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ABSTRACT

The pro l)lem of small pert-arbation potential suFc!rronic flow

aroun6 complex configurations is considered. This pro)--)lem requires

the solution of an integral equation relating the values of the

potential on the surface of the hody to the values of the normal

derivative, which is known from the small perturbation boundary

conditions. The surface of the body is divided into small (hyper-

boloidal quadrilateral) surface elements, Z,. , which are described

in terms of the Cartesian components of the four corner points.

The values of the potential (and its normal derivative) within

^,	 each element is assumed to be constant and equal to its value

at the centroid of the element. This yields a set of linear

^.1	 algehraic equations. The coefficients of the equation are given

^^	 by source and doublet integrals over the surface elements,

The results obtained usin g the above formulation are comparod

with existing analytical and experimental results.
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I NTRODUCTIM

The evaluation of the- aerodynamic loads is important in

structural design and fliryht control of the aircraft. These

oads must he evaluated by an iterative process which requires

that the mathematical modeling of Lne problem be genoral,

flexible and efficient. The usual methods for the evaluation of

aerodynamic loads is the computational lifting-Surface theory.

these methods arc efficient and flexible but not general

enough to consie...-r problem for complex configurations. Some

computational methods around complex configurations have already

developed. tlo'•.t* ier, they are usually quite cumbersome to use.

Furthermore, for oscillatory flow around complex configurations,

only techniques based on the doublet- l attice method exist in

subsonic range: while no method is available in the supersonic

ones.

The development of the present methoc, is airle'd to overcome

the shortages of the existing methods and provido an efficient,

general and flexible aerodynamic tool to be used in structural

design and flic7ht control. of the aircraft.

The present method is mainly based on the theoretical

formulations developed by Morino (Refs. 1, 2, and :3) . The

geometry of the aircraft and wake is approximated by a number

of quadrilateral elements described by hyperboloi.dal surfaces.

By applying the Green function method, one obtains a linear

equation relating the velocity potential t 	 at any point, p
I	 ^

in the flow field with the values of	 and its normal deriva-

tives on the surface	 surrounding the body and the wake.

3
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INTRODUCTION

The evaluation of the 4erodynamic loads is important in

structural design and flight control of the aircraft. These

loads must be evaluated by an iterative. process which requires

that the mathematical modeling of tho problem be general,

fl^xiblc and efficient. The usual methods for the evaluation of

aercdynamic loads is the computational lifting-surface theory.

thr-.se methods are efficient and flexible but not gcn^ral

enough to consider problem for complex configurations. Some

Oomputational methods around comple> ,. configurations have already

dr-valoned. However, they are usullly quite cumbersome to use.

Furthermore, for oscillatory flow around complex configurations,

only techniques based on thu doublet- l attice method exist in

subsonic range while no method is available in the supersonic

ones.

The development of the present inothod is aimed to overcome

the shortages of the existing method:: and provide an efficient,

general and flexible aerodynamic tool to be used in structural

design and fli<,ht control of the aircraft.

The present method is mainly based oil the theoretical

formulations developed by Morino (Refs. 1, 2, and 3). The

geometry of the aircraft and wake is approximated by a number

of quadrilateral elements described by hyperboloi.dal surfaces.

By applying the careen function method, one obtains a linear

equation relating the velocity potential C at any point, p«

in t.hc flow field with the values of c^ and its normal deriva-

tives on the surface Y_ , surroundinq the body and the wake.
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An integral equation is obtained by imposing that the value of

the potential at p
o
approacres the value of that at point F' on

the surface if F'. approach. p . The value of the velocti, poten-

tial, T is ,assumed to be eons:ant within each element. Then,
the integral equation becomes a system of algebraic equations

which relates unknowns, cf,	 zit the centroids of elements,

with coefficients evaluated analytically. Once the distribution

of the velocity potential is obtained, the pressure distribution

as well as the generalized forces are evaluated.

In Fection 1, the basic equations are introduced. In

Section 2, the numerical formulation -s presented. In Section

3 'nite values of the integral are considered. Oscillatory

lows are discussed in Sec,..i.on 4. In Section 5, numerical re-

sults are presented, In Appendices A, B, and C, useful equations

are derived.
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SrCTION I

13AS 1C EQUATIONS

1.1 Introduction

In this section, b-isic flow equations are first introduced

in Subsection 1.2, while boundary condition of the problem is

considered in Subsection 1.3. The Green theorems for steady

and c,SCillalc,ry flow arr. con..n 	.^idcred in ub..rcction 1.4. The in-

tegrntion schon,n and tho hyperboloi.dal - lement are considered

U	
in Subsection 1.5. In Subsecion 1.6 the role of the diaphrapms

U	 is discussed. Finally in Subsection 1.7 the evaluation of the

U	 pressure coefficient and the generalized forces are considered.

1.2 F3asic P low Equation

The flow is assumed to he isentropic, inviscid and initially

irr.otational :such that the flow can be described b} the velocity

Potential `I' . Cor,sidor a frame of reference such thzt the un-

disturbed flow has a velocity l) a in tho. direction the the posi-

tive x axis, so that

	

6	 t  x + Cf
	

(1. 1 )

where q, is the perturbation velocity potential. Then, the

linearized equation of potential flow based on the assumption

of sn.-0 1. Perturbation is given by

. I 	 (1.2)

	

1	 Gt ^'	 Gam.. L
sre

+ v—
	 (1.3)

is the lineariicad total time derivative.

0
0

10

9



-z-

consider this nondimensional variables

wherQ

and t is a reference length.

U

1.3 Bound, ry Condition

Thn lifting body considered here has complex configura-

tiontion and is moving with small vibration with arbitrary mode.
tJ	

Thus the surface of the body is represented in the general form

C	 1.6,,^ ( X, y, -?, I_)= u	 )

} and the boundary condition on the surface of the body is given

by

'7	 ^^ ^^'^ = n	 (1.7)

By i ^ i.ng F.q . (1.1) , Eq . (1. 7) }>ecome s

C) i-
Furthermore, l)ecause thn flow is uniform at infinity, the boundary

lcondition at infinity is given by ^F= 0. For steady subsonic

flow, Eq. (1.8) is simplified as

where Y1 is the surface normal of the aircraft and ij , is the

r. - component of h

In order to use compact vector notation it is conven-

lent to introduce the concept of the conor.mul and cogradient

u N	 -	 0 k	 (1.10)
X ^	 I^Y J	 ^
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t
(1.11)

(1.12)

D

0

dX	 ^ ^ v L

Furthermore, the conormal derivative is given by

N	 v	 i .f
V" C

With this notation_,	 Eq	 (1.9)	 becomes,

as a	 as as a , ^,

f
` 3' vx

.a	
+dY	 ^'	 ^^^ :^ z 	 6 vX

I

0

L 5X

^M r L `I ' t M1- rJ a ^ ., ! N x '^ j v J- v
L_ a f)	 X ^

or

M 2 c^

^tiC - —	 YK l	 ^- -
U a /

The second term on the right hand side is negligible • Tn vs

a_It,	 _ — 1\1 x	 (1.14)
a ^", C

In addition to the above notation, it is convenient to introduce

a special algebra, cared supersonic vector algebra or, steer_

algebra., to simplify the aliebraic m.Anip.(lation for the supersonic

flo,..i theory. Details of this algebra and the proofs of some

rules of this algebra are given in Appendix P.

1.4 Green's Theor ems

Ac:cor.di_nq to rq. (1.2)r the Green function is given by

F,

n
v

0
0
n

D
0
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t

V2-  Ct - +	 cl-^

r
with

at inf in i.ty.

Detail of the derivation of function G is presented in Ref.

1. The results are summerized here. For steady supersonic flow

G is given by

C_ - _y_
'^;; r

whrre 11 is given by Eq (1. 22) wh.i.l.e

I' %t(^ - ^ ^)^1	 (1.18)

L	 4

For oscillatory supersonic flow G is given by

4n r
w;^ere

-0 _	 _.
n	 ?;z	 L

.e

By app.iying thc! Green function method and us ing Eq. (1.1-7),

the linearized equation for the steady supersonic flow can be

derived a:.

P	 t^«t71 F(	 ^(^'( ^.)	 -	 1L	 f Q `^	 ^_{1	 7 alb (1.21)
JF	 .-'P!^	 J^k'ii J^^ i!!` I q,^,1!	 /w11crc c

A h li

	

\ ?-	 2

I	 Ll Ir y /^	 J^	 L T	 ^")	 )
^+ 1. is the supernorm of vector R	 ns•-wely

i

I
D
D
EI

J

11

IJ
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with "super-produci." t	 defined by (secs Appendix A)

QU	 uX 6'e	 Y by	 U^ ^
'r	

(1.2 4)I
and the conormal derivative	 is given by Eq (1.12) .

For o p -illatory f l.)w, the 1 Green t4eorNT1 is given by

ll (1.25)
n

where r is given by

 (7-- M X j
^^	 ^ tx, ^ ^ I ) e	 (1. 2^)

f 1	
1.5 Numerical Procedure

(J	 Pay imposing that the value of the potential at py approaches

the value of potential at 
p 

on the surface L	 if	 approach

U	 N , t,•e va: a . , f e,( , ) i.) I.qs (1.21) and (1.25) is found to be

1/2 (see App, F, V. f. 3). Then, an integral equation relating the

potential on the surface '37 to its normal derivative is ob-

tained. In order to solve this integral equation the surface,

surrounding the aircraft and wake and diaphragm, if necessary

is divided into a number of quadrilateral elements which arc

approximated by hyperboloidal. elements. The general expression

of hyperboloidal elements can be written aiM 

a1

`' l	 (1.27)

where f,^	 , f'Z and -, are l.i.ncar combinations of the four



corner vectors, ^ ,^	 and	 (see fig.	 1)1	 ► 4	 «

By assuming that the values of velocity potential and its

normal derivatives within each el(-wicnt, G 	 , are constant,

Eq.	 (21)	 for steady supersonic flow reduces to

Cfi^^^	 - ^"	 ( a 	 ^c^a ti 	 ►
I tl	 f J ^ ^ ^ (	 N	 tic +(1. 28 )

04l	 r
-r

where	 is any point- on the surface	 , and N is the number

of elements on

Imposinq the condition that Ly. (1.28) in satisfied at the

centroids, ^^ of the element:,, 	 , a system of algebraic

egoations is obtained. This yields

S

	

	 (1.29)

J

where	 is the N-onecker delta, whereas
h ^;

(1.30)

r	 I	 M	 ^1	 lc 	 (1.31)

and the definition of r 1 is similar to the one for subsonic

flow (see Itef . ' 1) . However, in this report, the wake is not

included since only supersonic-trail._ng-edge configurations

are considered here.

E r?uations for oscillatory supersonic flow are considered

in Section •1.

I. , G Dij hr	 s

There are three categories of wit,,- , geometry in supersonic

I!

U
II

fl



r .^

flow, The first one.are wings with supersonic leading edge. For

..his kind of wings, the element,	 , on the upper (or lower)

surface are influenced only by the elements on the surface of

the same side, therefore, the integrations in Equations (1.30)

and (1.31) are performed over the area 	 o..	 one side only. The

sc,-ond one are wings with subsonic leading edge. For this kind

of wings, diaphragm mlt-ly or may not be used. For wings of large

thickness, results obtained with or without diaphragm are al-

most the same. However, for wings of small thickness, diaphragms

are suggested to he used to avoid Lhe detc•rmina)it sinjularity.

The third one; are wings with both supersonic and subsonic lead_ng

edges, diaphra gm, have to be used for this kind of wings.

If diaphragms are used, both values of the velocity poten-

tial and its normal derivative o,; the diaphragm elements

are unknown. however, two independent integral equations are

obtained for each element of the diaphragm, one relates ^^ and

to the upper geometry of the aircraft and whole diaphragm,

the other one relates the same quantities to the lower geometry.

Therefore, the total number of equations is equal to the total

number of unl,=o .,ns, then -.t system oF algebraic equations can be

solved for	 of wing element and	 and	 of the diaphragm
L_1	 -

elements. If the problem is symmetric in the z--direction, then

^P: is zero while ,,, is unknown for each diaphragm element.

If the problem is antisymmetric in the z-•di.recti,n, than 	 is

zero whiles	 is unknown. For these two cases only one inde-

pendent integral equation c<<n be written for each diaphragm

element, and the number of ,uiknuwn of the diaphragm elements

0
n



I reduces to a half.

1. 7 	 hrC'Ei •iUl^ r'	 md	 Gn.nerr, l i zec9 Farces

Tito preLuure on the surface of the body is evaluated from

the l inear. i zed Bernoulli ti,no -em 

(1.32)

Then	 is givers by
^JU r

t,	 _.	 o (1.331,
Z.

For steady flow by using rq. 	 (1.4)	 Eq	 (1.33)	 reduces to

l 2^,_.. (1.34)
r

For oscillatory flow,	 is derived in Section 4 as

I
IV	

_

The evaluation of the generalized forces is considered as

follows.	 The	 force i q definedgeneralized	 as

^	 -	 ^^	 • i	 ^^ rl 1 (1.36 )

where	 ('	 is the force acting on the surface of the body and	 rJ

1 is the vihra:.ion mode.	 I'or lift,	 ^-^ =	 ^^	 and thus

(U	 h^ (1.37)

(1
Therefore

For pitch moment

•	 U	 - t-	 (=	 te r,,; n,	 ,	 a' . „	 hz

N	
_	 /
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j	 since	 M ) r^ 	 i s neg ligible, therefore

iJ

u

l

0
J
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SECTION 2

NUMEIRICAL rORMULATIONS

2.1 Introduction

lay introducing hyperboloidal element, given by F.q. (1.27) ,

thO integrals in Eqs. (1.30) and (1.31) are evaluated analyti-

cally (See lt r^f. 3). In Subsections 2.2 and 2.3, solutions for

b, and C	 are sho%Nrn to he valid for any planar quadrilateral

elcsmcnt inside the Mach forecone. For elements outside the

Mach forecone, b, _= C.  = 1, since all these elements have no

influence on tha element `",	 However, for- elements inter-

sectc:i with Mach forecone, singularity problem arise , there-

fore, s-..utions have to he considered s •!parately. In Section

solutions for this kind of element are considered.

2.2 Sou r ce Intn_ural

1	
For element inside the Duch forecone, the solution of b ; :t

1	 in Eq. (1.31.) , is given as

jl j^	 / I ^	 ^	 J	 ''	 S

where

	

l y l j ''^l _ !:x '. r '^.	 a r u,^Ct Z X%f^	 T" ^r N,t DX."f ^.i ..tXC?t ^^^^,^1

	

-11^^,...2Nz	 l

v	 (2.2)

with	 ,cc ! a. (1.270

	

f	 rh	
1

I

;/	 y A	 ^^ . 1 ^ J

3 n G(
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.^. ^	 r	 ,	 ^^1 	IC ^lllla . Il +	 o ^11 	 ^,^ G^i >

2 3a

Ilu^ll	 II
6x^^fl

U	
t-2
	 1

all

r `! ^i I I / ! c) Cl L	 ^Q' ^ n `' t	 ^^

/ azG7
—	 .._.) (^ ('	

01(2. 3 1,}^	 `xi

Note that Vq. (2.2) may be rewritt
=
en as

- ^^ htlL

where

^^	 ci, X rc^ / I G, X ^c	
(2. 5)

is the unit normal.

The following is to prove that Fq. (2.9) is valid for any

quadri-lateral planar cloment. Por a planar element, the unit

	

normal n is independo-it of 	 and i

Note also

a	 and
	 a^	 a^
	 (2.7)

n	 F	 3	 (2.8)



f^

I	 -12-

Ilcncc

J (2 . 9 )

l	 K LU '^/ -	 x^Lt ^
31 = (2.10)

Furthermore, as shown in Appendix B,	 (sec Eqs.	 P.5,	 13. 0 and 13.7)

a r' a	 I	 Q„ EL Doti; *	 off. l	 !	 v 4^`

/ r	 W, P►

0 091	 it	 it

n 'I

n ,	 I	 cu ^:

^'^	 r'^ I!	 If

r	 (^, G^

^ 1

^< < v
^	 ^i^^Q,^ Ilgi

ll

or F

/	 0
^^ (2.12)

Similarly

(2.13)

U U::ing Ecls. (2.8) ,	 (2.10)	 and	 (2.12)	 one obtainn

x n t w n	 _.^_._
1

(2.14:1)

or

,r ^'	 ^i	 +	 r_I^^ D r1 xc	 .e^:`► 	
f	 )^,1

(2.14 b)
^l



u	 t)

0
^t

f

Sinilarl.y,
L

t^ y^	 U	 i	 IJ	 Y'	 ;,.,	 (2.15a)

t or

,, :. ,^	 1	 J	 1 /^	 !I	 ^f	 R	 rt	 1^	 (2.15b)
t

In Addition as shown in Appendix C,

n	
Finally, combining Eqs. (2,4), (2.14b), (2.15b) and (2.16), and

LJ	 notinq that	 '- yields
II r^ 	 ^t v ^^ Y

a ^^	 ;^ „;,	 11 - ^l	 11 ^' ^l	 < Oi

0

^ l

-r	 rt	 40 x

(1, 17)

or.'^ 
1	

f	 n O^i

aI	 ^f'per	 '^/04^tp'n^..1,xQ.1

	

^'II} Cr
^Q,U n 	 ^)	 a

(1.18)

hc • cord.ina to tthr_ Second Sunnr-rul r- O.'ry _ n 11 wi1•h ^- rl



r (x^,o a.^Q,1 ^a -* (rQ,o	 vu, +

(2.39)
Hence

-_ --- g	 n u ^^ -	 _ --jot n o lit

O il
n C^ n (	 W X11

n ^r7^	 r	 Q, I
=

(2.20). ^^y II
Sub Sti tuting F-q. % 2. 19) into Erb.	 (1 .52)	 and notin:,	 that TH	 1 

for the element internal to the Mach for.econe, yields

f
r
-'ht

therefore,

jJ

(2.22)

with i s given by Eq.	 (2.2).

2.3	 Doublet Integra l

Consider the doublet integral in Eq.	 (1.30)	 which can be

rewritten as

Note that N =	 1, for the element i ntnrna 1 to Wi vl I f oreconer and

T



1 ,.	 '

iz_
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n
u

t	 Cu
ru	 r 7-. o

u
0	 ^^ 	 11	 p

aLIL

In Ai)nnndix C. it- is nroN



0

u
fl

u
u

^	 1- ^ P \ I Or	^^ X
(2.29)

-16-	 lI

u
u
u
u
n
Q
9

+	 i



-17-

SECTION 3

FINITE. PAU OF INTEGRALS

3.1 introduction

In order to c_:ctcznd ,he solution given in the previous sec-

tion, the finite part of integr.alt: are investigated in -nis

Dsectic-ri ai..: the solutions for I- 	 and chk for the elements inter-
hk

sected c•rith the Mach forecone are considered. In Subsection

^.	 3.21 a general integral function is considered. In Subsection

3.3 1 the source integral is considered. In Subsection 3.4, the

doublet into(;r.al is considered.

11

3.2 1. Coner"I Intearal function

Ccinsider the following integral equation

1:	 dXa	 C)	 Ho'	 (3.1)
• .e

where Px) is a regular function and H(x) is the Heaviside

function.

J	
It is observed that as x approaches zero, the integrand3	 in 1-"q. (3.1) become singular. 	 licnjever it ccir, be proved as

afollows that this, singularity is avoided af-tei the integration

is carried out. Let E be an infinitesimal quantity, then

Eq. (3.1) can be rewritten as

-C) - j ^^ 1 	 t( X^. - 	 E-• v	 d k L. ^/x I ^ ^	 ^^
-P

v	 X 1^r	 ^x
' A

JC•^u 	 dX	 C



_lg_

	

g(a) 	 ^ (6	 a(0

	

-	 -Vre- + vE

(3.2)

Therefore, the singularity contribution disappears and

shou, ? not be taken into account.

3.3	 Finite hart of Source Integral

By combining Eq.	 (2.17)	 with Eq.	 (2.20), one obtains

I a ,x^i L _ ^a^xti,ori

^^^

x	 on 2X^,"h
C^2.

K-II	 II	 r, on I^	 Il ` rl	 II Q,

C	 x	 n _ zoln	 X it.s p	 -	 a'

+	 I^^II	 v Il^ll	 ^^ ^^/

(3.3)

Therefore, the source integral, b hk, can be separated into three

intearals, i.e.	

l

l^	 ,2	 5^)	 (3.4)
1i 	 II^,II I 	 I	 7i nan`

where	 1

li g I) ^i ^, I(	 If ^, I!
I	 1

and	 -^

i
t
s
n
0
ll
0
u
n
^i
(1
Il

Q
0

I

"A



i
T

u
0
0
u

u
0

9
i
I
I
i

-19-

Sj	 =	
I	 q

r	 b	 ^^ `^^, (3.7)

Consider the first integral in Eq.	 (3.5)	 and assume that	 lei

is the solution of S, 	 through the dou^)le integrations. Then

5i	 =	 Ts,	 (I	 --	 Tso ( 1 , -1) -	 1- s1	 ( - ',, 1 ) 4^ Ts.	 ( - ^, - ^^ (3. H)

By using Fd.	 (2.15) ,	 Eq.	 (3.5)	 can be rewritten as

r`^^Jy LI^(xa,vr^-~- 1^t
t

Note that	 ^O'^	 can be expressed as -^^^^ N"l - ') o where

x G^. O Y ► /./^,(^}	 is a regular function and	 '^^	 is defined

such that	 ^ ^ '^ =	 O	 Compared with Eq.	 (3.2) ,	 it can be

concluded that after the first integration, solution along the

intersection line of the element with the Mach forecone yields

no contribution,	 i.e.

15^ ( 1, 0	 —	 Ts,	 U (3. 10)

or

	

151 ( I ) - ► ) - Ts, (- I , - I)	 o	 (3.11)

if the edges of I = I	 , or ' 1-7 _ - I	 is completely outside the

Mach forecone. Otherwise, I51	 is given by the first term of

Eq. (2.2) if the corner point is inside the Mach forecone, or

^^ X u , yl ^.t-t^-tip	
U^^)^^ Q ^1	

a' 0 C^, `d
(3.12)

if the corner point it outside the Mach forecone.

Similarly, by using FBI. (2.14a), Eq. (3.G) can be rewritten

^m
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as

T Sz ( d 	 Uh) —	 ^^'`2- (3.13)

For the same reason given for S, 	 . if Sz	 i s expressed as

52. =	 151 ( I) 1) ..	 Isz( l , -I )-	 Ise (— I ) 0-t-	 0 (3.14)

the solution of S,	 is given as follows:

^s2 (^ , I^	 ^S ?_ (^	 " ► ) ='	 O (3.15)
c> r

1S2	 C' 1, 1^ -	 s^.	 ^'^^ _I)	 (^ (3.16)

if the edge off = 1, or	 W -1 , is completely outside the Mach

forecone.	 Otherwise,	 I S2	 is c,iven by the second term of Eq.

(2.2)	 if the cornf.r point is inside the Ma ch forecone, or

l^

x U z.h^^-` '^ C ^6 0az)1)1a (^	
^	

Lc t C)A^ C	 U
`

s (3.17) 

if the corner point is (, ,. , -side the Mach forecone.

Note that the values of ^+ and ^^ 	 are evaluated such that

C)	 :• D	 The solution of 53	 is considered together

with the solution of c	 in the following subsection.
Ilk

3.4 Fi n ite Tart of the Doublet Integral

The doublet integral is given by Eq. (2.26) as

Ckk n _1-	 Df ] ^i^ 1 ) --f ((I-1)— IBC-I, I) r ^^^ -I , - ^^
l
	(3.18)(^ L	 b	 _l

one can also express 5^ asr
53	 rss C 1 , ^) - ^ s^	 1, -I)	 ^Ls^ (- I, ^^ ^- T (- ^, I^	 (3.19)
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In Appendix C, it is proved that (Eq. C.15)

aro _	 I	 po_,	 a, x ay - G	 Q, X 	 l	 (3.20)
v ^^	 II •^ x a. I I II ^ L1	 ^'

Therefore, tYe doublet integral and 	 can always bc• expressc i as

41,	 Y& to -
iT	 J	 x a	 U 0	 (3.21)

and	 ^^	 II	 (^ d

53	 b ^.^	 I( x(t5p2^ 
6 a ^ YalM .- o^ ^ K Q' x 	 (3.22)

Roth integrands of the above equations are of the form of the

integral in Eq. (3.1). For the same reason given above, one

nobtains

i!	 153^l^- IS3^"^,I)- O	 (3.23)

I bC ^>>) - T;,f' 1 ► ^^ = U	 (3.24)

n or

-1 O (3.25)

T^,	 (- Ic 1) ..	 (D (3.26)

if the edge of ''	 :	 I	 or	 I -	 -- I is completely outside of the

Mach forecone. Otherwise,	 I D	 and 1 53	 are given by Eq. (2.27)

and the third term of Eq.	 (2.2)	 if the corner point is inside

the Mach forecone, or

S; 2	
,^-^grt 1	 C)Ct ^^^ 00.,)^^ h (3.27)

^o k 1
	

=

1
- y 	 1	 4 ^c 	 , 0 ^2 ^	 (j ' Y` )J (3.28)

1 As mentioned before, the v;i]uo of ► ^ ^ is evaluated such that

^ 012	
0
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SFCTION 4

SUPERSONIC OSCILLATORY FLOW

q. ]	 711tecLr  1 Fcivation

In this Section it is shown how the results obtained

in the Preceeding Sections 	 can be extended to super-

sonic oscillatory flow. Introducing the variables

(4.1)

And the complex potential	 such that

.2(7i
.^ (x, y , ^,c) .. ^.^ •^ ^ ^^, 1 , Z ^ c

(4.2)
the: intogral equation for the subsonic vscillatcry flow is

given by

1

•1 	 Cf Z

+ 	 ^`	 (4.3)

where S surrounds body and wake,

4.2 f:oun('-iry Condition

The boundary conc.ition is c1iven by

i
0
D

0
D
D
0
0
a
e
a

(4. 4,)
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or

xrz	 Aft	 rl 3 	 r'x	
(4 .5)

where y and ^p are such that

	

Uxf y =	
X+y^^

(4 . G )

Nex`, assume that the motion of the surface consists of small

harmonic oscillations around a rest configuration, that is

^'	 1I I2 i

Tlien, setting 'j
r V 1 4C

one obtains

( A, I.P?
J

N	 } ;lnr
^V :a C} t '	 ^'	 ,^ i3 R ,S e

iYZ	 w^

r	 no

fNj

	

^ z ax ox	 ^r. ,^x	 ^r.^ ah

r^j ^ c^' e 
i % l ( - 

C^

x A (4.^)

(

I
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As-mime that the surface is given in the forcn

-7	 X, ^	
li	 ;.QTJ:. 0

	

1	 a	 iU er surface( pp	 )

r7 _ ^^ (y 	 _ z` (Y,	 C Jr I	 (Lower surface)
L

( 4.10)

with

(y' `)^-	 ^(E1
r<! (411)

( x , 3 )	 ^( a% (4.12)E

or,	 in general by Eq.	 (F..7)	 with

7 - Z	 ^K, J' 1	 ^^ ' (4.13)
L	 "

v ^t (	 )
Y. x

r3►So _ ^l (4.15)

and
ti

!^rJ
a (4.17)
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Rs:,umc a] so

	

0 k	 (4 .18)

This implies (see Eqs . E.25 and E.26) that

4), . 01e)	
(4.19)

rJ	^ v

yJ 	^'`	 (4.20)
r I.ft i

Neglecting the terms which contain e	 (which arc of order

t^) and separating the steady frum the oscillatory terms, one

obtains

9	 Yet
	

7	 ^^ Gx GX

	

h	
!	 (4.21)^J

 

(4.22)

2	 r,^	 c X i X	 v

Introducing	 such that

(e.23)

lquati.on (4.22) reduces to

	

n ^'lIC	 ^,	 i1	 . ,'-) 1 tX	 N	 r^

JS	 Ael

(4.24)

t I
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i
Finally, neglecting terms of order £ in Eq. (E.21) and terms

	

of ord:!r	
3

r 	 Eq . ( E'. 24), one obtains

(4 .2S)

,^	 •v	 ^'	 i.A hX

r1	 x	 (4 .26)

7t, particuli.r, for

a	 ^	 r.	 ,v	 ^lv f

A .27)

(where the i ► pper(lov:er) sion holds on the upper ( lower I surface)

one obtains

► , _	 :^^^x,^)J	 (x.28)
l	 l

I
V ^,.	 zf	 z	 (4.30)XY` 

and

a ^!7	 V y r : d.^^^_	 N	 vx J
V^ 

z t
--il	 (4

where

(,x.32)
N)	 v



,f	 4 . 3 Prersure. Coe.f f icir-nt

r	 1,he presFare coefficient can be evaluated by u::ing the

`	 linearized Pernoulli theorem, as

2	 J	 //1

7 1

 

(4.33)
M

For oscillatory flow, setting

N ; 2 r	 14X)

(4.34)

„d	 ;,27

Y'	 (4.3 5)

U one obtaJ ns

J-e

r;	 ^-	 1	 ) (4.3G)

T
I
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SECTION 5

	

A	

NU14ERICAL IWSULTS

	

•+	 5.1 Introduction

The formulation presented in the previous sections was

imbedded into a computer program, called SOSSA ACAS (Steady

and Oscillatory, Subsonic and Supersonic Aerodynamic for

n
Aerospace Complex Transportation Systems). Typical results

	

lJ	 of this computer program are presented in this section.

U
5.2 Rectanclulxr Winq in Froth Steady and Oscillatory Flow

	J	
The results in Figs. 2 to 4 are relative to a rectangular

wing with aspect ratio AR - 3 and with a biconvex circular arc

section, 5€ thickness, with sharp leading and trailing edyc

Fia. i shows the distribution of the pressure coefficient C 

on the lower and upper surfaces of the wing with 	 :(= 0` and

M - 1.3. Fir, 3a shows the distribution of the lift coefficient

on the wing with c; = 5° and M = 1.3. whilo Fig. 3b shows the

distribution of C  on the lower and upper surfaces of the wing

with	 c% = 5° and M = 1.3; these results are obtained with

	

i	 NX = NY :: 7. Fig. 4 shows the distributions of the absolute

values and phase angles of the lift coefficient C { , of the same

	

T	
wing oscill.iting in )ending mode

b . 18043 1)"/^, ^ a ,. 7025S r)'>/.i - ^ ,^^ce 

I
with Y,	 12 Ur = .1, M = 1.3 and NX	 NY = 10. All the

above results are compared with the ones obtained by Lessing,

Troutman and Menens (Ref.. 4) . The results obtained for Fig. 2

are also compared with the analytical two dimensional solution

I
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which can be easily cvaluated. For, this problem can be

treated as a two dimensional problem in the central reqion

of the wing. For this case the pressure coefficient is given

by	 (Ref.  4 )

'''	 (5.])

	

C Y	

r

For hi.convex circular-arc wing, the equation of wing section

is approximately given as

Noting that T =- 0.05 and 3 = U. 83, one obtains

	

I	
[ ;,A	

X

i.e. 
C  

varies from --0.24 to 0.24 linearly. The results

shown in Fir7. 2 are in excellent ac reement with Eq. 5. 3.

lJ

5.3 Converqence 11nal.vsi s

The convergence analysis of t'lo problem considered in

Figs. 2 and 4, is presented herd. The distribution of the

velocity potential 41ong YO r o for the problem for Fig. 3

(for different numbers of elements) is shown in Fig. 5. The

curves are obtained with NX = NY --	 5,6 and 7. These curves,

in ,licate that the convergence is vary fast :ind th.it 144

elements on the whole wing, or NX = NY = 6 are sufficient

for an accurate analysis. For oscillatory flows, the distri-

butions of the real and imaginary parts of the velocity po-

tential alone] ? `//,, - o,.;,- for the problem for Fig. 4 are Shown

in Fig. G. ']'he curves are obtained with NX = NY =- ;, 6 ►

I"

iA

I 
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Ma

and 7. From these curves, it is safe to say that 144 elemc.._..

(i.v NX = NY == G) are sufficient for an accurate analysis.

5.4 Delta Wing with Supersonic; Leadir,^! Edge

Fig. 7 shows the distribution of lift coefficient per

unit angle of attack for a delta wing with supersonic leading

edge and

Y^^ -	 fj ^ •f R ^ ti f^	 1. ^

where A is the sweep angle of the leading edge. The results

obtained with NX = 8, NY = 12 and M a 1.2 are compared with

'-he exact solution which is given by (Ref. 5).

P	 lot b"

where=Pay/x	 The numerical. results obtained are remarkably

accurate.

5. 5 Wind-body Conf igu _: ati on

The present method 1:3 general enough to extenu to any

arbitrary configuration. Following is an example of this

applicaticn. A wing--body combination in supersonic flow with

M = 1.48 is considered in Figs. (8a) and (81.,) . The coinhi.n-

ation is composed of a wind with chord C = 3, span S = 9,

thickness 7 = 0. 05, a forehody of length LA = G.0 and radius

varying from 0.0 to 0.75 linearly and a midsection of length

1,M := 3.0 and radius r = 0.75. Wake and at-tbody are not con-

sidered. The angle of attack of the wing is 	 1.92 ,

while the angle of attack of the body is o1D= 0, To obtain

0

i
u
n
fl
0
(I
II
U

0
0

H
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the results, 560 elements on the whole configuration (NX = NY =

10 on the wing, NX = 5, NY = 3 on the body, NX = 10, NY = 3

on the middle section) are used. In Fig. (8a), the distribu-

tions of the lift coefficient per unit wing angle of attack

alonq chordwise direction are presented. The curves are

p lotted at different values cf y/r i and are compared with the

experimental, as well as analytical, ones obtained by Nielsen

(Ref. 6) an y' Woodware, Tincoco and Larsen (Ref. 7) . In Fig.

8b, the distributions of the same quantity along fuselage

at different meridian angles are shown.

5.6 Cor^. fitter Time

All the above results are obtained on the IBM 370/145

available at the Roston University Computer Center. The

computer time for the problem for Figs. 5 and 6 are given in

Tables 1 and 2 respectively, where N, l, is the total number of

the elements on the whole wing. N, I _ is the number of e-

quations to he solved (by using IBM Subroutine GELC), and N.

is the number of diaphragm element.

TABLE 1	 Steady Case

NT I NX, NY 
I	

Neg. I Nd I Computing Time

64 4 28 12 11	 sec.

100 5 40 1.5 22.8sec.

1.44 6 54 18 42.5sec.

196 7 70 21 140.5sec.
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TABLE 2 Osc illatory Case

NT NX, NY Neg. Nd Computing Time

64 4 25 9 21.4	 sec.

100 5 34 9 38.0	 sec.

144 6 45 9 65.4	 sec.

1.96
— 7

58 9 1.18.9	 sec.

It should be mentic zed that the advantage of symmetry with

respect to z and y wo s taken. '1 1herefore, the number of unknowns,

or equations, to be solved is only one-fourth of the number of

the elements on the whole wing plus the number of diaphragm

elements.

i
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I^Yj'rIJDIX ^

SUPI'itALGL13Rl^

1 ► .1 Su Fc r-nrc^duct

I►s menti^ncd in Section 1, in order to sim^^lify the algebraic

manipulation for the supursor.ic flow theory, it is convenient to

i_ntrod^ic^ a spacial al g ebra, called supersonic vector ulycbra

or su cr-al ebr;^. In <-^ddit--ion to the rules of the ordinary___P_.^.^ 2^___

vc:ctar algebra, tho super-u]ycbra includes a su^^ersonic dot

product ^r stic^er•-product

The addiLivn and c]i stributi_vr. rules are obviously valid for

tt;e super-pr. oduct. dote that. a o a ? s

Q O Q ^ p	 for'	 Q '	
^	

(A.2)a	 >

t=hat i.s f:or a l^oi7tcd, respectively, i nsidc, on, ouL-sida thy.

Mach cone (1^'i.g. 1) .	 Hence, in ac:dii.ic^n to i.! ► c^ ordinay dorm

of ;•^ vector (or. dot:--nor,n)	 .

it is convc^nicnt to introduc;c the su; crsonic, norm (or s^cr-

narm)

(^. ^ )

}^ in^^] ] y, :it is cc^i:vcili^^nt. tc^ int^-octu ge the conce^^t of covector

^.. `	
(lx	

(t^. r^ )

Q	 ^	 .. (t

" Ar
i



i
t

0
0
ii
u
u
ri
n
ri
u
n
ri

,i
9

-45- _^

Y7ith these notatiians, it is i.nuncdiate]y veriLied that

It ruay he worth noting that

}}

	 ^

• n x C = Q U O b/ C	 = ^ ^^I7 x C^^	 ^,J^^ Y.C^	 (A.6i!)
_

_-. ,

A.2 First ^unc^r.-rul.^^

'1'lirou<i}:aut i1it^ subsonic finite-elei:^c.nt ic^rmtilation (i'.ef. 6)

t:},e fall-C)t^'inr ralc i.s used

(CS r ^i^^(Lx C^ / - ^Q•C)^^d,--(!^c'• c^^^ b ' C /	 ^t'1.7)

The corrc • sp^ndi:^g supersonic rule, called for convenience,

first surer-rule, is also valid
_	 // _	 ^_	 d	 ^

(Q r1^^U ^CxG) - l (,10 C)^LOG^^^QO )(^iC^C
(n.S)

Yor.

(a K b) o << x ^ 1

--	 (Q^ bt --Cl.T hy) (^yd a-C^^r)

--( ^z bx^ Qx h^ i(C^d X- Cxd=^)

'" nx l^^ CA ^r - L^) ^x fr C^x	
Qx J'^ ^^ C,,c * ^y ^^^, C^ ^ y	 (tl. 9 )



_q6_

while	 "^

..

Q„ d^ - ar ^r - a•- d^^ ( 1^K C r - ^r ^^ - bs ^z^

/.^
^.

^- ^,. ^ ^ C ^ ^ r_,. ^ ^ ,^_ b ^ c^ )

Q^ d z (^^. C k - b r ^r - b ,^

Q

n	 --= ^y b2 ^r dz + ^^ by C^ dy ^^ ^y b e C z c3y "- ^L Icy Cy ^iL
U

Q^ bx C;^ da - r^R bz cL d^ ^^ ^^ bx ^,: ci, .^ a x b,. c^ ^„

^^ ^'yCy ^r -C1^b ► ('y^,•^ CIX^^. Cyc;, + "'yb^ CX^ y 	 (r..lc)

1

1
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A.3 Second_S_uncr-r.tilc

n scco^^d ru! c of the super.-al^]cY^r^i is

/ 7 	 _	 r _	 _	 _	 _ ,)

d o r	 6 (cx ;o^o(c x^^)

(Is . 11)

Note t}-iat the dot product appears in the triple product. Tt^

order to prove I,q. (n.].l) , c^^nsidcr t-hc regular veci-or alc]eLr^i

rule

Tl,is yields , for the covect:or. a^	 (see 1•;q. 11. G )

- ^ (aoC)- c ^au^^
	

(1^.1;:)

On the other hind , a cco
J
rd ^ ng t.o I^q> . (11. G) and (11.8 )

Q^ x (br C^C•^ (•( ` x (^r C^

0, o L^ ^Ti x c-) o (r x ^:) - ^a . ^ . G)^ -{, u '^ C ^	 ^:t• 13)

while, ac:cordinq to rc;s. (n.G) and (:► .8)

- - CC^ a =i ^'i v ^'^.^ ,_	 ;• ^`CvC ^?	 >	 ^..^

G(^ c (,) x C C) ^ z ^ r (^ O ^ (C , b 0 G x !^,

(n.1^1)

ems*

I	 ^1
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Comhir:ing ?qs. (x.12), (n. 13) and (l^.].•Z) yields

^ uii (txC^O!b^xC)- (a^.b rG^^`^^ 6 xc^

c	 TT	 1	 `

qc^c (•6xcJo,E^c^^)+ <<vF (r"x j,;^;c"x a^^
r

that i_s the second super-rule, Eq. (h. 11) . In particular,

for a;:[;q, ?^ - a l , c ^ a 2 , c^r;e obtains

_	 _
0 6- (^, x Qy C> Q, ^ Q: - ( ^ Q^ R Q^ I

D	
i

A.4 '^ •hird SJ.^cr.sonic f:u1G

T. t:hirc3 uscft±l formula, cal.lvd t}^c • t-hir.d suF^er. sonic rule,

i. s	 -	 -	 --	 -	 -	 -	 .-	 -

	

G^ dU }irC	 Q-^:^ +- (fir -Fc^[,,:C Q.^r d

The proof of this rule follows

^4x d^ TirC )(i^•f K^) -(Llr^o ^,,^^^1^.-('r^))

-- (ao^ cc^a - ooc bob) Qx ^"• ^-

- (Qo^ Cn^ - QC7 C ^o^) GXi•^

-	 GO b (CCO ^ Q,^•(^	 _

j

Co^ fi r.{ ^^)

_	 doe	 {i^aa aX-('^_- ba^ ra	 •^)

(A . ]. 5 )

(n. ] 6)
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^^	 ar{	 ^	 ^	 ^	 n`f.d^

1	
1=	 Q	 ^i ^ C C r r	 ^ Q r {. /)	 C^ ^	 3 --	 (,(	 ^' r ( ^j ^ r	 ^ l^1 / f ),	 ^ ^ 0

a ^	 -

_ 	 o• ^^ ( <<^• fora' a^ 01-	 ^^	 •Q1t ^• d r ^^)

Il -	 ^a^^^`	 <<.^ _ a.<<	 ^^.^^a.^^^.	 _
-	 l ^ C Ii	 C a ^	 -	 RUC	 LCD .r)	 _	 ^ Q r ,^' O b X ^> Q, ^7.c Q

J (I^^lE)

(^

I

In hartic:ular,	 for ^^ -• b - c;,	 c	 f = al ,	 ^i	 p3,	 q -- al,

the third superrule reclaces to

^.J
r 1: O 	 G^Q^	 ^.Qj ^	 Qj	 _	 ( _,cQ^O	 y ,Q^	 (^.	 f'i .	 ^

t ^i	 ) ^	 ^	 1^	 !^	 ^ I	 ^	 ^i)

! 1Ux	 ^^- ^	 ^ r ^̀i ^l^ r	 li Y	 Q^/

,)

u

IA. 5	 1'nurt. h	 StiQer. so:iic	 Rule

In e•ubtreorit	 e:ts}^ to	 • how that-	 I

l

/

:tonic	

/

y,	 - is

L	 r	 G	 l	 t	 I cn. ^o)

The corresponding eclu^ition for supersonic t},eory is cal loci four. th

• I supersonic rule

i	 -	 ,	 -	 1-	 ^	 _.	 - J	 II

1

(n.?.]_)
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1
The pr^^^^ is shc,w^i ^s following, ^iccording to the se^:ond

super-rule.

...	 ^ (:^ ^j C ^ () ^. (f^ ^ X Qc l•̂  !^ i x A^ — ^ V 4^ Q i ^ Q, r^ cl ^ x
C	

/	

j

Q	 /^	 ^	 ^ )	 t f `^ V ^ Q t ^' if ." (J L^^^ ^ ^ ^t

t 0 Qr `i^. x Q^ ^ u^ ^ ^- )	 `.	 1	 ^

-'	 _ ( (> ^. ^ ^ .:{ i G' ^ ^ ^+' ^ ^ ^,. -- ^ ^i ^ U fit, f ^ .	 }. ^? ^) `^ C^ lax ^
It

., ;^	
/

[ ^^ ^ U u ^ Q: ty ^. — Q ^ C^ ^'. Q, C> ^t^ ^ — `) (y ^ '^^. ^ `' ^ (^', C^ c^, ^i'^ t ' ^ — 4^ t.^ ^ q^G' a;
^	 ^

_ ^ ^ L

^-	 ^	 d'	 l

-	 ( ^	 ^'

_	 —	 i	 ^, (l. ':	 (11.22)I' ^. ^	 ^^ I 1 	!^ ^ ^	 , !!

t

f^

{

k

..-	 _..	
._

r
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r I^1^PF.Nb IX 3i

^ r 1 /q Nl^	
^ ^` ,

^^	 ^7

In order to prove F.q. (2.1) is valid for quadrilateral planar

element, it is necessary to ^•orc ttie following two equations

	

---^
F^	 _ - I ̂  -	 (33 .1)

	

^	 ► ^

	

-^ Fs- _ -- I ----	 (13 .2 )
î  I)	

^^ 1.

Proof of hq. (II.2) is shown below. Proof. of 3',q. (I3.1.) is similar

except for the fact that a2 is replaced by •al . There are three

different cases in I•' l . Cvnsidcr thc^ first case Q^ D Q1 ) p

Note it ► a t

•^^^^11 Q, If _ o	 (33. 3 )

since ^^ _ " ^)	 P, ,^ y' ^j
a r^	 J

and	 a	 _	 .^	 -- _	 1

(^ X Q, O ^' ,r 4, l

^^ -	 _

,^ .^ ^,	 ^

l	 (31.4 )
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t
0

^u
- ^ --	 a i?-,^ II ^^ II ^, fr t ^ c c1, - -2- Q^^ ^^ ^. x a^ Il

I	 ^	 ^	 1 n^^ ^^(	 ^	 ^

II Q li	 it r II h Q, II t	 G ^1,	 ^ ^'	 — l^
' t	 ^	 ^^^

i	 I __	 _(
/ -	 -	 -	 ^	 ^

II ^, I. 11 ^ ;i n li, I^ •-	 0 4^ ^ 1 ^ ^ a' 
^l ^, II + U ^ ^ li ^1, rl)

`^^	 ^	 fl ^ 11

I
__ ___

u^ll
(3i.5)

	

Consider the seeand case,	 ^,^, U k; = v

a ^'	 ^' --_ -^_I)	-
^ ^^	

r	

^ `^	 ^ C^ u,

._	 _---^^-	 a-- it ^ II
	O Q:	 ^ ^)

^	 `^ ^' ul	 ^

(It. G )

since

^	 'I
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Conr,idcr t:hc third c^^sc^,	 (,^, E G', < V

L'1	 d^	 n^,l^	 y ^ Xa, ►I

II ^, II 	 3 7	 II`^ xQ, l

_ — it u, II	 _^^`	
_- -

I^	 ^ ^, n^

r^',II

__ I

h^^il
(^.'^>

Cam^^ining (13. ^^) , (13.6) , and (I3.7) , yields

, 'I	 I. 1. +^
Similarly, yields

J F^ _	 I	
«, v ^r^ < v

y	 tl^^.n	 c^.^)

.^. ^._._
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Al'Pf:ND IX C

UFRIVI^TIVk;5 OF I p A?iD IS3

C .1 7ntro^luctian

In this Appendix, it. will be shokn that; the second mixed

dcr.ivatives of
D
9

u
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u
ri
u
n
0
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^	 I

	

^
qq
	 _	 _

s3	
^	 ^^^^^^I^'ciir^,l

arc' given ray

and

.- _ -

..



	

-" ^	 _	 4^

^^

_'^- ._ ^

	

^ ^	 ^

(C'.7)

(C.R)

r ---
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C.2 f^c^rivativc of. I^^

Consider I:d. (C.1) or

^	 ^	 ^?, ^

^-nc^re	 y^n
Sri '	 _	 - S I Sy 1't ^ q ^ /"1 )

^1	
The cicrivative of Ip k^^ th r.esf^ect to ^ i:; given by

-... ^ 4;, "fin ► ,	 _-I^. -	 ^-

C1	 .2	 .^

tl	 ^ ^	 -

^' 	 ^^xq,o^ ^Q. 	 a, o^ - -- -	 -	 - - -

',	 Y^^^ (^^ "^'"^)	 ^^ ;^ car

i
-^

I!

(C. ^)

(c. to)
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x

_	 __ __^ ► 	 I

l	 v	 (^	 v	 I	 (̂

(C. 11)

Nex l nu to , , s shown in 11^^pend i x ^'^ , F.q . (n . 2 0) ,

.,

(c.12)G	 '

^^lorcover , note t;u^ t (ser-- fi^ . n . 19 )

^	 -	 -
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^{

1

^^

^	 ^	 ^^

I

S_
	 _	 __	 _	 _	 -

11(	
`	 `

_	 ^'	 _

—(^'c^Y^	 ^-^^	 f ^^^-	 ^ oar	 ^	 oG',) u, o^	 ^•^^^ x^',

^^^ _1

J

I
^^Wl (^^ ^,	 •^	 ^,^q, _ Q per,	 ^^^,^ l̂ )	 ^'U^

l	 /^F	
aJi

i^ 1.	 l̂	 4

11

^[l

,.	 _	 _	 _
(C.13)

^I1
:=.in^:c	 _

Finally ,	 comhi n.i.nc]	 I:d^ .	 (C . ].1) ,	 (C . 12) ,	 and	 {C , ]-3)	 yields

I
--	 --__

^''^	 11 ^^^^^i^'i^j^^, r1 `II^-II

^	 r

i

L^. A^.-_

.,,,^,.
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i	 (J	 ^( l( r ^ ^^ y ^I ` ^	 0"	 G

^.	 -^ ^-	 ^	 ^e	 rotin	 thatNext, c:ons^.3er thy. .^cconl mixed der.^.vati^	 9

^^

	

^	 ^

(C.15)

tine obtains

r. g	 r	 1	 2	 ^ ^

0
0
u
[I

i 1 t

^- U ^^'r

- ^'	 ^^-^	 f`r

_	 _	 ,^. _ _	 _

^	 6^

^- ;,^ _/ -

'^	 ^	 ^^
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