General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Stanford Artificial Intelligence Laboratory Memo AIM-254
 Computer Science Department
 Report No. STAN-CS-74-472

December 1974

STAIN FORD AUTOMATIC PHOTOGRAMMETRY RESEARCH by

Lynn H. Qualm
Marsha Jo Hannah

Research sponsored by
National Aeronautics and Space Administration

E.

ABSTRACT: This report documents the feasibility study done at Stanford University's Artificial Intelligence Laboratory on the problem of computer automated aerial/orbital photogrammetry. The techniques investigated were based on correlation matching of small areas in digitized pairs of stereo images taken from high altitude or planetary orbit, with the objective of deriving a 3-dimensional model for the surface of a planet.

This research was supported in part by the National Aeronautics and Space Administration's Langley Research Center under Contract No. NAS1-9682 and in part by the Advanced Research Projects Agency of the Office of Defense under Contract No. DAHC-15-73-0435.

The views and conclusions in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of NASA, ARPA, or the U.S. Government.

Reproduced in the USA. Avairable from the National Technical Information Service, Springfield, Virginia 22151.

1. Statement of the Problem.

Ill. Restrictions on the Image Data.
Certain restrictions mest be placed upon the data we can handle. Some of these are necessary to ensure that the images are comparable and that corresponding areas in the two images will "look similar". Other restrictions are
necessary to ensure that the variations detected on the surface are due to elevation.

The matching process requires that the two images appear to have been taken at very nearly the same range, with no appreciable spacecraft roll between the two views. So that the scale is consistent over the images, we require that the visible angular portion of the spherical surface be small. This rules out oblique shots which cause extreme geometric distortion between the two views, And, of course, for elevation work it is best that the images be taken at equal but opposite view angles with respect to surface vertical.

It is necessary that the images show no appreciable differences in sun angle or in $+i$, since these variations in the surface features make it extremely diff alt to match corresponding areas. Most important, we must have images with sufficient information and a good enough signal-to-noise ratio so that matching is possible. Images with high nolse levels, featureless images, and images whose only features are linear in the direction of the camera baseline present problems whith the current state of the art in matching cannot handle. parallax. Clearly if we are computing correlation over an $n \times n$ target area, and we shift the target area by $n / 2$ pixels in either the vertical or horizontal direction, we still have a 58% overlap with the previous correlation window. Since the two areas are not independent, the parallax measurement for that second target area will not be independent of the parallax of the first target area. Thus, our spatial resolution will be inversely related to the necessary correlation window size. This, as well as the efficiency consideration, urges the use of windows that are as small as possible.

The accuracy limits in generating an elevation map are also determined by
how well we can estimate the parallax between points (areas) in the two images. Clearly, since area cirrelation accomplishes a gross registration of the pixels within the areas, parallax estimates done by this method will be within a half of a pixel of the correct value. Interpolation of the correlation values can give a closer estimate of the parallax.

There will also be some regions in the images which cannot be matched at all. This can be due to locally low information in the Images, information which is directed solely along the baseline direction, or changes between the two images other than those caused by surface elevation.
V. Algorithms.

We implemented our contouring algorithms in three separate parts, represented by three separate programs. These are described in the following sections.

A. Establishing Matches.

Intultively, two points-oone in the first image and one in the second--match if they both represent the same place on the surface of the planet. Determining computationally whether or not two points match can be done in a number of ways. Our favorite definition is that two points match if the normalized cross-correlation between the $n \times n$ areas surrounding the two points Is a local maximum ?Quam, 1971] and is sufficiently high \{Hannah, 1974$\}.$

Our basic algorlthm for establishing large quantities of matches begins by finding a starting match. While there are several methods by which this can be done automatically tHannah, 1974], for this application it is done by hand, that is, the operator picks a starting point in the first image, locates its match, and gives this point pair to the program.

Given a starting pair for which the correiation is a local maximum and sufficiently high, our technique is to "grow" a region of pairs which show a local maximum at the same integer parallax as the starting match. This is done by pushing the starting point onto a stack, then for each point on the stack, checking whether its eigh't neighbors have been evaluated before or also show a local maximum at the present parallax. Pairs which represent a local correlation maximum are pushed onto the growing stack and marked as having been evaluated; these points and their parallaxes are also recorded on a disk file for later processing. Pairs which are not a local maximum at the current parallax are marked as being mismater 's (to prevent the grower from looping infinitely) and are pushed on a "mismatch" stack for later treatment.

A bad match is indicated whenever a matching point falls a significant distance off of this line segment. Also, since one would expect the surface of the planet to be fairly continuous, a sudden, large change in parallax is suspect, even though it lies along the base!ine segment. Finally, the correlation at a proposed matcin must be sufficiently high, as determined by applying a
variation of the autocorreiation threshold test described in Hanna! (1974).

B. Elevation caiculations.

The elevation calculation program operates on a set of parallaxes, the output of the preceeding algorithm. These are recorded on a disk file as the integer co-ordinates of the target point, the integer co-ordinates of the matching point, and the nine correlations the target correlated with the match point and the target correlated with each of the eight neighbors of the matching point) which prove that this pair is a match.

These nine correlations are used to locate the real (non-integer) co-ordinates of the matching point. What we wish to do is to approximate the correlation surface, which is known only at integer points, in order to locate its maximum. This will give us the "true" non-integer matching point, hence the parallax.

Various schemes for this approximation have been tried, including fitting paraboloids by least squares techniques. A crude but expedient method is to fit 4 parabolas to the correlation data--one to each of the 4 triples of data points which include the center point--horizontally, vertically, and on each of the two diagonals. If the horizontal-vertical pair of parabolas show a pseudo-maximum in the same vicinity as the diagonal pair, then the locations of these two pseudo-maxima are averaged to yield the real co-ordinates of the matching point. If these two pairs of parabolas do not give consistent pseudo-maxima, then the point-pair is rejected as having an irregular correlation surface which cannot be modeled.

Thle technique leaves something to be desired, for we find that many of the "holes" in our elevation data are due to rejected correlation surfaces. However, as yet we have not come up with a better method which is as computationally expedient.

Once the real parallaxes have been determined, the task of converting them to elevations begins. If the positions and orientations of the spacecraft are accurately known, this is very simple. If, however, the spacecraft data is unknown or unreliable, as is the case with some of the Mariner 9 images, then a relative camera model must be derived from the parallaxes.

The first step in deriving a simple camera model is to approximate the parallaxes Ilnearly, that is, to explain the matching points (u, v) from the target points (x, y) as

$$
\begin{aligned}
& u \approx a * x+b * y+c \quad \text { and } \\
& v \approx d * x+e * y+f
\end{aligned}
$$

This is done by least squares techniques to minimize the residuals

$$
(r, s)=(a * x+b * y+c-u, d * x+e * y+f-v)
$$

over all of the parallaxes available. Next the baseline direction is fit to the
where (x^{\prime}, y^{\prime}) and (u^{\prime}, v^{\prime}) are (x, y) and (u, v) rotated through the baseline angle α--analytically putting the camera baseline along the x^{\prime} axis. This least-squares fit calibrates the relative 1 'anslation (g, h) and roll β between the two images. These last two steps (fitting the baseline and fitting the "camera model") can be Iterated, if desired, to increase the accuracy of the model.

The final residuals--what is left after taking the translation, roll, and baseline angle into consideration--amount to a distance along the baseline and a distance off of the baseline. The distance off of the baseline is an indication of the accuracy with which the parallax can be determined. If, for any of the parallaxes, this compenent is too large, that parallax is rejected as being inaccurate.

The distance along the baseline is the elevation parallax. When multiplied by the appropriate conversion factors, so that it is expressed in meters of elevation on the surface, rather than pixels of parallax, this gives the relative elevation of that point in the image.

This elevation forming program receives parallax data in the scrambled order that the region growing program produced it. Under one option, it simply puts the data onio another disk file in the same order, as che elevations are de termined.

Under the other option, elevations are put into an "elevation picture", then scaled so that they use the entire range of the pixel values avallable and occupy only positive values. Illustrations 1 and 5 each have one of these elevation pictures as their lower right image. Such elevation data can then be smoothed to fill in any small holes left by the region grower or emptied by a correlation surface which cannot be modeled.

C. Contouring.

We have used two contouring algorithms in our work. The first algorithm takes as input a rectangular array or picture of elevation data over some grid spacing in the pictures. The elevation values are integers greater than zero and are surrounded by a border of zeroes. The data array can contain "holes"--places where no elevation data is available-which are symbolized by elevations of zero. The second algorithm takes as input a list of integer positions and real elevations of points, which it manipulates into a net of triangles. What the first algorithm would see as small holes in the data are here covered by triangles; larger holes are usually skirted.

Both contouring algorithms are quite simple. We are given a set of contours to drah, expressed by a starting contour and a contour interval. Beginning with the lowest contour level specified, we scan the elevation data structure for a cell la grid square in the first algorlthm, a triangle in the second) through which our contour passes. We trace this contour, recording where it goes, until it is raced in its enifity. We continue scanning until all contours at this level have been traced, then begin scanning again for the next coritour level.

Each contour is traced by examining cells of elevation data. When a contour goes into one of these cells, the algorithm moves around the edge of the cell in the clockwise direction, looking for a way out. Finding one leads it into another cell; the position of the exit point is found by linearly interpolating the elevation data along that side of the cell. This is repeated until termination conditions are satisfied.

For the first algorithm, the termination condition is that the original sounare is entered again from the original direction. This is possible because this algorithm sees holes and edges as places of very low elevation and continues to draw contours by them. This ensures that contours are closed curves leven though those parts of the contour which border holes and edges are invisible to everyone but the program), so the contour follower will eventually get back to its starting place. Saddle points get special attention, so that they always appear as two separate contours. The second algorithm sees holes and edges as the end of the net structure, so it terminates when it gets back to the starting point or falls off of any edge of the triangle net.

The lower left image of lllustrations 1 and 5 , the lower right image of Illustration 3, and the enlarged lllustrations 2, 4, and 6 all show contour maps produced by the first program overlaid on the first pictures of the indicated palrs. Extremely short contours have been discarded as being noise.

All holes in the elevation data for the first algorithm and those holes which are too big for the triangles to brldge in the second algorithm are treated in the medival manner--we leave them blank and attach a mental label " werele効ヶagantex".

Errors in camera models, pointing angles, etc. usually require that some manual adjustment of the regional slope be made. Consequently, both algorithms have a provision for adding a term of the form $a * x+b * y+c$ to the elevation data to accomplish this adjustment. The lower left image of lllustration 3 and the upper left image of illustration 5 show how this is done. The operator manually chooses three points which are believed to lie at the same elevation (shown in the illustrations by a dot and the elevation which the computer found at that point). The computer then fits the appropriate plane and adjusts the elevation data as it contours.

Although it is possible to apply smoothing funstions to make our somewhat angular contours more "intuitive", we have not implemented algorlthms for this purpose.

Suggested Changes and 1 mprovements.

Our algorithms have cartain built-in limitations, caused by the manner in which we decided to do things and the computer system on which we are working.

First of all, we have limited ourselyes to images which are atout $200 \times$ 208 pixels in area. With pictures of this size, it is possible to get both images on our video output device at the same time, which allows us to see what the program is doing, a very helpful thing in experimental programming. Also, pictures of this size can be kept entirely in core with our program code without resulting in an abominably large core load which our time-sharing system will penalize by running infrequently. data has been less than spectacular.

Only one pair of Mariner 9 B-frames, 168814 (DAS-7326758) and 238B83 (DAS=10132924), were anywhere near suitable for our task. Attempts to work with this pair, showing some of the Martian canyonlands, at a 2×2 spatial reduction were moderately successful, with some protslems due to low information and linear edges along the baseline direction.

We sought to remedy the lack of information by working with parts of the image-pair at full resolution, a technique which has worked well on terresteral images. The upper half of lllustration 1 shows this pair of images overlaid by the grid dots which indicate the matching obtained. The lower right image is the elevation picture derived from these matchiris. The lower left image shows elevation contours at 480 meter intervals overlaid on the first image; this same data is shown enlarged in Illustration 2.

Careful examination of the conlours will show that work on these higher-resolution images was not really euccessful. (For comparison, see the contour maps of this area clone by Wu [1973].) There are several areas into which contour lines run, then stop. Most of these are areas of low information, and the amount of noise in the data was such that obtaining reliable correlations in these areas simply was not ponsible.

Several contours appear to be soz swhat strange, In the area (165,135), for instance, contours display a funny hook. (lmage co-ordinates begin at the upper left corner of the image and increase to the right for X, downward for Y. The small tick marks around the edges of the image indicate 5 pixels, medium-sized marks are 25 pixels, and large marks are at 100 pixel intervals.) This hook is not a real feature, but is due to the information content of the images being just silghtly greater than the threshold, resulting in an unreliable match.

In the area $(125,90)$ there are several contours which are very squished together. Again, this is not a terrain feature. Region grouing proceeded toward this "cliff" from one side along a sharply shadowed ridge. The shadow edge gaves the variance opdritor enough information to OK the area, but since this shadow lies in the direction of the camera baseline and has little information on einer side of it, matching along it was not really valid. When a later region growing approached from the other direction, a very different parallax resulted, causing the apparent cliff. It was this example which prompted ue io include the directionality operator in the list of tests on matching pixels.

Once low information areas and high contrast linear edges along the direction of the baseline are thrown out, the results look auite reasonable. Unfortunately, there are so few data points left that contouring becomes a quessing game. Matters were further complicated on this pair by changed sun angles, distortion resulting from extremely different view angles, as well as an abominable noise level. Therefore, we decided to waste no further time on this pair.

A pair of Mariner 9 A-frames, 103031 ($045=5492373$) and $146 Y 31$ (DAS=6823913), were also attempted at full resolution. Like the previous canyonlands pair, these images of Nix Olympica were taken from somewhat different view angles and with different sun angles. When combined with the low resolution of the A-camera and the nolse inherent in all of the Mariner 9 data, these facters made this pair difficult to work on.

The upper two images in lllustration 3 show the pair of pictures with dot overlays to indicate the matching obtained. On the lower left is the first image with the leveling points indicated; the lower right shows the contours which resulted. Due to the low resolution of the images, the contours are at 8 km intervals.

Despite its overall size, Nix Olympica is a feature with very little local elevation relief. On would expect a contour map of it to show lots of cone entric contour "rings" with very little evidence of broken terrain (see Wu [1973]). Thus one can see at a glance that most of the contours in the lower
right ingice of lllustration 3 are nonsense.

Running the region grower again with a higher minimum information threshold cuts out most of the jumbled matchings in the area to the left of the peak: however, this leaves a large hole in the contour map. As yet, the state of the art in computer matching in noisy images is not up to the ability of human matching in these same imeges.

We were fairly successful with the image pair with JPL numbers 185942 and 174659, film 0889, taken by the Apollo astronauts of a lunar peak. Our actual work was with 5×5 spatial reductions; the contoured Image shown in Illustration 4 is thice this siza, to make it easier to see the detalls.

Other than a few areas which were saturated in the digitization, most of the image matched up well. The contour map shoun in lllustration 4 was done at intervals of one pixel in parallax; pointing angle data to relate this to elevations was not avallable at this writing.

For the most part, these contours appear to be quite reasonable. Thers appear to be a few mino gritches in contours. For instance, at about (300,118) there are some strange loops in the contour. We belleve this to be an as yet unlocated bug in the contour drawing program, probably having to do with our hatidling of saddle points in the data.

We were less successful with the pair having frame numbers 2482 and 2481 taken by the Apollo 15 astronauts, and showing a lunar area of low relief. Because of the vast size of the digitized images (2008 $\times 2088$), we chose to do a 2×2 spatial reduction to get the data into our computer from the tape. The pletures we worked with are shown in the upper half of lllustration 5. The lower right image is the elevation picture derived from the match data. The gradual gradient from light to dark in this elevation picture would indicate that the surface had a significant slope to it: however, we assumed from the look of the terrain that the area was flat. Therefore, we applied the leveling indicated in the upper left image by the overlaid points. When the data was contoured at $1 / 2$ pixel intervals, the contour map of the lower left image was produced; the same data is shoun in lllustration 6 in larger scale.

This area of the Moon has many small features which correlate well, resulting in a reliable, nearly complete mapping. However, the total difference in parallax for this pair amounteri to 3.5 pixels, This means that any elevation contouring we would be doing world be based solely on information derived from interpolating parallax between pixels, something for which we have not found a completely satisfactory algorithm. Consequently, although many parts of the contours make some sense, the overall effect is chaotic, it $^{\text {th }}$ contours cutting through craters and behaving in other strange fashions.

Summarized brigfly, our results were as follows. On data of high information, high resolution, and low noise--such as the Apollo data--we were able to obtain reliable matchings for most of the area of the images. On less perfect data--such as the Mariner 9 data--reliable matches could be obtained for only parts of the images.

From the matchings, we couid determine the elevation parallax to within half a pixel, but attempts 10 estimate the parallax more accurately were not always successful. From complete or nearly complete mappings, we could produce elevation plotures, "eye-ball" level the daiz, and generate contours. However, since the elevation data is only as good as the matching which pressuced it, the quality of the contour maps produced depends heavily on the fuality of the 1 mages.

If the Viking images are nice, elean pictures like the Apollo imagery, then we can expect that a computer will do a fairly good job of producifig contour maps for them, down to the resolution of a pixel in parallax. If, however, the Viking imagery is much like the Mariner 9 Imagery in its noise characteristics, we do not hold much hope that a computer can produce highly accurate contour maps.

Illustration 1. These images are geometrically transformed, full resolution windows from the Mariner 9 B-frames $168 B 14$ (DAS=7326758) and 238803 ($D A S=10132924$), showin some of the Martian canyonlands. The upper two pictures have overlays indicating the matching obtained. The lower right image is the elevation picture derived from these matchings. The lower left image shows elevation contours at 480 meter intervals overlaid on the first image.

ORIGINAL PAGE IS OF POOR QUALITY

Illustration 2. The same as the lower left picture of lllustration 1, enlarged by a factor of 2 .

Illustration 3. These images are geometrically transformed, full resolution windows from the Mariner 9 A-frames 109031 (DAS 5492373) and 146 Y31 (DAS $=68235 i 3$), showing Nix Olympica. The upper two pictures have dot overlays to indicate the matching obtained. On the lower left is the first image with the levelina points indicated; the lower right shows contours at 8 km intervals.

ORIGINAL PAQA 1 的 OF POOR QUALIIY:

IIlustration 4. The original images were JPL numbers 185942 and 174659 , film 8889, taken by the Apollo astronats of a lunar peak. This 5×5 spatial reduction of a window out of 185942 is overlaid with a contour map done at intervals of one pixel in parallax.

Illustration 6. The same as the lower left picture of lllustration 5, enlarged by a factor of 2 .

Bibliography

Hannah, Marsha Jo [1974], "Computer Matching of Areas in Stereo Images", Ph.r. Thesis, Stanford University.

Quam, Lynn H. [19711, "Computer Comparison of Pictures", Ph.D. Thesis, Stanford University.

Wu, S. S. C., F. J. Shafer, G. 11. Nakata, and Raymond Jordan [1973], "Photogrammetric Evaluation of Mariner 9 Photography" in Mariner Mars 1971 Project Final Report: Science Results, Jat Propulsion Laboratory, Pasadena, California, pp 587-592.

