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Rkbstract

The method of weighted residuals in the form ~f a modified Galerkin
method with boundary residuals is developed for the study of the transmission
of sound in nonuniform ducts carrying a steady, compressible flow. In this
development the steady flow is modeled as essentially one dimensional but with
a kinematic modification to force tangency of the flow at the duct walls.
Three forms of the computational scheme are developed using for basis functions
(a} the no-flow uniform duct modes, (b) positive running uniforxrm duct modes,
with flow, and (e¢) positive and negative running uniform duct modes, with
flow. The formulation using the no-flow modes is the most highly develpped and
has advantages primarily due to relative computational simplicity. Results
using the three methods are shown to converge to known solutions for several
special cases. The most significant check case is against low frequency, one
dimensional results over the complete subsonic Mach number range. Development
of the method is continuing, with emphasis on assessing the relat.ve accuracy

and efficiency of the three implementations.



INTRODUGCTION

The method of weighted residuals (MWR) in the form of a Galerkin
technique with boundary residuals, has been shown to be a useful method
for the investigation of the transmission of sound in nonuniform ducts

(1)

with no flow In this paper the method is extended to treat the

case when the duct carries a steady nonuniform flow.

The introduction of steady mean flow into the study of nonuniform
duct propagation complicates the problem in two ways. The acoustic
field equations no longexr reduce to either the simple wave equation of
the noflow case or the convective wave equation of the uniform flow
case. In addition, the field equations represent acoustic perturbat-
ions on a steady nonuniform flow field which in itself is difficult to
describe, As a consequence of these complications, no simple theories
of propagation have been developed and investigations appearing in the

literature have been relatively few.

The majority of studies appearing have been based on a one dimension-
al theory which treats the propagation as plane waves moving in a one
dimensional nozzle flow. ' Powell(z), Eisenberg and Kao(B)

(4) (5) (6)

Karamchetl '™, Huerre and Karamcheti

King and
and Davis have studied one

dimensional models by a variety of technigques.

It is the purpose of this investigation :» study multi-modal prop-
agation in nonuniform ducts with flow. Published work dealing with
this problem nas been limited to approximate methods for nonuniformities
in cross section, lining and flow properties which are slowly varying.
Tam(7) considered hardwalled ducts with slowly varying cross section by
using a Born type of approximation and Fourier Transform methods. Nayfeh

{(8)

and. his co-workers have used the method of multiple scales and include
slowly varying area, lining and boundary layer. While Tam's work

allows modal coupling, Nayfeh's does not.

The method described here treats the complete acoustic field equations
and is approximate only irn the sense that the solutions are represented
in terms of a superposition of a limited number of specified functions.
We will be concerned primarily with the method of solving the field
equations and relatively little with the difficulty presented by describ-
ing the nonuniform steady flow field. Instead, we will use an approx-

imation for the flow field based on one dimensional compressible flow




with a kinematic modification to allow for flow tangency at the duct walls.

In addition, in this initial study of computational schemes we will
concentrate primarily on the solution in elementary duct sections. Rather than
an exhaustive treatment of the transmission characteristies of various duct
configurations we limit our attention to the successful implementation of the

scheme in particular cases.

A principal motivation for the study of propagation in ducts with flow
is the cbserved phenomenon of subsonic acoustic choking which occurs in inlet
type flows when the acoustic source radiates upstream through a flow constriction.
It is found that there is a substantial reduction in acoustic transmission
past the constriction when the Mach number in the constriction exceeds about
M= 0.7. One would predict this intuitively if the constriction is sonic;
however, the occurence of acoustic choking at such low Mach number is surprising
and requires investigation. Tam(g) has considered the possibility that some
of the choking is attributable to nonlinear effects arising when high intensity
sound propagates upstream. The computational scheme developed in this paper
provides a basis for studying the linear aspects of this problem. Extensive
computations directed toward this goal will be made in an extension of the

current research effort.

CO-ORDINATE SYSTEM AND GEOMETRY

In the following development we will consider only two dimensional ducts.
The method employed generalizes to the three dimensional c¢ase, but is then,

of course, more computationally demanding. We will also consider explicitly

(1)

only ducts of infinite length, although as has been shown , the extension

to ducts which are of finite length is not difficult provided that the reflection

properties of the termination are known.

Figure 1 shows the type of configuration under consideration in which

two semi--infinite uniform duct sections of height b_. and b2 are joined by a

0
transition section of wvariable height b(x). The duct wall at yv = 0 is hard and

the wall at y = b{x) in the transition section has variable impedance Zo(x).

The uniform sections have impedance Z, and 2, at y = bo and y = b

° . : respectively,

L
and have a hard wall at v = 0.



This representation can be considered as a model of a duct of this con-
figuration or of one symmetric with respect to the =x axis with symmetric
propagaticn. We will consider only continuous variations in duct
height; however discontinuous changes in impedance will be permitted at

the ends of the nonuniformity.



GOVERNING ACOUSTIC EQUATIONS

We will consider acoustic propagation as small perturbations on the
steady duct flow. It is assumed in the present analysis that the fluid
motion is nonviscous and isentropic. To derive the acoustic equations
we begin with the equatiors of continuity, momentum, energy and state

in dimensiocnal form

é—af-a- d:r/dlf/——o ()
/ﬁ%?’-f/,f/-j/aa/?’-——jfdd/f (=)
Qxf—".,; F’-jradi?’# spldiv V' = o (3)
e

o ; P 2
% - ;5.) “)
The fluid state variables p', p', v' are made up of small acoustic

perturbations on the steady flow, so that

’ * #
~ ,—/4_., 74/& /5)
» = 2 7" (6)
2 N 7 (7)
where p*o, p"'o, ‘-r*o are the steady flow conditions defined by
sz/a*[/:*z o (8)
ﬁ"‘z*‘.j,.aa/ = ..jraa//'ﬂo# (9)
1_/;"‘. ﬁn-aa’?‘,y,a d’ﬂ,’xa//y w = o (ro0)

710?*: //éi# .8 ()

Because of the isentropic assumption the energy equation is directly deriv-
able from the continuity equation. The energy equation does not contain
the density and is more convenient to use. By using Equations (5) - (7)

in Equations (2) -~ (4) and by making the acoustic assumption of small
perturbations on the steady flow, the Jimensional acoustic momentum, energy

and state eyguations are:
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Equations {9) and (10) were used to eliminate the steady flow terms in
Equations {12) and (13). The term in Equation (12) containing p* can be
rewritten by using Equation (l4) and equation (9):

* . ¥
#o oo ‘2. ra e 22
PV grad b = - R g*ﬂ ®

The modified momentum equation is then

* ¥
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75)
The governing acoustic equations can be non-dimensionalized in the

standard way by defining the nondimensional variables.

% ¥
= - ___7%, - ud
70 ~ 0/‘2 2 Vs ('rz ’ /d ;f‘
P —n — - -
/éa = ﬁa ’ V= i , Vo = _VO'
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The reference states £ G- are arbitrary values of the density and speed
of sound. They will generally be chosen as the state which exists in the
uniform flow incident on the nonuniformity. The nondimensional equaticns
of momentum, energy and state are then

L v, rad ¥, + Z - 9radv + L r"aa/;b 9rad Po=0
€ I j f 7 /d" e )
Ei. jraa’f TP, At Vs f/jroa/ﬂ * é‘/ﬂdfl o

(v7)
7= Jﬁ/ (18)
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When a harmonic time dependence of the form e wt is assumed, Equations

(168) and (17) become

z'é,..l;*+ F.ypaa/ﬁ;,Lp;. rod U+ L grod o - <L Z yr‘aa’ﬁ,:o
J AT R 19)

Py i:’:-jfaa’;v+ 2 dry 7 F-jmaa// - a'/va/ufi,; = o
(2 0)

where /F,. = @/Cp = 27/A, and ’\,- is the free space wave number

in the reference state.

In order to specify a boundary condition at the duct walls, we introduce
a co-ordinate system as shown in Figure 1. This figure shows the manner
in which the duct height profile and slope of the height profile are
specified as well as the designation of the local outward unit normal
at the duct wall, 3/. The duct wall boundary condition employed is charac-
teristic of a normally reacting lining in the presence of a harmonic

pressure variation,

where V*U is the particle velocity in the acoustic lining at the surface,
assumed in the direction of the ocutward normal. 2 is the wall impedance
which may be a function of axial position. In nondimensional variables the

boundary condition becomes

or

VL = /7;;9
where A = prcr/Z is the acoustic admittance ratio of the lining based on the
reference admittance l/prcr. In harmonic motion the relation between the

component of fluid particle velocity at the wall and particle velocity in

the lining at the wall is given by

¥
— * ¥,
d.’.m.-: ¥ 2/ 2 (——}:)
V > V;_, -+ Ta-z- rcw
¢ . 3 ; .
UT is the fiuid velocity tangent to the wall and 3c 1S the directional

derivative along the wall. In nondimensional form this becomes

Ve o= L D
v g (21)
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The boundary condition at a duct wall, assuming a time dependence e1m ‘

is thus

—

VP Ap- 272 (4p)

Equations (19) and (70} with the duct wall boundary condition of
Eguation (21) specify the boundary value problem for propagation in a
variable geometry duct with a steady flow. The problem as described is
formidable, principally due to the introcduction of the steady duct flow.
The introduction of the flow field considerably complicates the accustic
problem, but it also presents the requirement of describing the flow field.
The flow field would be defined by the solution of Equations (8) - (11)
p1.3 suitable boundary conditions. Even for simple duct geometries this
requires sophisticated numerical techniques and only rarely in highly
specialised cases co.ld one hope to generate an exact closed form solution.
For detailed studies a fairly eract description of the flow field may be
required. However, in order to study the effect of duct nonuniformities
on the propagation of sound with a certain degree of generality, we will

use an approximatior to the steady flow field.

The most common approximate descriptior of the steady flow field is
the one-dimensional theory which is one of the cornerstones of elementary
gasdynamics. This theory proves very useful for a wide range of duct
contours, but with rigor must be viewed as a first approximation when the

area change is gradual.

In the one-dimensional theory the variation of the Mach number,

nondimensional density and pressure with axial position are given by

ol M, - - M //_/_ g1 2/_..1. _0_/40
;J(— —-Moz 2 % Ae Ix

e
/%: /éx_ //7‘. :)_‘2_-_//%2/3‘—1
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-
ge BT . 2l %— sy
° ;;2:2 B ;T F- 2 f?

r o r [ -E- a_]a-jr

where A 1s the local cross sectional area.
C



In addition, the local nondimensional speed of sound is given by:

2
2 _ C“'*z {* %Mr
e )~ r-7 .2
A

and the local nondimensional flow velocity is given by:

%

¥-/ 42
Uo:_%*: Mo[/-» 2/%]?
Cr [/,; %/Mrz] 2

UO is the local axial component of flow, the transverse components being

assumed zero in the one dirensional approximation.

In this approximation the flow properties are assumed to be uniform
at a cross section with no transverse velocity. They are solutions of the

one dimensional continuity and momentum ecquations

_/..do ..’-Qd_M’ /9,._4.5::0
/%Ef*u,afx " . ox

dB — _ o, U It
dx /) Ix

together with the isentropic egquation of state

&
7

The acoustic problem, Egquations {(19) and €0), involves axial and
transverse velocities and pressures as well as axial and transverse gradients.
Furthermore, the boundary condition requires the velocity tengent to the wall.
This required velocity field could be approximated simply by using the one
dimensional theory and ignorinyg the transverse velocity and the transverse
gradiehts. We choose to include some measure of the effect of transverse
velocity and its gradient by taking the solution to Fauaticns (8) - (11) to

be, in nondimensional form for the two dimensional duct

Uo(xfy): L—};{X)

s x4 b
V. (:r,y) e (x Z =

7 (x,4) = /1?'; fx)

C, (X, y} = Oy (X)



where a bar notation has been used to denote the one dimensional sclution.
This form for the steady flow field must be recognised as approximate, but
it is considered to be a reasonable approximation in that it exactly satis-
fies both the continuity equation, Equation (8) and the x component of the
exact momentwn eguation, Equation (9). The y component of Equation (9) is
not satisfied cxactly, but iIs satisfied on an average basis on the cross
section of a duct symmetric with respect to the x axis. In addition, this

solution satisfies the requirement of flow tangency at the duct wall,

By using this approximation we are introducing an error into Eguations
{19) and (20) since in those equations it is assumed that the flow field
gsatisfies Equations (8) - (1l). Based on the success of one dimensicnal
nozzle theory, the axial velocity, pressure and density variations should
be acceptable over a fairly wide range of duct shapes. The assumption for
the transverse velocity is on a less firm basis, and will be more accurate
for gradual =rea changes. In the absence of detailed information about
the flow :i~rtd it is felt that tha approximate flow field will be useful
for identifying the important general properties of transmission in non-

uniform ducts.

The steady pressure, density and axial velocity in the steady flow
approximation are functions of x alone so that the steady flow field is
described by Uo(x), Vo(x,y}, po(x), po(x). In addition the transverse
gradient avo/ay is a function of x alone. These simplifications provide
significant reductions in numerical computations. However, if more exact

flow field descriptions are used these restrictions must be relaxed.

With this approximation for the flow field, the momentum and energy
equations, Egquations (19) and (20} can be expanded in the present two

dimensional case to yield:

Up D% , 2 2P , y Su ‘ EYT RV, A2 .
ax+ﬂaax+yga§+(‘k’+_a'§<)u T a.,f;a e (22)

L -a—-V+VO -a—‘?f - —‘9—1?-:'- a—-——béu ' 2 Vo =
Sk g T 2y T Bx ’°("{"“5_7,,)v' @ (23)

Fuw 24 . 1, 2 oV 2 27 ! Stlo . Io =
P52+ é-f-f-a’fbé__y -f-f/,gj*a_),z: “*[M’*r(ax*a—g)]? o

(z4)
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The boundary condition of Equation (21) can be expanded by noting that
at the duct wall:

n

U, = | ,Co58 + VW 51n8&

(A}p) = COos 9 (,4?) . -y __1?
2

Thus

Y22 (4p)= (Lo cos?0 + Vo 5mpcose) 2 (Ap)
+ (UOC‘o.s O 517 & 4+ %5//729),4 3_7’

The boundary conditiec:. a2t the wall for the steady flow is that the normal

velocity must vanish:
0= YV, Cos5 8- Ly Sirr &

or

Vo = o Form @

Thus, at the duct wall

2 (4p)= juo 2 (Ap)+ Us tan & 4 97’]

Furthexmore

VeV = 2eosé - o 57 &

Eguation (21) becomes, at a duct wall
’ 2
veos O~ USIE = 4P — ﬁ_%j_ [ 5-3((/4;9) ++a/;g,4§_§J

(z5)

METHOD OF SOLUTION IN THE NONUNIFORM SECTION

In Reference (1), the method of weighted residuals (MWR) (modified
Galerkin method), was employed to study acoustic propagation in nonuniform
ducts without flow. We will use this method with minox changes in the

present study. (Reference(l)is reproduced in Appendix (A)).



11.

Attention will be restricted to two dimensional ducts with geome*ry
as shown in Fig. 1. &As previously noted, this can be considered as a
model for a duct actually shaped as shown or else one symmetric with respect

to the x axis. In the latter case we consider only symmetric propagation.

We seek solutions to the field equations, Equations (22) - (24), and

the boundary condition, Equation (25} in the form:

PCX, i) = Z/‘Dn(x) &, (%, 4)

”

w(x, y) = D Unix) B, (%, y)
7”7

v y)= ; v, (%) @, (%, ¥)

The success of the MWR is dependent on an appropriate choice of basis
functions. In the no flow case of Reference (1), the basis functions were
chosen to be the transverse modal functions which would exist in a

uniform duct with th: properties existing locally in the nonuniform duct.
This philosophy can be carried over to the duct with a steady mean flow.

In this case the appropriate choice of basis functions would be the trans-
verse modal functions for a uniform duct with flow and geometry properties
existing locally in the nonuniform duct. TIn the nonuniform duct the flow
properties vary transversely so that the equivalent uniforis flow to be used
in defining the hasis functions is open to interpretation. Since the
boundary residual will be more nearly satisified if the bhasis functions
nearly satisy the boundary condition, it would seem appropriate to use

the velocity at the wall as the equivalent uniform velocity. Of course

in the simple flow model used here this is unimportant, since the wall vel-

ocity is thne same as the velccity on the duct axis.

‘The major disadvantage to using this type of kasis function is that
there are different modes for upstream and downstream propagation so that
to obtain the same resolution as in the no flow case we would use twice as
many modes, half representing upstream propagation ard half representing

downstream propagation.

A second possibility would be the use of tne no flow medes. Since
these modes are not generally near-solutions we wouldexpect to generate
solutions which require a large number of terms to converge. We tried
using the no flow modes in the initial development and found that they
worked well at low Mach numbers with soft walls and for nearly hard walls,

In both instances.the.no flow and flow transverse modal functicns are not
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much different so that this success is not unexpected. For this reason
we have one version of the computational scheme for nearly hard walls or

for soft walls at low Mach number. We will detail here the more general

case.

Using the basis functions from uniform duct theory {with flow),

solutions are sought in the form:

N A
= ZP,, (x) COS /G y = Z 79,7%
=y =
A
Uy, - Z U, (x) CO3 My 4 = Z A
Zv (x) SN Kn Y = Z v, @,

The Kn are defined by:

sbtanrnbd = hbA(I- fo)z

7’:!: 7_—//‘—42[-—Mi‘ /-~ (/-M‘*’)(—},’:-f—)f]

The Mach number to use is that which exists at the duct wall. This
eigenvalue problem simultaneously yields the transverse wave number

and kx for a mode of propagation. Eigenvalues for propagation in
n
both the plus and minus axial direction will appear and will be identified

by the sign in kx .
n

The eigenfunctions which arise ir ihe flow cage are not orthogonal
and the orthogonality property cannbt be used in computations. However,
in the flow case this disadvantage is not of serious consequence in view of

the other complezity which already exists.

If the assumed solution is substituted in the differential equations,
BEquations ™7 = (24), it will in general not satisfy them and the left
hand side will not equate to zerc. Instead, it will add up to an error,
or residual. By denoting the residual by R, we write upon substituting

the assumed solution in the governing equations:
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In a similar manner we form a boundary residual.
Rog= U, COSE — Ly 178 - ,4{ - Z_Z/a[éﬁv.f tord Qﬁv 2 A4
B0 “ Pv ™ % L 50 ey, ",::;Ed—x

The residuals can be made zero if they are orthogonal to every member of a
(10)

complete set. (See Eversman, Cock and Beckemeyer (l), Finlaysan and

Zinn and Powell (11'12)). Assuming that the trial functions wn(x,y), ¢n(x,y)

are complete sets at every wvalue of x we can force

[[ %7 00%
[ 4~ dy

4
0

11
]

on b% Ry dy dj

/
[ arsdy = o



A unit depth of the duct is assumed. Note that the trial functions
already satisfy the boundary condition at the hard wall (or duct centre
line) so that no boundary residual is required there. In expanded form

the orthogoniality conditions for the differential equations yield

d/é”,,au’*’dj-f-—/é&—-P”dy /1/4”3 ey

b ¥
i ik + g_go)[;e,uﬂ, Yy -t 37 (Ym0
o

| Iy
(26)
b
Ua/gég_ vy /V¢ ”dj —/¢ P”a’_y /9’/&514
/b
+ (ko + Q..Va) ;ﬁ,,?/’ Ay = O
%Y " % (27)

b
¢auNd +L/o/4” BPw o + &Py {ﬂn‘"’
/ b :/ 7’ £

o

A
+afbg¢/ sy . apa/su,,aﬂﬂy ik +a‘(é£/049")]/4//%0’_7 o

(28)

Equations (26), (27), (2B) can be rewritten and simplified to some
extent by following the sequence of steps outlined in Reference (1} (See
Appendix A of the present document). We use rules for differentiation

of integrals, integration by parts, and the condition of flow tangency

at the wall to obtain new forms of Equations (26) and (27) for n = 1,2,...

14,
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b é Y Y
“hg [Bom ) Shu -] g b)mdy L[S0

+ ’—é— G, (%, 4) 22, (X, 6) = O (30)

o

The weighted boundary residual takes the form

[2@ (X, 6)~ Uy (%, 6)7‘4’”9] w, (x,6)

- A _ k[ 2 2Pw . 1 dA 4
- {PM [a__fﬂ-ﬁfa'/!@ jﬂ+/4 dxpj E, /x’é’)

By using the steps outlined above, plus the boundary residual. Equation (28}

is rewritten forn=1,2,...N
b b b
%,
KPQ%/%UNJ’3+%%/§%P”@-{/%/C-§; A’Z /alp"’ﬁ

-JF/M 24 /;‘i”"%)%d (28 ey

[+

15.
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Cos56
-4 (31)
The Method of Weighted Residuals can be completed by inserting in
Equations (29), (30), and (31) the truncated useriess representations for

Py uN, Vi If this is done and the terms are grouped there results

UQZA/ Qlj,‘m +/2LZNHMC_7’%M

nm al‘.(

) b
o D [ e @m0k, » 286 )A, -/i (1 %, ) 4,d ~Z/o/5)‘%’¢ olu,
- ° dx T Bk ’”oaj 0 7n /Ty / ox 7

! d/‘/ﬂ/}? a¢' / ] _
ZT[C,ax /ﬁ " oy Oy _égha f’m%w-2?£m¢9gﬂgégg4ga%% 7

(32)
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_u/ 9¢-¢ dy + ZB Al 0064, 006)- ffo{zp o )af/mrx,é)

Sx

+ fané &, (x g,);j‘fmmb) + ;’4 gf Wplx, b) &, fx,b)}” Pm = O

(54 )

Equation (34) required special consideration in that the terms contributed
by the boundary residual yield derivatives of P (this did not occur in the

no-flow case). We have introduced the definitions

&
Ny (3) = | Y Y Ty

b
My () = /¢,, @, dy

Equations (32) - (34) can be written in the form

TRL Nnm G+ U g BP0 )t e < ) e T
7 ’#? Fred

T M B o L TH S0 s T B iy v T oy, <2 B -
m ”? i

Vgl

d ,- .
Uanzq'Mnm E’fm * ,Z”:V;r::”m +Z—'fon P 1‘2!/”;;7 Vi = O

(357)
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We make use of the definitions of the basis functions

&, (%,4): COS Kpny
P (X, 4)= S17 Knly

the d rivative relations

§_¢ = 4.{.("’ sz (X/ )
:axﬂ a'x 7 =4

2Pn - K, Y%, (X, y)

Yy

?_"Ln —- - _G_I_xny #ﬂ [;(/_47,)
Bx &x

élgh - - M ?& (}3_97
dy

and the definitions

4
O/y;z,, b dp = Lo

L

In addition, we use the description of the flow field to obtain

b
.3’9a'?ﬁ»6{7'= Tom = & nan



dé

; 24
b
2 - £ did, a% st db
/ §;¢¢m —‘4’[40{2‘9;"2” (b’dxjjzm

Using these relations, we arrive at definitions of the coefficients in

Egs (35):
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Equations (35) can be conveniently written in matrix form
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In order to achieve a form more closely related to the no flow equations,
we divide the Um equations by YPo+ multiply the P equaticns by Po and
divide the vm equations by UO'

Hence we can write

) vl j rdam
Npm o N, © 7
6’790 ,x
1 d
Ly Ny Mum o c?xf”
O o Mpm dUin
- .: ax
-, _ A
= o =~ T e A ny
7 v (3¢€)
— — U —_ .
TN P e = T | T
— - —
~ Vow - kﬂ;: = Voo | LV
where
—-—-u/f/zf _ / Ud,f,'y
Vdids Jfa e
— 47V ﬂ,ﬂ?/’
;;»4 = /5% oy
——‘{’f’ff / “F
P;ﬂ" = Zj' 487
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MATCHING OF THE NONUNIFORM SECTION TO UNIFORM SECTIONS

As illustrated in Figure 1, the nonuniform duct segment is considered to
be a transition section between two uniform, infinite ducts. In this section

we establish the procedure for matching the nonuniformity to the uniform sec-

tions.

The set of linear ordinary differential equations for the axial variation
of the coefficients in the assumed solution, given by Equation (36), can be

represented in the form

[ dm
ax oy
da., -
{_L {x )] d—f = [Pr’x)] Fm
4, U
dx

The dimensioning of the matrices involved depends on the types of basis
functions used. In our investigations to date we have used three different

types of basis functions:

(1} 1Initial studies utilized as basis functions the modes from the no-
flow problem. In this case the assumed solution and the required
eigenvalues are exactly as described in Reference (1) which is
included in Appendix A to this document. The differential equation

is then dimensioned as follows:

o Um

ox U
[Lox)] Z—f/f’” - [F"(x)] 7
EN BN E_{E@, INxIN %

ox BN =)

IMx!

N is the number of basis functions used. Note that in this form
the problem is of size 3N x 3N as compared to 2N x 2N in the no-
flow case. Extensive computations were carried out using this
method and it was found to give results in  generally good agree-
ment with known correct results for low Mach numbers with soft
walls and for a more extensive Mach number range with nearly hard
walls. ~Computations using this approach form a large portion of

the results generated to date and are discussed in a subseguent



(2}

(3)
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section. As will be seen, certain inadequacies exist and we have
extended the computational scheme to use modes more closely related
to the flow problem. The details of this approach will not be
given here as they can be inferred from the more sophisticated

approaches to follow.

Since the success of Gaierkin type methods depends to a large extent
on an appropriate choice of basis functions we have modified the
basic computational scheme described above to use modes from uniform
duct theory with the effects of flow included. In the first step

in this direction we employed the flow modes but included only modes
corresponding to propagation in the positive axial direcvion (in the
flow case, as distinct from the no-flow case, there is one set of
positive moving modes and another set of negative moving modes).
This is really a sub-case of the more general use of the flow modes
described below and as such will not be descriked separately. The
dimensioning in this case is the same as the case when no-flow modes
are used, however, the eigenvalues associated with the basis
functions require a more extensive eigenvalue routine, as described

in Appendix B.

The most advanced version of the Galerkin method developed to date
uses the full set of uniform duct flow mofes, including both positive
and negative running waves. The principal reason for avoiding this
approach at the outset was the nominal doubling of the number of
modes required. If we let N denote the number of positive running
modes, then, since for each positive running mode there is a
corresponding negative running one. we actually require 2N modes to
achieve the same level of resolution used in the previously discussed
cases. In this instance the dimensioning is

It
ax Mm

[L(ZJ] me [pm] 7 (37)

buxen | 4, ENxON [ 4, |
Fe A/

oM X/

H
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As noted, N is the number of modes in one direction and is a measure
of the basis function resolution available, consistent with the other
implementations., At the time of preparation of this document
numerical experimentation to verify and improve this formulation

is still in progress. Certain new computation problems have been
observed and are currently under investigation. Hence, the use of
the complete flow modes can at this stage only be considered in the
development stage. However, since this formulation is the most
general, we will use it to explain the matching procedure. The
corresponding procedure in the simpler formulations can then be

easily inferred.

The solution to the matrix differential equations of Eq. {36) can be
given in terms of a transfer matrix relating u P.r Vv, at x = ¢ to u .

P+ Vo at x = 0:

aﬂ um

Pt o= [T Pm (28)
Un |y p GN*6N | 1,

LA ! ENx |
The transfer matrix is readily obtained by a fourth order Runge-Kutta scheme.

K= O

We have experimented with other schemes and consider it quite probable that
in future development some advantage, particularly in speed, may be gained

by using a different integration scheme.

The propagation in the uniform ducts x < 0 and x > & can be expressed in
terms of the classical @uct theory. In a uniform duct u(x,y), pi{x,y), vix,y)

can be written

. + + - - - - .
i g) €Ay €, COS zr,,,*y CHXpy €, COT Ko ol
2 + —_ - .
pexylts  |AC €, CO5 Ky /oaozem COS Fom y _
+ _ _ _ . Q
vy c/g; e,, stn x,,’,”j €l Em 317 Kp ”
3x! Ix 2N ZMXx ]

(39)



26.

where
. -

+ - xmx _ _,.(7 ¥ X
e, = € e, : e

+ %"' - -
O(m = xm/é . O(m = éxm £

/- Mé’:m/é /- Mé;m/é

+ J— _ —_

fiw - - ‘-—lgﬂjéé—' /ﬁi» = - ‘.-5232423-
/- M K ) /=M b, f)

.f/(i‘m = jz[—Mf,l//~ (/—Mz)(fm)fj

The plus and minus superscripts denote right (positive) and left (negative)
moving modes. Thelin are the eigenvalues in the uniform duct. The
determination of the direction of propagation of a given mode is discussed
in Appendix B in the general case of softwall ducts. We have generally
carried out our computations treating the uniform ducts as hardwalled. 1In
this case

— ¢ = Y A
o K)M - (wb/) / m= b2, N

The choice of sign inA%”/%—for positive and negative moving modes can then

be deduced by energy flow arguments(IB).

The nondimensional speed of sound c= c*/ci and density po = pg/pr appear
because the classical duct solutinn used here is based on nondimensionalization
with respect to the duct density and speed of sound, ¢* and p*. These
reference conditions will generally be different in the ducts x < 0 and
x > 4. In the duct x < 0, ¢ = 1 and Py = 1 because we have defined c.
and pr as conditions existing in the duct x < 0. In the duct x > 0 we

define c= c? and po : p_, the nondimensional speed of sound and dersity at

F
the end of the nonuniformity.
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The velocities and pressure in the nonuniformity can be written in matrix

form

wix, y) COSKp Y Um

(% 1) el cos « P

X = ke d m
?9 }5 Fx 2N
U(xf"j) 5‘!/7)(”;? ’me

7 x 2ZA |
Gx I FIx &N &NV x /
(40)

The eigenvalues in the nonuniform section are ordered so that m = 1,2,...N
correspond to right running modes and m = N+1, N+2,...2N correspond to left
running modes. The method of cbtaining the Km and the technique used to sort
them for the direction of propagation is discussed in Appendix B in a print

of a paper to appear in the Journal of Sound and Vibration.

To demonstrate the matching procedure we write Eq. (39) for x = 0

and x = £ in abbreviated form

+

; ) [K ] a,, (47)
Q a;n
v
X=0
FIx/ Bx2ZN 2ANxI
4
U Crm
et = [K]] . (42)
Cm
v. ;(:i
' 3xt Zx2N 2N/
As described in Reference (1), the amp%}tude coeffigigp%; at x = £ have
¢ -
absorbed the exponential terms & % , &€ Xom and are

I

thus amplitade coefficients referenced to x = £, rather than x 0. Equation

(40) is written in abbreviated form at x = 0 and x = %

U U
P = [0] 7. (43)
v Vo

X= 0 X- o
3x7? Ixb6N eMx |
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U U,

'P = [ C.F ] ‘Fm (44)
,”. x:j .y_m z'i
3xf 3x6N G

At x = 0, we match u,p,v to obtain

Up a;
[C"] P = ['(0] a:,

Ix &N W‘m x:[ Ix2A ZA'x1
A%
We use a least squares estimate for the W B Vo This is obtained in
1
the form
1y +
" a,,
70 = [ ,4 (‘o)] _ (45—)
m Qm
v N X 2N
" Xz 0 2A X1
6Nk
where

[Aw] = [cc] [ows]

N x 2N ENxGN LNXZN

and b
[DC‘OJ: /[60]7[00} O’_!f

O sax3 3xe N

N xoN
P2
o~ T
[C Ka] = / [Co] [ Ka] dj
GNMx IN ©  ewnxz  3x2N

T
The operation [ CG,] denotes the complex conjugate transpose. This com-
v
m

Putation can be viewed as establishing the starting values for u , pm,

from the wave amplitudes in the duct x < 0.
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At x = &, we match u, and p:

re 1[4} -0l

3x A x:4
* Iy 3x24 A%/

The matrix [tLLT is truncated to delete the 2N columns related to v . We

again use a least squares matching to obtain

ct ] [4c0)] Ym (46)
' 7;7 xz 0

N xt PNxIN g N/
where
-1
[acn] = [¥),] [kc]
2ANx AN 2Nx2N 2N xIN
and

b~ -
["‘Kz]’[ [4] [K,]

2N 2N 2/4xF Fx24a

b ~ ra
[xg]= [[&1Tedoy
2Mx 2 0 2AcF  Fx AN

Again, the operation [lﬁ(JT signifies the complex conjugate transpose.

We use this notation with the general case in mind whéen the uniform duct

is softwalled. When it is hardwalled, as generally assumed in our
computations, we have dispensed with the conjugate because the eigenfunctions

are orthogonal and a straight Fourier matching is possible.

This operation is viewed as determining the wave structure in the
duct x > £ from the conditions at the end of the nonuniformity. We are
considering the possibility of matching u,p,v at x = &, rather than just
u and p. The extra computation is insignificant and might prove beneficial
since the extra information available for determining cm+ and cm- might
help smooth out any inaccuracies which have been introduced in the process
of developing the transfer matrix. This procedure has not as yYet been

implemented.
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Equations (38), (45) and (46) can now be combined to yield

Cr [ac)][ T [[dcor] sz

Cn INYAN FNXEN GNKkZY
2Mx/ 2/AMx!

at
m
= [TAJ Q- (47)
INE ZN ”
N x!

The matrix [7'J is truncated with the 2N rows corresponding to the v equations
deleted,

From this point on the technique of obtaining the matrices of reflectior
and transmission coefficients follows Reference (1). We assume an infinite

duct x » £. Then
£ +
Cﬂ TA:! TA i2 am
o TA,, TA,LIl QO

H

From this we obtain

-[74,1 [74,1{a?} = [Re=] {0’} (48)

L
pf
—
3|

([ TAu]+[ 7-’4:2][/?5’;]){&%_} = [TFAA/J/Q? (49)

—
O
LS
e
“

where [REF] and [TRAN] are the reflection and transmission coefficient
matrices, respectively. The extension to finite ducts x > L follows the

development of Reference (1).
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RESULTS

As noted previously, the development of the computational scheme has gone
through three stages, beginning with the use of no-flow modes for basis
functions, progressing to positive running flow modes as basis functions, and
then finally to the use of the complete set of flow modes as basis functions.
Each stage of development represents a new level of complexity. When no~flow
modes ace used the formulation follows almost directly from the no-flow case
described in Reference ()) with the use of a new set of governing equations, as
described by Egs. (36) of this document. In advancing to the use of the
positive propagating flow modes the eigenvalue scheme of Reference (1) must
be abandoned for the one described in Appendix B. Both of these implementations
represent a size increase over the equivalent no-flow problem so that
computational time approximately doubles. The ultimate level of complexity
arises in using both positive and negative running flow modes as basis functiocns.
Assuming that the same level of resclution is available by using basis functions
of similar character this formulation leads to computational times in the
neighborhood of nine times that of the original ro flow case. It is apparent
that a very careful evaluation with regard to accurracy and computing GOSt must
be made to ascertain the appropriate level of complexity required to treat the

problem.

The major problem faced in this program has been the almost total lack of
any results against which to make comparisons and evaluation. As noted in
Reference {1), we were forced to develop several alternative computational
schemes to make an evaluation of the results of the no-flow computational
scheme. None of the alternative schemes of the no-flow case are available
to us in the flow case. The only approach we have been able to take is the
reduction of the general scheme to certain special cases. Of particular interest
in this regard is the computational scheme of Davis and Johnso#s)in which they
treat plane wave propacation through a one dimensional compressible flow in a
variable cross section duct. Their computational scheme sheould allow us to
generate results which serve as low frequency comparisons for the computational

schemes developed here.

Other comparisons that we have used serve only as gross indications of the
consistency of our present formulation. We have approached zero flow speed

and compared the results against our original no flow results. Since the
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governing equations in the flow case don't degenerate directly to the no flow
equations this type of comparison provides an independent check of some of

the terms. We have also used the straight hardwalled duct as a comparison since
we know that reflection coefficients should vanish and that transmission
coefficients can be computed by simple hand computations. A further simple

test case considers uniform soft wall ducts, In this case we are again able

to compare against simple hand calculations. Finally, we have generated

results for a uniform soft wall segment between two infinite hardwalled

ducts. These results have been compared against similar results generated by

another investigation.

In this section we will discuss our computations to date in the form of
a series of comparisions as noted abecve. The most extensive results so far
obtained are for the simplest case in which the no-flow basis functions are
used. Since the use of flow mode basis functions is a recent development,
only a less extensive series of results is available. In particular, as we
will discuss later, the use of both positive and negative propagating modes
has lead to a series of new computational problems not encountered previously.
As a consequence our major effort in this case has been directed toward isolating

the problems and taking corrective measures.

A. COMPUTATIONAL COMPARISONS USING NO-FLOW BASIS FUNCTIONS AND POSITIVE RUNNING
FLOW BASIS FUNCTIONS

As we have indicated, the use of no-flow (NF) basis functions or positive
running flow (PF) basis functions represents a large savings in computational
complexity and cost in comparison to the use of the complete set of positive
and negative running flow (PNF) basis functions. Numerical experimentation
has been carried out to determine if the NF and PF basis functions provide

satisfactory resultes.

The NF basis functions are certainly the simplest to use since the
associated eigenvalues follow from a simple eigenvalue equation and it seems
fairly certain that the functions form a complete set, each member of the set
being orthogonal to the others. The completeness is ensential for the Galerkin
approach and the orthogonality is an advantage computationally since the
coupling between medes in minimized. One form of our computational scheme'uses
the NF modes. As a step toward using PNF basis functions we have developed
a form of the computer program which uses the PF basis functions. This
formulation is not much more complicated than when the NF basis functions are

used, except that the associated eigenvalue equation is more difficult to use.
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The basis functions in this case are not orthogonal and we observe more coupling
between the modes. OF particular concern is the completeness of the set of

basis functions. Since the PF basis functicns are a subset of the PNF modes,
they may not themselves be complete. At the current stage of development our
only means of ascertaining their usefulness in numerical experimentation. This

experimentation has been done in the following test cases:

(a) Convergence of results at low Mach numbers to results obtained with
the original no~flow duct program.

{b) Convergence to the straight hardwall duct case in which hand cal-
culations can be made.

(c} Convergence to the straight uniform softwalled duct case in which hand
calculations can be made.

{d) Comparison of results of several schemes for softwalled, straight
segment between two hardwalled, infinite ducts.

(e) Comparison against a one dimensicnal, low freguency approximation.
The following sub-sections describe the comparisens made to date.

{(a) Convergence to no flow case

As reported in Reference (1), the computational scheme applicable when no
mean flow is present has been highly successful and provides a convenient
base-line against which to check the results of the present program. When flow is
present the governing equations, as given by Egs. {(36), are not computationally
the same as the no flow case, even when the flow Mach number becomes simall. To
be made computationally the same a number of reductions and substitutions would
have to be made. Howvever, we have Tound that by making computations in the
flow case at low Mach numbers we have been able to duplicate the no flow results.
As an example, we have considered a linearly tapered, softwall transition section
between two uniform hardwalled ducts. We have considered a wall azdmittance of

A =0.413 + i 0.720, a taper ratio of bz/b = 1.268, a reduced fregquency

o]
kb,= 1.5, £ = 1.0 and b_ = 1.0. 1In Table 1 results are compared using the no

flow program and the fl;; program with NF and PF mndes. Using the

PF modes we wiere forced to use M = 0.05 to avoid severe numerical problems which
arise when the general equations are run at very low Mach number. This comes up
because the leading terms in the v differential equations tend to vanish.
This didn't occur using NF modes, but we feel that it is at least partly due

to the difference in precision we used on the IBM 360 for the NF modes and the
Burroughs B6718 we used for the PF modes. In addition, for expedience, we

used 80 integration steps and 3 modes in the PF case and used (00 steps and 5
modes in the NF case. Near zero Mach number the stability and accuracy of the

integration is sensitive to the number of steps. Even with this difference in

L - . 3 : . L
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Mach number we see that the results are definitely tending toward the no-flow
results, fThese results support the accuracy of the terms in the general equations
which are not flow related. They do not support a particular choice of basis

functions because at small Mach numbers the NF and PF modes are nearly the same.

(b) Convergence to the Hardwall case

The computation of the transmission in a hardwall uniform duct provides a
means to determine the accuracy of the uniform flow terms in the equations. To
this end we have considered a high Mach number, M = -0.8, a nearly hardwall,

A= 0.0001 + i 0.0001, at kb = 1.0, with b0 = bl = 1.0 and 2 = 1.0. Both NF
and PF modes were used. Table 2 is a comparison of results obtained analytically
and results cbtained from the knowledge that in a uniform duct no reflection
or spurious mode generation occurs. The diagonal transmission terms are cobtained
by noting that for right moving waves the pressure solution is given by

Sk x

x
- 7
P.= A, € % (q)
The ratio of pressures at x = £ and x = 0 1is
7T RAN = &
»nrn

For the case at hand

where

.f” = M 27 - //2)
k kb

The positive sign applies for n = 1 and the negative sien for n > 1. Using

the parameters given we obtain

ey

3.0 +¢0.0 TEAMN,, = - 0839/ + L O S5FLO

=~
)

2 722- ¢ & 4354 TRAN,,

\

- 20000 ¢ ¢ 0000/
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It is seen that these calculated results agree almost exactly with the results
obtained computationally. Once again, this test case offers no insight into
the choice of modes since in the hardwall case the NF and PF modes are the

same.

{c) Convergence to the Uniform Softwall Duct Case

Transmission in a uniform softwall duct is also easily obtained by hand
calculation and provides a convenient check case. Due to the particular for-
mulation of our program we are only able to do this for the PF basis functions.
We have considered the case M = -0.5, kb = 1.0, A = 0.720 + i 0.420,

b, = bﬁ = 1.0, 2 = 1.0. The calculated results, obtained as in subsection (b},

0
except with k defined from the computer program, are as follows:

7 .
hy = 15237 -¢ /0708 TRAN, = 0 0/7/- ¢ Q3636
/
TL- .
Ky = O6787- ¢ #5384 TRA 55 = O OOB3 - ¢ O 0067
2

We have used 3 modes in the computational scheme and in this formulation
essentially bypass the matching procedufe which becomes unnecessary.

Table 3 shows the results of the comparison and indicates complete agreement.

This check case does not verify the completeness of the PF modes simply
because correct results are obtained. The PF modes are individually exact
solutions to this problem. We are not asking them to produce a solution to a

new problem.

{d) Convergence to a Softwall, Uniform Segment Between Two Hardwall Infinite

Ducts

A somevhat more challenging problem from a computational point of view
arises when we consider a uniform softwall segment between two infinite hard-
wall ducts. The solutior in the lined segment is exactly the same as obtained
in the problem discussed in Sub-section (c). However, in this case we are

matching the solution to hardwall ducts rather than infinite softwall ducts.
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Since reflection and spurious mode generation can occur we can nbhsarve the
performance of the NF and PF modes, that is, we can cbserve if the solution

in the lined section provides enough detail to predict the more complex

acoustic field. To this end we have made two comparisons, one at low Mach number

and one at high Mach number.

In the low Mach number case we have used M = -0.1, A = 0.72 + i 0.42,
kb = 1.0, bo = bl = 10,8 = 1.0. In table 4 we have compared transmission
and reflection coefficients using NF and PF modes with results from a mode
matching scheme due to J.F. Unruh of the Boeing Co., Seattle, Washington.
Because of the differences in the implementation of the mode matching scheme,
only two reflection and transmission coefficients are directly comparable to
our results. It is noted that the results of all three methods are nearly the
same. At low Mach numbers the NF modes and the PF modes are not greatly
different {they are identical at no-flow conditions), =o it is not totally
surprising that they yield similar results. It is significant that the
results compare well with the mode matching approach, which is completely

independent.

As a second check case we have used M = -0.50, A = 0.720 + 1 0.42,
Xk = 1.0, b0 = bg = 1.0, ¢ = 7.0, We have again compared the current
program using NF and PF modes with mode matching results. 4he results of
this comparison are given in Table 5. We notice a definite degradation in
the comparison between the solution using the NF modes and the mcde
matching although the trends compare well. As we did not generate the mode
matching results we can only assume their correctness at this point,
Accepting this assumption, we feel that the degradation is due to the fact
that the NF modes are not close solutions te the problem which invelves flow,
and hence it probably requires an increased number of basis functions to
generate accurate results as compared to the no-flow case. The results
using the PF basis functions are seen to be totally off. In Subsection ({c}
we used these basis functions to generate results for exactly the same
conditions with the exception of the matching to uniform hard wall ducts
as in the present case. In Subsection (¢) we obtained very good results,
compared to exact hand calculations. Since the solution ir the"non-uniform
segment” is the same in both cases, it follows vhat the poor correlation in
the present case arises because of the matching. This indicates that the
solution in the non-uniformity is not detailed enough to account for
reflection and spuricus mode generation. The original thought that the PF

basis functions are not complete, and hence can't stand on their own as a

' "

4 _ . L
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series expansion for the softwall case,seems to be borne out.

In oxder to more fully verify the trends when the NF modes are used, we
need to develop an independent mode matching capahility. The majority of
the building blocks are available, but the press of other program development
has prevented putting it together.

(e) Comparison With a One Dimensional Formulation

(€)

Davis and Johnson' ‘have developed a one dimensional model of acoustic
transmission through a compressible flow in a nonuniform hard walled duct.

We have adapted this formulation to treat problems of the type encountered in
the present investigation. The approach is to substitute an integration of
their governing differential equation for the transfer matrix integration
scheme in the program we have developed. The matching of the nonuniform
segment to infinite uniform ducts is done in essentially the same way as
explained previously. The Davis and Johnson (DJ) formulation can be considered
a low fregquency approximation, since only at low frequencies can we be

assured of primarily plane wave propagation, as assumed in their analysis.

To generate comparisons with the general program we have considered inlet
(flow opposite to propagation) and exhaust (flow and propagation directions
coincide) cases for a duct with a cosine shaped converging tc =r. 1In the DJ
formulation the walls are hard and in the general formulation we take
A = 0.0001 + i 0.,0001. The reduced freguency is kb0 = 1.0, with b0 = 1,0,
bE = 0G.75 and 2 = 2.0. Mach nunbers at x = 0 in the range -0.5<M0<0.5 are
considered. These corresponded to Mach numbers at x = £ in the range
-0.93<M<0.93. In the general program we have made the majority of our
calculations using the NF modes but we have made runs using the PF basis
functions at selected Mach numbers. Figures 2 and 3 show the comparison of
results. The original NF results show good agreement with the DJ results
for transmission coefficients for the entire Mach number range. Reflection
coefficients show reasonable agreement in exhaust flows, but diverge from the
one dimensional results for high inlet Mach numbers. The introduction of
the PF modes has made a major improvement at high inlet Mach numbers and

agreement is good, particularly for the reflection coefficient. We notice
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some deviation in the transmission coefficient at M = -0.5, but in the
light of the approximation in the nJ method this is not considered sig-
nificant. At this point the improvement is not thought to be due to the
PP modes, which with hard walls should be the same as NF modes, but rather
because of an improved implementation of the matching procedure at the
ends of the nonuniformity. We consider this correlation to be of major

significance in supporting the validity of the MWR.
B. COMPUTATIONAL COMPARISONS USING COMPLETE FLOW BASIS FUNCTICNS

To attempt to overcome certain shortcominags in the NF and PF basis
function form of the Method of Weighted residuals, we have developed a form
of the program utilizing the PNF basis functions. As noted previously, this
form of the program is costly in terms of computer time and storage, but
must be considered potentially more accurate because the basis functions are
more nearly solutions to the problem, containing information on both positive
and negative running modes. The PNF basis functions are probably complete,

but they are not orthogonal, which creates coupling between the modes.

In developing the PNF basis function formulation we encountered numerical
eroblems which did not airse in ocur previous developments. In integrating
the set of differential equations of Egs. (37) to obtain the transfer matrix
{T], definied in Eq. (38), it was found that if the nonuniform duct segment
is long (e.g. & = bo), then elements of the transfer matrix are large enough
to make the subsequent matching operations numerically inaccurate., While
this problem can be at least partially overcome by increased precision in
the computations, it indicates a sensitivity that was not previously seen
in equivalent cases in the original no flow problem or in the NF and PF
formulations. We have circumvented the problem by considering only short
segments (e.g. £ = 0.1 bo). This means that the analysis of a long duct
will require the solution of a series of short duct segments and then a
stepped matching procedure. In this situation we have essentially developed
an acoustic finite element for a duct segment. We consider this to be an
acceptable utilization of the method. We have also found the PNF case to
be much more sensitive at low Mach numbers to the trend toward the break-

down in the form of the differential equations cau-ed by the duct mean flow
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velocity approaching zero.

A second major problem which has been noted is due to the use of both
positive and negative running flow modes. The matrices [AGnq] and [*ﬁnm]

whose elements are defined by

A/,,,,,:be%%oy

Mm-—b/s;,, &, dy

are apparently very nearly singular. We find numerically that the inverse of
the leading matrix in Eq. (36) generates very large numbers (although our
inverse scheme is known to produce an accurate inverse) which subsequently
must be operated on through matrix multiplication on the right hand side to
generate more moderately sized numbers. It is felt that this is a potential
numerical trouble spot and the implications should be more carefully assessed.
This appears to be telling us that even when the duct is soft walled and the
flow does not vanish, the PNF basis functions are nearly linearly dependent.
It may thus turn out that the right running mndes and the left running modes
are not sufficiently independent to perform well computationally. We hope

to be able to explore the implications of this observation in more detail.

At the present time we are exercising caution in maintaining a double check

on computational aspects such as the accuracy of inverses.

In order to provide an indication of the correctness of the PNF program
we have made several runs against cases which have a simple analytic solution.

These check cases are:

{a) Convergence to uniform hard wall duct results.

(b) Convergence to uniform soft wall duct ie-ults.

Table 6 shows the comparison of the hardwall duct results using PNF
modes against the exact solution. We have used M = -0.5, kb = 1.0,
b, =b, = 1.0, A = 0,000} + i 0.0001, and & = 0.10. The analytical results

0 L
are generated as in Subsection (b) of Sectien A. They vield

+

/(x, = 2.8 + ¢ 00 TRAN, = O 9O/ - ¢ O./987
# : ‘

L T 06667 ¢ 3374 TEAN, , = O.7/120- ¢ O OL7S

As shown in the table the computed and analytical results compure nearly

exactly.

I P
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Table 7 is a similar corparison using results for a uniform softwall duct.
In this case we have used M = -0.5, kb = 5.0, b_ = bz = 1.0, & = 0.720+i0.420,

0
and & = 0.10. The analytical results yield
7 .
Ky = 27343- £ 002395 TEAN ) = O.SEO8 -2 O.822F
/
by, = 6.9892- /0. 63/5 TRAR 32 = OFIFZ— £ O 60T

2

The comparison is seen to e very good.

These comparisons, though limited in scopé tend to support the implemen-
tation of the PNF version of the Method of Weighted residuals. Because of
the numerical problems that we have been forced to overcome we have not as
yet mechanized the procedure by which we build up the solution for long ducts
by mode matching the solutions for a series of shorter duct elements. This
has prevented us from making the most demanding comparison against the Davis

and Johnson low frequency, plane wave formulation.

At the present time we feel that the PNF formulation is in basically
good order. Check cases have been favorable and work is continuing toward
implementing the mode matching technique. Sufficient experience has been
gained to ohserve that the PNF form of the method of weighted residuals is
computativnally demanding and costly in terms of storage and run time. We
are still working toward the point where the relative merits of PNF can be

compared against the NF and PF implementations.
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CONCLUSIONS AND EXTEMNSIONS

The Method of Weighted Residuals in the form of a modified Galerkin method
with weighted boundary residuals has been shown to be an accurate and efficient
method for the analysis of the propagation of sound in nonuniform ducts with
no flow. The method has been extended to include problems of propagation in
ducts carrying a steady compressible mean flow. This extension must still
be considered in the development stage in which extensive numerical experimen-
tation is being carried out to optimize the implementation. Three different
schemes are currently operational. These schemes differ in the type of basis
functions used, the simplest implementation using modes from uniform ducts
with no flow (NF), the other two using positive running nodes,including the

flow «ffect {PF) and positive and negative running flow modes (PNF).

The greatest amount of experience has been obtained with the NF basis
functions. We Lave found that these modes yield good results over a wide
Mach number range when compared against a simpler theory for low frequency
propagation through a one dimensionrml flow in a hard wall, variagble area duct.
The method, as implemented,appears to break down at high inlet Mach numbers
for calculation of the reflection coefficient. Results for transmission
coefficient hold up through the entire subsonic range. Other check cases
invelving convergence to certain limiting cases of Lined ducts have been
generally good at low Mach numbers with degradation as Mach number increases
(based on the presumption of accurate baseline results from other sources).
This is not unexpected since for ducts with soft walls the NF modes become
increasingly poor approximations to actual solutions as the kach number inecreases,
and we expect to require a large number of basis functions to sythesize a

solution.

The ‘results with the PF basis functions have been mixed. In the hard wall,
variable area duct our PF implementation gives good results over the entire
Mach number range. This represents an improvement over the NF implementation.
Since for hard walls the NF and PF modes ought to coincide, we currently
feel that it is the implementation of the NF modes which the PF program has
improved on. The improvement is most likely in the ..atching procedure.

In soft wall ducts the PF modes are apparently not adequate. They fail in 'the
limiting problem of a straight, lined section between two infinite hardwall
ducts. It is felt that lack of compléteness may be the problem. These modes
are an exact solution in the lined segment. However, the transfer matrix
generated when they are used is not detailed enough to account for reflected

and spurious modeswhich arise due to the impedance discontinuity. Numerical
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experimentation with PF modes is still in progress.

The development of a computational scheme employing PNF irodes introduces
new computational problems not previously encountered. The problems have been
identified and arxe due to the rapid growth in dimensionality caused by the
doubling of the number of modes and the coupling between modes due to the lack
of orthogonality of the modes. At the present time the technigque for overcoming
these difficulties is to consider only short duct segments, on the the order of
1/10 of the duct height. This restriction does not render the MWR impractical,
since longer nonuniformites can be treated by breaking the duct down into
short sub-sections which can then be put together using mode matching tech-
niques. When used in this context each sub-section can be viewed as an acoustic
finite olement. Because of the extensive development and analysis required in
tha PNF case we have only a limited computational experience. The comparison
of results using PNF modes with certain limiting cases have been favorable.
However, as noted elsewhere, computational costs rise rapidly because of the
increased dimensionality. At the present time this implementation is still

being developed and will be continued.

We have accumulated sufficient experience with the three appreaches to develop
a strong preference for the use of the NF basis functions. This preference
is based on the absence of severe numerical difficulties, the relative sim-
plicity of the implementation and the relative expense when compared to the
other two possibilities. It is believed that the problem noted in comparing
to the Davis-Johnson one dimensional results can be eliminated so that the NF
program will work as well as the PF program for this type of problem. Howevex,
.we still recognize certain inadequacies. The most notable one is the apparent
trend away from cnrrelation with mode matching results as Mach number increases
in the test case of a scft wall segment between infinite hard wall ducts.
Ouy future research will Le directed toward an improved form of the NF program.
This will include a detailed analysis of the computations to identify problem
areas. We currently favour a modification of the basis functions which may
lead to an improvement in performance. It has been observed that the principal
effect of flow on the basis functions is to change the lower modes, but leave
the higher modes fairly close to the no-flow modes. It seems possible that a
set of basis functions using the lowest two or three PNF modes and the highery
NF medes will improve the potential accuracy of the NF method. Of course we
can't make an assessment of the completeness of this choice of basis functions

without experimentation.

As part of our future development we plan to write a simple mode matching
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program to generate results as a baseline for comparison in our straight duct
convergence studies. We have previously used results generated by other

investigators, but we would prefer to develop independent results.

Finally, in both the no flow and flow programs we have niticed a trend
toward numerical difficulties if the basis functions include modes deep into
cut-off. This problem is most severe when we are dealing with low reduced
frequencies, since in thisg case it may require a number of cut-off modes to
provide enough resolution to obtain a converged solution by the Galerkin method.
We feel that it is the exponential character of the cut-off solutions that
creates the difficulty. To alleviate this we currently have under development
a modification of the computational scheme which essentially explicitly isolates
this exponential behaviour so that the transfer matrix is not required to
include it. This modification is nearly complete and if successful will be

reported in the open literature.
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Table 1

CONVERGENCE OF FLOW CASE TO NO FLOW CASE

1;:_::0-’-- 1.5 Linear Taper b, /b, = 1.268 A= 0.413 + i 0.72
| g = 1.0 by = 1.0
M;0.0l - NF Modes - M=0.05 - PF Modes No Flow
REFLECTION CORFFICIENTS REFLECTION COEFFICLENTS REFLECTEDN COEFFICIENTS
1 2 1 2 1 2
1 -0.0776+10.2539 0.1431+#i0.0004 1 -0.0742+i0.2593 0.1504410.0036 1 ~0.0785+50.2524  0.1420-i0,0008
2 0.0040+i0.1522 0.0340-10.0563 2 0.0175+i0.1476 0.0303~i0.0584 2 0.0009+0,1544 0.0343-10, 0563
TRANSMISSION COEFFICIENTS TRANSMISSION COEFFICIENTS TRANSMISSION COEFFICTENTS
1 2 1 2 1 2
1 ~0.1628~10.6314 0.0965-10.0073 1 -0.1148-10.6711  0.0978+i0.0069 1 -0.1741-10.6197  0.0960-i0.011l

2_.. 0.1586+410.1549 0.1165-10.0326 2 0.1372+10.2082 G.1221-10.0309 2 0,1644+i0.1910 0.1151-10.0232



“ =-0.8 = NF Modes

RFLECTION COEFFICTENTS
1 2

0.0000+10.0000 0.0000-10.0000
.=0.0003+10.0002 0.0001-i0.0001

RANSMISSION COEFFICIENTS

ii~0.8357+i0.5446 -0.0003+10.0000
-0.0001-i0.0004 -0.0000+10.0001

Table 2

CONVERGENCE TO STRAIGHT HARD WALL DUCT

kb = 1.0 bE/bO = 1.0 A = 0,0001+i0.0001, b

M=-0.8 - PF Modes

REFLECTICN CCEFFICIENTS
1 2

1 0.0000+i0.0000 0.0000+1i0,0000
2 0.0000+i0C.0000 0.0000+i0. 0000

TRANSMISSION COEFFICIENTS

1 -0.8357+10.5445 0.0000+10,0000

2 0.00004+10.0000 0.0000+10. 0000

=1,0 &= 2.0

1=-0.8 - Calculated

REFLECTION COEFFICIENTS
1 2

1 0.0000+i0Q.0000 0.0000+10.7"70
2 0.0000+i0.0000 0.0000+10.0000

TRANSMISSION COEFFICIENTS

1 .0.8391+i0.5440 0.0000+i0.0000
2 0.0000+i0.0000 -0.0000+i0.0000



Table 3
COMVERGENCE TO UNIFORM STRAIGHT DUCT

kb = 1.0 by/b, = 1.0 2 = 0.72+i0.42 by =10 & =1.0

© M==0.50 PF Modes ) S . M=-0.50 - Calculated
RﬁEﬁECTIoN COEFFICIENTS g B , ‘ REFLECTION COEFFICIENTS
2 - ) | PR 2
1 0.0+10.0  0.0+i0.0 | 1 0.0+i0.0  0.0+i0.0
2 0i0#40.0.  0.04i0.0 2 0.0-10.0 . 0.0+i0.0
TRANSMISSION'COEFFchENTs . TRANSMISSION COEFFICIENTS
T 2 | : 1 : 2
1 0.0171-10,3635 = - ©.0003-i0.000L o o 1 0.0171-i0.3636 0.0+30.0

2 0.0000+i0.0000 0.0081-30.0089 R 2 0.0+i0.0 0.0083-30.0087



‘Table 4

' STRATGHT SOFT WALL SEGMENT BETWEEN HARDWALL INFINITE DUCTS

A = 0.72+i0.42 b =

ko =1.0 B/, 0

M=-0.1 ~ NF Modes . M=-0.1 - BF Modes

" REFLECTION COEFFICIENTS REFLECTION COEFFICIENTS
T | 1

1 -0.1967+10.167

2 -0.0287+i0.0806

-1 -0.195 +i0,167
' 2 ~0.030+40.080

" TRANSMISSION COEFFICIENTS TRANSMISSION COEFFICIENTS
T = | 1

1 0.1873-i0.5882
2 0.05712+10.0433

1 0.187-i0.588
"2 0.057+i0.042

2 = 1.0

M=-0.1 - Mode Matching

REFLECTION CDEFFICIENTS
1

1 -0.1922 +i0.170

2 ~0.028 +i0.079

TRANSMISSION COEFFICIENTS
1

1 0.190-i0.587
2 0.059+43i0.0421



Table 5

STRATGHT SOFTWALL SEGMENT BETWEEN HARDWALL INFINITE DUCTS

Kb = 1.0 b/by=1.0 A=0.72+i0.42 by = 1.0 % = 1.0
¥==0.5 - NP Modes - | | M=-0.5 PF Modes ©° ¥=-0.5 - Mode Matching
REFLECTION COEFFICIENTS REFLECTION *.OEFFICIENTS 3 REFLECTION COEFFICIENTS
1 E ~ 1 | - - 1
1 ~0.1074+i0.2030 1 - 0.0798+i0.3583 1 =0.077+10.1665
2 ~0.0631+i0.2742 : 2 0.0104¥i0.1480 2 -0.091+i0.2126
TRANSMISSIQN COEFFICIENTS - TRANSMISSION COREFFICIENTS | TRANSMISSION COEFFICIENTS
1 _ 1 1
1 '0.0220~i0.3353 - 1 - 0.,0083-i0.1211 1 -0.0103-10.3646

2 '0.0696-10.0751 | 2 0.1590-10.2104 2. 0.057-10.084



Table 6
CONVERGENCE TO UNIFORM HARD WALL DUCT

kb = 1.0 bE/bO = 1.0 A = 0,0001+i0.0001 b0 =1l.0 & =0.1

M=-0.5 -~ PNF Modes M=-0.5 =~ Calculated
REFLECTION COEFFICIENTS- REFLECTION COEFFICIENTS
1 2 1 2
't 0.0002+10.0000 0.0000-+i.0.0000 1 0.0+i0.0 0.0+i0.0
 2 0.0000+10.0000 0.0000+10.0000 2 0.0+i0.0 0.0+i0.0
- TRANSMISSION COEFFICIENTS TRANSMISSION COEFFICIENTS
1 2 1 2
;_1 0.9798-10.19E8 0.0000+10.0000 1 0.9801-i0,1987 0.0+i0.0

‘2 0.0000+i0.0000 0.7120~10.04755 2 0.0+i0.0 0.7120-10.04753



Table 7
CONVERGENCE TO STRAIGHT SOFT WALL DUCT

kb = 5.0 bg/b0 = 1.0 A =0,720+i0.420 b, = 1.0 £ = 0,10

0

M=-0.5 - PNF Modes M=-0.5 - Calculated
REFLECTION COEFFICIENTS REFLECTION COEFFICIENTY

1l 2 . 1 2
1 0.0000+10.0000 0.0002+10.0000 1 0.0+i0.0 0.0+10.0
2 0.0000+1i0.0000 0.0000-10.0003 2 0.0+i0.0 0.0+10.0
TRANSMISSION COEFFICIENTS TRANSMISSION COEFFICIENTS

1 2 1 2
1 0.5608-10.8243 0.0002+10.0002 1 0.5608-i0.8243 0.0+10.0

2 0.0000+i0.0000 0.7144-10.6004 2 0.0+i0.0 0.7142-i0.8003
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; A METHOD OF WEIGHTED RESIDUALS FOR THE
i INVESTIGATION OF SOUND TRANSMISSION IN NON-UNIFORM
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The 1ransmission of sound in 2 non-uniform two dimensional duct without flow is
investigated by a method of weighted residuals which Ieads to a set of coupled “generalized
telegraphists® equations™. Results for several duct configurations are compared with those
from, tespectively, a variational method, a stepped duct approximation, and an eigen-
function expansion method based on lincarly tapered duct segments.

; 1. INTRODUCTION

Relatively rigorous methods have been developed for the analysis and design of acoustically
lined and unlined ducts of uniform rectangular, circular, and annular cross section, with
and without flow, and including the boundary layer effect in the flow case. The progress in
this area can be scen by referting to a few papers of the extensive litcrature which exists (sce,
for example, references [1]-[5]). The current capability in the mathematical modeling of
duct propagation is limited primarily by the assumption of a uniform, infinite duct.

There have been a few recent studies directed toward the non-uniform duct problem. in
the casc of ducts without flow a generally useful approach is the one developed by Zorumski
¢ and Clark {6] for ducts of uniform area with lining variations and subsequently implemented
by Alfredson [7] for the study of hard-walled ducts with varying cross section. This methed
consists of representing the duct by a series of stepped ducts of uniform cross-section and
systematically accounting for the refiection and transmission process which occurs at the
intersection of the stepped elements. This procedure appears to be very useful provided it is
used with due caution in the segmenting process. In the case of ducts with uniform arca but
varying lining properties, it has been shown by Bahar [8). for the case of electromagnctic
* waveguides, to converge 10 the method developed in the present paper when the elemental
! segments become vanishingly short, The principal difficulty with the sicpped duct approach
. as originally conceived is the high dimensionality of the numerical problem which results.
* A somewhat different formulation of the problem by the third author of the present paper
has reduced this difficulty while retaining the fiexibility of the methed.

Apnother method of general wtility for ducts without flow is the variational approach of
Beckemeyer and Eversman {9]. In this technique the acoustic problem is represenicd by a
variationa} principle and a Ritz minimization is employed to determine the cocflicients in a
trial solution. The trial solution is in terms of basis functions which do not necessarily satisfy
the boundary conditions (the boundary conditions are part of the functionalinthe variational
formulation) and do not have to be generated for cach duct geometry. The stepped duct
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approach requires a set of eigenfunctions and eigenvalues in each stepped section and in the
case of Tined ducts this cun be a problemin terms of computational requirements (the method
introduced in the present paper must have eigenvalues and eigenfunctions at stations along

the duct, but, as will be described, a rapid numerical scheme has heen devised for their

_ computation), The variational appronch suffers a dimensionality problem in that complicated

acoustic fields (both axial and transverse) require a large number of basis functions in the
tefal solution, :

Other tecent approaches to the problem are more approximate in nature by virtue of
sestricting geomelry or frequency range alfowed. Nayfeh and his co-workers have published
several studies of propapation in non-uniform ducts with and without flow. The paper by
Nayfeh, Telionis and Lekoudis {10] is representative. They restrict themselves to ducts with
slowly varying cross-scction, lining properties and flow properties and employ a perturbation
scheme. To within the level of accuracy which they retain, they do not predict the generation,
reflection, and transmission of modes other than the one incident on the non-uniformity.
It appears that a higher level of approximation is required to predict this.

Karamcheti and his co-workers have also made contributions in this area. King and

* Karamcheti [11] studied plane waves in ducts with one dimensional flow by a method of
. characteristics and Huerre and Karamcheti [12] used a short wave approximation for the
. same type of problem. Similar problems were studied carlier by Powell [13] and Eisenberg
-~ and Kao {14].

Tam [15] scems to have published the first puper dealing with 2 multi-modalapproach.to the
problem of non-uniform ducis with flow. His technique is a perturbation scheme based on
the assumption of slowly varying cross-sectional area. The first order approximate solution
is obtaired by Fouricr transformation.

A recent paper by Cumimings [16] studies the nove! problem of the acoustics of a wine
bottle. The wine bottle is a non-uniform duct without How and the acoustic field is approxi-
mated by a Runge-Kutta integration scheme based on the Webster Horn Equation, This
method allows only a plane wave mode of propagation and hence is limited to the lower
frequency ranges. There have been many studies of the horn cquation since Rayleigh first

' introduced it and it is a favorite topic in texts on aconstics.

In the present research program we are interested in the multi-modal propagation of sound

. in non-uniform ducts of fairly general shape. The final goal of the program is the study of
_ propagation in non-umform ducts with flow, so that we will be interested in methods for the

no flow case which appear to be extendable to the case with flow. Of the two generally applic-
able 1echniques mentioned previously, the variational method does not scem to be readily
cxtendable 1o the case with flow, The stepped duct approximation might have some applica-
tion, although it is certainly guestionable whether the non-uniform {flow field can be repre-

- sented in sufficient detail in a series of stepped uniform segments. We are thus led to look for

-t

another method with promise for the flow case. In this paper we will iniroduce the method
and-asscss its utility in the case without flow, as there are equivalent results available against
which & direct comparison can be made, In the course of the development and application
of the method it has become apparent that the method of weighted residuals is an important
alternate method for the duct with no flow, and indeed, may well be superior 10 the other
two methods of gencral utility,

The method of weighted residuals (MWR) employed here actually was first employed in
connection with electromagnctic waveguide problems by Schelkunoff {17, 18} The ficld

" equations for these problems are identical to the classical acoustic equations in certain cases.

Schelkunoff's work followed work by Stevenson [19, 20] which used MSR. but Ied to 2 some-
what differént formulation which does not seem to have been widely uscd. Stevenson appears

* . 1o Le the first to suggest the appiication of methods of this type to acoustic horn problems,
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Bahar and his co-workers studying ionospheric propagation of microwaves as a terrestrial

- waveguide problem have made extensive use of MWR (see, for example, reference {8]) and
- Reiter {21] has formalized the approach.

1n this paper we have used MWR to approach the problem of multi-modal propagation
in non-uniform ducts without flow. We deal with a two dimensional duct in which both area
variations and lining variations are permitted, The results obtained by using MWR arc com-
pared with those, respectively, from a stepped duct theory, the variational approach, and a
segmented duct theory in which the duct segments are radial (sectoral). In reviewing the
literature it does not appear that results for lined ducts of variable cross-section in the multi-
modal case, with faitly general area variations permitted, have previously been presented.

2, METHOD

In this analysis two dimensional ducts of infinite length are considered. The extension to
circular, annular, or rectangular ducts is straightforward, but of course more demanding
computationally. The extension to include finite duct terminations is easily included in the
present formulation providad refiection and transmission characteristics of the termination
are available,

! iore ol ’
: torurulorm doct ; |
Zp consigat
i Zyconstont 1 V
| 15,00 5,
i comton
; Srconstan 2 3 X
!
i Uniform duct secton !
1

¥
¥

Figure 1. Duct configuration.

{ Unnlotm doct saction

Figure 1 shows the type of configuration under consideration, in which twe semi-infinite
uniform duct sections of wall impedance z, and z, and arcas 5, and 5, arc joined by a transition

- section of length 7 of variable area 5,(x} and variable impedance z,(x}, where x is the axial
, co-ordinate. In this analysis the area variation will be restricted to be continuous, but the
- lining variation can bs discontinuous at the ends of the non-uniformity.

In terms of dimensional acoustic pressure, p*, particle velocity, V*, and density, p®, the
agoustic equations for complex harmoric mation of the form ¢'! in time are
iwp® + ppdivV® = 0,
ipo V* = —grad p*,
pr=cipt,

where the ambient state is given by po, Po, Vo = 0 ang ¢ = {ypo/po)** is the ambient speed of
sound. By introducing the non-dimensional variables p = p®/poc®, pw= p*[pe, V = V*/c and

- eliminating p one can write

ikp+ divVes 0 (6))
ikV = —gradp . ' %

. where k= wfe = 2nfA and £ is the free space wave number.

T
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Figure 2. Duct co-ordinate system.

In order to specify a boundary condition at the duct walls, a co-ordinate system as shown in
Figure 2 is introduced. This figure shows the manner in which the duct height profile and
slope of the height profile are specified as well as the designation of the local outward unit
normal at the duct wall, . The duct wall boundary condition employed is characteristic of 8
normally reacting lining in the presence of a harmonic pressure variation: namely,

Pr=2V? = fV¥ey, . - {3)

where ¥# is the component of the acoustic particle velocity in the direction of the ontward
normal. 2 is the wall impedance which may be a function of axialposition. In non-dimensional
variables equation (3) becomes

z
pr—V-r,

Pot
or
Vevm= Ap, 0]

at the duct wall, where A = p, ¢/ is the acoustic admittance ratio of the lining. In the case of
a uniform duct of two dimensional, circular, annular, or rectangular cross section equations
(1), {2) and (4) can be combincd 1o produce the classical problem of propagation in a lined
duct whichhas beenthoroughly studied. In these problems powerfultechniques can be brought
to bear since a co-ordinate geometry can be chosen to make both the ficld equations and the

. boundary conditions variables separable. For general non-uniform ducts this is not possible

and an alternate approach must be used.

. Rgpd wol} XoL

» X

Figure 3. Duct goometry for example problems.

To demonstrate the method of weighted residuals (see Finlayson's book [22] for a com-

* plete description of the general method), we consider a two dimensional duct as shown in

Figure 3 in which the wal] 21 y = 0 is hard and the wall at y = b{x) is lincd with a material of

admintance A(x). This representation is also valid for a duct symmetric about the x-axis

with the acoustic propagation also symmetric with this sxis. The governing equations are

B » -
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! equations (1) and (2) with the boundary condition obtained by expanding cquation (3):
o=0, y=0, (5

y=bx), (6)

vcos8 — usinf w= Ap,

; where z and v are the non-dimensional axial and transverse velocity components and tan8 =
dbidx is the wall slope.
"We seck solutions to this problem in the form of a finite serics of specified basis functions:

P .5. Px}cosk, y, ™.
= 3 wlcors,y, )
o= 3 wl)sinny, ©)

' where the 5, are defined as ths infinite sequence of eigenvalues of
| xbtan xb = ikbA.

The basis functions are recognized as the eigenfunctions for propagation in a uniform duct
which has the same height and admittance as the non-uniform duct has locally. This means
that the cigenvalues «, are functions of x and that the basis functions change with axial
position. Note that 1hese basis functions do not individually satisfy the boundary condition
of equation (6); however MWR will force them to do so collectively. The choice of basis
functions may secm 10 be unnecessarily complicated since we witl be required 1o provide a
new set of cigenvalues and eigenfunctions at cach axial position; however, we will show that
" this can be done quickly and casily, Any disadvantage is outweighed by the more rapid
convergence of this type of technique when the basis functions are chosen to represent as
nearly asis practical the actual solution.

If the trial solutions, equations (7)-(9), are substituted in the differential equations and
boundary conditions, they do not in general satisfy them, but instead leave an error, or
residual. Thus, in terms of these trial solutions one can write

Bu %0

Ry=ikpy -+ o 3;'

i ‘ . 9px

.! -R;-U‘Hn"‘"""‘

ox

Ry = ikoy + =—,
3 (.4 ay

i 3pw
i
! &‘(”Nma—"nﬁne"‘dpﬂ,u-

: Since a continuous function must be zero if it is orthogonal to every member of a complete
set we will force these residuals to be orthogonal to every member of the complete set formed
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" by the basis functions themselves at every station x along the duct axis:

- [
I Ryx.y)eosx,ydy=0, o)
[+]
>
IR;(x,y) cosx, pdy =0, (n
o
» . d
I Rylx y)sink,ydy =0, ‘ (12),
- o - ..
Ry(x,bycosx,bw=0, _ (i3)

i The operations indicated by equations (10)-(13) yield, for £ =1, 2,... N,

. » ’au,; ‘aUy
lkancosx,ydy-i-J.Tcosx,ydy-i-J‘va—J;osx.ydy-O. (14)
-] < [+] Y
zkfuﬁcosx.ydy-i- J.——cosx.ydyno ' {15}
» ]
a .
ik fu,,sin K, pdy + —ef-sin K, ydy=0, (16}
i ay
(DycosD = uysind — Apyjcosk, b= 0. {n

By using Leibnitz's rule for differentiation of integrals containing a parameter the partial
derivatives of uy and py with respect to x in equations (14)and (15)can be replaced by ordinary
, derivatives. For example:

» »
db
K, ypdy —:—;juﬁwsx,ydy - f u,.ga; [cosx, yidy — u,,-(x.b}cosx.ba;
[

‘The partial derivatives with respect to y can be eliminated by integration by parts:

» b .
a2 .
f%cos K, ydy =z, b)cosk, b+ K, f eysink, ydy,
Ad [
0

»
3px H .
J--SE': sink, pdy = p{x. b)sink, b~ k, !p,., cos X, 3 dy. . (18)
Y
]

Equation (16) can be used to climinate v, from cquauon {14) and the boundary residunl,

. equation {17, is used to sampl:fy the boundary terms in the resulting equation. In this way, .

- L
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' equations {14) through (17) can be writien in terms of two equations:

¥ &
df A% f
d-;a[u,;cosx.ydyn-zk[l —-(’—;‘_—) ]fp,cosx.ydy-f-_[nx-;;(cosx.y)dy—

ikbd | plx, B)cosw, b
cosf kb

. i -i[x,bmnx.b-———— pulzb)coskab (9)
|

¥
d o f fo2 , db
E!pﬂcosx.ydy--&!u"cosx,ydy +;!P" sz(oosx.y)dy—}-p,.{x,o}cosx,ba. (20)

Y The trial solutions for py and uy are substituted into cquations (159) and (20). In the case
! of the duct without flow the eigenfunctions are orthogonal so that

»
l feosx,ycosxaydy = Nobum,
0

! where 5, =0, & ¥ m,and §,,= 1.
|  Equations (19) and (20) become

\ dua ks S U S vz
. & k pa= Z Ulitta— 2 Unpu @
: EE‘!-.—iku - i P P n=12. ..N, (22}

dx "o M
i whese

Haxy
1 dN, I dr,
U Nt W ysink,peosxaydy,

|kbA cosK,beosk, b

cos NEb ‘

ilé cwanx,b

tan@
PL, = UL, ———cosx, beosk, b,
X,

, Equations'(ZI) and (22) can be represented in matrix form by

/f % AL [ [1- )] ] ZALR P
------ - ; — @3
2l | e} 1Pz b

. Itis noted that if the duct is uniform so that dxfdx = 0 and dbfdx = tan{ = 0 then equations
{21) and (22) reduce 10 equations for the axial field in a uniform duct corresponding to cach
{ mode of propagation. In this case they are a form of the telegraphists’ equations. When the

e -
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duct is non-uniform, coupling terms ure introduced and the resulting cquations are “general-
ired telegeaphists” equations™, a term introduced by Schelkunoff [17].

Fquations (21) and (22), or their equivalent matrix form in equation (23), will dcfine the
acoustic field in the non-uniformity providing one can specify initial and or final conditions
on the 1, and p, at the start of the non-uniformity at x = 0 and the end x = I, This can be done
by assuming that the sound is incident from the left, or x < 0, and the acoustic field forx < 0 -

! consists of incident and reflected waves. For x > 4, in this analysis, we assume the sound
, propagates to the right in a semi-infinite uniform duct, and hence consists only of waves
. propagating away from the non-uniformity. In gencral, one can write, for x < 0,

i Uz, y) = Z(%) lag ¢~ — a7 eib] cos R, 3,
i pxy) =3 fat e 4 a5 '] cos R, ¥,

" where a3, a5 are cocfficients of the incident and reflected waves, respectively. &, are the eigen-
values for propagation in the uniform duct for x < 0, and

k. A A

[P——

where the plus sign is chosen if £,/k is real and if £, fk is complex the sign is chosen to make the ~
imaginary part negative. One can write similar expressions for the uniform duct, x > It

-

tr{x, ) = Z(k—k') [B2 e~B15% — BT e cos kD 3,

plx,y) = 2 [b%e~13= 4. b; ¢!y cos k2 ¥,

where the starred quantities apply for x >/, At x =0 one can match particle velocity and”™
pressore; -

[y

Z(f’-:-){a: —ajlcosk, pm 3 U, COSK, Y,

Z [a} +ar]cos R,y = gp,cosx,y.

If the same number of uniform duct eigenfunctions as there arc basis functions in the non-
unifermity is used, then the orthogonality of the eigenfunctions can be used to obtain a matrix
zelation between the a3 and ax and the u, and p, at x = 0, This is

E"E al
T)omi-| 7)o |58

b pitas sammann reae
.

f

sonssvarfanonnseen

£
e
[
—
»
e
3

' ‘ (24a)

LS o

: e )
| | {b-]-mm tn(A(O)zL_].
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" where, at x =0

By
ﬂ“-b[ CO5 K, Y COS Ky Ay = NS,

by
E..uJ cosx, ycos R, ydy.

! An exactly analogous relationship can be obtained at x ==1:

Bud |11 (E)ﬁ:.§~(5)ﬁ:. i |]a |
i k t & H
] - o )
Bon | (D] | B2} B ten | | 52

" where, at x =},

- "
Pem™ J Cos X, yCosK, ydy = N, 5., -

5
fisl =J cOs K, ycos k2 ydy,

T LY

G e b,

:  Hence, it is possible to obtain relations between the wave amplitudes in the uniform ducts
. and the pressures and particle velocities in the non-uniform section in the form

u{0) a*
I [ p(m] - [4(0}] (a} 25)
‘ 1) 8*
! {pm (40 [b} 26)

! By using an integration scheme such as a fourth order Runge-Kutta, equation (23) can
+ be inteprated from x = 0 to x « / to obtain a transfer matrix relating u,, p, at x = Ito u, and
; Padt 2=0:

X )

! ull) u{l)
[pm} =7 [p@}'

[ By using equations {25) and (26), the wave amplitudes for x >/ can be related to those fof
| x<0:

27

{
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bt a*
= [THA .
In the present analysis we specify that the uniform duct for x > [ is semi-infinite so that no
teflected waves exist: i.e., bs = 0. This enables one to write

¢ TA,;-TA.; a*
0 TII;;'TA;; 1

From equation (29) one can compute veflected and transmitted amplitudes in terms of
incident amplitudes:

" or

(28)

(29)

(a7} = [TA 2] [TAn ){a*) L R
5%} m ([TA ] — [TALNT A H{TA, e}

“Thus one can define matrices of reflection coefficients and transmission cosfficientss

[REF) = —[TA3] {TAy ), (30

[TRANY = [TAyy] ~ [TAL)[TAL] T Ax] (€Y

‘The physical significance of the clements of these matrices is as follows:

REF,; = Amplitude of reflected mode ¢ due to incident mode j with amplituds
140 + i0-0,
TRAN,; = Amplitudc of transmitted mode 7 due to incident mode J with amplitude

1-0 +10-0.

Tn the formutation in the preceding equations we have referenced both reffected and trans-
mitted waves with respect to x = 0. Because of large exponential factors which can eccur for
cut-off modes in the e, terms in equation {24), it appears to be more appropriate to reference
the transmission cocflicicnts to x = /. In this case, one can rewritc equation {24):

5 i (e
fd || ("")ﬂ..- (,;) gl |e
....5.-.-.- ..... ] R e e & ' o
Bum | | P B b ||e
! : L

where

-l

All of the 5icps leading to equations (30) and (31) can be repeated ond a new set of reflection
cocllicients and transmission coefficients can be derived. The reflection coefficients wilf not

1 ' xbtan kb = ikbA.

-
N »
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change but the transmission coefficients referenced to x =7 will be related to those at x =0
by
. {TRAN), o = [e5HTRAN]. ...
Onee the reflection coefficients are obtained, one can write the initial values for #2,(x) and
Pax):

{u{O) @

(11, .
p(Ol] = {d (W][mgp;] {a*}.

If the pressures and particle velocities in the non-uniformity are required, equation {23} can
be integrated with equation {32) being used as initial conditions. In our computations we
have stopped with the reficction and transmission coefficients for the non-uniformity,
principally due to the extra computational time implicd to obtain the complete acoustic field.

One can also casily account for termination conditions for x > / other than the semi-
infinite dust employed 1n this analysis. If a relationship is known between b3 and &5 at the
end of a finite uniform deat, ie.,

{67} = [R)(2*}

" where [R] is the termination reflection matrix, then equation (29) can be written as

U] ey o [T i Tz | [a?]
[IRI Sl o mn]{ }
Then
{6*) = (TAy](a*} + [Fssl{a™h )
[R)b*) = [Tz ){a*) + [TAz1(a")
and

{o7} = —{R)[TA 3] ~ [TAz) ((RUTA,} = (T4 Dla*h
{8*) = [[7A,13] — [TALNIRNTA 2] ~ [TA2 D (RIT A1) = [TAzDla*h

3. IMPLEMENTATION OF THE METHOD

The most serious potential disadvantage of this form of MWR is the nced to compute the
eigenvalues which appear in the basis fun«tions and hence in the cocfiicients in equation (23).
As noted carlier the eigeavalues, &, are roots of

(3

‘The usual technique for obtaining the cigenvalucs is a Newton-Raphson iteration based on
suitable initial guesses. We cxpect to require 5 to 10 basis functions to obtain solutions
sufficiently converged for our purposes, and hence we will require 5 1o 10 cigrnvalues for

* cach point required in the integration scheme used to generate the tran<fe; matrix. The
i

jteration scheme is likely to be too costly computationally to be of practical value. We have
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circumvenited the problem by replucing equation (33) by the differential equation which it
satisfies:

(34)

3 1 1
(iii;(sz) . 1+ cos(hb) bA( db dd)

2xb + sin{2xb) b dx Adx

We start with values of kb at x = 0, for ench basis function required, and generate the required
values of xb at each integration step of equation (23) using a Runge-Kutta integration of
cquation (34). Our scheme is configured to start with no initial guess other than hard-wall
cigenvalues for each required basis function at x = 0. This approach has proven to be far more
rapid than iteration and has shown good accuracy as can be checked by occasionally evaluat-
ing Equation (32) and noting the size of the residuals which develop.

The cocHicients which appear in equation {23) have prcv:ously been given. The spccnﬁc.

terms in these cocfficients are given below:

N b2t sin2e,b
"2 2c,.b ' .
N, 1db . sindk,b~2x,b00s26,bdk,b T
dx  bdx " (26,57 dx *
> . h
sin{k, — k)& sin(x, + x)b
a{ysm' X, PCOSK, ydy = [ (%, — K (R, -+ 1) ]
_b blcos(u,—x)b  cos{x,+ Ka)b ndm
(K,, - “n) (’\'n + K-)
J" sinsc. yoosk.vd bsin2x,b cos2i, b I
o)’ 1 !y ly y 2 (%b); 2K‘b ’ = )
. thbA]| cosk, beosk, b 1 cosx, beosx, b
'["‘bm kb= cosﬂ] N.ib (coso ') N. A

These expressions, together with cquation {33) arc used to gencrate UZ., UT., and PL,..

4, RESULTS

Very few results have been published far the multi-modat transmission of sound in non-
uniform ducts, The work of Zorumski and Clark {6], a sequel by Lansing and Zorumski [23],
and the work of Alfredson {7)] are the most nearly equivalent to the present method. They
used the stepped duct approach for segmented linings or area changes in ducts with an open
¢nd. Since we have concentrated on the non-uniformity and have chosen not to represent
terminations, we have no common basis for comparison. The approximate theories mentioned
peeviously are considered too limited in scope to make comparison feasible when the labor
and expense of doing s is considered. The only extensive results which we have been able to
use conveniently are those of Beckemeyer and Eversman {9] who developed a variational
approach and compared {t with stepped duct approximations and an approximation in which
the duct was segmented into lincarly tapered sections. Of course, that study was closely related
to the present one and the thrust of the entire research program has been to develop a basis
of comparison.

Divieghng Soow Foremcoen coetioent
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As a first example we consider linearly tapered hard-wall transition sections joining two
uniform ducts. For these cases a 15° taper transition is vsed. The first example is a diverging
taper from a duct of height by to one of height (I -+ tan 15%) by, the length of the non-uniformity
being cqual to its initial heipht. The second cxample is a converging taper which is exactly the
reverse of the diverging one. We have compared these resuits withthose generatedin reference
[9) and reproduced here as Figures 4-7. In the diverging case kb, values of 1-0, 20, 25, 3-0
and 3-5 are compared and in the converging case k&, values of 1-0, 1-5, 20, 2-5, 3-0 arc used.
At kb=2-5 in the small duct the sccond mode is just cutting on in the large duct while at
kb = 3-5inthe small duct it is cut on throughout. The results from reicrence [2) for the diverg-
ing 1aper include those from two levels of stepped duct approximation (5 sections and 10
seclions having been used, respectively), from the variational approach, and from a segmented
duct theory {eigenfunction expansion) in which a lincarly tapered duct segment with solutions
given in terms of Bessel fisnctions was used. In the last method pressures and velocities were
matched at the ends of the taper, x = and x = J, by collocation. No account was taken of the
slight difference between the planar co-ordinate surface at the ends of the uniform duct and
the circular co-ordinate surfaces of the radial segment, Details of the characteristics of these
metheds can be found in reference [9). In the converging taper only the § section stepped
duct and the variational approach were used. The MWR was used with 6 basis functions and
50 integration steps axially.
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Figure 4, (a) Transmission cocfficient and (b) reflection cocfficient for mode 2 with mode 1 incident,
Diverging 13" lincarly tapered unlined transition section, by e 127 bp. &= 157 L« bs. ——, 10 Secuon
stepped dust; —~=~, § section stepped duct; @, Fourier bases; 4, cigenfunction eapanuion; 3, weighted
residuanls,

Figures 4{a) and 5tb) show the transmission and teflection cocfficients for the diverging
duct for the sccond mode with the first mode incident at x = 0 with amplitude -0 + 0-0i.
We have made the most detailed comparisons for the second mode since with increasing
reduced frequency it goes through the cut-on phenomenon and hence is considered the most
challenging conzputationally. The transmission coefficicnts, shown in Figure 4a}, arc in
good agreement throughout the frequency range, all methods considered yiclding essentially
the same result, In Figure 4{b), it is scen that the resolts for the reflection cocfficients for
kb, » 2-5arc notin as good agreement. However, it is noted that the variational method, the
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Figure5. (a) Transmission cocfficients and (b) reflection coefficients for modes | and 2withmode 1 incidznt.
Converging 15° lincarly tapered unlined transition section, b= 1-27 b a = 15°; Lo by,

I Mode 1

Mode 2 Method __
[p— —— 5 seetion stepped duct
HEKEY 3 - Variational (Fourier bases)
t. o o Weighted residuals
]

* eigenfunction expansion method and the MWR remain in close agreement but they do not

agree closely with either stepped duct result at the higher k. The imaginary part of the

. reflection cocficient is the first to show significant deviation. We have cencluded that our

choice of the number of modes in the stepped duct approximation was not adequate at the
higher frequency, particularly after the sccond mode begins to cut on.
Figures 5(2) and (b} combine the resuits for transmission and reflection cocfficients in the

. first and second mades with mode [ incident for the converging taper. In this case the 5 section

stepped duct and the variational method are used for comparison. Agreement is good through-
out the frequency range. The sicpped duct approxiniation appears to be more adequate in
this case thag in the diverging case, particularly for refiection cocflicients, since more modes
are uscd on the reflection side than were used in the diverging duct case.

As a second comparison we have analyzed at selectes frequencies the transmission and
reflection characteristics of a lined diverging transition section between uniform hard-wall
ducts. We have used a cosine shaped transition which has the same small and large heights
and the same length as the linear taper previously discussed. The only available results for
comparison are [rom the variational approach. We encountered convergence problems with
the vartational scheme as our limited computational capacity permitied neither double

* preciston nor more than 40 input basis functions. A scries of results were obtained for which

4 axial cosine waves, 4 axial sine waves and from 5 to 9 transverse functions were used. In all
cases convérgence was observed Lo be occurring with increasing maodes, but in several cases it
was not reached to our satisfaction { judged by comparing successive runs with morcand more

| TRANSMISSION 1% NON-UNIFORM DUCTS 15

' modes). Forthis reason we have only made comparisons where convergence in the variational
' cise was acceptable. The MWR was used with 6 transverse modes and 50 axial integration
. steps. We have generated results in the form of reflection and transmission cocfficients in

modes 1 through 3 for mode 1 incident. Results are compared in Table 1. Absence of varia-
tional results indicutes a lack of convergence at the Ievel of approximation used. Wherever
converged resulls are available, the MWR shows acceptable agrecment with the variational
approach. Becnuse of the computer limitations noted in the variazional results, the MWR
results are considered the more accurate.

|' ' TabLE |
i Reflection and transmission coefficients for a cosine shaped lined transition section,
First mode incident; amplitude = 1-0 + 0-0i
Method of weighted residuals Variationz! method
A A
 Reflection in Transmission in hRefIcclion in Transmission in
kby  first threc mede; first three modes first three rindes first thres modes
15 005+ 027 =018 —-0-614 =003 +0-28i —0-17 - 0-63i
—0-00 + 0-14i 017 + 0-20i 0-01 4+ 0131 018 + 0204
001 - 0-03i ~0-04 - 0-03i -0 04~ 0041
20 0-§5+ 0-08i 026 — 0401 017+ 0061 -0-25 - 0418
015+ 021 0-54 4 0:02i 016 +617; 0-55 — 0-00i
~0-01 — 0-05i ~0-08 + 0-03i ~0-10 + 0-02i
25 -011 = 0:02i =047 ~ 044§ ~0-11--0:02i ~0 48 - 0-44i
019 - 0-02i 023 — 1-02i 019-102%
—0:02 - 0-04§ 0-0t + 0-08i «~0-02 = 0-03t 001 +010¢
30 =0-03 + 0-04i ~0-67 - 0141 =003 + 004i ~0-67 - 0134
025 ~ 0-03i ~0-41 — 0-58i 019~ 005§ -0 42 —Q-55i
=0-02 — 0-04i 0:02 + 005§ =002 -~ 0-03i 002 + 0061

Note: at each reduced frequency the fimt two columns are the converged result from MWR, The second

twe columns are from the varistional method when a converged result is available.

kbg= 15, A = 0313 + 0-720i
kby = 20, A = 0-664 + 07204

kbye2:5, A w0788 + 0536
kbows 30, A = 0-760 + 0 3008

The results with which we have compared are all at relatively low frequency at which at
most two modes propagate. We do not currently have available higher frequency results
against which to compare, principally duc to limitations in the computer facilities which we
have used. However, we can gain a measure of confidence in the MWR by investigating its
convergence propertics at higher frequencies, We have considered the cosine shaped diverging
transition section at a reduced frequency of kb, = 12-57 and for a liming with 4 = 0-76 + G-30i.
1n this case in the small duct the plane wave and 3 higher modes are wellcutonand mode S is
just cutting on. In the larpe duct the plane wave and 5 higher modes propagate (Rb; = 15-94).
We have used four combinations of basis functions and inlcgration steps beginning with 6
transverse modes and 50 steps and progressing through 8 modes and 50 steps, 6 modes and
100 steps, and 10 modes and 50 steps. Increasing the number of integration steps made
virtually no difference. Increasing the number of basis functions provided a very definite
convergence trend. To illustrate this convergence of the method we have shown 1n Table 2
the reflection coefficients in mode S due 10 alt incident modes (REF,,). Mode 5 was chosen

' because the driving reduced frequency is right at the mode 5 cut-on frequency in the source-

side duct. This causes relatively large reflected components in this mode for any incident

. mode. Inaddition, in Table 2 we have shown the direct transmission coefficients in ail incideot
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TaBLe 2
Convergence trends in cosine shaped diverging transition.
Lho=12:57, 4 = 0-76 + 0-31i, by == 1:0, b, = 1-268, L = 1-0
. Relection cogficients in mode 5 Direct transmission cocfficients
Incident A A

- N — v
mMode g pPasis FNS 8 Basis FNS 10 Basis FNS 6 Basis FNS 8 Basis FNS 10 Basis FNS

1 -0-223 0215 -0-2122 0-716 6736 0736
+0-152i +0- 1411 +0-128i +0-034i +0-034i +0-034i

2 0-230 0-222 0-2186 0523 0-523 (13.7.7)
~0151% —0-13%i —0-136i +0-213 +0-2128 +02121

3 —-245 ~0-232 ~0-228 0146 0-148 0-148
+0-146i +0-132 +0-128i +0-451i +0-4511 +0-451i

4 0260 0-238 0232 =0-337 ~0-341 ~0-342
—019)% —0-1901 —{r188i +0-024i +0-0293 +0-031i

5 ~0-500 —0-896 ~0-596 0016 o007 0018
+0-080i +0-0801 +0-080i +0-0124 +H-012 +0-012t

6 Q279 0-272 0-269 0057 ~-0-060 —0-061
+0-152i +0-161i +0-164i -0-012i —0-016i G017

7 —01%4 ~0-191 —0-005 -~0-005
—0-128i =0-13Gi +0-002 +0-002i

8 0-157 0154 ~0-002 -0-002
+0-108i +o- 111 +0-002 +0-001i

9 —0-130 ~{0-001
—0-097 +0-001i

0 o114 —0-000
+0-087% +0-001i

' modes {TRAN,,). Coeflicients are shown for 6, 8 and 10 basis functions. The sequence of

results is distinctly convergent, In this case the usc of 8 basis functions is prabably safficient
from an engineering standpoint,

As a final example of the use of the method we have computed the acoustic power balance
for the linear converging taper between uniform hardwall ducts in the case when the taper is

TABLE 3
Acoustic power balence in linear taper converging transition section.
by == 15-94, by = 1-268, b, = [-0, L= 1-0 .

Incident
mode Incident power Reflected power  Transmitted power  Absorbed power
A = 0-76 -+ 0-30 '
1 1000 0003 0-754 0-242
2 1-000 0007 0-595 0-399
3 1-000 0-010 0672 007
4 1-000 0-015 051 0414
5 1-000 00X 0-307 0-674
6 1-000 0169 0-050 0781
A = 00001 + 0-0001i
! 1-000 0004 0996 0-000
2 1-000 0-0075 09923 000
3 1-000 0026 0974 0000
4 1-000 0-148 0-852 0-000
5 1-000 0-557 0443 0-000
4 1-000 0948 0052 0-000

_ . . ° ,
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lined {A = 0-76 + 0-30i) and also in the hard-wall case at kb, = 15-94. For each propagating

. mode incident on the non-uniformity we have computed the incident power, the reficeted

power, and the transmitted power carried in all resulting propagating modes. The power
dissipated in the acoustic liningis the amount by which the sum of the reflected and transmitted
powers fail to match the incident power. Table 3 shows the results of these computations for
both cases. The hard-wall case (4 = 0-0001 -+ 0-0001i) is significant in that it adequately
approximates the known result that no power is dissipated in the non-uniformity. While we
have not at this point made extensive parametric variations, it appzars from these results that
the reflective characteristics of a non-uniformity can be enhanced for modes near the cut-off

condition. We intend to report more detailed investigations of specific non-uniformities ata *

later date.

: .~ .5 DISCUSSION AND CONCLUSIONS

The method of weighted residuals has been showno be en accurate and rapidly convergent
method for the computation of the acoustic transmission and reflection propertics of non-
uniformities in duct; v<ithout flow. Other methods applicable to the problem have been
implemented and numerous comparison runs have been made to validate the MWR and to
build conlidence in its use. In all cases where other results could be generated, comparable
results were obtained. As with any numerical technique, care must be exercised in the use of
MWR. The choice of basis functions appears to favor good convergence charactesistics, but
in any new physical situation convergence experimentation should be undertaken.

One of the reviewers of the original version of this paper offered the sugpestion that basis
functions which satisfy
ikbA

WA a0 Y @=0  end ) m—— i)

' be considered. This is equivalent to using an effective admittance A® = Afcos0. If this is done

{
[}

L

the eigenvalue cquation is

xbtanxb-tﬂ’—é.
cos®

The array of coupling cocfficients, UZ,, then vanishes. While this is atiractive it should also
be noted that this would complicate the computation of dx,/dx, and hence UZ, snd PL., and
effectively introduce more coupling there. Hence, whether this is really a better set of basis

functions would require numerical experimentation. The important point to be made is that -

the optimum use of methods of this type depends on extension experience in the particular
application.

It has also been pointed out that the differential equation for the eigenvalues, equation (34),
becomes singular when the impedance assumes the Cremer optimum value (2], This is
because the optimum is defined by a double cigenvalue and, as Zorumski [24) points out, a
double eigenvalue implics that not only is
. x,blnnx,b-i.kinf T
but also o

4 . - .
b [x.btanx, b~ |k.bAI =0,

(35)

-

o
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This means that
25, +5in2x, 6 =0

at a double point. When this occurs it is apparent that equation (34) is singular, Of course
this problem is not unique to this method. The Newton-Raphsen iteration would display a

similar problem in computing cigenvalues as a function of some changing parameter if the '

double point were encountered. If this occurs and if it cannot be circumvented by testing for
the occurrence and cinploying an expansion of the differential equation at the singular point
to get past it, then a different sct of cigenfunctions might be employed. For example, those
generated from equation (35) would not have the same double points 25 ones generated from
equatinn (33).

Our philosophy has been that withimproved analysis methods for finite, non-uniform ducts
with mult:-modal propagation, the practical importance of the Cremer optimum has been
reduced in that the optimum lining will generally not correspond exactly to the double point.
We view the potential difficulty as important but not crucial to the utility of the method.

The non-uniformitics treated in this paper are of the type which one might encounter in
applications. They are not small, nor are they very abrupt {although all of the results for
lined ducts presented here have a ¢ scontinuvous change from hard-wail to soft-wall). 2. is to
be expected that the more radical the non-uniformity, the less rapid will be the convergence,
and the more basis functions and integration intervals will be required to achicve a satisfactory
result. This is an inherent property of this type of method. At this point we are satisficd that
we can treat problems of practical importance.

‘The results to date conclusively show that it is important to treat the duct non-uniformity
" problem from a multi-modal standpoint. A given incident mode will generale spurious
reflected and transmitted modes which can have an important effect on acoustic lining design
and radiation propertics. In addition there appears to be a possibility of using geometry
changes and their attendant reflective properties to enhance acoustic attennation, but the
multi-modal performance of the duct will have to be known for design purposes.

The probiem of the most immediate importance is the extension of the method t the case
of ducts with flow. In contrast to other methods investigated, the MSR appears to be extend-
able when flow is * wolved. OF course the complexity of the problem expands considerably,
but the basic numerical scheme can be modified and expanded to include this case. Our
1csearch program is currently directed toward achieving a workable method when flow is
present.

After the original version of this paper was written an expanded version of the work of
Zorumski and Clark {6} has appeared as a NASA document [25]. The work in this document
is quite approps ate to the development of the interface relations of equations (24a) and (24b)
and is closely related 1o the development ¢ 2cu- - ns (25) and (26).
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COMPUTATION OF AXIAL AND TRANSVERSE WAVE NUMBERS FOR
UNIFORM TWO-DIMENSIONAL DUCTS WITH FLOW USING A MUMERICAL
INTEGRATION SCHEME

1. INTRODUCTION

¢ The purpose of this letter is to detait a scheme by which the axial and transverse wave numbers
i for propagation of sound in uniform two-dimensional ducts with nnilorm flow can be com-
puted. In the method vsed the eigenvalue equation is transformed into a first order non-
i linear ordinary diffcrential equation. By using appropriate initial valucs this difierential
equation is integrated by using a Runge-Kutta algorithm to yicld solutions which are the
transverse wave numbers for the duct. The transverse wave numbers then are vsed to compute
theaxial wave pumbers. The method proposed is particularly useful for the rapid computation
of 2 number of duct eigenvalues at a single reduced frequency, lining admittance and duct
* flow Mach pumber. It has the advantage of being an inherently stable computational scheme.
In addition, the ordering of the eigenvalues is well defined by their relationship 1o a cor-
responding set of hard-wall eigenvalues (the initial values in the integration scheme).

2. METHOD

The specific problem is that of propagation of sound in a uniform two-dimensional duct of
height b with one wall hard and the other with a lining admittance A. This configuration can
be viewed as modelling a duct with this lining arrangement or a duct of height 2b, sym-
metrically lined, with symmetric propagation. Prop.gatio at reduced frequency kb is

' considered, where & is the plane wave wave number k = w'e, w being the driving frequency
and ¢ the speed of sound. The duct Mach number, M, is assumed to be subsonic.

1t is well known that for this situatior propagation in the duct can be represented by 2

i superposition of acoustic modes of thz form

Pa= A '™ et cos K, ¥y

where x is the duct axial co-ordinate and y is the transverse co-ordinate measured from the
hard wall. x, is the transverse wave number for the ath mode of propagation and &, _is the
corresponding axiat wave number. They are defined by the simultancous eigenvalue equations

K X . / ke :
kb(};) t&nkb(z) w i AL \l ""M'E") ’ (l)
k, 1 X 27112
T"__“x-w(_yi[l““-m(k_-)] ) ¥l

For the present analvsis equations (1} and (2) are considered in the somewhat modified
for 15

K e\ 5
kb(;-)tmkb(-‘-: =ik, o)

1
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Throughout the analysis it is important to maintain consistency in the ¥ sign choice. The
significance of the sign choice is straightforward for ducts with attenuation. In this case the
axial wave number is written as

kyfk =atif,

o
/5: Im [l-(l—-M )(?‘)‘] .

and the square root is the principai value taken in the upper half plane (positive imaginary
part). The modes of propagation are in the form

-
Pa= Agctestte T St oog i, .

In order 1o have attenuation with increasing x it is necessary to choose the negative sign in
equation (2) or equation (4), Acoustic modes defined according to this convention will
correspond to propagation in the positive 2 direction. If the flow is taken to be in the positive
x direction, th~; this will tepresent propagation with the flow (exhaust mode). When the
positive sign is chosen in cquation (2} or cquation (4) one defines propagation in the negative
x direction, against the flow (inlct mode), In the case when # is identically zero, which occurs
when r/k =0 or &k is real and 1 - (1 — AF?)(x/A)* > O, the principal value of the square
root is taken on the repative real axis. (This is done so that the sign choices given above always
relate the same way to right and left running waves.)

The usual way to obtain sclected eigenvalues of the doubly infinite sequence of «, and &,,
defined by equations {1} and (2) or equations (3) and {4) consists of using an iteration scheme
based on suitable initial guesses. Users of this method are well aware of potential instabilities,
difficulties encountered in ordering the results, and the requirement for accurate initial guesses.
Successful numerical schemes bascd on the iteration approach arc in existence but generally
have to be quite sophisticated to overcome the probtems indicated. The method that intro-
duced here is both simple and accurate.

One considers the cigenvalue k,/k to be a function of some parameler, 1. In general, one
also would consider 4,4 and M Lo be functions of this parameter. If equations (3) and (4) are
differentiated with respect 10 5 and combined, then the following single ordinary differential

equaliorx;_:csgl%:
T Zidw M #)ld fx
=T I a; k

& &y, "E
[lan kb(;c-) + kb (-E)scc kb( %
. ,dA  fx xy d - 2iAw kY 1dsM

2
v-l—(l—M’)(-:—)

and r*? is the principal value of the square root. as defined previously.
If & 'k is known for some combination A, &b, &, then cquation (5) is a differential equation
defining the variation of x k as A, kb, m change a~ functions of # from the original values.

where

hd . &
o
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Equation (5) can be used in two different ways. In the simplest application, and the one which
is the major subject of this paper, one considers &b and M to be independent of 5. Then the
differential equation describes the variation of 1k as A varics with . Henex, il A is given some
prescribed variation, the corresponding variation in x/k can be obtained by integration.

Consider the problem of finding the cigenvalues defined by equations (3) and (4) for a
specific condition A, &b, M. If 4 = 0 the cigenvalues are known to be

Kk, (n—D=
k kb

» A=L2 (6}

Now let A vary according to A(y) = 54, where 0 < < 1. Equation (5) becomes

i Ay

i) = kb(g); fg)eorele) mne)]

@
k k o k

Ifequation(7) isintcgrated on0 < i < 1, a hzrd-wall eigenvalue from the sequence of equation
{6) being used as the initial value, then at i = 1 the solution to equation (7) will be an ¢igen-
value for the condition Ay, kb, M. Furthermore, it can be identified as the cigenvalue which
branches from the hard-wall eigenvalue on the rcal axis In the &/k planc which was used as
an initial value. Each hard-wall eigenvalue on the real axis branches into two soft-wall
eigenvalues, one {or propagation in the positive x dircction and the other for propagation in
the negative x direction (corresponding to the sign choice), Hence, starting with NV hardwall
eigenvalues, one can compute 2N eigenvalues (n exhaust mode eigenvalues and N iniet mode
eigenvalues) for the duct conditions Ay, kb, Af simply by integration of equation (7) on
0 <5< 1 with hard-wall eigenvalues as initial values. For each cigenvalue, k&, one can
compute the corresponding axial wave number, &,./k, by using equation (2).

A second application of equation (5) has proved usefisl in the study of non-uniform ducts;
in this case 4, kb, and A can be considered to be functions of the axial co-ordinate, x. In this
case, equation (5) defines the variation of the eigenvalues, x/k, with respect 1o axial position.
The starting values in this case would be the cigenvalues corresponding to the conditions at
the starting point, say x = 0. The eigenvalues at this starting point could be computed con-
veniently by using equation (7).

Yet a third application, not implemented as yet by the author, would provide a means of
carrying out parametric variations to determine the variation in duct atteauation v#1s with
independent variations in A, kb or M. For example, if it were desired 1o compute the variation
in attcnuation for a given lining admittance at a given Mach rumber for variations in kb
one could construct a simple funciional dependence for kb, say

kb{n) = ntkd),,
(k) being the highest kb required. If the initial values are chosen as known cigenvaiues when
n takes on its initial value, 15, and if the integration is carried out on iy < g < I, then one
rapidly can generate the results of the parametric variation.

3. IMPLEMENTATION

The computational scheme follows nearly exactly the theoretical development described
above. A fourth order Runge-Kutia integration package has been used. In sohving the basic
cigenvalue problem as defined by equation (7), a variable step size has been used, starting
with 2%, of the full interval for the first five steps and then switching to 10%, for the last nine
steps. To possibly increase the awcuracy of the results a Newton-Raphsan interaction has

-
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been used at the end of the integration for cach cigenvalue to refine the result which may have
some accumuliled error due 1o the rather course integration grid. Expericnce to date shows
very little need to do this, The best way to judge the crror is to insert the computed eigenvalue
at the current integration step into the cigenvalue equation, equation (3), and evaluate the
residual developed. It has been found that if a significant residual develops it usually will be
in the first step away from the initial value. It may prove worthwhile to use the developing
residual to automatically vary the step size.

‘The only instance in which equation (7) or egiation (5) requires special attention is when
it becomes singular, This always occurs in using equation (7) when one $¥3ps away from the
hard-wall eigenvalue, x/k = 0. It also can arise when a double eigenvalue occurs. While the
secund situation is possible, no special precavtions to account for it have been taken by the
author, the philosophy being that the chance of it occurring is remote unless one is specifically
attempting to compute the double cigenvalue. It is worth mentioning that the use of an auto-
matically variable step size based on the current residual provides an excellent means of
controlling the accuracy when the integration passcs near a singular point.

When it is required to step away from the hard-wall eigenvalue, xf/k =0, in equation (7),
the first step is made by noting that for small A and small xfk onc can write

x ikbad,

25T M,(l + M),
where A is the initial step away from n = 0 which in the author’s irsplementation has been 2%
of the total interval. This result is then refined, by using a Newton-Raphson scheme, and used
as a starting value for an integration beginning at i = 0-02.
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