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THE SCATTERING OF OBLIQUELY INCIDENT PLANE WAVES

FROM A CORRUGATED CONDUCTING SURFACE

David M. Le Vine

ABSTRACT

A physical optics solution is presented for the scattering

of place waves from a perfectly conducting corrugated sur-

face in the case of waves incident from an arbitrary direction

and for an observer far from the surface. This solution is

used to compute the radar cross section of the surface in the

case of backscatter from irregular (i. e. , stochastic) corru-

gations and is used to point out a correction to the literature

on this problem.

An interesting feature of the solution is the occurrence

of singularities in the scattered fields. These singularities

appear to be a manifestation of focussing by the surface at

its "stationary" points. Whether or not the singularities

occur in the solution depends on the manner in which one

restr c..ts the analysis to the far field.
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INTRODUCTION

The rcettering of electromagnetic radiation from irregular surfaces is a

problem of relevance to a number of remote sensing applications and in partleu-

lar to sensing of the ocean surface. An important special case, which can be

examined for insight into the m:•:e general problem, is that of plane waves Inci-

dent on corrugated surfaces i surfaces whose ordinate is a function of only one

dimension). It is the purpoPe of this paper to present a physical optics solution

for this special case for an observer in the far field of a conducting surface and

for plane waves incident obliquely on the surface corrugations. This is a three

dimensional problem which reduces to the two dimensional form (plane of inci-

deice perpendicular to the corrugations) as a special case.

This work was motivated by the physical optics treatment of the scattering

of plane waves from an irregular surface by Kodis (1966). This solution was

formulated for the most general case, employing a three dimensional dyadic

Green's function and an arbitrarily directed plane wave incident on the arbitrary

surface, z = 7(x, y). The two dimensional case was deduced as a special case;

unfortunately, an important step seems to have been omitted in making the tran-

sition to two dimensions and as a result the physical optics solution obtained for

this special case exhibits an incorrect dependence on frequency and distance.

These results appear to have propagated into the literature (Barriok, 1968).

The same error also occurs elsewhere in the literature on scatter from
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irregular surfaces, appearing in the text by Beckmann and SpizzichIno (Bedlanann

and Spizzichino, 1960).

The solution to be presented here is for the transitional case of plane

;eaves incident obliquely on a corrugated surface. An interesting feature of

this solution are singularities which can occur depending on the manner in which

the "far field' s approximation is made. If this approximation is employed in a

minimal way only to justify asymptotic evaluation of integrals, singularities

appear in the solution for the scattered fields. The singularities disappear in

the limiting case of an observe infinitely far abe7e the surface, in which case

the solutions reduce to those obtained by malting the far field approximations in

a conventional manner (i. e. , to simplify the argument of the exponents before

evaluation of the integrals). The singularities are not peculiar to the case of

plane waves or to two dimensions, but rather they appear to be a manifestation

of focussing by the parabolic arcs with which the asymptotic evaluation of integrals

effectively represent the surface. Roughly speaking, the surface is replaced in

the asymp",cic limit by an infinitesimal "mirror" which, with proper curvature,

can focus the incident radiation at the observation point. This is a characteristic

of the asymptotic approximation to the integrals and, to the exteet that the asymp-

totic approximation is part of the physical optics approach, the singularities are

inherent to the analytical technique employed rather than a manifestation of the

particular problem treated here_
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SOLU7'lON

It is assumed that a plane wave, e(r, v) = Eo a exp (jlc • r) is incident rn tine

perfectly conducting surface, z = Z(,y), where Z(y) is an arbitrary function of y

and n is a unit vector in the direction of the electric field vector. A physical

optics solution is to be obtained: that is, Maxwell's equations are "integrated"

by means of the Kirchoff (tangent plane) approximation and then the integrals are

evaluated asymptotically in the "high frequency" limit. In order to handle waves

Incident at oblique angles the solution will be formulated initially as a throe di-

mensional problem. Thus, letting Go (r/i') denote the free space dyadic Green's

function and h(r, v) the magnetic field intensity on the surface, one obtains the

following form for the (complex representation of) the scattered electric field:•

eSU, v) = j Wµ U p Go(f/"r') • [n X li(F, 1,)1 ds	 (1)
.11

where

1	 ejkit
Go(i/r) _ !+ z VV	 (2)

k	 47TR

and R = IF - r'I is the distance from a point on the surface, i', to the observer

at i, and Ic = 27ry/c. Employing the Kirchoff approximation, one obtains the fol-

lowing form for the vector product of h(r, v) with the surface normal, n:

^	 - ) 2Eok rr^^ ^) - (^ ^ ^kk • rn X h(r v =	j k(n • c e n 14 e
Wµ ``

(3)
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Substituting Equation 2 and 3 into Equation 1, yields the following result fdr the

scattered fields:

eS(F, v) - J2kEo	
r(r/r,)J	

clkk • i' dx'dy'	 (4)

whore:

C("r/'r') = j I 
L

► + kR (kR I (^ROR]}{ k(n e} - c n k)^	 (5)

At this point the results are general in the sense that uo assumptions have

been made on the direction of k or on the surface, z; and the results are equiva-

lent to those presented by Kodis (1966). The omission cited above occurred in

the specialization of these results to corrugated surfaces (z = Z(y)) and to waves

incident normal to the corrugations; in particular, the x'-coordinate, which in

this case no longer appears in the expression for the plane waves or the surface,

was neglected, and Equation 4 was treated as if the integration was only over y'.

Unfortunately, in beginning with a three dimensional formulation, one must treat

the x'—intc,.ation explicitly regardless of the plane of incidence. In order to

avoid this extra integration, one would have had to formulate the solution initially

as a two dimensional problem (I. e. , in terms of the two dimensional Green's

function).

It is possible, in the process of making the transition from the three dimen-

sional case is the strictly two dimensional case, to handle the intermediate prob-

lem of plane waves obliquely incident on a corrugated surface. This is the case

4
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to be examined here. Thus, assume a corrugated surface, z = Z (y), and a plane

wave incident from an arbitrary direction. Consider the x'-intogration first and

make ttie following transformation of coordinates (Senior, 1959):

(Y' y)2 + (Z(y, Z)2 = a2

x' x = a sinh(y)

one obtains:

R = a cosi y

dx' = a cost y dy

and the expression for the scattered field becomes:

es(rr P) = -J2kEo J e jk[k )' Y' +kzZ(Y'))- Ix(Y l) dy'	 (G)

where:

cjkkxx
ix(Y') 

= 4x 
XF('y. Y') exp (jka [cosliy + kx sink y]) dy	 (7)

Now consider the case in which ka» 1. (a will be large if the observer is far

enough above the mean surface.) Then, neglecting terms in T(y, y') which are

inversely proportional to ka and representing I x (y') by the first term in its asymp-

totic expansion in ka, one obtains:

ix(Y') = F(yo,Y') 
.J 
l	 ej[k11 -n/4	 ejkkxx	

($)
4 IYYY :rk a	 J

where a =kz + ky a(y') and yo = tanh- 1 (-kx). One will recognize the expression

in braces In Equation S to be the asymptotic form of H (0(ka). Denoting this

asymptotic form symbolically by a tilda over the Hankel function, Ho^ l (ka), one

5
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obtains upon substituting Equation 8 into Equation 0:
r

s
S^

Cs(r, P) = -j2kEo ejkkxx f kf o , y')
L
 H(ol)(kn), ejk[kyy'+kzz(y')] Ely'	 (9)

Notice that when lc x = 0 (1. e. , the plane of incidence is the y-z plane),
4

yo = 0 and _a(y)  = a(y). This case is just the two dimensional problem and in

this case Equation 9 reduces to the result that one would have obtained by begin-

ning initially with a two dimensional formulation in terms of the Green I n function,

j/ . o > (ld{). The Implications of the asymptotic evaluation of Equation 7 in the

more gercral case, kx :A 0, is that scattering takes place at such points that the
t

distance from the scatter points to the observer is (y^ - y), + (Z(y) -z) , •

i
cosh(-yo). This implies that the spherical (angular) coordinates of the line from

observer to scatter point are such that: sin O o cos ¢o = -kx.

Assuming that Ic is large, one can now perform the integration over y' asymp-

totically. Doing so, one obtains the following result for the asymptotic value of

Equation 9:

	

Cosa(Y) eJkG(Ya)	 R (Y )

es(T, v) = E0	 Fn(70)	 n —	 6	 c n	 (10)
all yn	 cos (a+(30) a(Yn)/so	 1 +&oRo(Yn)I[a(Yd c(yn)1

where:

,p(y,l) = kYyn+kzZ(yn)+boa(yn)+kxx

	

_
	

Cos O f +8 0 cos 90

	

E(Yn)	
cos a(yn) cos, (a +go)

	

Fn(yo)	 (I - (OR)(OR) j - (k(n	 - C(n ' k)j

6

(I la)

(IIb)

(IIc)
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R ^t sin 0 1 cos 01 +60 a(y)	 (I 1d)

a(y) = tan- I nazi
ray J

 0 If)

go = tan- I y/- Y)J	
(116)

kX = ain 01 cos'pl	 0111)

kY = sin 0 1 sin tp,	 0 1i)

kz	cos 0 1	01 j)

Notice that a(y n)/So is just the distance from the observer to the n-th scatter

point. When this distance is large in comparison to R,(yn)/e(yn), Equation 7.0

Indicates that the field scattered from each stationary point decreases as the

squareroot of the distance from the scatter point to the observer as is charac-

teristic of scattering from a t vo dimensional object. The field measured by

the observer as predicted by Equation 10 appears to come from many separate

scattering centers, one for each y,,, and the magnitude of theradiation scattered

from each such point to the observer depends on the squareroot of the distance

from the scattering point to the observer, a(yn)/So, on the squareroot of the

radius of curvature, R c (yn), at the scatter point and on the relative orientation

of the incident ray, the observer, and the slope of the surface at the scattering

point (i.e., on 01, go and a(y„)).

The integration over the x'- and y'-coordinates have resulted in a pair of

restrictions on the coordinates of the scatter points possible for a given incident

7
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wave and fixed observer. The x l -intogration leads to the restriction, sin 06

cos ¢o = -kx , where Oo and ¢o are the spherical coord^vates (measured at the

observer) of the line from observer to the scatter point. It follows that for each

Oc there are two possible configurations: ¢o = tcos- i (-kx/sin Oo ). These two

possibilities are illustrated in Figures 1 and 2. They correspond to the case of

"forward" scatter (ky in the reflected ray has the same sign as in the incident

ray) as shown in Figure 1 and the case of "back" scatter as illustrated in figure

2. In the case of back scatter, reflection takes place at points on the surface at

which a (y) > 0 whereas forward scatter occurs at points for which a (y) > 0. When

k X = 0, then Lo = ±ir/2 and in this case both incident and reflected waves are per-

pendicular to the surface corrugations. This is the degenerate case correspond-

ing to the two dimensional problem. There also are a forward and back scatter

possibility in this case. (See Figure 3.) In forward scatter the reflected and

Incident waves both propagate in the same direction with respeot to the y-axis,

and in the case of back scatter they propagate in opposite directions with respect

to the y-axis.

The condition imposed by the y l -integration is that aO =0=ky +kx tan a(y)
y

+01,1,X —+k,2 as . This condition is equivalent to the requirement that the local
y

angle of incidence and reflection are equal. In order to see that this is so, it

Is convenient to define angles No and Q^ to be the (acute) angles that the projec-

tions of the reflected and incidentrays onto the y Plane make with the vertical

8
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(1. e., the G-axis). Then, in terms of (30 ,	 and a, the condition ay u 0 be-

comes sin (0, - a) sin (a - R! ), This implies that the angle, of incidence equals

the ang'e of reflection as measured in the plane of the projection. Since thoplana

of incidence also contains the local normal (and the reflected ray) it is also true

that the angle of incidence equals the angle of reflection as measured in the plane

of incidence. That is, the points at which reflection takes place are "specular"

points. (The fact that the normal to the surface, the incidentray and the reflected

ray all lie In the same plane —the plane of incidence—is a consequence of the

boundary conditions imposed by the tangent plane approximation.)

The amplitude of the radiation scattered from each stationary point and

measured at the observer is given by Equation 10. An interesting feature of

this amplitude is the singularity which occurs at e(yn ) a(yn )/S o = -RC (y„), Since

e(yu) < 0 for physically meaningful geometry (1. e. , waves incident toward the

surface so that ly, < 0), it follows that R c (ya ) < 0 at scatter points associated

with the singularity. Thus, at these points the surface is concave toward the

observer, It appears that the singularities are the manifestation of focussing

which can take place at the surface due to the combination of tangent plane ap-

proximation (which preserves the phase structure of the incident plane wave)

and the asymptotic evaluation of the integrals (which effectively represent the

surface by an arc with radius of curvature, R e (yn)). Since the surface is per-

fectly conducting, the result is that each scatter point believes as if a plane wave
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ij were Incident on a concave or convex mirror, depending on the sign of the fai.Wok

of curvature. When the mirror is concave, focussing can occur. For example,

consider the case of two dimensions, k x = 0. In this case, do =1 and 90 = Oo and

N
Al = O i where (io and 91 are the obtuse angles associated with 90 and pi , respec-

tively. In this ease, the requirement that jy = 0 yields the relationship, 0 0 =

2a - 0 1 , and it follows that e(yn) = 2 sec(a - 0 0 ). Consequently, the singularity

occurs whenever a(y„) = 2 sec(a - 0 0 )/Rc (yn ), or in terms of the acute angle, 00,

N
at a(yn ) = -2 sec(a - Oo)/R,(yn). Now a(y n) is just the distance along the scattered

ray fi , wj. U,,e scatter point to the observer; and if one imagines a concave spherical

mirror to be located at the scatter point with radius of curvature, -R,(y n), and

an axis which coincides with. the normal to the surface, then -2 sec(a - 00)/RC(yn)

is just the distance along a reflected ray from the mirror to the focal plane. (See

Jonkins and White, 1957.)

The results shown in Equation 10 were obtained by making a somewhat modi-

fied "far field” approximation. In particular, the factor, R = IF - 7 1 I, waskeptin

an arbitra. y term in the exponential, exp (jkR), but was treated as a large num-

ber with comensurate simplifications being made whenever this was expeditious

only in multiplicative factors. This is in contrast to the more conventional ap-

plication of the far field approximation in which R is approximated by the constant

and linear terms in its binomial expansion for use in the exponential prior to eval-

uation of the integrals. (For example, see Kodis, 1966.) if one follows this latter

approach, no singularities occur and the form obtained is just Equation 10 In the

10



limiting case of e(yn )a(ya)/so » RC (yn) for all R0 (yn). That is:

+^ .	 cos a(y)	 c)k-F(yn)

0$0, v) = He L Fn (yo ) cos 0411)
n 	 R0(yl) (12)

all yn	
Cos O f *F so Cos 9, a(Ya)7bo

Apparently the focussing is overlooked in making the far field approximation in

this conventional form because this effectively removes the observer to infinity,

beyond all possible focal points. It is interesting to note that the singularities

also occur In the treatment of finite sources (Le Vine, 1974) and therefore are

not peculiarities of plane waves.

RADAR CROSS SUCTION OF A STOCIiASTIC SURFACE

As a final point, a comparison will be made of the radar cross sectionintwo

dimensions of a stochastic surface based on the results derived here (Equation

13) and those based on the computation of Kodis (Kodis, 1966). In keeping with

the treatment of Kodis, it is assumed that the receiving antenna is sufficiently

narrow and properly oriented so that scatter onlyfrom. points for which the incident

and scattered ray are colinear need be considered. Furtheri tore, it is assumed

that the kO(yn) are uniformly distributed over 2a and that they are independent

of R 0 (yn). (This assumption amounts to assuming that the incident radiation

scatters incoherently from the surface.) With these assumptions, the radar

^j

cross section, ao , for a unit length of surface and based on Equation 12 is:

L /Lim prES^oEs^	
(13a)

\
00	 2ir L	 I^ioo

= 7rN (Rc(yn))
	

(13b)
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where Z is the length of surfacs illuminated, the pointed brackets denote an ba-

semble average, N is the number of scatter points per unit length of the illumi-

nated portion of the surface, and p = a(y)/S o is the distance from the obeorver

to the surface. Equation 13a is just the two dimensional adaptation of the usual

formula for radar cross section (Kerr, 1951; Skolnik, 1970). In comparing

Equations 12 and 13 with those in Kodis (Kodis, 1966, Equations 14 and 26)

notice that there is no frequency dependence in the results derived here, whereas

Kodis' results are proportional to k. Notice also thatpower, inthe two dimen-

sional case as prosented here, decays as 11p (i. e. , as a cylindrical wave) as op-

posed to inversely as the square of distance as occurs in the three dimensional

case and in I{odis' results (Kodis, 1966, Equations 14 and 15). The three dimen-

sional character of Kodis' results are the consequence of the omission discusfeed

above.

n^
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Figure 1. forward Scatter
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Fif4ure 3. Scatter in the Two Dimensional Case: a) Forward Scatter;
b) Back Scatter
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