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THE I=INITE ELEMENT METHOD IN

LOW SPEED AERODYNAMICS

by

A. J. Baker

Visiting Professor's

Old Dominion University

and

Paul D. Manhardt

Textron Bell Aerospace

SUMMARY

Within recent years, the finite element method has emerged as an

alternative theoretical foundation for establishing numerical solution

algorithms for field problems in continuum mechanics, and in particular

fluid dynamics. The fundamental concept of the finite element pro-

cedure is identification of a computational control-volume within which

the conservation laws of mechanics are numerically approximated using

a well-defined and uniformly consistent procedure. In contrast to the

more familiar finite difference technique, the finite element algorithm

explicitly retains use of the calculus and vector field theory in forma-

tion and evaluation of the discretized-equivalent matrix statement of

control-volume conservation properties. For specifically non-linear

differential equations, like the Navier-Stokes system in fluid dynamics,

*On leave from Textron Bell Aerospace, 1974-75 academic year.
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the finite element method always yields a unique discretized-equivalent

matrix expression. Interestingly, the resultant expressions appear uni-

formly comparable to the computationally preferred forms established via

trial and evaluation techniques using difference algebra. These theoret-

ical features, coupled with its intrinsic capability to employ speci-

fiably non-regular computational meshes, and to enforce non-trivial grad-

ient-type boundary conditions on non-coordinate solution domain boundaries,

appears to render the finite element procedure of particular potential use

in computational aerodynamics.

The results of a'study, conducted for verification of this hypothesis

and reported herein, indeed show that the finite element procedure can

be of significant impact in design of the "computational wind tunnel" for

low speed aerodynamics. The uniformity of the mathematical differential

equation description, for viscous and/or inviscid, multi-dimensional sub-

sonic flows about practical aerodynamic system configurations, is utilized

to establish the general form of the finite element algorithm, universally

applicable to all problem classes. The COMOC computer program, under

development for several years as a finite element test bed, is similarly

applicable to each of these diverse classes. Following completion of the

theoretical developments, example numerical results for inviscid flow

analyses, as well as viscous boundary-layer, parabolic- and full- Navier-

Stokes flow descriptions, verify the capabilities and overall versatility

of the fundamental algorithm for aerodynamics. The proven mathematical

basis, coupled with the distinct user-orientation features of the computer

program embodiment, portend near-term evolution of a highly useful analyt-

ical design tool to support computational configuration studies in low

speed aerodynamics.
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INTRODUCTION

Development of the technique, that has emerged as "the finite element

method," began in the civil and structural engineering community in the early

1950's. Conventional engineering structures can be visualized as comprised of

discrete elements interconnected at a finite number of points. For example,

the analysis of pin-connected structures via imposition of a global force bal-

ance can determine tension and compression members and loads; it is a well

established study at the undergraduate level. In an elastic (or any other!)

continuum, however, the number of such connections becomes infinite, and

therein lies the difficulty in establishing a tractible engineering analysis.

Turner et al. (ref. 1), in their orig i nal concept of a "finite element,"

attempted to bridge this gap by introducing a method to transform a continuum

into an equivalent discretized finite assemblage of nodal behavior. The

method developed rapidly thereafter, in good part due to the parallel develop-

ment of large capacity digital computers. Existence of this computer hardware

made possible the embodiment of the analytical developments into a viable tool

(computer program) for engineering analysis of complex non-conventional

structures.

While a detailed static force balance formed the theoretical foundation

for the earlier finite element developments, this was rapidly replaced by the

energy concepts that also form a significant branch of conventional structural

analysis. From this viewpoint, the "finite element method" emerged as a tech-

nique for modeling the strain energy of a continuum structural system in terms

of the behavior of local discrete subsystems. Total system energy is approxi-

mately determined by the assembly of the incremental work done by the surface

tractions and imbedded stress distribution as the equivalent discretized struc-

ture is loaded. The actual node point displacement distribution is then deter-

mined by extremizing the strain energy integral with respect to the family of

admissaL'e displacement states; the physically realizable state corresponds to

the energy minimum. Quite logically, these concepts were immediately recog-

nized as belonging to the analytical theory of self-adjoint systems, the vari-

ational calculus and the theory of linear partial differential equations, as

well as the corresponding principles in Hamiltonian mechanics inclut:rng the

Principle of Least Action and the Euler-Lagrange equations (cf., Goldstein

3
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ref 2). Hence, the finite element method rapidly gained theoretical scat

ure as well as practical usefulness, albeit at the cost of conceptual restric-

tion to linear problems it mechanics.

In the mid-1960's, members of the engineering mechanics technical commu-

nity, especially those with a background in mathematics or continuum mechanics

but generally outside of structural mechanics, began to take note of the dem-

onstrated power and versatility of the finite element procedure for analyzing

complex problems. particularly impressive was the ability of the algorithm

to readily impose non-trivial (gradient) boundary condition constraints on

i irregularly shaped geometries, and to employ non-uniform discretizations of

the problem solution domain (cf. Zienkiewicz, ref. 3). Each of these areas

posed particular problems for more conventional numerical analysis procedures.

Their apparent total alleviation by finite elements immediately prompted its

extension to analyses of other linear field problems (cf. Zienkiewicz and

Cheung, ref. 4) including steady heal; conduction, and importantly subsonic

potential flow. In this latter area, of our particular interest as a starting

point, the differential equation is simply the linear Laplacian on the velocity

i
perturbation potential function. However, the boundary conditions become

specified on the behavior of its derivative normal to any surface, e.g., an

airfoil, which in general is not parallel to a coordinate surface of the dif-

ferential equation description. Because of the linearity, an energy-functional

equivalent of the differential equation is readily established, including

explicitly the non-trivial boundary condition statement. Using direct adapta-

tion of structural computer code concepts, deVries and Morrie (ref. 5) obtained

representative finite element solutions to two-dimensional aerodynamic flow in

cascades using straightsided triangular elements. Computations for other two-

s	 dimensional aerodynamic configurations are given by Meissner (ref. 6);

Sarpkaya and Hiriart (ref. 7) present results for an axisymmetric geometry

involving a free surface of unknown loci;ion. Results using higher order

finite element funr4ionals, and curved-sided elements for improved geometric

I`	 simulation, for two-dimensional potential flows are given by Thompson (ref. 8),

Isaacs (ref. 9), and Hirsch and Warzee (ref. 10). The case for a specified

i	 freestream vorticity, "frozen" into an aerodynamic flow, is discussed by

l a,a.
Vooren and Laburjere (ref. 11) using linear two-dimensional finite elements.

is
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In all cases, the cited analyses correspond to the inviscid, steady,

isoenergetic two-dimensional flow of an irrotational (or circulation preserv-

ing), incompressible  fluid, i . e., potenti al flow aerodynamics. However, current

high-lift aerodynamic geometries employ complex combinations of flap and slat

systems. Powered lift configurations, using engine exhaust and/or mass ejector

systems, are areas of current aerodynamic research and development. All these

flow fields depart significantly from linear potential flow, and viscous and/or

turbulence effects Form a large and important influence. Fortunately, interest

in applying the finite element method of analysis to specifically non-linear

flow fields was spawned in the late 1960's as well, with early attention

focused on establishing an alternative theoretical foundation (since these

problems did not appear self-adjoint=) The Method of Weighted Residuals was

rediscovered (see Finlayson and Scriven, ref. 12), and emerged as a theoretical

foundation for deriving finite element solution algorithms for arbitrarily non-

linear partial differential equation systems. The linear potential flow case

then became a special subclass of the more general formulation. Application

to non-steady, two-dimensional aerodynamics is discussed by Bratanow and Ecer

(ref. 13). Baker (ref. 14-16) presents numerous applications to a wide range

of problems involving two- and three-dimensional viscous flows with turbulence

and chemical reaction. Chan et al. (ref. 17) document extension of the

finite element method to predictions in transonic aerodynamics.

These computational results provide demonstration (by parts) of the potel-

tial capabilities of the finite element method for analysis of complex aero-

dynamic systems. However, for the "computationa l wind tunnel" to become a

truly viable alternative to'extensive physical testing, it is imperative that

the computer conduct a compleat analysis. To do so, the geometrical modeling

must be performed with high fidelity, accounting of viscous /inviscid inter-

action must be intrinsic, and the inherent non-iinearities of fluid mechanics

must be accurately and economically captured by the computational mathematics.

The two most important outputs from a computer study in aerodynamics are sur-

face pressure distributions and overall drag; each can be accurately determined

only by an adequate accounting for the entire physical system. Therefore, it

is important to quantify the various flow disciplines, and to proceed through

evaluation of the important analytical sub-:ystems that constitute characteri-

zation of a realistic subsonic aerodynamic configuration.

5
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} This report documents results of a study conducted for this purpose on

the subject NASA Grant under the sponsorship of the Low Speed Aerodynamics

Branch, STAB, NASA Langley Research Center. By resorting to the fundamental

mathematics, the differential equation systems appropriate for description of

various aerodynamic flow regimes are derived. Their basic structure is noted:

the underlying mathematical uniformity is utilized to subsequently establish

the finite element solution algorithm applicable to all equation systems. The

COMOC finite element computer program system, under development for analysis

of problems in fluid and continuum mechanics, is briefly described. Subse-

quently, numerical results on finite element analysis of the various problem

classes of impact in aerodynamics are presented, with discussion of factors

:	 affecting solution accuracy, speed and adequacy as well as user-orientation

of the analysis procedures. A summary of results completes the report.

The work was primarily conducted while the senior author was on leave

from Bell Aerospace Division of Textron as Visiting Associate Professor of

Engineering Mechanics at Old Dominion University. We wl sh to acknowledge the

long-term support given to research in finite element methods in fluid and

continuum mechanics by Bell Aerospace, and the opportunity presented by Old

Dominion University to carry out this work.

NOMENCLATURE
i

	a	 boundary condition coefficient; unit vector

r	A	 area

	

b	 coefficient; unit vector

	

B	 body force

_	 c	 coefficient; speed of sound

	

cp	 specific heat

	

C	 chord; coefficient

	

C f	 skin friction

	D	 binary diffusion coefficien^

	

e	 alternating tensor

	

E	 r ymmetri c vel oci ty gradient

	EC	 Eckert Number



	

f
	

function of known argument

	

Fr
	

Froude Number

	

g
	

function of known argument

	

h
	

static enthalpy; convection heat transfer coefficient

	

H
	

stagnation enthalpy

	

j,k
	

unit vectors of rectangular Cartesian coordinate system

	

k
	

thermal conductivity; constant

	

K
	

generalized diffusion coefficient

	

R
	

differential operator; turbulent mixing length

	

L
	

characteristic length; differential operator

	

LP
	

LeAs Number

	

M
	

Mach number; number of finite elements

	

n
	

unit normal vector; coordinate normal to a curve

p

Pr

9

4

R

Re

5

S

Sc

t

T

u

U

v

xi

e
x,Y,z

Y

Y

l̀ DR

S

pressure

Prandtl Number

generalized dependent variable

heat addition; generalized discretized dependent variable

perfect gas constant; domain of elliptic operator

Reynolds Number

coordinate parallel to a curve

finite element assembly operator; boundary layer energy parameter

Schmidt Number

time

temperature

velocity vector

reference velocity

perturbation velocity vector: normal velocity

Cartesian coordinate system

rectangular coordinate system

snec4es mass fraction

pressure gradient parameter

ratio of specific heats

closure of elliptic solution domain

boundary layer thickness; Kronecker delta

f

7 r
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a	 increment

E	 kinematic turbulent viscosity; amplitude; belongs to

K	 coefficient

A	 multiplier; turbulence subs aver constant; period

u	 molecular viscosity

P	 density
Cr	 integral kernel

r	 stress tensor; integral kernel

(b	 perturbation potential function

P	 scalar potential function; finite element functional

X	 domain of initial-value operator

X3 scalar component of vector potential

T	 vector potential function

W	 x3 scalar component cf vortiaity; Van Driest coefficient

a	 vorticity vector; global solution domain

{}	 column matrix

square matrix

U	 union

n	 intersection

Superscripts

T	 matrix transpose	 e

a	 species identification 	 i,j,k,9.

unit vector	 Q

-^	 vector	 m

approximate solution	 o

constrained to closure 	 p

_L	 component normal to curve	 t

H	 component parallel to curve	 u

W

Subscripts

local reference condition

tensor indices

evaluated on lower surface

mth finite element subdumain

initial condition
pressure coefficient

partial derivative by time

evaluated on upper surface

evaluated at the wall

global reference condition



The complete description of a state point in multi-dimensional aero-

dynamics is contained within the solution of a system of coupled, nonlinear,

second order partial differential equations describing the conservation of

mass, linear (or angular) momentum, and energy. To establish unique solutions,

closure of the system is.required by specification of appropriate constitutive

behavior and boundary conditions. In conventional,vector notation, and then

repeated in the preferred Cartesian tensor notation (where the subscript comma

implies the gradient operator, subscript comma t is the time partial de-

rivative, and the subscript semicolon implies the generalized divergence

operator, see ref. 15), the conservation form of the differential equation

system is

at
.,q. IPu]	 OA)

t(Pu) _ "d ..IPU - r] + pu	 (2A)

i3t[PH - p] = -o • IPu H - u - kOT] + PQ	 (3A)

at (PYa)= -0 ° IPuYa - pDV Ye'l 	 (4A)

Pit - - [Pu i
 ]';i	 (1 }

(Pu0 st = — IPu i u^' + P6
ij	 Ti,i l ;j + Pni	 (Z)

(pH - p ) $ t • = - IPu i H 
- 

TijuJ - 
kT,7l i +.pQ	 (3)

(PYa)7t - -IPu i Ya - paYO', i
]^ i
	(4)

The dependent variables in egn.(l)=(4) have their usual interpretation in

fluid mechanics. The mass flow vector is pu i where p is the mass density
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i

and u 	 is the local velocity vector. In egn.(2), B 	 is an appropriate

body force, and 
Tii 

is the diffusive ( viscous) stress tensor. Egn.(3) is

written on stagnation enthalpy, H,p is the static pressure, T is the

static temperature, and Q is the local heat generation rate. For multiple

species flows, as might occur for example in powered lift configurations, YO,

is the mass fraction of the ath species in egn. (4), and D is the binary

diffusion coefficient. Egn.(4) also provides the means for tracing the trans-

port of distinct flow field components.

As stated, the solution of egn.(I)-(4) requires specification of consti-

tutive relationships between the dependent variables and the diffusion coef-

ficient D , the stress tensor T ij , and the effective viscosity and thermal

conductivity. For compressible flows, an equation of state relating the

thermodynamic variables is also required. Since predictions in both laminar

and turbulent flows are required, and since the time-averaged form of egn.(i)-

(4) appears identical to those presented, by appropriate interpretation of the

stress tensor, the general form of clos °,are can be written as

T
iJ 

- [p(T) + Pe i j lf (u i ;j , u j;i )	 (5)

In egn. ( 5), u identifies the laminar molecular viscosity which is tempera-

ture dependent, and 
e,j 

is the effective transport tensor due to turbulence.

As indicated, the diffusive stress tensor is assumed a functional of the sym-

metric velocity gradient (cf., Donaldson et al., ref. 18). For strictly lam-

iner flow of a Newtonian fluid, egn.(5) embodies Stokes' viscosity law

Ti j = 21ifEi j-1 E^ k6 i ^1	 (5)

which displays the linear functional dependence on the symmetric velocity

gradient as

f(u i 	 u i ) = Ei	 2 ( u. ;j	 u
j "1)

The thermodynamic properties are typically expressed as

10
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li
II

(8)

3

^,	 1
p = p(p,Y°`.,T)

H	 haY" k u i ui

f

T
c Y°`d^	 uiui

1.0

0c' = DWIlui ).

Rather than attempting direct solution of egn.(1)-(10), it is convenient

to non-dimensionalize all variables to extract the useful non-dimensional

groupings. Using standard procedures (ref. 15.), the non-dimensional form of

egn.(l.)-(4) is

p°t r -1Auil ;i	
(11)	 l

j

(Au i) t"
S.^pu i u j ^- P 6
	 Re

,^,	 1	 6A
z j	

+
Fr	 i

(12)
i

;j

i

H(A/	
..	 Ec	 =(	 ) p) } t

Rc
-	 u. R -	 ^.	 u. -IA i	 Re	 ^.7	 i

11	 u ^_-	 ^ Re Pr. AQ
Re Pr 	 7

(l^) 

a
( AY ) ^ t -

a	 e	 aL
- ^Pui Y	 - Pr	

Y
'i

j

tl)

1	 the important; no in-dimensional parameters for fluid mechanicsIn egn.(l )-(14),

are identified as

f(
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Prandtl Number:

Eckert Number:

Froude Number:

Lewis Number:

3i

p^h^L
Re =

(15)

^W

Pr _ -Lk (16)

Ec
uZCO

= cT (17)
P" .

U 2

Fr = Lg (18)

Le = P—D Pr (19)
11 1

Reynolds Number:
t

It is also useful to define the Schmidt number from the above as

Sc = 
Pr

Le Re

Note that, for a thermodynamically perfect fluid

Ec = (y-I)W
co
	

(20)

where y is the ratio of specific heats, and YL is the reference Mach

number defined as

N

M =	
CO

	

CO ,/i^	 (21)

where R is the universal gas constant divided by the molecular weight.

The solution of egn.(11)-(14) is a formidable task, and there are several

alternative forms and simplifications to the system that can render such solu-

tion more straightforward for non--trivial problem classes in aerodynamics.

The Navier-Stokes equations primarily describe the behavior of the mass flow

vector field, o i . From vector field theory, we recognize that without loss

of generaility, we can describe pu i in terms of a scalar and a vector poten

12
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tial functi on, 0 and ^ respectively, as

^^=— P v^ + Xly
	

(22A)

Pui = - P`h'i + eijk 'yk,j	
(22)

The first equation employs conventional vector notation; the second illus-

trates the preferred indical form, and the decomposition in egn.(22) is unique

to within an arbitrary constant, provided V satisfies the "gauge" condition,

i.e.,	 = Tk;k = 0 (cf., ref. 19, App. I.). In terms common to fluid mech-

anics,	 is called the (total) potential function, and ^ is the three-

dimensional equivalent of the familiar two-dimensional stream function.

Viewing egn.(11), we observe that for steady or incompressible flows, the

massflow vector field also satisfies the "gauge" condition, i.e., it is diver-

gence-free. Inserting egn.(22) into (11), and from the skew-symmetry proper-

ties of the Cartesian alternator, we obtain

(Pui) i = (p4), i ) ,i = 0
s

An elementary solution to egn.(23) is that 4) vanishes everywhere. Bence,

for all cases where egn.(11) describes steady or incompressible flow, we may

choose to analyze the flow using the transformation

pu i	eijk lyk ,j

	
(24)

In this case, pu i is said to be a solenoidal vector field. An important

additional aspect of this problem class is that the flow may be explicitly

rotati onaI . The vorti ci ty Si is defined as the curl of velocity field; hence

Ili = eijk 
u 
	

(2b)
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Substituting egn.(24) into (25), utilizing the symmetry properties of alter-

nator contractions, and noting that 
Yk 

satisfies the gauge condition, the

compatibility relation between stream function and vorticity is directly ob-

tained as

L1 T J
	

+	 (L)
p i 53 ;j	 J;i p si	(26)

6gn.(26) may find considerable use in analysis of certain problem classes in

aerodynamics.

We have an alternative choice for the aerodynamically important case of

irrotational flow, wherein the curl of egn.(22), or egn.(25) vanishes identi-

cally by assumption. Again using the skew-symmetric properties of the alter-

nator, and for 
T  

satisfying the gauge condition, one obtains from egn.(22)

ejik ( pu i ) k = 0	 - Tk;.7.7
	

(27)

If we set vl , equal to zero everywhere, for irrotational flows we then have

the identity,

pui	 -PD*i	
(28)

In this case, pu i is said to be a Iamellar vector field.

We may elect to employ the primitive variable description for pu i , or

may selectively employ the definitions in egn.(24), (25) and/or (28). The

particular choice depends u;on the features of the differential equation sys-

tem derived from egn.(I1)-(14) for each case of aerodynamic value.

Aerodynamic Potential Flow

The steady, isentropic flow of an inviscid, single-species perfect gas

has been the focal point of research in aerodynamics for well over 70 years.

A specific accounting of the simplifying assumptions is readily accomplished

for the parent differential equation system, egn.(11)-(14). Neglecting body

forces, and discarding the species continuity equation as redundant, for this

}	 problem class we have

14

t.

i



1

I	 '
3

I

v

I

,f

1

(pui) i = 0
	

(29)

(Pui uj), i = -P si

	
(30)

c 2 p si = Ps i 	 (31)

Since isentropic implies adiabatic and reversible, egn.(I3) is identically

satisfied by H = constant . Egn.(31), an alternative expression for this

form of egn.(13), defines the speed of sound in an isoenergetic perfect gas.

Since the flow is assumed inviscid, the dispersive stress tensor, egn.(5),

vanishes identically. Egn.(29)-(31) can be conveniently combined into a

single differential equation on the velocity field, u k . Substituting

egn.(3I) plus the expansion of egn.(29) into egn.(30), one directly obtains

the differential constraint for steady, invisgid isentropic flow as

u
i ,^

16 ii

u

- c^	 u i ; 
j = 0

In egn.(32), recall that c is the local speee of sound, conveniently defined

in terms of a stagnation reference condition and the local velocity field by

the isentropic energy equation in the fora

c2 = ca	 u^ u k	 (33)

Egn.(32) is a highly non-linear, first order partial differential equa-

tion written on the field behavior of the velocity vector u k	 It is valid

for all Mach numbers, and as a function of local Mach number may selectively

display elliptic, parabolic, and hyperbolic differential character. An impor-

tant subclass corresponds to the additional constraint that the flo g be irro-

tational. For this case, a useful rest7tement of egn.(32) is obtained using

egn.(28). By direct substitution, the second order partial differential equa-

tion for determination of the distribution of the scalar potential function 4)

is

15

(32)



{	
^

	

cz 	^, i,j = 0	 (34)

Egn.(34) displays the mixed differential character as well. For i = ,j , the

term in the bracket becomes of the form [1 - M (i) l , whrare M 0) is the

local Mach number of the flow in the coordinate directian x(i).	 Hence, for

subsonic flows, egn.(34) is elliptic, and from the theory of the solution of

partial differential equations we require knowledge of an algebraic combina-

tion of 0 and its normal derivative, 0, knk around the complete closure of

the solution domain. For supersonic flows, one of the bracketed terms may

become negative, and egn.(34) then displays a mixed elliptic-hyperbolic char-

acter. In this instance, boundary specifications on 1D and/or its normal

derivative are required on some non-characteristic curve. In the intermediate

(transonic) speed range, egn.(34) can &xhibit a globally elliptic character

within embedded hyperbolic and/or parabolic sub-domains, and the numerical

solution procedure must recognize these distinct regions.

Regarding boundary conditions, we observe that specification of velocity

on the closure of the solution domain will correspond to a gradient boundary

condition specification on the scalar potential function, see egn.(28). On an

arbitrarily oriented closure segment, identified by a unit outward pointing

normal vector, n  , egn.(28) states that

(D, k nk 
= ^uknk	

_U 	 (35)

where	 is the scalar camponent of velocity parallel to n  . As a special

case, egn.(35) states that the normal derivative of 0 must vanish on an

impervious aerodynamic surface, sin , .e thereupon the local velocity vector must

lie tangent: to the surface.
The numerical solution of the general non-linear form of egn.(34) is not

commonly attempted. For specification of additional simplifying assumptions,

which constrains the generality of the -flow field description, alternative

forms for egn.(34) that are more tractable for numerical solutions using con-

16
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ventional techniques can be obtained. By and large, the fundamental step is

re-definition of the scalar potential function, egn.(28), under the assumption

of the preponderant existence of a preferred flow direction. Assuming this

direction aligned with the x  coordinate axis, and identifying a reference

velocity NJ as parallel to this direction, re-define the local velocity
field as

Pui = PU. Gi l
 + PV 	 (36)

Under the assumption that the perturbation velocity component, v i , is small

in magnitude in comparison to the freestream reference vel oci ty, we can define

a corresponding perturbation jotentiai function as

Pv i = -05 i	(37)

Then, egn.(28) takes the form

;

Pui -- -0-i - PLVil -PO 'i 	 (38)

Substituting egn.(38) into egn.(32), and altering the reference condition in
f:

egn.(33) to that corresponding to U. , and proceeding through the well known

} order of magnitude analysis (cf., ref. 20), for the subsonic and supersonic

;-	 slender body approximation one obtains the linearized form of egn.(34)

written on either the total or perturbation potential function as

I - M2 4)+ `P^22 + ^^33	 g	 (39)1 11

The boundary conditions for solution of egn.(39) are obtained from the

definition in egn.(38) in the manner analagous to the specification in

egn. % 35). Egn.(39) displays the mixed elliptic-parabolic-hyperbolic character

of the full non-linear form, egn.(34). For the final additional assumption of

zero Mach number, or equivalently incompressible flow, egn.(39) becomes the

Laplacian on (D , which is a linear elliptic-boundary value problem. It is

this form whose numerical solution is typically computed for subsonic flows,

u
17



in combination with an independent variable transformation on the x l coordi-

nate axis to account for a finite subsonic Vlach number.

Flow fields of the subject problem class are also amenable to analysis
using the definition of stream function, egn,(24), provided the parent flow is

either incompressible or steady. For the additional assumption of irrotational,
egn,(26) must vanish identically from the definition in egn.(25); hence

G_)Ii 0	 {40)
P lyk;i ;i- 	

i k - 

Egn.(40) states that the vector potential function, T  , satisfies a second-

order linear partial differential equation of the Laplacian type provided

that the stream function satisfies the gauge condition. Since, from its def-

inition, density can never become negative, and since the first-order differ-

ential term in egn.(40) does not affect overall characterization, egn,(40) is

uniformly elliptic and 'its solution requires knowledge of 
Tk 

and/or the

normal derivative, 
T 

9 anj on the complete closure of the solution domain.

The vector potential function is simply a generalized concept of the two-

dimensional stream function familiar to all. Therefore, 
Tk 

equal to a con-

stant implies existence of a stream hypersurface across which mass flow van-
fishes. Forming the outer product of the defining equation, egn.(24), with an

arbitrary unit vector aR yields	 i

Pu l a,,	 Eijk Tk,j aQ	(41)

For aQ parallel to the velocity vector u i , the specified mass flux across a

segment of the solution domain closure determines the distribution of T  on

the corresponding surface. Conversely, for aQ lying parallel to the velocity

vector ui , eqn.(41) yields a normal gradient-type boundary condition con-
straint on stream function in terms of the parallel velocity component of the

form

P k; j nj	 -uk
	

(42)

18



i

1	 ;

I'

71_7117 7

E

It is instructive to contrast the form of the boundary condition constraints

for the two potential functions, see egn.(35) and (42). As a final simp lifi-

cation, in the instance of constant density flow, note that egn.(40) degene-

rates to the linear Laplacian written on T 	 In all instances, since both
i

the scalar and vector potential functions are defined only to within an arbi-

trary constant, see egn.(22), each function may be appropriately specified at

some point on the solution domain closure for convenience.

Analysis of rotational, inviscid  i sentropi c flow fields can be accomp-

lished using either the scalar or vector potential function as well. Regard-

ing the former, fo!^ linearized potential flow theory, the Kutta-Joukowski

j	 hypothesis states that the correct rotational flow pattern of any family of

flows is the one flow with a finite velocity at the trailing edge of an air-

foil. Hence, from the concept governing two-dimensional, irrotational incom-

pressible flow about bodies resembling subsonic airfoils, one can complete an

V	 analysis of a family of flows for a given boundary and a given freestream

!
velocity. These flows differ primarily in the amount of circulation; however,

all but one will have an infinite velocity at the trailing edge. With use of

Kutta condition, use of egn.(34) or any of its simplifications is not contra-

,'	 indicated for rotational inviscid flows.

For rotational incompressible or steady flows, use of the vector poten-

tial function is straightforward. The derived compatibility egn.(26) becomes

in this instance

1	 _ -a

p k1J	 k	 (43)

Egn.(43) states that the distribution of the stream function will be altered

by the imbedded rotational character of the flow. Provided the flow is steady

and inviscid, an analysis (discussed in the next section) shows that the

rotational freestream will be "frozen" into the computed streamline distribu-

tion about an aerodynamic shape. Hence, by establishing an iterative pro-

cedure for solution of egn.(43), one theoretically can determine the rota-

tional flow abort an arbitrarily shaped aerodynamic surface, with embedded

freestream vorticity, using the vector potential function.

3
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Aerodynamic Viscous Flow

The complete analytical characterization of an aerodynamic system requires

an accounting for viscous effects. For conventional aerodynamic shapes at

small angle of attack, these effects are essentially confined to the thin layer

of fluid in direct contact with the aerodynamic surface. The remainder of the

flow field is essentially free of viscosity effects and completely amenable to
analysis using inviscid flow field concepts. These thin viscous layers are

called boundary layer flows, and their analysis and understanding constitutes
an extremely important branch in engineering and aerodynamics. Under a first-

order of magnitude analysis (cf., Schlichting, ref. 21), for the steady bound-

ary layer flow of a viscous compressible fluid described by the velocity

vector

U. = ul El + u2F2	 U3E3
	

(44)

where the unit vector triad ri lies parallel to coordinate curves of a

general Cartesian curvilinear coordinate system, the three-dimensional bound-

ary layer equivalent of egn.(11)--(14) takes the form

0 = (pui)si

_ 1
Pu i ul;i - Re kv + 

PE12 )U1;2 ,2-P21

0 = _P`2

U i	 = ReU3;i	 [(I' _' PE12)U3;21,2-P13

(45)

(46)

2
Ec

+ Re U1;2	 U3;2PU i H, i Re r [ (p + pe12) H°2

Pui Y 'i = Pr [ (11 AF-12 ) Ya,2
;2



In the Form presented, the use of a body-oriented orthogonal coordinate system

i
	

attached to the aerodynamic surface is assumed, where x  is parallel to the

predominate direction of flow and x 2 is assumed to lie everywhere perpendic-

ular to the aerodynamic surface. For aerodynamic surfaces with local curva-

ture distributions, the generalized semicolon subscript (;) differential nota-

tion will yield additional terms stemming from use of a curvilinear coordinate

system in equations (45)-(50). Note that the flow may be laminar, transitional

or turbulent.

Perhaps the most significant feature of the boundary layer equations, and

their solution, is contained in egn.(47). Under the first-order of ►lagnitude
simplifications, the transverse momentum equation yields the significant fact

that the pressure distribution is constant „,!roughout the bounday layer thick-

ness. Hence, in the remaining momentum egn.(46) and (48), pressure appears as

a parameter only, being obtained fror.1 the inviscid flow field solution. There-

fore, egn.(46) and (48) are solved respectively as initial value problems for

u 
	 and u3 with the pressure replaced by p  , while egn.(45) is recast into

an initial-value problem for the x2 distribution of the velocity component

normal to the surface, u 2 . For non-isoenergetic flows, egn.(50) is also

solved as an initial value problem for the distribution of stagnation enthalpy,

H . It should be noted that the conventional two-dimensional boundary layer

equations are a sub-set of the presented form, obtained by deleting egn.(48)

and excluding 3 as an admissible index for summation in egn.(45)-(50).

Finally, for single species flow, egn.(50) may be deleted completely.

The initial and boundary conditions appropriate for solution of egn.(45)-

(50) are obtained in a straightforward manner, as all except (45) represent a

general initial-valued, two-point elliptic boundary value problem in mathe-

matics, On the aerodynamic surface, the no-slip boundary condition for the

tangential velocity field yields

u l (xl ,0,x3 ) = u3 (xl1 0 1 x3
) W 0	 (51)

To account for suction or blowing at the aerodynamic surface, the correspond-

ing constraint for solution of egn.(45) becomes
E

u2 (xl,olx 3 )	 v(xl>x3)	 (52)

I
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where v is the specified distribution of normal velocity. Similarly, at the

freestream juncture (x 2 = 6) between the boundary layer and potential flow,

we require the boundary layer velocity distribution to be equal to that of the

external inviscid flow, denoted by a subscript a 	 as

u i (x l ,6,x3 ) = u ei (x l , x3 )	 (53)

Typically, solution of egn.(50) at the surface involves a convection-type

boundary condition written in terms of the local static temperature as

-kT, ini = h[T - Tr]	 (54)

At the freestream, the normal gradient of H typically vanishes as

H (xl , s , x3 ), i ni = 0	 (55)

f	 Finally, the form of egn.(55) is typically appropriate at x 2 = 0 and x2 = S
i

for solution of egn.(5l), with H replaced by Y c ' .

Since egn.(46), (48)-(51) are also initial value problems in the xl

j	 coordinate direction, an initial profile distribution for each appropriate

dependent variable is required. Denoting g as a generalized dependent

I variable, the solution of the equation system is initialized  by specification

of the form

q(O,x21X3) = go ( x2'x3 )
	

(56)

The presented two- and three-dimensional boundary layer equations are the

most tractible form of the parent Navier-Stokes equations for numerical solu-

tion. Consequently, their range of applicability is considerably limited by

geometric or flow field considerations. For merging viscous flows near trail-

ing edges, or flap and slat combinations, or for powered lift configurations

with their associated thick viscous non-isoenergetic flow fields, a more com-

prehensive form of differential equation description is required. For steady

three-dimensional flows of this type, in bounded or open domains and meeting
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certain requirements, a significant simplification can be made to the parent

Navier-Stakes equations that renders three -dimensional solutions considerably	
7

a	 more retractable with present computer hardware. This approximation, now

known as the "parabolic Navier-Stokes equations," describes steady three-
;

dimensional flows wherein: 1) a predominant flow direction is uniformly

i present, 2 1, in this direction ( only) diffusion processes are negligible com-

p ared with convection, and 3) no disturbances are propagated upstream anti-

parallel to this direction. For the velocity vector identified in egn.(44),

and for the same coordinate description of the solution space, the three-

'	 dimensional parabolic Navier-Stokes equations are of the form
i^

	

0 _ (P
u y )	 (57)	

t
;

^1 - Skl)

-- 	 (58)

	

puj u i ;j Re	 + PEik) U i 	 p'

	

;k	 k	 i
f

iE	
1

	

Skl l	 Pei k)	 r+ P

	

—1	 -^	 1 - Pr \	 ^7 k }
j.	

PuiH'i -	 Re	 Pr	 N'k	 -	 Pr	 (ajuj);k

	

sk	
;k

}	 - Sc - Pr	
+ As	 ha YaSCPr

	

.
^k)	 ,k	

(5g)
a ;k

i

S_Vl
	 psi k 7 a

Pui Y 'i -	 Re	 Sc	 Y'k ;k	 (60)

t
1

The dominant differences between the parabolic Navier-Stokes equation

system, ( 57)-(60), and the three-dimensional boundary layer egn.(45)- ( 50),

E :•
relate to dimensionality of the boundary value character and to the appearance

of pressure. For boundary layer -Flow, egn. ( 47) yielded a uniform pressure

distribution imposed through the thickness of the boundary layer. In the

I	
parabolic Navier-Stokes system, pressure appears as a dependent variable and

:f
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its solution is required. The several forms of the pressure algorithm, to be

s
	

discussed, depend upon the particular geometrical configuration under study.

The other significant feature of the parabolic Navier-Stokes system is that

the diffusion term (first right side term modified by (1-akl )/Re) is two-

dimensional, spanning the plane whose normal is parallel to the direction of

predominant flow. (The subscript bar notation indicates no summation; for

k=l only, (1-6 kl ) vanishes.) Hence, boundary condition statements on the

three components of velocity as well as enthalpy and mass fraction must be

specified everywhere on the closure of this two-dimensional plane. Identify-

ing q for a generalized dependent variable, most physically realistic bound-

ary condition constraints are of the form

a(1)(xi)q + a (2) ( x i) q, kn k = a (3) ( x i )	 (61)

In egn.(61), the a (i) are user-specified coefficients; note that the corres-

ponding boundary layer equation statements, egn.(5l)-(55), are all special

cases of egn.(61). As before, since the parabolic Navier-Stokes equation

system contains an initial value description for each dependent variable,

specification of the form of egn.(56) is required for each dependent variable.

Dependent upon the geometry of the flow configuration, egn.(57) and the

three equations in (58) are selectively altered to obtain solution of the

three components of velocity and the pressure distribution. For boundary

layer-type flows (termed boundary_ region flow), since egn.(57)-(60) encompass

egn.(45)-(50) as a special subset, the assumption of vanishing normal distri-

bution of pressure may be valid. Hence, the inviscid pressure distribution is

imposed upon the flow field. Pressure is again decoupled from the solution,

the second of egn.(58) is discarded, and egn.(57) is employed to solve for the

x..., distribution of the corresponding velocity component u 2 . For solution

domains totally bounded by solid walls, as might occur in inlets or exhaust

ducts for example, the theory of Patankar and Spalding (ref. 22) can be used

to achieve a pressure solution. Their theoretical procedure involves a split-

ting of the pressure field computation by decomposition of the local static

pressure into the form

24



P(xi) = P(xl) + P'( x2' x3 )
	

(62)

Determination of the x
i 

component, P , is obtained by integrating egn.(57)

over the cross-sectional area of the duct and accounting for the influences of

wall shear (Tw), area change (A(x l )), and heat or mass addition to yield the

solution form

—L. f(Pul, MY, zw , Ya s T)
1

	
(63)

Note that egn.(63) is an ordinary differential equation; its solution deter-

mines the (assumed uniform) axial pressure gradient appropriate for solution

of the first of egn.(58). To obtain solution for the distribution, in the

transverse plane p'(x 2 ,x3 ) , the divergence of the second two equations of

(58) is taken and coupled with egn.(57) to yield the solution form

0 , 6kl )p` ;kk = f (Pu i I f{a , T)
	

(64)

As written, egn.(64) is a two-dimensional elliptic boundary value problem of

the Poisson type; the right side is a specified function of its arguments.

The previous approach is inappropriate for flows in ^:ompletely unbounded

domains. in this instance and coupled with an equation of state, egn.(57) can

be cast as a pure initial value problem on the three-dimensional pressure

distribution, p(x i }	 in this case, egn.(57) takes the foam

dp(x i ) _ -RT
c_f_x	 _ u1
	

[Pul;l  + (1 - Skl ) (Pu k ) ;k	 (65)1 

where we have assumed,valid the perfect gas law. Note that egn.(65) is

totally inappropriate for confined flows, since the right side becomes infin-

ite at a wall where ul vanishes. For three-dimensional flows bounded by an

aerodynamic surface and an inviscid freestream, the second of egn.,,(58) yields

an appropriate specific form for determination of transverse pressure distri-

r

,y
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bution as

dp(xZ)

dx
2
	r 

f(Au i , T, pe )

For the alternative case of a viscous flow field imbedded between two poten-

tial flows, as might occur in the trailing edge region downstream of an air-

foil for example, a recasting of egn.(57) into the form of egn.(64) using the

concepts of eq, , .(62) may be required. In all instances, the computation of

pressure typically involves application of initial-value techniques coupled

with the explicit assumption that pressure variation is a local phenomenon

unaffected by downstream influences. For flow fields where this assumption is

violated, use of the parabolic Navier-Stokes equation systems is probably

contraindicated.

Solution of the boundary layer or parabolic forms of the Navier-Stokes

equations is appropriate for flow fields where curvature effects are suffi-

ciently modest such that streamwise separation does not occur. However, at

larger angles of attack for an airfoil for example, the created adverse

pressure gradient will retard the parent unidirectional-type flow to the point

where the streamwise momentum is insufficient to keep the flow attached to the

airfoil. The phenomenon of separation occurs. whereby the remaining unidirec-

tional aerodynamic flow is separated from the aerodynamic surface by a suit-

ably sized region of highly rotational viscous flow. For fully three-dimen-

sional geometric configurations, characterization of these flows requires

solution of the full Navier-Stokes egn.(11)-(14): However, since solution of

this form is typically not tractable on current generation computers, full

Navier-Stokes solutions are generally limited to two-dimensional configurations.

The form presented as egn.(11)-(14) can be used for solution of two-

dimensional viscous flows. However, for steady or incompressible cases, an

alternative formulation can be completed that takes advantage of the vector

field character of egn.(11). For this case, egn.(24) takes the specific form

Au i - e3ij ^'3,j

	

" 
e3i,j *' j	 (67)

(66)



It is significant to note that only the x 3 scalar component of the vector

potential function is required to characterize two-dimensional flo gs. Similar-

ly, egn.(25) becomes

"3	
w =- e3ij uj 

,1	
(68)

The compatibility equation, egn.(26),becomes for two-dimensional flow, using

egn.(67) and (68)

0 = 
[Pl V,3]

;a
 + w	

(6g)

In terms of stream function and vorticity, the momentum equation (12), of

the Navier-Stokes system for two-dimensional steady or incompressible flows,

becomes considerably simplified (ref. 15) to the form of the vorticity trans-

port equation.

Aw, t = Re
Pw,J - 

P,
jw - u, k (2 'k)

f"

is

- e
3ki [(w^'O ;k - Z (*2kiP

k
	 (70)

The most significant feature of egn.(70) is the disappearance of pressure as a

coupled dynamic variable, Hence, egn.(69) and (70) constitute a closed system

for determination of two-dimensional rotational viscous aerodynamic flows.

The stagnation enthalpy and species continuity equations, egn.(13)-(14),,

remain as presented except for substitution of egn.(67) for the terms involv-

ing velocity.

As stated before, egn.(69) is an elliptic boundary value problem since

density never vanishes and is always positive. Therefore, for boundary con-

ditions we requir,« knowledge of	 and/or its normal derivative everywhere

on the closure of the solution domain. For finite Reynolds number, egn.(70)

is also an elliptic boundary value problem coupled with initial-value behavior

due to the time derivative (for incompressible flows only). Hence, we also

require knowledge of w or its normal derivative everywhere on the closure	 j



of the solution domain. Since the defining egn.(68) is valid throughout the

'	 solution domain as well as its closure, boundary condition specifications on

vorticity are obtained from egn.(68) and (69). The numerically consequential

vorticity boundary condition becomes the imposition of the no-slip wall; the

equivalent embodiment in vorticity is

W^-dam
ant

In egn.(71), n -is the coordinate normal to the local closure segment of the

solution domain. To evaluate egn.(71), it is necessary to form the second

derivative of the streamfunction distribution on the closure. Several forms

have been determined as appropriate, see Roache (ref. 23, Section III.C).

The pressure distribution may be recovered from the vorticity-stream

function characterization of a Navier-Stokes solution by evaluating the momen-

tum equation, egn.(12). Two alternatives exist; egn.(12) can be differentiated

by the divergence operator yielding a boundary-value specification on pressure

involving the Laplacian operator. However, since we are primarily interested

in pressure distributions on aerodynamic surfaces, an alternative formulation

exists which can be of value. Form the vector contraction of egn.(12) with an

infinitisimal displacement vector dx i and integrate over any curve; this
yields

p,^a i ^dx i - -	
Puiuj - Re 

T i a	 dxz -
 

atfpuidxi	 (72)

^J

Note that the left side of egn.(72) is the integral of a perfect differential

and thus independent of path. Hence, the pressure at any point in the field

can be determined, in comparison to some reference value, by integration over

an arbitrary (the easiest) path between the two points. Denoting the inte-

grals of perfect differentials by A , completing the indicated integrals, and

performing numerous integration by parts, the final form for egn.(72) becomes

(71)
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dp - D 

ER	

\P e^ '^,k , .	 3	 ^'k	 P}°J	 - P ( 'k

ERek	
+ E}	

'k	
- (u + Pe ) ^^ P	

dxi
P	 ;j	 ;J

(73)

+j 	 Cpl *'i ^,j 
i J 

dx.
,J	 ^

In egn.(73), the first curly bracket contains terms which are point dependent,

v
the result of integrating perfect differentials. The second and third brack-

ets require integration, thus selection of path. While the appearance of

egn.(73) is formidable, its numerical evaluation utilize!; well-known techniques.

As a final observation, we noted in our earlier discussions that for

'	 steady, constant-density inviscid rotational flows, the vorticity was frozen

into the streamline distribution. This can be readily determined from egn.(70),

the vorticity transport equation. The complete first term vanishes identically

for inviscid flow, while the left and last right side terms vanish identically
for steady, constant density flows. Hence,the sole term remaining for this

case is due to convection. In terms of a streamline coordinate, denoted as

s(x i }, egn.(70) can be written in scalar notation in terms of the velocity as
F

 13

aw	 (74)u as r 0

Since the streamline speed u does not vanish, satisfaction of egn.(74) is

obtained only for vorticity w vanishing identically or not varying in the

streamline coordinate direction. Hence, the previous observation for aero-

dynamic potential flow is confirmed from the vorticity transport equation. It

is useful to note that the form of egn.(74) is quite identical to Bernoulli's

law for determinatioto of pressure distributions along inviscid streamlines.

u 8 u_ I V p	 (75)
as P

Egn.(75) is utilized for determination of surface pressure dirt-ibutions using

E ' the velocity distribution computed from an inviscid flow field analysis.
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FINITE ELEMENT SOLUTION ALGORITHM

Various forms of the Navier-Stokes equations have been developed as

appropriate for analysis of distinct configurations in aerodynamic flow. For

an inviscid irrotational analysis, egn.(34) is the preferred parent form,

written on scalar potential function, with egn.(39) obtained following some

linearizing assumptions. Vector streamfunction is applicable to rotational

flows as well; its distribution is established via solution of egn.(40) or (43)

appropriately. Viscous flow analyses have fallen into several categories. For

a completely attached viscous boundary layer between the aerodynamic surface

and the freestream, solution of the two- or three-dimensional boundary layer

egn.(45)-(50) is appropriate. For merging viscous flows near trailing edges,

or flap and slat combinations, or for powered lift configurations with thick

viscous non-isoenergetic flow fields, the more comprehensive parabolic Navier-

Stokes system is appropriate, egn.(57)-(60), provided the flow remains unidi-

rectional. Finally, analysis of omnidirectional viscous flows requires solu-

tion of the complete Navier-Stores equations, either in the parent form of

egn.(11)-(14) or for two-dimensional configurations, egn.(69)-(70). For the

subsonic flows of present interest, each member of the derived differential

equation systems (except for instances with specific retention of the contin-

uity egn.(11)) is uniformly cast as an elliptic boundary value problem of math-

ematical physics with individual instances of initial-value coupling. Specif-

ically, identifying q(x i ,X) as a generalized dependent variable of interest,

each of the subject partial differential equations is a special case of the

general, second-order non-linear partial differential equation

L ( q ) = K [Ki i (q)q, i

	

	 + f( q = q , i gx i ) - g ( g 'X) = 0	 (76)
;j

In egn.(76), f and g are specified functions of their arguments, X is

identified with x  for boundary layer or parabolic flows or time for trans-

ient flows, and the x i are the coordinates for which'second-order derivatives

exist in the lead term. For this term, K is a scalar constant and kij(q)

is the generalized diffusion tensor, and both become uniquely specified by

identification of q with each of the dependent variables associated with the

particular equation system of interest. The finite element solution algorithm
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is

is based upon the assumption that L(q) is uniformly parabolic within a

i
bounded open domain R ; that is, the lead term in egn.(76) is uniformly

elliptic within its domain R , with closure aR , where

S	 R x (Yb ^X)	 (77)
I

i:. and X. < X . If egn.(76) is uniformly parabolic, unique solutions for q

are obtained upon specification of functional constraints on the closure of 2,

asp =- aR x[xo ,X) , and an initial-condition specification on RUaR x Xo . For

constraints on M , the general form relates the function and its normal

derivative everywhere on the closure DR. as

Q( q) = a (l) q(xi ,X) + 
a(2) K

	 An - a( 3 ) = o	 (78)

'

	

	 In egn.(78), the aM O vx) are user-specified coefficients, the superscript

bar notation constrains xi to aR , and n3 is the local outward-pointing

j,	 unit normal vector. For an initial distribution, assume that

q (xi ,Xo }
	

q
0 
(xi) (79)

i,

is given throughout R U aR x Xo

The finite element solution algorithm is establish%4 for the equation

system (76)-(79) by using the method of weighted residuals (MWR) formulated on

a local basis. Since egn.(76) is'valid throughout	 it is valid within
f

j	 disjoint interior subdomai ns Sim described by (xi ,X ) ERm x [xo ,x) , called

E` finite elements, wherein UP, R . An approximate solution for q within
^	 r

Rn x
[xo,X) , called gm(x i ,x)	 is formed by expansion into a series solution

of the form

q* (xi,X) _`(xi)T	 Q(X}
m	 (gyp)

In egn.(80), the functionals 4^
k
(x i ) are subsets of a function set that is

complete on Rm . The expansion coefficientsQk(x) represent the unknown

X-dependent values of gm(xi,X) at specific locations interior to R. and

on the closure DRm, called nodes of the finite element discretization of R .
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To establish the values taken by the expansion coefficients in egn.(80),
i

+	 require that the local error in the approximate solution to both the differ-

ential equation L(qm) and the boundary condition statement Q(q*) n for

aRmnaR :A 0 , be rendered orthogonal to the space of the approximation func-
tions. By employing an algebraic multiplier a, the resultant equation sets

can be combined as

O(x i )	
L(qm dz - Xf 	4O(Yzi)	 X (q*) dar	 = f0} (81)

Rm	 aRmn DR

where A is the mapping function from the finite element subspace Rm to the
global domain R , commonly termed the assembly operator. The number of

egn.(81) prior to assembly is identical with the number of node points of the

finite element Rm .

Egn.(81) forms the basic operation of the finite element solution algo-

rithm and of the COMOC computer program to be described. The lead term can be

rearranged, and a determined by means of a Green-Gauss theorem:

@(xi) 
^ 

K IKqijm,iI;j dT _ +c

Rm 	 aRm 

^ 'D(xi) ) Kijgm , inj do

R

	 f'P(x j )j ,j Kijgm,idT	 (82)

m

For MaRm nonvanishing in egn.(82), the corresponding segment of the closed-
surface integral will cancel the boundary condition contribution (egn.(81))

by identifying aa(2) with is of egn.(76). The contributions to the closed-

surface integral egn.(82), where aRmnaR = 0 , can be made to vanish (ref. 15).

When egn.(78)-(82) are combined, the globally assembled finite-element solu-

tion algorithm for the representative partial differential equation system

becomes

3
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S - K	 { },^ Kijgm°i dT +	 M (fm - gm) dT

Rm 	Rm

- K	 { }	 aml) gm - a.
(3)

) da = {0}	 (83)

faR,n@R	 J

The rank of the global e7uation system ( 83) is identical wiV9 the total number

of node points on R 8R for which the dependent variable requires solution.

Egn.(83) is a first-order, ordinary differential system, and the matrix struc-

ture is sparse and banded. Solution of this system is obtained by COMOC using

a predictor-corrector finite-difference numerical integration algorithm

(ref.- . 14).
A solution algorithm is required for the continuity equation, which is

retained as egn. (45) or (57) for boundary-layer or parabolic flows. When

retained, it describes an initial -value problem on put or p as a function

of x2 , with x  (X) and x3 appearing as parameters. The solution approxi-

mation function need span only the transverse coordinate direction as

gm 	 (x2) T NXI'xAm 	
(84)

The matrix elements of Q are nodal values of put or p* ; their functional

dependence requires solution of egn.(45), (63), (66) or (65) along lines

(xl .x3 ) or (x2 ) equal a constant. Since each exists in standard form as an

ordinary differential equation, direct numerical integration or quadrature

yields the required solution at node points of the discretization.
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COMOC COMPII T ER PROGRAM

The COMOC computer program system is being developed to transmit the

rapid theoretical progress in finite element solution methodology into a

viable numerical solution capability. In the course of establishing this

general-purpose concept, several Variants or COMOC have been developed for

specific problem classes, including transient thermal and thermo-structural

analysis, the two-dimensional transient Navier-Stakes equations, and the three-

dimensional boundary-region, and parabolic Navier-Stokes equations. These

initial forms have now been coalesced onto two advanced Variants. The Corupu-

tational Continuum Mechanics Variant is operational on IBM 360/ and 370/ com-

puters; it serves as a research test bed and can solve multidisciplinary prob-

lems characterized by a single differential equation description including

transient and steady-state thermal analysis, thermo-elasto-statics, potential

fluid flow, and magneto- and electro-statics. It contains automated data gen-

eration features using curved iso-parametric two-dimensional elements to model

non-regular shaped solution domains, and input/output graphics to facilitate

data management and solution interpretation. The Navier-Stokes Variant is

operational on the ISM 360/ and CDC 6000 series computers; it solves the

multiple-differential equation descriptions characteristic of viscous fluid

mechanics including transient-incompressible, and steady-;.ompressibie,

multiple-species complete two-dimensional Navies-Stokes equations, as well as

the two- and three-dimensional compressible, reacting , multiple-species

boundary layer, boundary region and confided-flow parabolic Navier-Stokes

equations. It also contains output graphics and an automated data generator
f

1	 for regular-shaped solution domains. An one-line restart feature allows the

i
	 user to switch between boundary-region and parabolic Navier-Stokes systems

according to the requirements of the problem at hand.

The finite element solution algorithm is utilized, as we observed in the

previous section, to cast the original initial-valued, or pure-elliptic

boundary-value problem description into large-order systems with a purely

initial-value or algebraic character. COMOC then integrates or equation solves

3
	

the discretizFd equivalent of the governing equation system. Initial distri-

butions of all dependent variables may be appropriately specified or computed,

and boundary constraints for each dependent variable can be specified on

34
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arbitrarily disjoint segments of the solution domain closure. The solutions

for each dependent variable, and all computed parameters, are established at

t
	 node points lying on a specifiably nonregular computational lattice, formed by

plane triangulation of the elliptic portion of the solution domain. Each of

the computational triangles is spanned by a linear approximation function used

for all independent and dependent variables as well as all solution parameters.

The COMOC system is being built upon the macrostructure illustrated in

fig. 1. The main executive routine allocates core by means of a variable

dimensioning scheme based upon the total degrees of freedom of the global prob-

lem. The size of the largest problem that can be solved is thus limited only

by the available core of the computer in use. The precise mix between depen-

dent variables and parameters, and fineness of the discretization, is user-

specifiable and widely variable. The input module serves its standard function

for all arrays of dependent variables, parameters, and geometric coordinates.

The discretization module forms the finite-elemeWl. discretization of the ellip-

tic solution domain and evaluates all required finite-element nonstandard

matrices and standard-matrix multipliers. The initia l ization module computes

the remaining initial parametric data required to start the solution. The
F

integration module constitutes the primary execution sequence of problem solu-

tion, and primarily utilizes a highly stable, predictor-corrector integration

algorithm for the column vector of unknowns of the solution. Calls to auxil-

iary routines for parameter evaluation (viscosity, Prandtl number, source

terms, combustion parameters, etc.) as specified functions of dependent and/or

independent variables, as well as'calls for equation solving algebraic systems,

are gcl3irned by the integration module. The output module is similarly

addressed from the integration sequence and serves its standard function via

a highly automated array display algorithm. Both Variants of COMOC can execute

distinct problems in sequence, and contain automatic restart capability to

continue solutions.
t
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(85)
Yw(x) = e sin 27x

P( x ,Yw ) = Po - Ipm u k
 uk

_	 1
^ y	

(87)
Po — 2 0- 'k ak
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NUMERICAL SOLUTIONS IN AERODYNAMICS
^j

'Both operational Variants of the COMOC system have been exercised to

obtain finite element characterization of various aerodynamic flow field con-

figurations. Linearized and complete potential flow solutions have been gener-

ated by the Continuum Mechanics Variant, over curvilinear and airfoil configu-

rations, to assess solution accuracy and to demonstrate features of finite

element solutions. Viscous flow computations using the Navier-Stokes Variant

include boundary layer prediction in a pressure gradient, parabolic Navier-

Stokes solution of a trailing edge wake simulation, and a transient Navier-

;	 Stokes solution for decay of an aerodynamic shed vortex,
i.	 -

;:;	 Aerodynamic Potential Flow Solutions
3

An informative problem geometry to evaluate finite element solution of

linearized potential flow, egn.(39), corresponds to subsonic, inviscid, iso-

energetic flow over a wave-shaped wail, see fin. 2a. A linearized analytical

solution can be obtained (cf. ref. 20, p. 458), for the ratio of wavelength

(A) to amplitude (e) small, as

^ ( x 9Y) = U^ - x +	 E zcos
2n 1 exp

f -2 l-Mz )]
co

for a sinusoidal wall described by

(85)

assuming a uniform inflow of U. at x = 0 and a freestream Mach number of

An absolute accuracy assessment is possible, and the essential geometri-

cal character requires a specified gradient boundary condition on a non-

coordinate surface. The key computational output is surface velocity distri-

bution, since from Bernoulli's law, egn,(75), the corresponding incompressible

surface pressure distribution can be determined as
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The last form is obtained using ean.(28); formation of the indicated vector

inner product, from the discretized computational solution for Ĉ  , is

achieved using the finite element .assembly operptor	 see egn.(81) and

ref. 15.

The existence of various symmetry planes in the problem domain can be

effectively utilized to reduce the number of finite elements required to gen-

erate a solution. Shown in fig. 2b-2c are economical domain closures and

appropriate boundary condition specifications for a potential flow solution

using either 0 or Y . For the sample problem,

UCO = 32 m/s

M = 0.2CO

s/A = 0.025

= 27r

For the discrete approximation, the infinity boundary was chosen to lie at

y = 50E to insure that application of the zero gradient boundary condition

was valid. The computational grid, consisting of 240 triangular finite ele-

ments, was automatically generated from coordinate data describing vertex

and mid-side nodal coordinates of two "super elements" as illustrated to the

right in fig. 3a. A plot of the computed equipotential distribution appears

in fig. 3b.

Since the potential equation is elliptic, boundary condition specifica-

tion is required on all domain boundaries. Indication of adequate discretiza-

tion,to allow determination of accurate slope boundary condition representa-

tion,is noted both at the wall and at the upper boundary. The numerical and

analytical solutions are compared in table 1, and the location of the maximum

error is noted. To evaluate surface pressure, egn.(87), the computed poten-

tial function distribution is analytically differentiated using egn.(80), and

assembled over the entire domain to obtain scalar velocities and pressure

along the wall. It is interesting to note that the level of velocity error

is equal to that of the error in potential function s even though the former

requires differentiation. The largest velocity error is 2.39, indicating

good accuracy for the coarse finite element mesh used. Since the pressure

coefficient is related to the square of velocity, the corresponding maximum

error in surface pressure is 5.3%.
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Potential Function - 0 Surface Velocity - u

Analytical COMOC Error, % Analytical COMOC Error, %

166.2 166.7 .3 97.18 97.15 .03
153.2 153.8 .4 99.05 98.16 .91
140.0 140.7 .5 100.80 99.54 1,25
126.5 127.4 .7 102.40 100.85 1.51
112.9 113.9 .9 103.83 102.12 1.70
99.1 100.2 1.0 105.10 104.33 .74
85.2 86.4 1.0 106.19 104.34 1.75
71.1 72.3 1.7 107.11 106.76 .33
57.0 58.1 1.9 107.86 108.16 .28
42.8 43.7 2.1* 108.45 109.42 .90
28.6 29.2 2.1* 108.86 110.54 1.50
14.3 14.6 2.1* 109.11 111.62 2.30*
0. 0. 0. 109.20 110.55 1.20

*Maximum Local Error

l;

	

	 From the proven convergence character of the finite element solutions of

linear (ref. 3) and non-linear (ref. 14,15) field problems, the 5% error in

pressure could be reduced to about 1/ bya uniform doubling of the fineness of

the employed discretization. Unfortunately, the computer CPU requircl to

obtain the more accurate solution also increases dramatically (by a factor of

up to 8). Bearing this in mind, computational experiments were conducted to

ascertain the influence of particular selected discretizations and closure

locations (especially the infinity boundaries) on solution accuracy. For this

study, however, the full tensor potential flow equation was solved, egn.(34),

`	 using a linear iteration algorithm and sequential update of the effective
i`

diffusion tensor, IS..	
i

- c- 2 ^, ^,.
3
1 . The geometry selected is a symmetric

is	 i j 
NACA 0015 airfoil at zero angle of attack in subsonic flow in an inviscid wind

i=
tunnel, see fig. 4.

i
Since the circulation is zero for this case, only half the airfoil geo-

metry need be considered, and the Kutta condition is intrinsic. The flow

domain was automatically discretized by COMOC into 192 triangular finite

elements, from user specification of the nodal coordinates of a coarse dis-

cretization consisting of three super elements, fig. 4 . The infinite boun-

dary (tunnel wall) was set at about 13 airfoil thicknesses from the centerline.
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Flow conditions correspond to air at M. = 0.1 and uniform velocity at the

airfoil leading edge. Figure 5 presents the resultant computed pressure dis-

tribution (Cp ) obtained from eqn. (87), along the airfoil surface compared

with a conformal transformation solution (ref. 24, p. 324). While the solu-

tion trends are consistent, the "peaky" finite element results indicate the

selected discretization was inadequate for definition of the large velocity
gradients occurring at the airfoil leading edge. This problem existed but

was less apparent in the wavy-wall solution, due to the much lower leading

edge curvature, see fig. 6. Even though both finite element solutions used

approximately identical discretization fineness, redefinition and refinement

1	 is required for the airfoil leading edge.

i
Several numerical experiments were conducted to evaluate discretization

influences on solution accuracy. Equation (34) defines an elliptic boundary

value problem in subsonic flow; it therefore is inappropriate to have either

the airfoil leading or trailing edge coincide with the solution domain closure,

is	 even though the finite element algorithm solves for boundary nodes lying on

symmetry planes (gradient boundary condition) along with interior nodes, see

egn.(83). While retaining -the discretization fineness of fig. 4, addi ti onal

`	 regions extending one chord length upstream and downstream of the airfoil

{ were added to the solution domain. The computational discretization, contain-
;`

ing approximately 480 finite elements, is shown in fig. 7, and was automatic-
all

y generated by COMOC from the five super element description shown in the
tl.

lower half of the figure. Upon viewing the results for this discretization,

a non-uniform refinement of the computational zones upstream of the leading

edge was defined for COMOC (by two input number changes). This produced an

approximate halving of the longitudinal span of the finite elements directly

in front: of the leading edge. The influence of these discretization 'Changes

{	 on computed pressu'r^ coefficient. U:s t r;,^,rtion i ,, shown in fig. 8. The addi-

tion of the coarser discretization upstream produced even poorer agreement

with the reference data and the unsatisfactory "peakiness" remains. Dramatic

improvement is noted for the upstream refined grid solution, even though the

discretization over the airfoil remains identical to that shown in fig. 4.

Some additional refinement on the leading edge region would further improve

agreement at a modest increase in computer cost. Well into the upstream

43



	

-0.6	 1 /	
computed

o	 ^y	 r^

	

r+	
o	

n	 E)	 Ref. L4

	

$ -0.4	 V

w

	

II	 o
-0.2

4J o
°	 0.25	 0.5	 0.75	 1.0

Q o
	0.2	 Longitudinal Coordinate - x/C

NN
qJ

	

°"	 0.4

1 .o Lo	 ca

Figure 5. Computed Pressure Coefficient Distribution
on NACA 0015 Airfoil.

	

':	 a

	

'	 0.S	 MACA 0015

	

i	 4JE:
r-

M

	

i	 0.4 	 W[	 Wall

N

	

^-	 0.2

	

_' 1	 N

	

cy,	 0	 0.25	 0.50	 0.75	 1.0

Longitudinal Coordinate x/C

Figure 6, Leading Edge Geometries.

1	 44

f

+i



/1 1, /VV' I/V Vv V,
ItIVLI

/Vl
NP

~



-0.4 k

N	 -0.2

_8

Z
r-	 0

c^

0.2
a

U

4—

u 0.4

cu
s-.

N
in
as

ci	 0.6

-0.6

C	 r
-- --- coarse grid

0.8 L	 NACA 0015

1.0-x- ,-	 ,	 I	 - „	 -	 t— - -	 h- - -	 I-
-0.5	 0	 0.5	 1.0

Longitudinal coordinate - x/C

Figure 8. Computed Pressure Coefficient Distributions for NACA 0015 Airfoil.



region, note how the finite element solution anticipates the existence of the

airfoil; this is the character of an elliptic boundary value problem. The

refined grid solution is in excellent agreement with the reference values in

the 20-95% chord region. However, note how the finite element pressure

level returns to freestream immediately downstream of the trailing edge,

wherein the impact of the Kutta condition on the reference solution drives 'the

coefficient to zero. Of course, in actuality, trailing edge regions exhibit

significant viscous effects. These influences effectively blunt the trailing

edge for a potential flow analysis, and a specific accounting of viscous/

inviscid interaction is required to accurately simulate the physics.

Alternative forms of grid manipulation exist for improving solution accu-

racy in leading and trailing edge regions. Global grid refinement, while

effective, increases the order (size) of the solution matrix to be solved

dramatically, thereby requiring more core storage. In addition, since solu-

tion time varies as approximately the square of the number of nodes, use of

very fine grids is economically impractical. Local refinement can retain a

manageable number of elements by employing non-uniform distributions to place

smaller elements in the high velocity gradient areas, This may become quite

practical, but considerable numerical experimentation is required to optimize

the procedure. For highly curved surfaces, like the leading edge region,

higher-order curved finite elements could be used, but their efficiency for

non-linear solutions remains to be quantified (see ref. 8, 9). For low sub-

sonic flows where density is essentially constant, deVries and Norrie (ref. 5)

suggested, but did not document an'alternative approach involving global

refinement on a local basis. This can be accomplished by using the orthogo^

nality properties of the potential function and streamfunction to shrink the

solution domain, i.e., translate the infinity closure nearer the airfoil.

This method appears promising, since the total number of nodes in the solu-

tion field remains small while establishing progressively finer grids near

the airfoil. To evaluate this method, the previous case of low Mach number

flow over a symmetric NACA 0015 airfoil at zero angle of attack was repeti-

tively solved starting with the discretization shown in fig. 7. The distri-

bution of streamfunc;tion was first determined by solution of egn.(40) in two-

dimensional form. The results are shown in fig. 9. The ^ = .15 streamline
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was then chosen as the upper boundary for the next sequential evaluation; the

solution domain was rediscretized as shown in fig. 10. This discretization

employs the same number of trianpul ar finite elements as did the original,

but the average finite element span has been reduced by approximately six.

Figure 11 shows the computed potential solution on the reduced domain, and

fig. 12 illustrates the next reduced solution domain, .ierein tha upstream

and downstream boundaries lie on constant potential .avels as computed using

the discretization of fig. 11. This procedure appears to provide a viable

alternative for handling infinity boundary conditions associated with external

incompressible flows. However, it remains to fully assess the accuracy im-

provement that results in pressure coefficient distribution on the basis of

cost effectiveness.

Dealing with non-symmetric airfoils and/or angle of attack requires full
i

discretization of multiply-connected solution domains. Practical solution of

these cases with lift is of ultimate importance. The major difficulties assn-

'	 ciated with these solutions is again associated with the leading and trailing

edges, as well as application of the Kutta condition. To evaluate the accuracy

and stability of a finite element solution, the solution domain of fig. 7 was

approximately doubled in extent. The finite element discretization, obtained

using a 10 super element specification, is shown in fig. 13. The discretiza-

tion is purposely non-symmetric, to evaluate solution accuracy; the resultant

finite element mesh cortains 355 elements and 213 nodes. A visually symmetric

potential distribution was computed, as shown in fig. 14. Nevertheless, the

i discretization produced numerical solution differences for pressure coefficient

on the upper and lower surfaces, as shown in fig. 15. The maximum differences

are on the order of 15%; agreement with the reference data is essentially com-

parable to that shown in fig. 8. A lift coefficient, C
L
 , was computed to

determine the error induced by these differences in pressure coefficient dis-

tribution. The lift coefficient is computed by numerical integration of the

upper and lower C p levels around the airfoil as (ref. 25).

C
L
 = C f (Cpu - Cp,)da

C
(88)
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The resulting CL determination for the NACA 0015 airfoil, at zero angle of

attack, see Table 2, is -.00276, or an effective attack angle of -.02 0 .

These results tend to indicate the acceptable accuracy in lift coefficient

can be achieved using coarse and skewed discretizations. This is quite impor-

tant, since for nonsymmetric shapes at angle of attack, it is essentially

impossible to maintain a symmetric discretization. The magnitude of the

error in Cp , hence C L , is directly associated with discretization fineness;

as previously demonstrated, it can be controlled through grid refinement.

Table 2. Pressure Coefficient Distribution on NACA 0015

Symmetric Airfoil at Zero Angle of Attack,

Non-Symmetric Finite Element Grid

x
C 

u
Cpy Cpu-Cpt As 1	

{C	 C	 }do
C	

pu-	
p2

1.0 .380 .380 0. 0. 0.
1.0333 ,035 ,180 -.145 .0333 -.00240
1.0667 -.517 -.298 -.101 .0333 -.00410
1.1 -.442 -,416 -.030 .0333 -.00218
1.1667 -.473 -.461 -.012 .0667 -.00141
1.2333 -.491 -.448 -.043 .0667 -.00183
1.3 -.444 -.425 -.019 .0667 -.00210
1.338 -.440 -.444 .004 .038 -.00028
1.4 -.364 -.368 .004 .062 .00025
1.488 -.291 -.292 001 .088 .00022
1,6 -.210 -.213 .003 .112 .00022
1.7 -.128 -.164 .036 .1 .00200
1.8 -.033 -,096 .063 .1 .00495
1.9 .075 .012 .063 .1 .00630
2.0 .145 .145 0. .1 .00320

CL = - .00276

As an example for an unsymmetric flow, the airfoil of fig. 13 was rotated

to 15 0 angle of attack, and solution domain automatically discretized, as
shown in fig, 16. The ability of the finite element procedure to use such

i	 non-uniform discretizations now becomes a distinct feature; the capability to
E.

produce them automatically can reduce user input effort by several orders of

N
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magnitude. As embodied in COMOC, automatic refinement of minimal data input

is accomplished over arbitrary geometric shapes. The algorithm involves quad-

riatic functional representation over one, two and three-dimensional finite

element spaces, using natural coordinate descriptions of the serendipidi-k'/

finite element fam;gy (ref. 25). For the two-dimensional problems considered

herein, the user-specified super elements are general triangular or quadri-

lateral shapes, which may have curved sides not containing points of inflec-

tion. Any two-dimensional domain or series of domains can be discreti7ed by

decomposition into quadrilateral and triangular shapes and specifying the

number and type of elements to be generatedin each. The level of user input

effort can be even further reduced when geometric similarity of boundary

regions exists for a class of problems. Airfoil analysis at various angles of

attack in an unbounded stream exhibits such a similarity which can be exploit-

ed. To illustrate the general case, consider the sequence in fig. 17. Uni-

form inflow conditions are specified at the left end of the rectangular (or

any other shape) box of fig. 17a. A vanishing normal gradient is appropriate

along the top and bottom streamlines, while at outflow, proper surface orien-

tation allows specification of constant potential. The airfoil shape, see

fig. 17b, is input as specification of mean line coordinates and thicknesses.

From these two specifications, super element coordinate data can be generated

in a predetermined fashion for angle of attack, see fig. 17c-d, to serve as

automatic discretixer, input data. The addition of flaps or slats is concep-

tually straightforward-, options could be added to the super element genera-

tion routine to allow their specification in terms of chord line coordinates,

thickness distribution, and angle of attack. The combining of these tech-

niques, coupled with automatic setting of the domain boundaries along lines

of constant streamfunction and potential function, can provide a powerful,

rapidly accessible and reliable tool for finite element analysis of general

airfoil configurations.

Aerodynamic Viscous Flow Solutions

As indicated earlier, for conventional aerodynamic flows at low angle of

attack, the inviscid flow field is separated from the airfoil by a generally

thin region dominated by viscous effects. Therefore, the solution of the

54



L

,r

dO n-0

-

n-0

Y	 r ^	
I

.	 fl

0^•n=0

a) Infinity Boundaries (f(t))	 b) Airfoil Description

ii
F—

i

^..	 d	 I

-

c) automatically Generated Initial
	

d) Automatically Generated Streamline
Super Element Discretization
	

Super Element Discretization

Figure 17. Automated Finite Element Discretization for Potential
Flow Analysis.



two-dimensional boundary layer equations is an important requirement for com-

putational simulation, and is readily accomplished within the developed

Navier-Stokes Variant of COMOC. Since this computer program assumes all

"parabolic" flows are three-dimensional, the dimensional-degeneracy of two-

dimensional flow is obtained by employing a single column of finite elements

spanning the boundary layer thickness, see fig. 18. The discretization extends

into the f reestream, where the inviscid flow is matched by a vanishing grad-

ient boundary condition. The wall is assumed no-slip, and the lateral vanish-

ing gradient boundary conditions yield the desired two-dimensional simulation.

The character of the finite element solution of egn.(45)-(49) can be evaluated

for accuracy and convergence by comparison with solutions produced by finite-

difference techniques and with a similarity solution for constant specific

heat. The check case corresponds to a nominal Mach 5, laminar, two-dimensional,

air boundary-layer flow over an adiabatic wall in a favorable pressure grad-

ient. With the assumption of constant specific heat, the flow is iscenergetic

and it is necessary only to solve the x  momentum equation and the continuity

equation. The initial distribution for longitudinal velocity 
U  

is estab-

lished from the similar solution for s = 0.5 and S = 0 (ref. 27). The
initial distribution for u 2 is obtained iteratively, and Sutherland's law

is employed to compute viscosity.

The test case is initialized at x I = 0.03 m downstream from the leading

edge. The boundary-layer thickness at this station 8 o is 0.0039 m , the

local Mach number Me is 3.77 , the Reynolds number fie is 0.83 x 10 5 per

meter, and the adiabatic wall temperature Tw is 1000 K . Shown in fig. 19

are the computed distributions of skin friction, local free-stream Mach

number, and boundary-layer thickness for the case of constant specific heat.

These were obtained with two uniform finite-element discretizations corres-

ponding to four and eight elements spanning the initial boundary-layer thick-

ness, see fig. 18. The static pressure distribution p e (x1 ) is also presented

for reference. The boundary-layer thickness has increased more than fourfold

within the solution. Only small differences, on the order of about 2 percent,

exist between tha two solutions, the finer discretization producing a slightly

larger skin friction and smaller local Mach number. Superimposed for compar-

ison purposes are the results for the similar solution (ref. 27) and a 20-zone
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`Finite-difference solution obtained with the Von Mises coordinate transforma-

tion. Agreement among the four solutions is excellent (within 2 percent) for

skin friction. The similar solution for Me lies between the COMOC and

finite-difference solutions, and overall agreement is within ± 3 percent.

Shown in fig. 20 are computed velocity profiles at x i / o = 22.7 , which

is about midway through the presented solution. For reference purposes, the

initial longitudinal velocity profile is given with the node locations of the

four-element discretization superimposed, Both finite element solutions pro-

duce u  distributions that are slightly more concave upward in she midregion
in comparison with the similar or finite-difference solution. The eight-element

COMOC solution lies closer to the similar solution in the region where the two

finite element.solutions differ. The finite-difference solution lies appre-

ciably below both the COMOC and similar solutions near the free stream. The

computed transverse velocities, which are also plotted in fig. 20, show only

slight differences between the two discretization solutions. The trends of the

COMOC solutions are in excellent agreement with the established precedures;

unfortunately, since each method of solution is distinctly numerical, no abso-

lute accuracy assessment is established. ,however, for an incompressible

boundary-layer flow, absolute accuracy and convergence-rates for the finite-

element solution have been established to be close to theoretically predicted

values (ref. 14, 28).
As noted in the discussion of potential flow solutions on a NACA 0015

airfoil, the computed pressure coefficient distribution (see fig. 8) indicates

the O nviscid) surface velocity is'retarded by an adverse pressure gradient on

the interval 0.20 < x/C < 0.99. Along the interval 0.85 < x/C < 0.99 , the

computed velocity is below the reference freestream value. The finite element

solution computed a local acceleration, immediately downstream of the trail-

ing edge, sufficient to return the surface flow to equilibration with the

freestream. Of course, viscous effects would significantly modify these per-

fect fluid results. The merging flow phenomena in the trailing edge region

can be particularly complex, and a thorough computational analysis could be of

considerable value, especially with regards to overall drag prediction. The

finite element algorithm for solution of the boundary layer equations (45)-(49)

-(59) solution wasmerging into a parabolic Navier-Stokes equations (57) 
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evaluated by COMOC. As the first step towards an airfoil trailing edge simula-

tion, arbitrarily different, laminar boundary layer flows were allowed to

develop on both sides of an infinitely thin flat plate. The plate was then

computationally terminated, and the two boundary layer trailing edge velocity

profiles (u l and u2 ) were allowed to merge within a single, unbounded solu-

tion domain. The test case corresponds to (essentially) constant density,

isoenergetic flow of air at a nominal Mach number of 0.27 and a reference

freestream velocity, U., = 30 m/s . The finite element discretizations_appear

similar to that presented in fig. 18, (on both the top and bottom sides of the

surface) and were of sufficient fineness to maintain ±1% solution accuracy on

prediction of ul .

Initially, consideration was given to continued use of the boundary layer

equation system downstream of the merging of identical upper and lower velocity

profiles. Inconsistencies in the differential equation description were

immediately encountered for u 2 , however. As described in the theoretical

development section, the boundary layer equations cast solution for u 2 on an

initial-value specification starting at the solid surface. This surface

vanishes from the solution domain, immediately upon flow field merging down-

stream of the plate termination. Since the flow from the plate to the

unbounded region is (assumed) smoothly continuous, in the latter the solution

for u2 must become a two-point boundary value problem (in two-dimensional

space). This is possible only by retention of the x2 momentum equation for

solution of u2 and combining the continuity and vector momentum equation

to yield an appropriately deterministic form for pressure prediction, see

egn.(62)-(66). Computational experimentation using COMOC confirmed these

theoretica li musings. It was indeed impossible to obtain smooth transition

from the boundary layer u 2 distributions while maintaining consistency of

the freestream values.

These early results actually led to extension of COMOC to switch over to

the appropriate parabolic Navier-Stokes system while undergoing a restart.

For ensuing simulations, dissimilar upper and lower surface boundary layer

profiles were allowed to develop from an initial slug (uniform) profile.

Such a starting procedure minimizes input preparation; the boundary layer

velocity profile that developed 1.2 m downstream of the simulated leading edge
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agreed within ±1% of the Blasius solution at 1.0 m downstream at the same

Re,p o.ds and Mach numbers. Hence, arbitrarily dissimilar boundary layer pro-

files were readily obtained to initiate the parabolic Havier-Stokes solutions.

At restart, all program parameters used by COMOC to control integration were

reset to their initial values. The two previously separate boundary layer

solution domains were merged by adding the node at the plate into the inte-

gration array, and specifying vanishing gradient boundary conditions for both

u I and u2 everywhere about the closure of the newly defined domain. Initial

cva1uU-t1on for identical upper and lower initial velocity profiles showed that

the COMOC-predicted results for u 	 and u2 remained exactly symmetric to

five significant digits for merged solution domains up to 1.3 m long. The

axial ;pressure gradient, computed using a pressure algorithm for egn.(63),

vanished to within 0.5% on U.. The skew-symmetry on u 2 was exactly pre-

served; the null value remained on the downstream projection of the plate

throughout the solution. Subsequent evaluations utilized dissimilar upper and

lower velocity profiles. The results of one such computation are shown in

fig. 21. The plate terminus boundary layer initialization profiles are shown

for xI /so = 267 ; other profiles are shown for various stations downstream of

the trailing edge. Due to the original dissimilarity of the initial velocity

profiles, note that the locus of the velocity profile minimum is concave

upwards, yielding a modest overall curvature in the merged flow field. For

this case also, the computed axial pressure gradient, egn.(63), vanished to

within 0.59 on U. . The lateral pressure gradient was assumed to vanish

identically. For non-flat plate flaws, both axial and lateral pressure

gradients can be induced by flow field curvature. Their computational pre-

diction requires embodiment and check-out of solution algorithms for the

various pressure descriptors, egn.(65)-(66).

Computational predictions in laminar wakes are of limited interest in

practical aerodynamics; the prime value of the discussed results is identi-

fication of appropriate equation systems and proof of computational sta-

bility. Even at low angle of attack, the initial laminar boundary iayer

flow will typically undergo transition and become fully turbulent before

the trailing edge is reached. Hence, a far more practical computation for

simulated airfoil wake flow would involve specification of a turbulent
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closure relation, egn•(5), for solution of egn,(45)-(48) and/or egn,(57)-

(58). Conventional turbulent boundary layers can be effectively predicted

using a mixing length hypothesis (cf., ref. 29), wherein

E12 - 01U'1;21
  	 (88)

In egn.(88), Q is the mixing length conventionally defined as

k x2w	 0 < x2 < X6/k	
(89)

X6	 Wk<x2

where typically, k = 0.435	 X = 0.09 , 6 is the boundary layer thickness,

and w is the Van Driest damping coefficient, used to smoothly merge egn.(88)

into the sublayer molecular kinematic viscosity., An alternative approach, of

general applicability throughout multi-dimensional fluid mechanics, involves

formation of the turbulent kinetic energy of the flour , and a closure hypothe-

sis involving a suitable length scale (cf., ref. 18). Employing an order of

magnitude analysis (cf., ref. 30), the turbulent kinetic energy is a point

function which satisfies the same general partial differential system, eqn.

(76)-(79), for which the finite element solution algorithm has been estab-

lished. The required length scale can also be determined from solution of a

differential equation (for example, from the dissipation function), or be

hypothesized directly for geometrically simple flows. Results for finite

element prediction of turbulent three-dimensional boundary region flows,

using both closure techniques and•COMOC, are reported in refs. 31-32. These

results indicate that extension of the finite element methodology to multi-

dimensional turbulent flows, of impact in trailing edge wake flow predictions,

will be directly accomplished.

The final aerodynamic problem class, for which the finite element solu-

tion procedure has been evaluated, corresponds to highly rotational vortex

flows. Two problem classes of immediate potential applicability include,

1) analysis of the persistence of trailing vortex streets as generated by the

lift distribution along hi ghly loaded airfoil configurations typical of

current wide-body jets, and 2) prediction of the penetration and turbulent

decay of high energy jet flows injected non-tangentialIy into a crossflow as

might occur in thrust vector control for VTOL aircraft. in each case, the



vortex structure will decay as a function of time and the local effective

diffusion and convection effects. The vortex center will move as a function

of cross flow velocity, initial strength and direction, and the magnitude of

the tangential velocity at the juncture of contra-rotating vortex pairs. A

complete numerical simulation typically requires solution of the full form of

the Navier-Stokes equations. A cursory evaluation of the finite element solu-

tion procedure has been explored for the second problem. An initially circu-

lar jet, injected subsonically and non-parallel into a cross wind, is struc-

tured as a contra-rotating vortex pair (cf., ref. 33). For sufficient dynam-

ic pressure, the jet penetrates into and eventually turns parallel to the

impressed crossflow. The jet vortex structure provides the "elastic stiffness"

essential for the impressed flow to pass around the initial jet as if it was a

aerodynamic stream tube. As the jet turns and travels downstream, the impressed

crossflow influences the dissipation of the initial highly-rotational structure

by convection and diffusional processes,

Oeterminatiun of a streamtube structure, as a function of initial vortex

strength and assumed crossflow, was made using COMOC, by modeling the three-

dimensional problem as a transient two-dimensional configuration described by

the Navier-Stokes system written on streamfunction and vorticity, egn.(69)-(70).

A sketch of the two-dimensional vortex structure is shown in fig. 22a; the

indicated counter-rotation deflects an onset flow directed anti-parallel to the

i
X2 coordinate direction, around the centroidal region. The smoothed distri-

bution of vorticity along the horizontal symmetry plane is shown in fig. 22b.

For the compl_tational simulation, this was replaced by point sources of vor-

ticity set equal to 
*wo 

appropriately located at xl = +xo . Existence of

the mirror symmetry plane, x l = 0 , combined with use of a "sufficiently

large" solution domain allows specification of vanishing vorticity everywhere

on the selected domain closure for solution of egn.(70). The mirror plane is

also a streamline, as is the right side boundary in fig. 22a. The value of

streamfunction taken on the latter is determined by the specified magnitude

of the impressed crossflow, assumed anti-parallel to the xz axis at inflow

(only). The resultant solution of egn.(69) for streamfunction determines the

actual inflow and outflow velocity distributions with use of the vanishing

gradient (parallel flow) boundary condition for streamfunction,

t.

I'
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a (1)	 a (3) = 0 , egn_,(78). With ,these imbedded symmetry properties, only

{ one-half the domain shown in fig.i22a is required for determining a solution;

the right half was discretized using 200 triangular-shaped finite elements and

121 nodes. The cavity was presumed fillee with air initially at rest, and the

single vortex pair, of variable strength, was located at x 1 = ±20% h where

h is the half-width domain span, fig. 22a.

Shown in fig. 23 are the COMOC computed distributions of inital mass flow

within and through the solution domain for three specified values of initial

vorticity, wo . The displacement effect of the point source is graphically

apparent. For zero specified crossflow, the computed initial streamfunction

forms closed contours,as shown in fig. 24 for different initial locations for

the vortex pair. (The spurious wiggles result from use of high order spline

fits to sparse data by the plot package.) A continued solution of egn.(69)-

(70), to predict the decay of the initial point vortex pair, requires speci-

fication of an appropriate turbulence closure relation, egn.(5). An accurate

simulation would also require that the impressed crossflow be time varying.

This would be readily accomplished in COMOC by altering the value of stream-

function on the right closure segment, fig. 23, as a specified function of

time.

z;
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CONCLUSIONS

The theoretical and computational results of this study, on application

of finite element solution methodology to configuration analysis in low speed

aerodynamics, indicate significant potential for the procedure. The approach

taken has established appropriately complete (i.e., non-linear) differential

equation descriptions for the several distinct fluid flow problem classes of

impact in aerodynamics. The developed finite element algorithm is universally

applicable to each description. The developing COMOC computer program, which

embodies this algorithm, has verified the overall concept of a powerful, ver-

satile general-purpose code for computational low speed aerodynamics. The

generated numerical solutions in inviscid potential flow have introduced and

evaluated various techniques for error control within the constraints of

computational and input-requirement economics. Diverse viscous flow predic-

tions, including a transition of differential equation system during a problem

solution, indicate broad-base applicability of the algorithm and its computa-

tional embodiment. Continued progress on development of appropriate pressure

solution algorithms for parabolic flows, coupling of the inviscid and viscous

f solutions, and expanded input/output graphics should yield a highly useful,

versatile and user-oriented design tool to supplement and supplant detailed

wind tunnel evaluation of complex low-speed aerodynamic systems.
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