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THE EFFECT OF BENDING
ON THE STRESSES IN ADHESIVE JOINTS

by

U. Yuceoglu and D. P. Updike
Lohigh University, Bethlehem, Pa.

ABSTPat

The problem of stress distributi .n adhesive joints where two orth-
otropic plates are bonded through a riexible adhesive layer is analyzed.

It is shown that the effect of bending of the adherends on the stresses in
the adhesive layer is very significant. However, the transverse shear
deformations of the adherends have in general very little influence on the
adhesive layer stresses and therefore these shear strains of adherends can
be neglected in many practical cases. It is shown that the maxiumum trans-
verse normal stress in the adhesive is, in general, larger than the max-
imum longi:tnudinal shear stress.

The method of solution is zpplied to several examples of specific
joint geometries and material combinations. It is also shovm that the for-
mulation and the solution of the problem of adhesive joints as presented
in this case is general enough to be applicable to other related problems
such as "scarf joints", "stiffener plates", etc. in a similar fashion.

1. INTRODUCTION

The joining and extension of structural components in the form of
"adhesive (or bonded) joints" has been a very common feature in all kinds
of lightweight structures. In recent yvears, the developments in very
strong epoxy based adhesives and advanced composites as well as new fab-
rication methods of joints have made feasible the extensive use of ad-
hesive joints in flight vehicle structures in which lightweight and high
fatijue strength are prime requirements. Consequently, considerable
amount of analytical and experimental research has been carried out on
the stress distribution in adhesive joints. In this connection, one may
mention some early analytical work by Goland and Reissner [1], later
Mylonmas [2], Cornell [3], Lubkin and Demarkles [5] and more recently
Erdogan and Ratwani [6], Sainsbury-Carter [7] and Adams and Peppiatt ([8].
A good survey of the papers on adhesive joints up to 1964 can be found in
Kutscha [9]. The practical aspects of the design of adhesive joints and
adhesives are given in a recent book by Bikerman [10]. For scarf joints,
Lubkin [11], Erdogan and Ratwani [6] can be mentioned.
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Adhesive joints are 2lso being used increasingly in prestressed
post-tensioned concrete structures. For instance, Papault [12], Levy
[13,14] and particularly Abeles [15] among others investigated the
practical applications of adhesive joints to prestressed concrete struc-

tural elements.

It is of interest to observe here that in all the references given
above, excluding Coland and Reissner [l] the effect of bending of adher-
ends on the stress distribution in adhesive layer, has bzen ignored.

Also, in [6], [7] the transverse normal stress is neglected. In the case
of Goland and Reissner [1], the cylindrical bending of identical adherends
of isotropic material is considered in combination with the transverse
normal stress and longitudinal shear stress in the adhesive layer. How-
ever, they assumed adherends with equal thickness and identical isotropic
material in order to obtain a closed form solution to the problem. This
severely limits the applicability and the practical range of the closed

form solutions given in [1].

Therefore, the purpose of chis paper is to develop an analytical
model for adhesive joints in order to find the transverse normal stress
as well as longitudinal shear stress distribution in the adhesive layer
due to the bending deformations in unidentical orthotropic adherends.
Furthermore, the thickness shear deformations in the adherends will also

be taken into account.

The results indicate that the bending of adherends drastically
change both ti: normal stress and shear stress concentrations in the ad-
hesive layer particularly in a joint composed of two adherends with differ-
ent elastic constants. It will be shown that the formulation and method
of solution of the problem of adhesive joints as presented here is
general enough to handle other related problems such as "scarf joints",

"double joints", etc. with relative ease.

2. FORMULATION OF THE PROBLEM

For all practical purposes, the adhesive joints in terms of geometry
may be divided into three basic types: 1) lap joint, 2) stepped joint,

and 3) scarf (or tapered) joint as shown in Fig. 1. In general, almost



~11 other joints may be obtained through some combination or repetition
of these basic types. In a similar fashion, from the standpoint of
mecha~‘:3, the "stepped joint" may be considered same as the "lap joint"[.]
and the "scarf joint" is a limiting case of infinite number of "stepped
joints" put together between two end points of the scarf joint. There-
fore in this work only the "lap joint" will be investigated in detail.
Other types of joints and related problems will be presented in a forth-

coming report.

A typical "lap joint" of length L ~hown in Fig. 2, consists of
upper and lower adherends (or plates) of different orthotropic materials
with thicknesses hl and h2 respectively and a thin isotropic adhesive
laver of thickness t. The principal directions of orthotropy in both
adherends are assumed to coincide with the coordinate axes as shown in
Fig. 2a and 2b. Both upper and lower adherends are treated as orthotropic
plates subjected to in-plane stretching, bendiag and thickness (or trans-
verse) shear deformations. The thin adhesive layer can be considered as
composed of longitudinal shear and transverse tension-compression springs
connecting the two adherends. In other words, it is assumed that, in the
adhesive layer, the dominant stresses are the longitudinal shear and
transverse (or thickness) normal stress and, furthermore, these stresses
do not change across the thickness of the adhesive (see Fig. 2 and 3).[**]
The sign coavention for ui, vi, w1 (i=1,2) displacements, the strain quantities,
the stresses and stress-resultants for both adherends and adhesive layer

are those of the theory of elasticity. (See also the Appendix)

A self-contained treatment of the field equations of the shear theory
nf othotropic plates which takes into account in the average the trans-

verse (or thickness) shear deformations are given in the Appendix (see

[*]Provided the vertical slits of the "stepped joint" are not filled with
adhesive or their effect is ignored. This is not an unrealistic assumption
specially if one considers the fact that the thickness of the adherends are
in general very small.

(**] 1 2 1

This last assumotion implies that o (x,y) = 0°(x,y) = 0, T .(x,y) =
T%(x,y) = Ty and T;(x.y) = T%(x.y) =Ty providing that adhesive thickness
:<<(hl,h2).



also [16)). Thus, after some & gebric manipulations, these equations

can be reduced, in terms of the so-called "fundamental variables" N:.
“:y' Q:. H:. H;y. ul. vi. wi. B:. B; (L = 1,2), inte the following system
of partial d’'[ferential equations:
B * %Ny
Niy.x s p; - (C:Z u':y + C;Z v';y)
I S S RN i B C UL B (1a-e)
Mex =% * G Ky,
hyx - My ¥ Ly e+ B - (D15 By xy * D2z By o)
and,
wy = O - G, vipy/c
"'1 - (niy - F;Z “';)’F:2
8 . = 06 - D], B;’y)ID:‘l (1 =1,2) (1£-9)
By x = (e, = Kpy By /K]

f,.1 i
W, = Qx,Ll - Bx

where 1 = 1 and 1 = 2 correspond to the upper and lower adherends respect-

;, p: (1 =1,2) and

ively. The sum of the distributed surface loads p:, P
distributed surface moments m:. m; (1 = 1,2) acting on the reference planes

are given as,

1 1 2 2
P " 9 ~ Tx ’ Py U * Tx
1 1 2 2
= - - - +1
Py = 9y by * Py y y
4
ORIG



1 1 2 2
%B"G=0 Py Rog 0 (2a-e)
h h, +t h h,+t
Y | 1 2_ 20 2
" qx2+Tx 2 v By qx2+Tx 2
h h,+t h h. +t
e | 1 2 2 2 2
- T - - 4 -
My TNy T e My TGy Ty 72

and the stresses in the adhesive laver are

o(x,y) = % (wl - wz)
h h
oy = 8 -pl oW o g2 D (3a-c)
k h
Bl _atM 2 2%
Ty(x.y) - (v By g v By 5 )

where B is an elastic constant related to the Young's modulus and Poisson's
ratio v and the shear modulus G of the adhesive, 0(x,y) is the transverse
normal stress, Tx(a.y), Ty(x.y) are longitudinal shear stresses of the ad-
hesive layer in x and y directions respectively.

The equations (3a-c) define the mechanical behavior of the adhesive
layer and they also correspond to the compatibility equations of the prob-
iem i.e. peeling off, cracking or separation are not permitted on the
interfaces between the adhesive layer and adherends.

The elastic constant B in (3.2) can be found from the following elastic

stress-strain relation for the adhesive layer.
o(x,y)2 0, = A(e, + . +e,) + 26 (&)

where 0 is the transverse normal stress, e ey. e, are the strain compon-

ents and,
A = vE/[{1+v)(1-2V)] (5)

Because of the compatibility of strains on the inter faces between adher-
ends and adhesive layer, e, and ey ir. the adhesive layer must be equal in



magnitude to the adherend strains o:. c; (1 = 1,2) on the interfaces,

whereas adliesive layer strain e, which is given by,

e, = (w' - Wi/t (6)
:an be much larger or l'zl>>(°x'°v)' If e, e  are neglected in compari-
son with e, in equation (5), then the elastic constant B of the adhesive

is,
B g )+ 2G = (1-v)E/(1-2v) (7)

making it somewhat larger than Young's modulus E.

The surface load terms p:, p;. p: and u:. m; ({ = 1,2) in (la-e) can

be easily eliminated by simply substituting (3a-c) into (2a-e). Fin-
ally, the system (la-e) and (1f-j) reduces to the following matrix form
of a system of twenty partial differenti=»l equations with the appropriate

boundary conditions in the region (a,<x<b,) and (a,<y<b,),
1-"="1 2=7="2

3 3Yk 3 Yk
3 Yj(x.y) = Fj(x.y, By *3y0x goss) (k = §=1,2,..,20)
o | 4
Tmr(Y) Yr(ﬂl.y) » Um (y) (m L 1,2,..,10)
bl bl
Te(Y) Ys(bl.y) -9 (y) (r=8=1,2,..,20) (Ba-e)
a, a,
Ton (%) Y (x,a,) = U "(x)
b2 b
Tns(x) Y,(:.bz) - n (x)

where Yj(x.y) is a column matrix of order 20 which ir~ludes all the "fund-
amental variables" an. U l(y) U l(y) are the specified boundary conditions
at x = a, and x = b1 reapectively. Similarly U (x). 2(x) are boundary

conditions specified at y = a, and y = b2 respectively. The matrices T 1
b

Tn:' T:%, T 2 are coefficient matrices depending on the support conditions

along the boundaries. In general, they are unit matrices.



In the case of a joint with finite width in y direction the system
(Ba=c) has to be solved. However, if it is assumed that the dimension
in y direction is large and that cylindrical bending occurs along the
joint in x direction, tlen the equations (la-j) reduce to the twelfth
order system of ordinary differential equations given by,

i

b "W

dx Py

4

=== P, (1 = 1,2) (9a-c)
d"i g

rshdhd

and,

i
du g4
& ° %/0
dB: i..1
- MK/D“ (1 =1,2) (9d-f)
dw' _ Ant - g
dx et | x

where p:, p: and m: (41=1,2) are given in (2a,c,d) however o(x,y), rx(x.y)

and Ty(x,y) become,
o(x,y) = o(x) , T 0y) = 1(x) Ty(x.y) £0 (10)

with the righthand sides of the equations (3a,b) still being valid (see
Fig. 3).

Consequently, (8a-c) reduces to a simpler matrix form in terms of a
system of twelve ordinary differential equatioans with the boundary condi-
tions along the joint in the region with a, = - £y by =+ L or (=L<x<+l)
and (-o<y<i),

d =
g Yj(x) = Ajk(x)Yk(x) + Pj(x) (J =k =1,2,..,12)



7. ¥ (-0 =] (m=nw=1,2,..,6) (11a-c)

m
‘b - b - -
e Y'(+£) Un (r =8 1,2550512)

where Ajk(x) is a coefficient matrix of order (12,12) which includes the

elastic constants and geometric dimensions such as thickness, etc. of the

adherends and the adhesive layer. Pj(x) is a column matrix of order 12,
corresponding to the distributed loads q:. o;. q:. The coefficient matrix
Ajk is not in general a function of x unless the thickness or the material

constants of the adherends (or the adhesive layer) or both varies along

the length of the joint (i.e. scarf joirt). The matrix Yj(x) is again a

column matrix of order 12, including al! the "fundamental variables" as
i Qi Mi i

x. xI xl

(1 = 1,2) are the unknown functions of the independent variable x. In

its elements. The twelve fundamental variables N ui. B:. w
the boundary conditions (llb,c), the matrices T:r and T:. are constant
matrices with the order of (6,12) and (6,12) respectively. The quantities
U; and U: are column matrices corresponding to the stress-resultants and
displacements prescribed at the ends of the adhesive joint x = - £ and

x = + £ respectively.

The boundary conditions in (11b) and (llc) are obtained from the
known stress resultants and displacements of the adherends at the ends of
the joint. In the lap joint in Fig. 2, the six boundary conditions to
ba prescribed at each end may be found using the free body diagrams in
Fig. 3 and Fig. 4. For instance, N:. Q:. Mi and NE, Qi, ME where subscript
* designates prescribed quantities at x = ¥ £, are calculated from the
statics in terms of the distributed external force P (or in terms of basic
loads No’ Q. M, in Fig. 4) and the geometry. Then, the boundary condi-

tions are:

at x = =f , the column matrix U; in (11b),

1 1 1 2 2
w'=0 , w=0, 8 o.nx-o,qxo,nionza)

at x = 4 , the column matrix Uz in (11:)’

. 2awl , 2=k M= ()



Note here that in (12a) displacement boundary conditions rather
than the force conditions prescribed for the upper adherend at the left
end of the joint. The reason for this is twofold. 1If the three dis~

la 0, Bl = 0) are not prescribe, then the

placements (i.e. ul =0, w
displacements thrs ghout the joint cannot be found from (9a-f) or from
(1la-c). Because any arbitrary rigid body displacements can be added
to these system of equations without violating the mathematical condi-
tions of the problem; hence, the solution to these equations would not

be unique. Also, the prescribed stress resultants Nl. Q:, H: must necess-

arily be in equilibrium with Nf. Qi. Hi. This equilibrium, however, is
already expressed through (9a-c). Therefore, in (12a), the inclusion of
equilibrium values of the external forces as boundary conditions, instead
of displacements ul =0, wl =0, B: = 0, would be redundent. (With the
assumed fully fixed condition app'ied to the one section of the upper
adherend, the displacements ui. vi. wi (1 = 1) now represent displace-~
ments relative to this section. The choice of the joint end section

assumed “ixed in no way influences the calculated stresses).

Thus, at x = - £, the displacement conditions for the upper adherend
in combination with the force conditions for the lower adherend represent
the "appropriate' boundary conditions for U; (m=1,2,..,6). 1In (llb,e)
the matrices T;r' T:. are unit matrices, however, in special cases with
spring and other type of support conditions at x = ¥ £ they may have

other nonzero components.

Thus, the equations (1la) with the appropriate boundary conditions
(11b,c) represent a system of twelfth order linear ordinary differential
equations. The entire system (lla-c) constitutes a so-called 'two-point
boundary value problem" of all the three basic types of the adhesive joint.

3. METHOD OF SOLUTION OF DIFFERENTIAL EQUATIONS

The system of equations similar to (la-j) or (4a-c) and also (9a-f)
or (l1la-c) has been investigated among others by Kalnins [16,17]. 1In
general, they can be solved by making use of numerical methods such as

the "multi-segment method of integration" or "finite difference methods"



or both, However, in the case of adhesive joints under srecial conditions,
the equations (%9a-f) (or lla-c) have a closed form solution. This "special
case" and the more "general cases" are considered next.

The problem in both special and genural ceses will be solved for ex-
ternal tension “o' external shear Qo and external bending moment Ho which
are defined as the three "basic loading cases" in Fig. 4. Anv other load-
ing case can be treated as a superpo.'tion of these basic loadings (pro-
vided there are no distributed surface loads on adherends).

2) Special Case (Adherends with idential thickness and material):

In order to gain some idea about the effect of the thickness shear
deformations of adherends on the stresses T(x) and 0(x), consider a special
case in which adherends have the same thickness and material. (o1 h,=h_=h_,
sleates , ) ogd on , v oddiov., 0} ucdug, o) ond.en . thutiet wherc

I°% & i A I1f IR L CH e "I T R Tl e -
subscript "a" Jenctes x direction and "b" for y direction in identical a-d

orthotropic adherends).

In such a case the system of ordinary differential equations (%a-f)
and (lla-¢) can easily be reduced to two coupled ordinary differential
equations in terms of the two unknown adhesive layer stresses 0(x) and
T(x) so that,

a®1/ax? ~(e)’t= - Gh_(04+03) /(20 1)

(13 a,b)
d4orax® - 2(a)? a%0/ax? + (®)* 0= 0O
(ci = ZGl(cnt) + Gha(ha+:)/(20't)
(0)2- B/(L,t) (lba-c)

4
(B) = 2B/(D,t)
The quantity (Q:+Qi) in the equation (13a) can be considered as the total
shear resultant transmitted through the joint. It is of interest to ob-

serve here that if the transverse shear strain in the adherends is neglected,
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then (13a) remains the same, but the parameter a in (13b) becomes zero.
In such a case, the equations reduce to these of Goland and Reissner [1).
Thus, 1+ seems that transverse shear strains in adherends effect mainly
the transverse normal stress 0(x) in the adhesive layer.

The general solution of (13a) is,
T(x) = A, sinh cx + A, cosh cx
+ ch_(Q}4a%) /(20 te?) (15)
a ‘® "w a

However, the solution of (13b) is dependent or. the rel tive values of a
and 8. Thus, if a<f, the general solution of (13b) {i:,

o(x) = A3 sinh ax cos bx + A‘ sinh ax sin x

“ A5 cosh ax sin bx + AB cosh ax cos bx (16)

where

_ el o Jrmis
a= [(B" +a")/2] (17a,b)

b e [(82 - a?)/2)}/?

If a>f, the general solution of (13b) becomes,
o(x) = A3 sinh ax + A& cosh ax

+ AS sinh bx + A6 cosh bx (18)

where 1/2

= -

am= az + va =B

. ol (19a,b)
— —1/2

b = az B /ai-B;

- -4

The maximum values of T(x) and 0(x) corresponding to each basic loading
case can easily be calculated from (15), (16) and (18) and they occur in all
loading cases at the ends of the joint. For example, in the case of external

11



normal tension load N, in Fig. 4, T(x) and o(x) are even functions of

x 8o that the arbitrary constants Al. Al' As of the solutions in (15)
and (16), (18) and the remaining three constants may be determined from
the boundary conditions (or the external equilibrium conditions) of the
joint. Thus, for external tension load N,,

ZLTH.xIHO = cf coth el

(20a,b)
2
eD,B°G /BM, = k,/k,
where
My = No(h 4 t)/2 20
and for a<@,
kl = bl sinh 2af + af sin 2bi
(22a,b)
k, = bl sinh 2af - af sin 2b¢
whereas, for a>f,
kl = bl rinh bf cosh af - af sinh al cosh b{
(23a,b)

k2 = bl cogh bl sinh af - af cosh af sinh bf
Similarly, in the case of external shear force Q0 shown in Fig. 4,
the stresses T(x) and o(x) are even functions of the coordinate x. The

maximum values of T(x) and g(x), which occur at the joint edges, are,

ZtDQCTmnx,GhaQo£ = coth cf - 1/cg

(24a,b)
tD.BzcmaxIB Qot - (kz . k3)/kl
where, for a<B,
ky = 2ab(cosh 2al + cos 2b0)/8° (25a)
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ard, for a>B,
2 2 2
k3 = = (a® = b")(cosh al cosh bL)/P (25,b)

and kl and kz are given in (23a,b).

In the case of bending moment loading "o of Fig. 4 the express.'ons
for 1(x) and 0(x) are odd functions of x and maximum values occuring at
the edges are,

2tD et _/Gh M = tanh ck
a max' a0 (26a,b)

2
tD.B Gm‘xIBHO - kllkz

where k1 and k2 have been defined previously.

In order tc calculate these maximum stresses, values of the ratios
kglkl and kBIkl as functions of B{ and a/B have been plotted in Figures 5
and 4, respectively. In these plots, the parameter describing the in-
fluence of the tv - nsverse shearing strain of the adherends is the rutio
a/B given by,

9 1/4
a/B = (0.5 nn_/{(La) t} (27)

Substituting for Da and La the ratio a/f becomes for orthotropic adherends

of equal thickness and *.e same material,
é 2 2 411/4 28
a/B [?BEahal{SO(l Ua)(ca) ti] (28,a)
and for Isotropic adherends of equal thickness and same material,
a/8 = [12(1+v_)Bh_/{50E_(1-v_)e}|1/* (28b)
a’ a a a

By calculating the ratio a/f from (28a) or (28b), one can determine
for any given case whether or not the thickness shear strains in adherends
significantly influence the maximum value of the normal stress in the

adhesive. According to Fig. 5 and Fig. 6, the curves for the values

13



a/B<1 do not differ significantly from those for a/f=0, thus, the in-
fluence of the thickn. s shear strains of adherends on maximum normal
stress 0 can be ignored provided a/Bg1.0.

(This is more or less valid in pract.cal cases. For example, a
typical joint of two aluminum plates, each of h.-O.l inch thickness
with E.-IO x 106p01. va-0.33 bonded by a layer of epoxy with E=4.5 x
105 psi, v=0.35 and t=0.01 inch thickness, has a ratio a/f=0,77 which
{5 smaller than unity). On the other hand, in the case of adherende
with lavge thicknesses and small long.ltudinal shear moculus 013. Che
effect of the adherend thickness shear deformations on the adhesive

layer stresses may not be ignored.

b) General Case (Dissimilar Adherends):

In the case of adherends with unequal thicknesses and different
elastic properties, a closed form solution (such as given in the pre-
ceeding section) of the two-point boundary value prublem of (lla-c)
seems not to be possible. Therefore, numerical methods have to be
employed in order (o solve this system. The "multi-segment method of
integration" as given in [17] is most suitable for this purpose. In
fact, this method of numerical integration is used here in solving the
general case in (9a-f) or in (lla-c). This way, the two-point boundary
value problem of the adhesive joint reduces into a series of initial
value problems and then integrated numerically between the boundary

poiuts.

For the sake of simplicity, one can drop the quantities corresponding
to the distributed surface loads such as qi, q: (1 = 1,2) in (9a-f) and
consequently Pj matrix in (lla-c) associated with the external surface
loads. Then, in (lla-c),

qy = a5 = 0 or Py) = 0 (= 1,25 3 = 1,2,..,12) (29)
It should be emphasized here that this last additional assumption in no
way affects either the general form of the system in (lla-c) or the appli-
cability of the method of solution employed here to the lap joint as well
as other type of joints.



Thus, a compvter program based on multi-segment method of integra-
tion has been developad to solve the equations in (9a-f) or (lla-c) and
has been applied to several joints under various edge loads. The results
for a typical lap joint subjected to basic external load cases of Fig. 4
and also for a stepped joint are presented in the next section.

As it is explained at the beginning, the ana'ysis of a "stepped joint"
is not different from that of a lap joint. Therefore, it will not be
treated as a separate case. However, in order to point out the influence
of bending on the stresses in a stepped jo. %, even when it is under uni-
axial tension, the results of a numerical example given in Fig. 10 will
be discussed briefly in the next section.

In passing, it may be of interest to note here that in the case of a
scarf joint (see Fig. 1) the formulation of the problem and the method of
solution as presented in this paper can easily be employed. In such a
case the equations (9a-f) and (lla-c) are exactly the same except that the

terms of the coefficient matrix A,, become functions of x due to variation

jk
of adherend thicknesses rather tran elastic constants. The computer pro-
gram which was developed for the general case can also easily handle the

scarf joint problem.

4. DISCUSSION OF RESULTS

The non-dimensional expressions (20a), (24a), (26a) for i and
(20b), (24b), (26b) for T~ corresponding to the basic loading cases in
a joint of identical thickness and matzrial, are functions of the para-
meters cl, BL and the ratio a/B. As it is noted earlier in the solution
of the 'special case", the transverse shear strains in adherends may be
neglected. Thus, for practical applications, the ratio a/B in the

"special case" becomes

a/B + 0 (30)
and similarly in the "general case', in (9f)

@b +0 @=1,2 (31)

15



which corresponds to the vanishing of adherend transverse shear strains
or consequently to the classical bending theory of thin plates.

For practical purposes, in a typical joint a/B ratio may be assumed

a/8 £ 1 (32)

and the adhesive thickness t is in general considered to be very small

f.e. t<<h (h = h, = h“). Then, the parameters cf and RL become large
and for the values of,

el 23, BL25S (33)

the Tmax and _ equations (20a,b), (24a,b), (26a,b) for the basic exter-
nal loading cases can be expressed in terms of asymptotic expansions for
large £.

Thus, for the external tension load No case of Fig. 4a, the asymptotic

values of Tma and Gma are

X X

-
”m

N,e/2 (34a,b)

)
max

n

N, (h +t)B/(2¢D_B%)

by introducing (l4a) and (l4c) for ¢ and B and also for Da/Ca-(ha)2/12.

Tmax and qmax can be further reduced to,

=

(o]
| 1/2
i /e (26/C)) ¢ (35a,b)

Yt
”_o /2

2
®

1
(JB/CB)

m

ag
max /E'

In the case of a joint subjected to external bending moment Ho only
(Fig. 4c), the asymptotic expressions for and Omax’ derived in the

same manner, are
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/2

-2 (0.175 c/n.)l

-
m

-
5

(36a,b)

M
-2 (0.5 B/D.)
Jt- a

1/2

g
max

Similarly, if the joint is under external shear force Qo in Fig. 4b, the
asymptotic expressions for Tn;: and cmux are,
Q_ (£ -£)
s 22— (0.375 6/p)}/?
e (37a,b)
Q. (£ -0)
& o 0

Y H
max

T
max

1/2
(0.5 nlna)

vt

The equations .34a,b), (36a,b) and (37a,b) all indicate that for
joints composed of identical adherends in thickness and material, maximum
stresses occur at the edges of the adhesive joint. Furthermore, toth
Opax and T .. are of 0(1//t) as t + 0, showing the singular behavior of these
stresses around the edges. Similar results are obtained in the more gen-
eral case with unidentical adherends. For example, in Fig. 7, 8 and 9, a
lap joint of aluminum-epoxy-steel subjected to basic external loads demon-
strate behavior similar to that of a joint with identical adherends. Both
stresses 0(x) and 1(x) shoot up within the boundary layer region in the
neighborhood of the joint edges. This is specially so in the pure bending
case (see Fig. 9) which clearly illustrates the effect of bending of

adherends.

Another interesting result can be obtained by estimating the ratio

Gmax/Tmax for basic external load cases of Fig. 4. Thus, from (35a,b), for

the basic tension load No'

< 1/2
omxl'rmax z (1.5 B/G) (38)

and for the basic external moment lcading Ho.

/2

o a2 (3/6)/2 as e+ 0 (39)

a
max max

S I

3
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the ratio for the basic shear loading Qo is equal to that of (39). Thes.
stress ratios, in the case of identical adherends, depend only on the
Poisson's ratio v of the adhesive and for practical values of v, one can
conclude that,

Unaxhux >1.0as t+0 (40)

.

and gets larger as the bending of the joint increases (depending on the
particular loading this ratio can easily reach the value of 2 or more).
These results can also be verified ior the general case with unidentical
adherends by simply comparing o

max
These plots again indicate that higher stress concentrations occur at the

and , values in Fig. 7, 8 and 9.

edge corresponding to less stiffer adherend and the normal stress, om“x. because
of bending deformation, is in general the dominant stress. As a resulc,

the tearing apart of the adhesive layer and adherends along the joint

is likely to start and grow due to these transverse normal stress concen-
trations. Therefore, one way rightly call the maximum transverse normal
stress 0 as the "tearing stress" of the adhesive joint. On this besis,
it may be said that theories which do not take into account the bending
of the adherends coaunot correctly predict the maximum stress in the ad-
hesive layer. (For instance, in Erdogan and Ratwani [6], Sainsbury-
Carter [7], Adams and Peppiat: [8], iubkin [11]}, the effect of bending is
completely ignored).

The significance of the bending effect even on the relatively smaller
longitudinal shear stress of the adhesive can best be demonstrated by
simply comparing the results presented here with those which neglect both
the bending deformation and transverse shear defcrmations in the adherends.
The equations (15) and (16) reduce to that of [6] with o(x)=C and T(x)# C
if the bending stiffnesses Dil' Dfl and the transverse shear stiffnesses
Li, Lf are assumed to be infinite. Thus, "~" defining tne quantities with

bending neglected, (15) and (16) become,

2z .
4T _ )% = 0

dx
a(x) g0 (&lalh)
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@)% 26/(c,0) (42)

then the corresponding maximum shear stress ?nax for the basic external
tension load No of Fig. 4 is given by,

ZLTmaxluo = ¢l coth ¢i (43)

and the asymptotic value is,
= N ¢/2 (44)

by using (20a) for L - which includes the effect bending and transverse
shear deformation and (43) for ¥max'

Tmax/%max = ¢ coth cf/(c coth &b) (45)
For the small values of adhesive thickness, 1i.e. t<<ha. the ratio is

almost c¢/¢ = 2. Then,

T Tnax 2 1 (46)

However, from the asymptotic values in (34a) and (44)

/T

T T B 2 (for large c¢f and t+0) (47)

Thus, for practical joints, this Tmax/?max ratio will have a value some-
what close to 2. Consequently, the theories [.,7,8,11]) which neglect the
bending effect, even in the case of uniaxial external tension only, mi ht

underestimate the maximum shear stress by nearly 50%.

Similar results are obtained fo. the more "general case" with uniden-
tical adherends. For instance, the comparison of the longitudinal shear
stress plot of the same "stepped joint" of Aluminum-Epoxy-Steel in Erdogan
and Ratwani [6] with that of the shear stress plot obtained by the present
authors and which includes the bending effect is given in Fig. 10. It is
obvious that, in spite of the uniaxial external tension load, the actual

maximum shear stress is almosi twice as large as the shear stress obtained

19



by [6]. Also, it is important to observe here that, in Fig. 10, the
maximum transverse normal s:ress, because of th. bending deformations
along the joint, is again very much larger than the maximum transverse

shear stress.

The influence of protruding lengths tl and lz outside of the joint
on the normal and shear stresses in the adhesive is also considered.
As pointed out previously, even under uniaxial tension the adhesive
joint, is in the state of bending regardless of the size of the pro-
truding lengths. As an example, the strr.sses in Aluminum-Epoxy-Boron
Epoxy joint under uniaxial tension P=1.0U are computed for protruding
length values fl'zz'zt(Z.'O.L.SL) as shown 1. sig. 11, It is
seen that, after L*-SL is reached both the maximum normal stress and
shear stress in the adhesive layer level off and remain more or less
same in magnitude. Ageain, as expected, the maximum normal stress is

larger than the maximum shear strecs.

5. CONCLUSIONS

A general method of stress analysis of adhesive joints of relatively
rigid adherends bonded through a flexible adhesive layer has been developed
and applied to several types of joints. Based on the numerical examples

and the discussion in preceeding section, one can conclude the following:

1. Bending of one or both adherends is a dominant factor on the
stress distribution in adhesive joints and it occurs even in

a stepped joint under external uniaxial tension load.

2. Due to the influence cf bending of adherends, the distribution
of the transverse normal stress O(x) as well as the shear stress
T(x) in adhesive layer is drastically changed and Gy is in
general larger than Tmax and in some cases at least twice as
large. (This point should be taken into account in the design
of adhesive joints.)

3. Stress concentrations for o(x) and T(x) occur at both ends of
the joint within the so-called boundary layer region, with
higher stress concentrations taking place at less stiff ad-
herend side. Otherwise, with equal thickness and identical

20



adherends both o0(x) and T(x) are symmetric or skew-symmetric
as the case may be.

4., As the adhesive thickness t decreases the magnitudes of strerss
concentrations at the ends of the joint increase sharply and
finally as t+0 the stresses become singular i.e. T-lx*ﬂ;
a-‘x*". (For identical adherends these limiting expressions
have the form Tm‘x-O(ll/F) and Uu.x-O(lI/F) as t*0 and for

unidentical adherends, similar forms can be expected).

5. The thickness shear deformations in adherends do not signif-
icantly influences T(x) and 0(x) distribution in the adhesive
layer. For practical purposes thickness shear deformations in
adh¢rends can be neglected unless the adherends are extermely
thick and deformable in shear.

6. The formulation of the problem and the method of solution as
presented in this work is very general and can easily be applied
to other types of joints such as "scurf joints", "double joints",
"cover plates", "joints with layered adherends", ~tc. without
any difficulty. (In fact,these problems have already been
solved by the present authors and will be presented in a forthcoming

report as the continuation of this work.
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APPENDIX

For the sake of completeness and easy reference the field equations
of orthotropic plates which include the transverse shear deformaticus will
be reproduced in this section. Referring to Kalnins [16] (similar equa-
tions were also obtained by other well known authors), one can write the
equilibrium equations of the orthotropic plates in terms of the coordi-
nate system given in Fig. 2 in the following form,

i i i
X, X w "xy.y v Py 0
i i i

WIS M
xyo Ny,y ¥ Py "0

i i i

Qx.x + Qy'y +p,=0 (1 =1,2) (A.la-f)
{ 1 § g
Mex ¥ Mg,y = QG +my =0
{ 1 . 1
w4 -t 4+ 0
xyox T My Gty
R
xy | yx

where i=1 indicates upper plate (or adherend) and i=2 corresponds to the
i

y

lower plate (or adherend) and p:, p
m; are distributed moments both acting on the middle plane (or the ref-

’ p: are distributed loads and m: and

erence plane) of the upper and lower plates. The Hooke's Law or the stress-
strain relations for an orthotropic material,

% = Bl € * B ‘;

% = By 0 * By o

o: =0

:y -2 e O], (1=12) (A.2a-f)
o;z -2 e;z G;J
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i i 1
all .3 .:t cl)
where
i i
Bl = Ey/(1= vivp))
1 1 1 i1

B3, ~ /(1 = 12 21’

and where !}. l; are the Young's Moduli of the material in the direction

i i i
12° 023. 613 are the shear moduli

with the subscripts corresponding to coordinate axes x*1, y*2, 11*3. Also,

vtz. v;l are the Poisson's ratios of the material. The expressions for

displacement 61. ;1, Wt are,

of x and y axes respectively. Similarly ¢

ﬁt = u1 + zi B:

(1 - llz) (A.‘OC'C)

where ui. vi. w1 are middle surface displacements along x, vy, z1 coordinate

lines and B: and B; are angles of rotation of the normal to the middle
aurfuce. The strains e 15. in terms of middle surface strains E;, Y:z'
Yo s Ve Ve 05 03

il S

e1 = ci + z1 k
x x X

THLE

ey "tz ky (A.5a-f)
A

l

=0

1 1. i & 4l
2e) = (8] + 2 cﬁ) + (83 +2' 8 (1=1,2)
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Where middle -urfncn strains € ; and other strain quantities yi
LI kl Y‘ Y 61
'Y,' x' » 1* T2

tities u’, v , w and rotltlonl B ’ B in the following way,

51 are dof!nod in terms of displacement quan=-

i
c: - U.: » c; - ul,
i i i i
Yl vl‘ ] Yz - vly
. ’ A : (1=1,2) (A.6a-d)
kx - Bx.x ' ky By.y
i i i i
61 By'x ’ 62 Bx.y
i i i
sz w, + B‘
i i i
Yys" oy + B? (1 =1,2) (A.6e-g)
i i i
Yey" 1 ¥ Y2

The streas-resultant and strain relations can be expressed as,

1_ 4 2 1 i . i 1 1
T VIR P Ny "Cp e+ Cpp €
i _ab of ot oS 1 1
(1 =1,2) (A7a-d)
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Where extentional, bendirg, twisting and shearing rigidities are giver as,

i
12

i

-/ By,

c

{
» Dy

i

i

{
13

1 i
-/f dz”, L, = /Gy, dz

dz",

-/B

i i i

€22

-/ I;Z dz

i
12

£ .8

s}H? ast, Dy, = / B, (s})? as!

(1 = 1.2) (Aoa.-e)

i

The integrals above are to be taken across the thicknesses of the plates.
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Equilibrium Element in a Lap Joint (Cylindrical Bending)
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