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THE SCATTERING OT OBLIQUELY INCIDENT PLANE WAVES
i' FROM A CORRUGATED CONDUCTING SURFACE
S David M. Le Vine :
. ABSTRACT S
A physical opties golution is presented for the scattering
of plaune waves from a perfectly conducting corrugated sur- ‘
face in the case of waves incident from an arbitrary direction ’
E and for an observer far from the surface. This solution is h l
! ; E
if : ;
1) used to compute the radar cross section of the surface in the P
| case of backscatter from irregular (i.e., stochastic) corru- e»
gations and is used to point out a correction to the literature __j
on this problem. ‘ §
B An interasting feature of the solution is the occurrence t <
{ of singularities in the scattered fields. These singularities 1 Q*
% i ;
' appear to be a manifestation of focussing by the surface at : i
| i
K its "stationary" points. Whether or not the singularities- B
b _ _ .
“oceur in the solution depends on the manner in which one ' o
‘ _ res.tr;"t.\.ts the analysis to the far field. o - o } fé
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INTRODUCTION

The feettering of electromagnetic radiation from irrepular surfaces is a
probler: of relevance to a number of remote sensing applications and in particu-~
lar to senging of the oceaﬁ surface, An important special case, which can be
examined for insight into the m .ve general problem, is that of plane waves Inci-
dent on corrugated surfaces 1 jurfaces whose ordinate is a function of only one
dimension), It is the purpo&:é of this paper to present a physical optics solution
for this special case for an observer in the f_ar field of a conducting surf&de and
for plane waves incident obliquely on the surface corrugations. This is a three
dimensional problem which reduces to the two dimensional form (plane _of inci-

deuce perpendicular to the corrugations) as a special case.

This work was motivated by the physical optics treatment of the scattering

of plane waves from an irregular surface by Kodis (1966). This solution was

formulated for the most general case, employing a three dimensional dyadic

Green's function and an arbitrarily directed plane wave incident on the arbitrary
surf#ce, A Z(x, y). The two dimensional caSe'ivas deduced as a special case;
unfortunately, an importaﬁt step seems to have been omitted in makiﬁg thé tran-
sition to t{vo dimensions and as a resu]t the physical optics solution obtained for
this special case exhibits an _incorrect' dependence on frequency and distance.
Thesé regults appear to have propagated into the literature (Bari‘iék, 1968).

The same error 1180 occurs elsewhere in the literature on scatter from -

B e .. - S P T Ut S

RS ATY pe R

L&%:H;a‘;-i;m«n«uh.-s i B T b 85 L0 A Lttt S P s el P pedsd

g B ke P s e 14 e a1

P

oty e e o rdd d b

e Y R P L i R ko gt

i

wirzs K dia v Az,



Bt 1 ok b iclc i S s

7
et

-

2T

A a1 A b AT e =

R

"

e, Ve e R BT

S

L ui P | e Pl

#
.

S oo

i
8

B L TP 1 3 e LA ‘ o L e e e [T ,ﬂ,_,,,..,..;, ST T Ty

irregular surfaces, appearing in the text by Beckmann and Spizzichino (Beélnnann
and Spizzichino, 1966).

The solution to be presented here is for the transitional case of plane
vaves incident obliquelj; on a corrugated surface. An interesting feature of
this solution are singularities which can ocecur depending on the manner in which
the "far field' approximation is made, If this approximation is employed in a
minirﬁal Way only fo justit‘y. .asymptotic evaluation of integ_rals; singularities
appear in the solution for the scattered fields. The singularities disappgar in
the 1imiting case of an observe - infinitely far above the surface, in which case
the solutions reduce to fhose obtained by making the far field approximations in
a conventional manner (i.e., to simplify the argument of the exponents before
evaluation of the integrals), The singularities are not peculiar to the case of
plane waves or to two dimensgions, but rather they appear to be a manifestation
of focussing by the parabolic arcs with which the asymptotic evaluation of integrals
effectively represent the surface. Roughly speaking, the surface is replaced in
the agympwone limit by an infinitesimal ""mirrox' which, with proper curvature,
can focus t'h.e incident .zl'adiation at the observation point. This is a characteristic
of the asymptotic approximation to the integrals and, to the extent that the asymp-
totic appfoxirﬁation is paft of .f;.he.z 1Jhys§ca1 optics approach, the singularities are
inherent to the analytical technique- employed rather than a _m_anifestation_ -qf the

particular problem treated here:
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SOLUTION
1t is asspumed that a plane wave, &(T, v) = E, 7 exp (jk * F) is incident un tne
perfectly conducting surface, z = Z(y), where %{y) is an arbitrary function of y

and € is a unit vector in the direction of the electric field vector. A physieal

optics solution is to be obtained: that is, Maxwell's equations are "integrated" !
by means of the Kirchoff (tangent plane) approximation and then the integrals are
evaluated asymptotically in the "high frequency" limit., In order to handle waves
incident at oblique angles the solution will be formulated initially as a three di-
mensional problem. 'Thus, letting Eo(f/.f‘) denote the free space dyadic Green's
function and h(¥, ») the magnetic ficld intensity on the surface, one obtains the :
following form for the (complex representation of) the scattered electric field:-
g, ) = jup ﬁ ED(FIF') < (A X I, 1)) ds’ (1)
where N
_ 1 oJkR &
G, =1+ — vv] e 2) oo
° k? 47R ;
and R = |¥ - ¥'| is the distance from a point on the surface, T', to the observer | ; '
A
at T, and k= 27p/c, Employing the Kirchoff approximation, one chtains the fol- 3{
‘Towing form for the vector product of E(f, v} with the surface normal, o 1'
i
E
- 2Bk : LA
AXE Y = —— L0200 -en -’ﬁ)} elkk - T (3) i
S Wit ' _
1}
3
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Substituting Equation 2 and 3 into Equation 1, yields the following result fdr the

scattered flelds:

- - Cij o I
&(F, ) = ~j2kE, [ B 7 elkk " ' gx'dy (4)

_ . % 1 AP T
Pty =<1 4 — - VRVR' k(n-e)- +k 5
(Fft" { l: R (](R)z] 1 ]}{ {n ?) e(h )} (5)

At this point the results are general in the sense that 1o assumptions have

where:

been made on the direction of ’1? or on the surface, z; and the results are equiva-
lent to those presented by Kodis (1966). The omission cited above occurred in
the specialization of these results to corrugated surfaces (ﬁ = Z(y)) and to waves
incident normal t» the corrugations; in particular, the x'-coordinate, which in
this case no longer appears in the expression for the plane waves or the surface,
was neglectea, and Equation 4 was tresated as if the integration was only over y'.
Unfortunately, in beginning with a three dimensional formulation, one must treé.t
the x'-intcgration explicitly regardless of the plane of incidence, In oi'der to
avoid this extra infugration, one would have had to formuldte .the solution in.itially
as a two dimensional problem (i.e. » in terms of the.two dimensional Green's.

function).

It is possible, in the process of making the transition from the three dimen-

sional case tc the strictly two dimensional case, to handle the intermediate prob-

lem of plane waves obliguely incident on a corrugated surface, This is the case

FETTON R LW S TS U IS PR ST T S

e in € i K vt

ot i

e i

2
g
:
g
kS
S
]
#
)
2
*
i
£




e

it
it e A

to he examined here. Thus, assume a corrugated surface, z = Z(y), and a plane
wave incident from an arbitrary direction, Consider the x'-integration first and

make the following transformation of coordinates (Senior, 1959):

2

i

(Y -y +(Z(y=~2)? = a

x'~x = asinh(y)

one obtains:

R

a coshy

dx' = a coshy dy

and the expression for the scattered field becomes:

T ' e o
§.(F, ) = ~2KE, f oK lhyY ¥ R2GOTT (g gyt (6)
where;
) oJkkgx o
L") = a f F(y,v) exp{jka[coshfr+kx sinh'y]}d-y : (n

Now consider the case in which ka >> 1. (a will be large if the observer is {ar

enough above the mean surface.) Then, neglecting _t_erms in f(-y, y') which are -

inversely proportional to ka and representing fx(y') by the first term in its asymp- -

totic expansion in ka, one obtains:

where &'=/k2 + ks’; a(y') and v, = tanh-!(~k,). One will recognize the expression
in braces in Equation 8 to be the asymptotic form of H{(kT). Denoting this

asymptotic _foi'm symbolically by a tilda over the Hankel function, ﬁg”(k?{),':bne

5
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obtains upon substituting Equation 8 Into Equation 6:

Es(f, V) = “j2kEo e]kkx}ifﬁc,ro’ yf)[_-_;_: ﬁgl)(k'ﬁ‘)] c_jk [_ky)"-i-kzz()”)] dyl (%)

Notice that when ky = 0 (i.e., the plane of incidence is the y-z plane),
Y = 0 and a(y) = a(y). This case is just the two dimensional problem and in
this case Equation 9 reduces to the result that one would have obtained by begin-
ning initially with b. two dimenslonal formulation in terms of the Green's function,
i/7  SD(kR). The implications of the asymptotic evaluation of Equation 7 in the

more gereral case, k, # 0, is that scattering takes place at such points that the

distance from the scatter points to the observer is \/(y' -2 + (Zly) - 2)? »
cosh(y,}. This implies that 'the spherical (angular) coordinates of the line from

observer to scatter point are such that: sin 0, cos ¢, = -ky.

- Assuming that k is largé, one can now perform the integration over y' asymp-
totically. Doing so, one obtaing the following result for the asymptotic value of

Equation 9:

S - cosafy,) o¥PUn) /TR (v
e (r,v) = E F(1,) - (10)
o ° {,%n 1707 cos (a+ By) Va(y, B, v 1+ 8 Ry(vy)lalyy) e(yy)]
where:
Wy, = ky yn +k, Z(y,) + 8,a(y,) + k,x | (11a)

cos0;+ & cosf
oly,) = —— R 1
cos o(y,,) cos (o:+ﬁo)

Fo(ry) = (- (VRVR)] - (ReA - -7 - B! (11c)
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R " sin 0 cos ¢y + 6, a(y) (11d)
5o = VKi - K2 (11e)
ofy) = tnn"[g?-] (o
dy

y' -y
= tan~ \
B, = tan [z-Z(y)] (11g)
kx = gin 0} cos ¢ (1)

ky = sin 0; sin (119
k, = cos0; (11§
Notice that a('yn)/ 8, 18 just the distance from the observer to the n-th scatter
point, When this distance is large in coraparison to Ro(yn)/€(¥,)s Equation 10
indicutes that the field scattered from each stationary point decreases as the
scuareroot of the distance from the scatier point' to the 6bserver as is charac-
teristic of scatiering from a two dimensional_ ohjec.t. The ficld measured by
the observer as predicted by Equation 10 appears to come from many separate
scattering centers, one for each y,, and the magnitude of the radiation scattered
from each such point to the observer depends on the squareroot of the distance
from the scattering point to the observer, a(y,)/8,, on the squareroot of the

radius of curvature, R.(y,), at the scatter point and on the relative orientation

of the incident ray, the observer, and the slope of the surface at the scattering

point (i.e., on 0;, B, and a(y )).

. The integration over the x'- and y'-coordinates have fesulted in a pair of

restrictions on the coordinates of the scatter points possible for a given incident

i
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wave and fixed observer. The x'-integration leads to the restriction, sin 06 .

cos ¢, = -k,, where 0, and ¢, are the spherical coordfiiates (measured at the
observer) of the line from observer to the scatter point. It follows that for each
0, there are two possible configurations: ¢, = tcos™! (~k./sin0,). These two
possibilities are illustrated in Figures 1 and 2, They correspond to the case of
"forward' scatter (ky in the reflected ray has the same sign as in the incident
ray) as shown in Figure 1 and the case of "back” seatlter as illustrated in Figure
2. In the case of back secatter, reflection takes place at points on the surface at
which a(y) > 0 whereas forward scatter occurs at points for which a(y) § 0. When
k, =0, then ¢, = /2 and in this case both incident and reflected waves are ﬁer-
pendicular to the surface corrugations. This is the degenerate case correspond-
ing to the two dimensional problem, There also are a for\';rs;rd and back scatier
possibility in this case. (See Tigure 3.) In forward scatter the reflected and

incident waves both propagate in the same direction with respeat tc the v-axis,

and in the case of back scatter they propagate in opposite directions with respect

to the y-axis.

o¢

The condition iinposed by the y'~integration is that B =-‘*0=ky +k, tan a(y)
Y
da .
++/ ki + _k% ——, This condition is equivalent to the requirement that the local

oy
angle of incidence and reflection are equal. In order to see that this is so, it

is convenient to define angles E'o and E; to be the (acute) angles that the projec-

tions of the reflected and incidentrays onto the y~ plane make with the vertical
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(!, e., the z-axis), Then, in torms of 32,, Ei and ¢, the condition ?‘,'5' 2 0 he~
comes sin (ff, - &) = sin (o - B). This Implies that the angle of incldence equals
the ang’e of reflectlon as ineasured in the plane of the projection. Sinee theplano
of incidence also contains the loesl normal (and the reflected ray) it is also true
that the angle of incidence equals the angle of reflection ag measured In the plane
of Incldence. That is, the points at which reflection takes place are "'specular
points. (The fact that the normal to the surface, the inoident ray and the reflected

ray 411 lie in the same plane—the plane of incidence—is a consequence of the

boundary conditions imposed by the tangent plane approximation, }

The amplitude of the radiation scattered from each stationary point and
measured at the observer is given by Equation 10, An interesting feature of
this amplitude is the singularity which occurs at e(y,) a{y,}/6, = R {y,), Since
e(y,) <0 for physically meaningful geometry (i.e., waves inc¢ident toward the
.surface so that k, < 0), it follows that Rc(y.l;) < 0 at scatter points associated
with the singularity. Thus, at these points the surface is concave toward the
ohserver, It appears fhat the singularities are the manifestation oi'. focussing
which can take place at the surface due to the combination of tangent plane ap-
proxirﬁation {which preserves the phase structure of the incident plane wave)
and the asymptotic evaluation of the integrals (which effectively represent the
surface by an arc with radius of curvature, Rc(yn)). Since the surface is per-

fectly gonduéting, the result is that each scatter point behaves as if a plane wave
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were incldent on a ¢encave or convex mirror, depending on the slgn of the Fading

of curvature. When the mirror is concave, focussing can occur, For example,

consider the cnse of two dimensions, k, =0, Inthis case, §; =1 and g8, = 0, and

By = 0; where fi, and ﬁi are the obtuse angles associated with 'ﬁo and 'ﬁ‘,, respec- .
i)
tively. In this case, the requirement that -55 = 0 ylelds the relationship, 0, =

20 - 0}y and it follows that ¢(y,) = 2sec(a - 0,). Consequently, the singularity
occurs whenever a(y,) = 2sec{x - 0,}/R.(y,), or in terms of the acute angle, ﬁo,
at a(y,) = -2 sec(x - FO)/Rc(yn). Now afy ) is just the distance along the scattered
ray f1 «m'}. e scatter point to the observer; and if one imagines a coneave spherical
niirror to be located at the scatter point with radius of curvature, -R.(y,), and
an axis which coincides with the normal to thé surface, then -2 sec(x - ﬁo /R (y,)

is just the distance along a reflected ray from the mirror to the focal plane, (See

Jenkins and White, 1957.)

The results shown in Equation 10 were obtained by making a soxpewhat modi-
fied "far field" approximation. In particular, the factor, R = [t ~ r'l, waskeptin
an arbitra.y torm in the exponential, exp (jkR), but was treated as a large num-
ber with comensurate simplifications being made whenever this was expeditious
only'in multiplicative factors. This is in contrast to the more conventional ap-
plicatipn_ of the far field approxir_natién in which R is approximated byrthe constant
and linear terms in its binomial expansioﬁ for use in the exponenti_ai prior to eval-
uation of the integrals. (For example, see Kodis, 1966.) If one follows this latter

approach, no singularities occur and the form obtained is just Equation 10 iu the
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Lmiting ease of e(y,)aly,)/8, >> R (y,) for all R (y,). That is:

cos cx(yn) elke(Yn) j

VG (1)

] —
elf,») = B T (y.) cos ofy, ) —
s ° “%;fn e n cos 0y +§, cos By Via(y )b,

Apparently the forussing is overlooked in making the far field approximation in

this conventional form because this effectively removes the observer to infinity,

bheyond all possible focal points. It is interesting to note that the singularities

j also oocur in the treatment of finite sources (Le Vine, 1974) and therefore are

not pecullarities of plane waves,

RADAR CROSS SECTION OF A STOCHASTIC SURFACE

g As a final point, a comparison will be made of the radar cross sectionintwo

T L

| dimensions of a stochastic surface hased on the resulfs derived here (Equation

} .
.E _ . 12) and those based on the computation of Kodis (Kodis, 1966)., In keeping with
;
|

the treatment of Kodis, it is assumed that the receiving antenna is sufficlently

I B F Ay e A s e 1t

narrowand properly oriented sothat scatter only from points for which the incident

and scattered ray are colinear need be considered. Furtherniore, it is assumed

P
PN TP O TP .

that the kg(y,) are uniformly distributed over 2r and that they are independent

[N g

ol R (vy), (This assumplion amounts to assuming that the incident radiation

Rsdiiniat waiielidme b Debata i

ikl
el e

scatters incoherently from the surface.) With these assumptions, the radar ¥

P cross section, oY, for a unit length of surface and based on Equation 12 is: - , ;!

1 / Lim E - Ex
g® -—/ mpp ——t (13a) -
-5 Ez
, o L\eme | B/ - -

TN R (Y, ) o S (13v)
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where L is the length of surfac: illuminated, the pointed brackets denote an &én-
semble average, N is the number of scatter points per unit length of the illumni-
nated portion of the surface, and p = a(y)/5, is the distance from the obgerver

to the surface. Equation 13a is just the two dimensional adaptation of the usual
formula for radar cross section (Kerr, 1951; Skolnik, 1970). In comparing
Equations 12 and 13 with those in Kodis (Kodis, 1966, Eguations 14 and 26)

notice that there is no frequency dependence in the results derived hére, whereas
Kodis' results are proportional to k. Notice also that power, inthe two dimen-
sional case as pré._sentedhere, decaysas 1/p (i.e., as a c;rlindrical wave) as op-
posed to inversely as the.'square of _distance as o;:curs in the three dimensional
case and in Kodis' results (Kodis, 1966, Equations 14 and 15). The three dima_n-

sional character of Kodis' results are the consequence of thé omission discusued

above,
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Figure 3, Scatter in the Two Dimensional Case: a) Forward Scatter;
b) Back Scatter
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