,/Z)-1 H111^-1T,' (44)	

4
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Premultiply by T I and post mAtiply by 'T	 and make the

substitutions of Eq. 41
a

E(^,Y)fQ- H 	 '^.(a. Y)	
-111! l	 -1	 (45)

Since Q - is diagonal we obtain

j(p, Y)El l ,! (p, Y) = Ell l	 (46)

which is true by Eq. 30.
(ii) Eq. 31 remains unchanged

(iii) J;(P,Y)r/P T,/Q -1 11	 -112E(a.b)	 ^'P T	 F-I Hl l	(47)

Using methods similar to those in Eq. 43

	

E(^, Y)?'^-1Hlz^(a' b) 
T^-i^^^ - HZ 1	(4b)

	

F T ' E(P, Y) TfQ -1 H 1TE(a, b) = H21	 (49)

finally	 2:((3,-y)H12^(a,6) - 1i2 1	(50)

Thus, the restriction on the _T transformation is that it be 
"rotation" in the 2 +Y ((3, Y ) pseudo-space.

The matrix diagram showing the relations between the different
representations is given on the following page.

As in the RC case, there may not exist realizations for each
possible T . And, in fact, given a desired P it may be quite difficult
to :ind a T for which a realization can be found.

We now take four LC network realizations of the same im-
pedance and demonstrates the RLC transformations whit h relate them.

Fxample: Consider the impedance

7(s) _	 (s^+1)(sZ+3)	 (51)

s(s^'^Z)

The intent here is to find T matrices which will make the trans-
formations between various different realizations. (Since 7(s) is
the reciprocal of Eq. 7 of the previous section, realizations of
Eq. 51 can be obtained by using the so-called "dual networks" to
those previous realizations. )

Using the methods of the previous section we can easily find
the Foster II realization as
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LQ' I p.l ^'I

al

E-+

^I

HI

Lpfl I^

xI
HI

Hl
_ _ Nl

Lyl

^' I xl 'Hl

xi LO1

^ I x1
Idi ^ ♦_ ^ I^

r.

LOCI ^ Ldl
n^ L N

xlC71 NI



-55-

2	 i,4	 2	 lt s

_ 2	 6 T— v3

	

C,	 T

Foster I1 Realization

Now Eqs. 16 and 17 become

112 v 2	 0 0 -1	 0	 v2	 0

d

	
1/6 v 3	 = 0 0	 0	 -1	 v3	 +	 0	 vl

2 i4	 1	 0	 0	 0	 14	 - 1

2 i 5	 0	 I	 0	 0	 i5	 - 1

i	 =	 (0 0	 1 1t v7

v3

i4

II
i5J

(52)

(53)

(5.1)

(55)

and thus Eq. 35 becomes

^ l	 -	 -[0	 0	 1	 1] 112 0	 0 0 o -o	 -1	 0	 " I	 'o

o IA o 0 g+ 0 0	 0	 -1 0 ^
0 0	 2 0 1 0	 0	 0 -1 I

0 0	 0 zj Lo 1	 0	 01 -1

To normalize this representation note that

f2 0	 0 0

- 1 0 f6	 0 0
3Q 0 0	 11f2 0

0 0	 0 11f2
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u U -1 0	 0 0	 -1	 0

-1	 0 0	 0 -1	 -1	 0	 0	 0	 43	 (56)
1 0	 0	 U	 1	 0	 U	 0

0 1 U U j	 LO 13 U	 0

0

'r-11i1L	 0	 H21V:Q-1= ( 0 0 1/J2 1/12	 (57)
- 1112

-112

Now compare this to the normalized Foster I realization which

is found from

t^

2
-3
	 _ 4► ^	 '

4.°^^ 	 2	 -' v2 '	 I	 1
v1

Foster I Network

This network is represented by the equations

L/3 v L 	0	 0 0 -1	 v2	 0

- d	 2	 v3	 = 0	 0	 1 -1	 v3	 +	 0

	

dt	
1/4 i 4	 0 - 1 0	 0	 i4	 0

i 5 j	 1	 1	 0	 0	 i5	 -1

i 1	=	 (0 0 0	 11 v2

v3

i4

'S

v2	 (58)

(59)
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Thus,

0	 0 U

F
- 1 r 0	 1112	 0 U (60)

0	 0	 2 0
0	 0	 0 1

anti Yu in nurmalize -d form

0	 0 0	 -1 U 0	 0 -f?^

- 1 0	 0 1	 -	 i -1 0 0	 12 -1/12 (r	 1)

- 0	 -1 0	 0 - 0 -32	 0 0

I	 l 0	 0 J-37-2 1 112	 U 0

0

F-11112 = 0 fi21 fCQ -1_[ 0 0	 0 11 (62)
0

-1

,

At this point it can easily be verified that they "rotation" which

transforms the normalized Foster II form into the normalized

}F oster I is

L 3 -	 0	 0

L	 - L^3	 0	 U

0	 0	 1	 1

V2	 3L

0	
0	 1	 - 1

it- we find that the Cauer I form yields the network

^^	 1	 4

	

+	 -y	 --+
tq	

^ 5 	^+	 1	 + _^ 1

	

1	 v-	 L	 V5	
6

Cauer I 1t-•alization



U

U-1 11 12	11	 VIQ -1 =[o	 0	 1	 0l
—21-I

0

Again we wish to

the Foster II normalize

Foster II to Cauer I is

(68)

I !r

-SA-

The representative equations are thus

I/Z v Z	0	 0 -1	 1	 vZ	 0

1/6 v 3	0	 0	 0 -1	 v.3	 0

7	 i4	 1	 0 0 U
	 (64)

4 i 5 	 -1	 l	 0	 0	 i5L U

i t 	=	 [ 0 0	 1 0) v 
v3

i4

i 5-

Therefore,

VZ 0 0 0

fQ- 1 _ 0 16 0 0
0	 0	 1	 0
0	 0	 0 1/Z]

So

(65)

(66)

0 0 -1 1	 0	 0	 -f2	 1lf2

-1	 0	 0	 0 -ItiQ-1	 0	 0	 0	 - 3 Z	 (67)
1 U 0 0	 fZ	 0	 0	 0

-1 1 0 0	 - V12 1-37 2	 U	 0
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f

A13 0 0

T =	 1,r3 - L	 0	 0
0	 0	 1	 1

12	 fL

U	 0	 1 - 1
^?	 12

Once more, using; the methuds
section we find the Cauer 11 network to be

(69)

)f the previous

L 3	 Z5
F	 ^-

v^ -	 e V -	 I
3

L (51 --•.	 ^^ ^	 to 1^ S	 i5^	 ^

k

i

p

Caucr 11 Repro-sg-ntation
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So in this case

L	 0	 0	 0

3
Q-1	 0	 5/fL	 0	 0	 (72)

	

0	 0	 L/3 5	 0

	

0	 0	 0	 1/3

0 0 -1 -1	 0	 0 -,%T5 - 3moo
.Vu-1	 0 0	 0 -1	 -10	 0	 0	 _V TVQ

1 0 0 0	 -	 J^	 o	 0	 0
1 1 0 0-	 3TF,0 172- 0	 0

(73)

0

0
3Q -1111?	 _ L	 LizIJ_Q-1

	 0 0 35	 1 	 (74)
J5

_ 1

f5

Now when we compare this realization to the others we find
that the T which transforms the Foster II form into this Cauer II
form is

13	
1	

0	 0

-Z	 3	 0	 0

	

_T =	 3	 1	 (75)
0	 0

f10 J10

0	 0	 _ 1	 3

f10 110

These results are tabulated in the table on the following page.
It is interesting to noi s e the fact that the Foster II and Cauer I

forms yield the minimum total capacitance, while the Foster 1 form
offers the least inductance.

The RLC transform, theory which has been presented seems to
have one very serious drawback. This is the restriction which re-
quires the number of capacitors and the number of inductors to re-
main the same throughout the transformations. This drawback is in-
herent in the theory due to the inflexibility ,f the numbers of current

r
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and voltage • variables which in turn fix the- numbers of inductors .end

capacitors ( in 2; these are the n ,,mbeim of +1's and - 1 1 y re-

spectively).

For example, a network which cannot be linked to tho previous
Yy4te ms, but which does yield the same impedance

Z(s) =	 s2+1)(92+3	 (7b)
-► (s +L)

is the circuit

+_ ^^-_- I r- _ _ ; -__ ^i

Z(S)
	 't

Nonminimal Realization

However, in a way, we are not as "interested" in this network
because it uses more reactive- elements than the previous realizations.
In light of this we make the following definitions.

Definition 1:	 If 11(s) is realized by a passive network using
the minimune number of reactive elements then we call this realization

minimal.
It is well known that this minimum number of reactive elements

which will realize a given 11(s) (which is bounded at infinity) is the
minimum dimension of all square matrices 11 1 I which permit the
representation

Ef(s) = H22 - H21 Us + Li ll ) 1 11
11	

(771

where H 11 , 11 11 and HZ2 are constant (this number is called the
McMillan degree),

a
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U we are only interested in tinec invari.ent minimal realizations

I	 we can specify not only the total number of reactive elements,

but also the number of inductors and capacitors individually. So the

RLC transform theory will relate all constant, minimal realizations.
t

It is possible to calculate• these minimum numbers of in-
ductors and capacitors explicitly.

Definition l:	 The• Caue by index of a real rntional function
Z(s) between the limits a and b(denuted by Ia'!.(%))is the number
of times Z(s) jumps from minus infinity to plus infinity, minus the
number of times Z(s) jumps from plus infinity to minus infinity as s
increas es from a to b.

Theorem 1: In any minimal realization of Z(s) where n i r; the

total number of reactive cements then

I n-I ae^ Z(s)) = number of inductors	 (7K)

I 1 n + I OD Z(s)- number of capacitors	 (79)

and any nonininimal synthesis requires at least this many inductors and

capacitors. 3
Fxanipl_: C .i.side:r the impedance,

sL+.'.s +L

(y)	 sL+s +1

What number of in-.'euct^)rs and capacitors must be used to synthesize

this function 7
Because Z(s) is a scalar function with no common factors in

the numerator and denominator (i. e. , irreducibile), then the maximum
of the degrees of the numerator and denominator is the McMillan degree
of Z(s). "Thus,

n =	 L
	 (^'i1)

A

(KO)

I
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A pole zero plot of Z(s) readily

revealm that there will be no "jumps" in
Z(s) as s goes from -on to +au. Su

I	 Z(s) = 0, and therefore

Pule-Zero Plot of 7.(s)

n-I .Z(s)1	 2 i 2 -01 = 1 inductor	 (82)

L( n+I M Z(s)) = -y[ 2 +01 = 1 capacitor	 (83)

and these are the minimurn number-,of capacitors and inductors required
for the synthesis. In fact it can be easily verified that the network

Minimum Realization

does indeed have the impedance

7(s) 
_ 

3 2 +28+2	 (h4)
s2+s+1

Therefore, since only the minimum number of capacitors and inductors
have been used (these numbers given in Eqs. 82 and 83 , thus this is
a minimal realization.

To sum up, we have said that any two networks with the same
input-output representation have a T which connect them if they are
minimal. however, the possibility of equivalent nonminimal realizations
can not be excluded. Still needed in this field is a type of transformation
which is capable of relating nonminimal forms to the minimals.
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It may be interesting; to pundcr the conjecture that the four

reali4Ationx given un pages lU to 15 are • the on ly minam al realizations

of that impedance function.

a
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Transfer Function Synthesis

We now address ourselves to the problem of generating a two-

port network which has a certain transfer characteristic. It is

common to express this transfer characteristic in one of the three

forma

	

i) z 12	 transfer impedance

	

") y12	
transfer admittance

v2

	iii) u12	 voltage transfer functions
1

The voltage transfer functions are the 2,1 terms in the matrices

below 2	 `-

1	 z12	 y12	 y12
y

it	 z 1	 - z22	
vl	 11 - y22	 y22	

vl

I;
v	

z21- z12	
i	

Y21	
1; i

2 -	 ^z22
	 Z22	 z	 2

11	 _ j
	

y22	 y22.1 _ 2

First of all we consider building z 12 with no regard for

minimali . ty, or 
z11 

and z 22 . This can always be done if z12

merely satisfies the condition that it can be expressed as the

difference between two positive -eal functions.

z 12	
Z  - z 	 (2)

If this is possible then the symmetric lattics shown in the following

figure realizes z 12 since an easy calculation yields

1

(1)



Z a (3)

zb	 za I

Lb + z  -+

Za + Z 

zb - Z 

t
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+ c}— — —r--^ ..2 za	 --1 +

v1	
IZ C

	
v2

^--	 2z
a_,_ _.1

A Network for Realizing z12 a z  - z^

Certainly any function, z 12 which has all its poles in Re s c 0,

which has only simple poles with real residues on Re s a 0, and

which grows no faster than Isl as Isl	 - car, be realized in Qhis

way.

If we ask for a synthesis of 
z12 

which is minimal in the sense

that the number of reactances should equal the McMillan degree of

z12 then the situation is more complex. To begin with, we will

cons''er certain properties of these minimal z 12 realizations.

For simplicity we take up only the case where z 12 has simple poles

and no pole at infinity.

Property 1 : If Z(s) is the impedance matrix of a minimal

r. -Alization of

1	 n
z 12 (a)	 ^ a i/(s + ai)

A	 then

n	 1	 ^ a i	 ai
Z(s) - Z(-)	 ill s+J1 i 	 a

IIa
l_-1	

ai

(4)

(5)

L- A



'	 i	 I	 i	 1	 I	 1	 '
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This form comes about because the McMillan degree is the sum

of the ranks of the residue matrices. Hence. minimallt y demands

that these residue matrices 
h
ave rank one, and thus thev must he in

the form of Eq. 5.

Property 2 The sum of the numbers of inductors and capacitors

in a minimal numbers of inductances and capacitors necessary to

build the z11 (or z 22 ) term of that realization. Therefore,

`!o. of L ' s - 2 no. of complex poles ♦ no. of real poles with 6 1 < 0

No. of C's - 2 no. of complex poles + no. of real poles with F i > 0

It should be clear that the choice of the sign of Y i in 7.(s)

is arbitrary. Hence, there are minimal realizations which use

different numbers of inductors and capacitors (provided some of

the poles of z 12 are real). To make this point perfectly clear

consider the following two networks

8
4	 -	 1	 12	 v2

Realization 1

for which

3
_	 1	

s +	 2

Z(s)	
(s+1)(s+2)	

(6)

2	 12s + 16

and

(Jl
3	 -	 ^.

v l	 2	 3	 1	 v2

Realization 2

--	 -MEMO



r 

-(,q-

t

for which

t

-	 1	 2R+ h	 2
Z(s)	

( s+1)(s+2) 	 2	 s2 + 2	 (,)

And thus we have two different minimal realizations; of

_ 2
z1L(s)	

(s+1)(9+2)

We now consider the question of generating all possible x12

realizations from a j,iven one. This will be more difficult than

the job of generating all Z realizations from a given one because

of the added degrees of freedom implicit to the rather loose

constraints on z 11 
and z22'

A two port impedance description :after normalization will

have the form

x I	
h11	 h12	 I'13	

x

	

v l	 -hi2E1011Y)	 h22	 I'23	 it

V 	 E (B,Y)	 h	 h,	 i

	

2, ^	 -13-1	 23	 33	 2

wisere the network symmetry conf Ines

E1(^.Y)N11`-1(e.Y) - iill

where we ha ,e used the fact that n-0 and F.(O,d) 	 -I. A change of

variables, x*	 Px, with P constant and nonsingular Rives

P11liP-1	 Phil
	 Ph 13i	 x*

I

	

vl I	 -h12£1(^.'^)P-1	

hZ2	 h23	 itI	 I

	

v2	 -t ► 13F1(^.Y)P-1	 h	
h33	

I	

12

t

(H)

(9)

(10)
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Naturally Eq. 11 will not have network symmetry unless

E 1 0.Y)PE1 0,Y) - P'	 (12)

However, only the terms which contribute to z12 
are reall y essential

here, and the others can be adjusted to give network symmetry. The

terms which must remain unadjusted are the 1, 1-block, the 1,2-

block and the 3,1-block. Changing the 1,3-block and the 3,2-block

to reflect the symmetry conditions brings about an M matrix of the

f o rm

PHllp 
1
	 Ph 12	 E2(B,Y)P-1'E1(S,Y)h13

M	 h12P'E2(B,Y)	 h22	 h23	
(13)

^t'13=-1(S,Y)P-1	 h23	 h33	 J

where we have introduced __2 ( , ) as the signature matrix of the new

realization. Notice that there is one constraint on P, namelv that

E2 (B.Y)PH llP
-1F 2

(R,Y) - (PH 11 P
-1 ) ,	 (14)

But since H
11	

E 1 (d,Y)H11 E 1 (B,Y) we can be more explicit and write

E 2 (B,Y)P 11 11 p-1 E 2 (B,Y) W P
-11 E

i (a,8)H 117 (a.B)P'	 (110

Premultiplying by E 1 P' gives

	

E PIE PH	 H E P'E P	 (16)

That Is, E I
 P

I
E 2 P must commute with d11'

Thus, the sole constraint on a P transformation which vields

a matrix with the proper network s ymmetry is that EP commutes with

M11 for some E, so we can make a diagram which will relate normalized

realizations.

0

a



1
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h12

	

	
Ph12

P

^	 I
(la+ti ll ) -1	 i- (Is+PH11P-1)-1

' (	 --P_r-	 -- -

-1

h31	 h31P

z12 Diagram Relating Normalized Minimal Representations

Example	 We will here relate thu two networks represented by

Eqs. 6 and 7. The state equation for realization 1 is

_ 3	
r g
	 _ 1

4 'el	 I	 8	 8	 -1	 11 l	 I vcl i

12	 t	 8	 8	
0	 -1	 ` vve	 e2

v	 1	 0	 0	 0	 i 1pl	 p1

f
vp2	 0	 1	 0	 0	

i 1p2

and after normalization this becomes

-1	 -2	 0^ rx11	 2	 2

X2	 2	 2	 0	 -2r i	 x2

vpl	 ?	 o	 0	 0 ^	 I 
ipl

i

vp2	 0	 2 33	 0	 0	 I ip2 '
i

t

(17)

(18)

1 W.

i
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Similarly. the state equation and normalized state equation

for realization 2 are :

- 2 v^ l v	 1 -1 0
!vcl
I

iLl - 1	 1 ^1 1
iL23

^ (19)

vPl 1	 0 0 0 1P1

vP2 0	 1 0 1 1 P2

- z l 0 2 - ?	 0
1	 x r

- x 2 T 3 0	 r x
2

^ (20)_

^v
pl

v3
U 0	 ^^ i

pl

v	 1P2 0, r 0	 1 i r2

So the z 12 diagram relating these two normalized representations

is -_ z	 ; i 3 ^T

r r r
P

0 0 2 0

-^r B 2+Z	 - r - 3 -
s

-1

r
-1

- 
2	

s+ 
ZJ

0 -r 9+31
2

(0	 2.r3 [n -

Realization 1 Realization 2

I

z 12 Diagram Relating Two normalized Representations



T
I	 i	 i

1
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Time Varying Realizations

ti

Given the impedance

z(s)	
a1+3s+2

s2+2s+2

it is clear from the relationship between the Cauchy index and the

reactance signature that no RC realizations exist which are time

invariant. but the possibility of time varying RC realizations

cannot be ruled out. In fact we will here generate such a realization

from the given RLC realization :

i
P	 x

v	 1 r	 ^^.1	 1
P

_	 I

Figure 1 : Network which Realizes _Eq. I.

This network is represented by the Eqs. 2 and 3.

(1)

-	 x l 1 11 1rx 11- +
C0^

i
J p1 1 xx 2 `,

(2)

+ 1
	

(3)
P

v  - (-1	 01	 x

1 X 1 ^1

Moreover, we know that all other minimal representations of z(s)

which use constant elements can be obtained b y rewriting the equations

in terms of x* where x e - 'rx with E(1, -1)TE(1,-1) - T'.

On the other hand, certain time varying transformations. T(t),



can be found which will put this s ystem in the RC claws at the cost

of introducing time varying coefficients. Consider defining a

transformation

f 
x^ 

l 
r coh t	 -sin e 

l( 
x l ^I

Lx +^J - _Kin t	 cos tJ Lx J	 (4)
2	 2

Then a short calculation shows that

	

cos C	 -sin t	 cos t	 -sin [ r^1	 -1
x* iis +

C 	xsin t	 cos t J	 sin t	 cos t 1 1 	 0

fierce, x s satisfies the differential equation

- 1 01 cos t xl
(6)

- x2 0 1 sin t
x2

VP -cos t -sin t 1 i
P

where in deriving Eq.	 6 we have used the identity

cos	 t	 -sin t	 1 11	 cos t sin

l

t^
+

L sill	 t	 cos tJ-1 I 	 -sin t cos t

r  cos	 t -sin	 t r 0	 -1 cc• t
I lI

I-sin

sin	 t^	 r 1	 0^

sin	 t cos t J L 1	 0  t cos	 t 0	 1

Now the M matrix for Eq. 6 satisfies the equation

E(2,1)ME(2,1) - M' 	 (8)

(fence, Eq. 6, if realizable at all, will correspond to a two capacitor,

no inductor circuit. Some experimentation y ields the realization of

1.q. 6 given in Fig. 2.

r

I



It is ieft as an exercise to the reader

capacitors in Fig. ? dre replaced by arbitri

j	 the terminal impedance would be

.	 1	 +	 1	 -	 }r	 z(s)	
2- 2 { 1+z 1 (s+i+i)	 1+21(8-0

Note that for zl(s)	
s

as in Fig. 2,

-7s-

i

1-cost	
`^
	 l+cost

L	 `
1

L̂  I

1+cust	 1-cost

I^
Z(S) __ 0	

v 

1-aint	 ',	 ^1+sin[

1

1+sint "L1	 rN 1-sin[

	Fir. 2 : Time Varying RC Realization of z(s) 	
s2+3s+2

a2+2s+2

If we let the terminal variables be voltage and charge then the

equations remain unchanged if we replace the resistances by elastances

(inverse capacitance) and replace the capacitances by resistances.

Hence, the network in Fig. 3 has

qsz(s)	
s°+3a+2

s2+2s+2
(10)



all capacitor
vnlui•n are
expresmed an

elastances

1
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q

♦ 	 1-cost ^~ \^/1 ♦e0st
1	 ^

^ tiYYr

l+cost	 -1-cost
v

1-sint	 1 +KIF4t

^j
l+Mint	 1-sin.

i

	Fig. 3 . Time -Var k	 RC Realization of z(s) - s2+3s+2
s3+2s2+2s

z(s) - 2 - 1 (	 1	 l	 +	 1 -- !	 (12)

	

1 + s+i	 1 + e,i

r.(s) - 
2- 2 ( s+1+t F s+lii }	

(13)

	

2 - 92+a+1	 (14)
(s+l) 2 + 1

s2+3s+2
Z(S) - —Z -	 (15)

s +2s+2

Likewise, if in Fig. 3 the resistors are replaced by impedances

z l , then the terminal impedance is given by

+2. - 1z(s) - To-{—	 1	 1	 }	 (lb)
s 	 1+(s+i)z1(s+i)	 1 +( s - iIzl Pq - i)

Neither of these results is difficult to prove if the s ystem is

i

1



I1	 _.

1

I
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,ieaeribed in the time domain and shift theoremR are used.

The general approach to time varying realization theory which

these examples suggest will now be summarized.

(i) Find a set of first. order enuationx in the form

-x - Ax +Bu ; Y a Cx +Du	 (17)

which generate the desired terminal behavior.

(ii) Find a time varying, nonsingular transformation P(t) such

that the change of variables x* - P(t)x, which Rives

z* - (P(t)AP-1(t) + N O P-1 (t))x* + P(t)BU	 (18)

Y - CP-1 (t)x* + Du	 (19)

generates a realizable M matrix

PAP -1 + PP-1	 PB
M -	

- - -1	 —	
(2())

CP	 D

At present the number of worked examples is limited. However,

this approach has been successful enough to allow the design of

certain nonreciprocal two-ports as well as some parametric amplifier

circuits.

Exercise : Compute z(s) for the circuit shown below

^- l+cost
1-cost	 ^14	 1-siny^j,	 Z1^l+sint

4-- -^z

A-COSt
l+CUSL 

^^ ;	 1 +sint	 -aInt

where all values are conductances.

Most of these results are from a paper by R.W. Brockett and R.A. Skoog
and/or from R.A. Skoog's M .D. Thesis, Dept. of E.E., M.I.T., 1969.


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf

