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Current Results for the Proposed Research 1974-75

The investigation of the shock structure in an ideal dissociating
gas baged on the formulation of continuum gas dynamics has been carried

out., Please see details in the attached paper, "Shock-Wave Structure

in an Ideal Dissociating Gas."
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Proposed Further Investigations 1975-76

Investigation of "model dependency" on shock profile,
For simplicity, Lighthill's "ideal dissoclating gas' model is used
for the current investiigation., It will be interesting to test the

dependency of this model for the obtained results.

Kinetic Theory Appreach

The current analysis of the shock-wave structure in an ildeal dissociating
gas is based on the continuum gas dynamics, It will be interesting to
use the kinetic theory approach to investigate the same problem and then

compare their results,



Shock-Wave Structure in an Ideal Dissociating Gas¥
K. H, Liu

at

Department .of Physics, Southern University;lBaton Rouge, Louisiana 70813

The shock-structure problem utilizing Lighthill's "ideal
dissociating gas" model is investigated, The analysis is based
on the usual formulation of continuum gas dynamics. The two
extreme cases of chemical equilibrium und chemically frozen flow
are investigated. Profiles for species concentration, temperature,
and mean velocity are obtained for both limiting cases at various
upstream conditions. The problem is alsc solved for arbitrary
chemical reaction rates., Mathemwatical nature of the upstream
and downstream singular points has been investigated and shock
profiles for two typical chemical reaction rates are presented.
As far as shock thickness is concerned, the <olution for frozen
flow shows pood agreement with results obtained for a pure gas.
Also, shock thickness based on the maximum slopes of temperature,
species concentration and mean velocity, respectively, are
practically the same; this is in accord with the conclusion of

Talbot and Scala.

#Work performed in part, under the auspices of National Aeronautics and Space
Administration upder Contraect No. NGR 19-005-003.
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. Nomenclature

velocity of sound

specific heat at constant pressure
specific heat at constant volume
binary diffusion coefficient
dissociation energy

thermal diffusion coefficient

. ~'specific internal energy

specific enthalpy
forward reaction rate constant

reverse reaction rate constant

hm

, see eguation (10)

mean free path
characteristic length
Mach number

pressure

Universal gas constant
temperature

diffusion velocity of 1N species

mean flow velocity
molecular weight
space coordinate

mole fraction ofrith species
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Greek Symbols

mass fraction of i-th. species { o, = &)

adiabatic index

characteristic reaction time

shock thickness

compression Qigcosity - §
shear viscosity |

frequency of the vibration mode

density

cheracteristic dissociation density

_net rate of production of i-th species

Subscripts

conditions at either x = oo
conditions at x = . (upstream)
conditions at x = +c0  (downstream)
Equilibrium Flow

Frozen Flow

i-th. Species

“atomic species

molecular species

!
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over a large temperature range (103v7x103“K), Lighthill asserts

‘that ( is practically a constant. Such a gas is termed as an

"ideal dissociating diatomic gas," its rate of produc{ion for the

atomic species, @ , is found to be

'-w B o a
w’“‘"ﬁl[O"“)"see T '] o (a5)

)

with

r= W // [4kr?2(r+dﬂ

" can be interpreted as a characteristic reaction time. If the

chemical reaction occurs very rapidly, the vélue of of will differ

'only slightly: from the local equilibrium value. In the limit of

infinitely fast reaction, T'= 0, the dynamical change of the flow
field is very slow'in comparison with the dissociation and recom-
bination rates. Since the reaction rate is reversible, the flow will
Se isentropic(7). At the other limit of large T {very slow reaction),
the rate of production,CD s is effectively zero. The gas may then

be considered as chemically inert and is usually referred to as

. chemically frozen flow. Again, the irreversibility associated with

the reaction rates disappears and the flow, as in chemical equili-
brium is, in fact, isentropic(7).
In any analysis of chemical non-equilibrium flow, the main

difficulties arise from the coupling between the gas dynamic equa-

tions and the chemical relaxation equation. However, in the two

extreme cases of frozen and equilibrium flow, the chemical relaxa-
tion equation is reduced to a very simple form, thus greatly sim-

plifying the analysis. For the non-equalibrium case, the assumption

]
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8.

of T' being a constant will be used throughout the present work.

(10)

"This assumption is consistent with the one made by Freeman .

Ll

Transport Properties

The solutiuvn of the governing equétions requires a rowledge
of the variation of the transport coefficientsj shear viscosity u ,
thérmal'conductivity A 5 binary diffusion coefficient Dap, and co-
efficient of thermal diffusion Dy, with temperature and concentra-
tion. For an actual engineering problem, experimental data may be
used; but, for the case of an idea dissociating gas mixture of dia-
tomic molecules, a simplified kinetic theory approximation can be
made. |

(11)

Following Dorrance , we approximate the viscosity and

thermal conductivity by
P oA, A=2 A%
4 3

with yj, the mole fraction of each species. For a binary mixture

-

of atoms and molecules, p and A are

{— ol | 20l

fL-dﬂ“ T+ T e 1 4ol
B [ — ol 2.
A—}\“‘“}+o¢+’\“g+o¢

respectively. Accurate. to the first order approximation in solving
the Boltzmann equation through the Chapman-Enskog procedure, we may

further prescribe that

thus,

T R PTTIFSLAC
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A first order approximaticn to the thermal conductivity

for a monotomic gas is given by Penner(le)

Ao = -’gR@fq
For a pure polytropic gas, the therm~l conductivity may Pe approxi-
mated(lg) by c

b = Frepe (5 32
The factor in parenthvsis is known as the Eucken approximation which
accounts for the transfer of energy between @he.translational and

rotational degrees of freedom when polytropic molecules collide.

Approximating the specific heats at constant pressure, namely

Cpm and Cpgs by thelr values for chemically frozen flow, one finds

from the caloric equation of state that

Cps = o Chat mCym = [ Knt (5= K)ot ] R (16)
hence
X = ﬁi.’l) [ ("5+4Km)+ (55"‘4‘;(1'0)‘:{]
N C5+ 4 HKm) + (55~ 4 Kn)el
= }\q_‘ 30(1‘*“’() (17)

Eq.(17) implies that, although the mixture viscosity 4 may be
assumed the same as that for the atomic species, the thermal con-
ductivity A will be less than'.xg by a_factof of about 2/3, since
Ka varies between 7/2 and'9/2.:ﬂ{i -

The Prandtl numbex Pr, thfoﬁgh combining Eq.(16) and (17),

becomes
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ACht 4(:+«)[1<,,,+(5-K,,,)a.}

= (18)
) (5+ AKm)+ (554 Kn)

‘-Pr'w_.

Taking the average value of K, Km = 4, one f?nds that for & vary-

ing from zero to one, Pr from Eg.(18) varies from 16/21 to %0/60.
Using the thermal equation of state to express density in

terms of other thermodynamic variables, we have the Schmidt number

S¢ .

Ciot ) BT

f Dam ) ? Dam

Assuming that €Ln, is independeht of composition, it may be eval-~

uvated at «=0 , Hence, we obtain

o) e = (e 09
m 4"‘

The thermal diffusion coefficient Di may be expressed in

terms of the binary diffusion coefficient L%m(le).

D, =k Do (20)

Theoretical results for ki based on kinetic theory are very complex
but to an acceptable approximatiOn(lg)

Wm - 'r'c/a_

T 0 YW

Y% Ym

In the case of a pure diatomic gas

ke = 0,23k _et (1=

(1+a)

thus from Zg.(20),

o)
i
|
Q
N
w
1’4
g
o
A
&
3



e

SN s

R K TR

llt

‘The coefficient Di/ ¢Dsm appearing in the diffusion velocity [see

Eq. (2] may be written as -

- — t
€ Dan
Since
WaWo, _ (14 )"
e - 2
therefore D, )
= o, {17t {1—)
? Dom 7e(

Governina Eguation in Dimensionless Form

Governlng equations are normalized by 1ntrodu01ng the fel-

low1ng set of dimensionless quantities:

v = 7ntt//13 (velocity)

T =m RmT/PZ (temperature)
A=mQ/P? (shock strength)

T, = m*Dn /P> (dissociation energy)
T=mT /LW, (chemical reaction time)
X = §1+-i% (viscosity)

and the characteristic length, L = i/,
Thus, the continuity equation for the atomic¢ species, the momentum

equation, and the enérgy equation become

Ty ’
& | -5
'di("‘* a9, == [(‘”"‘)-gl-’ e v o] (21)
XL i‘j-u+(w=<)——~—f | - (22)
- “ .3 — v [Kn+ (5" )"'{] | é_‘f
L('i"’;'.-,—i>"."(»;---Km):::-}‘?;-r:‘. ',p"’z'fv'“ 3 -7

P[5k T+ Tp]fale = A (23)

™m
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respectively. In Eq.(23) thec term due to the diffusion wvalocity
Gle/m is given by

() (2

= > T
o (1=4?) L dy
-2 V dx } (@)

This set of equations for v, ¥ and & ; the boundary conditions pre-

scribed "at upstream and downstrsam of the shock wave

dv _ dv _ d¢ _ o
d4 — dx T dx ‘
and the transport propertivs of the gas: A, o L., D X completely

al X =:deo

define the shock structure pfoblem.
The set of governing equations for the three cases that we
shall investigate can now be listed as follows: |
(A) Equilibrium flow (T =
Species Continuity Equation:
Since T =0 in Eq.(21) the term in brackets must also be
zero, thus the equilibrium mass fraction is given by
> PD - :EE
e (25)
which is merely the repetition of Eg.(lh).

Momentum Equation:

dv v ' ,
Sl =y +({+et)— —1 p)
L P v+ ( ) - (26)

Energy Equation:
~Substitution of Egs.(24)(25) into (23) gives

{}};[Km+(5—;<m)oe]f-3?(5 Km + TD)[M(H- )+mn]}i§d—-
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(B) Frozen Flow (T —co)
Species Continuity Equation:
' o (1=4) 1 det an(r-—c{) L dv
L ['+ 2 J = (0‘ oy )+ voar T
D¢ oé(i—o«‘) L dv
— + s )
[me 2 }1 dx (28)
Momentum Equation:
dv T
XL-&}-:V-{-(H@()V | (29)
Energy Equation:
] dv
ey Km+(5—Km il = CKm"{)'f‘ Cj-"‘Km o, — & T+ V+ .
P [ ) J di [ )%y ] (30)

—-%}4-d,15 - é}
(C) Non-Equilibrium Flow

The terms related to the diffusion velocity in the
species continuity equation and the energy equation will be neglected
in the case of finite chemical reaction time. The simplification due
to this assumption is obvious, since the species continuity equation
is hence reduced to a first order differential equation. The assump-
tion is justified from the results for the frozen flow case where the

chznge in concentration, caused only by diffusion, is found to be
g ’ Y Dy 3

. very small. In addition, the chemical reaction time T is taken to

be constant througﬁout the shock wave. Then, the set of govexning

equations becomes ¢ Tp
L2 = LG 2 e _u?
ax T f (31)

41 _ S DTTDY A WU | .
XL gy = v+ (I+ ) (32)




1k,

d . .
T"{)"' [ I<m+ (’J—"Km)d} Iu ""i;' = ((Km-{) + (4‘“,(,,,)0(]"[74.&’5‘}) — % "'V"' :é" (33)
r . .

Mach Number

The basic parameter in the shock Structure Problem is al-

ways the upstream Mach number, M = u/a, in which the speed of sound a
Le JY (14 ) RaT

Since the adiabatic index, ¥ , is not defined in a simple way if con~

céntration changes are allowed,
- For the case of frozen flow
g | y = Km + (5~ K)ot
(K= 1) + (4= Kmdet
In the case of equilibrium flow, Clarke(l3) gives the rétio ﬁ@/g for
Kp=% to be

.‘ff -

@ (5} {10 20 L Gt
a 3 (T + Dot (1-os 2(41)

One can see then

Since the frozen and equilibrium situations represent the two extremes

of chemical behavior, the adiabatic index for the non-equilibrium flow

will be bounded between 7; and 2. We have, therefore, three different
 speeds of sound making the standard definition of the Mach number some-
what ambiguous. To circumvent the complications’that could arise from

this ambiguity, we adopt the flow parameter TM” vhich is applicable |
to all three flow situations.

2 - v

YM = B — ——
(I+ )R T 7 (1+e)7
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At upstream as X —r =00,
(M ) N
(I + °{|>T|
Substitution of the momentum equation gives ’
Y M*)
(TM,')i:m_._v,_. or Vl — ( ! T
=y . I+ ("M )I

Therefore, iir the present analysis (Y%f% y or V will be used as the
basic paramtter. Herein, this parameter is assumed to lie in a

range where the existence of a compressive shock wave is assured. In
other words, the strength of the shock wave is large enough to give a

continuous shock profile for the all values of T .

Rankine-Huaoniot Relations

Since the gradients of all physical quantities vanish at a
large distance upstream and downstream of the shock wave, conditions
at end points for equilibrium and.non—equilibrium flows are the same,
The end consitions for frozen flow are different due fto the fact that
the conceniration downstream of the snock wave remailns the same as
the upstream value.

(A) Equilibrium Flow

Setting all gradients zero in Egs.(26,27), we find

the normalized velocity at end points to be

{Se é"f

V:Z = [+ Pe [ [+ Zpe Ee] (31'4')
vhere

Y Rn ot (5-Ka)e
(¢n-ips (4 &a)R

. ) i

:.’.":‘"' 4_’!3’,:":)/';1 ;- ;:

A R S
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The plus.sign in Eq.(3%) is associated with the upstream point, x=4wm,
while the minus sign should be taken for the dovwnstream point, X=-m.
Through the momentum equation, Eq.(26), we find the normalized temper-

ature at end points:to be

T, = Vi2 (1'" Vi,2)

| ! |+ ey, (35).
The c&ncentration o, is then found by knowing ¥ and T through
the species continuity equation, Eq.(29). Egs.(25,3%,35) are solved
simultaneously to determine v, © , and d.ét the two state points. For
illustration. Figs.l,2,3 present the results for shock waves of
various strength characterized by (Yhf). It is interesting to note
that both the velocity ratio and the temperature ratio for a given E
upstream Mach numper do not vary monotonically with respect to the :
change of upstream atomic concentrat.on.

(B) Frozen Flow

The conditions for the frozen flow case diifer in
that the mass fractionol is the same at x =w0. Since the upstream
conditions represent an equilibrium state, the downsiream state
conditions (e, Vi, 7, ) do not in general represent an equilibrium
state. Thus, the flow after passing through the shock must make a
transition to an equilibrium state behind the shock. This relaxa-
tion zone, analogous to shock transition in a two-phase (solid-gas)
fluid, will not bé discussed in the present enalysis. Readers are

, | . =
referred to,text book on physical gasdynamics for further discussionsgl'%

Hence, instead of having Eq.(25) for the concentration, we now have ;
the conditicn

U Ny |

-
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together with the momentum equation and the enexgy equ-tion. Setting

all gradients to zero, we obtain the normalized velocit; at both end

points
& B - |
vhere

Km + (5" K|n>dﬂ
(Km"')"‘ (4"|Km)°‘(°

o <20 (1= 2200 n))?
P 8

Again, the plus sign should be adopted for x = -c j the minus sign

Py

for x = +o¢ . The normalized temperature at two end points is
Vi2 Cf"‘ V_],z_)__

v =
i 1+ ol

A comparison of‘Eq.(éh) and Eq.(36) shows the only difference in Y,
between equilibrium and frozen flow is the replacement nf F& in the
former case by PF in the latter case. Since the concentration &£
is unchanged for frozen flow, ﬁ§ is thus constant, the values of all
physical variables at end points for frozen flow can therefore be
obtained without numerical iteration. The parameter, E., which 1s
also constant may be written as 2

£ =-_2P‘* l Mg - | ]

FTOB -0 f e TMg

in which Mfl is the upstream frozen flow Mach number.

Here )

E,r- = 0 for My =1,
and 3

ET-= -Dﬁ-l— for Mfl —
thus ’ 2
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Phase-Space Analvsis,

It ié a characteristic feature of the shock structure
problem that state points at upstream and downstream are unavoid-
ably singular points with regard to the set of governing equations.
Phase-space analysis is the usual technique applied fo assure the
uniqueness of the solution mathematically, and in practice to ob-
tain an initlal slope to start the numerical integration. Analysis
in the two dimensional phase plane has been a standard procedure,
while the investigation in three or more dimensional phase space .s
by no means a simple routine. The classical treatise of Poincaré(ls)
defined the naiture of singufarities in three dimensions, but did pot
illustrate the procedure with practical problems. The present
analysis follows the path 'set forth by Talbot and Sherman(2) in
their investigatfﬁn of the shock stricture problem based on continuum
gasdynamics, taking into account the higher-order Burneii stresses.
For an autonomous system of three non-linear ordinary dif-

ferential equation governing v, T, and « , we have

A det _ F(d: v, T)

ax
B % =G (W) ' (37)
C4% = H (v T)

where A, B, C are simply constants, which, if one prefers, may oe
absolved.in F, G, and H, respectively. The boundary conditionsat
end points are such that

F (s, ¥, Te)= G (=, %, To)= H (e, W, T)=0,

thus making *he siopes ¥/l , 47/d¥ indeterminate ai ‘end points,
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Introduce N VT

~ o
Ve V-V, =V, e (38)

~
with RA %,WL being constants, ¢ a parameter along the integral
curvey, b a characteristic root, In the neighborhood of the singular
points, Egs.(37) and (38) give us a system of algebraic equations

~ ~ "
governing do,.’\;n,"fp .
’ . N r—v b

Gy '-Bbray Gs [ % = [9 (39)

~~

‘ He HV —'Cb'*°H$J L TuJ

oF d ~ o~
where F_ = (5‘5.3 b F‘V—:-‘('-"ag y etc. To have a set of non-trivial &,V
. 0

and T, , the determinant of the square matrix in Eq.(39) must

vanish, thus resulting in a cubic equation for b.

(ABO)b> - [ACG, + ABHy + BCF ] b +

+ [ A (GyHy= Gy H)* B(FaHy = R H)+ C(RGy - RGOl b+ (40)
b [Fo(Guts - GH) + Fo (G Hy= Gobh) + Fe (G Hem GHi)] = 0

In general, three different roots of b are obtained, among which one
value of b should be selected; according to which 2 set of Ehl'ﬁ) %ﬁ
is computed. The selection of this particular b is illustrated in
the following calculation.

(A) Equilibrium flow
Sinca in this limiting case the mass fraction may be written in terms

-t b 2L I & == gy - At v - - : 3 L e s T
T2 V2L0CLTY ant YEMDEretuT2, Ti? DUMOED 0T Ingepandent Variat.ozs

iy
£

0
is reduced to two. Thus, in the set of equations [Zq.(37)] we hava,

equivalently,
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F (el,v, ¥)=0,

. .ﬁl o (41)

dv = G

One ¢an also shew that the cubic equation, Eq.(49), is reduced to 2

o

Or | EZ.
B

quadratic. An analysis of the two roots, b, bz, of this quadratic
at each-of the state points reveals that the downstream point, x=-e ,.
is invariably a saddle point; and the upstream singular point, x--= ,
is an unstable node. In other words, the fatio by /by at s.ree is
negative, thus signifying a saddle point; it is positive at x=oce
thus signifying a nodel point.

Take a typical example where the upstream atomi-: concentza-
tion ¢4, is 0.183; we sketch the variation of b as a function of the
normalized upstream. or downstream velocity in Fig.k. There is a
dovnstream velocity v asscciated with every given upstream velocity
vy« One root remains positive for all values of vy and vy, the
second root passes through zero at a cexrtain value of v where vy=vg,
or the upstream Mach number based on equilibrium sound speed is ap-
proximately unity. The second root is obviously the characteristic
root of interest, since there should be no shock wave of Tinite
strength at equilibrium Mach number of unity. One also obsexves
from Fig.t that the value of b reaches a maximum and a minimum when
V, >0.9. This behavior need not concern us, as the correspoﬁding
Mach number for V, 209 is so high that the model of ideal dissociating

gas breaks down long before the situation arises.

N
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(B) Frozen Flow
Unlike the preceding example where the algebraic equation
(Eq.(40)) for b is reduced to a cuadr tic, the preéent case has a
cubic equation governing b. The b versus V| variation is presented
in Fig.5 for two different upstream conditions: of =1 ‘and &,=0.
Three real roots of b are obtained, among them one is chosen based
on the same reasoning as given in the preceding section. The selec~
ted value of b used in numericai integration cuts across the b=0
line at two differe~t places for o =1 and «,;=0; because the defini-
tion of upstream Mach number depends on the upstream atomic concen-
tration. ©Once a proper vaiue of b is selected, the integration pre-
ceeds from the downstream point toward the upstream and point. -
(C) Non-Equilibrium Flow
Eq. (40) is’ again solved for two examples where the reaction
time T is 5 and 2 respectively. Results are presented in Fig.6.
Three real roots of b are obtained, the selécted value of b for in-
tegration is the one which crosses b=0 at Mg = 1. The integration
starts from downstream end point and proceeds toward the upstrzam
end point.

Numerical Results

(A) Shock Prqfiles
Shock profiles for an example of ( Yhﬁ)lzlo and o =0.183 are
presented in Fig.7, in which a very pronounced overshoot in concen-
tration ratic is recorded, while the temperature profile varies only
monotonically. As the resction time T increases from zero (equili-

-

brium flow) ¢ z value of 2 and then 5, we find in Fig.3 zsnd 9 &

[ }]

temperaturs overshoot which increases with " . In the limizing

case of frozen flow, I' — e 4 the shock profile again records a

S
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monotonic variation for the temperature, but a high peak for the ’
profiles of the concentration ratio. In this case, the concentration
ratio changes purely due to mass diffusion, not because of chemical
reaction as in‘the case of T =0.

(B) Shock Wave Thickness

The most commonly employed definition of the shock thickness |

(@B

dv
dx Mmax, (4+2)

is

v _ ,
where dxltnax is the maximum slope of the velocity profile and (Av)l’2

is the tgtal change in v. For comparison with previous investiga-

tors, it is convenient to obtain shock thicknesses in terms of mean
free path evaluated at the upstream state point. The mean free path

for Maxwell molecules is

16
1= %

I
O J2mRT,

Assuming the temperature dependence of viscosity is given by*®

perm (3 = ("\7)

the ratio L/l is determined to be

L Gor, /)

1,16 (vM*) =
where the characteristic length, L, as defined previously is L=.%%r.
(e
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The expression for the shock thickness “n units of mean free path

becomes

o . (.{.\ v)b 2 ,

LT I MO v - "
" B GiJey [d("{)!w : )

in the present analysis the exponent S was taken to have the value

Ol 5"

Figure 11 shows the variation of the zatio §/A with (VM)
for both chemically frozen and equilibrium flow. It is apparent
that the value of 1,/p for the equilibrium case is greater than that
for the frozen flow condition at a specific value of ( YMQ), » In
other words, for a given upstream condition the shock thickness
based on maximum sldpe is greater for the frozen flow case than for
the equilibrium si?uation. For the equilibrium case, the thickness, 4,
for a given value of (}Wﬂz% first decreases then ;ncreases as the
atomic concentration is increased. A similar type of behavior was
previously noted in the determination of the upstream and downstream
conditions in equilibrium flow. This suggests that for a given
value of (Yﬁf% the thickness, A , has a maximum as the atomic mass
fraction is increased from zero to unity. Fig.l2 shrows that this is
indeed the case for flow in chemical equilibrium.

Fig.13 gives a comparison of the results from the present
study with previous investigators. As expected, the solution for
frozen flow shows good agreement with results obtained for a pure

gas.
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Talbot and Scala(e) define a shock thickness based on any flow

propexty, f.
A - Fmax. - Fq::fn:‘
£ / _c_l_f_f
. X
W) | pax.

Fig.1llW shows the variation with (Yﬁr)l of the maximum slope thick-:

ness based on v,V and ¢f for both frozen and_equilibrium flow.

It should be noted that the definition ofAjc in Fig.l4 is slightly
different from the preceding equation, as the factor ﬁmx"me is
replaced byl'ﬁ *'ﬁ_]; yet the quantitative discrepancy in A? based
on any physical quantity, even if it has an overshoot in the shock
layer, is always negligible. It can be seen that different proper;
ties predict shock thicknesses of the same order of magnitude;-

this is in agreement with the conclusions of Telbot and Scala.
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FIGURE CAPTIONS
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