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AUGMENTED BURST-ERROR CORRECTION

FOR UNICON LASER MEMORY

Raymond S. Lim

Institute for Advanced Computation

Ames Research Center, NASA, Moffett Field, Calif. 94035

SUMMARY

This paper describes a proposed augmented single-burst-error cor-

rection system for data stored in the UNICON Laser Memory. In the

proposed system, a long Fire Code with code length n > 16,768 bits is

used as an outer code to augment an existing inner shorter Fire Code

for burst-error corrections. The inner Fire Code is a (80,64) code

shortened from the (630,614) code, and it is used to correct a single-

burst error on a per-word basis with burst length b ^ 6. The outer

code, with b 5 12, would be useet to correct a single-burst error on a

per-page basis, where a page r„onsists of 512 32-bit words. In the pro-

posed system, the encoding and error detection processes would be

implemented by hardware. A minicomputer, currently used as a UNICON

memory management processor, would be used on a time-demanding basis for

error correction. Based upon existing error statistics, this combina-

tion of an inner code and an outer code would enable the UNICON system

to obtain a very low error rate in spite of flaws affecting the recorded

data. The approach of the long Fire Code described here is also

applicable to other mass memory systems (such as rotating disks) where

single-burst-error correction can be obtained at very low redundancy.
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0	 INTRODWTION

The 11NICOh laser memo ry, or UNICON, is a digital memory manufactured

by Precision instrument Lo. for the ILLIAC-TV computer as part of the

mass I/O storage. The UNICON as an on-line storage capacity of about

10 
2 
hits. In such a high-density data storage system, contamination

and other defects can easily obliterate a group of daca bits. In order

to ope rate successfully in spit of this problem in the UNICON, an

elaborate error-correction system is used.

Error statistics obtained on the operation and checkout of the

UNICON indicate that the desired net error rate ui one bad word of data

per 2 x 10 11 bits read might hp met if two Fire Codes were used for

single-burst-error correction. 'These two Fire Codes would be arranged

as a system consisting of an inner code and an outer code. The inner

code would be a short (80,64) Fire Code used to correct an error burst

of length b < 6 on a per-word basis. The outer code would be a long

(16903,16769) Fire Code used to correct an error burst of length b 1 12

on a per-page basis. It should be noted that this system of an inner

code and an outer code would not function in the same sense as the

concepts of concatenated codes (ref. 1). Furthermore, the Reed-

Solomon code from GF(2m ) successfully used in the IBM ('hoto-Digital

memory (ref. 2) is not feasible for the UNICON because of the long

codeword length of n=16803.

The inner (80,64) Fire Code currently in use is implemented all in

hardware by shift registers and error correction is done on-line as

data a-,e read off the strip. The (16803,15768) ester Fire Code would

-2-
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•	 be decoded in a manner suggested by Chien (ref. 3). A similar scheme

for burnt error correction with b = 11 was implemented successfully in

the IBM model 3830 controller for the Model 3330 disk. The problem of

effectively implementing the (16803,16768) outer code has been solved

by a number o,' innovations and in a hybrid manner. Most important is

the use of hardware for encoding, while using a minicomputer on a time-

demanding basis for error correction. The minicomputer performs a

calculation to find the burst error location i by applying; two well-

known theorems from Number 'theory: the Euclidean algorithm for

division and the Chinese remainder theorem for simultaneous congruences,

sometimes thought to he me, ly of academic interest only to Number

Theorists.

CODING RE(K11RLME.NT FOR UNICON

The basic storage element of the 11N1CON is a metal coated plastic

strip about 4.75 x 31 in. The recording density across the strip is

11805 tracks over 3.8 in., or about 3000 tracks per in. Each track

can store up to eight records of data, with each record containing

16,768 data bits plus other record identification bits. The method for

recording data on the strip is t., use the laser to either burn a hole

for a 1-bit, or not to burn a hole for a 0-bit.

Data entering and leaving the UNICON are handled by a UNICON

Controller (ref. 4). The Controller has two interfaces: a central

memory (CM) interface for data, and a minicomputer interface for

control. The minicompi ► ter (a PDP-11) functions as the UNICON memory

management processor (UMP). The UMP obtains its control programs

-3-
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through its own virtua ', hardware interface into the CM. by means of

this virtual address space, UMP can address up to 4096 pages in CM.

Data transfer to the UNICON is always one page of data at a time from

CM, where a page of data consists of 512WX328, which is 16,384 bits.

For each page of data, the controller attaches 16WX16B of header in-

formation and BWX16B of checksum parity bits to form a data record of

16,768 bits. The checksum is simply a single-parity check with check

symbols from GF(2128).

The basic word length in the UNICON is 64 bits. As previously

mentiored, the UNICON currently has a built-in (80,64) Fire Code which

is used to correct a single-burst error with burst length h ^ 6 in a

per-word-basis. Because of optic imperfections and other mechanical

flaws, data read back from the strip always contain errors. When the

UNICON is properly aligned, most errors are correctable by the (80,64)

Fire Code. Preliminary observations on the error statistic indicate

that the probability of getting an error not correctable t 	 s Fire

Code is about one for every 10 11 bits of data transferred, wi,i-A is about

one error per strip. The observed uncorrectable errors, for those that

are understood and the cause can be explained, are typically single-

burst errors with b ` 11. Thus if a long Fire Code with b ` 12 is used

to augment the existing (80,64) Fire Code to correct a single-burst-

error on a per-page basis, then it is possible that the error rate can

be reduced to a very low level. The long Fire Code chosen is a

(16803,16758) code. 	 In this arrangement, the (16803,16768) code is

called the outer code, while the (80,64) cude is called the inner code.

-4-



Ii I—

DESCRIPTION Of' 'rm FIRE CODE

An error burst of length b i3 defined as a vector whose non-zero

•	 comlonents are confined to h consecutive bit positions, the first and

last of which are non-zero. It is known that cyclic codes for single-

burst-error correction can be systematically constructed (refs. 5 and 6).

These codes are rather efficient and they can be implemented with

feedback shift registers. An important class of these codes is known as

the Fire Codes (ref. 7). In the discussion which follows, let

n	 = length of codeword in bits.

k	 = number of message bits in a codeword.

n-k = numher of redundant bits in a codeword.

b	 = maximum length of single error burst which can be corrected,

in bits.

m(x) = message word.

v(x) = transmitted codeword.

E(x) = error burst.

R(x) = v(x) + E(x) = received codeword.

It is clear that for a given k and b, the objective is to constrict

an (n,k) code with as small a redundancy n-k as possible.

It is also known from the Reiger bound (ref. 8) that the number of

parity check bits of a b-burst-error correcting code is

n-k ? :'b	 (1)

This is an upper bound, and codes which meet the Reiger bound are said

o be optima l . The ratio

_ 2b	 r
Z	 n-k	 V.

-5-
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is a measure of the burst-correcting efficiency of the code. An

optimal coda has Z n 1. The fire code at best has

Z	 2b	 2	
(3)

3b-1 - 3

which is not very optimal with respect to the Reiger bound.

The Fire Cod- is a linear cyclic co l.e which can be systematically

constructed for correcting a single Lorst of error in a codeword of n

bits. The constructed codeword is in systematic form; that is, the

n-k parity check bits are simply concatenated after the message bits.

A Fire Code with code symbols from GF(2) which is capable of

correcting any burst of length b or less and of simultaneously

detecting any burst of length d ' b is best described by its generator

polynomial

g(x) - 1)(x) (xc + 1; 	 (4)

where

p(x)	 = an irreducible polynomial of degree m whose roots hv+ve

order e; that is, the period of p(x) is e.

C	 '- b + d - 1

d	 ? b

III	 e b

(c,e)	 = 1, that is, c Ind a are relatively prime.

For pure error correction purpose, the best choice is to set m=b and

d=b. This results in a Fire Code with the following parameters:

n = LCM (e,c) = ec

•	 n-k = c + m = 3b - 1

k = ec - (3b - 1)

-6-



•	 Another version of the Fire Code M hich is the hb'f•length version, has

the following code paraments:

n - (2) e, where c is an even integer.

n-k - 3b - 2

k	 (3b - 2)

In the conventional decoder implemented by shift registers,

decoding the Fire Code requires two n shifts, n shifts for parity

checking and another n shifts for error correction. As the first

n shifts attri t-ited to parity checking are concurrent with the reading;

ration, no time delay occurs in this operation. The second n

shifts needed to locate the error hurst and correct it is a time delay

due to error correction. If n is very large, like 16768 bits, then

this long time delay may be intolerable in real life operation,

However, if there exists within easy reach some power for general

computation, resided either within the host computer or within the

controller of the storage system, then the second n shifts can be

reduced to the minimum of (e+c-2) plus computation time.

THE (80,64) FIRE CODE AND ITS IMPLEMENTATION

The generator polynomial for the (80,64) Fire Code ^.s

g (x) _ (x6 + 
x + 1) (x 10 + 1)
	 (5)

In this c •t^F, p (x) _ (x 6 + x +1) is primitive so the order of

its roots

•	 e = 2 6 - 1 = 63
	

(6)
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1'I.e code parameters for this code are as follows:

(63,10) n 1, that is, 6.1 an(; 10 are relatively prime.

n = ec n 63 x 10 n 630

n-k n c • m n 10 + 6 - 16

k = 630 - 16 - 614

m= 6 so that b	 6

c n 10 n b • d - 1

= 6 • d - 1 so that d 	 5

Note that the condition d ? b is not met. This means that this code

probably will not be able to correct all possible single-burst errors

of length b ^ 6.

From the abo ,., e calculations, the code generated by g(x) in

• equation (5) is a (630,614) code. Since the word length of the IINICON

is 64 bits, the code must be shortened to a (80,64) code by making the

(614 - 64) z 550 most significant bits of the message equal to zero and

omitting them. ThYs process will not affect the encoding and parity

checking calculation since leading zeros will not affect them. It does,

however, affect the error correction procedure since the unaltered

procedure would require 550 shirts corresponding to the SSO omitted

zeros before reading the actual received codeword out of the buffer.

Instead of making the buffer wait for 550 shifts, the standard

procedure is to premultiply the decoding shift register by X550

modulo g(x).

The parity-check calculation, as it stands, is the rebidue of

X 16 R(x) modulo g(x). An additional automatic multiplication by

-8-
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X550 is desired; that is, the residue 
X566 

is desired. With the

help of a program written in basic, the remainder r(x) after

dividing X566 by g(x) is found to he

r(x) _ (x13+x12+ x11 +x6+x3 +x2+x)

This basic program is shown in figure 1. The encoding shift register

is shown in figure 2, and the decoding shift register is shown in

figure 3.

THE (16803,16761 ) rIRE CODE AND ITS IMPl.EM-.NTATION

The objective of this code is to have k = 16768 and b - 12.

The procedure to rind a Fire Code that meets this requirement is as

follows:
i

1. Lett m= d= b= 12	 and	 c= 2b -  1= 23

so that c+m= 23+12=35

2. g (x) = p ( x ) 
(x23 + 1)

3. e = n	 k + (n-k = 16803 = 513+

c	 c	 23

'Thus p(x) has degree m - 12, and a period e ' 514 is

desired. With some looking, the trinomial ( X 12 + X 5 +1) is

not primitive but has a period e = 819 is acceptable. Thus

g ( x ) _ (
X 12 + X 5 + 1)(X23 + 1).

Now that g(x) is found, the code parameters are:

n = et = 819 x 23 - 18837

n-k=c+m	 23+12-35

k = (18837 - 35) = 18802

-9-



The result is a (13837,18802) code, and this code can he shortened to

(16803,10768) by omitting 2034 leading zeros.

•	 The error correction part of the decoding requires n • 16803

shifts, which is too long a time delay for practical application.

However, there exists a high-speed decoder for this code suggested by

Chien (ref. 3). This high-speed decoder consists of two feedback shift

registers, one based on th-z factor (X c +1) and the other based on the

factor p(x). The two registers are run in synchronism for parity

checking and error detection. A general diagram of this decoder is

shown in figure 4. In this decoder, the syndrome is presented by the

remainder of (X c +1) and p(x), and the error patt.ra is identified

when it has the same representation in both registers. The operation

of this decoder is as follows:

1. Shift both registers n timos to enter the received

codeword R(x).

2. If R(x) has no error, the syndrome in both registers is

zero.

3. If the syndrome is not zero, shift only the (Xc +1) register

until its (b-1) high-order bit positions equal to zero.

The error pattern is contained in the b iow-order bit

positions. The maximum number of shifts is (c-1). Freeze

this register.

4. Next shift the p(x) register until its contain is matched

with the error pattern in the (X c +1) register. The maximum

number of shifts is (e-1). If a correctable error occurs,

this match condition will occur, otherwise an uncorrectable

error is detected.

-10-
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From the above description, it is noted that the maximum decoding time

is equal to the minimt,m of ( e+c-2), as compared to r ► for the con-

ventional decoder.

Suppose a correctable burst of length : b at location

i, o ! i < n, has occurred, then the error can be written as

E(x) n x i B(x)	 (8)

The remainders calculated in the registers are

S
P 
(x) n x  B(a)	 modulo p(x)	 (9a)

SC (x) n x i B(x)	 modulo (x` +1)	 (9b)

It is rio t ed that the syndrome Sc (x) is capable of determining the

bur , , t ..,,tern and its location up to a multiple of c. Therefore, by

shifting the syndrome Sc (x) in its register and testing for zero at

the (b-1) high-order bit positions, the error pattern and its location

i can be determined quickly up to multiple of c. That is,

i - r 	 modulo c	 (10a)

where o <- r  < c. Now that the error pattern is determined, the p(x)

register can be shifted until a match is obtained. This gives

i _ r 	 modulo a	 (10b)

If i can b: solved in equation (10), then the decoding is complete.

The prcblem in equation (10) is a classical problem of simultaneous

congruence in Number Theory. If a and c are relatively prime, then

the Chinese Remainder Theorem can be used to solve for i.

The Chinese Remainder Theorem simply states that

"Numbers which satisfy the simultaneous congruence i = a 

(mod u I ),. . ., i = a  (mod p i )exist if the p i are relatively

- 11 -
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prime in pairs, and such numbers consti'ute a single number

class modulo n uk."
1

Now to solve for i. According to the Euclidean division algorithm,

i
if (e,c) - 1, there exists intergers Ac and Ap such that

Ac e ; A  c	 1	 modulo (n = ec)	 (11)

Multiply both sides by i, the result is
a

i = (Ac e) i + (Ap c) i	 modulo n	 (12)

t from the shift registers, note that

i - q,
c,	 c

c + r	 for (xc + 1)	 register	 (13a)

i * q  e + r 	 for p(x)	 register	 (13b)

By substituting equation (13) into equation (12), the result is

i = (Ac e) r  + (Ap c) r 	 modulo n	 (141

Since

Ac q  e c = 0	 modulo n	 (15a)

A  q  c c = 0	 modulo n	 (15b)

The key equation is equation (14). 'The computation of A c and A 	 can

be done easily off line by the UMP with the numbers A ce and A 
p 
c

stored in its memory. Once the error-pattern-match condition is found

in the aecoder, r
c 

and r 	 are available and the IMP can compute i

•	 by equation (14). Once i is solved, UMP will fetch the appropriate

words from CM and perform the error correction with the error pattern

stored in the p(x) register.

It is not convenient tea describe the detailed implementation of the

(16805,16768) Fire Code since its code length is too long, 16803 bits.

However, in order to illustrate the principle of this high-speed decoding

-12-
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scheme, r, shorter (35,27) Fire Cod. with b '_ 3 shortened to a j24,16)

code is fully illustrated in the Appendix.

CONCLUSION

This paper has presented an augmented scheme for single-burst-error

correction for the UNICON laser memory. The augmentation is the

addition of an outer code, a (16803,16768) Fire Code, to correct for a

single error burst kith length b ^ 12 on a per-page basis. This

(16803,16768) Fire Code is an addition to the existing (80,64) Fire

Code which has already been implemented in the UNICON to correct a

single error '.,urst with length b ^ 6 in a per-word-basis. Based upon

observed error statistics, this augmented scheme would reduce the

error rate to about one err:,r per 2 x 1011 bits of data transfer, which

is about ne error per two strips read. The (16803,16768) code would

be implemented by a hyhrid method using a high-speed har,'.ware decorer

for syndrome calculation and a minicomputer for error location

computation and error correction. For the case where the periods of

the ti.) polynomial factors of g(x) are relatively prime, a simple

application of the Chinese Remainder Theorem would determine the burst

location.

ACKNOW',EDGEMENT

The author wishes to thank Dr. Mel Pirtle for his initial

suggestion for augmenting the burst-error-correction for the UNICON.

-13-



^_ ; I I I Imo__

REFERENCES

1. Forney, G. 0., Jr.: Concatenated Codes. AIT Research Monograph

No. 37, The MIT Press, Cambridge, Mass., 1966.

2. Oldham, I. B.; Chien, R. T.; and Tang, D. f.: Error Detection and

Correction in a Photo -Digital Storage System. IBM J. Res. Dev.,

Nov. 1968, pp. 422-430.

3. Chien, R. T.: Burst -Correcting Codes with High-Speed Decoding.

IEEE Trans. on Information Theory, Jan. 1969, pp. 109-113.

1.	 Lim, R. S.: A Channel Controller for the Unicon Laser Memory

(to he submitted for publication as a TM).

5. Peterson, A. W.: Error-Correcting Codes. MIT Press and John

Wiley 6 Sons, 1961.

6. Peterson, W. W. and Woldon, E. .1.: Error-Correcting Codes,

2nd Ed., MIT Press, Cimbridge, Mass., 1972.

7. Fize, P.: A Class of Multiple-Error-Correcting Binary CodeF for

Non-Independent Errors. Sylvania Rec. Sys. Lab., Mountain View,

Calif., Sylvania Report RSL-E-2, 1959.

8. Reiger, S. H.: Codes for the Correction of Clustered Errors.

IRE 'Trans. on Information Theory, Mar., 1960, pp. 16-21.

C

-14-



6	 APPENDIX

The purpose of this appendix is to illustrate the principle of the

high-speed decoder by implementing a (24,16) Fire Code shortened from

the (35,27) coc+e. The generator polynomial for this code is:

g ( x ) = (x3 + x + 1) (X 5 + 1)

where p(x) = (x3 + x = 1) is primitive and fence its order e = 7.

The parameters of the code are:

m= h- 3	 d= 1) = 3

c = 2b - 1 - 5

n	 ec = 7 x 5 = 35

n- k= c+ m= 3b - 1= 8

k	 n - (n-k) = 27

The computation of Ace and Apc are as follows:

A e+ A c= 1	 mod 35
c	 p

7A + SA = 1	 mod 35
c	 p

A = 3 and A = 3
c	 p

Thus

i = (21 r  + 15 rp )	 mod 35

Lets shorten the (35,27) code to a (24,16) code by making the leading

11 message bits equal to zero. Encoding is not affected. However,

decoding must account for the missing 11 leading zeros. Any multiple

of C = 5 shifts of the (x c + 1) register has no effect. Any

multiple of e = 7 shifts of the p (x) register has rio effect.

For the (x c + 1) register,

(3 + 11) - (5 x 2) = 4 shifts

-15-



meaning input data should be connected to the input of the 5th stage

of the (x` + 1) register. For the p( x) register,

(3 + 11) - (7 x 2) - 0 shifts

meaning input data should be connected to the input of the first stage

of the shift register. The de_oder is shown in figure A-1.

For a message m(x) of

0 123 456 789 10 11 12	 13 14 1:,

M(X) =	 1 011 000 101	 1	 0 1	 0 0 1

the encoded V(x) is

0 123 456 789 10 11 12	 13 14 15	 1 01 234 567
I

1
1	 011	 000	 101	 1	 0	 1	 0 0	 1 I1 ^11	 Oil	 101 I

I

m I W	 n-k

In these examples, bit-0 is the MSB and it is sent first. To illustrate

the principle of error correction, lets introduce two error patterns as

follows:

Error Pattern No. 1

0	 123	 ....... 9	 10	 11	 12	 13 .... 15	 1	 01....7
1

E 1 (x) =	 0	 000	 ....... 0	 1	 1 I o ....	 0	 1	 00....0
L—_	 I

i	 i = 10

Error Pattern No. 2

0 123

E
2 
(X)0 000

The corrections for

A-2 and A-3, respec

4	 56	 7	 89 .................. 	 15	 1	 01....7

1

0	 11	 1	 I00 ..................	 0	 1	 00....0

I

i = 5

these two error patterns are shown in figures

Lively.
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03010	 REM--IVITIALIZATION
0302h	 PRINT "N"1
0 1 010	 INPUT N
0304V	 LET let
P1 11645	 DIM X(50)
10IV'N O	 ruP J o V TO 16
030!; !	 X(J)•:
N 305 2 	 P.Eirl J
0'9060	 kEN- -SHIF1 P TGHT SUAT,
01065	 X(1O)vx(1w^)
0306C	 X(15)ex(14)
03067	 x(14).X(13)
03068	 x(13)ex(12)
03069	 X(;2)gx(ll)
03080	 IF X(ih)ex(i0) GOTO 83
03281	 x(11)•1
P11082	 GOTO 9P
F3083	 x(11)aV
03090	 IF X^16)eX(()) GOTO 93
03091	 X(IV)tl
03092	 GnTO 100
V 3093	 x (10) 010
603100	 x(9)NX(8)
0110	 X(P).x(7)
"1120	 X(I)0x(r))

03130	 IP X(1t)W 15) GOTO 133
03131	 x( 5)=1
i 9132	 L,0T0 140?
103133	 W0011
03140	 X(5 ) n Y(4)
0'915d	 X(4)ex(3)
03160	 x(I).X(p)
V,"11 7 1:	 A ( 2 ) a X ( I )

0318?	 IF X(lt,).x(A) GOTO id3
03191	 x(1) n 1
03182	 GnTO i90
01 1 83 9 	 x ( i) • 0
P'^190	 IF X(lfi)tI GOTO 19	 ?"WEUING PAGE BLANK NOT FILMED
01191	 X(1091
03192	 GOTn 21M
01193	 X(0) n e
61200	 PEM--ErjD OF S H IFT RIGHT SUBT.
03215	 LET t(16)t0
0 21io	 LFT IsN

13220	 L ET hey.-1

01230	 IF N>.N 611TO 65
03240	 PRINT "X(0), x(1). ..... x(15)"
01241 PRINT Y('!tX(1)tX(l)fX(3)fx(4)Ix(5)1x(6`)Ix(')
03242 P R I N T k(P)1X(o) 1X( 10)1X(iI	 X(i2)sx(13)tX(1 .1) X(15)

03250	 PRINT
03260	 GOTO 20
1'3999	 E N D

Figure 1.- A basic program to calculate X566 modulo

g(x)=X16+X11+XI0+X6+X+1.
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