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THE FINITE ELEMENT METHOD IN
LOW SPEED AERODYNAMICS

by

A. J. Baker
Visiting Professor®
01d Dominion University

and

Paul D. Manhardt
Textron Bell Aerospace

SUMMARY

Within recent years, the finite element method has emerged as an
alternative theoretical foundation for establishing numerical solution
algorithms for field problems in continuum mechanics, and in particular
fluid dynamics. The fundamental concept of the finite element pro-
cedure is identification of a computational control-voTume within which
the conservation laws of mechanics are numerically approximated using
a well-defined and uniformly consistent procedure. In contrast to the
more familiar finite difference technique, the finite element algorithm
explicitly retains use of the calculus and vector field theory in forma-
tion and evaluation of the discretized-equivalent matrix statement of
control-volume conservation properties. For specifically non-linear
differential equations, like the Navier-Stokes system in fiuid dynamics,

*0On leave from Textron Bell Aerospace, 1974-75 academic year.



the finite element method always yields a unique discretized-equivalent
matrix expression. Interestingly, the resultant expressions appear uni-
formly comparable to the computationally preferred forms established via
trial and evaluation techniques using difference algebra. These theoret-
ical features, coupled with its intrinsic capability to employ speci-
fiably non-regular computational meshes, and to enforce non-trivial grad-
ient-type boundary conditions on non-coordinate solution domain boundaries,
.appears to render the finite element procedure of particular potential use
in coniputational aerodynamics.

The results of a study, conducted for verification of this hypothesis
and reported herein, indeed show that the finits element procedure can
be of significant impact in design of the "computational wind tunnel" for
low speed aerodynamics. The uniformity of the mathematical differential
equation description, for viscous and/or inviscid, multi-dimensional sub-
sonic flows about practical aercdyramic system configurations, is utilized
to establish the general form of the finite element algorithm, universaily
applicable to all problem classes. The COMOC computer program, under
developmert for several years as a finite element test bed, is similarly
applicable to each of these diverse classes. Following completion of the
theoretical developments, example numerical results for inviscid flow
analyses, as well as viscous boundary-Tlayer, parabolic- and full- Navier-
Stokes flow descriptions, verify the capabilities and overall versatility
of the fundamental algorithm for aerodynamics. The proven mathematical
basis, coupled with the distinct user-orientation features of the computer
program embodiment, portend near-term evolution of a highly useful analyt-
ical design tool to support computational configuration studies in Tow
speed aerodynamics.



INTRODUCTION

Development of the technique., that has emerged as "the finite element
mathod," began in the civil and structural engineering community in the early
1950's, Conventional engineering structures can be visualized as comprised of
discrete elements interconnected at a finite number of points. For example,
the analysis of pin-connected structures via imposition of a global force bal-
ance, can determine tension and compression membeys and Toadsy it is a well
established study at the undergraduate level. 1In an elastic (or any other!)
continuum, however, the number of such connections becomes infinite, and
therein lies the difficulty in establishing a tractible engineering analysis.
Turner et al, {ref. 1), in their original concept of a "finite element,"”
attempted to bridge this gap by introducing a method to transform a continuum
into an equivalent discretized finite assemblage of nodal behavior. The
method developed rapidly thereafter, in good part due to the paraliel develop-

“ment of Targe capacity digital computers. Existence of this computer hardware

made possibie the embodiment of the analytical developments into a viable tool
(computer program) for engineering analysis of compiex non-conventional
structures.,

While a detajled static force balance formed the theoretical foundation
for the eariier finite element developments, this was rapidly replaced by the
energy concepts that also form a significant branch of conventionai structural
analysis. From this viewpoint, the "finite element method" émerged as a tech-
nique for modeling the strain energy of a continuum structural system in terms
of the behavior of Tocal discrete subsystems. Total system energy is approxi-
mately determined by the assembly of the incremental work done by the surface
tractions and imbedded stress distribution as the equivalent discretized struc-
ture is loaded, The actual node point displacement distribution is then deter-
mined by extremizing the strain energy integral with respect to the family of
admissakle displacement states; the physically realizable state corresponds to
the energy minimum. Quite Togically, these concepts were immediately recog-
nized as belonging to the anailytical theory of self-adjoint systems, the vari-
ational calculus and the theory of tinear partial differential equations, as
well as the corresponding principles in Hamiltonian mecharics incluuing the
Principle of Least Action and the Euler-Lagrange equations (cf., Goldstein



ref 2). Hence, the finite element method rapidly gained theoretical stat-

ure as well e3 practical usefuiness, albeit at the cost of conceptual restric-
tion to Tinear problems in mechanics.

In the mid-1960's, members of the engineering mechanics technical commu-
nity, especially those with a background in mathematics or continuum mechanics
but generally outside of structural mechanics, began to take note of the dem-
onstirated power and versatility of the finite element procedure for analyzing
complex problems. Particularly impressive was the ability of the algorithm
to readily impose non-trivial {gradient) boundary condition constraints on
irregulariy shaped geometries, and to employ non-uniform discretizations of
the problem salution domain (cf. Zienkiewicz, ref. 3). Each of these areas
posed particular problems for more conventional numerical analysis procedures.
Their apparent total alleviation by finite elements immediately prompted its
extension to analyses of other linear field problems (cf. Zierkiewicz and
Cheung, ref. 4) including steady heat conduction, and importantly subsonic
potential flow. In this latter area, of our particular interest as a starting
point, the differential equation is simply the Tinear Laplacian on the velocity
perturbation potential function. However, the boundary conditions become
specified on the behavior of its derivative normal to any surface, e.g., an
airfoil, which in general is not parallel to a coordinate surface of the dif-
ferentia1'equation description. Because of the linearity, an energy-functional
equivalent of the diffevential equation is readily estabiished, including
explicitly the non-trivial boundary condition statement. Using direct adapta-
tion of structural computer code concepts, deVries and Norrie (ref. 5) obtaired
representative finite element solutions to iwo-dimensional aerodynamic flow in
cascades using straightsided triangular elements. Computations for other two-
dimensional aerodynamic configurations are given by Meissner {ref. 6);
Sarpkaya and Hirviart (ref. 7) present results for an axisymmetric geometry
involving a free surface of unknown location, Results using higher order
finite element func*jonals, and curved-sided elements for improved geometric
simulation, for two-dimensional potential flows are given by Thompson (ref. 8),
Isaacs {ref. 9), and Hirsch and Warzee {ref. 10}. The case for a specified
freestream vorticity, "frozen" into an aerodynamic flow, is discussed by
Vooren and Laburjere (ref. 11) using linear two-dimensional finite elements.
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In all cases, the cited analyses correspond to the inviscid, steady,
isoenergetic two-dimensional flow of an irrotational (or circulation preserv-
ing), incompressible fluid, i.e.,potential flow aerodynamics. However, current
high-1ift aerodynamic geometries employ complex combinations of flap and slat
systems. Powered Tift configurations, using engine exhaust and/or mass ejector
systems, are areas of current aerodynamic research and development. A1l these
flow fields depart significantly from linear potential flow, and viscous and/for
turbulence effects form a large and important influence. Fortunately, interest
in applying the finite element method of analysis to specifically non-linear
flow fields was spawned in the Tate 1960's as well, with early attention
focused on establishing an alternative itheoretical foundation (since these
problems did not appear self-adjoint!) The Method of Weighted Residuals was
rediscovered (see Finlayson and Scriven, ref. 12), and emerged as a theoretical
foundation for deriving finite element solution algorithms for arbitrarily ron-
linear partial differential equation systems. The linear potential Flow case
then became a special subclass of the more general formulation. Application
to non-steady, two-dimensional aerodynamics is discussed by Bratanow and Ecer
(ref. 13). Baker (ref. 14-16) presents numerous applications to a wide range
of probiems invoiving two- and three-dimensional viscous flows with turbulence
and chemical reaction. Chan et al. (ref. 17) document extension of the
finite element method to predictions in transonic aerodynamics.

These computational results provide demonstration (by parts) of the poten-
tial capabilities of the finite element method for analysis of compiex aero-
dynamic systems. However, for the "computationa®l wind tunnel" to become a
truly viable alternative to extensive physical ‘esting, it is imperative that
the computer conduct a compleat analysis. To do so, the geometrical modeling
must be performed with high fidelity, accounting of viscous/inviscid inter-
action must be intrinsic, and the inherent non-linearities of fluid mechanics
must be accurately and economically captured by the computational mathematics.
The two most important outputs from a computer study in aerodynamics are sur-
face pressure distributions and overall drag; each can be accurately determined
only by an adequate accounting for the entire physical system. Therefore, it
is important to quantify the various flow disciplines, and to proceed through
evaluation of the important analytical sub:systems that constitute characteri-
zation of a realistic subsonic aerodynamic configuration,
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This report documents results of a study conducted for this purpose on
the subject MASA Grant under the sponsorship of the Low Speed Aerodynamics
Branch, STAD, NASA Langley Research Center. By resorting to the fundamental
mathematics, the differential equation systems appropriate for description of
various aerodynamic flow regimes are derived. Their basic structure is noted:
the underiying mathematical uniformity is utilized to subsequently establish
the finite element solution algorithm applicable to all equation systems. The
COMOC finite element computer program system, under development for analysis
of problems in fluid and continuum wechanics, is briefly described. Subse-
quently, numerical results on finite element analysis of the various problem
classes of impact in aerodynamics are presented, with discussion of factors
affecting solution accuracy, speed and adequacy as well as user-orientation
of the analysis procedures. A summary of resulis completes the report.

The work was primarily conducted while the senior author was on leave
from Bell Aevospace Division of Textron as Visiting Associate Professor of
Engineering Mechanics at 01d Dominion University. We wish to acknowledge the
Tong-term support given to research in finite element wethods in fluid and
continuum mechanics by Bell Aerospace, and the opportunity presented by 01d
Dominion University to carry out this work.

NOMENCLATURE

a boundary condition coefficjent; unit vector
A area

b coefficienty; unit vector

B body force

c coefficient; speed of sound

Cp specific heat

c chord; coefficient
Cr skin friction

D binary diffusion coefficient

e alternating tensor

E s ymmetric velocity gradient
Ec Eckert Number

6
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function of known argument

Froude Number

function of known argument

static enthalpy; convection heat transfer coefficient
stagnation enthalpy

unit vectors of rectanguiar Cartesian coordinate system
thermal conductivity; constant

generalized diffusion coefficient

differential operator; turbulent mixing length
characteristic Tength; differential operator

Lewis Number

Mach number; number of finite elements

unit novrmal vector; coordinate normal to a curve
pressure

Prandtl Number

generalized dependent variable

heat addition; generalized discretized dependent variable
perfect gas constant; domain of elliptic operator
Reynoids Number

coordinate parallel to a curve

finite element assembly operator; boundary layer energy parameter
Schmidt Number

time

temperature

velocity vector

reference velocity

perturbation velocity vector: normal velocity
Cartesian coordinate system

rectanguiar coordinate system

species mass fraction

pressure gradient parameter

ratio of specific heats

closure of elliptic solution domain

boundary layer thickness; Kronecker delta
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increment

kinematic turbulent viscosity; amplitude; belongs to
coefficient

multiplier; turbulence sublayer constant; period
molecular viscosity

density

integral kernel ‘

stress tensor; integral kernel

perturbation potential function

scalar potential function; finite element functional
domain of initisl-value operator

X3 scalar component of vector potential

vector potential function

x3 scalar component ¢f vorticity; Van Driest coefficient
vorticity vector; global solution domain

column matrix

square matrix

union
intersection

Superscripts Subscripts
matrix transpose e local reference condition
species identification - 1ad.k.8 tensor indices
unit vector 2 evaluated on lower surface
vector m mth Finite element subdomain
approximate solution 0 initial condition
constrained to closure P pressure coefficient
component normal to curve t partial derivative by time
component parallel to curve u evaluated on upper surface

W evaluated at the wall

glebal reference condition
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THE FIELD EQUATIONSTFOR AERODYNAMIC FLOW

The cemplete descriptien of a state point in multi- dimensional aero-
dynamics s contained w1th1n the solution of a system of coup]ed nonlinear,
second order partial d1fferent1a1 equations descr1b1ng the conservat1on of
mass, linear (or angu1ar) momentum, and energy To estab11sh unique salutions,
closure of the systenm is requ1ved by spec1f1cat1on of appropr1ate constitutive
behavior and boundary conditions. - In conventional vector notation, and then
repeated in the preferred Cartesian tensor notation (where the subscript comma
implies the gradient operator, subscript comna t s the time partia] de-
rivative, and the subscﬁfpﬁlsemicoion implies the generalized divergence
operator, see ref. 15), the conservation form of the differential equation
system is ' ' | '

%% = Ve lod] - - . 'v' -;‘ G
2pil) = ~vegplid -] + of 'j - (2A)
SfoH - p} = -Ve[ol H - T - kVT] 4+ o o (3A)
%,E(pv“)é Ve [l - D7V | (4R)
gt W
(puy)y = -Ioug U9 POy T gl eBy o (@)
Gt g - ()
(QYQ)’t = -~ipu; Yo _ pnyasi1;1 | | - " .

The dependent variables in eqn.(1)- (4) have ‘their usual 1nterpretat1on in
fluid mechanics., The mass flow vector is pu where p is thn mass density

9



and u,; s the local velocity vector. In eqn. (2), B, s an appropriate
baody force, and T35 is the diffusive (viscous) stress tensor. Eqn.(3) is
written on stagnation enthalpy, H.p is the static pressure, T is the
static temperature, and Q 1is the Tocal heat generation rate. For multiple
species flows, as might occur for example in powered 1ift configurations, e
is the mass fraction of the oth species in eqn.(4), and D is the binary
diffusion coefficient. Eqn.(4) also provides the means for tracing the trans-
port of distinct flow field components.

As stated, the solution of eqn.(1)-(4) requires specification of consti-
tutive relationships between the dependent variables and the diffusion coef-
ficient D , the stress tensor Tij, and the effective viscosity and thermal
conductivity. For compressibie flows, an equation of state relating the
thermodynamic variables is also required. Since predictions in both laminar
and turbulent flows -are required, and since the time-averaged form of eqn.(1)-
(4) appears identical to those presented, by appropriate interpretation of the
stress tensor, the general form of closure can be written as

Tyy = (T) + peggfluy 5+ Us.s) (5)

In eqn.(5}, u identifies the laminar molecular viscesity which is tempera-

ture dependent, and €43 is the effective transport tensor due to turbulence.
As indicated, the diffusive stress tensor is assumed a functional of the sym-
metric velocity gradient (cf., Donaldson et al., ref. 18). For styictly Tam-

iner flow of a Newtonian fluid, eqn.(5) embodies Stokes® viscosity Taw

- L
Tij = 2ulE 53 B8y (6)

which displays the Tinear functional dependence on the symmetric velocity
gradient as

]
. s s) = E.. Fomole,, T UL,
Flug,s +u5,5) = Byy 53 Qugpy ¥ ug)

The thermodynamic properties are typically expressed as

10
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p= P(p BYQ.’T)

(8)
- Ol o 1
H = 2H%% + 5 uug
T (9)
= & yedr + duu,
oy, P P
p% = n(Ya,ui), (10)

Rather than attempting direct solution of egn.(1)-(10), it is convenient
to non-dimensionalize all variables to extract the useful non-dimensional
groupings. Using standard procedures (ref. 15.), the non-dimensional form of
eqn.(1)-(4) is

.p’t\,: “[Pu-i] o o ! (”)»

.. - A (12
(oug) ¢ = = [o0; U5 + POy = g ] g PP by )

_ Ec i 1
(ot = (Ec)p)»y = ‘[‘_""i H-ReTi5 Y5 "Repr ™ i 1 tRew et 03

suh oy - | Lo

In eqn.(Iij-(iﬁ);l%hé mportant nohfdimenéﬁoha1 parémetér§'for.fTQid_mechanics_.f

are identified as

11

oy = ooyt ke ot : : SRS
("Y ;;__?j__t,’.f.[pf‘i.y “pr WY =1'] . S (14)




Reynolds Number: Re = °;°° (15)
c i
Prandt! Number: Pr = —E— (16)
u 2
Eckert Number: Ec = ¢ had T (17)
Py, ©®
Sy 2
Froude Number: Fr = .y (18)
Lewis Number: Le = %?-Pr (19)

It is also useful to define the Schmidt number from the above as

_ Pr
SC = e Re

Note that, for a thermodynamically perfect fluid
Ec = (y-1)M2_ (20)

where vy 1is the ratio of specific heats, and M_ 1is the reference Mach
numbar defined as

U
M = _m_
® /YRT (21)

where R is the univérsa] gas constant divided by the molecular wejght.

The solution of eqn.(11)-(14) is a formidable task, and there are several
alternative forms and éimp11fications to the system that can render such solu-
tion more straightforward for non-trivial problem classes in aerodynamics.

The Navier-Stokes equations primarily describe the behavior of the mass Flow
vector field, ou;. From vector field theory, we recognize that without loss
of generdlity, we can describe pu in terms of a scalar and a vector poten-

12
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tial function, ¢ and ¥ respectively, as

i=-pVo+Vx¥ (22A)

pu,i = -p@,i + eijk Wk,j ‘ (22)

The first equation employs conventional vector notation; the second i1lus-
trates the preferred indical form, and the decomposition in egn.(22) is unique
to within an arbitrary constant, provided ¥ satisfies the "gauge" condition,
T.8uy VU = wk;k = 0 (cf., ref. 19, App. I.). In terms common to fluid mech-
anics, © is called the (total) potential function, and ¥ 4s the three-
dimensional equivalent of the familiar two-dimensional stream function.

Viewing egn.(11), we observe that for steady or incompressible flows, the
massTlow vector field also satisfies the "gauge" condition, i.e., it is diver-
gence-free, Inserting egn.(22) into (11), and from the skew-symmetry proper-
ties of the Cartesian alternator, we obtain

(pui)g.i = (pq)"i);'i =0 (23)

An elemantary solution to eqn.(23) is that ¢ vanishes everywhere. Hence,
for all cases where eqn.(11) describes steady or incompressible flow, we may
choose to analyze the flow using the %ransformatiion

PUT = Bk Yk, (24)
In this case, pU; is said to be a solenoidal vector field. An important

additional aspect of this problem class is that the flow may be explicitly
rotational. The vorticity § is defined as the curl of velocity field; hence

i = B33k Yk (25)



Substituting eqn.(24) into (25), utilizing the symmetry properties of alter-
nator contractions, and noting that ¥y satisfies the gauge condition, the
compatibility relation between stream function and vorticity is directly ob-
tained as

T [15 lpi,j];- 4 ()., (26)

J J

Eqn.(26) may find considerable use in analysis of certain problem classes in
aerodynamics.

We have an alternative choice for the aerodynamically important case of

irrotational flow, wherein the curl of egn.(22), or egn.(25) vanishes identi-

cally by assumption. Again using the skew-symmetric properties of the alter-
nator, and for Tk satisfying the gauge condition, one obtains from eqn.(22)

ejik (Puy)ag =0 = - ¥y (27)

IT we set v, equal to zero everywhere, for irrotational flows we then have
the identity,
. = -pb,.
i p * (28)
In this case, pU; is said to be a lameilar vector field.

We may elect to empioy the primitive variable description for pu; . or
may selectively employ the definitions in eqn.(24), (25) and/or (28). The

particular choice depends upon the features of the differential equation sys-
tem derived from egn.(11)-(14) for each case of aerodynamic value.

Aerodynamic Potential Flow

The steady, isentropic flow of an inviscid, single-species perfect gas
has been the focal point of research in aerodynamics for well over 70 years.
A specific accounting of the simplifying assumptions is readily accomplished
for the parent differential equation system, eqn.(11)-~(14). Neglecting body
forces, and discarding the species continuity equation as redundant, for this
problem class we have

14



(pu'i);'i =0 R (29)
(pu'i uj);'i = "paj (30)
c? Psi = Psg (31)

Since isentropic implies adiabatic and reversible, egn.(13) is identically
satisfied by H = constant . Egn.(31), an alternative expression for this
form of eqn.{13), defines the speed of sound in an isoenergetic perfect gas.
Since the flow is assumed inviscid, the dispersive siress tensor, eqn.(5),
vanishes fdentically. Eqn.{29)-(31) can be conveniently combined into a
single differential equation on the velocity field, Uy Substituting

eqn. (31) plus the expansion of eqgn.(29) into eqn.(30), one directiy obtains
the differential constraint for steady, invis¢id isentropic flow as

u,u.
- -1 -
[‘313 —g ] Uj,; = 0 (32)

In eqn.(32), recall that c¢ 1is the local speec of sound, conveniently defined
in terms of a stagnation reference-condition and the local velocity field by
the isentropic energy equation in the form

c? = cg'; X%l Uy Uy, (33)

Eqn.(32) is a highly non-Tinear, first order partial differential equa-
tion written on the field behavior of the velocity vector Uy it is valid
for all Mach numbers, and as a function of local Mach number may selectively
display elliptic, parabolic, and hyperbolic differential character. An impor-
tant subclass corresponds to the additional constraint that the flow be irro-
tational. For this case, a useful restatement of eqn.(32) is obtained using
eqn.(28). By direct substitution, the second order partial differential equa-
tion for determination of the distribution of the scalar potential function ¢
is
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[ﬁfi - T_J—] %03 7 O (34)

Egn.(34) displays the mixed differential character as well. For i = j , the
term in the bracket becomes of the form [1 - M(i)] s Whore M(i) is the
Tocal Mach number of the flow in the coordinate direction x(i). Hence, for
subsonic flows, eqn.(34) is elliptic, and from the theory of the solution of
partial differential equations we require knowledge of an algebraic combina-
tion of © and its normal derivative, @’kﬁk around the complete closure of
the solution domain. For supersonic flows, one of the bracketed terms may
become negative, and eqn.(34) then displays a mixed elliptic-hyperbolic char-
acter. In this instance, boundary specifications on & and/or its normal
derivative are required on some non-characteristic curve. In the intermediate
(transonic) speed range, eqn.(34) can =xhibit a globally elliptic character
within embedded hyperbolic and/or parabolic sub-domains, and the numerical
solution procedure must recognize these distinct regions.

Regarding boundary conditions, we observe that specification of velocity
on the closure of the solution domain will correspond to a gradient boundary
condition specification on the scalar potential function, see eqn.(28). On an
arbitrarily oriented closure segment, identified by a unit outward pointing
normal vector, ﬁk , eqn.(28) states that

o, B = uf = ut (35)
where <~ s the scalar component of velocity paraillel to ﬁk . As a special
case, eqn.{35) states that the normal derivative of @ must vanish on an
impervious aerodynamic surface, sin:e thereupon the local velocity vector must
1ie tangent to the surface,

The numerical solution of the general non-linear form of eqn.{(34) is not
commonly attempted. For specification of additional simplifying assumptions,
which constrains the generality of the flow field description, alternative
forms for egn.(34) that are more tractable for numerical solutions using con-
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ventional techniques can be obtained. By and large, the Ffundamental step is
re~definition of the scalar potential function, eqn.(28), under the assumption
of the preponderant existence of a preferred flow direction., Assuming this
direction aligned with the Xq coordinate axis, and identifying a reference
velocity (U_) as parallel to this direction, re-define the Tocal velocity
field as

i
Under the assumption that the perturbation velocity component, Vi o is small
in magnitude in comparison to the freestream reference velocity, we can define
a corresponding perturbation potential function as

DV-i = "pd):.i ' (37)

Then, eqn.(28) takes the form

pu.

i = =Py = U 8sq -pas (38)

Substituting eqn.(38) into eqn.(32), and altering the reference condition in
eqn.(33) to that corresponding to U_ , and proceeding through the well known
order of magnitude analysis {cf., ref. 20), for the subsonic and supersonic

slender body approximation one obtains the Tinearized form of eqn.(34)
written on either the total or perturbation potential function as

2 i =
VMo O5qp + ®gpp + 9333 = 0 (39)

The boundary conditions for solution of eqgn.(39) are obtained from the
definition in egn.(38) in the manner analagous to the specification in
eqn.135). Eqn.(39) displays the mixed elliptic-parabolic-hyperbolic character
of the full non-linear form, eqn.(34). For the final additional assumption of
zero Mach number, or equivalently incompressible flow, eqn.(39) becomes the
Laplacian on & , which is a Tinear elliptic-boundary value problem., It is
this form whose numerical solution is typically computed for subsonic flows,
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in combination with an independent variable transformation on the Xy coordi~
nate axis to account for a finite subsonic Mach number.

Flow fields of the subject problem class are also amenable to analysis
using the definition of stream function, eqn.(24), provided the parent flow is
either incompressible or steady. For the additional assumption of irrotational,
eqn.(26) must vanish identically from the definition in eqn.(25); hence

1 1 L _
B, - (), wacm 0

Eqn.(40) states that the vector potential function, Wk » satisfies a second-
order Tinear partial differential ecuation of the Laplacian type provided
that the stream function satisfies the gauge condition., Since, from its def-
inition, density can never become negative, and since the first-order differ-
ential term in egn.(40) does not affect overall characterization, egn.(40) is
uniformly elliptic and its solution requires knowledge of ¥ and/or the
normal derivative, Wk;jﬁj on the complete closure of the solution domain.
The vector potential function is simply a generalized concept of the two-
dimensional stream function familiar to all., Therefore, ¥, equal to a con-
stant implies existence of a stream hypersurface across which mass flow van-
ishes. Forming the outer product of the defining equation, egn.(24}, with an

arbitrary unit vector &, yields
PUs3y = By Yi,g % (41)

For 32 parallel to the velocity vector us s the specified mass filux across a
segment of the solution domain closure determines the distributien of ¥, on
the corresponding surface. Conversely, for 82 lying paraliel to the velocity
vector Us 5 eqn.{41) yields a normal gradient-type boundary condition con-
straint on stream function in terms of the parallel velocity component of the
form

g N

1 _
o Yk = U (42)
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It 1is instructive to contrast the form of the boundary condition constraints
for the two potential functions, see eqn.(35) and (42). As a final simplifi-
cation, in the instance of constant density flow, note that eqn.(40) degene-
rates to the linear Laplacian written on ¥, - Inall instances, since both
the scalar and vector potential functions are defined cnly to within an arbi-
travry constant, see eqn.(22), each function may be appropriately specified at
some point on the solution domain closure for convenience.

Analysis of rotational, inviscid isentropic flow fields can be accomp-
Tished using either the scalar or vector potential function as well. Regard-
ing the former, for linearized potential flow theory, the Kutta-Joukowski
hypothesis states that the correct rotational flow pattern of any family of
flows is the one flow with a finite velocity at the trailing edge of an air-
foil. Hence, from the concept governing two-dimensional, irrotational incom-
pressible flow about bodies resembling subsonic airfoils, one can complete an
analysis of a family of flows for a given boundary and a given freestream
velocity. These flows differ primarily in the amount of circulation; however,
all but one will have an infinite velocity at the trailing edge. With use of
Kutta condition, use of eqn.(34) or any of its simpiifications is not contra-
indicated for rotational inviscid flows.

For rotational incompressibie or steady flows, use of the vector poten-

tial function is straightforward. The derived compatibility eqn.(26) becomes
in this instance

[%:qk,j];j = =8 (43)

Eqn.(43) states that the distribution of the stream function will be altered
by the imbedded rotational character of the flow. Provided the flow is steady
and inviscid, an analysis (discussed in the next section} shows that the
rotational freestream will be "frozen" into the computed streamline distribu-
tion about an aerodynamic shape. Hence, by establishing an iterative pro-
cedure for solution of eqn.(43), one theoretically can determine the rota-
tional flow abeout an arbitrarily shaped aerodynamic surface, with embedded
freestream vorticity, using the vector potential function,
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Aerodynamic Viscous Flow

The complete analytical characterization of an aevodynamic system requires
an accounting for viscous effects. For conventional aerodynamic shapes at
small angle of attack, these effects are essentially confined to the thin layer
of fluid in direct contact with the aerodynamic surface. The remainder of the
flow Tield is ¢.ssentially free of viscosity effects and completely amenable to
analysis using inviscid flow Tield concepts. These thin viscous layers are
called boundary layer flows, and their analysis and undersianding constitutes
an extreme1y important branch in engineering and aerodynamics, Under a first-
order of magnitude analysis (cf., Schlichting, ref. 21), for the steady bound-
ary Tayer flow of a viscous compressible fluid described by the velocity
vector

u, = u]E1 + ”232 + u3§3 (44)

where the unit vector triad Ei lies parallel to coordinate curves of a

general Cartesian curvilinear coordinate system, the three-dimensional bound-
ary Tayer equivalent of egn.(11)~(14) takes the form

0= (p"i);i (45)
1
PULUTi = e [(“_'* °E12)"1;2},2'P’1 (46)
0 = "'p,z (47)
1
PUsU3. = RE [(” * ps12)“3;2]_2"”=3 (48)
1 E 2
= I _E £
pusHs; = Repy [\“ + pegp) ”=2] * Re (“1;2 ' “3;2) (49)
H
o _ Le o '
pus¥si = By [(“ + peqg) Y,z] - (50)
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In the form presented, the use of a body-oriented orthogonal coordinate system
attached to the aerodynamic surface is assumed, where Xq is paraliel to the
predominate direction of flow and Xo is assumed to lie everywhere perpendic-
ular to the aerodynamic surface. For aerodynamic surfaces with local curva-
ture distributions, the generalized semicoion subscript (;) differential nota-
tion will yield additional terms stemming from use of a curvilinear coordinate
system in equations (45)~{50), Note that the flow may be laminar, transitional
or turbulent.

Perhaps the most significant feature of the boundary layer equations, and
their solution, is containad in eqn.(47). Under the first-order of nagnitude
simpiifications, the transverse momentum equation yields the significant fact
that the pressure distribution is constant ..roughout the bounday layer thick-
ness. Hence, in the remaining momentvin eqn.(46) and (48), pressure appears as
a parameter only, being obtained from the inviscid flow field solution. There-
fore, eqn.(46) and (48) are solved respectively as initial value problems for
Uy and ug with the pressure replaced by Pe » while egn.(45) is recast into
an initial-value probiem for the x, distribution of the velocity component
normal to the surface, Uy - For non-isoenergetic flows., eqn.{50) is also
solved as ain initial value problem for the distribution of stagnation enthalpy,
H . It should be noted that the conventional two-dimensional boundary layer
equations are a sub-set of the presented form, obtained by deleting eqn.(48)
and excluding 3 as an admissible index for summation in eqn.(45)-{50).
Finally, for single species flow, eqn.(50) may be deleted completely.

The initial and boundary conditions appropriate for solution of eqn.(45)-
(50) are obtained in a straightforward manner, as all except (45) represent a
general initial-valuad, two-point elliptic boundary value probiem in mathe-
matics. On the aerodynamic surface, the no-slip boundary condition for the
tangential velocity field yields

U"(X] ,0,)(3) = U3(X1:09x3) = 0 (51)

To account for suction or blowing at the aerodynamic surface, the correspond-
ing constraint for solution of eqn.(45) becomes

Up{Xq20,%3) = v{xq,%5) (52}
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where v is the specified distribution of normal velocity. Similarly, at the
freestream juncture (x2 = §) between the boundary layer and potential flow,

we require the boundary layer velocity distribution to be equal to that of the
external inviscid flow, denoted by a subscript e , as |

ui(x1,6,x3) = UEi(x], x3) (53)

Typically, solution of eqn.{50) at the surface involves a convection-~type
boundary condition written in terms of the local static temperature as

A
At the freestream, the normal gradient of H {ypically vanishes as
H(Xy s82%4) 05 fs = 0 ' (55)
1272737 4

Finally, the form of egn.(55) is typically appropriate at Xy = 0 and Xy = §
for solution of eqn.(51), with H replaced by Y* .

Since eqn.(46), (48)-(51) are also initial value problems in the X1
coordinate direction, an initial profile distribution for each appropriate
dependent variable is required. Denoting g as a generalized dependent
variable, the soiution of the equation system is initialized by specification
of the form

Q(Osxzox:;) = qo(xzsxs) (56)

The presented two- and three-dimensional boundary Tayer equations are the
most tractible form of the parent Navier-Stokes equations for humericai solu=
%ion. Consequently, their range of applicability is considerably Timited by
geometric or flow field considerations. For merging viscous flows near trail-
ing edges, or flap and slat combinations, or for powered 1ift configurations
with their associated thick viscous non-isoenergetic flow fields, a more com-
prehensive form of differentiail equation description is reguired. For steady
three-dimensional flows of this type, in bounded or open domains and meeting
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certain requirements, a significant simplification can be made to the parent
Navier-Stokes equations that renders three-dimensional solutions considerably
more retractable with present computer hardware. This approximation, now
known as the “"parabolic Navier-Stokes eguations," describes steady three-
dimensional flows wherein: 1) a predominant flow direction is uniformly
present, 2) in this direction {only) diffusion processes are negligible com-
pared with convection, and 3) no disturbances are propogated upstream anti-
parallel to this direction. For the velocity vector identified in eqn.(44),
and for the same coordinate description of the solution space, the three-
dimensional parabolic Navier-Stokes equations are of the form

0= (pu_i);i (57)
(" - %)
ougtyss = —ge— | (* * eik ) Ui;k] RS (58)

it T TR Pr i k| Pr 7 Mt sk
Sc -~ Pr o O '
ScPr (“ ¥ Pejg)z = Yo 1. (59)
. o ’k
o _ (1 ) 6.*]) (11 ¥ pEJ_IS_) o | .
pusYss = —fa 5C Vo lsk (60)

The dominant differences between the parabolic Navier-Stokes equation
system, (57)-(60), and the three-dimensional boundary layer egn.(45)~(50},
relate to dimensionality of the boundary value character and to the appearance
of pressure. For boundary layer flow, eqn.(47) yielded a uniform pressure
distribution imposed through the thickness of the boundary layer. In the
parabolic Navier-Stokes system, pressure appears as a dependent variablie and
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its solution is required. The several forms of the pressure algorithm, to be

.discussed, depend upon the particular geometrical configuration under study.

The other significant feaiure of the parabolic Navier-Stokes system is that
the diffusion term {first right side term modified by,(1-6k])/Re) is two-
dimensional, spanning the plane whose normal js parallel t0 the direction of
predominant flow. (The subscript bar notation indicates no summation; for

k=1 only, (1"5k1) vanishes.) Hence, boundary condition statements on the
three componenfs of velocity as well as enthalpy and mass fraction must be
specified everywhere on the closure of this two-dimensional plane. Identify-
ing q for a generalized dependent variable, most physically realistic bound-
ary condition constraints are of the form

2D xda + 2@ e = a®ixy) (61)

In eqn.(61), the aFi) are user-specified coefficients; nete that the corres-
ponding boundary layer equation statements, egn.(51)-(55), are all speciul
cases of eqn.(61). As before, since the parabolic Navier-Stokes equation
system contains an initial value description for ecach dependent variable,
specification of the form of egn.(56) is required for each dependent variable.

Dependent upon the gecmetry of the flow configuration, egn.(57) and the
three equations in (58} are selectively altered to obtain solution of the
three components of velocity and the pressure distribution. For boundary
tayer-type flows (termed boundary region flow), since eqn.(57)-(60) encompass
eqn.{45)-(50) as a special subset, the assumption of vanishing normal distri-
bution of pressure may be valid. Hence, the inviscid pressure distribution is
imposed upon the flow field., Pressure is again decoupled from the solution,
the second of eqn.(58) is discarded, and eqn.(57) is employed to solve for the
Xo distribugion of the corresponding velocity component Uy . For solution
domains totally bounded by solid walls, as might occur in inlets or exhaust
ducts for example, the theory of Patankar and Spalding (ref. 22) can be used
to achieve a pressure solution, Their theoretical procedure involves a split-
ting of the pressure field computation by decomposition of the local static
pressure into the form
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p(x‘i) = b_(x'i) + pl(x2:x3) (62)

Determination of the %q component, p , is obtained by integrating eqn.(57)
over the cross-sectional area of the duct and accounting for the influences of

wall shear (Tw), area change (A(x1)), and heat or mass addition to yield the
solution form

dp . o

dx; oy Alxy)s 75 ¥, T) (63)
Note that eqn.{63) is an ordinary differential equation; its solution deter-
mines the (assumed uniform) axial pressure gradient appropriate for solution
of the first of eqn.(58). To obtain solution for the distribution, in the

transverse plane p'(xz,x3) , the divergence of the second two equations of
(58) is taken and coupled with eqn.(57) to yield the solution form

(1= 8)P" g = Flougs ¥, 1) (64)

As written, egn.(64) is a two-dimensional elliptic boundary value problem of
the Poisson type; the right side is a specified function of its arguments.

The previous approach is inappropriate for flows in completely unbounded
domains. In this instance and coupled with an equatior of state, aqn.{57} can
be cast as a pure initial value problem on the three-dimensional pressure

distribution, p(xi) . In this case, eqn.(57) takes the form

dp(x;) gy
o ["”1;1 +1 -8y (puk};k] (65)

where we have assumed valid the perfect gas law. Note that egn.(65) is

totally inappropriate for confined flows, since the right side becomes infin-
ite gt a wall where u; vanishes. For three-dimensional flows bounded by an
aerodynamic surface and an inviscid freestream, the second of eqn.(58) yields
an appropriate specific form for determination of transverse pressure distri-
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bution as

dp(xz) _
dxz = 'F(pu.is Ts pe) (56)

For the alternative case of a viscous flow field imbedded between two poten-
tial flows, as might occur in the trailing edge region downstream of an air-
foil for example, a recasting of ean.(57) into the form of eqn.(64) using the
concepts of eq..{62) may be required. 1In all instances, the computation of
pressure typically involves application of initial-value techniques coupied
with the explicit assumption that pressure variation is a local phenomenon -
unaffected by downstream influences. For flow fields where this assumption is
violated, use of the parabolic Navier-Stokes equation systems is probably
contraindicated.

Solution of the boundary Tayer or parabolic forms of the Navier-Stokes
equations is appropriate for flow fields where curvature effects are suffi-
ciently modest such that streamwise separation does not occur. However, at
Targer angles of attack for an airfoil for example, the created adverse
pressure gradient will retard the parent unidirectional-type flow to the point
where the streamwise momentum is insufficient to keep the flow attached to the
airfoil. The phenomenon of separation occurs, whereby the remaining unidirec-
tional aerodynamic flow is separated from the aerodynamic surface by a suit-
ably sized region of highly rotational viscous flow. For fully three-dimen-
sional geometric configurations, characterization of these flows requires
solution of the full Navier-Stokes egn.{11)-(14). However, since solution of
this form is typically not tractable on current generation computers, full
Navier-Stokes solutions are generally limited to two-dimensional configurations,

The form presented as eqn.(11)-(14) can be used for solution of two-
dimensional viscous flows. However, for steady or incompressible cases, an
alternative formulation can be completed that takes advantage of the vector
field character of eqn.(11). For this case, eqn.(24) takes the specific form

Pl = 345 13,5

(67)

1]
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It is significant to note that only the Xq scalar component of the vector

potential function is required to characterize two-dimensional flows. Similar-
1y, eqn.(25) becomes

The compatibility equation, eqn.(26), becomes for two-dimensional flow, using
eqn.(67) and (68)

=[5 "’,:i];j T (69)

In terms of stream function and vorticity, the momentum equation (12), of
the Navier-Stokes system for two-dimensional steady or incompressible flows,

becomes considerably simplified (ref. 15) to the form of the vorticity trans-
port equation.

_ 1
pw’t ~ Re [uwsj = ]-lsjw - ]—lsk (zw:k)‘]}
3

" ki [(m"b’i);k -7 W (%)k] (70)

The most significant feature of eqn.(70) is the disappearance of pressure as a
coupled dynamic variable. Hence, eqn.(69) and (70) constitute a closed system
for determination of two-dimensional rotational viscous aerodynamic flows.

The stagnation enthalpy and species continuity equations, eqn.(13)-(14),
remain as presented except for substitution of egn.(67) for the terms involv-
ing velocity.

As stated before, eqn.(69) is an elliptic boundary value problem since
density never vanishes and is always positive. Therefore, for boundary con-
ditions we require knowledge of ¢ and/or its normal derivative everywhere
on the closure of the solution domain. For finite Reynolds number, eqn.(70)
is also an elliptic boundary value problem coupled with initial-value behavior
due to the time derivative (for incompressible flows only). Hence, we also
require knowledge of w or its normal derivative everywhere on the closure
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of the solution domain. Since the defining eqn.(68) is valid throughout the
solution domain as well as its closure, boundary condition specifications on
vorticity are obtained from eqn.(68) and (69). The numerically consequential
vorticity boundary condition becomes the imposition of the no-sT1ip wallj the
equivalent embodiment in vorticity is

w:..d_zﬂ.'. (7'[)

In eqn.(71), n -is the coordinate normal to the Tocal closure segment of the
solution domain. To evaluate egn.(71), it is necessary to form the second
derivative of the streamfunction distribution on the closure. Several forms
have been determined as appropriate, see Roache (ref. 23, Section III.C).

The pressure distribution may be recovered from the vorticity-stream
function characterization of a Navier-Stokes solution by evaluating the momen-
tum equation, eqn.{12). Two alternatives exist; egn.{12) can be differentiated
by the divergence operator yielding a boundary-value specification on pressure
involving the Laplacian operator. However, since we are primarily interested
in pressure distributions on aerodynamic surfaces, an alternative formulation
exists which can be of value. Form the vector contraction of eqn.(12) with an
infinitisimal displacement vector dxi and integrate over any curve; this

= . - -2
fpsjaijdxi = f [p“i”j Re Tij :I - dxi atfpuidxi (72)
T 3J

yields

Note that the left side of eqn.(72) is the integral of a perfect differential
and thus independent of path. Hence, the pressure at any point in the field
can be determined, in comparison to some reference value, by integration over
an arbitrary (the easiest) path between the two points. BDenoting the inte-
grals of perfect differentials by A , completing the indicated integrals, and
performing numerous integration by parts, the final form for eqn.(72) becomes
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3ik 2{u + pe 1 1 2
Ap = A ’ .--i]— ]-l + 8) psk);j } 3 lp’k (p)Sj p (w'k)

aared

E:31k u - L .
T p + e) Us 5 (n + pe),j ) w.k dx

i
r
+J {(%) ‘ps.i lp"] };J dxi

In eqn.(73), the first curly brackst contains terms which are point dependent,
the result of integrating perfect differentials. The second and third brack-
ets require integration, thus selection of path, While the appearance of
eqn.{73) is formidable, its numerical evaluation utilizes well-known techniques,
As a final observation, we noted in our earlier discussions that for
steady, constant~density inviscid rotational flows, the vorticity was frozen
into the streamline distribution. This can be readily determined from eqn.(70),
the vorticity transport equation. The complete first term vanishes identically
for inviscid flow, while the left and last right side terms vanish identically
for steady, constant density flows. Hence,the sole term remaining for this
case is due to convection. In terms of a streamline coordinate, denoted as
s(xi), eqn,(70) can be written in scalar notation in terms of the velocity as

(73)

%g._ 0 (74)
Since the streamiine speed u does not vanish, satisfaction of eqn.(74} is
obtained only for vorticity w vanishing identically or not varying in the
streamline coordinate direction. Hence, the previous observation for aero-
dynamic potential flow is confirmed from the vorticity transport equation., It
is useful to note that the form of eqn.(74) is quite identical to Bernoulli's
law for determinatior of pressure distributions along inviscid streamlines.

3
Y3

-3
u

¥ p (75)

O =

Eqn.(75) is utilized for determination of surface pressure distributions using
the velocity distribution computed from an inviscid ¥low field analysis.
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FINITE ELEMENT SOLUTION ALGORITHM s

Various forms of the Navier-Stokes equations have been deveToped'as
appropriate for analysis of distinct configurations in aerodynamic flow. For
an inviscid irrotational analysis, eqn.(34) is the preferred parent form,
written on scalar potential function, with eqn.(39) obtained following soie
Tinearizing assumptions. Vector streamfunction is applicable to rotational
flows as well; its distribution is established via solution of eqn.(40) or {43)
appropriately. Viscous flow analyses have fallen into several categories. For
a compietely attached viscous boundary layer between the aerodynamic surface
and the freestream, solution of the two~ or three-dimensional boundary Tayer
eqn. (45)-(50) is appropriate. ¥For merging viscous flows near trailing edges,
or flap and slat combinations, or for powered 1ift configurations with thick
viscous non-isoenergetic flow fields, the more comprehensive parabolic Navier-
Stokes system is appropriate, eqn.(57)-(60), provided the fiow remains unidi-
rectional. Finally, analysis of omnidirectional viscous flows requires solu-
tion of the complete Navier-Stokes equations, either in the parent form of
eqn.{11)-(14) or for two-dimensional configurations, eqn,(69)-(70). For the
subsonic flows of present interest, each member of the derived differential
equation systems (except for instances with specific retention of the contin-
uity egn.(11)) is uniformly cast as an elliptic boundary value problem of math-
ematical physics with individual instances of initial-value coupling. Specif-
ically, identifying q(xi,x) as a generalized dependent variable of interest,
each of the subject partial differential equations is a special case of the
deneral, second-order non-linear partial differential equation

L(q) = K[K.ij(q)q,i] g + 7(9,9550%,) - 9(gsx) =0 (76)
Ir eqn.(76), f and g are specified functions of their arguments, x s
identified with xq for houndary layer or paraboiic flows or time for irans-
jent flows, and the X, are the coordinates for which second-order derivatives
exist in the lead term. For this term, k 4s a scalar constant and kij(q)

is the generalized djffusion tensor, and both become uniquely specified by
jdentification of q with each of the dependent variables associated with the
particular equation system of interest. The finite element soiution algorithm
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is based .upon the assumption that L{q) 4is uniformly parabolic within a
bounded open domain € ; that is, the lead term in eqn.(76) is uniformly
elliptic within its domain R , with closure OoR , where

Q=Rx (XO:X) (71)

and Xg £ X If eqn.(76) is uniformly parabolic, unique solutions for q

are obtained upon specification of functional constraints on the closure of @,

N = IR X[xo,x) . and an initial-condition specification on RUSR x x, . For
constraints on 52 , the general form relates the function and its normal
derivative everywhere on the closure B8R as

2(q) = all) q(x;=x) + 3(2)_Ki3 q(x; %) 5 ﬁj -ald) = g (78)

In eqn.(78), the a(1) (ii,x) are user-specified coefficients, the superscript
bar notation constrains X5 to oR , and ﬁj is the Tocal outward-pointing
unit normal vector. For an initial distribution, assume that

a{x;%g) = a5(x;) (79)

is given throughout RU®OR x %o *

The finite element solution algorithm is estabiished for the equation
system (76)-(79) by using the method of weighted residuals (MWR) formulated on
a Tocal basis. Since eqn.(76) is ‘valid throughout 9 , it is valid within
disjoint interior subdomains @ described by (xi’X)ERm xtxa,x) ., called
finite elements, wherein UR, = R. An approximate solution for q within

Rm X[xﬁ,x) . called qé(xi,x) , is formed by expansion into a series solution
of the form

T
* =

g (x;0 = {etx)}" {atol, (50)
In eqn.(80), the functionals @k(xi’ are subsets of a function set that is
complete on Rm. The expansion coefficients Qk(x) represent the unknown
yx-dependent values of q$(xi’X) at specific locations interior to R and

on the closure aRm, calied nodes of the finite element discretization of R.
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To establish the values taken by the expansion coefficients in eqn.(80),
require that the local error in the approximate solution to both the differ-
ential equation L(qﬁ) and the boundary condition statement R(qm) n for
aRnpaR # 0 , be rendered orthogonal to the space of the approximation func-
tions. By employing an algebraic multipiier A, the resultant equation sets
can be combined as

af {a(x)} Ll\’qn”;)d'r—lf {etxp} 2 (@) @0 | = 10 (o))
Rm aRmf\aR |
where % is the mapping function from the finite element subspace Rm to the
global domain R , commonly termed the assembiy operator. The number of
egn.(81) prior to assembly is identical with the number of node poiﬁts of the
finite element Rm .
Eqn.(81) forms the basic operation of the finite element solution algo-
rithm and of the COMOC computer program to be described. The Tead term can be
rearranged, and A determined by means of a Green-Gauss theorem:
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- Kj; {@(xi)} *5 K.ijCI;sidT (82)

m

For 3RMR. nonvanishing in eqgn.(82), the corresponding segment of the closed-
surface integral will cancel the boundary condition contribution (eqn.{81))

by identifying ha(z) with « of egn.(76). The contributions to the closed-
surface integral eqn.(82), where 3R NAR = 0 , can be made to vanish (ref. 15),
When eqn.(78)-(82) are combined, the globally assembled finite-element solu-
tion algorithm for the representative partial differential equation. system
becomes
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l% - f {tI:},J. Kijq;’i dt +f {6} (f;; - g;*‘]) dt
R

m Rm
, - Kf o (alVqr-al®) do | =0 (a)
{ aR MR

The rank of the global ejuation system (83) is identical with the total number
of node points on R 3R for which the dependent variable requires solution.

i Eqn.(83) is a first-order, ordinary differential system, and the matrix struc-
T ture is sparse and banded. Solution of this system is obtained by COMOC using
; a predictor-corrector finite-difference numerical integration algorithm

i (ref. 14),

3 A solution algorithm is required for the continuity equation, which is
retained as eqn.(45) or (57} for boundary-layer or parabolic flows. When
retained, it describes an initial-value problem on pU, or p as a function
of X, , with X4 (x) and X3 appearing as parameters. The solution approxi-
mation function need span only the transverse coordinate direction as

% {Q’("z)}.T {Q("l”%)}m (84)

B

5’ The matrix elements of Q are nodal values of pu§ or p¥* 3 their functional
j{ dependence requires solution of egn.(45), (63), (66) or (65) along Tines

éi (x1,x3) or (x2) equal a constant. Since each exists in standard form as an
*  ordinary differential equation, direct numerical {ntegration or quadrature
yields the required solution at node points of the discretization.
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COMOC COMPUTER PROGRAM

The COMOC computer program system is being developed to transmit the
rapid theoretical progress in finite element solution methodology into a
viable numerical solulion capability. In the course of establishing this
general-purpose concept, several Variants of COMOC have been developed for
specific problem classes, inciuding transient thermal and thermo-structural
analysis, the two-dimensional transient Navier-Stokes equations, and the three-
dimensional boundary-region, and parabolic Navier-Stokes equations. These
initial forms have now been coalesced onto two advanced Variants. The Conpu-
tational Continuum Mechanics Variant is operational on IBM 360/ and 370/ com-
puters; it serves as a research test bed and can solve multidisciplinary prob-
lems characterized by a single differential equation description inciuding
transient and steady-state thermai analysis, thermo-elasto-statics, potential
fluid flow, and magneto- and electro-statics. It contains automated data gen-
eration features using curved iso-parametric two-dimensional elements to model
non-reguiar shaped solution domains, and input/output graphics to facilitate
data management and solution interpretation. The Navier-Stokes Variant is
operational on the IBM 360/ and CDC 6000 series computers; it solves the
multiple-differential equation descriptions characteristic of viscous fluid
mechanics including transient-incompressibie, and steady-compressibie,
multiple-species complete two-dimensional Navier-Stokes equations, as well as
the two- and three-dimensional compressible, reacting, multiple-species
boundary tayer, boundary region and confined-flow parabolic Navier-Stokes
equations, It also contains output graphics and an automated data generator
for regular-shaped solution domains. An on-line restart feature allows the
user to switch between boundary-region and parabolic Navier-Stokes systems
accordiny to the requirements of the problem at hand.

The finite element solution algorithm is utilized, as we observed in the
previous section, to cast the original initial-valued. or pure-elliptic
boundary-value problem description into large-order systems with a puraly
initial-value or algebraic character. COMOC then integrates or eguation solves
the discretizad equivalent of the governing equation system. Initial distri-
butions of all dependent variabies may be appropriately specified or computed,
and boundary constraints for each dependent variable can be specified on
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arbitrarily disjoint segments of the solution domain closure. The solutions
for each dependent variable, and all computed parameters, arve established at
node points lying on a specifiably nonregular computational lattice, formed by
plane triangulation of the elliptic portion of the solution domain., Each of
the computational triangles is spanned by a Tinear approximation function used
for all independent and dependent variables as well as all solution parameters.
The COMOC system is being built upon the macrostructure illustrated in
fig, 1. The main executive routine allocates core by means of a variable
dimensioning scheme based upon the total degrees of freedom of the global prob-
Tem, The size of the Targest probiem that can be solved is thus limited oniy
by the available core of the computer in use. The precise mix beitween depen-
dent variables and parameters, and fineness of the discretization, is user-
specifiable and widely variable. The input module serves its standard function
for all arrays of dependent variables, parameters, and geometric coordinates.
The discretization moduie forms the finite-element discretization of the ellip-
tic solution domain and evaluates all required finite-element nonstandard
matrices and standard-matrix multipliiers. The initiatization moduie computes
the remaining initial parametric data required to start the solution. The
integration module constitutes the primary execution sequence of problem solu-
tion, and primarily utilizes a highly stable, predictor-corrector integration
algorithm for the column vector of unknowns of the solution. Calls to auxil-
iary routines for parameter evaluation (viscosity, Prandtl number, source
terms , combustion parameters, etc.) as specified functions of dependent and/or
independent variables, as well as ‘calls for equation solving algebraic systems,
are governed by the integration moduie. The output module is similarly
addressed from the integration sequence and serves its standard function via
a highly automated array display algorithm. Both Variants of COMOC can execute
distinet problems in sequence, and contain automatic restart capability to
continue solutions.
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NUMERICAL SOLUTIONS IN AERODYNAMICS

‘Both operational Variants of the COMOC system have been exercised %o
obtain finite element characterization of various aerodynamic flow field con-
figurations. Linearized and complete potential flow solutions have been gener-
ated by the Continuum Mechanics Variant, over curvilinear and airfoil configu-
rations, to assess solution accuracy and to demonstrate features of finite
element solutions. Viscous fiow computations using the Navier-Stokes Variant
include boundary layer prediction in a pressure gradient, parabolic Navier-
Stokes solution of a trailing edge wake simulation, and a transient Navier-
Stokes solution for decay of an aerodynamic shed vortex.

Aerodynamic Potential Flow Solutions

An informative problem geometry to evaluate finite element solution of
Tinearized potential flow, egn.{39), corresponds to subsonic, inviscid, iso-
energetic flow over a wave-shaped wall, see fig. 2a. A linearized analytical

solution can be obtained (cf. ref. 20, p. 458), for the ratio of wavelength
(A) to amplitude {(e) small, as

o{x,y) = U_ [- \’—EPLCOS( TTX) exp (_31{& ﬂi)] (85)

for a sinusoidal wall described by

= 21X
.yw(X) € sin =5 (86)
assuming a uniform inflow of U_ at x =0 and a freestream Mach number of
M, . An absolute accuracy assessment is possible, and the essential geometri-
cal character requires a specified gradient boundary condition on a non-
coordinate surface. The key computational output is surface velocity distri-

bution, since from Bernoulli's law, eqn.{75), the corresponding incompressibie
surface pressure distribution can be determined as

p(Xsy,,) = p, - % Peo Up, Uy
= Pg ';" Pea ¢’k @’k (7)

37



The Tast form is obtained using ean.{28); formation of the indicated vector
inner product, from the discretized computational solution for ¢ , is
achieved using the finite element assembly operator § , see eqn.(81) and
ref. 15.

The existence of various symmetry planes in the problem domain can be
effectively utilized to reduce the number of finite elements required to gen-
erate a solution. Shown in fig. 2b-2c are economical domain closures and
appropriate boundary condition specifications for a potential flow solution
using either @ or ¥ ., For the sample probliem,

U, = 32 m/s

M, = 0.2
e/x = 0,025

A= 2m

For the discrete approximation, the infinity boundary was chosen to lie at
y = 60c to insure that application of the zero gradient boundary condition
was valid. The camputational grid, consisting of 240 triangular finite ele-
ments, was automatically generated from coordinate data describing vertex
and mid-side nodal coordinates of two "super elements" as illustrated toc the
right in fig. 3a. A plot of the computed equipotential distribution appears
in fig. 3b.

Since the potential equation is elliptic, boundary condition specifica-
tion is required on all domain boundaries. Indication of adequate discretiza-
tion,to allow determination of accurate slope boundary condition representa-
tion,is noted both at the wall and at the upper boundary. The numerical and
analytical solutions are compared in table 1, and the location of the maximum
error is noted, To evaluate surface pressure, egn.(87), the computed poten-
tial function distribution is analytically differentiated using egn.(80), and
assembled over the entire domain to obtain scalar velocities and pressure
along the wall, It is interesting to note that the level of velocity error
is equal to that of the ervor in potential function, even though the former
requires differentiation. The largest velocity error is 2,3%, indicating
good accuracy fo* the coarse finite element mesh used. Since the pressure
coefficient is related to the square of velocity, the corvesponding maximum
error in surface pressure is 5.3%.
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Table 1.

Potential Flow Over a Wave-Shaped Wall

Potential Function - & Surface Velocity = Jﬁquﬁz
Analytical comMocC Error, % Analytical COMOC Error, %
166.2 166.7 .3 97.18 97.15 .03
153.2 153.8 A 99.05 98.16 .91
140.0 140.7 .5 100.80 99,54 1.25
126.5 127.4 o7 102,40 100.85 1.51
112.9 113.9 .9 103.83 102,12 1.70
99.1 100.2 1.0 105.10 104,33 .74
85.2 86.4 1.0 106.19 104,34 1.75
71.1 72.3 1.7 107,11 106.76 .33
57.0 58.1 1.9 107.86 108,16 .28
42.8 43,7 2.1% 108,45 109.42 .90
28.6 29.2 2.1% 108,86 110.54 1.50
14.3 14,6 2.1% 109. 11 111.62 2.30%
C. Q0. 0. 109.20 110,55 1.20

*Maximum Local Error

From the proven convergence character of the finite element solutions of
Tinear (ref. 3) and non-linear (ref. 14,15) field problems, the 5% error in
pressure could be reduced to about 1% by a uniform doubling of the fineness of
the employed discretization. Unfortunately, the computer CPU requircd to
obtain the more accurate solution also increases dramatically (by a factor of
up to 8). Bearing this in mind, computational experiments were conducted to
ascertain the influence of particular selected discretizations and closure
Tocations (especially the infinity. boundaries) on solution accuracy. For this
study, however, the full tensor potential flow equation was solved, eqn.(34),'
using a linear iteration algorithm and sequential update of the effective
diffusion tensor, [Gij - 2 @’i @,j] . The geometry selected is a symmetric
NACA 0015 airfoil at zero angle of attack in subsonic flow in an inviscid wind
tunnel, see fig. 4.

Since the circulation is zero for this case, only half the airfoil geo-
metry need be considered, and the Kutta condition is intrinsic. The flow
domain was automatically discretized by COMOC into 192 triangular finite
elements, from user specification of the nodal coordinates of a coarse dis-
cretization consisting of three super elements, fig, 4 . The infinite boun~
dary (tunnel wall) was set at about 13 airfoil thicknesses from the centerline,
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Flow conditions correspond to air at M_= 0.1 and uniform velocity at the
airfoil leading edge. Figure 5 presents the resultant computed pressure dis-
tribution (Cp) obtained from eqn. {87), along the airfoil surface compared
with a conformal transformation solution (ref. 24, p. 324). While the solu-
tion trends are consistent, the "peaky" finite element results indicate the
selected discretization was inadequate for definition of the large velocity
gradients occurring at the airfoil leading edge. This probiem existed but
was less apparent in the wavy-wall solution, due to the much lower leading
edge curvature, see fig. 6. Even though both finite element solutions used
approximately identical discretization fineness, redefinition and refinement
is required for the airfoil Tsading edge.

Several numerical experiments were conducted to evaluate discretization
influences ou solution accuracy. Equation (34) defines an elliptic boundary
value problem in subsonic flow; it therefore is inappropriate to have either
the airfoil leading or trailing edge coincide with the solution domain closure,
even though the finite element algorithm soives for boundary nodes lying on
symmetry planes (gradient boundary condition) along with interior nodes, see
ean.(83). While retaining the discretization fineness of fig. 4, additional
regions extending one chord length upstream and downstream of the airfoil
were added to the solution domain. The computational discretization, contain-
ing approximately 480 finite elements, is shown in fig. 7, and was automatic-
ally generated by COMOC from the five super element description shown in the
lower half of the figure. Upon viewing the results for this discretization,
a non-uniform refinement of the computational zones upstream of the leading
edge was defined for COMOC {by two input number changes). This produced an
approximate halving of the longitudinal span of the finite elements directly
in front of the leading edge. The influence of these discretization changes
on computed pressure coefficient d.siribution i: shown in fig., 8. The addi-
tion of the coarser discretization upstream produced even poorer agreement
with the reference data and the unsatisfactory "peakiness" remains. Dramatic
improvement is noted for the upstream refined grid solution, ¢ven though the
discretization over the airfoil remains identical to that shown in fig. 4.
Some additional refinement on the Teading edge region would further improve
agreement at a modest increase in computer cost. Well into the upstream
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region, note how the finite element solution anticipates the existence of the
airfoily this is the character of an elliptic boundary value problem. The
refined grid solution is in excellent agreement with the reference values in
the 20-95% chord region. However, note how the finite element pressure
Tevel returns to freestream immediately downstream of the trailing edge,
wherein the impact of the Kutta condition on the reference solution drives the
coefficient to zero. OFf course, in actuality, trailing edge regions exhibit
significant viscous effects. These influences effectively blunt the trailing
edge for a potential flow analysis, and a specific accounting of viscous/
inviscid interaction is required to accurately simulate the physics.,
Alternative forms of grid manipulation exist for improving solution accu-
racy in leading and trailing edge regions. Global grid refinement, while
effective, increases the order (size) of the solution matrix to be solved
dramatically, thereby requiring more core storage. In addition, since soiu~
tion time varies as approximately the square of the number of nodes, use of
very fine grids is economically impractical. Local refinement can retain a
manageable number of elements by employing non-uniform distributions to place
smaller elements in the high velocity gradient areas, This may become quite
practical, but considerable numerical experimentation is required to optimize
the procedure. For highly curved surfaces, like the Teading edge region,
higher-order curved finite elements could be used, but their efficiency for
non-linear solutions remains to be quantified (see ref. 8, 9). For low sub-
sonic flows where density is essentially constant, deVries and Norrie (ref. 5)
suggested, but did not document an ‘alternative approach involving global
refinement on a local basis, This can be accomplished by using the orthogo-
nality properties of the potential function and streamfunction to shrink the
solution domain, i.e., translate the infinity ciosure nearer the airfoil.
This method appears promising, since the total number of nodes in the solu-
tion field remains small while establishing progressively finer grids near
the airfoil. To evaluate this method, the previous case of low Mach number
flow over a symmetric NACA 0015 airfoil at zero angle of attack was repetie
tively solved starting with the discretization shown in fig. 7. The distri-
bution of streamfunction was first determined by solution of eqn.(40) in two-
dimensional form. The results are shown in fig. 9. The % = .15 streamline
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was then chosen as the upper boundary foe the next sequential evaluation; the
solution domain was radiscretized as shown in fig. 10. This discretization
employs the same number of triancular finite elements as did the original,
but the average finite element span has been reduced by approximately six.
Figure 11 shows the computed potential solution on the reduced domain, and
fig. 12 i1lustrates the next reduced solution domain, .ierein tho upstream
and downstream boundaries tie on constant potential .evels as computed using
the discretization of fig. 11. This procedure appears to provide a viable
alternative for handling infinity boundary conditions associated with external
incompressible flows. However, it remains to fully assess the accuracy im-
provement that results in pressure coefficient distribution on the basis of
cost effectiveness.

Dealing with non-symmetric airfoils and/or angle of attack requires full
discretization of multiply-connected solution domains. Practical solution of
these cases with 1ift is of ultimate importance. The major difficulties asso-
ciated with these solutions is again associated with the leading and trailing
edges, as well as application of the Kutta condition. To evaluate the accuracg
and stability of a finite element soiution, the solution domain of fig. 7 was
approximately doubied in extent. The finite element discretization, obtained
using a 10 super element specification, is shown in fig. 13. The discretiza-
tion is purposely non-symmetric, to evaluate solution accuracy; the resultant
finite element mesh cortains 355 elements and 213 nodes. A visuaily symmetric
potential distribution was computed, as shown in fig. 14. Nevertheless, the
discretization produced numerical solution differences for pressure coefficient
on the upper and Tower surfaces, as shown in fig. 15. The maximum differences
are on the order of 15%; agreement with the reference data is essentially com-
parable to that shown in fig. 8, A 1ift coefficient, CL , Was computed to
determine the error induced by these differences in pressure coefficient dis-
tribution. The 1ift coefficient is computed by numerical integraiion of the
upper and Tower Cp levels around the airfoil as (ref. 25).
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The resulting CL determination for the NACA 0015 airfoil, at zero angle of
attack, see Table 2, is -.00276, or an effective attack angle of ~.02° .
These results tend to indicate the acceptable accuracy in 1ift coefficient
can be achieved using coarse and skewed discretizations. This is quite impor-
tant, since for nonsymmetric shapes at angle of attack, i1t is essentially
impossible to maintain a symmetric discretization. The magnitude of the
error in Cp, hence CL , is directly associated with discretization fineness;
as previously demonstrated, it can be controlled through grid refinement,

Table 2, Pressure Coefficient Distribution on NACA 0015
Symmetric Airfoil at Zero Angle of Attack,
Non-Symmetric Finite Element Grid
X ¥ C Cy -C As 1
Py o o, ~Cp, 1 f (€p, " Coy)io

1.0 . 380 .380 0. 0. 0.

1.0333 . 035 .180 -.145 .0333 -.00240
1.0667 -.517 -.298 -.101 .0333 -.00410
1.1 -. 442 -.416 ~.030 .0333 -.00218
1.1667 ~.473 -, 461 -.012 .0667 -.00141
1.2333 -.491 -.448 -.043 0667 ~.00183
1.3 - 444 -, 425 ~.019 .0667 -,00210
1.338 -.440 -, 444 .004 .038 -.00028
1.4 -, 364 -.368 .004 .062 .00025
1.488 -.291 ~.292 001 .088 .00022
1.6 =210 -.213 .003 112 .00022
1.7 -, 128 -.164 036 ol .00200
1.8 -.033 -.096 .063 .1 .00495
1.9 . 075 .012 .063 1 .00630
2.0 . 145 . 145 0. ol .00320

As an example for an unsymmetric flow, the airfoil of fig.

= - 00276

13 was rotated

to 15° angle of attack, and solution domain automatically discretized, as
shown in fig. 16. The ability of the finite element procedure to use such
non-uniform discretizations now becomes a distinct feature; the capability to
produce them automatically can reduce user input effort by several orders of
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 magnitude. As embodied in COMOC, automatic refinement of minimal data input
is accomplished over arbitrary geometric shapes. The algorithm involves quad-
riatic functional representation over one, two and three-dimensional finite
element spaces, using natural coordinate descriptions of the serendipidity
finite element fami'y (ref. 26). For the two-dimensional problems considered
herein, the user-specified super elements are general triangular or quadri-
lateral shapes, which may have curved sides not containing points of inflec-
tion. Any two-dimensional domain or series of domains can be discretized by
decomposition into quadriiateral and triangular shapes and specifying the
number and type of elements to be generated in each, The level of user input
effort can be even further reduced when geometric similarity ~f boundary
regions exists for a class of problems. Airfoil analysis at various angles of
attack in an unboundea stream exhibits such a similarity which can be exploit-
ed, To illustrate the general case, consider the sequence in fig. 17. Uni-
form inflow conditions are specified at the left end of the rectangular {or
any other sﬁape) box of fig., 17a. A vanishing normal gradient is appropriate
atong the top and bottom streamlines, while at outflow, proper surface orien-
tation allows specification of constant potential. The airfoil shape, see
fig. 17b, is input as specification of mean Tine coordinates and thicknesses.
From these two specifications, super element coordinate data can be generated
in a predetermined fashion for angle of attack, see fig. 17c-d, to serve as
automatic discretizer input data. The addition of flaps or slats is concep-
tually straigntforward; options could be added to the super element genera-
tion routine to allow their specification in terms of chord line coordinates,
thickness distribution, and angle of attack. The combining of these tech-
niques, coupled with automatic setting of the domain boundaries along lines

of constant streamfunction and potential function, can provide a powerful,
rapidly accessible and reliable tool for finite element analysis of general
airfoil configurations.,

Aerodynamic Viscous Flow Solutions

As indicated earlier, for conventional aerodynamic flows at low angle of
attack, the inviscid flow field is separated from the airfoil by a generally
thin region dominated by viscous effects. Therefore, the solution of the

54



i

¥ -
4

R
a) Infinity Boundariss

=0

U
A ¢ —

(f(t))

[ .

c) Automatically Generated Initial
Super Element Discretization

Figure 17.
Flow Analysis.

/
| . \\q N Y |
- l'ﬂ-:-«

B

b) Airfoil Béécriptﬁon-

RV ~,

D o

.

-

d) Automatically Generated Streamiine
Super Element Discretization

Automated Finite Element Discretizati-n for Potential



two-dimensional boundary layer equations is an important recuirement for com-
putational simulation, and is readily accomplished within the developed
Navier-Stokes Variant of COMOC, Since this computer program assumes all
“parabolic" flows are three-dimensional, the dimensional-degeneracy of two-
dimensional flow is obtained by employing a single column of finite elements
spanning the boundary layer thickness, see fig. 18. The discretization extends
into the freestream, where the inviscid flow is matched by a vanishing grad-
ient boundary condition. The wall is assumed no-stip, and the lateral vanish-
ing gradient boundary conditions yield the desired two-dimensional simulation.
The character of the finite element solution of eqn.(45)-{49) can be evaluated
for accuracy and convergence by comparison with solutions produced by finite-
difference techniques and with a similarity solution for constant specific
heat. The check case corresponds to a nominal Mach 5, laminar, two-dimensional,
air boundary-layer flow over an adiabatic wall in a favorabie pressure grad-
ient, With the assumption of constant specific heat, the flow is isoenergetic
and it is necessary only to solve the X1 momentum equation and the continuity
equation. The initial distribution for longitudinal velocity Uy is estab-
lished from the similar solution for B = 0.5 and S =0 (ref. 27). The
initial distribution for Uy is ubtained iteratively, and Sutherland's law

is employed to compute viscosity.

The test case is initialized at Xq = 0.03 m downstream from the Teadiny
edge., The boundary-]ayer thickness at this station 60 is 0.0039 m , the
local Mach number M, s 3.77 , the Reynolds number Re 1is 0.83 x 10° per
meter, and the adiabatic wall température T, s 1000 K . Shown in fig. 19
are the computed distributions of skin friction, local fres-stream Mach
number, and boundary-tayer thickness for the case of constant specific heat.
These were obta%ned with two uniform finite-element discretizations corres-
ponding to four and eight elements spanning the initial boundary-layer thick-
ness, see fig. 18, The static pressure distribution Pe(xl) is also presented
tor reference. The boundary-layer thickness has increased more than fourfold
within the solution. Only small differences, on the order of about 2 percent,
exist between tha two solutions, the finer discretization producing a slightly
larger skin friction and smaller Tocal Mach number. Superimposed for compar-
ison purposes are the results for the simiiar solution (ref.'27) and a 20-zone

56



L5

Figure 18.

Finite Element Discretization for Two-Dimensional
Boundary Layer Flow.



]

Boundary Layer Thickness - 6/

Mach Number - Mg

58

Pressure » B/ oo uZx10%?

5.0 1.0
4.0L —40.8
_ o
3.0 -0.6
2.0 0.4
1.0 - —-0.2

Symbol Solution | Discretization
—A— | COMOC 4
v | comoc 8 i
i O | Fin. Diff 20
O Similarity Ref 20
0 ] I L 1 0
0 i0 20 30 40 50
' Longitudinal Coordinate - x,/6,
Figure 19. Computed Supersonic Boundary Layer Parameters,

M=5, Rex = ,83(5)/m, 8 = 0.5.

Skin Friction - 1/2 C; x 102



finite-difference solution obtained with the Von Mises coordinate transforma-
tion. Agreement among the four solutions is excellent {within 2 percent) for
skin friction. The similar solution for Me lies between the COMOC and
finite-difference solutions, and overall agreement is within % 3 percent,

Shown in fig. 20 are computed velocity profiles at x1/ 0° 22.7 , whicn
is about midway through the presented solution. For reference purposes, the
initial Tongitudinal velocity profile is given with the node Tocations of the
four-element discretization superimposed, Both finite element solutions pro-
duce Uy distributions that are slightly mere concave upward in the midregion
in comparison with the similar or finite-difference solution. The eight-element
COMOC solution lies closer to the similar solution in the region where the two
finite element solutions differ. The finite-difference solution lies appre-
ciably below both the COMOC and similar solutions near the free stream. The
computed transverse velocities, which are also plotted in fig. 20, show only
slight differences between the two discretization solutions, The trends of the
COMOC solutions are in excellent agreement with the established precedures;
unfortunately, since each method of solution is distinctly numerical, no abso-
Tute accuracy assessment is established. However, for an incompressibie
boundary-layer flow, absolute accuracy and convergence rates for the finite-
element solution have been established to be close to theoretically predicted
values (ref. 14, 28).

As noted in the discussicn of potential flow solutions on a NACA 0015
airfoil, the computed pressure coefficient distribution (see fig. 8) indicates
the (inviscid) surface velocity is retarded by an adverse pressure gradient on
the interval 0.20 < x/C < 0,99 . Along the interval 0.85 < x/C < 0.99 , the
computed velocity is below the reference freestream value. The finite element
solution computed a local acceleration, immediately downstream of the trail-
ing edge, sufficient to return the surface flow to equilibration with the
freestream. OF course, viscous effects would significantly modify these per-
fect fluid results. The merging flow phenomena in the trailing edge region
can be particularly complex, and a thorough computational analysis could be of
considerable value, especially with regards to overail drag prediction. The
finite element algorithm for solution of the boundary layer equations (45}-(49)
merging inte a parabolic Navier-Stokes equations (57)-(59) solution was
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evaluated by COMOC. As the first step towards an airfoil trailing edge simula-
tion, arbitrarily different, laminar boundary layer Tlows were allowed to
develop on both sides of an infinitely thin flat plate. The plate was then
computationally terminated, and the two boundary layer trailing edge velocity
profiles (UT and u2) were allowed to merge within a single, unbounded solu-
tion domain. The test case corresponds to (essentially) constant density,

- isoenergetic flow of air at a nominal Mach number of 0.27 and a reference

freestream velocity, U_ = 30 m/s . The finite element discretizations appear
similar to that presented in fig. 18, (on both the top and bottom sides of the
surface) and were of sufficient fineness to maintain 1% solution accuracy on
prediction of Uy .

Initially, consideration was given to continued use of the boundary layer
equation system downstream of the merging of identical upper and Tower velocity
profiles., Inconsistencies in the differential equation description were
immediately encountered for Uy » howaver. As described in the theoretical
development section, the boundary layer equations cast solution for U, on an
initial-value specification starting at the solid surface. This surface
vanishes from the solution domain, immediately upon flow field merging down-
stream of the plate termination. Since the flow from the plate to the
unbounded region is (assumed) smoothly continuous, in the latter the solution
for u, must become a two-point boundary value problem (in two-dimensional
space). This is possible only by retention of the X, momentum equation for
solution of Uy » and cambining thg continuity and vector momentum equation
to yield an appropriately deterministic form for pressure prediction, see
eqn. (62)-(66). Computational experimentation using COMOC confirmed these
theoreticai musings. It was indeed impossible to obtain smooth %fransition
from the boundary layer Uy distributions while maintaining consistency of
the freestream values.

These early results actually led to extension of COMOC to switch over to
the appropriate parabolic Navier-Stokes system while undergoing a restart.

For ensuing simulations, dissimilar upper and lower surface boundary layer
profiles were allowed to develop from an initial siug (uniform) profile.

Such a starting procedure minimizes input preparation; the boundary layer
velocity profile that developed 1.2 m downstream of the simulated leading edge
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agreed within 1% of the Blasius solution at 1.0 m downstream at the same
Reyriotds and Mach numbers., Hence, arbitrarily dissimilar boundary layer pio-
files were readily obtained to initiate the paraboalic Navier-Stokes solutions.
At restart, all program parameters used by COMOC to control integration were
reset to their initial values. The two previously separate boundary layer
solution domains were merged by adding the node at the plate into the inte-
gration array, and specifying vanishing gradient boundary conditions for both
Uy and Uy everywhere about the closure of the newly defined domain. Initial
cvaiuation for identical upper and lower initial velocity profiles showed that
the COMOC-predicted results for Uy and Uy remained exactly symmetric to
five significant digits for merged solution domains up to 1.3 m long. The
axial pressure gradient, computed using a pressure algorithm for eqn.(63),
vanished to within 0.5% on U_. The skew-symmetry on Uy was exactly pre-
served; the null value remained on the downstream projection of the piate
throughout the solution. Subsequent evaluations utilized dissimilar upper and
Tower velocity profiles. The resuits of one such computation are shown in
fig. 21, The plate terminus boundary Tayer initialization profiles are shown
for x]/SO = 267 3 other profiles are shown for various stations downstream of
the trailing edge. Due to the original dissimilarity of the initial velocity
profiles, note that the Tocus of the velocity profile minimum is concave
upwards, yielding a modest overall curvature in the merged fliow field. For
this case also, the computed axial pressure gradient, eqn.{63), venished to
within 0.5% on U_ . The Tateral pressure gradient was assumed to vanish
identically. For non-flat plate fibws, both axial and Tateral pressure
gradients can be induced by flow field curvature. Their computational pre-
diction requires embodiment and check-out of solution algorithms for the
various pressure descriptors, eqn.{65)-{66).

Computational predictions in laminar wakes are of limited interest in
practical aerodynamics; the prime value of the discussed results is identi-
fication of appropriate equation systems and proof of computational sta-
bility. Even at Tow angle of attack, the initial lamirar boundary iayer
flow will typically undergo transition and become fully turbulent before
the trailing edge is reached, Hence, & far more practical computation for
simulated airfoil wake flow would invoive specification of a turbulent
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closure reiation, eqn.(5), for sotution of eqn,{45)-(48) ard/or eqn.(57)=-
(68). Conventional turbulent boundary Tayers can be effectively predicted
using a mixing length hypothesis (cf., ref. 29), wherein

e1p = 2%y 5l (88)

In eqn.(88), & s the mixing length conventionally defined as

kK Xow 0 _<;xg < A8/k
o -
ASw AS/k < X9

where typically, k =0.435 , X = 0,09 , & is the boundary Tayer thickness,
and w is the Van Driest damping coefficient, used to smoothly merge egn,(88)
into the sublayer molecular kinematic viscosity. An alternative approach, of
general applicability throughout multi-dimensional fluid mechanics, invelves
formation of the turbulent kinetic energy of the flow, and & closure hypothe-
sis involving a suitable length scale (cf., ref. 18). Employing an order of
magnitude analysis (cf., ref. 30), the turbulent kinetic energy is a point
function which satisfies the same general partial differential system, egn.
(76)-(79), for which the finite element solution algorithm has been estab-
lished. The required Tength scale can also be determined from solution of a
differential equation (for example, from the dissipation function}, or be
hypothesized directly for geometrically simple flows. Resuits for finite
element prediction of turbulent three-dimensional boundary region flows,

using both closure technigues and-COMOC, are reported in refs. 31-32., These
results indicate that extension of the finite element methodology to muiti-
dimensional turbulent flows, of impact in trailing edye wake flow predictions,
will be directly accomplished.

The final aerodynamic problem class, for which the finite element solu-
tion procedure has been evaluated, corresponds to highly rotational vortex
flows. Two problem classes of immediate pctential applicability include,

1) analysis of the persistence of trailing vortex streets as generated by the
1ift distribution along highly Toaded airfoil configurations typical of
current wide-body jets, and 2) prediction of the penetration and turbulent
decay of high energy jet flows injected non-tangentially into a crossfliow as
might occur in thrust vector control for VTOL aircraft. In each case, the
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vortex structure will decay as a function of time and the Tocal effective
diffusion and convection effects. The voriex center will move as a function

of cross flow velocity, initial strength and direction, and the magnitude of
the tangential velocity at the juncture of contra-rotating vortex pairs. A
complete numerical simulation typically requires soiution of the full form of
the Navier-Stokes equations. A cursory evaluation of the finite element solu-
tion procedure has been explored for the second problem. An initially circu-
lar jet, injected subsonically and non-parallel into a cross wind, is struc-
tured as a contra-rotating vortex pair (cf., ref. 33). For sufficient dynam-
ic pressure, the jet penetrates into and eventually turns paraliel to the
imprassed crossfiow, The jet vortex structure provides the "elastic stiffness"”
essential for the impressed flow to pass around the initial jet as if it was a
aerodynamic stream tube. As the jet turns and travels downstream, the impressed
crossflow influences the dissipation of the initial highly-rotational structure
by convection and diffusional processes.

Determinatiun of a streamtube structure, as a function of initial vortex
strength and assumed crossflow, was made using COMOC, by modeling the three-
dimensional problem as a transient {wo-dimensional configuration described by
the Navier-Stokes system written on streamfunction and vorticity, egn.(69)-(70).
A sketch of the two~dimensional vortex structure is shown in fig, 22a; the
indicated counter-rotation deflects an onset flow.directed anti-parallel to the
Xp coordinate direction, around the centroidal region. The smoothed distri-
bution of vorticity along the horizontal symmetry plane is shown in fig. 22b,
For the comp:tational simulationg'this was replaced by point sources of vor-
ticity set equal to g appropriately located at xy = Ky Existence of
the mirror symmetry piane, x, =0, combined with use of a "sufficiently
large" solution domain allows specification of vanishing vorticity everywhere
on the selected domain closure for solution of egn.(70). The mirror plane is
also a streamline, as is the right side boundary in fig. 22a. The value of
streamfunction taken on the latter is determined by the specified magnitude
of the impressed crossflow, assumed anti-parallel to the %, axis at inflow
(only). The resultant solution of eqn.(69) for streamfunction determines the
actual inflow and outflow velocity distributions with use of the vanishing
gradient (parallel flow) boundary condition for streamfunction,
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a(]) = a(3) =0, egn.(78). With these imbedded symmetry properties, only
one-half the domain shown in fig.§22a is required for determining a solutiong
the right half was discretized usfng 200 triangular-shaped finite elements and
121 nodes. The cavity was presumed fille¢ with air initially at rest, and the
single vortex pair, of variable strength, was located at x, = +20% h , where
h is the half-width domain span, fig. 22a.

Shown in fig. 23 are the COMOC computed distributions of inital mass flow
within and through the solution domain for three specified values of initial
vorticity, Wy - The displacement effect of the point source is graphically
apparent. For zero specified crossflow, the computed initial streamfunction
forms closed centours,as shown in fig. 24 for different initial locations for
the vortex pair. (The spurious wiggles result from use of high order spline
fits to sp.rse data by the plot package.) A continued solution of eqn.(69)-
(70), to predict the decay of the initial point vortex pair, requires speci-
fication of an appropriate turbulence closure relation, eqn.(5). An accurate
simulation would also require that the impressed crossflow be time varying.
This would be readily accomplished in COMOC by altering the value of stream-
function on the right closure segment, fig. 23, as a specified function of
time.
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CONCLUSIONS

The theoretical and cdmputationa? results of this study, on application
of finite element solution methodology to configuration analysis in low speed
aerodynamics, indicate significant potential for the procedure. The approach
taken has established appropriately compiete (i.e., non-linear) differential
equation descriptions for the several distinct fiuid flow problem classes of
impact in aerodynamics. The developed finite element algorithm is universally
applicable to each description. The developing COMOC computer program, which
embodies this algorithm, has verified the overall concept of a powerful, ver-
satile general-purpose code for computational low speed aerodynamics. The
generated numerical solutions in inviscid potential flow have introduced and
evaiuated various techniques for error control within the constraints of
computational and input-requirement economics., Diverse viscous flow predic-
tions, including a transition of differential equation system during a problem
solution, indicate broad-base appiicability of the algorithm and its computa-
tional embodiment. Continued progress on development of appropriate pressure
soTution algorithms for parabolic flows, coupling of the inviscid and viscous
solutions, and expanded input/output graphics should yield a highly useful,
versatile and user-oriented design tool to supplement and supplant detailed
wind tunnel evaluation of complex low-speed aerodynamic systems.
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