
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19750017601 2020-03-22T21:45:11+00:00Z



('NASA-C O -I418DI) THS Pr, i S ;ISSIO N OF SOW-)	 S75-15W3
IN NONUNI v I l ! DUCTS Findl ry epart (WicLita
State univ.)	 7.3 p HC 0.25	 WSCD 20A

Uncl a3
1;3/71	 2 185



Abstract

The method of weighted residuals in the form -)f a modified Galerkin

method with boundary residuals is developed for the study of the transmission

of sound in nonuniform ducts carrying a steady, compressible flow. In this

development the steady flow is modeled as essentially one dimensional but with

a kinematic modification to force tangency of the flow at the duct walls.

Three forms of the computational scheme are developed using for basis functions

(a) the no-flow uniform duct modes, (b) positive running uniform duct modes,

with flow, and (c) positive and negative running uniform duct modes, with

flow. The formulation using the no-flow modes is the most highly developed and

has advantages primarily due to relative computational simplicity. Results

using the three methods are shown to converge to known solutions for several

special cases. The most significant check case is against low frequency, one

dimensional results over the complete subsonic Mach number range. Development

of the method is continuing, with emphasis on assessing the relative accuracy

and efficiency of the -three implementations.
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INTRODUCTION

The method of weighted residuals (MWR) in the form of a Galerkin

technique with boundary residuals, has been shown to be a useful method

for the investigation of the transmission of sound in nonuniform ducts

with no flow (1) .	 In this paper the method is extended to treat the

case when the duct carries a steady nonuniform flow.

The introduction of steady mean flow into the study of nonuniform

duct propagation complicates the problem in two ways. 	 The acoustic

field equations no longer reduce to either the simple wave equation of

the noflow case or the convective wave equation of the uniform flow

casE.	 In addition, the field equations represent acoustic perturbat-

ions on a steady nonuniform flow field which in itself is difficult to

describe.	 As a consequence of these complications, no simple theories

of propagation have been developed and investigations appearing in the

literature have been relatively few.

The majority of studies appearing have been based on a one dimension- .,

al theory which treats the propagation as plane waves moving in a one 	 1

dimensional nozzle flow. 	 Powell(Z), Eisenberg and Kao (3) King and
e

Karamchet3. 	 , Huerre and Karamcheti (5) and Davis (6) have studied one i

dimensional models by a variety of techniques.

it is the purpose of this investigation -n study multi-modal prop-

agation in nonuniform ducts with flow. 	 Published work dealing with

this problem has been limited to approximate methods for nonuniformities 	 3

in cross section, lining and flow properties which are slowly varying.

Tam 
(7) 

considered hardwalled ducts with slowly varying cross section by

using a Horn type of approximation and Fourier Transform methods. Nayfeh

and.his co-workers 	 used the method of multiple scales and include
9

slowly varying area, lining and boundary layer. 	 while Tam's work

allows modal. coupling, Nayfeh's does not.

i
The method described here treats the complete acoustic field equations

and is approximate only in the sense that the solutions are represented

in terms of a superposition of a limited number of specified functions. 3

We will be concerned primarily with the method of solving the field

equations and relatively little with the difficulty presented by describ-

ing the nonuniform steady flow field. Instead, we will use an approx-

i.mation for the flow field based on one dimensional compressible flow



2.

with a kinematic modification to allow for flow tangency at the duct walls.

In addition, in this initial study of computational schemes we will

concentrate primarily on the solution in elementary duct sections. Rather than

an exhaustive treatment of the transmission characteristics of various duct

configurations we limit our attention to the successful implementation of the

scheme in particular case&.

A principal motivation for the study of propagation in ducts with flow

is the observed phenomenon of subsonic acoustic choking which occurs in inlet

type flows when the acoustic source radiates upstream through a flow constriction.

It is found that there is a substantial reduction in acoustic transmission

past the constriction when the Mach number in the constriction exceeds about

M = 0.7. One would predict this intuitively if the constriction is sonic;

however, the occurence of acoustic choking at such low Mach number is surprising

and requires investigation. Tam (9) has considered the possibility that some

of the choking is attributable to nonlinear effects arising when high intensity

sound propagates upstream. The computational scheme developed in this paper

provides a basis for studying tte linear aspects of this problem. Extensive

computations directed toward this goal will be made in an extension of the

current research effort.

CO-ORDINATE SYSTEM AND GEOMETRY

In the following development we will consider only two dimensional ducts.

The method employed generalizes to the three dimensional case, but is then,

of course, more computationally demanding. We will also consider explicitly

only ducts of infinite length, although as has been shown (1) , the extension

to ducts which are of finite length is not difficult provided that the reflection

properties of the termination are known.

Figure 1 shows the type of configuration under consideration in which

two semi-infinite uniform duct sections of height b 0 and b  are joined by a

transition section of variable height b(x). The duct wall at y = 0 is hard and

the wall at y = b(x) in the transition section has variable impedance Z 0 (r).

The uniform sections have impedance Z  and Z  at y = b 0 and y = b., respectively,

and have a hard wall at y = 0.

i
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This representation can be considered as a model of a duct of this con-

figuration or of one symmetric with respect to the x axis with symmetric

propagation.	 We will consider only continuous variations in duct

height; however discontinuous changes in impedance will be permitted at

the ends of the nonuniformity.

4
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GOVERNING ACOUSTIC E UATIONS

We will consider acoustic propagation as small perturbations on the

steady duct flow. It is assumed in the present analysis that the fluid

motion is nonviscous and isentropic. To derive the acoustic equations

we begin with the equations of continuity, momentum, energy and state

in dimensional form

62-)

The fluid state vari

perturbations on the

,p

ables p', p', v' are made up of small acoustic

steady flow, so that

Y	 y * (7)

where p*o r P*o , v*Q are the steady flow conditions defined by

GlI Y p̂^ ^ ^ = O	 !s 1

V '^. C^rGt G^ ô	^^o G^IU v = O	 00
o

Because of the isentropic assumption the energy equation is directly deriv-

able from the continuity equation. The energy equation does not contain

the density and is more convenient to use. By using Equations (5) - (7)

in Equations (2) - (4) and by making the acoustic assumption of small

perturbations on the steady flow, the limensional acoustic momentum, energy

and state equations are:



^t	
/pV ,grad d ,O y "^^ad ^,, *+^ p '^"Yr'azli -^c raw -10o

r •^ 1

*-t Vo	
41^ 4rad^t z"^o div l^ * I/ ^` grddpp^ d^pd/v v^ O

Equations (9) and (10) were used to eliminate the steady flow terms in

Equations (12) and (13). The term in Equation (12) containing p* can be

rewritten by using Equation (14) and equation (9):

0	 Jq 
O

The modified momentum equation is then

,Q ^ r7V ^ ^ ^ ^` `/ 'F gr4a^ o ^f^p^ o ^' ^^Oc'1/ !/ a` t 9raa^^a^ ^;; ô ,^ 9raO^ - D
/ at	 3 	 J

his)
The governing acoustic equations can be non--dimensionalized•in the

standard way by defining the nondimensional variables.

_	 q
y^	 Q

/fir 033-

S.

(14)

YA4

+ Cr

lues of the density and Speed

the state which exists in the

The nondimensional equations

^ .L° ,	 Y = C	 , Ya
^Or	 r

The reference statesP cr are arbitrary va

of sound. They will generally be chosen as

uniform flow incident on the nonuniformity.

of momentum, energy and state are then

r
a t V • R ^d ° b QJ"Lt C7f I/ f a Ll r R CJ^^ -	 c^I'C^ D/ ^o - D

^ ^ -^ Yo • `^/'pd^ r d'Po Q'^v V ,c V • 9 ra ^/^'d ^ d`̂ d^v ^%a ^ o
cr a	 J	 3 (/7))

_	 Oa)
P°

A
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When a harmonic time dependence of the form a 
iwt is assumed, Equations

(16) and (17) become

L k,.. Y -t V • 9
1"QGl^ Yo	 Vo 9/ 'O 4 I^	 9 ra^^ - ^o Y - /- = O

L Kr p +4 y ' 4rad	 b' pQ Gt / l^ V Y • ^!^C^ d^ f ^'^ Q^/ // Vp 	 Q

3 	 <2a)

where ^^ = W/C, = ?'r/.1,_	 and	 r is the free space wave number

in the reference state.

In order to specify a boundary condition at the duct walls, we introduce

a co-ordinate system as shown in Figure 1. This figure shows the manner

in which the duct height profile and slope of the height profile are

specified as well as the designation of the local out* yard unit normal

at the duct wall, y. The duct wall boundary condition employed is charac-

teristic of a normally reacting lining in the presence of a harmonic

pressure variation,

where v*U is the particle velocity in the acoustic lining at the su_face,

assumed in the direction of the outward. normal. Z is the wall impedance

which may be a function of axial position. Tn nordimensional variables the

boundary condition becomes

or

where A = p rcr/Z is the acoustic admittance ratio of the lining based on the

reference admittance 1/p c	 In harmonic motion the relation between ther r
component of fluid particle velocity at the wall and particle velocity in

the lining at the wall is given by

U is the iiuid velocity tangent to the wall and aT is the directional

derivative along the wall. In nondimensional form this becomes

V - Y - I/^, f CJr r^ ^^	 2^r ^"	 s



^r 1/ f L / lVI? / Jf - !Z

4fZ7	
/ 4- Z

O
/^ CI 2	 Cr 1 I f

where A is the local cross sectional
c

7.

The boundary condition at a duct wall, assuming a time dependence eiWt^

is thus

Equations (19) and ( 24 ) with the duct wall boundary condition of

E-iaation (21) specify the boundary value problem for propagation in a

variable geometry duct with a steady flow. The problem as described is

formidable, principally due to the introduction of the steady duct flow.

The introduction of the flow field considerably complicates the acoustic

problem, but it also presents the requirement of describing the flow field.

The flow field would be defined by the solution of Equations (6)	 (11)

plea suitable boundary conditions. Even for simple duct geometries this

requires sophisticated numerical techniques and only rarely in highly

specialised cases cold one hope to generate an exact closed form solution.

For detailed studies a fairly enact description of the flow field may be

required. However, in order to study the effect of duct noruniformities

on the propagation of sound with a certain degree of generality, we will

use an approximation to .:he steady flow field.

The most common approximate descriptior of the steady flow field is

the one-dimensional theory which is one of the cornerstones of elementary

gasdynamics. This theory proves very useful for a wide range of duct

contours, but with rigor must be viewed as a first approximation when the

area change is gradual.

In the one-dimensional theory the variation of the Mach number,

nondimensional density and pressure with axial position are given by

e k	 ^- Mot	 .I1 Ac C7IK

2 ^. ^
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In addition, the local nondimensional speed of sound is given by:

2 :. ( * 2	
2

	

C.	
i!^^; )

71	
2

^ a

and the local nondimensional flow velocity is given by:

i	 z 7 i^
Uo ^	 / '` ^ Mo f

uo - Cr - Mo / 
El 2 ? ^2
Z r

U  is the local axial component of flow, the transverse components being

assumed zero in the one dimensional approximation.

In this approximation the flow properties are assumed to be uniform

at a cross section with no transverse velocity. They are solutions of the

one dimensional continuity and momentum equations

^ d ô ^ ! dUo .^ i d<l^ _ o

	

^o d;r	 uo dx A, dx

2LA. ^ —^" ^o duo'9'X 
	 dx

together with the isentropic equation of state

.f-

	 A a

The acoustic problem, Equations (19) and ¢fl ), involves axial and

transverse velocities and pressures as well as axial and transverse gradients.

Furthermore, the boundary condition requires the velocity tangent to the wall.

This required velocity field could be approximated simply by using the one

dimensional theory and ignoring the transverse velocity and the transverse

gradients. We choose to include some measure of the effect of transverse

velocity and its gradient by taking the solution to Yquaticns (8) - (11) to

be, in nondimensional form for the two dimensional duct
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where a bar notation has been used to denote the one dimensional solution.

This form for the steady flaw field must be recognised as approximate, but

it is considered to be a reasonable approximation in that it exactly satis-

fies both the continuity equation, Equation (8) and the x component of the

exact momentum equation, Equation (9). The y component of Equation (9) is

not satisfied exactly, but is satisfied on an average basis on the cross

section of a duct symmetric with respect to the x axis. in addition, this

solution satisfies the requirement of flow tangency at the duct wall.

By using this approximation we are introducing an error into Equations

(19) and (20) since in those equations it is assumed that the flow field

satisfies Equations (8) - (11). Based on the success of one dimensional

nozzle theory, the axial velocity, pressure and density variations should

be acceptable over a fairly wide range of duct shapes. The assumption for

the transverse velocity is on a less firm basis, and will be more accurate

for gradual r.rea changes. in the absence of detailed information about

the flow ;i r_1d it is felt that tha approximate flow field will be useful

for identifying the important general properties of transmission in non-

uniform ducts.

The steady pressure, density and axial velocity in the steady flow

approximation are functions of x alone so that the steady flow field is

described by Uo	 a	 o	 0(x), V (x,y), p (x), p W. in addition the transverse

gradient 8Vo/Dy is a function of x alone. These simplifications provide

significant reductions in numerical computations. However, if more exact

flow field descriptions are used these restrictions must be relaxed.

With this approximation for the flow field, the momentum and energy

equations, Equations (19) and (20) can be expanded in the present two

dimensional case to yield:

U.	 +
a x

'o Yo au f ^i k^ t /—J,	 ^,c - ,	 a	 o	 ^.. o	 622 )

i° y OX ^o^ao a x

-y .y

^^^	 t Ub d-^ a U Uo t	 ^a	 at.	 r ^' ^{y	 ^j"	 aue	 a lea+	 'I'	 +

ax ^y ay ax j,	 ^x	 ay
Er2-4,
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The bounc?ary condition of Equation (21) can be expanded by noting that

at the duct wall:

	

U.r = U. Ca s B	 Vo ..s /h B

0(,4 p) ' c os s (Ap)	 A a
J

Thus

Ur ^.qp)- (Up cos Z e do s^n6C'osBlax (4r)

f (uo cos 9 s/.^	 Ya s /^ 2H^A y
The boundary conditirr, at the wall for the steady flow is that the normal

velocity must vanish:

O = 1/, 0056- Uo F/irA

or

Vo = Uo ^ 4,7 B

Thus, at the duct wall

C?T-	 i	 dX

Furthermore

ea 'T  B -- r1 s/r/ 4

Equation ( 21) becomes, at a duct wall	

r
Zf-c	 - u s//! 6 = 4	 ` L`6 ! ^x {AP) fan B ^I y J

(25)

METHOD OF SOLUTION IN THE NONUNIFORM SECTION

Y• Y= 7l

In Reference (1), the method of weighted residuals (MWR) (modified

Galerkin method), was employed to study acoustic propagation in nonuniform

ducts without flow. We will use this method with minor changes in the

present study. ( Reference (l)is reproduced in Append
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Attention will be restricted to two dimensional ducts with geometry

as shown in Fig. 1. As previously noted, this can be considered as a

model for a duct actually shaped as shown or else one symmetric with respect

to the x axis. In the latter case we consider only symmetric propagation.

We seek solutions to the field equations, Equations (22) - (24), and

the boundary condition, Equation (25) in the form:

n

The success of the MWR is dependent on an appropriate choice of basis

functions. In the no flow case of Reference (1), the basis functions were

chosen to he the transverse modal functions which would exist in a

uniform duct with tha properties existing locally in the nonuniform duct.

This philosophy can be carried over to the duct with a steady mean flew.

in this case the appropriate choice of basis functions would be the trans-

verse modal functions for a uniform duct with flow and geometry properties

existing locally in the nonuniform duct. in the nonuniform duct the flow

properties vary transversely so that the equivalent unifor.;i flaw to be used

in defining the h sis functions is open to interpretation. since the

boundary residual will be more nearly satisified if the hasis functions

nearly satisy the boundary condition, it would seem appropriate to use

the velocity at the wall as the equivalent uniform velocity. of course
in the simple flow model used here this is unimportant, since the wall vel-

ocity is the same as the velocity on the duct axis.

The major disadvantage to using this type of Y asis function is that

there are different modes for upstream and downstream propagation so that

to obtain the same resolution as in the no flow case we would use twice as

many :modes, half representing upstream propagation and half representing 	 i

downstream propagation.
{

A second possibility would be the use of •tne no flow modes. Since

these modes are not generally near -solutions we would expect to generate

solutions which require a large number of terms to converge. We tried	 'i

using the no flow modes in the initial development and found that they

worked well at low Piac2t nuzbers with soft walls and Por nearly hard walls.

..;.Y..,..^..:,^i!	 In both . instances	 ;flow. and flow transverse _ modal functions are not
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much different so that this success is not unexpected. For this reason

we have one version of the computational scheme for nearly hard walls or

for soft walls at low Mach number. We will detail here the more general

case.

Using the basis functions from uniform duct theory (with flow),

solutions are sought in the form:
A/ 	 A/

N Z'pn (x) Cos Xn y = Z

N	 N
UA/ -	 U 7 (k) Cog /" c.1 -	 all

Al	 N
7rN =	 V- (x) 51n Krn y = ^ 21, ^H

The K  are defined by:

Kd Tan /c b	 ['k` ,6 A I M x^ 
x

0-44 k

The Mach number to use is that which exists at the duct wall. This

eigenvalue problem simultaneously yields the transverse wave number

and k
x 

for a mode of propagation. Eigenvalues for propagation in
n

bot-1 the plus and minus axial direction will appear and will be identified

by the sign in k
xn

The eigenfunctions which arise it Lhe flow case are not orthogonal

and the orthogonality property canzibb be used in computations. However,

in the flow case this disadvantage is not of serious consequence in view of

the other complexity which already exists.

If the assumed solution is substituted in the differential equations,

Equations ^'1 - (24), it will in general not satisfy them and the left

hand side will not equate to zero. Instead, it will add up to an error,

or residual. By denoting the residual by P,, we w rite upon substituting

the assumed solution in the governing equations:



13.

y	 ^ ax

R2 = Clo a u.' ^	 a zfi^, ! ^n 	 r Î o ;,^N ,^ ^^ /fir 	0^
o^X	 r7y 	^^	 F A'	 ^.y

3 = X/V. a uN 11 !Jp !?rte, d'^, c? zjzl -^ D ^^'.^ f Rro a,41
ax 	 ax	 e9	 ^^	 dx

+ 4 ,k, f x (^ f )]y ^N

in a similar manner we form a boundary residual.

ZN CO S r9 - l.Z,,, si17 B - ,4 pN - `—U° P^ + f a n B ^ N̂^ ^^^ a'Akr ^ax	 ay A dx

The residuals can be made zero if they are orthogonal to every member of a

complete set. (See Bversman, Cook and Beckemeyer (1) , Finlaysan (10) and

Zinn and Powell (11 ' 12) ). Assuming that the trial functions * n (x,y), ^n(x,y)
are complete sets at every value of x we can force

b
J f' „̂ ,^,ayd	 o
00

r
^ 6

did O
0 0

^ b

0j, = o
0 U
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A unit depth of the duct is assumed. Note that the trial functions

already satisfy the boundary condition at the hard wall (or duct centre

line) so that no boundary resiOual is required there. In expanded form

the orthogonial.ity conditions for the differential equations yield

6	 b	 6

J. J r̂ '^ aX 'v dy ,''
	 r,^in a ^'^ oy	 I/ SU„ u Al dJ
P o 	o	 y

Y ^0	 n dy

0261

b	 6	 6	 6
/Jon	 N d 	 V 	 ^^a ' dc^ % n ^^+/ p/y	 c?Y ^{ of

	

J	 5	 J
t/	

^dJl n Nc	 o	 o 0

6

Oy	 (27)

/
b 	 b	 6

b^^'° I /̂n ^x ^r dcf. + GIo,S p 
CD w 

0' f- ^"^Ja^ `&n
a	 O	 a

lb

lay N °y t aP° /0,  a"	 /^'d-^ j r ^(aX^ ^.^^ 	dy = o
dx a

0

6

Equations (26), (27), (28) can be rewritten and simplified to some

extent by following the sequence of steps outlined in Reference (1) (See

Appendix A of the present document). We use rules for differentiation

of integrals, integration by parts, and the condition of flow tangency

at the wall to obtain new forms of Equations (26) and (27) for n = 1,2,...N:
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b	 b	 6	 d

rJa d ^yn u^d-y f ^ a' J ,^pNd-y- `^°^aXnu"'^^
	 ax^;°^

	

dtt c	 P° dx a	 o	 /^° O

b	 b

C9
7`n^iV ^y T

4
^ a  -r7/'"

R

70

h	 6	 6	 h

V°dax9'' Z'''aY ^^-^"V ^'/-^ ^v 4 ) Z'v C y ^ p /!^^ql ul/'z' '?

	

O	 U	 ° J	 / a J

b	 6
f3a aXa 7l7 u/!/ OJ ^ ^` ^^ ^ LJ^^^ 1̂7 N̂ ^J

^^ O

(30)

The weighted boundary residual bakes the form

f V- (x, b) - C!N (x, b) -	 ^^ 4U„ (x, 6 )

N ^Jfr
N fay f3'-^'^N t- d'9 

NC1015a	 f d G/

J
)y. /

By using the steps outlined above, plus the boundary residual. Equation (28)

is rewritten for n = 1,2,...N

b	 6 6
^^p f ^„ u^,^y ^a d ^ov^N 	dx"" - ^^ax ^pN ydx o	 4'x o	 o	 a

Y hy	 aX
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+^L G,, a^ ^ ax° y11f T1^^^+d^
O

^. fYpo!Y { yJ C Uo 7 ^ pN d, T4/J eg 	 -L UQ
C'os9 f! ỳ k, F! ^x	 a y A dx ,̂v 1

Y- b	 (31)
The Method of 'Reighted Residuals can be completed by inserting in

Equations (29), (30), and (31) the truncated aeries representations for

pN , uN , vN . If this is done and the terms are grouped there results

o	 nm d
u m	 /1/ d r^r

(,j

+ ^, Va dX nm (L ^!' ^x'^^p/r7 r
loas

^ Un ^ )u
 J n

b

^
d Al m	 20' 0/n, dy _ 	 Nn/i! - ! -1417 S ^ 1x, 61 ^^ !^, b)^^^ = a

Po dx - / 1O ax 	d,; o r^ x

(3,2)
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po Nn m d^ - , ^ 1 1-I. A1,M - k° -°^ f^ S!^„ tx^ 6) OM 4k- 6 ^! dX m

^O"  
9m dy Z"rm

Z f ,y p 1̂Nn^n f °̂ Nnm — ^^o f ^aX " ^'n, dy u r77
m L

b

M
dx	 di ^^	 ° ay ^^° n ,^ d_y

L11 f !O- 0,,,^ Oy( t ^p°e 41(,^ (zlh)T,,(xiD)~ ` r 7 n̂ 1C^6^ a n̂' tX^^3}
0 ax

c7x

f to e ^„ fix, 6) !2-0-w  (x, h) +	 4
Jq	

^ dZ ^„ tx, 6i `^'r„ (X, 6) j ^,,, = 

('34)

Equation (34) required special consideration in that the terms contributed

by the boundary residual yield derivatives of pm (this did not occur in the

no- Flow case). We have introduced the definitions

a

b

^^,^, tX1= f ^h ^,^ dy
Q

Equations (32) - (34) can be written in the form

AInm dKm f U° Nnm 
dxp̂  '` Vhm ^r^ '`^ vilm /-yy1 ^^, J n.y, Z,;, =

^`	 U	 P°nmu 
m

IV,, 'to-
0

U '?A7	 T
uh ' ^` ^nm ^^ ^Zrvnin

^' ^pof 
b

(3 S^
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We make use of the definitions of the basis functions

0, rx, y) = cos ^^y

95n (x, t = s/.1

the d rivative relations

der„ y ^^ !x, y)
dx

Irk ^n (X, ^)

dx

L 41 _ - ^„ 7 n ^X, yJ
ay

and the definitions
6

fy ¢„,h dy = z .^.

In addition, we use the description of the flow field to obtain

b

J 
Y, Tq T!7! Û 	 U° y ^ ^ L ^)I!'J

O	
FJ CJ^

b

^^ ^m d _ ^° b dX `
Try m

0

a-017

Oy

a_44'
TX



19.

f6 o
	 d	 o / d6 h^

0

f

^	 d6
	^ Y ^n ^isy d`1'	 LJ6 ^ dx ^r^m

6

11 

R Yo "' dy r	 dUe , 4- , d'dt	 -
`^° l ^° ^x b dx	 b dX x

^^ db^ z
b dxOX

Using these relations, we arrive at definitions of the coefficients in

Eqs (35):

l(r Cos D

U N
	

^^ r oL Nn m ,' d'-' Z I n7 f	 p Aln .'q

un?	 l.lo e Nrrn _ la dx N»m f 1 ^C,. 4.d' d!J° ,0 a^ )] 1Vnm
dx

dz a

+ LJa l d Kn b n m 
4- =-#-° Xi 1 t ^O f d A "m 6 7^"^h X-

b d^	 ^S 9 	 kr G dx

X^
	 C'b 5 !Cn b C 0,7 /C"

Itr

rJ„ m = 'r l-vd Kn M'7 m
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u a/6Ijc 
d

to m	
dfi _ !	 N„m J f ^L 1{r t dUo /Vi^iyi

TX 	 dx	 dx
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Equations (35) can be conveniently written in matrix form

dut,
LT	 Q. Nni r	 Orx

	

o	
d p,^

U. Rl„ m

	

	N nm	 d zPtl

O	 D	 Va A4n n d urn
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_ - P,,m -	 l n̂n, I mI nm

H

i

v
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In order to achieve a form more closely related to the no flow equations,

we divide the Um equations by 'yp0 , multiply the pm equations by p 0 and

divide the v  equations by U0'

Hence we can write

o	 du,^
Nnm dxapp

L1a N„ m 	 Nn M 	 G	 "'
dx

O	 p	 Mnm	 d7!"'

dx

_. u
Unm

P^ 
Ui^m

- v
^ un^ G^ m

u p ^

` vriri vim ^^

where

Una	 dIra Una

^y7M	 / p / pJt'j

V u^,tl,
n	 n

O

Thus

U17^ T dNn.^ 4 d- am r- !
dK	 dX	 &/V,, dX  ̂  N.^m

^-po 
dx ,,.^ _ b d /1/nm^	 Po [4,r + d dx " y

	

Ua 
-L LJLx:-'	

f /^	 1 f L zjo [ G^^m f pnA' 6d^c b dx ""' c^050 f	 T L dX

! dX r cos K„ 6 cos
A dx 1

r36)
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MATCHING OF THE NONUNIFORM SECTION TO UNIFORM SECTIONS

As illustrated in Figure 1, the nonuniform duct segment is considered to

be a transition section between two uniform, infinite ducts. In this section

we establish the procedure for matching the nonuniformity to the uniform sec-

tions.

The set of linear ordinary differential equations for the axial variation

of the coefficients in the assumed solution, given by Equation (36), can be

represented in the form

dx

^L tx )^ dxm
^m

dx

The dimensioning of the matrices involved depends on the types of basis

functions used. In our investigations to date we have used three different

types of basis functions:

(1) initial studies utilized as basis functions the modes from the no-

flow problem. In this case the assumed solution and the required

eigenvalues are exactly as described in Reference (1) which is

included in Appendix A to this document. The differential equation

is then dimensioned as follows:

du^,

	

0(x	 u m

	

3N x 3N J^	 3NX  3N y^

	

dx	 3N^,
3NX f

N is the number of basis functions used. Note that in this form

the problem is of size 3N x 3N as compared to 2N x 2N in the no-

flow case. Extensive computation s were carried osxt using this

method and it was found to give results in generally good agree-

ment with known correct results for low Mach numbers with soft

walls and for a more extensive Mach number range with nearly hard

walls. 'Computations using this approach form a large portion of

the results generated to date and are discussed in a subsequent

9

a

8
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section. As will be seen, certain inadequacies exist and we have

extended the computational scheme to use modes more closely related

to the flow problem. The details of this approach will not be

given here as they can be inferred from the more sophisticated

approaches to follow.

(2) Since the success of Galerkin type methods depends to a large extent

on an appropriate choice of basis functions we have modified the

basic computational scheme described above to use modes from uniform

duct theory with the effects of flow included. In the first step

in this direction we employed the flow modes but included only modes

corresponding to propagation in the positive axial direction (in the

flow case, as distinct from the no-flow case, there is one set of

positive moving modes and another set of negative moving modes).

This is really a sub--case of the more general use of the flow modes

described below and as such will not be described separately. The

dimensioning in this case is the same as the case wl^en no-flow modes

are used, however, the eigenvalues associated with the basis

functions require a more extensive eigenvalue routine, as described

in Appendix B.

(3) The most advanced version of the Galerkin method developed to date

uses the full set of uniform duct flow mores, including both positive

and negative running waves. The principal reason for avoiding this

approach at the outset was the nominal doubling of the number of

modes required. If we let N denote the number of positive running

modes, then, since for each positive running mode there is a

corresponding negative running one: we actually require 2N modes to

achieve the same level of resolution used in the previously discussed

cases. in this instance the dimensioning is

C/ u,^

	

d x	 u .n

I
OC ) dpm	 _ 

^F<X) pm	 (37)

	

 J dx	 IL.	 J

•	 6Af X 6
AI dim	

6 J 6N trr"

dx	 6Nu i

6AIxi
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As noted, N is the number of modes in one direction and is a measure

of the basis function resolution available, consistent with the other

implementations. At the time of preparation of this document

numerical experimentation to verify and improve this formulation

is still in progress. Certain new computation problems have been

observed and are currently under investigation. Hence, the use of

the complete flow modes can at this stage only be considered in the

development stage. However, since this formulation is the most

general, we will use it to explain the matching procedure. The

corresponding procedure in the simpler formulations can then be

easily inferred.

The solution to the matrix differential equations of Eq. (36 ) can be

given in terms of a transfer matrix relating u n , pn , v  at x = Q to un,

pn , v  at x = 0:

	

u n	 u „,

	

-F„	 - [T] ^ 

 pn	 C 38)

^+^ x=.P 6Nx6N X17 x= D

	

6N u 1	 6Nx
The transfer matrix is readily obtained by a fourth order Runge-Kutta scheme.

We have experimented with other schemes and consider it quite probable that

in future development some advantage, particularly in speed, may be gained

by using a different integration scheme. .

The propagation in the uniform ducts x < 0 and x > X can be expressed in

terms of the classical duct Theory. in a uniform duct u(x,y), p(x,y), v(x,y)

can be written

u tx 
1	 cam, e„ cos K'-, y	 Carm eln Cos %rte; y	 a ^

r^	 m

Prx,y,	 ^c2 em COS K-M y	 ,po^'rem COSK;n' y	 _
C+ e+ S/4

	

S/4 Km
J	

C1,g m em, 3/r! ,r y,	 fir»

3X 1	 3 x 2AI	 2NX 1

(3-9)
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where

f	
- G KXm X

e,^ = e
em _ e
	

.^

Kx^y,

^ T MAX"'/^c

x	

l	 M 	 </-M

	

m 2TAIV

The plus and minus superscripts denote right (positive) and left (negative)

moving modes. The Rare the eigenvalues in the uniform duct. The
determination of the direction of propagation of a given mode is discussed

in Appendix B in the general case of softwall ducts. We have generally

carried out our computations treating the uniform ducts as hardwalled. In 	 ,e

this case
r

T ^`	 ^m-1)Tr

The choice of sign in k,,,, for positive and negative moving modes can then

be deduced by energy flow arguments(13),

The nondimensional speed of sound c = c*/c- and density 
p o = po/pr appear

because the classical duct solutir)n used here is based on nondimensionalization

with respect to the duct density and speed of sound, c* and p*. These

reference conditions will generally be different in the ducts x < 0 and

x > w. In the duct x < 0, c = 1 and p o = 1 because we have defined c 
and p r as conditions existing in the duct x < 0. In the duct x > 0 we

define c= c^, and po =pF , the nondimensional speed of sound and density at
the end of the nonuniformity.

K



The velocities and pressure in the nonuniformity can be written in matrix

form

U ( ^ [1)	 Cos Jan , y	 Lf,,,
I e 2 N

(x l J )	 _	 COS I; r*1 I5.	 pm

/x 2N
v.(,x,y
	

s/nAx-,"y	 71n7
/x ziV

3X r	 3x 6n/	 61VK I

r40 )

The eigenvalues in the nonuniform section are ordered so that m = 1,2,..,N

correspond to right running modes and m = N+1, N +2 .... 2N correspond to left

running modes. The method of obtaining the K m and the technique used to sort

them for the direction of propagation is discussed in Appendix H in a print

of a paper to appear in the Journal of sound and Vibration.

2i.

To demonstrate the matching procedure we write E 9. (39) for x = 0

and x = k in abbreviated form

u
- r	 `p

IfL	 rL!\

a4
IYl A

r'Y

1

/Y^

.U.

x- o
3.1 3x2N 2n1x1

L1 Cm

3x 3+c7_N INK

As described in Reference (1), the amplitude coefficients at x = k have
_ lC re C;

absorbed the exponential terms 2	 ^'	 ,	 e and are

thus amplitude coefficients referenced to x = k, rather than x = 0.	 Equation

(40)	 is written in abbreviated form at x = 0 and x = £

u u^

71 ^^'
x _ o x. o

3x1 3x6AI 6Nx!

i

i
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LA	 uf,

= [ C. 1 rM

v x.,?	 uIn X:.?

3x!	 3x 6N 6NI+1

At x = 0, we match u ,p,v to obtain

(4-4)

3x 6N

6A/x/

a m̂
a m

jx2N 2q/XI

We use a least squares estimate for the um, pm o vm. This is obtained in

the form

Q-Um

/ r►^

/	 y

A lo)]

Qm
^m

X- 0
61x21

2 NX

6N,e

where

A (o)] - C'C,]	 0 rd ° j

6N x21 61Vx61V	 6Nx2N

and
6

C, C',
-ti	 T

Col L O J dy
bNz(0,A/ 0	 61x,3	 3K&Al

6j CO	 I x07 dy

6Nk2N
0	

61x5	 3x21

N Y
The operation	 denotes the complex conjugate trans pose. This com-

Put.ation can be viewed as establishing the starting values for um, 
pm' vm

from the wave amplitudes in the duct x e 0.



At x = Jt, we match u, and p:
rt

3x 4F/ 	 ^ x=.P 3x2.t/
4 NK /	 2 n/X

The matrix [ca 7 is truncated to delete the 2N columns related to v 	 we

again use a least squares matching to obtain

[4 (P) u"' 1	 ($6)
C	 rm x=.^

2Nz1	 2iv'x 41V 41VXI

where

r
-IA (,PJ^ = f ^^`,^ 1 [ k/

21&4N	 2Nx2Al 2Mx4N

and	
b

/0	 'e I k^] Cly

2M,r2N	 2WX-T 3x2Al

b I

[KCol = J [ k"e 7Y CJI d-y

2 Nx 4N	 o 2,v •:3 _7,<  4 Al

Again, the operation C WZ 7
7 

signifies the complex conjugate transpose.

We use this notation with the general case in mind when the uniform duct

is softwalled. when it is hardwalled, as generally assumed in our

computations, we have dispensed with the conjugate because the eigenfuncti.ons

are orthogonal and a straight Fourier matching is possible.

27.

This operation is viewed as determining the wave structure in the

duct . x > !Z from the conditions at the end of the nonuniformity. We are

considering the possibility of matching u,p,v at x = t, rather than just

u and p. The extra computation is insignificant and might prove beneficial

since the extra information available for determining cm+ and cm^ might

help smooth out any inaccuracies which have been introduced in the process

of developing the transfer matrix. This procedure has not as yet been

implemented.

i
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Equations (38), (45) and (46) can now be combined to yield

+-	 t.

Cn 2/V;(#N 41VelAl61VxzN

2 N xrl	 Z Nx

a^
[ -FA]

z n(x z N	 n'
(47)

The matrix [ r ] is truncated with the 2N rows corresponding to the v equations

deleted.

From this point on the technique of obtaining the matrices of reflection

and transmission coefficients follows Reference (1). We assume an infinite

duct x > X. Then

Cn	 TA < < TA,:,	 a m

O	 TA21 TAzz Q

From this we obtain

aW _ - 
LT-A22 ^ I TA2, Q4 .7[ RE9-] Q^7	 (4,6) 

C } = (L TA ,, I + I 7A,21[ICrFI) [a'} -7 I T-eQA'I[
L	 9)

where RE'] and [TRAN] are the reflection and transmission coefficient

matrices, respectively. The extension to finite ducts x > R follows the

development of Reference (1).
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RESULTS

As noted previously, the development of the computational scheme has gone

through three stages, beginning with the use of no-flow modes for basis

functions, progressing to positive running flow modes as basis functions, and

then finally to the use of the complete set of flow modes as basis functions.

Each stage of development represents a new level of complexity. When no-flow

modes are used the formulation follows almost directly from the no-flow case

described in Reference U.) with the use of a new set of governing equations, as

described by Eqs. (36) of this document. In advancing to the use of the

positive propagating flow modes the eigenvalue scheme of Reference (1) must

be abandoned for the one described in Appendix S. Both of these implementations

represent a size increase over the equivalent no-flow problem so that

computational time approximately doubles. The ultimate level of complexity

arises in using both positive and negative running flow modes as Basis functions.

Assuming that the same level of resolution is available by using basis functions

of similar character this formulation leads to computational times in the

neighborhood of nine times that of the original no flow case. It is apparent

that a very careful evaluation with regard to accurracy and computing cost must

be made to ascertain the appropriate level of complexity required to treat the

problem.

The major problem faced in this program has been the almost total lack of

any results against which to make comparisons and evaluation. As noted in

Reference (1), we were forced to develop several alternative computational

schemes to rake an evaluation of the results of the no-flow computational

scheme. Norge of the alternative schemes of the no-flow case are available

to us in the flow case. The only approach we have been able to take is the

reduction of the general scheme to certain special cases. Of particular interest

in this regard is the computational scheme of Davis and Johnson(6)in which they

treat plane wave propanation through a one dimensional compressible flow in a

variable cross section duct. Their computational scheme should allow us to

generate results which serve as low frequency comparisons for the computational

schemes developed here.

Other comparisons that we have used serve only as gross indications of the

consistency of our present formulation. we have approached zero flow speed

and compared the results against our original no flow results. Since the
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governing equations in the flow case don't degenerate directly to the no flow

equations this type of comparison pk:ovides an independent check of some of

the terms. We have also used the straight hardwalled duct as a comparison since

we know that reflection coefficients should vanish and that transmission

coefficients can be computed by simple hand computations. A further simple

test case considers uniform soft wall ducts, In this case we are again able

to compare against simple hand calculations. Finally, we have generated

results for a uniform soft wall segment between two infinite hardwalled

ducts. These results have been compared against similar results generated by

another investigation.

in this section we will discuss our computations to date in the form of

a series of comparisions as noted abcve. The w.ojt extensive results so far

obtained are for the simplest case in which the no-flow basis functions are

used. Since the use of flow mode basis functions is a recent development,

only a less extensive series of results is available. In particular, as we

will discuss later, the use of both positive and negative propagating modes

has lead to a series of new computational problems not encountered previously.

As a consequence our major effort in this case has been directed toward isolating

the problems and taking corrective measures.

A. COMPU'T'ATIONAL COMPARISONS USING NO-FLOW BASIS FUNC'T'IONS AND POSITIVE RUNNING

FLOW BASIS FUNCTIONS

As we have indicated, the use of no-flow (NF) basis functions or positive

running flow (PF) basis functions represents a large savings in computational

complexity and cost in comparison to the use of the complete set of positive

and negative running flow (PNF) basis functions. Numerical experimentation

has been carried out to determine if the NF and PF basis functions provide

satisfactory results.

The NF basis functions are certainly the simplest to use since the 	 j

associated eigenvalues follow from a simple eigenvalue equation and it seems

fairly certain that the functions form a complete set, each member of the set

being orthogonal to the others. The completeness is ecsentiai for the Galerkin

approach and the orthogonality is an advantage computationally since the

coupling between modes in minimized. One form of our computational scheme uses

the NF modes. As a step toward using PNF basis functions we have developed

a form of the computer program which uses the PF basis functions. This

formulation is not much more complicated than when the NF basis functions are

—Ali 	used, except that the associated eigenvalue equation is more difficult to use.
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The basis functions in this case are not orthogonal and we observe more coupling

between the modes. Of particular concern is the completeness of the set of

basis functions. Since the PF basis functions are a subset of the PNF modes,

they may not themselves be complete. At the current stage of development our

only means of ascertaining their usefulness in numerical experimentation. This

experimentation has been done in the following test cases:

(a) Convergence of results at low Mach numbers to results obtained with

the original no-flow duct program.

(b) Convergence to the straight hardwall duct case in which hand cal-

culations can be made.

(c) Convergence to the straight uniform softwalled duct case in which hand

calculations can be made.

(d) Comparison of results of several schemes for softwalled, straight

segment between two hardwalled, infinite ducts.

(e) Comparison against a one dimensional, low frequency approximation.

The following sub-sections describe the comparisons made to date.

(a) Convergence to no flow case

As reported in Reference (1), the computational scheme applicable when no

mean flow is present has been highly successful and provides a convenient

base-line against which to check the results of the present program. When flow is

present the governing equations, as given by Eqs. (36), are not computationally 	 y

the same as the no flow case, even when the flow Mach number becomes small. To

be made computationally the same a number of reductions and substitutions would

have to be made. Hovever, we have found that by making computations ia the

flow case at low Mach numbers we have been able to duplicate the no flow results.

As an example, we have considered a linearly tapered, softwall transition section 	 y

between two uniform hardwalled ducts. We have considered a wall admittance of

A = 0.413 + i 0.720, a taper ratio of b t/b0 = 1.26B, a reduced frequency

kbo = I:5, Q = l.0 and b 0 = 1.0. in Table 1 results are compared using the no

flow program and the flow program with NF and PF modes. using the	 3

PF modes we were forced to use M = 0.05 to avoid severe numerical problems which

arise when the general equations are run at very low Mach number. This comes up

because the leading terms in the vn differential equations tend to vanish.

This didn't occur using NF modes, but we feel that it is at least partly due

to the difference in precision we used on the IBM 360 for the NF modes and the

Burroughs B6718 we used for the PF modes. In addition, for expedience, we

used 80 integration steps and 3 modes in the PF case and used 100 steps and 5

modes in the NF case. Near zero Mach number the stability and accuracy of the

integration is sensitive to the number of steps. Even with this difference in
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Mach number we see that the results are definitely tending toward the no-flow

results. These results support the accuracy of the terms in the general equations

which are not flow related. They do not support a particular choice of basis

functions because at small Mach numbers the NF and PF modes are nearly the same.

(b) Convergence to the Hardwall case

The computation of the transmission in a hardwall uniform duct provides a

means to determine the accuracy of the uniform flow terms in the equations. To

this end we have considered a high Mach number, M = -0.8, a nearly hardwall,

A = 0.0001 + i 0.0001, at kb = 1 . 0, with b0 = bt = 1.0 and Z = 1.0. Both NF

and PF modes were used. Table 2 is a comparison of results obtained analytically

and results obtained from the knowledge that in a uniform duct no reflection

or spurious mode generation occurs. The diagonal transmission terms are obtained

by noting that for right moving waves the pressure solution is given by

n - 1r e L x̂ n 
x iii (y)

The ratio of pressures at x = R and x = 0 is

- /-xt

TRAM = ehn

For the case at hand

/- M

where

The positive sign applies for n = 1 and the negative sirn for n > 1. Using

the parameters given we obtain

/lx 	S. O t e 0, D	 7-,e4^A./„ = - O. 839 / 4- 1 4 5440

t
frX = 2 222 - G 4' 438¢	 7-.474,V,z = - G 0000	 O. 6,O41

z
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It is seen that these calculated results agree almost exactly with the results

obtained computationally. Once again, this test case offers no insight into

the choice of modes since in the hardwall case the NF and PF modes are the

same.

(c) Convergence to the Uniform Softwall Duct Case

Transmission in a uniform softwall duct is also easily obtained by hane

calculation and provides a convenient check case. flue to the particular for-

mulation of our program we are only able to do this for the PF basis functions.

We have considerer! the case M = --0.5, kb = 1.0, A = 0.720 + i 0.420,

b0 = bt = 1.0, 2 = 1.0. The calculated results, obtained as in subsection (b),

except with kxdefined from the computer program, are as follows:

^x = 4 , 5-2 3 7 - t /O/ p8	 T^A/V„ = D, 49i7/- Z 69363,6

0 6787 - G ,O 5	 oDr; 7

We have used 3 modes in the computational scheme and in this formulation

essentially bypass the matching procedure which becomes unnecessary.

Table 3 shows the results of the comparison and indicates complete agreement.

This check case does not verify the completeness of the PF modes simply

because correct results are obtained. The PF modes are individually exact

solutions to this problem. We are not asking them to produce a solution to a

new problem.

(d) Convergence to a Softwall, Uniform Segment Between Two Hardwall Infinite

Ducts

A somewhat more challenging problem from a computational point of view

arises when we consider a uniform softwall segment between two infinite hard-

wall ducts. The solution in file lined segment i s exactly the same as obtained

in the problem discussed in Sub-section (c). However, in this case we are

matching the solution to hardwall ducts rather than infinite softwall ducts.
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Since reflection and spurious mode generation can occur we can observe the

performance of the NF and PF modes, that is, we can observe if the solution

in the lined section provides enough detail to predict the more complex

acoustic field. To this end we have made two comparisons, one at low Mach number

and one at high Mach number.

In the low Mach number case we have used M = -0.1, A = 0.72 + i 0.42,

kb = 1.0, b0 = bt = 1.0,t = 1.0. In table 4 we have compared transmission

and reflection coefficients using NF and PF modes with results from a mode

matching scheme due to J.F. Unruh of the Boeing Co., Seattle, Washington.

Because of the differences in the implementation of the mode matching scheme,

only two reflection and transmission coefficients are directly comparable to

our results. It is noted that the results of all three methods are nearly the

same. At low Mach numbers the NF modes and the PF :nodes are not greatly

different (they are identical at no-flow conditions), so it is not totally

surprising that they yield similar results. It is significant that the

•	 results compare well with the mode matching approach, which is completely

indepen(^ent.

As a second check case we have used M = -0.50, A = 0.720 + i 0.42,

kb = 1.0, b0 = bt = 1.0, t = 1.0. We have again compared the current

program using NF and PF modes with modz matching results. The results of

this comparison are given in Table 5. We notice a definite degradation in

the comparison between the solution using the NF modes and the mode

matching although the trends compare well. As we did not generate the mode

matching results we can only assume their correctness at this point.

Accepting this assumption, we feel that the degradation is due to the fact

that the NF modes are not close solutions to the problem which involves flow,

and hence it probably requires an increased number of basis functions to

generate accurate results as compared to the no-flow case. The results

using the PF basis functions are seen to be totally off. In Subsection (c)

we used these basis functions to generate results for exactly the same

conditions with the exception of the matching to uniform hard wall ducts

as in the present case. in Subsection (c) we obtained very good results,

compared to exact hand calculations. Since the solution ir. the"non--uniform

segment" is the same in both cases, it follows chat the poor correlation in

the present case arises because of the matching. This indicates that the

solution in the non-uniformity is not detailed enough to account for

reflection and spurious mode generation. The original thought that the PF

basis functions are not complete, and hence can't stand on their own as a
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series expansion for the softwall case, seems to be borne out.

In order to more fully verify the trends when the NF modes are eised, we

need to develop an independent mode matching capability. The majority of

the building blocks are available, but the press of other program development

has prevented putting it together.

(e) Comparison With a One Dimensional Formulation

Davis and Johnson (6) have developed a one dimensional model of acoustic

transmission through a compressible flow in a nonuniform hard walled duct.

We have adapted this formulation to treat problems of the type encountered in

the present investigation. The approach is to substitute an integration of

their governing differential equation for the transfer matrix integration

scheme in the program we have developed. The matching of the nonuniform

segment to infinite uniform ducts is done in essentially the same way as

explained previously. The Davis and Johnson (DJ) formulation can be considered

a low frequency approximation, since only at low frequencies can we be

assured of primarily plane wave propagation, as assumed in their analysis.

To generate comparisons with the general program we have considered inlet

(flow opposite to propagation) and exhaust (flow and propagation directions

coincide) cases for a duct with a cosine shaped converging t,: ar. In the DJ

formulation the walls are hard and in the general formulation we take

A = 0.0001 + i 0.0001. The reduced frequency is kb 0 = 1.0, with b 0 = 1.0,

b, = 0.75 and R = 2.0. Mach numbers at x = 0 in the range -0.5<M0
<0.5 are

considered. These corresponded to Mach numbers at x : fZ in the range

-0.93<M<0.93. In the general program we have made the majority of our

calculations using the NF modes but we have made runs using the PF basis

functions at selected Mach numbers. Figures 2 and 3 show the comparison of

results. The original NF results show good agreement with the DJ results

for transmission coefficients for the entire Mach number range. Reflection

coefficients show reasonable agreement in exhaust flows, but diverge from the

one dimensional results for high inlet Mach numbers. The introduction of

the PF modes has made a major improvement at high inlet Mach numbers and

agreement is good, particularly for the reflection coefficient. We notige
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some deviation in the transmission coefficient at M = -0.5, but in the

light of the approximation in the rJ method this is not considered sig-

nificant. At this point the improvement is not though to be due to the

PF modes, which with hard walls should be the same as NF modes, but rather

because of an improved implementation of the matching procedure at the

ends of the nonuniformity. We consider this correlation to be of major

significance in supporting the validity of the MWR.

B. COMPUTATIONAL COMPARISONS USING COMPLETE FLOW BASIS FUNCTIONS

To attempt to overcome certain shortcomin gs in the NF and PF basis

function form of the Method of Weighted residuals, we have developed a form

of the program utilizing the PNF basis functions. As noted previously, this

form of the program is costly in terms of computer time anc' storage, but

must be considered potentially more accurate because the basis functions are

more nearly solutions to the problem, containing information on both positive

and negative running modes. The PNF basis functions are probably complete,

but they are not orthogonal, which creates coupling between the modes.

In developing the PNF basis function formulation we encountered numerical

problems which did not airse in our previous developments. In integrating

the set of differential equations of Eqs. (37) to obtain the transfer matrix

[T] , definied in Eq. (38), it was found that if the nonuniform duct segment

is long (e.g. I = b0 ), then elements of the transfer matrix are large enough

to make the subsequent matching operations numerically inaccurate. While

this problem can be at least partially overcome by increased precision in

the computations, it indicates a sensitivity that was riot previously seen

in equivalent vases in the original no flow problem or in the NF and PF

formulations. We have circumvented the problem by considering only short

segments (e.g. i = 0.1 b 0). This means that the analysis of a long duct

will require the solution of a series of short duct segments and then a

stepped matching procedure. In this situation we have essentially developed

an acoustic finite element for a duct segment. We consider this to be an

acceptable utilization of the method. We have also found the PNF case to

be much more sensitive at low Mach numbers to the trend toward the break-

down in the form of the differential equations cau--ed by the duct mean flow
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velocity approaching zero.

A second major problem which has been noted is due to the use of both

positive and negative running flow modes. The matrices [dnm 1 and L
f 
"4m?

whose elements are defined

 

by	
6

/V1 I., - f Tip SU/17 `.^
0

6

O

are apparently very nearly singular. We find numerically that the inverse of

the leading matrix in Eq.(36) generates very large numbers ( although our

inverse scheme is known to produce an accurate inverse) which subsequently

must be operated on through matrix multiplication on the right hand side to

generate more moderately sized numbers. It is felt that this is a potential

numerical trouble spot and the implications should be more carefully assessed.

This appears to be telling us that even when the duct is soft walled and the

flow does not vanish, the PNF basis functions are nearly linearly dependent.

•	 It may thus turn out that the right running my+des and the left running modes

are not sufficiently independent to perform well computationally,. We hope

to be able to explore the implications of this observation in more detail.

At the ,present time we are exercising caution in maintaining a double check

in computational aspects such as the accuracy of inverses.

In order to provide an indication of the correctness of the PNF program

we have made several runs against cases which have a simple analytic solution.

These check cases are:

(a) Convergence to uniform hard wall duct results.

(b) Convergence to uniform soft wall duct :k—ults.

Table 6 shows the comparison of the hardwall duct results using PNF

modes against the exact solution. We have used M = -0.5, kb = 1.0,

b0 = b  = 1.0, A = 0.0002 + i 0.0001, and Q = 0.10. The analytical results

are generated as in Subsection (b) of Section A. They yield

0, OSPAN„ = O. 980/ - [ O. 1957

f
kx - O, 6667- c 3,374	 7,P,91%122 = 0. 7/2o- 0 0475

z

As shown in the table the computed and analytical results comrure nearly

exactly.
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Table 7 is a similar comparison using results for a uniform softwall duct.

In this case we have used M = -0.5, kb = 5.0, b 0 = bQ = 1.0, A = 0.720+i0.420,

and k = 0.10. The analytical results yield

i-

	

flx = g 734-?- Z D. d2 9 9S	 SG DS - z D. SZ 4S

	

6. 9 S 92 - o. 6 g i s	 7.P.41122 = a. 71 42 — D• 6 a a3

The comparison is seen to be very good.

These comparisons, though limited in scope tend to support the implemen-

tation of the PNF version of the Method of Weighted residuals. Because of

th,a numerical problems that we have been forced to overcome we have not as

yet mechanized the procedure by which we build up the solution for long ducts

by mode matching the solutions for a series of shorter duct elements. This

has prevented us from making the most demanding comparison against the Davis

and Johnson low frequency, plane wave formulation.

At the present time we feel that the PNF formulation is in basically

good order. Check cases have been favorable and work is continuing toward

implementing the mode matching technique. Sufficient experience has been

gained to observe that the PNF form of the method of weighted residuals is

computationally demanding and costly in terms of storage and run time. We

are still working 'toward the point where the relative merits of PNF can be

compared against the NF and PF implementations.

0
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CONCLUSIONS AND EXTENSIONS

The Method of Weighted Residuals in the form of a modified Galerkin method

with weighted boundary residuals has been shown to be an accurate and efficient

method for the analysis of the propagation of sound in nonuniform ducts with

no flow. The method has been extended to include problems of propagation in

ducts carrying a steady compressible mean flow. This extension must still

be considered in the development stage in which extensive numerical experimen-

tation is being carried out to optimize the implementation. Three different

schemes are currently operational. These schemes differ in the type of basis

functions used, the simplest implementation using modes from uniform ducts

with no flow (NF), the other two using positive running nodes,including the

flow rtfect (PF) and positive and negative running flow modes (PNF).

The greatest amount of experience has been obtained with the NF basis

functions. We ;lave found that these modes yield good results over a wide

Mach number range when compared against a simpler theory for low frequency

propagation through a one dimensional flow in a hard wall, variable area duct.

The method, as implemented,appears to break down at high inlet Mach numbers

for calculation of the reflection coefficient. Results for transmission

coefficient hold up through the entire subsonic range. Other check cases

involving convergence to certain limiting cases of lined ducts have been

generally good at low Mach numbers with degradation as Mach number increases

(based on the presumption of accurate baseline results from other sources).

This is not unexpected since for ducts with soft walls the NF modes become

increasingly poor approximations to actual solutions as the r,ach number increases,

and we expect to require a large number of basis functions to sythesize a
solution.

The results with the PF basis functions have been mixed. In the hard wall,

variable area duct our PF implementation gives good results over the entire

Mach number range. This represents an improvement over the NF implementation.

Since for hard walls the NF and PF modes ought to coincide, we currently

feel that it is the implementation of the NF modes which the PF program has

improved on. The improvement is moEzt likely in the -atching procedure.

In soft wall ducts the PF modes are apparently not adequate. They fail in`the

limiting problem of a straight, lined section between two infinite hardwall

ducts. It is felt that lack of complOte.ress may be the problem. These modes

are an enact solution in the lined segment. However, the transfer matrix

generated when they are used is not detailed enough to account for reflected

and spurious modes which arise due to the impedance discontinuity. Numerical
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experimentation with PF modes is still in progress.

The development of a computational scheme employing PNF ;nodes introduces

new computational problems not previously encountered. The problems have been

identified and are due to the rapid growth in dimensionality caused by the

doubling of the number of modes and the coupling between modes due to the lack

of orthogonality of the modes. At the present time the technique for overcoming

these difficulties is to consider only short duct segments, on the the order of

1/10 of the duct height. This restriction does not render the MWR impractical,

since longer nonuniformites can be treated by breaking the duct down into

short sub-sections which can then be put together using mode matching tech-

niques. When used in this context each sub-section can be viewed as an acoustic

finite clement. Because of the extensive development and analysis required in

the PNF case we have only a limited computational experience. The comparison

of results using PNF modes with certain limiting cases have been favorable.

However, as noted elsewhere, computational costs rise rapidly because of the

increased dimensionality. At the present time this implementation is still

being developed and will be continued.

We have accumulated sufficient experience with the three approaches to develop

a strong preference for the use of the NF basis functions. This preference

is based on the absence of severe numerical difficulties, the relative sim-

plicity of the implementation and the relative expense when compared to the

other two possibilities. It is believed that the problem noted in comparing

to the Davis-Johnson one dimensional results can be eliminated so that the LIF

program will work as well as the PF program for this type of problem. However,

we still recognize certain inadequacies. The most notable one is the apparent

trend away from correlation with mode matching results as Ma--h number increases

in the test case of a soft wall segment between infinite hard wall ducts.

Our future research will Le directed toward an improved form of the NF program.

This will include a detailed analysis of the computations to identify problem

areas. We currently favour a modification of the basis functions which may

lead to an improvement in performance. It has been observed that the principal

effect of flow on the basis functions is to change the lower modes, but leave

the higher modes fairly close to the no--flow modes. P- seems possible that a

set of basis functions using the lowest two or three PINE' modes and the higher

NF modes will improve the potential accuracy of the NF method. of course we

can't make an assessment of the completeness of this choice of basis functions

without experimentation.

As part of our future development we plan to write a simple mode matching
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program to generate results as a baseline for comparison in our straight duct

convergence studies. We have previously used results generated by other

i	 investigators, but we would prefer to develop independent results.

Finally, in both the no flow and flow programs we have n^_ticed a trend

toward numerical difficulties if the basis functions include modes deep into

cut-off. This problem is most severe when we are dealing with low reduced

frequencies, since in this case it may require a number of cut-off :nodes to

provide enough resolution to obtain a converged solution by the Galerkin method.

We feel that it is the exponential character of the cut-off solutions that

t'

	 creates the difficulty. To alleviate this we currently have under development 	 l

i

	 a modification of the computational scheme which essentially explicit1j, isolates

this exponential behaviour so that the transfer matrix is not required to
i

include it. This modification is nearly complete and if successful will be
i^	 reported in the open literature.

.a

i
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kb0 = 1.5

M-0.01 - NF Modes

REFLECTION COEFFICIENTS

1	 2

	

1 -0.0776+10.2539	 0.1431+x0.0004

	

2 0.0040+i0.1522 	 0.0340-10.0563

Table 1

CONVERGENCE OF FLOW CASE TO NO FLOW CASE

Linear Taper bi/b0 = 1.268

I=1.0	 b0=1.0

M=0.05 - PF Modes

REFLECTION COEFFICIENTS

1	 2

	

1 -0.0742+i0.2593	 0.15041•i0.0036

	

2 0.0175+i0.1476	 0.0303-x.0.0584

A = 0.413 + 1 0.72

No Flow

REFLECTION COEFFICIENTS

1	 2

1 --0.0785+iJ.2524	 0,1420-20.0008

2 0.000930.1544	 0.0343-x0.0563

TRANSMISSION COEFFICIENTS

1	 2

	

1 -0.1628-i0.6314	 0.0965-iO.0073

	

2. 0.1586+i0.1949 	 0.1165-i0.0326

TRANSMISSION COEFFICIENTS

1	 2

	

1 0.1148--i0.6711	 0.0978+i0.0069

	

2 0.1372+i0.2082	 0.1221-i0.0309

TRANSMISSION COEFFICIENTS

1	 2

	

1 -0.1741--x0.6197	 0.0960--i0.0111

	

2 0.1644+x.0.1910	 0.1151-i.0.0332
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Table 2 

CONVERGENCE TO STRAIGHT HARD WALL DUCT 

kb = 1.0 b~~~O = 1.0 A = 0.OOOl+iO.0001, bO = 1.0 ~ = 2.0 

M=-O.a - NF Modes 

COEFFICIENTS 

1 

O.OOOO+iO.OOOO 

·-0.0003+iO.0002 

, . 

2 

O.OOOO-iO.OOOO 

O.OOOl-iO.OOOl 

!RANSMISSION COEFFICIENTS 

. -0.8357HO.5446 

• -0 .0001-iO. 0004 

-0.0003HO.OOOO 

-0. OOOO+iO. 0001 

M=-0.8 - PF Modes 

REFLECTION COEFFICIENTS 

1 

1 O.OOOO+iO.OOOO 

2 O.OOOO+iO.OOOO 

2 

O.OOOO+iO.OOOO 

O.OOOO+iO.OOOO 

TRANSMISSION COEFFICIENTS 

1 -0.8357+iO.5445 

2 O.OOOO+iO.OOOO 

O.OOOO+iO.OOOO 

O.OOOOHO.OOOO 

rI~0.8 - Calculated 

REFLECTION COEFFICIENTS 

1 

1 O.OOOO+iO.OOOO 

2 O.OOOO+iO.OOOO 

2 

0.OOOO+iO.0"'10 

O.OOOOHO.OOOO 

TRANSMISSION COEFFICIENTS 

1 -0.839l+iO.5440 O.OOOO+iO.OOOO 

2 O.OOOO+iO.OOOO -O.OOOO+iO.OOOO 
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Table 3

CONVERGENCE TO UNIFORM STRAIGHT .DUCT

kb	 1. 0 	 bl /b0 =1.0
I

A=0.72+iO.42	 bo = 1.0	 St= 1. . o

p

M--0.50 PF triad s6 M=-0 . 50 - Calculated

REFLECTION COEFFICIENTS
^

REFLECTION COEFFICIENTS

x	 2 1	 2

1	 0..0+i.o . 0	 0.0+iO.0 1	 0.0+i0.0	 0. 0+i0.0

2	 O:O+iO'.0..	 0.0+iO.O

f

r

2	 0.0. iO.0	 0.0+io.0

i

_

TRANSMISSION COEFFICIENTS

i

TRANSMISSION COEFFICIENTS

x	 2
2

1:,	 ' 0:01.71.-9.0..3635. 	 0.0003--iO.0001 I	 0.0171--iO.3636	 0.0+i.O.O

2:	 0..0000+i0,0000	 0.0081-iO.0069 2	 0.O+i.O.O	 0,0083-iO.0067

i







Table 6

CONVERGENCE TO UNIFORM HARD  WALL DUCT

kb = 1.0 b9/Do = 1.0 A = 0.0001+io.0001 b o = 1.0 1 = 0.1

P

M=-0.5 •- PNF Modes

REFLEC'T'ION COEFFICIENTS

1	 2

	

1 0.0002+1-0.0000	 0_0000+i0.0000

	

2 0.0000+i0.0000	 0.0000+i0.000O

TRANSMISSION COEFFICIENTS

1	 2

	

1 0.9798-i0.1988	 0.0000+i0.0000

	

2 0.0000+i0.0000	 0.7120-i0.04755

M=-0.5 Calculated

REELECTION COEFFICIEN'T'S

1	 2

	

1 0.0+i0.0	 0.0+io.0

	

2 0.0+i0.0	 0.0+io.0

TRANSMISSION COEFFICIENTS

1	 2

1 0.9801-i0.1987	 0.0+i0.0

	

0.0+i0.0	 0.7120-10.04753



Table 7

CONVERGENCE TO STRAIGHT SOFT WALL DUCT

kb = 5.0 bi/b0 = 1.0 A = 0.720+10.420 b 0 = 1.0 k = 0.10

M=-0.5  - PNF Modes

REFLECTION COEFFICIENTS

1	 2

	1 0.0000+10.0000	 0.0002-i•i0.0000

	

2 0.0000+10.0000	 0.0000-10.0003

M=-0.5 - Calculated

REFLECTION COEFFICIENT

1	 2

	1 0.0+i0.0	 0.0+10.0

	

2 0.0+i0.0	 0.0+i0.0

TRANSMISSION COEF'F'ICIENTS
	

TRANSMISSION COEFFICIENTS

1	 2	 1	 2

1 0.5608--x.0.8243 	 0.0002+10.0002	 1 0.5608-i0.8243	 0.O+i0.0

2 0.0000+10.0000	 0.7144-10.6004	 2 0.0+i0.0	 0.7142--10.6003
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I	 (Receiued 30 My 1974, ana in revised form I8 Ady 1974)

The transmission of sound in a nonuniform two dimensional duct without flow is
investigated by a method of weighted residuals which leads to a set of coupled "generalized
telegraphists' equations". Results for several duct configurations are compared with those
From, respectively, a variational method, a stepped duct approximation, and an eigen-
function expansion method based on linearly tapered duct segments.

1. INTRODUCTION

`• Relatively rigorous methods have been developed for the analysis and design of acoustically
' lined and unlined ducts of uniform rectangular, circular, and annular cross section, with

and without flow, and including the boundary layer effect in the flow case. The progress in
I this area can be seen by referring to a few papers of the extensive literature which exists ($ce,

for example, references [1]-[5]). The current capability in the mathematical modeling of
duct propagation is limited primarily by the assumption of a uniform, infinite duct.

There have been a few recent studies directed toward the non-uniform duct problem. In
l the case of ducts without flow a generally useful approach is the one developed by Zorumski

and Clark [6j for ducts of uniform area with lining variations and subsequently implemented
by Alfredson [7) for the study of hard-walled ducts with varying cross section. This method
consists of representing the duct by a series of stepped ducts of uniform cross-section and

I systematically accounting for the reflection and transmission process which occurs at the
intersection of the stepped elements. This procedure appears to be very useful provided it is
used with due caution in the segmenting process. In the case of ducts with uniform area but
varying lining properties, it has been shown by Bahar [8). for the case of electromay nctie
waveguidcs, to converge to the method developed in the present paper when the elemental
segments become vanishingly short. The principal difficulty with the stepped duct approach
as originally conceived is the high dimensionality of the numerical problem which results.
A somewhat different formulation of the problem by the third author of the present paper
has reduced this difficulty while retaining the flexibility of the method.

Another method of general utility for ducts without flow is the variational approach of
Beckemeyer and Eversman [9]. In this technique the acoustic problem is represented by a
variational principle and a Ritz minimization is employed to determine the coefficients in a
trial solution. The trial solution is in terms of basis functions which do not necessarily satisfy
the boundary conditions (the boundary conditions are part of the functional in the variational
formulation) and do not have to be generated for each duct geometry. The stepped duct
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approach requires a set of eigenfunetions and eigcnvalues in each stepped section and in the
case of fined ducts this can be a problem in terms of computational requirements (the method
introduced in the present paper must have cigenvalues and eigenftinctions at stations along
the duct, but, as will be described, a rapid numerical scheme has been devised for their
computation). The variational approach suffers a dimensionality problem in that complicated
acoustic fields (both axial and transverse) require a large number of basis functions in the
trial solution.

Other recent approaches to the problem are more approximate in nature by virtue of
restricting geometry or frequency range al ,lowed. Nayfch and his co-workers have published
several studies of propagation in non-uniform ducts with and without flow. The paper by
Nayfeh, Telionis and Lekoudis (10] is representative. They restrict themselves to ducts with
slowly varying cross-section, lining properties and flow properties and employ a perturbation

' scheme. To within the level of accuracy which they retain, they do not predict the generation,
reflection, and transmission of modes other than the one incident on the non-uniformity.
It appears that a higher level of approximation is required to predict this.

Karamcheti and his co-workers have also made contributions in this area. King and
Karamcheti [ I li studied plane waves in ducts with one dimensional flow by a method of
characteristics and Huerrc and Karamcheti (12] used a short wave approximation for the
same type of problem. Similar problems were studied earlier by Powell (13] and Eisenberg
and Kao [14].

Tam [ 15] seems to have published the first paper dealing with a multi-modal approach to the
problem of non-uniform ducts with flow. His technique is a perturbation scheme based on
the assumption of slowly varying crass -sectional area. The first order approximate solution
is obtained by Fourier transformation.

A recent paper by Cummings [16] studies the novel problem of the acoustics of a wine
bottle. The wine bottle is a non-uniform duct without flow and the acoustic field is approxi-
mated by a Runge-Kutta integration scheme based on the Webster horn Equation. This
method allows only a plane wave mode of propagation and hence is limited to the lower
frequency ranges. There have brtn many studies of the horn equation since Rayleigh first
introduced it and it is a favorite topic in texts on acoustics.

In the present research program we are interested in the multi-modal propagation of sound
in non-uniform ducts of fairly general shape. The final goal of the program is the study of
propagation in non-uniform ducts with flow, so that we will be interested in methods for the
no flow east which appear to be extendable to the case with flow. Of the two generally applic-
able techniques mentioned previously, the variational method does not seem to he readily
extendable to the case with flow. The stepped duct approximation might have some applica-
tion, although it is certainly questionable whether the non-uniform flow field can be repre-

i scnted in sufficient detail in a series of stepped uniform segments. We are thus led to look for
another method with promise for the flow case. In this paper we will introduce the method
and assess its utility in the case without flow, as there are equivalent results available against
which a direct comparison can be made. In the course of the development and application
of the method it has Become apparent that the method of weighted residuals is an important
alternate method for the duct with no flow, and indeed, may well be superior to the other
two methods or general utility.

The method of weighted residuals (MWR) employed here actually was first employed in
connection with electromagnetic waveguide problems by SchelkunofT (17, 13). The field
equations for these problems arc identical to the classical acoustic equations in certain cases.
Schelk-unoff's work followed work by Stevenson (19, 201 which used htSR but led to a some-
what diq'erertt formulation which does not seem to have been widely uscd. Stevenson appears
to ue the first to suggest the application of methods of this type to acoustic horn problems.
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Bahar and his co-workers studying ionospheric propagation of microwaves as a terrestrial
waveguide problem have made extensive use of MWR (see, for example, reference (S]) and
Reiter [21] has formalized the approach.

In this paper we have used MWR to approach the problem of multi-modal propagation
in non-uniform ducts without flow. We deal with a two dimensional duct in which both area

t variations and lining variations are permitted. The results obtained by using MWR arc com-
pared with those, respectively, from a stepped duct theory, the variational approach, and a
segmented duct theory in which the duct segments are radial (sectoral). In reviewing the
literature it does not appear that results for lined ducts of variable cross-section in the multi-

! modal case, with fairly general area variations permitted, have previously been presented.

2. Iv MOD

In this analysis two dimensional ducts of infinite length are considered. The extension to
circular, annular, or rectangular ducts is straightforward, but of course more demanding
computationally. The extension to include finite duct terminations is easily included in the
present formulation provided reflection and transmission characteristics of the termination
are available.

tkr-WWfprmdutl ' 	 k	 -,	 Becton

I	 1 Ir t^xtstttat

I,constmt	 `Iatxl	 I

1	 Bart	 i srMn%tdt
.^tonslom	 X

i	 I
i	 tltuform duct w0*n	 t

l uMroan dun WW
^	 lr

Figure t. Duo configuration.

Figure I shows the type of configuration under consideration, in which two semi-infinite
uniform duct sections of wall impedancez„ and z, and areas s, and s, arc joined by a transition
section of length I of variable area sj c) and variable impedance z,(x), where x is the axial
co-ordinate. In this analysis the area variation will be restricted to be continuous, but the
lining variation can be discontinuous at the ends of the non-uniformity.

In terms of dimensional acoustic pressure, p s, particle velocity. V•, and density. p•, the
acoustic equations for complex harmonic motion of the form e t°' in frtneare

imp' 'I- podiv V • — 0.
impo V• s --gradp',

p'C'p`.

where the ambient state is given bypo, pa, Vo =0 and c— (ypdpo)rn is the ambient speed of
sound. By introducing the non-dimensional variables p— p°/pocl. p $- p'lpo. V mV'le and
eliminating p one can write

S

ikp + div V — 0	 (1}

ikV — --gad p	 (2)

where k a role — 2all and 1 is the free space wave number.	 s,
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Figure 2. Duct coordinate system.

In order to specify a boundary condition at the duct walls, a co-ordinate system as shown in
Figure 2 is introduced. This figure shows the manner in which the duct height profile and
slope of the height profile are specified as well as the designation of the local outward unit
normal at the duct wall, Y. The duct wall boundary condition employed is characteristic of a
normally reacting lining in the presence of a harmonic pressure variation: namely,

1	 P' — XV" - ZV* Y.	 (3)

where V, is the component of the acoustic particle velocity in the direction of the outward
normal. z is the wall impedance which may be  function of axialposition.In non-dimensional

i variables equation (3) becomes

jt	 P ^ z—V-V.
i	

Poe

t or

V - c AP.	 (4)

! at the duct wall, where A — par(.- is the acoustic admittance ratio of the lining. In the case of
a uniform duct of two dimensional, circular, annular, or rectangular cross section equations
(1), (2) and (4) can be combined to produce the classical problem of propagation in a lined
duct which has been thoroughly studied. In these problems powerful techniques can be brought
to bear since a co-ordinate geometry can be chosen to make both the field equations and the
boundary conditions variables separable. For general non-uniform ducts this is not possible
and an alternate approach must be used.

Figurc 3. Duce goaaxtry for ecampae problems.

To demonstrate the method of weighted residuals (see Finiayson's book (22) for a com-
plete description of the general method), we consider a two dimensional duct as shown in
Figure 3 in which the wall at y a 0 is hard and the wall at y m b(x) is lined with a material of
admittance A(x). This representation is also valid for a duct symmetric about the x-axis
with the acoustic propagation also symmetric with this axis. The governing equations are

TRANSMISSION IN NON-UNIFORM DUCTS	 j

! equations (1) and (2) with the boundary condition obtained by expanding equation (Y):

v — o.	 Y— 0.	 (s)

ocos8—usinO—Ap,	 y-b(x),	 (6)

where u and u are the non-dimensional axial and transverse velocity components and tan 8 +
i db.ldx is the wall slope.
+	 We seek solutions to this problem in the form of a finite series of specified basis functions:

	

Pa'- L P.(x) cos x, y,	 (7)-

1	
ux'n u,(x)casx.Y.	 {$)

x
ace s+	 n,(x)sinx,y,	 (4)

._s

where ft h. are defined as thn infinite sequence of eigenvalues of

rcb tart xb - MA.

The basis functions are recognized as the eigenfunctions for propagation in a uniform duct
which has the same height and admittance as the non-uniform duct has locally. nis means
that the eigenvalues K. are functions of x and that the basis functions change with axial
position. Note that `these basis functions do not individually satisfy the boundary condition
of equation (6); however MWR will force them to do so collectively. The choice of basis
functions may seem to be unnecessarily complicated since we will be required to provide a
new set of eigenvalues and eigcnfunctions at each axial position; however, we will show that
this can be done quickly and easily. Any disadvantage is outweighed by the more rapid
convergence of this type of technique when the basis functions arc chosen to represent as

I nearly as is practical the actual solution.
If the trial solutions, equations (7)-(9), are substituted in the differential equations and

boundary conditions, they do not in general satisfy them, but instead leave an error. or
residual. Thus, in terms of these trial solutions one can write

L_- 8nx
Rt w 

ikpx F 8x 47x '

I	 R2 — ikum + - x—.

R3 — ikox + 
a x.Y

i	 R< - (V V cos B — UK sin 9 -- Ap,),_,.

Since a continuous function must be zero if it is orthogonal to every member of a complete
set we will force these residuals to be orthogonal to every member of the complete set forted

i

4

i

1
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by the basis functions themselves at every station x along the duct axis: equations (I4) through ( 17) can be written in terms of two equations:

^R I(x.Y)CASK=ydy s 0. (IO) ^u„cosK„ydy---ik l- 
(1. ) "

Jpxcoss,ydy+ ux^x(rosx,Y)dy-k

1	
0 o

R x	 coscosx	 d --0.fs{ ,Y}	 .Y Y (113 (	 -i [Kb
	

^balPndx.b)tanx.b- ^
cosx b

kb	
{l9)D

j^

f R3(x,y)sinK.ydy-0. (I2),
a

^	 d r	 r	 +	 a cosx	 X*	
db

p" cosx,ydy--ik f uxcosK.YdY 1 f PN ax(	 .Y} dY'l Px{ .ii,cosx.bdx (20)
+	 a dx

!	 a

R.(x,b) cos K,b--0. (13) I'
The trial solutions for pN and uN are substituted into equations (19) and (20). In the case

[

of the duct without How the eigenfunctions are orthogonal so that
The operations indicated by equations ( I0)-(13) yield, for.° - 1.2....N,

at1N
iklpN COSK.ydy+ f ax cosK.ydy+ f 

a 
r,:osx.ydy^-0.	 (14)

y

b6	
f ipik f uN aosK.ydy-1•x cosK,ydy•-0.
U

'	 ik {oNsinK.ydy+ 8y sinK.ydy-0,
0

1	 (uK cos 0 -- uN sin 8 - ApN) cos K. b - 0.

By using LeibniLes rule for differentiation of integrals containing a parameter the partial
derivatives of uN and pN with respect toxin equations (14) and (15) can be replaced by ordinary .
derivatives. For example:

p allN 	 a	 `'	 a	 db
I =cosx,ydy- — IUs Cos K,ydy- [ uN — [cos K.yjdy-um(x,b)cosK,bA_

fCas K. y cos x„ y dy -- N.3,,..,
0

! where J. = 0,	 m, and d.. =1.
Equations (19) and (20) become

._ik
C
1"1 kP.- r U.8 	U'..P P.	 (21)

dx Ll
N

P, —iku —.	 P,'., p Jn — 1.2 .... N.	 (22)
dx	 r- z

H.6

Ulm	 dx 6' + W. dx 
^Ysinx.ycasx„ydy.

TM

ikb.t cos x. b cos K„ b
U'„r a iIb . tanx.b 

- Cosoj	 N.kb

(15)

(16)

(17).	 1 where

ax	 ux	 ax	 tan 00	 0	 o	 p►.. a ZI.., - . 
cos K, b cos K„ b.

The partial derivatives with respect to y can be eliminated by integration by parts:
Equations (21) and (22) can be represented in matrix form by

e
F 	

M	
..	

//	

_

cosK.ydy — rn(x.b) cos K.ba-K. f L'N 51nK.ydy.	 du.	 [U-) _
anx	

ik -	 ba	 ')^--[U	 u

° 
aY	

^p
dx

 
-^ .... ...	 -. .... ....:..	 (om}

l
f

aP sinK.ydy •-p,.{x.b)sinK.b-K. pN CosK.ydy. 	 (I8)
dX 	 —[p.)	 Pr

ay

i It is noted that if the duct is uniform so that dx,jdx = 0 and dbfdx — tan 0  - 0 then equations

Equation ( 16) can be used to eliminate r. from equation ( 14) and the boundary residual, 	 (21) and (22) reduce to equations for the axial field in a uniform duct corresponding to each

equation ( 17). is used to simplify the boundary terms in the resulting equation. In this way, . 	 t mode of propagation. In this case they are a form of the telegraphists' equations. Whom the

y

t
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~duct is non-uniform, coupling terms arc introduced and the resulting equations are "general- where, at x =0
ircd tclegrlphists' equation~", a terns introduced by Schelkuno0' [17].

r
q,

Equations (21) and (22), or their equivalent matrix form in equation (23), will define the a.., — ̂cos K.y cos lc.,ydy - N.5.,
acoustic field in the non-uniformity providing one can specify initial and or final conditions
on the it. and p. at the start of the non-uniformity at x = 0 and the end x = 1. This can be done r^
by assuming that the sound is incident from the left, or x < 0, and the acoustic field for x < 0 ff. — r cos K. y cos R. ydy.	 -
consists of incident and reflected waves. For x > 1, in this analysis, we assume the sound $
propagates to the right in a semi -inf niic uniform duct, and llcnco consists only of waves
propagating away from the non -uniformity. In general, one can write, for x < 0, i	 An exactly analogous relationship can be obtained at x =1:

^	 -	 +t(x,y)	 k	
[a.*	 00	 `kP'] cos R.y.	 - ^N.;u,.{1)	 k" ^.̀+";	 ^^ ^:,	 fix.; .	 b„

^..._11111 	 11
-	 -....	 sk...^.._ k--	 •	 ..^..}t)

i	 P{x•y) -	 (a; c`1t"" -t a; e')cos.y.
,

1:
..	 P„{I 	 ew	 b„

where a., a„ are coefficients of the incident and reflected waves, respectively. R. are the eigen- where, at x =1,
values for propagation in the uniform duct for x < 0, and

sr

"

cosx.ycosx,.ydy—N.3.

-^I—(kk
cos x.yCasK,'.y dy,

where the plus sign is chosen if kjk is real and if Qk is complex the sign is chosen to make the
imaginary part negative. One can write similar expressions for the uniform duct, x > 1: e­4 1 d,,.,

ce..r

if Sry) -	 [b; 0-u:" -- b; C'4z] COS K& y.
k(	 'w ^n r^ I	

Nonce, it is possible to obtain relations between the wave amplitudes in the unifor>rt ducts
and the pressures and particle velocities in the non-uniform section in the form

p{x,Y)—	 [b;a-1': x -h b,C1:1)c0s K;y,

where the starred quantities apply for x > 1, At x © 0 one can match particle velocity and - (p(0) — [`l(0}[ a°	
(25}

pressure:	 -

k'	 a	 'a	 Cos K.	 —	 u Cos x
t,{1)	 b26
lil}i 

m [a{I }^ 
lb-)t	(	 )

[a
+ -f- a,]wsR.y — ,7p.cosx.y.

E	 By using an integration scheme such as a fourth order Runge -Kutta, equation (23) can
be integrated from x - 0 to x -1 to obtain a transfer matrix relating u., p. at x —1 to u. and

- : p.atx-0:
U the same number of uniform duct eige nfu nctions as there are basis functions in the non-
uniformity is used, then the orthogonality of the eigenfunctions can be used to obtain a matrix r	 U(0)
relation between the a.' and a: and the u. and p„ at x = 0, This is (P(1))

	 - [7) 
[P(01	

(27)

By using equations (25) and (26), the wave amplitudes for x > 1 can be related to those fat

l 	 (24a) '

a b,	 p..(0)	 a,-	 ^	 °`-'	 as Lr - [d{^^"`[^[•t(0}j^a_^ .- ^
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or

	

	 change but the transmission coefficients referenced to x — ! will be related to those at x = 0

( } by

i b+ } [Td} (a] . 	 (28)	 f	 [TRANI.-o - [e,;)[TRANj.,t•	 ^.

	

In the present analysis we specify that the uniform duct for x > l is semi-infinite so that no	
Once the reflection coefficients are obtained, one can write the initial values for vi(x) and

p"(x) 'reflected wascs exist: i.e., b; — 0. This enables one to write 

b^	 TA,^ a+	 if	 (P(,0)))^` IA@)1^}~(a+)'	 (32)

- -- ----_

I VA. ressures and article velocities in the non-uniformitare re uired c uation (23) can

From equation (29) one can compute reflected and transmitted amplitudes in terms of
incident amplitudes:

(a-} — [TA::1- t ITA:i](a+1.

t	 **1— ([TA„] — [TAI:][TA221-i[TA:Ma+}.

Thus one can define matrices of reflection coefficients and transmission coefficients:

[REF] — —(TAza]''[TA :i1. 	 (30)

ITRAN] — [TA, I ] -- [TA t:] [TAis]-I [TAaII.	 (31)

The physical significance of the elements of these matrices is as follows:

REF, jr — Amplitude of reflected mode i due to incident mode J with amplitude
1 .0+ i0,0.

TRAN„ - Amplitude of transmitted mode i due to incident mode J with amplitude
1 .0 + io•0.

' In the formulation in the preceding equations we have referenced both reflected and trans-
mitted waves with respect to x — 0. Because of large exponential factors which can occur for
cut-off modes in the e;.. terms in equation (24), it appears to be more appropriate to reference
the transmission coefficients to x 1. In this case, one can rewrite equation (24):

1W? few p(t) —`.	 11:	 s~
'	 l

a	 '

where

Lb-)

All	

..	 ..

All of the steps leading to equations (30) and (31) can be repeated and a new set of reflection
coeficients and transmission coefficients can be derived. 7be reflection coefficients will not

V	 p	 Y	 q	 . q

be integrated with equation (32) being used as initial conditions. In our computations we
have stopped with the reflection and transmission coefficients for the non-uniformity,
principally due to the extra computational time implied to obtain the complete acoustic field.

One can also easily account for termination conditions for x > ! other than the semi-
infinite duct employed In this analysis. If a relationship is known between b, and b; at the
end of a finite uniform &a, i.e.,

IR](V).

where [R] is the termination reflection matrix, then equation (29) can be written as

F(l] j	 (TA t TA	 a+
I[R]J{b+

 )"ITAat]TAa= a ^'i	 L	 L	 '

Then

I	 (b+} — [TA I Il (a+) -1- [T.4 121 [a-).

-	 [R](b+1— [TA:iI(a') + [?'A:i](a')

and

i	 {a-} • —{[Rl[TA,21— [TAu]-1([R]ITAII]—ITAi3)){0+}.

(V) - [[TAu1 — [TA,:]( [R1ITAe:] — [TA::D-"([R1I7'At:} — 1TAaiD1(a+).

3. IMPLEMENTATION OF THE METHOD

iThe most serious potential disadvantage of this form of MWR is the need to compute the
eigenvolues which appear in the basis functions and hence in the coefficients in equation (23).

i As noted earlier the eigenvolues, hn , are roots of

,rb tan Kb - ikba.	 (33)

The usual technique for obtaining the eigenvaiues is a Newt on-Raphson iteration baud on
suitable initial guesses. We expect to require S to 10 basis functions to obtain solutions
sufficiently converged for our purposes, and hence we will require S to 10 eip:nvalues for
-each point required in the integration scheme used to generate the trai.d'e^ matrix. The
iteration scheme is likely to be too costly computationally to be of practical value. We have
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circumvented the problem by replacing equation (33) by the differenthil equation which it
salisfies:

d	 i +Cos ONO	 (1 db 1 dA1
(20) ^	 2ikbA E

-^ * — ^1	
(34)

dx 	 2Kb + sin (20) 	 b dx A dx

We start with values of Kb at x = 0, for each basis function required, and generate the required
values of Kb at each integration step of equation (23) using a Runge-Kutta integration of
equation (34). Our scheme is configured to start with no initial guess other than hard-wall
eigenvalues for each required basis function at x = 0. This approach has proven to be far more
rapid than iteration and has shown good accuracy as can be checked by occasionally evaluat-
ing Equation (32) and noting the size of the residuals which develop.

The coefficients which appear in equation (23) have previously been given. The specific
terms in these cocfFtcients art: given below:

{	 b 2K.b+sin2K.b
jN. 2k	 21c. b	 ^ •

M. I db	 sin2K^b-- 2K.b Cos 2K.bdK.b	 - - -
dx i bdxN'_

b

	(2x. b)2	dx

1
YSinK.YCO3x.ydy— 

I sin(K.—K.,)b Sin(K.+?Q
•	 + (N.+

b COS(K. —K„) b COS(ZC. + K„)b

	

i	 , n	 rrt,

r	 b' sin2K. b cos2K.b	 J
J

ysinK.ycosK.ydyM	 n=m1
Q	 2 (2x„b)x _ 2K.b

I	 Ab,4 cos K.b COS K. b	 1	 casK. bcos'v'
11	

if K.btanK. b—	 0	
N kb	 =cost?— 

1)	
N	 A

These expressions. together with equation (33) are used to generate U.1 , U.,, and R..,.

4. RESULTS

t Very few results have been published for the multi-modal transmission of sound in non-
uniform ducts. The work of Zorumski and Clark (6], a sequel by Lansing and Zorumski [231,
and the work of Alfredson 171 arc the most nearly equivalent to the present method. They
used the stepped duct approach for segmented linings or area changes in ducts with an open
end. Since we have concentrated on the non-uniformity and have chosen not to represent
terminations, webavenocommon basisfor comparison. The approximate theories mentioned
previously are considered too limited in scope to make comparison feasible when the labor
and expense of doing so is considered. The only extensive results which we have been able to
use conveniently are those of Bockemcyer and Eversman [9) who developed a variational

l approach and compared ltwith stepped duct approximntionsand an approximation in which
the duct was segmented into linearly tapered sections. Of course, that study was closely related
to the present one and the thrust of the entire research program has been to develop a basis
ofcomparison.

TRANSMISSION IN NON-UNIFORM DUCTS	 ti 3

As a first example we consider linearly tapered hard -wall transition sections joining two
uniform ducts. For these cases a 15 ° taper transition is used. The first example is a diverging
taper from a duct of hcight bo to one of height (I + tan 15")b,„ the length of the non-uniformity
being equal toils initial height. The second example is a converging taper which is exactly the

! reverse of the diverging one. We have compared these results with those generated in reference
[9) and reproduced here as Figures 4--7. In the diverging case kbo values of 1 .0, 2.0, 2.5, 3.0
and 3. 5 are compared and in the converging case kb, values of 1 .0, 1-5, 2.0, 2.5.3-0are used.
At kb = 2 .5 in the small duct the second mode is just cutting on in the large duct while at
kb - 3 .5 in the small duct it is cut on throughout. The results from reference 191 for the diverg-
ing taper include those from two levels of stepped duct approximation (5 sections and 10
sections having been used, respectively), from the variational approach, and from a segmented
duct theory (eigenfunction expansion) in which a linearly tapered duct segment with solutions
given in terms of BesseI functions was used. In the last method pressures and velocities were
matched at the ends of the taper, x = 0 and x =1, by collocation. No account was taken of the
slight difference between the planar co-ordinate surface at the ends of the uniform duct and

I the circular co-ordinate surfaces of the radial segment. Details of the characteristics of these
methods can be found in reference [9]. In the converging taper only the 5 section stepped
duct and t'te variational approach were used. The M WR was used with 6 basis functions and
50 integration steps axially.

O5	 B[a}

i^66

G
025

Re	 ^

I G	 Wft 2'	 S

' ^	 O

Q 23	 ,

,^	 O

f	 -Q 5Q	
,Q	 26	 3Q

!	
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I Figure 4. (a) Transmission cociticient and (b) reftection eoefTicicnt for mode 2 with mode I incident.
Diverging 15' li=rly tapered unlined transition section. bs  a 1 .27 ho. a= IS'; L am be. ---. 10 Season
stepped duct; ----, 5 section steppc4 duct; a. Fourier bases; a, esgcnrunction expansion; Q weighted
residuals.

Figures 4(a) and 5(b) show the transmission and reflection coefficients for the diverging
duct for the second mode with the first mode incident at x - 0 with amplitude 1 .0 + "i.
We have made the most detailed comparisons for the second mode since with increasing
reduced frequency it goes through the c::*.- an phenomenon and hence is considered the most
challenging computationally. The transmission coefficients, shown in Figure 4(a), are its
good agreement throughout the frequency range, all methods considered yielding essentially
the same result. in Figure 4(b), it is seen that the results for the reflection coefficients for

j kbp > 2'5 arc not is as good agreement. However, it is noted that the variational method, the

t
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Sgure5. (a)TmasmissioncocMdentsand (b)rtllcct :ancoelFicicnts for modes I and 2wilh mode Iincident.
Converging 15' linearly tapered unlined transition section. ba o 1 .27 be. a = 15% L - be.

Mode 1	 Model	 Method

^-	 5 section stepped duct
p	 s	 variational (Fourier bases)

t	 0	 o	 Weighted residuals

i	 TRANSMISSION n` %-o% -L' 41FOXM DUM '	 1i

modes). For this reason vac have only made comparisons where convergence in the v ariational
cane was :acceptable. The MWR was used with 6 transverse modes and 50 atrial integration
steps. We have generated results in the form of reflection and transmission coefficients in
modes 1 through 3 for mode 1 incident. Results are compared in Table 1. Absence of laria-
tionaI results indicates a lack of convergence at the level of approximation used. Wherever

{ converged results are available, the MWR shows acceptable agreement with the variational
approach. 13ecatise of the computer limitations noted in the variational results, the MWR
results are considered the more accurate.

7AQLE i
lie, lecrion and transmission coefficients for a cosine shaped limed transition section.

First made incident; amplitude - 1 .0 + 0.Oi

oa

s
04-,^

tm

-04

-08	 ^Im kbo

Method of weighted residuals

Reflection in	 Transmission in
first three mcde;	 first three modes

Variatioml method

Reflection in	 Transmission in
figs three rtod=	 first three modes

1 .5 -0.05 + 0 .27i --0.18 - 0.611i -0.03 + 0 .281 -0.17 -- 0.61i
-0 .00+0 . 14i 0.17+0.201 0.01+0.IN 018+0.201
0 .01 -0-03i -0.04 - 0 .03i --0 04 - 0-04i

2-0 0-Is+0.08i --0.26-0.40i 0,17+006i -025-041i
0. 15+0 , 211 0.54+0.02i 0,16+0.171 055-0-00i

-0 .01 - 0 .05i -0.09 + 0 .03i -0 10 + 0-02i
2.5 -0.11 - 0+02i -0.47 - 0+44i -041 1 .-0 1 02i -0 48 - 0.44i

0 . 19 - 0 . 02i 0.23 -- 1 .02i 0 19 - 1-02i
-002-004i 001+008i --0-02-0031 001+0101

3-0 -0-03 + 0-04i --0+67 - 0 . 14i -0,03 + 004i -0-67 - 0.13i
0 .25 - 0 .031 -0.4I - 0-58i 0.19 - 0 051 -0 42 - 0-55i

-0.02-004i 0.02+0.05i -0.02--0,031 0-02+0061

eigenfunction expansion method and the MWR remain in close agreement but they do not
agree closely with either stepped duct result at the higher kbo. The imaginary part of the
reflection coefficient is the first to show significant deviation. We have co ncluded that our
choice of the number of modes in the stepped duct approximation was not adequate at the
higher frequency, particularly after the second mode begins to cut on.

Figures 5(a) and (b) combine the r<-suits for transmission and reflection coefficients in the
first and second modes with morle I incident for the converging. taper. In thiscase the 5 section
stepped duct and the variational method are used for comparison. Agreement is good through-
out the frequency range. The stepped duct approximation appears to be more adequate in
this case than in the diverging case, particularly for reflection coefficients, since more modes
are used on the reflection side than were used in the diver g ing duct case.

As a second comparison we have analyzed at selecicc frequencies the transmission and
reflection characteristics of a lined diverging transition section bctwccn uniform hard-wall
ducts. We have used a cosine shaped transition which has the same small and large heights
and the same length as the linear taper previously discussed. The only available results for
comparison are from the varirlionat approach. We encountered convergence problems with
the variational scheme as our limited computational capacity permitted neither double
precision nor more than 40 input basis functions. A series of results were obtained for which
4 axial cosine wines. 4 axial sine waves and from 5 to 9 transverse functions were used. In all
cases convergence was observed to be occurring with increasing modes, but in several cases it
was not reached to our satisfaction (judged by comparing successive runs with more and more

Note: at each reduced frequency the Cen t two columns are the converged result front MWR. The second
two columns are from the variational method µhen a conversed result is available.

kbo-1-5.A=0 .413+0 . 720i	 kbo-2.5.A-0.788+0.336i
kbo-2 . 0, A =O-VA+0 . 720i	 kbo- 3.0,As0760+03ODi

The results with which we have compared arc all at relatively Iow frequency at which at
most two modes propagate. We do not currently have available higher frequency results
against which to compare, principally due to limitations in the computer facilities which we

j have used, however, we can gain a measure of confidence in the MWR by investigating its
I convergence propcttics at higher frequencies. We have considered the cosine shaped diverging

transition section at a reduced frequency of kb„ = 12 .57 and for a lining with .4 - 0 .76 + 0.30i.
In this case in the small duct the plane wave and 3 higher modes arc well cut on and mode 5 is
just cutting on. In the large duct the plant wave and 5 higher modes propapate (kb, - 15.94).
We have used four combinations of basis functions and integration steps beginning with 6
transverse modes and 50 steps and progressing through 8 modes and 50 steps. 6 modes and
100 steps, and 10 modes and 50 steps. Increasing tht: number of integration steps made
virtually no difference. Increasing the number of basis functions provided a very definite
convergence trend. To illustrate this convergence of the method we have shown in Table 2
the reflection coefficients in mode 5 due to all incident modes (REF„). Mode 5 was chosen
because the driving reduced frequency is right at the mode 5 cut-on frequency in the source-
side duct. This causes relatively large relleeted components in this mode for any incident

: mode. In addition, in Table 2 we have shown the direct transmission coefficients in all incidcat
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TABLE 2 

Com·t"rg!'nce Irends in cosinl' .f/lOped dh'l'fging Iransi/ion. 
~ho = 12·S7, A = 0·76 + 0·31i, bo = 1·0, hI = 1·268,L = 1·0 

"-r ,-,.:;~--. 

Rcneclion coefficients in mode 5 Direct transmission coefficients 
Inddenl ,---- . 

mode .6 Basi .. FNS 8 Basis FNS 10 Basis FNS 6 Basis FNS 8 Basis FNS 10 Basis FNS 
-----_._--

-(I'n) -{l·215 -{l·2122 0·736 0·736 0·736 
-t<l'152i +{)'14Ii +O·l38i +O·034i -t<l'034i +O·034i 

1 0·230 0·222 0·2186 0·523 0·523 0·522 
-O·t5li -O-139i -{l·l36i +O·213i +O·212i +O·212i 

3 -0·245 -0-232 -{l·228 0·146 0·148 0·148 
+O·146i +O·13li +O·129i +{)·4SIi +0·4511 +0·45 Ii 

4 0·260 0·238 0·232 -0·337 -{l·34 I -{l·342 
-o'191i -o·I90i -o'J88i +O·024i +O·029i +0·03 Ii 

S -{l.9OQ -{l·896 -{l·S% 0·016 0·017 0·018 
+O-080i +0'0801 -to·OSOi +O·om +O·Olli +V·DI2i 

6 0·279 0·272 0·269 -{l·OS7 -{l.Q60 -{l·061 
+O·ISli +O-161i +{)'l64i -{l·012i -{l·016i -{l·0l7i 

7 -{l·I94 -{l·191 -{l·OOS -{l·OOS 
-o-128i -{l·130i +O·OOli +O·002i 

8 0·157 0·154 -{l·002 -0'002 
+O·108i -H). I IIi +O-OOli +O·OOIi 

9 -{l·l30 -{l·001 
-o'097i -H)'DOli 

10 0·114 -{l·ooo 
+O·D81i +0-0011 

modes (TRANH). Coefficients are shown for 6, 8 and 10 basis functions. The sequence of 
results is distinctly convergent. In this case the use of8 basis {unctions is probably sJr.icient 
from an engineering standpoint. 

As n final example of the use of the method we have computed the acoustic power balance 
for the linear converging taper between uniform hard wall ducts in the case when the taper js 

TABLE 3 

.A causllc power balance in linear laper converging transition section. 
kobo .. 15·94, bo = 1'268, b, =- 1·0. L= 1·0 

InddcD( 
mooe Incident power 

A -0·76+0·301 
I HIOO 
2 1·000 
3 1-000 
4 1·000 
5 1000 
6 1·000 

AD 0-0001 + O-OOOli 
I 1·000 
2 1·000 
1 1000 
4 1·000 
5 1·000 

• 1-000 

Reflected power Transmitted power Absorbed power 

0·003 0·754 0·242 
0007 (}595 0·399 
0·010 0·672 0·317 
0·015 o·m 0·414 
0020 0·307 0·674 
0·169 OOSO 0·781 

O·()().I 0·9% 0·000 
00075 O'?92) (}ooo 
0·026 0·974 0·000 
0·148 0·852 0-000 
(}S57 0-143 0·000 
(}948 <Hl52 0-000 

--------_.-

.lO<,,~ 
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lined (A = 0·76 + O'JOi) and al~o in the hard·wall case at kbo = 15·94. For each prorag:ating 
mode incident on the non.uniformity we have computed the incident po\\.er. the refir:cted 
power, and the tran!lmiucd power carried in all resulting prop;lg:.lting modes. The pov.er 
dissipated in the acou5ticliningis the amount by which the sum of the reflected and transmitted 
powers fail to match the incident power. Table 3 shows the results of these computations for 
both cases. The hard-wall case (A = 0·0001 + 0'0001 i) is significant in that it adequately 
approximates the known result that no pvwer is dissipO!tcd in the non-uniformity. While we 
have notat this point made extensive parametric variations. it app.::ars from these results that 
the reflective characteristics of a non-uniformity can be enhanced for modes near the cut-off 
condition. We intend to report more detailed investigations of specific non-unifonnities at a -
later date. 

5. DISCUSSION AND CONCLUSIONS 

The method of weighted residuals has been shown-to be en accurate and rapidJyconvergent 
method for the computation of the acoustic transmission and reflection properties of non-­
uniformities in duct; ,,'ithout flow. Oth.cr methods applicable to the problem have been 
implemented and numerous comparison runs t.ave been made to validate the MWR and to 
build confIdence in its usc. In all cases where other results could be generated. comparable 
results were obtained. As y.rith any numerical technique. care must be exercised in the use of 
MWR. The choice of basis functions appears to favor good convergence: characteristics, but 
in any new physical situation convergence experimentation should be: undertaken. 

One of the reviewers of the original version of this paper offered the suggestion that basis 
functions which satisfy 

"'. + K'", ~o, 1//(0)-0 and "'·(b) __ ikbA ",(b) 
cos6 

be considered. This is equivalent to using an effective admittance A" - A/cosO.lfthisisdone 
the eigenvalue equation is 

Kb Ian Kb _ ikbA 
cosO· 

(35) 

The array of coupling coefficients, U: •. then vanishes. While this is auracti\le it should also 
be noted that this would complicate the computation ofdK.}dx. and hence u:. nnd P: •. and 
effectively introduce more coupling there. Hence. whether this is really a better set of basis 
functions would require numerical experimentation. The important point 10 be made is that 
the optimum use of methods of this type depends on extension experience in the particular 
application. 

It has also been pointed out that the differential equation for the eigenvalUes. equation (34). 
becomes Singular when the impedance assumes the Cremer optimum value (2). This is 
because lhe optimum is defined by a double eigenvalue and, as Zorumsl:i (24) points out. a 
double eigenvalue implies that Dot only is 

K.btnn-".b - ikbA 

~ but also 

d 
(i";b [IC.bI8n IC.b - ikbAl- O. . . 
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This means that

2K„ h + sin 2tr„ b = 0

at a double point. When this occurs it is apparent that equation ( 34) is singular. Of course

thi% problem is not unique to this method. The Newton -Raphson iteration would display a
similar problem in computing cigcnvatues as a function of some changing parameter if the
double point were encountered. If this occurs and if it cannot be circumvented by testing for
the occurrence and employing an expansion of the differential equation at the singular point
to get past it, then a different set of eigcafunctions might be employed. For example, those
generated from equation ( 35) would not have the same double points as ones generated from

equation (33).
Our philosophy has been that with improved analysis methods for finite, non-uniform ducts

with multi-modal propagation, the practical importance of the Crcmcr optimum has been
reduced in that the optimum lining will generally not correspond exactly to the double point.
We view the potential difficulty as important but not crucial to the utility of the method.

The non-uniformities treated in this paper are of the type which one might encounter in
applications. They are not small, nor are they very abrupt (although all of the results for
lined ducts presented here have a e scontinuous change from hard-wail to soft-wall). a is to
be expected that the more radical the non -uniformity, the less rapid will be the convergence,

and the more basis functions and integration intervals will be required to achieve a satisfactory
result. This is an inherent property of this type of method. At this point we are satisfied that
we can treat problems of practical importance.

The results to date conclusively show that it is important to treat the duct non -uniformity

problem from a multi -modal standpoint. A given incident made will generate spurious
reflected and transmitted modes which can have an important effect on acoustic lining design
and radiation properties. in addition there appears to be a possibility of using geometry
changes and their attendant reflective properties to enhance acoustic attenuation, but the
multi-modal performance of the duct will have to be known for design purposes.

The problem of the most i mmediate importance is the extension of the method to the case
of ducts with flow. In contrast to other methods investigated, the MSR appears to be extend-
able when flow is' i%ohed. Of course the complexity of the problem expands considerably.
but the basic numerical scheme can be modified and expanded to include this case. Our
iticarch program is currently directed toward achieving a workable method when flow is
present.

After the original version of this paper was written an expanded version of the work of
Zorumski and Clark [6) has appeared as a NASA document [25]. The work in this document

is quite approp-. ,atc to the development of the interface relations of equations (24a) and (24b)
and is closely related to the development c 2r _-", ; - :ms (25) and (26).
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COMPUTATION OF AXIAL AND 'TRANSVERSE WAVE NUMBERS FOR
UNIFORM TWO-DIMENSIONAL DUCTS WITH FLOW USING A NUMERICAL

INTEGRATION SCHEME	 5
1. INTRODUCTION

The purpose of this letter is to detail a scheme by which the axial and transverse wave numbers
i for propagation of sound in uniform two -dimensional ducts with uniform flow can tx com-

putcd. In the method used the eigcnvalue equation is transformed into a first order non-
linear ordinary differential equation. By using appropriate initial values this differential

I equation is integrated by using a Rungc- Kutta algorithm to yield solutions which are the
transverse wave numbers for the duct. The transversc wave numbers then are used to compute

` theaxialwavenumbers.Themethodproposedisparticularlyusefulfortherapidcomputation
of a :umber of duct eigenvalues at a single reduced frequency, lining admittance and duct
flow Mach number. It has the advantage of being an inherently stable computational scheme.
In addition, the ordering of the eigenvalues is well defined by their relationship to a cor-
responding set of hard -wall eigenvalues (the initial values in the integration scheme).

f

2. MPTHOD

The specific problem is that of propagation of sound in a uniform two -dimensional duct of
height b with one wall hard and the other with a lining admittance A- This configuration can
be viewed as modelling a duct with this lining arrangement or a duct of height 2b, sym-
metrically lined, with symmetric propagation. Prop:,gatio~ at reduced frequency kb is
considered, where k is the plane wave wave number k = w tc, w being the driving frequency
and c the speed of sound. The duct Mach nu rnber, Af, is assumed to be subsonic.

It is well known that for this situation propagation in the duct can be represented by a
superposition of acoustic modes of the form

p. — A. c"' e' 141-z  cos K. Y,

where x is the duct axial co-ordinate and y is the transverse co-ordinate measured from the
hard wall. K. is the transverse wave number for the nth mode of propagation and k s. is the
corresponding axial wave number. They are defined by the simultaneous eigcnvalue equations

s

kb(k) tan kbrk	 iffi3! 1 - 
Ukj^ 

.	 (l)

k.
^ ors

k 1 _
A^

lM± 
I
1 - (1—M:)^.	 (2)

  JJ

For the present analvsis equations ( 1) and (2) arc considcred in the somewhat modified
for is	

1 ork
..	 -	 kb (kl tankb ^ — iAkbw 2.	 (3}

.	 1J	 1

I
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2	 LES't'ERS TO THE EDITOR

x x 11/2

1 + Af l -(l - M2)(k^
W =

	

	 J	 (a)
1-M 2

Throughout the analysis it is important to maintain consistency in the ± sign choice. The
significance of the sign choice is straightforward for ducts with attenuation. In this case the
axial wave number is written as

k.1k - a t tfl.

!" - . m 1- (I W M2)^k1 

rll,

and the square root is the principal value taken in the upper half plane (positive imaginary
part)- The modes of propagation are in the form

p, - A. eumr-.mot a ±f-"cos K. y.

In order to have attenuation with increasing x it is necessary to choose the negative sign in
equation (2) or equation (4). Acoustic modes defined according to this convention will
correspond to propagation in the positive xdircction. If the flow is taken to be in the positive
x direction, th this will represent propagation with the flow (exhaust mode). When the

r positive sign is chosen in equation (2) or equation (4) one defines propagation in the negative
x direction, against the flow (inlet mode). In the case when Q is identically zero, which occurs
when rclk =0 or x,'k is real and 1 - (1 - Af2){x!k)=> 0, the principal value of the square
root is taken on the rcgative real axis. (This is done so that the sign choices given above always
relate the same way to right and left running waves.)

The usual way to obtain selected eigenvalues of the doubly infinite sequence of K. and kx.
defined by equations ( I) and (2) or equations (3) and (4) consists of using an iteration scheme
based on suitable initial guesses. Users of this method are well aware of potential instabilities,
difficulties encountered in ordering the results, and thercquircment foraccurate initial guesses.
Successful numerical schemes based on the iteration approach arc in existence but generally
have to be quite sophi,Iicated to overcome the problems indicated. The method that intro-
duced here is both simple and accurate.

One considers the eigcnvaluc x„/k to be a function of some parameter, q. In general, one
also would consider kb, A and .1f to be functions of this parameter. If equations (3) and (4) are
differentiated with respect to q and combined, then the following single ordinary differential
equation re5u!!^:

tan kb
x
 + kb (!^)sect kb h4:ZAK•M

(K)]d (x

(k)k 	 ^k^ Q;r2	
k dq lk)

dA 	 x d	 2iAty	 x 2 dM

	

iw2 dq - (!^ ,=-'kbk^kld^{kb)+ 11112(1 - M2) [2w- 1 -^k^ dl'
	 (5)
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Equation (5) can be used in two di13'ercnt ways. In the simplest application, and the one which
is the major subject of this paper, one considers kb and M to be independent of q. Then the
difrereniial equation describes the variation of nik as ,4 varies with q. Hencc, if A is given some
prescribed variation, the corresponding variation in xJk can be obtained by integration.

Consider the problem of Finding the aigcnvalues defined by equations (3) and (4) for a
specific condition A, kb, Af. if A = 4 the cigcnvalucs are known to be

K. (n - 1)x
k	 kb , n = 1, Z.	 (6)

Now let A vary according to A(q) = qA f, where 0 < q < 1. Equation (5) becomes

d 	 iw2Af

dq(

K)

k [
Zankb K f kb K sec2 kb(

K)
* 2 A_, K

^ 	 o	 ^k^

If equation (7) is integrated on 4 < q < 1, a h_rd-wall eigenvalue from the sequence ofequation
(6) being used as the initial value, then at q = I the solution to equation (7) will be an eigen-
value for the condition Af , kb, tf. Furthermore, it can be identified as the cigcrnvalue which
branches from the hard -wall eigenvalue on the real axis In the xJk plane which Kos used as
an initial value. Each hard -wail eigenvalue on the real axis branches into two soft-wall
eigenvalues, one for propagation in the positive x direction and the other for propagation in
the negative x direction (corresponding to the sign choice). Hence, starting with N hardwall
eigenvalues, one can compute 2N cigenvaiues (n exhaust mode eigenvalues and N inlet mode
eigenvalues) for the duct conditions Af, kb, M simply by integration of equation (7) on
0 < q < 1 with hard -wall cigenvaiues as initial values. For each eigcnvaluc, x:k, one can
compute the corresponding axial wave number, k,Jk, by using equation (2).

A second application of equation (5) has proved useful in the study of nonuniform ducts:
in this case A, kb, and Af can be considered to be functions of the axial co-ordinate, x. In this
case, equation (5) defines the variation of the eigenvalues, x!k, with respect to axial position.
The starting values in this case would be the eigenvalues corresponding to the conditions at
the starting point, say x= 0. The eigenvalues at this starting point could be computed con-
veniently by using equation (7).

Yet a third application, not implcmcntcd as yet by the author, would provide a means of
carrying out parametric variations to determine the variation in duct attenuation t tees with
independent variations in A, kb or Af. For example, if it were desired to compute the variation
in attenuation for a given lining admittance at a given Mach rumlxr for variations in kb
one could construct a simple functional dependence for kb, say

kb(q) - q(kh)r.
(kh} f being the highest kb required. If the initial values are chosen as known eigenvalues when
q takes on its initial value, qa, and if the integration is carried out on qo < q -c I, then one
rapidly can generate the results of the parametric variation.

where

	

2	 3. IMPLEMENTATION

	

u- I - (1 - M2)(
f)
k 	The computational scheme follows nearly exactly the theoretical development describer)

above. A fourth order Rungc-Kutia integration package has been used. in sohing the basic
and r' i is the principal value of the square root. as defined previously. 	 eigcnvaluc problem as defined by equation (7), a variable step size has been used, starting

If rc'k is k nem n for some combination A, kb, H. Ihen equation ( 5) is a differential equation	 with 2 °! of the full interval for the first five steps and then su itching to 10% for the last nine
defining the ► aria%ion of r, k as A, kb, in changz as functions of q from the original values. 	 steps, i.) possibly increase the accuracy of the results a Newton-Raphson interaction has

t

t
t

r
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been used at the end of the integration for each eigenvalue to refine the result which tray have
some accumulated error due to the rather coarse integration grid. Experience to date shows
very little need to do this. The best way to judge the error is to insert the computed cigenvalue
at the current integration step into the eigenvalue equation, equation (3), and evaluate the
residual developed. It has been found that if a significant residual develops it usually will be
in the first step away from the initial value. It may prove worthwhile to use the developing
residual to automatically vary the step size.

The only instance in which equation (7) or equation (5) requires special attention is when
it becomes singular. This always occurs in using equation (7) when one v-ps away from the
hard-wall eigenvalue, x,k = 0. It also can arise when a double eigenvalue occurs. While the
second situation is possible. no special precautions to account for it have been taken by the
author, the philosophy being shat the chance of it occurring is remote unless one is specifically
attempting tocompute the double eigenvalue. It is worth mentioning that the useofan auto-
matically variable step size based on the current residual provides an excellent means of
controlling the accuracy when the integration passes near a singular point

When it is required to step away from the hard-wall eigenvalue, xfk :0, in equation (7),
the first step is made by noting that Far small A and small xfk one can write

>c _ ikbddr0 ± M),
k I — M.

where A is the initial step away from R = 0 which in the author's implementation has been 2
of the total interval. This result is then refined, by using a Newton—Raphson scheme, and used
as a starting value for an integration beginning at q — 0.01
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