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Introduction

In [9) Decell and Smiley and in [2] Decell and Quirein have results
that suggest the possibility of using a sequential monotone process for solving
the feature selection problem (multivariate normal populations and best k
linear combinations) using Householder transformations. The results are
general in that they apply to a large class of separability criteria [9].

In this report these results will be applied to the divergence separability
criterion and an expression for the gradient of the divergence (in the reduced
feature space) with respect to the generator of a single Householder transformation
will be developed. This expression for the gradient can be used in any number
of differential correction schemes (iterators) that attempt to extremize the
divergence (‘n the reduced feature space).

Two data sets provided by the Earth Observations Division-JSC are used
to demonstrate selecting the Householder transformations that generate the
ktn matrix defining the "best" (in the sense of extremizing the divergence)

k linear combinations of features. The tests allow initial comparisons to
be made with results obtained in [2]. In particular, this new technique
does not appear to require initial guesses for the iterator to be generated

by the without replacement, exhaustive search, or other similar schemes.

An Expression for the Gradient

Using the results in [2] and [9] we need only calculate the gradient

of the function



Q(U,A) = Dy + ATy - 1)
where B = (I‘IZ)(I - ZUUT). A a Lagrange multiplier and
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i=1,...,m are the class covariances
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If we calculate the differential of A(UTU = 1) wi* _capect to U we

have

da@t - 1) = A@Tav + avTy) = A{@™®T + avTu)
= )t{n'(dulrll)'r + tt(dUTU)}
= 22tr(dUTy) = 2\tr(udu’)

Clearly the differential of A(UTU - 1) wich respect to A is dA(UTU - 1)

so that if we define the matrix

P(U) = 1'5"1{[111(1.‘12)1'r + 0, (1,/2)}



it follows that
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Routine to find Maximum Average Divergence l)B

\
I. Take the starting value U = r—-l---

E ¥
T8

Compute fnftfal B matrix B(U) = (I/2){1 - 20.u.T) and the value of D,(U )

1 n T.,~1 T m 1
DBOJO) k. | tuu(iglawin ) ('BSIB )} - —LEZ-)- K

Use & crude variation of the Sceepest Descent Method to extremize DB'
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vheare

c“"('bn(up)) - 2&1 {nL(LK/z)}T + “10‘1’2) up
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Compute the B-matrix with the new value of V and also the corresponding value

of DB’ Repeat the procedure untfl DB(U ) begins to stabilize,
P

II. The same procedure as in I except V1 is replaced by "1V1"1 and

81 by ulsiut vhere H1 = (I - ZU'UT). U 1s the value cpotainedat max DB in 1.

III. The same procedure as in II except "1”1“1 is replaced by HZ“lviHlHZ

and “151“1 is replaced by H2“131“1“2'

IV. Continue, V continue... etc. until DB does not increase as a function
of Roman numeral steps. Note that the iteration in each phase (i.e. I,[I,III,

(_.1'._ -I_)T
Vo' 3

attempt to satisfy the constraint UTU = 1 1is forced arbitrarily on the steepest

etc) uses the same arbitrary initfal guess In addition, an

decent procedure. This {4 a very crude scheme and potentially generates error.
Moreover, the step sfze a {s taken to be constant in all phases and is obviously
{nnfficigntfgdcyntfub ﬂ‘t.4ﬁﬁ¢ﬂ4444.¢;v.¢¢;p,gé’¢,‘tzunauionbﬁﬁ;.dﬁinéa;;

The following test cases seem to indicate relative insensitivity to these
crude {teration adjq’tncnts. More sophisticated, careful computationsare being
implemented to further refine the technique and clfminate these inefficiencies.
The technique will be avaflable on the LARS terminal shortly.



Results: Date Set 1 ( 210 Flight Fiie)
. Nw®=12, m=9, ' =6, Bis 6 by 12 matrix.
Total Divergence D = 10660

Pp11 3686 __“ Dpay 8221 on 0697
. 663 | Dy 928 _4L Dp3z 9730
Dp13 7769 Dp23 9786 Dp33 9940
Dy 7843 ~_“ Dyol, 99k Dy, 999k
Dp1s 7605 Dp2s 9987 2 Dp1s 10018
Dpi16 6093 \ Dpog 10020 ______PB36 10035
Pp17 5825 [_- Dpo7 10028 Dp37 10047
Dp 8 219 Dp28 10032 Dp38 10056

Data Set 11 ( HULL CJW,:L})

N=16, m=% K=6

Total Divergence D = 636

Da1y 93 Doy | m D31 228
- 106 Base 21k D32 275
D13 13 Dp23 215 [ Dp33 276
Dp1k 129 Dpak 260 PB3k 280
Dp1s 133 Dpos 281 | Dy i
Dp16 183 D26 290 Pp36 "o

°3i1 220 Dyot 293 Dp37 294
Dp18 223 Dp28 298 Dp3g8 300
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