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ABSTRACT

The prohlem of small perturbation potential supersonic flow
arouna complex configurations is considered. This problem requires
the solution of an integral equation relating the values of the
potential on the surface of the body to the values of the normal
derivative, which is known from the small perturbation boundary
conditions. The surface of the body is divided into small (hyper-
boloidal guadrilateral) surface elements, 25;, which are described
in terms of the Cartesian components of the four corner points.
The values of the potential (and its normal derivative) within
each element is assumed to be constant and equal to its value
at the centroid of the element. This yields a set of linear
algebraic equations. The coefficients of the equation are given
by source and doublet integrals over the surface elements, 22;.
The results obtained usinag the above formulation are compared

with existing analytical and experimental results.
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Nomenclature

Eq. (2.3a)
fr :-stream speed of sound
span

Eq. (2.1)

pressure coefficient, 2(p-pe )/eﬂ

lift distribution coefticient, C
(0Ce /O )vo

chord

PL

Eq. (2.23)

Eg. (1.224)

Eq. (1.22b)

re duced frequency, (.0 /'J
reference length

Mach Number, ., /a_,

Eq. (20)

outward normal to surface EZ

T
'

- g

number of elements in X,Y directions

point of the surface 3

control points, (X,, Y,, 2,)
Eq. (2.3a)

Eq. (1.18)
time
a.oF'tﬁﬂ

space coordinates

nondimensional Prandtl-Glauer: coordinates

free-strcam velocity

angle of attack

pu
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Nomenclature (Continued)

| 102|172

surface surrounding body and wake
su-face element

surface of aircraft

surface of wake

thickness ratio

velority potential, U_, x + (f
perturbation velocity potential

/L

Eq. (1.26)

values of #’. at centroid of element:z "

frequency of oscillation

b1

A S el e

compressible reduced frequency , aLQ/q&F = kM/g

AR aspect ratio

TR taper ratio

A u- Pr

Vv gradient in X,Y,Z space
©

superproduct, Eg. (1.23)

Il & || . supernorm of a vector, Eg. (1.23)
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INTRODUCTION

The evaluation of the aerodynamic loads is important in
structural design and flight control of the aircraft, These
nads must be evaluated by an iterative process which requires
that the mathematical modeling of ihe problem L2 general,
flexible and efficient, The usual methods for the evaluation of
aerodynamic loads is the computational lifting-surface theory.
these methods are efficient and flexible but not general
enough to consicaer problem for complex configurations. Some
computational methods around complex configurations have already
developed. Howerer, they are usually quite cumbersome to use.
Furthermore, for oscillatory flow around complex configurations,
only techniques based on the doublet-lattice method exist in
subsonic range while no method is available in the supersonic
ones.

The development of the present method is aimed to overcome
the shortages of the existing methods and provide an efficient,
general and flexible aerodynamic tool to be used in structural
design and flicht control of the aircraft.

The present method is mainly based on the theoretical
formulations developed by Morino (Refs. 1, 2, and 3). The
geometry of the aircraft and wake is approximated by a number
of quadrilateral elements described by hyperboloidal surfaces.
By applying the Green function method, one obtains a linear
equation relating the velocity potential (r , at any point, P, ¢
in the flow fieid with the values of ¢ and its normal deriva-

tives on the surface }1 , surrounding the body and the wake.
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INTRODUCTION

The evaluation of the cerodynamic loads is important in
structural design and flight control of the aircraft, These
loads must be evaluated by an iterative process which requires
that the mathematical modeling of the problem be general,
flaxible and efficient, The usual methods for the evaluation of
aercdynamic loads is the computational lifting-surface theory.
these methods are efficient and flexible but not gen2ral
enough to consider problem for complex configurations. Sone
vomputational methods around complex configurations have already
developed. However, they are usunlly quite cumbersome to use,
Furthermore, for oscillatory flow around complex configurations,
only techniques based on the doublet-lattice method exist in
subsonic range while no method is available in the supersonic
ones.

The development of the present method is aimed to overcome
the shortages of the existing methods and provide an efficient,
general and flexible aerodynamic tool to be used in structural
design and flight control of the aircraft.

The present method is mainly based on the theoretical
formulations developed by Morino (Refs. 1, 2, and 3). The
geometry of the aircraft and wake is approximated by a number
of quadrilateral elements described by hyperboloidal surfaces,
By applying the Green function method, one obtains a linear
eaquation relating the velocity potential cr , at any point, Py 7
in the flow field with the values of ¢ and its normal deriva-

tives on the surface 2: , surrounding the body and the wake.



S—

-x-

An integral equation is obtained by imposing that the value of
the potential at H_approaches the value of that at point p on
the surface if p approach p - The value of the veloc!i poten-
tial,:f is assumed to be cons_Lant within each element. Then,
the integral equation becomes a system of algebraic equations
which relates unknowns, a(L » at the centroids of elements, fw
with coefficients evaluated analytically. Once the distribution
of the velocity potential is obtained, the pressure distribution
as well as the generalized forces are evaluated,

In fection 1, the basic equations are introduced. In
Section 2, the numerical formulation is presented. 1In Section
3 "nite values of the integral are considered. Oscillatory
+lows are discussed in Seccion 4. In Section 5, numerical re-
sults are presented., In Appendices A, B, and C, useful equations

are derived,
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SECTION I

BASIC EQUATI1ONS

1.1 Introductiog

In this sectinon, basic flow equations are first introduced
in Subsection 1.2, while boundary condition of the problem is
considered in Subsection 1.3, The Green thecrems for steady
and oscillatory flow are considered in Subsection 1.4, The in-
tegration schome and the hyperboloidal _lement are considered
in Subsection 1.5. In Subsecion 1.6 the role of the diaphrapms
is discussed, Finally in Subsection 1.7 the evaluation of the

pressure coefficient and the generalized forces are considered.

1.2 Basic Flow Equation

The flow is assumed to be isentropic, inviscid and initially
irrotational such that the flow can be described by the velocity
potential ¢ . Consider a frame of reference such that the un-
disturbed flow has a velocity [ in the direction the the posi-
tive x axis, so that

- U=x +¢ (1.1)

where % is the perturbation velocity potential. Then, the
linearized equation of potential flow based on the assumpticn

of sn~11 perturbation is given by

VZ(.{) - ...'_2 i{-’lﬂb = 0O .23
A

. Jre

g R (1.3)

Py e TR T
is the linearized total time derivative.
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Consider the nondimensional variables

Xezfpl Yey/d Zez/t $:4[LU a

where
Be it (1.5)

and [ is a reference length,

1.3 Boundary Condition

The lifting body considered here has complex configura-
tion and is moving with small vibration with arbitrary mode.

Thus the surface of the body is represented in the general form

o (x,y,?,l,),: O (1.6)

and the boundary condition on the surface of the body is given
by

25 |, Vé.V8 =0 (1.7)
=
By vaing Eq. (1.1), Eg. (1.7) becomes
S o BE L B (1.8)
Vg.VS = (at % A ax)

Furthermore, because thL~ flow is uniform at infinity, the boundary
condition at infinity is given by (f- 0. For steady subsonic
flow, Eq. (1.8) is simplified as

Vg .h =- U n 1.9)

=) »

where vi is the surface normal of the aircraft and am is the
x = component of n .
In order to use compact vector notation, it is conven=-

ient to introduce the concept of the conormal and cogradient

¢ - - -
N = NK 1 - I\JY J - Nz < (1.10)
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Furthermore, the conormal derivative is given by
. %V « N.pe
vl R (1,12)

With this notatior., Eq (1.9) becomes,

(95 29 , 28 ;f 23 Z?)u__..
e * 39 oy 72 ' 95 %

o

| ac _",# 25 .,J; 9 < rk <
= .(_j.:' ("";_ ;2_'"'- = o ‘Lv P e ’{‘.“) -+ -:,’—' Qi )
L o N AR /g d& B X
U [ 0529 2829, 2S 2y (b, 1\2582¢, I }
s W I(.PofP BN 0% PF Ll (8200 52
c- I-( DX V:K '*(—’1) & ) &L - L)ikt" )v"/"\ &N b .)x
e .l.Ji' l. t’ﬂ.‘c + .m...? Nx ..a_.d.). & o ,J"l IVC.]' =0
{ LonN B* ¢ bH o
or
Db 2 Do
ot e = Nt (' -t _m_.- —— 3
2 N¢ B X L
The second term on the right hand side is negligible,K Thus
L\ (1.14)
IME

In addition to the above notation, it is convenient to introduce

a special algebra, called supersonic vector algebra or, super-
algebra, to simplify the alsekbraic manipulation for the supersonic
flov theory. Details of this algebra and the proofs of some

rules of this algebra are given in Appendix A.

1.4 Green's Theorems

According to Eq, (1.2), the Green function is given by
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with 5
G :0 ; (1,16)

at infinity.
Detail of the derivation of function G is presented in Ref,
1. The results are summerized here. For steady supersonic flow

G is given by

u
¢ A AN i
29 r (1.17)
where H is given by Eq (1.22)) while
i 1/2
" 2w y .9 Y4 4
l(w. £ } _E, M l) 4 (& x,)jJ (1.18)
For oscillatory supersonic flow G is given by
g, [ .-t 4 0Bt 9')f (1.19)
4nr :
where
0° = L [M@x-2)sr] (1.20)
a bt SR

»

By app.ying the Green function method and using Eq. (1.17),
the linearized equation for the steady supersonic flow can be

derived as

5 ?(P P VS s ('r" 2 &
QHE(P)({( )z fﬁ 2N IR 12 4 Jf)z.‘#)';}) i/ ol (1.21)
where
£ ed oulside 2 (1.221)
=0 meide 2
and s i
4ot Rer XX s [t vPe(2-2Y]
-0t %X -X S[(Y.-YVe(2-2)] (1226)
”fﬂ? is the supernorm of vector R ie pamely
.

IRY: [RoR|'? (1.23)
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with "super-product", © , defined by (see Appendix A)
2o ) : sy

and the conormal derivative .31 is given by Eq (1,12).

[y
o\

For orillatory flow, the Green theorem is given by

- I -
23 ELV %'I = - @ b  _H_ ees(af®l}az
¥ ) ¥ Pt o M e 3\ i 2
Vi aN© (IR}
# .\
‘L"{, ) / U c, } \
Y INE \f\j co"J'J"/ iti
(1.25)
A
where ¢ is given by
o\ ' ! _\ ~Tr-mMx)
Lt’_! - ._-.\,\:,‘_J’ s )' e (1.26)

1.5 Numerical Procedure

By imposing that the value of the potential at [ approaches
the value of potential at p on the surface o , if |, approach
P the value of E(p) in Egqs (1.21) and (1.25) is found to be
1/2 (see App. T, ¥ef. 2). Then, an integral equation relating the
potential on the surface . to its normal derivative is ob-
tained, 1In order to solve this integral equation the surface,

is divided into a number of quadrilateral elcments which are

approximated by hyperboloidal elements, The general expression

of hyperboloidal elements can be written as;

pe B, + LB AP 4 B D [-velsi
Pk L 19 397 (1811

(1.27)

where [, p,, ;. and |, are linear combinations of the four

2., surrounding the aircraft and wake and diaphragm, if necessary

1 e S | S A 3
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corner vectors, o . [, ¢ Py ¢ and p_. (see fig. 1)
By assuming that the values of velocity potential and its
normal derivatives within each element, EL , are constant,

Eq. (21) for steady supersonic flow reduces to
( __*:/a—ﬁ{[-’u B 0o (# \gs )
Pip) - - \INE, -,(..}'.*7 a3 ‘1 ’H Sl " u 28)
o ! - g [
where p is any point on the surfacn 7., and N is the number

o

of elements on .. ,
Imposing the condition that Eg., (1.28) is satisfied at the
centroids, p, of the elem.nts, 3; , a system of algebraic

eqrations ; obtained. This yields

y ' 3 =3 ) (1029)
J el o ] ‘.ﬂ .g \  /
where : is the Xronecker delta, whereas
Wik
- H |
! ¢ A3
Gon [ 401 e (3

hk i‘ 71 2 ‘"\’Iu ‘ \;‘ } JP,‘.’}‘) (1-30)

K -

]_ 1 { \ .

b= (__‘. ﬂ — .._f'_._}.-f.,;‘, (1.31)

© | mlE 2Nc N\ OIRE = P,

and the definition of w is similar to tﬁe one for subsonic
flow (see Ref. 1). However, in this report, the wake is not
included since only supersonic-trail’ng-edge configurations
are considered here,

Equations for oscillatory supersonic flow are considered

in Section 4,

1.6 Dia?hggqms

There are threce categories of winy geometry in supersonic
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flow, The first one: are wings with supersonic leading edge, For
his kind of wings, the element,f;‘, on the upper (or lower)
surface are influenced only by the eliements on the surface of
the same side, therefore, the integrations in Equations (1.30)
and (1,31) are performed over the area 0.1 one side only. The
second one are wings with cubsonic leading edge. For this kind
of wings, diaphragm may or may not be used. For wings of large
thickness, results obtained with or without diaphragm are al=-
most the same, However, for wings of small thickness, diaphragms
are suggested to be used to avoid the determinant singularity.
The third one are wings with both supersonic ani subsonic leading
edges, diaphragms have to be used for this kind of wings.

If diaphragms are used, both values of the velocity poten-
tial and its normal derivative on the diaphragm elements
are unknown. However, two independent integral equations are
obtained for each element of the diaphragm, one relates fu and
(a?fﬁ”ﬁ:to the upper geometry of the aircraft and whole diaphragm,
the other one relates the same quantities to the lower geometry.
Therefore, the total number of equations is equal to the total
number of unknowns, then i system of algebraic equations can be
solved for fk of wing element and i‘ and ‘f&fﬁ”of the diaphragm
elements., If the problem is symmetric in the z—&irection, then
pff)ﬁu}s zero while {D is unknown for each diaphragm element.
If the problem is antisymmetric in the z-directioun, then £y is
zero while{yr.ﬂi}s unknown. TYor these two cases only one inde-

pendent integral equation can be written for each diaphragm

element, and the number of unknown of the diaphragm elements
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reduces to a half,

~3:.2 -Prossurg__a_l\_gl Gener_g_‘]_i_zed Forces

The pressure on the surface of the body is evaluated from

the linearized Bernoulli thecoren

\

P-bs -p. (2 s U 24 (1.32)

Fel

Then %'is given by

Cps PPy 2. 2 (";i: ' ‘t ?f | (1.33)
AN VAT 2
For steady flow by using Bgq. (1.4) Eq (1.33) reduces to
y 4,
L'.P __,“: _: (103‘)
P
For oscillatory flow, Cp ie derived in Section 4 as
~ e - .-,‘:.': ~
(.,, = (‘]J < - = (»": * Bk @j (1. 25)

£y M X

The evaluation of the generalized forces is considered as

follows. The generalized force jis defined as
4 $ [, ;
Ql‘\ - {PZ ¥ "‘;{L (1.36)

where | is the force acting on the surface of the body and L&

is the vibration mode. For 1lift, ()= & and thus
b U: -pak = -pn, (1.37)
Therefore
Lo p ndic.d) p dedy (1.38)
c'j'.‘ 2
For pitch moment
,f. J = - p ~(‘..J .';e__:: n, 4 (X-x,) n, l (1,39)

J
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is negligible, therefore

-ﬁ) P (x-x,) d—xd*'

(1.40)
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SECTION 2

NUMERICAL FORMULATIONS
2.1 Introduction

By introducing hyperboloidal element, given by Eq. (1,27),
the integrals in Egs., (1,30) and (1.31) are evaluated analyti-
cally (See Rnf, 3). In Subsections 2.2 and 2.3, solutions for
bkk and c, are shown to be valid for any planar quadrilateral
element inside the Mach forecone, For elements outside the
Mach forecone, b, = C = ), since all these elements have no
influence on the element :A . However, for elements inter-
sected with Mach forecone, singularity problem arise , there-

fore, s..utions have to be considered separately. In Section ?

solutions for this kind of element are considered.

2,2 Source Integral

For element inside the Mach forecone, the solution of b _,
in BEq., (1.31), is given as

bhk B - .’l] [l‘.:.("l )_ Is(l_-\ ] : ‘?f.!'- AN I_‘,(“‘.")] (2.1)
|-

Is(:g ,»J')___ l‘{ X '[ {f,;fl;y:;tg:{' 'F‘(":a"’) (‘),xdf) !A. .F ('3 )
_”(r q ;,‘

ke . e = = fx -U.7,,,
- ?-.f‘)(ﬂ{,_ r?"'.‘!J .__....'_-.:—-—--:--_._.'— )
: & A B Ll (2.2)
with (sec Lg.(1.27))
; Sty el
5L - 12)

and
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B guay Il + fo.i’/ gt T
F (5- ‘1) lﬂ " / ”‘?'5‘-.’[ (4,0 L i )
ll?ll /g'oc'c, : (dp%=0) (2.3a)
- | L) s E? o d: ) @-‘@‘3‘ 2 U)
T 2 (.Ilfxﬁﬂ

-FJ‘(:",“ ._: 4,4 ,l ) hall ¢ (‘C" [ CRCER )
N Il ?_xmll

. “‘f" / qot, . @, 0, =)

\,) CLL

J P B (PSR Jeiec. SRR IS/ A o
i 4 () et D

Note that Ry, (2. 2) may be rewritten as

15: _T-:l:\-;l- i ?‘(4 On ‘F(\C‘V))'*"f’\:_\’)" F(% Yl)
RN ATL N
"&r’ ?,4.)({4.,‘) (2.4)

naxd /|6 x|

is the unit normal,

where

(2.5)

The following is to prove that Eq. (2.4) is valid for any

quadrilateral planar elcment. For a planar element, the unit

Note also
od , B, 0 (2.7)
TR
and
L " el
’ '. I
2 ;252 W P,

9r| 7 3{, % (2.8)
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llence
7 7 xa 2 a M =
_{; .f s &,x4,0n=: O 2.9)
2 (“,, t,,,) G xa, 1Az O (2.10)
on "V

Furthermore, as shown in Appendix B, (see Eqs. F,5, B.6 and B,7)
’pﬁair,]fo&*?o%,? =1y

07 ->7 Mﬂ igeal )it
.2 @_) S @.0@ e

m 7 \pea’ " T

2> [ Mg _lﬁ_) 4,0 % <o
a7 ‘4;” 'j(@b "

550;’5 2o

orx .2& ____I,_

= — 2,0 4 2
2y 070 404 Z 0
(2,12)
Similarly
L - o e a2 B
Loy | (WA b T S (2.13)

Using Egqs. (2.8), (2,10) and (2.12) one obtaine

2 geien 7, (3.1)§ » 2 (3495 L. )

{ (2.14(’1)

or

-

Arton iﬁﬁ#iﬁ. - fxg,00 —(ud—r, (2.14b)
Il ( i IR L fof)
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[
la O-' ‘ - ( xq @n S

(f’-”r] i ? F S (rr, ? V?':é ) (2.155)
or M 27N X ?m (‘..

‘ 7 b M \ N N T, iibiinl,

_a.:. i“' X": 9 " E (a’)“ \.2 = -Ei-:—ii‘_‘.J-? + f’Pj t‘ - :l’ ¥e (R 1 "‘“‘-“/ : s ;

ot ') neu b i 1 (2,15b)

In addition as shown in Appendix C,
» y ~1f-Fa2 09 Py EiE —Z"Z'é
2 (li'allﬂn' i id 1l )} 2 ey
| B0 15 drds Iy (2.16)

Finally, combining Eqs. (2.4), (2.,14b), (2.15b) and (2,16), and

noting that ”n”‘ = - non Yields

& Gudos, Bk _z = ,- Fok
:;‘n; o f(t;.f /ﬂ’; II b (703)“)

"(4";;:7" Lf' Jines ;’aﬂ)

en (3 E.m, ) /i’ }

+ 1
(2,17)
Or,'J'A - ____.'_-?zla'xa;'ﬂ -
) nen .z"
” 0‘! )'—' fﬁ@l‘)l O(" i-;l 30";:4]
0" A
.1", [@“? 7 (2.18)

According to the Second Super-rule (Eq. A.1l with a - q,
i)-a."'é':az’
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- ' Q, (a, | (ixa.oﬁ T’,Oa; - ixi.oﬁ i.o;.- i.;; i,.a,ra‘)
= (ini.oa‘sa,ioa;-r{i,{aozf-,xé,)ioz’.+{f.&:,a‘)

i

I,O-‘i, E|f§.05.15. '(7’,‘}|fa,)‘-o- (i'&li?l)

n

Fl
= 1,01 nen IZ’:"’:I (2,19)
Hence o T ¢
S R “,5}'
2 -I‘i = : '.- : Tad A -30;”0' ]m-t “,J
?5) non ) Wy h gl
non iy
5 s @ | (2.20)
hgn

Substituting Eq. .2.19) into Eq. (1.52) and noting that H = 1

for the element internal to the Mach forecone, yields

b jf - J J‘ ﬁ:ﬁ o (2.21)

therefore,

- lll)ku s Is(l,I) - —:. “,— |]-— 13 ("I,P) -+ Is(-!' j) (2.22)
with Ig given by Eq. (2.,2).

2.3 Doublet Inteqral

Consider the doublet .ntegral in Eq. (1,30) which can be

rewritten as

f e
‘.k /! / NOV )I{I Xc{ I ‘{ {, (2.23)

Note that H = 1, for the olement internal to M:c . forecone and
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Therefore

(ﬁo ;7) _"‘L;’"‘ = -——-:':—,—-[{ioﬁ)i]of_

i

" e
e L w ¢ N
(jo0¢)” ¢ (2.25)
Thus
Co® ] T 0] = 1,00m1)- TG 10) 4 1,6 -:ﬂ
hie gL L o ! 7 (2.26)
where 30 b :
iy . LR
I g (2.27)

In Appendix C, it is proved that



e M B B S OO0

fr&’_@}f-xﬁa

Ip F {-an.;(i

NIRRT

(2.28)



el B e =

[
—

- —_—

"

— e

SLULLIUN O

FINITE PART OF INTEGRALS

.1 _Introduction )

In order to extend “he solution given in the previous sec-
tion, the finite part of integrals are investigated in lnis
section ai.2 the solutions for bhk and “hk for the elements inter-
sected with the Mach forecone are considered. 1In Subsection
3.2, a general integral furction is considered. 1In Subsection

3.3, the source integral is considered, In Subsection 3.4, the

doublet integral is considered,

3.2 A Generil Intearal Function

Consider the following integral equation

3
I J‘h( Hm)dx (3.1)

where d-(x) is a regular function and H(x) is the Heaviside
function,

It is observed that as x approaches zero, the integrand
in Eq. (3.1) become singular. However it carn be proved as
follows that this singularity is avoided aftes the integration

is carried out. Let € be an infinitcsimal quantity, then

Eg. (3.1) can be rewritten as

1- A»-‘J-a-—[ Lo

—-p

2. _a i e +f....-—f(n-€)olx]

Jbar Vx
. 5
&[J Iaax ({Jaé) e _—éi]




(3,2)
Therefore, the singularity contribution disappears and

shou. ? not be taken into account.

3.3 Finite Part of Source Integral

By combining Eq. (2.17) with Egq. (2.20), one obtains

[E.RK,IL_ %_(:LKE.OH - E, ﬁo'ﬁ _i‘xa"" oOn %OE‘ )

.
A oR

gl gl gl (g )™
.é;.lal.o.ﬁ *gtﬁoa_ Xd, ONn I_G_);‘:_‘.
*‘( (gl gl b (fog)/

(3.3)
Therefore, the source integral, blﬂf can be separated into three

integrals, i.e,

§ '
b = "'l'r'r_j m“"'xa*l‘lfap'\ =Tn!_-r‘—\—;;(5 +S;+S,) (3.4)
where B
- ( & k@, 0N E"_’O-n Tx a. ON iealJJl 3
sox - Jfu] o i ~Txason L2 b
i, xa,0R xPok o oz aw]
e JS ! [" 1l L“_"fﬂ*ﬂt’ B T e
and -y
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(3.7)
Consider the first integral in Eq., (3.5) and assume that I,,

is the solution of 8, through the double integrations., Then
S5 = Is. (lnl) - Isl U;"")' In ("» ') +I$| ("'a"'l) (3.8)

By using Eq. (2.15), Eq. (3.5) can be rewritten us
i la N i '
LR '-JJF = H( ’(E;@h) = ]G‘ (3,9)
) -J.B’LL v AN
Note that‘V{oi can be expressed as'ﬂ(q)47'1, where

§xa. 0 ﬁ/'l\a{"l) is a regular function and 7, is defined

such that 4 0¢= O . Compared with Eq. (3.2), it can be
concluded that after the first integration, solution along the

intersection line of the element with the Mach forecone yields

no contribution, i.e.

Is;('ul) e Isu(":')-’-‘- O (3.10)
or

].fn (l)"|)' Im (""‘l)f—o (3.11)
if the edges of ?=| , or N> - | is completely outside the

Mach forecone. Otherwise, Is is given by the first term of

Eq. (2.2) if the corner point is inside the Mach forecone, or
L] - —
Is.(?.‘m):o 2, 0a 20

=(axa,.n) ¢ O X a, a, <o
(1’ ) 7’ (% a')ﬁla.il (3.12)
if the corner point is outside the Mach forecone,

Similarly, by using Eq. (2.14a), Eq. (3.6) can be rewritten
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For the same reason given for 8§, , if 8, is expressed as

Sz = Is:.“:‘) i Is:(‘:")- s (-*':l)-‘r Isz [-l,'l) (3.14)
the solution of & is given as follows:

Ia (N - T (- = 0 A
Isz (": D- Isz. ("l,"l) = 0 (3.16)

if the edge of f‘- l, or F =~]1 ,is completely outside the Mach

or

foreccne. Otherwise, Isz is given by the second term of Eq.

(2.2) if the corner point is inside the Mach forecone, or

Les (F:”[): O % 084, 2 O

- (g x &;-'ﬁ)%(@o&,)/ual“ ; 4, 04, < O

)

(3.17)

if the corner point is cucside the Mach forecone.
Note that the values of f‘ and 7[' are evaluated such that
% O% = O ., The solution of 93 is considered together
with the solution of ¢ . in the following subsection,

hk

3.4 Finite Part of the Doublet Integral

The doublet integral is given by Eq. (2.26) as
Che = L T,000-T,00-1)- T, 1) « T, (-1, -1]] (3.18)

one can also express .53 as

53 = Ts; (h‘)“Is;(l»"') ~ IS?("J’)+I§;(":-[) (3.19)
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In Appendix C, it is proved that (Eq, C.15)

2T, . ! G006, T-4xA, ~907 '-i.xf’-
o oy (o § 0% TaxR) @

Therefore, tke doublet integral and S5, can always bz expressci as

C”""'S Jan!ufamn“‘” '63' B §OR RS

5,:-1‘11:?‘:(” [“G m—”—-(%o&, %-a,m;-'g 0 {xa X (5,)‘;%—“.]11 (3.22)

Both integrands of the above equations are of the form of the

integral in Egq. (3.1). For the same reason given above, one

obtains
Tss(11)- Tsa(-1,1)= 0O (3.23)
Io((,0)-Tp(-01)= O (3.24)
or
_u(lx-l)-l-n(-‘)")“;o (3.25)
I, (-)-T, («h-1)= O (3.26)
if the edge of 7: [ or 3 -| is completely outside of the

Mach forecone, Otherwise, I, and Is; are given by Eq. (2.27)
and the third term of Eq. (2.2) if the corner point is inside

the Mach forecone, or

Is;(fr’l.)"' (?:-‘-")%MﬂI(fgoa-)('f;oﬁ.)("f;-f\)] (3.27)
To(f) = - 5 4igm [(§ oa)(g o) (§- W )} (3.28)

As mentioned before, the value of'q' is evaluated such that

'569'%::0 ,
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SECTION 4

SUPERSONIC OSCILLATORY FLOW

4.1 Inteqral Equation

In this Section it is shown how the results obtained
in the preceeding Sections can be extended to super-
sonic oscillatory flow. Introducing the variables

Xez Y £ 2.2 T:Bat p.wl

B¢ 1 3 o ] Ba, (4.1)
and the complex potential 9 such that
A ce(T-mXx
tf (x,%E,L):. L{"{L ¢(/\,f2)€‘ ( )
(4.2)
the integral eguation for the subsonic oscillatory flow is
given by

714; f]r’ {_Ef_b__ ..H.. Cc{\:z-;?,?f"'. 4) 3 (i; wl(‘.cp,;;:))} a3

g 2Nt i N L
(4.3)

where Z surrounds body and wake,

4.2 DPoundary Condition

The boundary condition is given by

S .- 25 _u2S
i “W‘{) é afy I (4.4)
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or
_ g 23,0198 MM,
“qus"" qﬁ' ’ I *B X *'};’1 X X
@.5)
where ¢ and ¢ are such that
o Ustgp s YLK #)
' “4.6)

Nex! assume that the motion of the surface consists of small

harmonic oscillations around a rest configuration, that is

4. 5(xv2)s Spz)e™
(4.7)
Then, setting
§ 7 o bi TRY
b= b(xv2)+ (XY 2)e b

one obtains
i ,S’ oV ® - (Px:"'es, o Vs P + Vyp, So Ve cfa)

~d ' T a1
-'(\ZVESGV & e g B.n8 "

- g LT
' .'.(9_:.» ;23 . )
B\2X 2K

~ o E WM

(4.9)
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Assume that the surface is given in the form

3 Jz-2,(x¢). 2, (x¥)¢™ ] 0
S -[2 -2, (+)- Z, (x,v) e“”].—. o

with
Z, (X ¥): Ofe)
2, (x¢)+ Ok

or, in general by Eq. (E.7) with

2 g
fi .2 LE’- Zu( (x,ry.]:'C)‘i
250 : 22t o O ()

ox oX

VS, = o(l)

and
Ega: - Eiﬂt('x.vy = C)(E“f
__9_:_:‘5 : O(E 2)
R

(Upper surface)

(Lower surface)

(4.10)

(411)

(4.12)

(4.13)
(4.14)

(4.15)

(4.16)

(4.17)
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Assume also
. 00) | (4.18)

This implies (see Egs. E.25 and E.26) that

b« O] (4.19)
- 4
WZ; - O(C) (‘.20)
2T
Neglecting the terms which contain ¢ (which are of order

o
£ ) and separating the eteady from the oscillatory terms, one

obtains
v ;i oV + J-.@$'4 l!f.?s’ iz{ : O
- e we 19 B p)( f“ 2,x 2X
l . JliAy < !
-‘4,,,&“":.#:4’ S :n."f’ ""M“ﬁ"‘: *a 5%
-J
+ 1 -75- 24 , 28 24) .0 (4.22)
g* \ 2x éx 2x c)K)
A
Introducing {'such that
g A LiamMx
F.d
(4.23)
Equation (4,22) reduces to
A RNk a A o
V3oV @ ¢ 4 AN E5 poe - 7,507 %
4 3 rog MY
j2ins ., 122 +.t‘-'.f£2:;‘(.<?:- 4 ..ruw) &
& 2 L2 L ax F3%
+22 28 1. o
X e (4.24)
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Finally, neglecting terms of order Et in Bq. (E.21) and terms
of ordar :: in Bq. (E.24), one obtains

-\ SGV ﬁ r..z-é.?.s._‘

avy e o’y ax
(4.25)
' 7 T &\ anX
et # (B3 2
& 4.26)
In particular, for
[ » ] f‘d‘
rs; 3 !ué'-f"‘ (J,(-l)-.g.‘(g"(f_-j,‘_ ./
J - 4.27)

(where the npper[lower) sign holds on the upper[lower) surface),

one obtains

A 8
D‘ 1 3 i ? [—\7" e“‘[ /X‘;}] (‘ 028’
~J
S s E' 3;“(:«,;} (4.29)
[
L B N/r s N
L
and
~\ N -~ v
= Vxﬂ_:-o A(f“‘f_ o /Vz (3' k'_iz + .gf.)c o
.-.-.......--c = 2 3 ( ‘ﬁ,(
2N | Vepe #] (4.31)
where
y . wt -
2 /‘-;.f?. s wl (4.32)
M v,
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4.3 Pressure Coefficient

The presrare coefficient can be evaluated by using the

lincarized Bernoulli theorem, as

£ vl B Y 2L
g (58 + %

__2(?3 3?

4.33
cs ‘.K/ ( )

For oscillatory flow, setting
PR L A iﬂ._/r- H”)
5& e P e o 9P €
(4.34)

o RT
s bt L (4.35)

one obtains

4 : ! 9~/-‘
- .....2 |JQ~) 4 . i S
i 7%1 # B 2x /

B LR
-zﬁﬂ[_&-,@'\ﬁ.‘. L1 2% 7
1 L M 3 f ‘)A'

A
- A ( R M:(
:...g,[. JL ¢ + .:.._'. }C
B 7 X J
| 14 XN ‘A LAX/MIT] AN
: - .2 [c / 2 (¢ ¢ je
e oX
lnﬂB’X/‘;"' I 4
S 2: ¢ 2 (9}) e.. 'J?X/M
o 2X /
kBx e
2 ~ b R ¢
oyl '?’ (‘é ; ) (4.36)
X
[



P —
[SEm———

. -

_— . e e

SECTION 5

NUMERICAL RESULTS

5,1 Introduction

The formulation presented in the previous sections was
imbedded into a computer program, called SOSSA ACTS (Steady
and Oscillatory, Subscnic and Supersonic Aerodynamic for
Aerospace Complex Transportation Systems)., Typical results

of this computer program are presented in this section.

5,2 Rectangular Wing in Both Steady and Oscillatory Flow

The results in Figs. 2 to 4 are relative to a rectangular
wing with aspect ratio AR = 3 and with a biconvex circular arc
section, 5% thickness, with sharp leading and trailing edge:.
Fig. z shows the distribution of the pressure coefficient Cp
on the lower and upper surfaces of the wing with = 0% and
M = 1,3, Fig 3a shows the distribution of the lift coefficient
on the wing with « = 5° and M = 1,3, while Fig. 3b shows the
distribution of Cp on the lower and upper surfaces of the wing
with o = 5° and M = 1,3; these results are obtained with
NX = NY = 7, Fig. 4 shows the distributions of the absolute

values and phase angles of the lift coefficient Cio» of the same

wing oscillating in bending mode
Z = 018043 [/, » 170255 |39/, ] = 115688 (394" 25387 |
with K= @€ /5y, = .1, M= 1.3 and NX = NY = 10. All the

above results are compared with the ones obtained by Lessing,

Troutman and Mences (Ref., 4). The results obtained for Fig. 2

are also compared with the analytical two dimensional solution

oyly
/’J

“
/
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which can be easily evaluated. For, this problem can be

treated as a two dimensional problem in the central region
of the wing., For this case the pressure coefficient is given

by (Ref. 4)
€y » £°5 (5.1)

For biconvex circular-arc wing, the equation of wing section

is approximately given as

e w32 (R-A) , (-052x205) (5.2
Noting that 7 = 0.05 and 2 = 0.83, one obtains

A r -048 X (5.3)

i.e. c, varies from -0.24 to 0.24 linearly. The results

shown in Fig. 2 are in excellent agreement with Eq. 5.3.

5.3 Convergence Analysis

The convergence analysis of the problem considered in
Figs. 2 and 4, is presented here. The distribution of the
velocity potential zlong ¥$ = 0 for the problem for Fig. 2
(for different numbers of elements) is shown in Fig. 5. The
curves are obtained with NX = NY = 5,6 and 7. These curves,
indicate that the convergence is very fast and that 144
elements on the whole wing, or NX = NY = 6 are sufficient
for an accurate analysis, For oscillatory flows, the distri-
butions of the real and imaginary parts of the velocity po-
tential along 2Y/, : 0.5 for the problem for Fig. 4 are shown

in Pig. 6. The curves are obhtained with NX = NY =35, 6
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and 7, From these curves, it is safe to say that 144 elements

(i.0 NX = NY = 6) are sufficient for an accurate analysis.

5.4 Delta Wing with Supersonic Leadirnu Edge

Fig. 7 shows the distribution of lift coefficient per
unit angle of attack for a delta wing with supersonic leading

edge and
m = P /-('d.u A s I 2

where A is the sweep angle of the leading edge. The results
obtained with NX = 8, NY = 12 and M = 1,2 are compared with

the exact solution which is given by (Ref. 5).

. 4;& "m -t t=my ' e md
an € A ) € - ensermels 4 £ cctsnee
P we ,h'n.'fl Ke [ oy M- sl mw

where ¢ = P!/ . The numerical results obtained are remarkably

accurate,

5.5 Wing-body Configu.;ation

The present method 13 general enough to extend to any
arbitrary configuration. Following is an example of this
applicatien. A wing-body combination in supersonic flow with
M = 1.48 is considered in Figs. (8a) and (8b). The combin-
ation is composed of a wing with chord C = 3, span $= 9,
thickness 7 = 0.05, a forebody of length LA = 6.0 and radius
varying from 0.0 to 0.75 linearly and a midsection of length
Lm = 3,0 and radius r = 0,75. Wake and atfbody are not con-

sidered. The angle of attack of the wing is o = 1,92,

while the angle of attack of the body is d,w 0, To obtain
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the results, 580 elements on the whole configuration (NX = NY =

10 on the wing, NX = 5, NY = 3 on the body, NX = 10, NY = 3
on the middle section) are used. 1In Fig. (8a), the distribu-
tions of the lift coefficient per unit wing angle of attack
along chordwise direction are presented. The curves are
plotted at different values cf y/r, and are compared with the
experimental, as well as analytical, ones obtained by Nielsen
(Ref. 6) and Woodware, Tincoco and Larsen (Ref. 7). 1In Fig.
8b, the distributions of the same quantity along fuselage

at different meridian angles are shown.

5.6 Computer Time

All the above results are obtained on the IBM 370/145
available at the Boston University Computer Center. The
computer time for the problem for Figs. 5 and 6 are given in
Tables 1 and 2 respectively, where N is the total number of
the elements on the whole wing. Ngf is the number of e-
quations to be solved (by using IBM Subroutine GELG), and N,

is the number of diaphragm element,
TABLE 1 Steady Case

NT NX, NY Neg. Ng Computing Time

64 4 28 12 l1 sec.
100 5 40 15 22.8sec.
144 6 54 18 42.5scc.
196 7 70 21 140.5sec.
-
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TABLE 2 Oscillatory Case

NT NX, NY Neg. Ng Computing Time
64 4 25 9 21.4 sec.
100 . 34 9 38.0 sec.
144 6 45 9 65.4 sec.
196 7 58 9 118.9 sec.

It should be menticaed that the advantage of symmetry with

respect to z and y wos taken,

Therefore, the number of unknowns,

or equations, to be solved is only one-fourth of the number of

the elements on the whole wing plus the number of diaphragm

elements,
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Figure 2 . The pressure distribution on o symmetric rectangular wing7
with AR =3, » = 5%, a =02 M=1.3and NX = NY =
for the comparison with results of Ref. 4,
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Figure 3a ., The lift distribution on symmetric rectangular wing
withAR=3, + =5%, a=5°, M=1,3and NX =NY =7
for the comparison with results of Ref, 4,
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of o szmmetnc rectangulor wing with AR = 3, ~ = 5%,
o = = 1.3 and NX = NY = 6 for comparison with
resulh of Ref. 4.
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Figure 5.Analysis of Convergence: Potential Distribution, §, Versus x/c, at y = 0,
for Rectangular Wing With Biconvex Section, in Steady Supersonic Flow,

for AR=3, »=0.05, M = 1.3, & = 0° Np=3N,.
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Figure 6. Analysis of Convergence: Distribution of § = %c'n MX Versus x/c, at
2y/b = 0,5, for Rectangulor Wing With Biconvex Section, Oscillating
in Bending Mode in Supersonic Flow, for AR= 3, 1= 0.01, M= 1.3,
K= 0.1, o " 00, ND = 3NX.
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Station 3
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Figure 8b, The distribution of BC /& on the fuselage at three circumferential
stations for the same problem of Figure 27a.
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APPENDIX A

SUPERALGEBRA

A.l Super-product

As mentioned in Section 1, in order to simplify the algebraic

manipulation for the supersonic flow theory, it is convenient to
introduce a special algebra, called supersonic vector algebra

or super-algebra. In addition to the rules of the ordinary

vector algebra, the super-algebra includes a supersonic dot

product or super-product

Qo b = @y by - ay by~ Ay by . (A.1)

The additive and distributive rules are obviously valid for

the super-product. Note that @e i is

adoe a %O for Q,

AtV

W (A.2)

thai is for a pointed, respectively, inside, on, outside the
Mach cone (Fig. 1). Hence, in addition to the ordinary norm

of u vector (or dot=-norm) .
lal = Ja.a (A.3)

it is convenient to introduce the svpersonic norm (or super-

norm)

- ———

hal = Jjaoal

(A.4)

Finally, it is convenient to introduce the concept of covector

= A (A.5)
a L —a,
- ﬂ’
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With these notations, it is immediately verified that
aeb = 0°.b - a-b" (A.6)
It may be worth noting that

ao FuE = a"o B;E = aob E .:‘.{y;) KCC (A.6a)

A.2 First Super-rule

Throughout the subsonic finite-element formulation (Ref. 6)

the following rule is used

(4—:5)0(5:?):» (&-"C)(F-J)—(E-J)(FE) (A7)

The corresponding supersonic rule, called for convenience,

first suver-rule, is also valid

(GrE)o(exd) = (Bo ENbod)-(aod)(bot)

(A.8)

For

(a«F)o(cxd)

= (a;( be" a.! b]) (C, d.;'C;dy)
Al b= G iHCdi-68)

=(0x by - Oy ba)( Cxdy -C'de)

= a; bl C]df + aa b,CaJ, - ﬂ, b; ng," 6?¢ b} C; dl
o a& b‘ Cl(" - ﬂ,- bz Cyde-f- ae l}.C,d;_ + ax bz Cadl

1 &l‘ b’ C‘ d’ - a, b‘ C’ d‘f a“ b’ c’d‘ + a’ b‘ Cld, (A.g)
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while

(doe)bod)-(aod)(bo E)
= (0,, Cy - a; C; - a! Cl)( ba ds 'br c'y - b.g da)

= (Ords- Ody-Qeds)(baCu - bye, - bas)

& e (/Mf_b,a,_b,.a,)
= QyCy ((beds~ bpdf = bads)
- Ay Cy (bads - brdlw/[’f’(!)
- Qu dx (bis - bycy- b2 Ca)

+ Qydy (b Cx b/, bzCe)

F s
+ azdz (bex o bic)’y(‘!/)

" afbi C7d¢*alblcad]"aybECad‘v"ﬂebycld;
~Qa by Co da - Ox baCad: + Qe by Ceds + Qu by G, das

- 0,\ b; C, d’ ‘ay b.c,dl' + ax bj C’ do\" “2] b‘cftd,

(A.10)




et e - -

-’

S e e 4

-47-

A.3 Second Super-rule

A second rule of the super-algebra is
(Go @ bec)o(bed)-(a-Bx2)(d bxc)
= a0 (5sc)o(Frd) s Gobicl)oEeit)
2 oF (Bxc)o (5x8) + Jo [ (5,1)0(sxa)
(A.11)
Note that the dot product appears in the triple product. 1In
order to prove Eq. (A.ll), consider the regular vector algebra

rule

dr(bre)=b (7.8)=c (T.5)

This yields, for the covector a: , (see Egq. A.6)

2% (b«C) =% (2% C)-E(a“})
- b(@et)-c (aob) =

On the other hand, according to Egs. (A.6) and (A.8)
@ (bst)o Hf:(ErE)
e -— - ' Y - &
= Fto @ (Fxe)o (BrE)- (@0 (F:E))[d'oEne)]
= 0 od (bxc)e (Fr'c')-(a"-l;-f.)(:?-;' c) (A.13)
while, according to Egqs. (A.6) and (A.8)
(P (aoe)-c(aot))o (b iei)-c (dob))
- LOE 5@& Rﬁé - ZW; RQE }-;

- - . -

- lr' - = I J - -
== g0 AP o 4'{.’ = “ COC Ao (./ o

= Go&(b«tobs@). 208 (sboc.i)

(A.14)
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Combining “gs. (A.12), (A.13) and (A.14) yields
Zod (b« E)@(Fxl)—(a-rla){"j b XE)

= ((@%«(Bs)) o (dér (s 2)]
= (b (Aoc)-c(20D))0(b(Aee)-C(dob)]

= A0C (E:E“O\B-rﬁ/)* Zob (€= B;'G{Ex W)
- I-' 'T - .: — - "I' F i -
. doclbrejolbral+dob (¢x d)o(¢s1) (A.15)
that is the second super-rule, Eq. (A.11l). In particular,
for &:diq, b = 51, ¢ E ,, one obtains
a

fof Gcd0d:8, -7 4.0/l

;90 R, 0 Q,r j_ fea ZJ ) o4 f)

A.4 ‘“hird Supersonic Rule

A third useful formula, called the third supersonic rule,

is -J }-;

.,Ej b+C @«d-f =~ o (A.17)

1

The proof of this rule follows
(a:Jonc)(a 5)
= (dob cod - a0c b

-(a2ob ¢oll - goc boy) ari+4
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= @b (c"darf-§- %3 acf.q)
-a-c(b%d 5:?-?-1ﬂ5 arf.d)

= 2 b [C(anf))drd-a.e(be canf) a3

e G- b((EFNE-308)- (¢ aN{-d0]))
~a.c( (b f)(a-deq)- (ba)(F-4-3))

= (@3 ¢4F-2-234%)a. 3.3

: (Gof Cof -aoC bof) =« (defobel)a dej

-

In particular, fora = b =g, ¢ = f = a,, =P,y § = &)

the third superrule reduces to
(FRob8)p-a-a)-fetei-2)(ra-p)
= (g: 6.?-,_0 jr E")(j’:. f,, E')

A.5 Fourth Supersonic Rule

In subsonic theory, it.is easy to ghow that

3 (F-ax)r (feajea) = 1700 ) 17 0]

(r,18)

(A.19)

(A.20)

The corresponding equation for supersonic theory is called fourth

supersonic rule

?of(f-it@.f-r/;uaof@); ,/):«Zvlilhﬁ-r'?’.I/L

(A, 21)
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The proof is shown as following, according to the second

super-rule.
b0 (jasi)> (Frivoge)
= 707l (0] (4 G0arG-F04 4160 a <]
- 04 iz owbn] )]+ (fot 204 -7o4 foa,)a
= (§03) {404 aob~(aoa)]-ljef)joal:
[Ro& &oy-30]aca]- (OJ Jod (Aoa dof- Qtu/q,o..,)

+(go}) "7 0T) -0 P (@ 0w ([oaNjon)

~(1¢% ) (o3 %06 -(70@) ]

il

o |
=01
L
=<
231
S.\

el

= (i*’ :G?ﬂﬁ.)(?xé-,o?aaa)

= ‘I Call 0 }’_x a0l (A.22)
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APPENDIX B

37 >F.

ANP

v‘; &/

In order to prove Egq. (2.1) is valid for quadrilateral planar

element, it is necessary to prove the following two equations

? Fa l

= % |
57 T (B.1)
LIS I (B.2)

s I
Proof of Eq. (B.2) is shown below. Proof of Eq. (B.l) is similar

except for the fact that Eé is replaced by 31. There are three

different cases in F,. Consider the first case -4, o 2}, >0

Note that

‘D -

7 M’,—ﬂ = 0 (B.3)
since 4‘,-_-51’7—;:f,x?’/o‘
and .

'3—37— ‘i;},O?Iaa)
- 3 _Oi‘E 0(_15;)
=2 (35+0)003

il P P 0(‘)‘-55)-:0
e & (0; 4 ?A) Z (B. 4)

o
|
-

Iu

"

g imargea [
7[11?2,1!{2"/ TREEX [] .
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e 3
o
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l 704

ARG (Jz“;* Zoi + 2.08)

i
-

| | ) i -
ino,n ninﬁ,ufi_o—&.—(goo‘ M‘"‘*”’M')Ti—f

70
i (B.5)
Consider the second case, E, fe) E‘ = 0
3F; g <1 ( ﬂ-f.ﬂ ]
27) 2/ je &)
{ > .3
* Toa '
e TR
1 o4 ,lf’}oi g n
(B.6)
since
2 S = = - -
;-7}—(103))2(%;)0&‘: ,04& =0



Consider the third case, &, © 4, < ©

¥y . 2.0 1 _:' ioa \
2] 'aq[ n'.ug' (,;,',u/]

L | 4 o 53021
] ﬂJ'J'__ -i-g_‘b’ ’lil&:”
(i;;@,ﬂ
l XN 1 .
EN ':?;' = = g = '@"‘
2 "i‘eaoy.fa;-(ioﬂ') .itﬁ,ﬂ
k&,
= T Iy T —
I
:. —_—
K7
Combining (B.5), (B.6), and (B.7), yields
BF: { Y e
S = — a,@a -
b’) ..‘l,'l 2 < 0
Similarly, yields
2> - -
AR Qo4& 20

‘07 0 ?ﬂ

(B.7)

(B.8)

(B.9)
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DERIVATIVES OF I AND I

C.l Introduction

In this Appendix, it will be shown that the second mixed

derivatives of

A

are given by

and

vhere 1

53

|:n

-54=

APPENDIX C

- -—i“&l

s3

() ‘fl E’_

o I'i

k)

7071 tan Brdi0je

1”"1 n' n‘il|3~5.»z’al

'B,I, ol ;‘Elfab
fo{.ﬁ .in’

'DJ-ISI s - ‘?- EFE;

° 4 = ?' " g0’
is the third term of IS. Note that

ﬂal Ja. o

q:j' 2/ )

aal = 'al = =

279 b'f i r’

(c.

(c.

(Co

(c.

(c.

(C.

1)

2)

3)

4)

5)

6)
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and - <
2"1;— & (C.7)

R . 5

3

? 7 (C.8)
C.2 Derivative of ID
Consider Eq. (C.l) or
Ip & g xﬂfY\." —?‘ E(-' o:? ié' (C.9)
,i" S&(i'mrh) :
where g . =
e N >
Sn = "Z'T = Sign (7, n)
,i.“ 7 (C.10)
The derivative of I, with respect to 7 is given by
B . A S (RN s
YIRY Jjeq Sn(3-343)
2 1
= -9, ' g
,1+ X“]O!(“. \J
OJ za,r%/
£ [E“é;o?'a'*i‘/ao?"'é*%’2‘05'”3'] - _4_ -
”iﬂ ;“11‘01

E.xa: tdh 0,0 , g D



et e e

]

8

L4 i
LR

:

— e

56~

.

?:?i (? -E.:fﬁ) 1

T T {ei)G-iredNs Geiojea) NUGGaE)
,;(a‘ao;,aﬁ;.;,o;,a.)fo, 5.3k
- §raojcaaof jaivjoj i fin J}
H [ |

(o3 1(G-ar2)"(3xa0772)]jo]
« ?[’(e‘,m opx)lej-(fxieo fut)iofli -ana

* [('Z-x -f; oz_’ié)i.k—,(a —(irEIOITIE._)f-]",x}.)fdf}
(C.11)

Next note, s shown in Appendix A, Eq. (A.20),
95(300) v (a0 )1 gt 17ent”

Moreover, note that (see Eq, A.19)



q_["(?z‘ ‘,Pio:"“,‘){?.-,.{@'}-(i‘( é,a?tﬁ,)(?-f, t?,)] 'i’O?
= f(?e,o'? @14~ %0& 407)jo}

,.(E()? 21 Jf25 - ? 0 a, ? C)zz )jatf’E?;} ?:'Ei l'aa

—_— == ==

+f(f0f f;oa-?o.;?; )"’-Ofa)g-arzz
-(i",o-'g, a‘@'&,-?ofi. }-’Ga')?'fr*?"}iai
==-f'fofb’.oi‘.'(f{avﬁ',)’}fc)@} § @
.f['j-,oﬁ(é'.op; § ok @ =80 & ;_»ﬁx%)
joa(fof j-at-foa j-pag)ffel
-—ﬁoi 77.05.-(?025,)); ‘i-‘i’:" f-;ﬁﬁz
+({ra 0§ a)f-dxp)lf07])

-, /P S £ g O ——

—— AT IS —— x

1jxan’ (g0 §-a<n-707 7.44p.)

(C.13)

}
; since

- - - - - 1 4 - - - — Pt
1 3 ‘}U'i 0:0“.-(?0%)-‘5?!%0?»'4{ ‘f-llz’;‘”‘ (C.14)

Finally, combining Egs. (C.11), (C.1l2), and (C.13) yields

. oI, 2@’ (§od joaein -faff’-a'.xf.,_-
] 2/) ][f: a1 ﬂi' Gt
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(C.15)

Next, consider the second mixed derivative, noting that

2 4a) = ZUpspI o)) +o

one obuvains

il
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