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AUGMENTED BURST-ERROR CORRECTIQN
FOR UNICON LASER MEMORY

Raymond S, Lim
Institute for Advanced Computation

Ames Research Center, NASA, Moffett Field, Calif, 94035

SUMMARY

This paper describes a proposed augmented single-burst-error cor-
rection system for data stored in the UNICON Laser Memory. In the
proposed system, a long Fire Code with code length n > 16,768 bits is
used as an outer code to augment an existing inner shorter Fire Code
for burst-error corrections. ‘The inner Fire Code is a (80,64) code
shortened from the (630,614) code, and it is used to correct a single-
burst error on a per-word basis Qith burst length b £ 6. The outer
code, with b £ 12, would be userl to correct a single-burst error on a
per-page basis, where a page consists of 512 32-bit words. In the pro-
posed system, the encoding and error detection processes would be
implemented by hardware. A minicomputer, currently used as a UNICON
mémory management processor, would be used on a time-demanding basis for
error correction. Pased upon existing error statistics, this combina-
tion of an inner code and an outer code would enable the ﬂNICON system
to obtain a very low error rate in spite of flaws affecting the recorded
data. The approaéh of the long Fire Code described here is also
applicable to other mass.memofy systems (such as rotating disks) where

single-burst-error correction can be obtained at very lew redundancy.
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INTRODUCTION

The UNICON laser memory, or UNICON, is a digital memory manufactured
by Precision (nstrument Lo. for the ILLIAC-IV computer as part of the
mass 1/0 storage. The UNICON as an on-line storage capacity of about
1012 bits. In such a high-density data storage system, contamination
and other defects can easily obliterate a group of data bits. In order
to operate successfully in spit of this problem in the UNICON, an
elaborate error-correction syst m is used.

Error statistics obtained on the operation and checkout of the
UNICON indicate that the desired net error rate o. one bad word of data
per 2 x 1011 bits read might »e met if two Fire Codes were used for
single-burst-error correction. These two Fire Codes would be arranged
as a system consisting of an inner code and an outer code. The inner
code would be a short (80,64) Fire Code used to correct an error burst
of length b = 6 on a per-word basis. The outer code would be a long
(16803,16768) Fire Code used to correct an error burst of length b = 12
on a per-page basis. It should be noted that this system of an inner
code and an outer code would not function in the same sense as the
concepts of concatenated codes (ref. 1). Furthermore, the Reed-
Solomon code from GF(Z") successfully used in the IBM Photo-Digital
memory (ref. 2) is not feasible for the UNICON because of the long
codeword length of n=16803.

The inner (80,64) Fire Code currently in use is implemented all in
hardware by shift registers and error correction «s done on-line as

data are read off the strip. The (16803,15768) cuter Fire Code would
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be decoded in a manner suggested by Chien (ref. 3). A similar scheme
for burst error correction with b £ 11 was implemented successfully in
the IBM model 3830 controller for the Model 3330 disk. The problem of
effectively implementing the (16803,16768) outer code has been solved
by a number o* innovations and in a hybrid manner. Most important is
the use of hardware for encoding, while using a minicomputer on a time-
demanding basis for error correction. The minicomputer performs a
calculation to find the burst error location i by applying two well-
known theorems from Number Theory: the Euclidean algorithm for
division and the Chinese remainder theorem for simultaneous congruences,
sometimes thought to be me., ly of academic interest only to Number

Theorists.
CODING REQUIREMENT FOR UNICON

The basic storage element of the UNICON is a metal coated plastic
strip about 4,75 x 31 in. The recording density across the strip is
11805 tracks over 3.8 in., or about 3000 tracks per in. Each track
can store up to eight records of data, with each record containing
16,768 data bits plus other record identification bits. The method for
recording data on the strip is tuv use the laser to either burn a hole
for a 1-bit, or not to burn a hole for a O-bit.

Data entering and leaving the UNICON are handled by a UNICON
Controller (ref. 4). The Controller has two interfaces: a central
memory (CM) interface for data, and a minicomputer interface for
control. The minicomputer (a PDP-11) functions as the UNICON memory % '

management processor (UMP). The UMP obtains its control programs

e




through its own virtua®' hardware interface into the CM. By means of
this virtual address space, UMP can address up to 4096 pages in CM,
Data transfer to the UNICON is always one page of data at a time from
CM, where a page of data consists of 512WX32B, which is 16,384 bits.
For each page of data, the controller attaches 16WX16B of header in-
formation and 8WX16B of checksum parity bits to form a data record of
16,768 bits. The checksum is simply a single-parity check with check
symbols from GF(ZIZS).

The basic word length in the UNICON is 64 bits, As previously
mentiored, the UNICON currently has a built-in (80,64 Fire Code which
is used to correct a single-burst error with burst length b € 6 in a
per-word-basis. Because of optic imperfections and other mechanical
flaws, data read back from the strip always contain errors. When the
UNICON is properly aligned, most errors are correctable by the (80,64)
Fire Code. Preliminary observations on the error statistic indicate
that the probability of getting an error not correctable t 5 Fire

1 bits of data transferred, wuich is about

Code is about one for every 10
one error per strip. The observed uncorrectable errors, for those that
are understood and the cause can be explained, are typically single-
burst errors with b £ 11. Thus if a long Fire Code with b £ 12 is used
to augment the existing (80,64) Fire Code to correct a single-burst-
error on a per-page basis, then it is possible that the error rate can
be reduced to a very low level. The long Fire Code chosen is a
(16803,16758) code. In this arrangement, the (16803,16768) code is

called the outer code, while the (80,64) code is called the inner code.
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DESCRIPTION OF THE FIRE CODE

An error burst of length b is defined as a vector whose non-zero
components are confined to b consecutive bit positions, the first and
last of which are non-zero. It is known that cyclic codes for single-
burst-error correction can be systematically constructed (refs. 5 and 6).
These codes are rather efficient and they can be implemented with
feedback shift registers. An important class of these codes is known as
the Fire Codes (ref. 7). In the discussion which follows, let

n = length of codeword in bits.

k = number of message bits in a codeword,

n-k = number of redundant bits in a codeword.

b = maximum length of single error burst which can be corrected,

in bits,.

m(x) = message word,

v(x) = transmitted codeword.

E(x) = error burst,

R(x) = v(x) + E(x) = received codeword.

It is clear that for a given k and b, the objective is to construct
an (n,k) code with as small a redundancy n-k as possible.

It is also known from che Reiger bound (ref. 8) that the number of
parity check bits of a b-burst-error correcting code is

n-k 2 b (1)
This is an upper bound, and codes which meet the Reiger bound are said

to be optima'. The ratio

2b
L 7 2)
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is a measure of the burst-correcting efficiency of the code. An
optimal code has Z=1, The fire code at best has

: z-%z% (3)

which is not very optimal with respect te the Reiger bound.

The Fire Cod: is a linear cyclic co'e which can be systematically
constructed for correcting a single buarst of error in a codewnrd of n
bits. The constructed codeword is in systematic form; that is, the
n-k parity check bits are simply concatenated after the message bits.

A Fire Code with code symbols from GF(2) which is capable of
correcti;g any burst of length b or less and of simultaneously
detecting any burst of length d 2 b is best described by its generator
polynomial

r g(x) = px) (x° + 1} (4)

where

p(x) an irreducible polynomial of degree m whose roots have
order e; that is, tle period of p(x) is e.

c t hed -]

d 2 b
m 2 b
: (c,e) = 1, that is, ¢ eand e are relatively prime.

For pure error correction purpose, the best choice is to set m=b and

[y, e =

d=b. This results in a Fire Code with the following parameters:

n=LCM (e,c) = ec

. n-k=c+m=3b -1

k =ec - (3b - 1)




Another version of the Fire Code which is the ha'f-length version, has

the following code paraments:

ns= (%) e, where ¢ is an even integer,

n-k = 3b - 2
k = (%a e - (3b-2)

In the conventional decoder implemented by shift registers,
decoding the Fire Code requires two n shifts, n shifts for parity
checking and another n shifcs for error correction. As the first
n shifts attritmted to parity checking are concurrent with the reading
r ‘vation, no time delay occurs in this operation. The second n
shifts needed to locate the error burst and correct it is a time delay
due to error correction. If n is very large, like 16768 bits, then
this long time delay may be intolerable in real life operation.
However, if there exists within easy reach some power for general
computation, resided either within the host computer or within the
coantroller of the storage system, then the second n shifts can be

reduced to the minimum of (e+c-2) plus computation time.

THE (80,64) FIRE CODE AND ITS IMPLEMENTATION

The generator polynomial for the (80,64) Fire Code is

0

g) = P ex+e ) %4 ) (5)

In this c1s5¢, p(x) = (16 + x +1) is primitive so the order of
its roots i}

-

e=2%.1=63 (6)

o
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The code parameters for this code are as follows:

(63,10)

1, that is, 63 anc 10 are relatively prime,

n=ec =63 x 10 = 630
nk=ce+m=10+6= 16
k = 630 - 16 - 614

6 so that b = 6

L¢]
"

100=b +d -1

=6 +d-1sothatd = §
Note that the condition d Z b is not met. This means that this code
probably will not be able to correct all possible single-burst errors
of length b < 6.

From the above calculations, the code generated by g(x) in
equation (5) is a (630,614) code. Since the word length of the UNICON
is 64 bits, the code must be shortened to a (8C,64) code by making the
(614 - 64) = 550 most significant bits of the message equal to zero and
omitting them, This process will not affect the encoding and parity
checking calculation since leading zeros will not affect them. It does,
however, affect the error correction procedure since the unaltered
procedure would require 550 shiif'ts corresponding to the 550 omitted
zeros before reading the actual received codeword out of the buffer.
Instead of making the buffer wait for 550 shifts, the standard
procedure is to premultiply the decoding shift register by xSSO
modulo g(x).

The parity-check calculation, as it stands, is the residue of

x16 R(x) modulo g(x). An additional automatic multiplication by




i
i
:

550

566

X is desired; that is, the residue X is desired. With the
help of a program written in basic, the remainder r(x) after
dividing 1566 by g(x) is found to be

r(x) = (xls + xlz + xll + 16 + 13 + xz + x)

This basic program is shown in figure 1. The encoding shift register
is shown in figure 2, and the decoding shift register is shown in

figure 3.
THE (16803,16761, FIRE CODE AND ITS IMPLEMENTATION

The objective of this code is to have k = 16768 and b = 12,
The procedure to rind a Fire Code that meets this requirement is as
follows:
l. Letm=d=>b=12 and ¢ =2b-1= 23
so that ¢ + m = 25 + 12 = 35

2. g(x) = px) (x* + 1)

$. &= % hy ¢cgn-k! . 16803 . 513+
Thus p(x) has degree m = 12, and a period e 2 514 is

Jdesired. With some looking, the trinomial (x12 + x5 +1) is
not primitive but has a period e = 819 is acceptable. Thus
g = 2 e e,
Now that g(x) is found, the code parameters are:
n=e =819 x 23 = 18837
n-k=c+m=23+ 12 =35

k = (18837 - 35) = 18802




The result is a (18837,18802) code, and this code can be shortened to
{16803,16768) by omitting 2034 leading zeros,.

The error correction part of the decoding requires n = 16803
shifts, which is too long a time delay for practical application,
However, there exists a high-speed decoder for this code suggested by
Chien (ref, 3). This high-speed decoder consists of two feedback shift
registers, one based on the factor (x°+1) and the other based on the
factor p(x). The two registers are run in synchronism for parity
checking and error detection, A general diagram of this decoder is
shown in figure 4. In this decoder, the syndrome is presented by the
remainder of (xcol) and p(x), and the error pattera is identified
when it has the same representation in both registers. The operation
of this decoder is as follows:

1. Shift both registers n times to enter the received

codeword R(x).

2, If R(x) has no error, the syndrome in both registers is
zero,

3. If the syndrome is not zero, shift only the (x%+1) register
until its (b-1) high-order bit positions equal to zero.
The error pattern is contained in the b low-order bit
positions. The maximum number of shifts is (c-1). Freeze
this register.

4. Next shift the p(x) register until its contain is matched
with the error pattern in the (x°+1) register. The maximum
number of shifts is (e-1). If a correctable error occurs,
this match condition will occur, otherwise ar uncorrectable

error is detected.

-10-
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From the above description, it is noted that the maximum decoding time
is equal to the minimum of (e+c-2), as compared to n for the con-
ventional decoder.

Suppose a correctable burst of length T b at location

i, o £ i < n, has occurred, then the error can be written as

E(x) = x' B(x) (8)

The remainders calculated in the registers are
5,(x) = x* B() modulo p(x) (9a)
Sc(x) = xi B(x) modulo (xc+l) (9b)

It is noted that the syndrome Sc(x) is capable of determining the
bur«! _acvern and its location up to a multiple of c¢. Therefore, by
snifting the syndrome Sc(x) in its register and testing for zero at
the (b-1) high-order bit positions, the error pattern and its location
i can be determined quickly up to multiple of c¢. That is,

igr modulo ¢ (10a)

c
where o : r. < ¢. Now that the error pattern is determined, the p(x)
register can be shifted until a match is obtained. This gives
is= rp mowulo e (10b)
If i can be solved in equation (10), then the decoding is complete.
The prcblem in equation (10) is a classical problem of simultaneous
congruence in Number Theory. If e and ¢ are relatively prime, then
the Chinese Remainder Theorem can be used to solve for i.
The Chinese Remainder Theorem simply states that
"Numbers which satisfy the simultaneous congruence i = a,

(mod ul).. s 45 .8 aj (mod uj)exist if the uj are relatively

23l




prime in pairs, and such numbers consti*ute a single number

j 1‘
class modulo "k'"
1
Now to solve for i. According to the Eucl!idean division algorithm,

if (e,c) = 1, there exists intergers Ac and Ap such that

A e+ Ap c=1 modulo (n = ec) (11)
Multiply both sides by i, the result is

i= (Ac e) i + (Ap e) 4 modulo n (12)
From the shift registers, note that

is= q, © + T for (xc + 1) register (13a)

i= qp e + rp for p(x) register (12b)

By substituting equation (13) into equation (12), the result is
is= (Ac e) T (Ap c) rP modulo n (14)
Since

0 modulo n (15a)

Ac q. ec

Ap qp ec

The key equation is equation (14). The computation of Ac and Ap can

0 modulo n (15b)

be done easily off line by the UMP with the numbers Ace and Apc
stocved in its memory. Once the error-pattern-match condition is found
in the decoder, rc and rp are available and the UMP can compute i
by equation (14). Once i 1is solved, UMP will fetch the appropriate
words from CM and perform the error correction with the error pattern

stored in the p(x) register,

It is not convenient to describe the detailed implementation of the

(16803,16768) Fire Code since its code length is too long, 16803 bits.

However, in order to illustrate the principle of this high-speed decoding

12~




scheme, a shorter (35,27) Fire Codz with b £ 3 shortened to a (24,16)

code is fully illustrated in the Appendix,

CONCLUSION

This paper has presented an augmented scheme for single-burst-error
correction for the UNICON laser memory. The augmentation is the
addition of an outer code, a (16803,16768) Fire Code, to correct for a
single error burst with length b £ 12 on a per-page basis. This
(16803,16768) Fire Code is an addition to the existing (80,64) Fire
Code which has already been implemented in the UNICON to correct a
single error burst with length b £ 6 in a per-word-basis. Based upon
observed error statistics, this augmented scheme would reduce the
error rate to about one errur per 2 X 1011 bits of data transfer, which
is about 'ne error per two strips read. The (16803,16768) code would
be implemented by a hybrid method using a high-speed hardware decoder
for syndrome calculation and a minicomputer for error location
computation and error correction. For the case where the periods of
the t1v> polynomial factors of g(x) are relatively prime, a simple
application of the Chinese Remainder Theorem would determine the burst

location.
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APPENDIX

The purpose of this appendix is to illustrate the principle of the
high-speed decoder by implementing a (24,16) Fire Code shortened from
the (35,27) code. The generator polynomial for this code is:

g) = (° +x+ 1) (x4 1)
where p(x) = (x3 + x = 1) is primitive and hence its order e = 7,
The parameters of the code are:

m=b=3 ’ d=b=3

c=2b-1=5

n=ec=7x5-=235
n-k=c+me=3-1=28

k=n - (n-k) = 27

The computation of Ace and Apc are as follows:
A e+ A c=1 mod 35
¢ P
7Ac + SAp = ] mod 35
A =3and A_ =3
c P
Thus
i= (21 T, * 15 rp) mod 35
Lets shorten the (35,27) code to a (24,16) code by making the leading
11 message bits equal to zero. Encoding is not affected. However,
decoding must account for the missing 11 leading zeros. Any multiple
of C =5 shifts of the (xc + 1) register has no effect. Any
multiple of e = 7 shifts of the p (x) register has no effect.
For the (xc + 1) register,

(3 + 11) - (5 x 2) = 4 shifts

=15~
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meaning input data should be connected to the inprt of the 5th stage

of the (xc + 1) register. For the p(x) register,

(3+11) - (7 x2) =0 shifts

meaning input data should be connected to the input of the first stage

of the shift rcgister. The decoder is shown in figure A-1,

For a message m(x) of

0 123 456 789 1011 12 13 14 15

m(x) = 1 011 000 101
the encoded V(x) is

0 123 456 789 1011 12 131415 ! 01 234 567

1 011 000 101

1 01 0 0 1

|
E 53 8 1|:'11 011 101
14

In these examples, bit-0 is the MSB and it is sent first. To illustrate

the principle of error correction, lets introduce two error patterns as

follows:

Error Pattern No. 1

0 1283 ... 9

El(x) = 0 000 ....... 0

Error Pattern No. 2

0123 4 56 7 89

Ez(x) = 0 000 O Ill 1

i=5

The corrections for these two error patterns are shown in figures

A-2 and A-3, respectively.

10 11 12 13 .... 158 | 01....7
e ——— |
5. -F 19 0 | 00 0
I
i=10
.................. 18 | 01....7
|
00 oovsvnvasessvenns 0 1 00....0
I

}x) nLk

-16-
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REM==THIS PROGRAM COMPUTES X(EXPN) MOD G(x) BY LINEAR SHIFY
HEM==REGISTFR SEQUENCES,
REM=«IMITIALIZATION
PRINT "Ny

INPUT N

LET 1y

DIM x(8®)

rOR Jeg TO 16

X(J)e

LEXT J

KEM==SHIF1 RIGHT SUBT,
X(16)eX(15%)
xX(15)eXx(14)
x(1d)sx(1 )
X(13)sx(12)
x(12)ex(11)

IF X(16)sX(10) GOTO 83
x(11)my

GOYO 9p

X(11)mp

IF x{16)sX(9) GOTOC 93
xX(1e)sy

GOTO 100

x(1@)sp

X(9)=x(8)

x(B)=sX(7)

X(7)uX(®)

IF X(le)sX(5) GOTO 133
X(h)s|

6LNTO 140

X(6H)sf

X(5)=X(4)

X(4)=x(3)

X(3)mx(2)

x(2)mX(1)

IF x(1e)sx(m) GOTO 183
X(1)s=]

GNTO oM

X(1)=

IF X(16)81 6OTO 193 PRECEDING PAGE BLANK NOT FILMED
xX(udle)

GOTO 210

X(@)sp

REM==END OF SHIFT RIGWT SUBT,
LET x(16)=Q

LET (s

LET Neshey

IF N>sp GOTO 65

PRINT "X(@)s X(1)s seaer X(15)"
PRINT X(@)gX(1)eXC2)pX(3)pXC4) X (5)gX(6)9X(7)
PRINT X(B)pX(0)pX(1@)pXC11)pX(12) X (13X (14)pX(15)
PRINT
GOTO 2@
END
Figure 1.- A basic program to calculate X566 modulo

1

S(X)=X16+X11+X 0+X6+X+1.
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