General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
DEPARTMENT OF AEROSPACE ENGINEERING BOSTON UNIVERSITY COLLEGE OF ENGINEERING BOSTON, MASS. 02.215

A FINITE-ELEMENT ANALYSIS FOR STEADY AND OSCILLATORY SUPERSONIC FLOWS AROUND COMPLEX CONFIGURATIONS
by
Luigi Morino
and
Lee-tzong Chen

December, 1974

Prepared for

LANGLEY RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HAMPTON, VIRGINIA 23365

Under
NAS/4 Grant. NGR 22-004-030
E. Carson Yates, Jr., Technical Advisor

ABS"RAC'T

The problem of small perturbation potential supersonic flow around complex configurations is considered. This problem requires the solution of an integral equation relating the values of the potential on the surface of the body to the values of the normal derivative, which is known from the small perturbation boundary conditions. The surface of the body is divided into small (hyperboloidal quadrilateral) surface elements, \sum_{i}, which are described in terms of the Cartesian components of the four corner points. The values of the potential (and its normal derivative) within each element is assumed to be constant and equal to its value at the centroid of the element. This yields a set of linear algebraic equations. The coefficients of the equation are given by source and doublet integrals over the surface elements, \sum_{i}. The results obtained using the above formulation are compared with existing analytical and experimental results.

FOREWOIZD

This research is supported by a NASA Grant NGR 22-004-030. Dr. E. Carson Yates, Jr. of NASA Langley Research Center acted as technical advisor. The authors wish to express their appreciation to Dr. Yates for the stimulating discussiors and invaluable suggestions made in connection with this work.

TABLE OF CONTENTS

Page
SECTION I BASIC EQUATIONS 1
1.1 Introduction 1
1.2 Basic Flow Equation 1
1.3 Boundary Condition 2
1.4 Green's Theorems 3
1.5 Numerical Procedure 5
1.6 Diaphragms 6
1.7 Pressure and Generalized iorces 8
SECTION II NUMERICAL FORMULATIONS 10
2.1 Introduction 10
2.2 Source Integral 10
2.3 Doublet Integral 14
SECTION III FINITE PART OF INTEGRALS 17
3.1 Introduction 17
3.2 A General Integral Function 17
3.3 Finite Part of Souree Integral 18
3.4 Finite Part of the Doublet Integral 20
SECTION IV SUPERSONIC OSCILLATOIY FLOW 22
4.1 Integral Equation 22
4.2 Boundary Condition 22
4.3 Pressure Coefficient 27
SECTION V NUMERICAL : SSULTS 28
5.1 Introduction 28
5.2 Rectangular Wing in Both Steady and Oscillatory Flow 28
5.3 Convergence Analysis 29
5.4 Lelta Wing with Supersonic Leading Edge 30
5.5 Wing-Body Configuration 30
5.6 Computer Time 31

TABLE OF CONTENTS (Continued)
Page
REFERENCES

FIGURES
34

APPENDIX A SUPERALGEBRA
A. 1 Super-Product
A. 2 First Super-Rule
A. 3 Second Super-Rule
A. 4 Third Supersonic Rvie
A. 5 Fourth Supersonic Rule

44
44
45
47
48
49
apprancix B $\partial F_{1} / \partial \xi$ and $\partial F_{2} / \partial \eta$
APPENLIIX C DERIVATIVES OF I_{D} AND $I_{S 3}$
54
Q. 1 Introduction 54
C. 2 Derivative of I_{D}

LIST OF FIGURES

Figure No.

1

2

Hyperboloidal Element
The pressure distribution on a symmetric rectangular wing with $A R=3, \tau=5 \%$, $\alpha=0^{\circ}, M=1.3$ and $N X=N Y=7$ for the comparison with results of Ref. 4

The lift distribution on symmetric rectangular wing with $A R=3, \tau=5 \%, \alpha=5^{\circ}$, $M=1.3$ and $N X=N Y=7$ for the comparison with results of Ref. 4

The uistribution of C_{D} on the upper and lower surfaces of a symmetric rectangular wing with $A R=3, \tau=5 \%, \alpha=5^{\circ}, M=1.3$ and $N X=N Y=6$ for comparison with results of Ref. 4

Lift coefficient, \widetilde{C}_{ℓ}, for a rectangular wing oscillating in bending mode with $\mathrm{k}=\omega \mathrm{c} / 2 \mathrm{U}_{\infty}=0.1, \mathrm{M}=1.3, \mathrm{AR}=3$ and $\mathrm{NX}=\mathrm{NY}=10$.

Analysis of Convergence: Potential Distribution, Φ, Versus x / c, at $y=0$, for Rectangule. Wing With Biconvex Section, in Steady Supersonic Flow, for $A R=3, \tau=0.05$, $M=1.3, \alpha=0^{\circ}, N_{D}=3 N_{x}$ Analysis of Convergence: Distribution of
$\frac{\alpha}{\phi}=$ Q $_{e}^{l /} \mathrm{MX}$ Versus x / c, at $2 \mathrm{y} / \mathrm{b}=0.5$, for Rectangular Wing with Biconvex Section, Oscillating in Bending Mode in Supersonic Flow, for $A R=3, \tau=0.01, M=1.3, K=0.1$, $\alpha=0^{\circ}, N_{D}=3 N_{x}$

Lift Distribution Coefficient, C 2α, for Delta Wing With Supersonic Trailing Edge, in Steacly Supersonic Flow, With $B / \tan \Lambda=1.2$, $\mathcal{V}=0, \mathrm{~N}_{\mathrm{x}}=8, \mathrm{~N}_{\mathrm{y}}=12$. Comparison With Exact, Conical-Flơw Solution, Reference 5

The distribution of $B C_{\ell} / \alpha \mathrm{w}$ on the wing section for a wing-body configuration (shown in Figure 27c) with $M=1.48, \alpha_{w}=1.92^{\circ}$ and $\alpha_{B}=0^{\circ}$, for the comparison with results of Rel. 21

LIST OF FIGURES (Continued)

Figure No.
8b
The distribution of $B C_{L} / \alpha_{W}$ on the fuselage at three circumferential stations for the same problem of Figure 27a

Nomenclature

\bar{a}_{i}
a_{60}
b
$b_{h k}$
C_{p}

$$
c_{l}
$$

$C_{\ell \alpha}$
c
$c_{h k}$
E
H
k
ℓ
M
\bar{n}
N
NX,NY
P
P_{*}
q
r
t
T
x, y, z
$\mathrm{X}, \mathrm{y}, \mathrm{Z}$
U_{∞}
α

Eq. (2.3a)
fr s-stream speed of sound

span

Eq. (2.1)
pressure coefficient, $2\left(p-p_{\omega}\right) / \rho_{\infty} U_{\infty}^{2}$
lift distribution coefficient, $C_{p l}-C_{p u}$
$\left(\partial C_{e} / \partial \alpha\right)_{\alpha=0}$
chord
Eq. (2.23)
Eq. (1.22a)
Eq. (1.22b)
reduced frequency, $\omega \ell / U_{\infty}$
reference length
Mach Number, U_{s} / a_{∞}
Eq. (20)
outward normal to surface Z
number of elements in X, Y directions
point of the surface \sum
control points, $\left(X_{\star}, Y_{\star}, Z_{\star}\right)$
Eq. (2.3a)
Eq. (1.18)
time
$a \Delta \beta t / \ell$
space coordinates
nondimensional Prandtl-Glauere coordinates
free-stream velocity
angle of attack

Nomenclature iContinued)

β	$\left\|1-M^{2}\right\|^{1 / 2}$		
Σ	surface surrounding body and wake		
Σk	su.face element		
$\sum A$	surface of aircraft		
EW	surface of wake		
τ	thickness ratio		
Φ	velority potential, $\mathrm{U}_{\infty} \mathrm{x}+\varphi \rho$		
φ	perturbation velocity potential		
¢	$\varphi / V_{\text {a }} l$		
$\hat{\phi}$	Eq. (1.26)		
中k	values of ϕ, at centroid of element \sum_{k}		
ω	frequency of oscillation		
Ω	compressible reduced frequency, $\omega \ell / \mathrm{a}_{\Delta} \beta=\mathrm{kM} / \beta$		
AR	aspect ratio		
TR	taper ratio		
A ϕ	$\phi_{u}-\phi_{l}$		
∇	gradient in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ space		
\bigcirc	superproduct, Eq. (1.23)		
$\\|\bar{a}\\|$	supernorm of a vector, Eq. (1.23)		

The evaluation of the aerodynamic loads is important in structural design and flight control of the aircraft. These oads must be evaluated by an iterative process which requires that the mathematical modeling of the problem be general, flexible and efficient. The usual methods for the evaluation of aerodynamic loads is the computational lifting-surface theory. these methods are efficient and flexible but not general enough to consicar problem for complex configurations. Some computational methods around complex configurations have already developed. Howerer, they are usually quite cumbersome to use. Furthermore, for oscillatory flow around complex configurations, only techniques based on the doublet-lattice method exist in subsonic range while no method is available in the supersonic ones.

The development of the present mothof is aimed to overcome the shortages of the existing methods and provide an efficient, general and flexible aerodynamic tool to be used in strurtural design and flight control of the aircraft.

The present method is mainly based on the theoretical formulations developed by Morino (Refs. 1, 2, and 3). The geometry of the aircraft and wake is approximated by a number of quadrilateral elements described by hyperboloidal surfaces. By applying the Green function method, one obtains a linear equation relating the velocity potential φ, at any point, p_{*}, in the flow fieid with the values of φ and its normal derivatives on the surface \sum, surrounding the body and the wake.

INTRODUCTION

The evaluation of the cerodynamic loads is important in structural design and flight control of the aircraft. These loads must be evaluated by an iterative process which requires that the mathematical modeling of the problem be general, flaxible and efficient. The usual methods for the evaluation of aercdynamic loads is the computational lifting-surface theory. these methods are efficient and flexible but not genaral enough to consider problem for complex configurations. Some computational methods around complex configurations have already developed. However, they are usunlly quite cumbersome to use. Furthermore, for oscillatory flow around complex configurations, only techniques based on the doublet-lattice method exist in subsonic range while no method is available in the supersonic ones.

The development of the present mothod is aimed to overcome the shortages of the existing methods and provide an efficient, general and flexible aerodynamic tool to be used in structural design and flight control of the aircraft.

The present method is mainly based on the theoretical formulations developed by Morino (Refs. 1, 2, and 3). The geometry of the aircraft and wake is approximated by a number of quadrilateral elements described by hyperboloidal surfaces. By applying the Green function method, one obtains a linear equation relating the velocity potential φ, at any point, p_{κ}, in the flow field with the values of φ and its normal derivatives on the surface \sum, surrounding the body and the wake.

An integral equation is obtained by imposing that the value of the potential at p_{*} approaches the value of that at point p on the surface if p_{x} approach p. The value of the velocity potential, φ is assumed to be consiant within each element. Then, the integral equation becomes a system of algebraic equations which relates unknowns, φ_{k}, at the centroids of elements, Σ_{k} with coefficients evaluated analytically. Once the distribution of the velocity potential is obtained, the pressure distribution as well as the goneralized forces are evaluated.

In section 1 , the basic equations are introduced. In Section 2, the numerical formulation is presented. In Section 3 finite values of the integral are considered. Oscillatory Llows are discussed in Secition 4. In Section 5, numerical results are presented. In Appendices A, B, and C, useful equations are derived.

BASIC EQUATIONS

1.1 Introduction

In this section, basic flow equations are first introduced in Subsection 1.2, while boundary condition of the problem is considered in Subsection 1.3. The Green theorems for steady and oscillatory flow are considered in Subsection 1.4. The integration schome and the hyperboloidal lement are considered in Subsection 1.5. In Subsecion 1.6 the role of the diaphrapms is discussed. Finally in Subsection 1.7 the evaluation of the pressure coefficient and the generalized forces are considered.

1.2 Basic Flow Equation

The flow is assumed to be isentropic, inviscid and initially irrotational such that the flow can be described by the velocity potentiai Φ. Consider a frame of reference such that the un. disturbed flow has a velocity U_{∞} in the direction the the positive x axis, so that

$$
\begin{equation*}
\Phi=U_{\infty} x+\varphi \tag{1.1}
\end{equation*}
$$

where φ is the perturbation velocity potential. Then, the linearized equation of potential flow based on the assumption of small perturbation is given by
re

$$
\begin{equation*}
\nabla^{2} \varphi-\frac{1}{a^{2}} \frac{d^{2} \varphi}{d t^{2}}=0 \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d t}=\frac{\partial}{\partial t}+U_{\infty} \frac{\partial}{\partial x} \tag{1.3}
\end{equation*}
$$

is the linearized total time derivative.

Consider the nondimensional variables

$$
\begin{equation*}
X=x / k l \quad Y=y / l \quad Z=z / l \quad \phi=\varphi / \ell U_{\infty} \tag{1,4}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\sqrt{M^{2}-1} \tag{1.5}
\end{equation*}
$$

and l is a reference length.

1.3 Boundary Condition

The lifting body considered here has complex configuration and is moving with small vibration with arbitrary mode. Thus the surface of the body is represented in the general form

$$
\begin{equation*}
S(x, y, z, t)=0 \tag{1.6}
\end{equation*}
$$

and the boundary condition on the surface of the body is given by

$$
\begin{equation*}
\frac{\partial S}{\partial t}+\nabla \dot{\Phi} \cdot \nabla S=0 \tag{1.7}
\end{equation*}
$$

By using Eq. (1.1), Eq. (1.7) becomes

$$
\begin{equation*}
\nabla \varphi \cdot \nabla S=-\left(\frac{\partial S}{\partial t}+U_{\infty} \frac{\partial S}{\partial x}\right) \tag{1.8}
\end{equation*}
$$

Furthermore, because the flow is uniform at infinity, the boundary condition at infinity is given by $\varphi=0$. For steady subsonic flow, Eq. (1.8) is simplified as

$$
\begin{equation*}
\nabla \varphi \cdot \bar{n}=-U_{\omega} n_{x} \tag{1.9}
\end{equation*}
$$

where \bar{n} is the surface normal of the aircraft and n_{x} is the x - component of \bar{n}.

In order to use compact vector notation, it is convenlent to introduce the concept of the conormal and cogradient

$$
\begin{equation*}
\bar{N}^{c}=N_{X} \bar{i}-N_{Y} \bar{j}-N_{z} \bar{k} \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\nabla^{c}=\frac{\partial}{\partial X} \bar{i}-\frac{\partial}{\partial Y} \bar{j}-\frac{\partial}{\partial Z} \bar{k} \tag{1,11}
\end{equation*}
$$

Furthermore, the conormal derivative is given by

$$
\begin{equation*}
\frac{\partial}{\partial N^{c}}=\bar{N}^{c} \cdot \nabla=\bar{N} \cdot \nabla^{c} \tag{1.12}
\end{equation*}
$$

With this notation, Eq (1.9) becomes,

$$
\begin{aligned}
& \left(\frac{\partial S}{\partial x} \frac{\partial \varphi}{\partial x}+\frac{\partial S}{\partial y} \frac{\partial \varphi}{\partial y}+\frac{\partial S}{\partial z} \frac{\partial \varphi}{\partial z}\right)+\frac{U}{\partial x} \\
& =\frac{U}{l}\left(\frac{1}{B^{2}} \frac{\partial S}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial S}{\partial Y} \frac{\partial \phi}{\partial Y}+\frac{\partial S}{\partial z} \frac{\partial \phi}{\partial z}+\frac{1}{B} \frac{\partial S}{\partial x}\right) \\
& =\frac{U_{w}}{l}\left[\left(-\frac{\partial S}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial S}{\partial Y} \frac{\partial \phi}{\partial Y}+\frac{\partial S}{\partial z} \frac{\partial \phi}{\partial z}\right)+\left(\frac{1}{B^{2}}+1\right) \frac{\partial S}{\partial x} \frac{\partial \dot{\partial x}}{\partial x}+\frac{1}{3} \frac{\partial S}{\partial x}\right] \\
& =\frac{U_{w}}{l}\left[\frac{\partial \phi}{\partial N^{c}}+\frac{M^{2}}{B^{2}} N_{\times} \frac{\partial \phi}{\partial X}+\frac{1}{B} N_{x}\right]|\nabla S|=0
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{\partial \phi}{\partial N^{c}}=-N_{x}\left(1+\frac{M^{2}}{B} \frac{\partial \phi}{\partial x}\right) \tag{1.13}
\end{equation*}
$$

The second term on the right hand side is negligible. Thus

$$
\begin{equation*}
\frac{\partial \neq}{\partial N^{c}}=-N_{x} \tag{1.14}
\end{equation*}
$$

In addition to the above notation, it is convenient to introduce a special algebra, called supersonic vector algebra or, superalgebra, to simplify the algebraic manipulation for the supersonic flow theory. Details of this algebra and the proofs of some rules of this algebra are given in Appendix A.
1.4 Green's Theorems

According to Eq. (1.2), the Green function is given by

$$
\begin{equation*}
\nabla^{2} G-\frac{1}{a_{0}^{2}} \frac{d^{2} G}{d t^{2}}=\delta\left(x-x_{1}, y-y_{1}, 7 x_{1}, t-t_{1}\right) \tag{1,15}
\end{equation*}
$$

with

$$
\begin{equation*}
G=0 \tag{1,16}
\end{equation*}
$$

at infinity.
Detail of the derivation of function G is presented in Ref. 1. The results are summerized here. For steady supersonic flow G is given by

$$
\begin{equation*}
G=-\frac{H}{2 n r} \tag{1.17}
\end{equation*}
$$

where H is given by Eq (1.22b) while

$$
\begin{equation*}
r=\left\{\left(x-x_{1}\right)^{2}-B^{2}\left[\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}\right]\right\}^{1 / 2} \tag{1.18}
\end{equation*}
$$

For oscillatory supersonic flow G is given by

$$
\begin{equation*}
G=-\frac{1}{4 \pi r}\left[\delta\left(t_{1}-t+\theta^{+}\right)+\delta\left(t_{1}-t+\theta^{-}\right)\right] \tag{1.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta^{ \pm}=\frac{1}{a_{b}^{b^{2}}}\left[M\left(x-x_{1}\right) \pm r\right] \tag{1.20}
\end{equation*}
$$

By applying the Green function method and using Eq. (1.17), the linearized equation for the steady supersonic flow can be derived as

$$
\begin{align*}
& 2 \pi E\left(P_{*}\right) \varphi\left(P_{*}\right)=-\oint_{\Sigma} \frac{\partial \phi}{\partial N^{c}} \frac{H}{\|R\|} d \Sigma+\oint_{\Sigma} \phi \frac{\partial}{\partial N^{c}}\left(\frac{H}{\|R\|}\right) d \Sigma \tag{1.21}\\
& E=1 \quad \text { outside } \Sigma \tag{1.22a}\\
& =0 \quad \text { inside } \Sigma
\end{align*}
$$

where
and

$$
\left.\begin{array}{rlrl}
H & =1 & & \text { for }
\end{array} \quad X_{*}-X>\left[\left(Y_{*}-Y\right)^{2}+\left(Z_{*}-Z\right)^{2}\right]\right\}
$$

$\|R\|$ is the supernorm of vector $R=\frac{\hat{r}}{B l}$ namely

$$
\begin{equation*}
\|R\|=|R \odot R|^{1 / 2} \tag{1.23}
\end{equation*}
$$

with "super-product", () , defined by (see Appendix A)

$$
\begin{equation*}
\bar{a} \odot \bar{b}=a_{X} b_{X}-a_{Y} b_{Y}-a_{z} b_{z} \tag{1,24}
\end{equation*}
$$

and the conormal derivative $\frac{\partial}{\partial N^{c}}$ is given by Eq (1,12).
For oscillatory flow, the Green theorem is given by

$$
\begin{align*}
2 \pi E & \left(P_{x}\right) \hat{\phi}\left(P_{x}\right)=-\oint \frac{\partial \hat{\phi}}{\partial N^{c}} \frac{H}{\|R\|} \cos (\Omega \mid R \|) d \Sigma \\
& +\oint \hat{\beta} \frac{\partial}{\partial H^{c}}\left(\frac{H}{\|R\|} \cos (\Omega \| R U)\right) d \Sigma \tag{1.25}
\end{align*}
$$

where $\hat{\phi}$ is given by

$$
\begin{equation*}
\hat{\phi}=\phi(x, Y, \bar{z}, T) e^{-i \Omega(T-M x)} \tag{1.26}
\end{equation*}
$$

1.5 Numerical Procedure

By imposing that the value of the potential at p_{v} approaches the value of potential at p on the surface $\sum_{\text {; if }} p_{k}$ approach p, the value of $E(p)$ in Eqs (1.21) and (1.25) is found to be 1/2 (see App. F, Ref. 3). Then, an integral equation relating the potential on the surface \sum to its normal derivative is obtained. In order to solve this integral equation the surface, \sum, surrounding the aircraft and wake and diaphragm, if necessary is divided into a number of quadrilateral elements which are approximated by hyperboloidal elements. The general expression of hyperboloidal elements can be written as

$$
\begin{equation*}
\bar{p}=\bar{p}_{c}+\xi \bar{p}_{1}+\eta \bar{p}_{2}+\xi \eta \bar{p}_{3}\binom{-1 \leq \xi \leq 1}{-1 \leq \eta \leq 1} \tag{1.27}
\end{equation*}
$$

where $\bar{p}_{1}, \bar{p}_{1}, \bar{p}_{2}$ and \bar{p}_{3} are linear combinations of the four
corner vectors, p_{++}, p_{+}, p_{-+}, and P_{-}. (see fig. 1.1
By assuming that the values of velocity potential and its normal derivatives within each element, Σ_{∞}, are constant, Eq. (21) for steady supersonic flow reduces to

$$
\phi(p)=-\sum_{k}^{N}\left(\frac{\partial \phi}{\partial N^{c}}\right)_{k}\left[\frac{1}{J} \iint_{\Sigma_{k}} \frac{H}{R I U} d \Sigma_{k}\right]+\sum_{k=1}^{N} \phi_{k}\left[\frac{1}{n} \iint_{\Sigma_{k}} \frac{\partial}{\partial N^{6}}\left(\frac{H}{\|R\|}\right) d z_{i}(1.28)\right.
$$

where \vec{p} is any point on the surface Z, and N is the number of elements on Z.

Imposing the condition that Eq. (1.28) is satisfied at the centroids, P_{h} of the elements, Z_{h}, a system of algebraic equations is obtained. This yields

$$
\begin{equation*}
\left[\delta_{h k}-c_{h k}-w_{h k}\right]\left\{\phi_{k}\right\}=\left[b_{h k}\right]\left\{\left(\frac{\partial \phi}{\partial N^{c}}\right)_{k}\right\} \tag{1.29}
\end{equation*}
$$

where $\delta_{n k}$

$$
\begin{align*}
& c_{h k}=\left[\frac{1}{\pi} \iint_{\Sigma_{k}} \frac{\partial}{\partial N^{c}}\left(\frac{H}{\| R i}\right) d \Sigma_{k}\right]_{p_{k}=p_{h}} \tag{1.30}\\
& b_{h k}=\left[-\frac{1}{\lambda} \iint_{\Sigma_{k}} \frac{\partial}{\partial N^{c}}\left(\frac{H}{\|R\|}\right) d \Sigma_{k}\right]_{p_{i}=p_{h}} \tag{1.31}
\end{align*}
$$

and the definition of $w_{n k}$ is similar to the one for subsonic flow (see Ref. 1). However, in this report, the wake is not included since only supersonic-trailing-edge configurations are considered here.

Equations for oscillatory supersonic flow are considered in Section 4.

1.6 Diaphragms

There are three categories of winy geometry in supersonic
flow, The first ones are wings with supersonic leading edge, For this kind of wings, the element, Σ_{h}, on the upper (or lower) surface are influenced only by the eilements on the surface of the same side, therefore, the integrations in Equations (1.30) and (1.31) are performed over the area on one side only. The stcond one are wings with subsonic leading edge. For this kind of wings, diaphragm may or may not be used. For wings of large thickness, results obtained with or without diaphragm are almost the same. Hovever, for wings of small thickness, diaphragms are suggested to be used to avoid the determinant sirgularity. The third one, are wings with both supersonic and subsonic leading edges, diaphragms have to be used for this kind of wings.

If diaphragms are used, both values of the velocity potential and its normal derivative on the diaphragm elements are unknown. However, two independent integral equations are obtained for each element of the diaphragm, one relates φ_{ν} and $\left(\partial \phi / \partial N^{\prime}\right)_{D}$ to the upper geometry of the aircraft and whole diaphragm, the other one relates the same quantities to the lower geometry. Therefore, the total number of equations is equal to the total number of unknowns, then is system of algebraic equations can be solved for ϕ_{k} of wing element and ϕ_{D} and $\phi / N N_{D}$ of the diaphragm elements. If the problem is symmetric in the z-direction, then $\left(\rho / \partial N^{6}\right)^{\text {is }}$ zero while f_{D} is unknown for each diaphragm element. If the problem is antisymmetric in the z-direction, then ψ_{2} is zero while $\left.\left(y_{p} / \partial\right)^{c}\right)_{D}$ is unknown. For these two cases only one independent integral equation can be written for each diaphragm element, and the number of inknown of the diaphragm elements
reduces to a half.

1.7 Pressure and Generalized Forces

The pressure on the surface of the body is evaluated from the linearized Bernoulli theorem

$$
\begin{equation*}
p-p_{\infty}=-P_{\infty}\left(\frac{\partial \varphi}{\partial t}+U_{\infty} \frac{\partial \varphi}{\partial x}\right) \tag{1.32}
\end{equation*}
$$

Then c_{p} is given by

$$
\begin{equation*}
c_{p}=\frac{p-P_{\omega}}{\frac{1}{2} P_{\Delta} \dot{U}_{\infty}^{2}}=-\frac{2}{U_{\infty}^{2}}\left(\frac{\partial \varphi}{\partial t}+U_{\infty} \frac{\partial \varphi}{\partial x}\right) \tag{1.33}
\end{equation*}
$$

For steady flow by using Eq. (1.4) Eq (1.33) reduces to

$$
\begin{equation*}
c_{p}=-\frac{2}{\beta} \frac{\partial \phi}{\partial x} \tag{1.34}
\end{equation*}
$$

For oscillatory flow, c_{p} is derived in Section 4 as

$$
\begin{equation*}
\tilde{c}_{p}=c_{p} e^{-i \Omega T}=-\frac{2}{B}\left(\frac{\partial \tilde{\phi}}{\partial x}+i B K \tilde{\phi}\right) \tag{1.35}
\end{equation*}
$$

The evaluation of the generalized forces is considered as follows. The generalized force is defined as

$$
\begin{equation*}
Q_{n}=\oint_{\Sigma} \bar{f} \cdot \bar{U}_{n} d \Sigma \tag{1.36}
\end{equation*}
$$

where \bar{f} is the force acting on the surface of the body and U_{n} is the vibration mode. For lift, $\bar{U}=\bar{K}$ and thus

$$
\begin{equation*}
\dot{f} \cdot \bar{U}=-p \bar{n} \cdot \bar{k}=-p n_{2} \tag{1.37}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
L=-\oint_{\Sigma} p n_{z} d \Sigma=-\oint_{\Sigma} p d x d y \tag{1.38}
\end{equation*}
$$

For pitch moment

$$
\begin{align*}
\bar{f} \cdot \bar{U} & =-p\left[-(2-2 m) n_{x}+\left(x-x_{m}\right) n_{z}\right] \tag{1,39}\\
& \sim-p\left(x-x_{m}\right) n_{z}
\end{align*}
$$

since $\left(\alpha-z_{m}\right) n_{x}$ is negligible, therefore

$$
\begin{equation*}
M=-\oiint p\left(x-x_{m}\right) d x d y \tag{1,40}
\end{equation*}
$$

2.1 Introduction

By introducing hyperboloidal element, given by Eq. (1.27), the integrals in Eqs. (1.30) and (1.31) are evaluated analytidally (See Ref. 3). In Subsections 2.2 and 2.3 , solutions for $b_{h k}$ and $c_{h k}$ are shown to be valid for any planar quadrilateral element inside the Mach forecone. For elements outside the Mach forecone, $b_{h i}=C_{h र}=1$, since all these elements have no influence on the element Σ_{h}. However, for elements intersectef with Mach forecone, singularity problem arise, therefore, solutions have to be considered separately. In Section 3 solutions for this kind of element are considered.

2.2 Source Integral

For element inside the Mach forecone, the solution of $b_{h k}$, in Eq. (1.31), is given as

$$
\begin{equation*}
b_{h k}=-\frac{1}{7}\left[I_{s}(1,1)-I_{s}(1,-1)-I_{s}(-1,1)+I_{s}(-1,-1)\right] \tag{2,1}
\end{equation*}
$$

where

$$
\begin{align*}
I_{s}(\xi, \eta) & =\frac{\left|\bar{a}_{1} \times \bar{a}_{2}\right|}{-\left\|a_{1} \times a_{2}\right\|^{2}}\left\{\bar{q} \times \bar{a}_{1} \odot \ddot{a}_{2} \times \bar{a}_{1} F_{1}(\xi, \eta)+\bar{q}_{1} \times \bar{a}_{2} \odot \bar{a}_{1} \times \bar{a}_{2} F_{2}(\xi, \eta)\right. \\
& \left.\cdots \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2} \tan _{p}^{-1}\left(\frac{-\bar{q} \times \bar{a}_{1} \odot \bar{q}^{\prime} \times \bar{a}_{2}}{\|\bar{q}\|}\right)\right\} \tag{2.2}
\end{align*}
$$

with (sec Eq. (1.27))

$$
\begin{array}{ll}
\bar{q}=\bar{p} \cdot \bar{p}_{h} \\
\bar{a}_{\alpha}=\partial \bar{q} / \partial \xi^{\alpha} & (\alpha=1,2)
\end{array}
$$

and

$$
\begin{align*}
& F_{1}(\xi, \eta)=\frac{1}{\left\|\bar{a}_{1}\right\|} \ln \left|\frac{\left\|\bar{q}_{1}\right\| \bar{a}_{1} \|+\bar{q}^{\circ} \odot \bar{a}_{1}}{\left\|\bar{q}_{1} \times \bar{a}_{1}\right\|}\right| \quad\left(\bar{a}_{1} \odot \bar{a}_{1}>0\right) \\
& =\|\bar{q}\| / \bar{q} Q \bar{a}_{1} . \quad\left(\bar{a}_{1}, \bar{a}_{1}=0\right) \tag{2,3a}\\
& =-\frac{1}{\left\|\bar{a}_{1}\right\|} \sin ^{-1}\left(\frac{\bar{q} \odot \bar{a}_{1}}{\left\|\bar{q} \times \bar{a}_{1}\right\|}\right) \quad\left(\bar{a}_{1} \odot \bar{a}_{1}<0\right) \\
& \begin{aligned}
F_{2}\left(\xi_{1} \eta\right) & =\frac{1}{\left\|\bar{a}_{2}\right\|} \ln \left|\frac{\|\bar{q}\| \bar{a}_{2} \|+\bar{q} \odot \bar{a}_{2}}{\left\|\bar{q} \times \bar{a}_{2}\right\|}\right| \quad\left(\bar{a}_{2} \odot \bar{a}_{2}>0\right) \\
& =\|\bar{q}\| / \bar{q}^{\prime} \odot \bar{a}_{2}
\end{aligned} \\
& \begin{aligned}
F_{2}\left(\xi_{1} \eta\right) & =\frac{1}{\left\|\bar{a}_{2}\right\|} \ln \left|\frac{\|\bar{q}\| \bar{a}_{2} \|+\bar{q} \odot \bar{a}_{2}}{\left\|\bar{q} \times \bar{a}_{2}\right\|}\right| \quad\left(\bar{a}_{2} \odot \bar{a}_{2}>0\right) \\
& =\|\bar{q}\| / \bar{q}^{\prime} \odot \bar{a}_{2}
\end{aligned} \\
& =-\frac{1}{\left\|\bar{a}_{2}\right\|} \sin ^{-1}\left(\frac{\bar{q} \odot \bar{a}_{2}}{\left\|\bar{q} \times \bar{a}_{2}\right\|}\right)\left(\bar{a}_{2} \odot \bar{a}_{2}<0\right)_{(2.3 \mathrm{~b})}
\end{align*}
$$

Note that E.G. (2.2) may be rewritten as

$$
\begin{align*}
I_{s}=\frac{1}{-\|\bar{n}\|^{2}}\{ & -\bar{q} \times \bar{a}_{1} \odot \bar{n} F_{1}(\xi, \eta)+\bar{q}_{3} \times \bar{a}_{2} \odot \bar{n}_{2} F_{2}(\xi, \eta) \\
& -\bar{f} \cdot \bar{n} \tan _{p}^{-1}\left(\frac{-\bar{q} \times \bar{a}_{1} \odot \ddot{q}_{1} \times \bar{q}_{2}}{\left\|\bar{q}_{j}\right\| \dot{a}_{1} \cdot \bar{a}_{1} \times \bar{a}_{2}}\right) \tag{2,4}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{n}=\bar{a}_{1} \times \bar{a}_{2} /\left|\bar{a}_{1} \times \bar{a}_{2}\right| \tag{2.5}
\end{equation*}
$$

is the unit normal.
The following is to prove that Eq. (2.4) is valid for any quadrilateral planar element. For a planar element, the unit normal \vec{n} is independent of $\bar{\zeta}$ and η,

$$
\begin{equation*}
\frac{\partial \bar{n}}{\partial \xi}=\frac{\partial \bar{n}}{\partial \eta}=0 \tag{2.6}
\end{equation*}
$$

Note also

$$
\begin{equation*}
\frac{\partial \bar{a}_{1}}{\partial \xi_{s}}=\frac{\partial \bar{a}_{2}}{\partial \eta}=0 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \dot{a}_{1}}{\partial \eta}=\frac{\partial \dot{i}_{2}}{\partial \xi}=\bar{P}_{3} \tag{2.8}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \frac{\partial}{\partial \xi}\left(\bar{q} \times \bar{a}_{1} \odot \bar{n}\right)=\bar{a}_{1} \times \bar{a}_{1} \odot \bar{n}=0 \tag{2,9}\\
& \frac{\partial}{\partial \eta}\left(\bar{q} \times \bar{z}_{2} \circ \bar{n}\right)=\bar{a}_{2} \times \bar{a}_{2} \rho \bar{n}=0 \tag{2,10}
\end{align*}
$$

Furthermore, as shown in Appendix B, (see Eqs. P.5, B. 6 and B. 7)

$$
\begin{aligned}
& \frac{\partial F_{2}}{\partial \eta}=\frac{\partial}{\partial \eta}\left\{\frac{1}{\left\|\bar{Q}_{2}\right\|} \ln \left|\frac{\sqrt{\bar{q} O \bar{q}_{1} \sqrt{q} \frac{\bar{Q}_{1}}{}+\bar{q} O \bar{q}_{2}}}{\left\|\bar{q} \times \bar{Q}_{2}\right\|}\right|\right\}=\frac{1}{\| \bar{q} i} \quad \quad \bar{Q}_{2} O \bar{Q}_{2}>0 \\
& \frac{\partial F_{2}}{\partial \eta}=\frac{\partial}{m}\left(\frac{\sqrt{\bar{q} O \bar{q}}}{\bar{q} O \bar{q}_{2}}\right)=\frac{1}{\|\bar{q}\|} \quad \bar{Q}_{2} O \bar{Q}_{2}=0 \\
& \frac{\partial I_{2}}{\partial \eta}=\frac{\partial}{\partial \eta}\left[\frac{-1}{\left\|\bar{Q}_{2}\right\|} \sin ^{-1}\left(\frac{\bar{q} O \bar{q}_{2}}{\left\|\bar{q} \times \bar{q}_{2}\right\|}\right)\right]=\frac{1}{\|\bar{q}\|} \quad \bar{Q}_{2} 0 \bar{q}_{2}<0
\end{aligned}
$$

or

$$
\frac{\partial F_{2}}{\partial \eta}=\frac{1}{\|\bar{q}\|} \quad \bar{Q}_{2} \circ \bar{Q}_{2} \geqslant 0
$$

Similarly

$$
\begin{equation*}
\frac{\partial F_{1}}{\partial-\xi}=\frac{1}{\|\dot{q}\|} \quad \bar{Q}_{1} \circ \overline{Q_{1}} \geqslant 0 \tag{2.13}
\end{equation*}
$$

Using Eds. $(2,8),(2,10)$ and $(2,12)$ one obtains

$$
\begin{align*}
& \frac{\partial^{2}}{\partial \xi \partial \eta}\left\{\bar{q} \times \bar{a}_{2} \odot \bar{n} F_{2}(\bar{\xi}, \eta)\right\}=\frac{\partial}{\partial \xi}\left(\bar{\eta} \times \bar{a}_{2} \odot \bar{n} \frac{1}{\sqrt{\bar{\sigma} \omega \bar{\eta}}}\right) \\
& =\frac{\partial}{\partial \xi}\left(\bar{q} \times \bar{a}_{2} \omega \bar{n} \frac{1}{\sqrt{q \odot q}}\right) \tag{2.14a}
\end{align*}
$$

or

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \xi}\left\{\bar{f} \times \bar{a}_{2} \circ \bar{n} F_{2}(\xi, \eta)\right\} \\
&=\frac{\bar{a}_{1} \times \bar{a}_{2} \overline{\bar{n}}}{\| \bar{q}^{\prime}}+\frac{\bar{z} \times \bar{p}_{1} \otimes \bar{n}}{\|\bar{q}\|}-\bar{q} \times \bar{a}_{2} \omega \overline{\bar{n}} \frac{\bar{q} \circ \bar{a}_{1}}{(q \circ q)^{3 / 2}} \quad(2,14 \mathrm{~b})
\end{aligned}
$$

Similarly,

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \xi \partial \eta}\left\{\bar{q} \times \bar{a}_{1} \circ \vec{n} F_{1}(\xi, \eta)\right\}=\frac{\partial}{\partial \eta_{1}}\left(\bar{q} \times \bar{a}_{1} \odot \bar{n} \frac{1}{\sqrt{q \bar{\omega}}}\right) \tag{2,15a}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \xi^{2} \eta}\left\{\bar{q} \times \bar{a}_{1} \odot \bar{\eta} F_{2}(\xi, \eta)\right\}=\frac{\bar{a}_{2} \times \bar{a}_{1} \odot \bar{n}}{\left\|\bar{q}_{1}\right\|}+\frac{\bar{q} \times \bar{p}_{3} \odot \bar{n}}{\|\hat{q}\|}-\bar{q} \times \bar{a}_{1} \odot \bar{n} \frac{\bar{q} \odot \bar{q}_{2}}{\|q\|^{3}} \tag{2,15b}
\end{equation*}
$$

In addition as shown in Appendix C,

Finally, combining Eqs. (2.4), (2.14b), (2.15b) and (2.16), and noting that $\|n\|^{2}=-\bar{n} 0 \bar{n}$ yields

$$
\begin{align*}
& +\left(\frac{\bar{a}_{1} \times \bar{a}_{1} \circ \bar{n}}{\|q\|}+\frac{\bar{q} \times \bar{p}_{3} o n}{x+q_{1}}-\bar{q}^{\prime} \times \bar{a}_{2} \circ \bar{n} \frac{\bar{q} O \bar{a}_{1}}{(\bar{q} \circ \bar{q})^{n}}\right) \\
& \left.+\bar{q} \cdot \bar{n}\left(\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right) /\|q\|^{3}\right\} \tag{2,17}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial^{\prime} I_{s}}{\partial-\xi \geqslant)}=\frac{1}{\bar{n} \circ \bar{n}}\left\{2\left|\bar{Q}_{1} \times \bar{Q}_{2}\right| \frac{\bar{n} \circ \bar{n}}{\|q\|}+\right.
\end{aligned}
$$

According to the Second Super-rule (Eq. A. 11 with $\overline{\mathrm{a}}=\overline{\mathrm{q}}$,

$$
\left.\check{b}=\bar{a}_{1}, \quad \bar{c}=\bar{a}_{2}\right)
$$

$$
\begin{align*}
& -\left|\bar{a}_{1} \times \bar{a}_{2}\right|\left(\bar{q} \times \bar{a}_{1} \circ \bar{n} \bar{q} \circ \bar{a}_{2}-\bar{q}_{q} \times \bar{a}_{2} \circ \bar{n} \dot{q} \circ \bar{a}_{1}-\bar{q} \cdot \bar{n} \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right) \\
& =\left(\bar{q} \times \bar{a}_{1} \circ \bar{a}_{2} \times \bar{a}_{1}\right) \bar{q} \circ \bar{a}_{2}+\left(\bar{q} \times \bar{a}_{2} \circ \bar{a}_{1} \times \bar{a}_{2}\right) \bar{q} \circ \bar{a}_{1}+\left(\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right)^{2} \\
& =\bar{q} c \bar{q} \bar{Q}_{1} \times \bar{Q}_{2} \circ \bar{a}_{1} \times \bar{Q}_{2}-\left(\bar{q} \cdot \bar{Q}_{1} \times \bar{Q}_{2}\right)^{2}+\left(\bar{q} \cdot \bar{Q}_{1} \times \bar{Q}_{2}\right)^{2} \\
& =\bar{q} 0 \bar{q} \bar{n} \circ \bar{n}\left|\bar{Q}_{1} \times \bar{Q}_{2}\right|^{2} \tag{2,19}\\
& \text { Hence } \frac{\partial^{2} I_{s}}{\partial \bar{\zeta} \eta}=\frac{1}{\bar{n} \circ \bar{n}}\left\{2 \text { no } \bar{n} \frac{\left|\bar{a}_{1} \times \bar{q}_{2}\right|}{\| \bar{q}_{i}}-\bar{q} \circ \bar{q} \bar{n} \circ \bar{n} \frac{\left|\bar{q}_{1} \times \bar{q}_{2}\right|}{\|\bar{q}\|^{3}}\right\} \\
& =\frac{1}{\bar{n} 0 \bar{n}}\left\{\bar{n} 0 \bar{n} \frac{\left|\bar{Q}_{1} \times \bar{Q}_{2}\right|}{\| q_{1}}\right\} \\
& =\frac{\left|\bar{a}_{1} \times \bar{Q}_{2}\right|}{\| \bar{q}_{1} n} \tag{2.20}
\end{align*}
$$

Substituting Eq. (2.19) into Eq. (1.52) and noting that $H=1$ for the element internal to the Mach forecone, yields

$$
\begin{equation*}
-\pi b_{n k}=\int_{-1}^{1} \int_{-1}^{1} \frac{\left|\bar{a}_{1} \times \bar{a}_{n}\right|}{\|q\|} d \xi d \eta=\int_{-1}^{1} \int_{-1}^{1} \frac{\partial I_{s}}{\partial \xi \partial \eta} d \xi d \eta \tag{2.21}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
-n b_{h k}=I_{s}(1,1)--_{s}(1,-1)-I_{s}(-1,1)+I_{s}(-1,1) \tag{2,22}
\end{equation*}
$$

with I_{s} given by Eq. $(2,2)$.
2. 3 Doublet Integral

Consider the doublet integral in Eq. $(1,30)$ which can be rewritten as

$$
\begin{equation*}
C_{h k}=\frac{1}{\pi} \int_{-1}^{1} \int_{-1}^{1} \bar{N} \odot \bar{\nabla}\left(\frac{H}{\| ?!}\right)\left|a_{1} \times a_{2}\right| d E d y \tag{2.23}
\end{equation*}
$$

Note that $\mathrm{H}=1$, for the element internal to Mac: forecone and

$$
\begin{align*}
&(\bar{N} \circ \bar{\nabla}) \bar{q}=\left(N_{x} \frac{\partial}{\partial x}-N_{y} \frac{\partial}{\partial y}-N_{z} \frac{\partial}{\partial z}\right)\left\{\begin{array}{l}
x-x_{h} \\
y-y_{n} \\
z-z_{n}
\end{array}\right\} \\
& \therefore\left\{\begin{array}{l}
N_{x} \\
-N_{y} \\
-N_{z}
\end{array}\right\}=\bar{N}^{c} \tag{2,24}
\end{align*}
$$

Therefore

$$
\begin{align*}
& (\bar{N} \circ \bar{\nabla}) \frac{1}{\sqrt{\bar{q} O \bar{q}}}=\frac{1}{(\bar{q} \circ \bar{q})^{3 / 2}}[(\bar{N} \circ \overline{\bar{v}} \bar{q}] \circ \bar{q} \\
& =\frac{1}{(\bar{q} \circ \bar{q})^{3 / 2}}(\bar{N} \cdot \bar{q}) \\
& =\frac{1}{(\bar{q} \circ \bar{q})^{3 / 3}} \bar{N} \cdot \bar{q} \tag{2,25}
\end{align*}
$$

Thus

$$
\begin{equation*}
C_{h k}=\frac{1}{\pi}\left[I_{D}(1,1)-I_{D}(1,-1) \cdot I_{D}(-1,1)+I_{0}(-1,-1)\right] \tag{2,26}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial^{2} I_{D}}{\partial \xi \partial \eta}=\frac{\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}}{\left\|\bar{q}^{3}\right\|^{3}} \tag{2.27}
\end{equation*}
$$

In Appendix C, it is proved that

$$
\begin{equation*}
I_{D}=\tan _{p}^{-1}\left(\frac{-\bar{q} \times \bar{q}_{1} \odot \bar{q}^{\prime} \times \bar{a}_{2}}{\left\|\bar{q}_{1}\right\| \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}}\right) \tag{2.28}
\end{equation*}
$$

3.1 Introduction

In order to extend the solution given in the previous section, the finite part of integrals are investigated in finis section and the solutions for $h_{h k}$ and $c_{h k}$ for the elements intersected with the Mach forecone are considered. In Subsection 3.2, a general integral function is considered. In Subsection 3.3, the source integral is considered. In Subsection 3.4, the doublet integral is considered.

3.2 A General Integral Function

Consider the following integral equation

$$
\begin{equation*}
I=\int_{-\infty}^{a} \frac{\partial}{\partial x}\left(\frac{g(x)}{\sqrt{x}} H(x)\right) d x \tag{3.1}
\end{equation*}
$$

where $g(x)$ is a regular function and $H(x)$ is the Heaviside function.

It is observed that as x approaches zero, the integrand in Eq. (3.1) become singular. However it car be proved as follows that this singularity is avoided after the integration is carried out. Let \mathcal{E} be an infinitesimal quantity, then Eq. (3,1) can be rewritten as

$$
\begin{aligned}
I & =\lim _{\epsilon \rightarrow 0} \int_{-\infty}^{a} \frac{\partial}{\partial x}\left[\frac{g}{\sqrt{x}} H(x-\epsilon)\right] d x \\
& =\lim _{\epsilon \rightarrow 0}\left[\int_{-\infty}^{a} \frac{\partial}{\partial x}\left(\frac{g}{\sqrt{x}}\right) H d x+\int_{-\infty}^{a} \frac{g}{\sqrt{x}} \delta(x-\epsilon) d x\right] \\
& =\lim _{\epsilon \rightarrow 0}\left[\int_{\varepsilon}^{a} \frac{\partial}{\partial x}\left(\frac{g}{\sqrt{x}}\right) d x+\frac{g(\epsilon)}{\sqrt{\epsilon}}\right]
\end{aligned}
$$

$$
=\frac{g(a)}{\sqrt{a}}-\frac{g(\epsilon)}{\sqrt{\epsilon}}+\frac{g(\epsilon)}{\sqrt{\epsilon}}
$$

$$
\begin{equation*}
=\frac{g(a)}{\sqrt{a}} \tag{3,2}
\end{equation*}
$$

Therefore, the singularity contribution disappears and show. ? not be taken into account.
3.3 Finite Part of Source Integral

By combining Eq. (2.17) with Eq. (2.20), one obtains

$$
\begin{align*}
\frac{\left|\bar{a}_{1} \times \bar{a}_{2}\right|}{\|q\|}= & \frac{1}{\bar{n} \circ \bar{n}}\left\{-\left(\frac{\bar{a}_{2} \times \bar{a}_{1} \circ \bar{n}}{\|q\|}+\frac{\bar{q}^{\prime} \times \bar{p}_{3} \circ \bar{n}}{\|\bar{q}\|}-\bar{q} \times \bar{a}_{1} \circ \bar{n} \frac{\bar{q} \odot \bar{a}_{2}}{(\bar{q} \circ \bar{q})^{3 / 2}}\right)\right. \\
& +\left(\frac{\bar{a}_{1} \times \bar{a}_{2} \odot \bar{n}}{\left\|\bar{q}_{q}\right\|}+\frac{\bar{q} \times \bar{p}_{3} \odot \bar{n}}{\|\bar{q}\|}-\bar{q} \times \bar{a}_{2} \odot \bar{n} \frac{\bar{q} \odot \bar{a}_{2}}{(\bar{q} \circ \bar{q})^{3 / 2}}\right) \\
& \left.+\bar{q} \cdot \bar{x}\left(\bar{q}_{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right) \frac{1}{\|q\|^{3}}\right\} \tag{3.3}
\end{align*}
$$

Therefore, the source integral, ${ }^{\text {b }} \mathrm{hk}^{\prime}$, can be separated into three integrals, i.e.

$$
\begin{equation*}
b_{h k}=\frac{1}{\pi} \int_{-1}^{1} \int_{-1}^{1} \frac{H}{\|q\|}\left|\bar{a}_{1} \times \bar{a}_{2}\right| d \xi d \eta=\frac{1}{\pi} \frac{1}{\bar{x} \circ \dot{x}}\left(s_{1}+s_{2}+s_{3}\right) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{1}=-\int_{-1}^{1} \int_{-1}^{1} H\left[\frac{-\bar{a}_{1} \times \bar{a}_{2} \circ \bar{n}}{\| \bar{q}^{\prime}}+\frac{\bar{o}^{\circ} \times \bar{p}_{3} \circ \bar{n}}{\| \bar{q}^{3}}-\bar{q}^{3} \times \bar{a}_{2} \circ \bar{n} \frac{\bar{q} \odot \bar{a}_{2}}{\left\|\bar{q}^{3}\right\|^{3}}\right] d\{d \eta(3.5) \\
& S_{2}=\int_{-1}^{1} \int_{-1}^{1} H\left[\frac{\bar{a}_{1} \times \bar{a}_{2} \odot \bar{n}}{\|\bar{q}\|}+\frac{\bar{q} \times \bar{p}_{3} \circ \bar{n}}{\|\bar{q}\|}-\bar{q}_{q} \times \bar{a}_{2} \circ \bar{n} \frac{\bar{q} \circ a_{1}}{\|\bar{q}\|^{3}}\right] d \xi d \eta
\end{aligned}
$$

$$
\begin{equation*}
S_{3}=\int_{-1}^{1} \int_{-1}^{1} H\left[\bar{q} \cdot \bar{n} \frac{\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}}{\|\bar{q}\|}\right] d \xi d \eta \tag{3,7}
\end{equation*}
$$

Consider the first integral in Eq. (3.5) and assume that $X_{s 1}$ is the solution of S_{1} through the double integrations. Then

$$
\begin{equation*}
s_{1}=I_{s 1}(1,1)-I_{s 1}(1,-1)-I_{s 1}(-1,1)+I_{s 1}(-1,-1) \tag{3,8}
\end{equation*}
$$

By using Eq. (2.15), Eq. (3.5) can be rewritten us

$$
\begin{equation*}
S_{1}=-\int_{-1}^{1} d \vec{\xi} \int_{-1}^{1} \frac{\partial}{\partial \eta}\left[H(\bar{q} \times \bar{a}, \odot \bar{n}) \frac{1}{\sqrt{\bar{q} \bar{q}}}\right] d \eta \tag{3.9}
\end{equation*}
$$

Note that $\sqrt{\bar{q} \circ \bar{q}}$ can be expressed as $h(\eta) \sqrt{\eta-\eta_{0}} \quad$ where $\bar{q} \times \bar{a}, \circ \bar{n} / h(\eta)$ is a regular function and η_{0} is defined such that $\bar{q} \circ \bar{q}=0$. Compared with Eq. (3.2), it can be concluded that after the first integration, solution along the intersection line of the element with the Mach forecone yields no contribution, ie.

$$
\begin{equation*}
I_{s 1}(1,1)-I_{s 1}(-1,1)=0 \tag{3.10}
\end{equation*}
$$

or

$$
\begin{equation*}
I_{s 1}(1,-1)-I_{s 1}(-1,-1)=0 \tag{3.11}
\end{equation*}
$$

if the edges of $\eta=1$, or $\eta=-1$ is completely outside the Mach forecone. Otherwise, Est is given by the first term of Eq. (2.2) if the corner point is inside the Mach forecone, or

$$
\begin{array}{rlrl}
I_{s 1}\left(\xi, \eta^{*}\right) & =0 & \bar{a}_{1} \odot \bar{a}_{1} \geq 0 \\
& =\left(\bar{q} \times \bar{a}_{1} \cdot \bar{n}\right) \operatorname{sign}\left(\bar{q} \circ \bar{a}_{1}\right) /\left\|\bar{a}_{1}\right\| & \bar{a}_{1} \circ \bar{a}_{1}<0 \\
(3.12)
\end{array}
$$

if the corner point is outside the Mach forecone.
Similarly, by using Eq. (2.14a), Eq. (3.6) can be rewritten

$$
\begin{equation*}
S_{2}=\int_{-1}^{1} d \eta \int_{-1}^{1} \frac{\partial}{\partial \bar{q}}\left[H\left(\bar{q} \times \bar{a}_{2} \circ \bar{x}\right) \frac{1}{\sqrt{\bar{q} \circ \bar{q}}}\right] d \xi \tag{3.13}
\end{equation*}
$$

For the same reason given for S_{1}, if S_{2} is expressed as

$$
\begin{equation*}
S_{2}=I_{s 2}(1,1)-I_{s 2}(1,-1)-I_{s 2}(-1,1)+I_{s 2}(-1,-1) \tag{3.14}
\end{equation*}
$$

the solution of S_{1} is given as follows:

$$
\begin{equation*}
I_{s 2}(1,1)-I_{s 2}(1,-1)=0 \tag{3,15}
\end{equation*}
$$

or

$$
\begin{equation*}
I_{s 2}(-1,1)-I_{s 2}(-1,-1)=0 \tag{3.16}
\end{equation*}
$$

if the edge of $\xi=1$, or $\xi=-1$, is completely outside the Mach forecone. Otherwise, $I_{s 2}$ is given by the second term of Eq. (2.2) if the corner point is inside the Mach forecone, or

$$
\begin{align*}
I_{s 2}\left(\xi^{\prime}, \eta\right) & =0 & ; \bar{a}_{2} \odot \bar{a}_{2} \geq 0 \\
& =-\left(\bar{q} \times \bar{a}_{2} \cdot \bar{x}\right) \operatorname{sign}\left(\bar{q} \odot \bar{a}_{2}\right) /\left\|\bar{a}_{2}\right\| & ; \bar{a}_{2} \odot \bar{a}_{2}<0 \tag{3.17}
\end{align*}
$$

if the corner point is curside the Mach forecone.
Note that the values of $\mathcal{F}^{\prime \prime}$ and η^{\prime} are evaluated such that
$\bar{q} \odot \bar{q}=0$. The solution of S_{3} is considered together with the solution of $c_{h k}$ in the following subsection.

3.4 Finite Part of the Doublet Integral.

The doublet integral is given by Eq. (2.26) as

$$
\begin{equation*}
C_{h k}=\frac{1}{\pi}\left[I_{D}(1,1)-I_{D}(1,-1)-I_{D}(-1,1)+I_{D}(-1,-1)\right] \tag{3.18}
\end{equation*}
$$

one can also express S_{3} as

$$
\begin{equation*}
S_{3}=I_{53}(1,1)-I_{53}(1,-1)-I_{53}(-1,1)+I_{53}(-1,-1) \tag{3.19}
\end{equation*}
$$

In Appendix C, it is proved that (Eq. C. 15)

$$
\begin{equation*}
\frac{\partial I_{0}}{\partial \eta}=\frac{1}{\left\|\bar{q} \times \bar{a}_{1}\right\|\|\bar{q}\|}\left(\bar{q} \odot \bar{a}_{-1}, \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}-\bar{q} \odot \bar{q} \bar{q} \cdot \bar{a}_{1} \times \bar{P}_{3}\right) \tag{3.20}
\end{equation*}
$$

There:Lore, the doublet integral and S_{3} can always bs expressed as $C_{h k}=\frac{1}{\pi} \int_{-1}^{1} d \xi \int_{-1}^{1} \frac{\partial}{\partial \eta}\left[\frac{H}{\left\|\bar{q} \times \bar{a}_{1}\right\|^{2}}\left(\bar{q} \circ \bar{a}, \quad \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}-\bar{q} \circ \bar{q} \bar{q} \times \bar{a}_{1} \times \bar{p}_{3}\right)\right.$.
and
$S_{3}=-\bar{q} \cdot \bar{n} \int_{-1}^{1} d \xi \int_{-1}^{1} \frac{\partial}{\partial \eta}\left[\frac{H}{\|\bar{q} \times \bar{a},\|^{2}}\left(\bar{q} \circ \bar{a}, \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}-\bar{q} \circ \bar{q} \bar{q} \times \bar{a}_{1} \times \bar{p}_{3}\right) \frac{1}{\|\bar{q}\|}\right] d \eta$
Both integrands of the above equations are of the form of the integral in Eq. (3,1). For the same reason given above, one obtains

$$
\begin{align*}
& I_{53}(1,1)-I_{53}(-1,1)=0 \tag{3.23}\\
& I_{D}(1,1)-I_{D}(-1,1)=0 \tag{3.24}
\end{align*}
$$

or

$$
\begin{align*}
& I_{53}(1,-1)-I_{53}(-1,-1)=0 \tag{3.25}\\
& I_{D}(1,-1)-I_{D}(-1,-1)=0 \tag{3,26}
\end{align*}
$$

if the edge of $\eta=1$ or $\eta=-1$ is completely outside of the Mach forecone. Otherwise, I_{D} and $I_{s_{3}}$ are given by Eq. (2.27) and the third term of Eq. (2.2) if the corner point is inside the Mach forecone, or

$$
\begin{align*}
& I_{53}\left(\xi, \eta^{*}\right)=(\bar{q} \cdot \bar{n}) \frac{\pi}{2} \operatorname{\mu gn}\left[\left(\bar{q} \circ \bar{a}_{1}\right)\left(\bar{q} \circ \bar{a}_{2}\right)(\bar{q} \cdot \bar{n})\right] \tag{3.27}\\
& I_{0}\left(\xi, \eta^{*}\right)=-\frac{1}{2} \operatorname{sign}\left[\left(\bar{q} \circ \bar{a}_{1}\right)\left(\bar{q} \circ \bar{a}_{2}\right)(\bar{q} \cdot \bar{n})\right] \tag{3,28}
\end{align*}
$$

As mentioned before, the value of $\eta^{\prime \prime}$ is evaluated such that

$$
\bar{q} \circ \bar{q}=0 .
$$

SECTION

SUPERSONIC OSCILLATORY FLOW

4.1 Integral Equation

In this section it is shown how the results obtained in the preceding Sections can be extended to supersonic oscillatory flow. Introducing the variables

$$
X=\frac{x}{B l} \quad Y=\frac{k}{i} \quad Z=\frac{z}{i} \quad T=\frac{B a_{m} t}{l} \quad \Omega=\frac{\omega l}{B a_{c}}(4,1)
$$

and the complex potential $\hat{\phi}$ such that

$$
\begin{equation*}
\varphi(x, y, z, t)=U_{\infty} \ell \hat{\phi}(X, Y, Z) e^{i \Omega(T-M X)} \tag{4.2}
\end{equation*}
$$

the integral equation for the subsonic oscillatory flow is given by
where \sum surrounds body and wake.

4.2 Boundary Condition

The boundary condition is given by

$$
\begin{equation*}
\nabla_{x y_{2}} S \cdot V_{x y_{2}} \varphi=-\frac{\partial S}{\partial t}-U_{\sim} \frac{\partial S}{\partial x} \tag{4.4}
\end{equation*}
$$

or

$$
\begin{equation*}
-\nabla_{x Y z} S \partial \nabla_{\lambda r t} \phi+\frac{B}{M} \frac{\partial S}{\partial i}+\frac{1}{B} \frac{\partial S}{\partial X}+\frac{M^{2}}{B^{2}} \frac{\partial S}{\partial x} \frac{\partial \phi}{\partial X}=0 \tag{4.5}
\end{equation*}
$$

where φ and ϕ are such that

$$
\begin{equation*}
\Phi=U_{\infty} x+\varphi=U_{\infty} \ell(\beta X+\phi) \tag{4.6}
\end{equation*}
$$

Next, assume that the motion of the surface consists of small harmonic oscillations around a rest configuration, that is

$$
\begin{equation*}
S=S_{0}(X, Y, Z)+\tilde{S}(x, y, z) e^{i \Omega T} \tag{4,7}
\end{equation*}
$$

Then, setting

$$
\begin{equation*}
\phi=\phi_{0}(x, y, z)+\tilde{\phi}(x, y, z) e^{i \Omega T} \tag{4.8}
\end{equation*}
$$

one obtains

$$
\begin{align*}
& -\nabla_{x Y Z} S_{0} \odot \nabla_{x y z} \phi_{0}-\left(\nabla_{x y Z} S_{0} \odot \nabla_{x y z} \tilde{\phi}+\nabla_{x Y Z} \tilde{S}_{0} \nabla_{x y z} \phi_{0}\right) e^{i \Omega T} \\
& -\left(\nabla_{X Y Z} \tilde{S} \circ \nabla_{X Y Z} \tilde{\psi}\right) e^{i 2 \Omega T}+\frac{B}{M} i \Omega \tilde{S} e^{i \Omega T} \\
& +\frac{1}{B}\left(\frac{\partial S}{\partial x}+\frac{\partial \tilde{S}}{\partial x} e^{i \Omega T}\right) \\
& +\frac{M^{2}}{B^{2}}\left[\frac{\partial s}{\partial x} \frac{\partial \phi_{0}}{\partial x}+\frac{\partial S_{3}}{\partial x} \frac{\partial \tilde{v_{3}}}{\partial x}+\frac{\partial \tilde{S}}{\partial x} \frac{\partial \phi_{3}}{\partial x}\right] c^{i \Omega T} \\
& \left.+\frac{\partial \tilde{S}}{\partial x} \frac{\partial \hat{\phi}}{\partial x} e^{i 2 \Omega T}\right]=0 \tag{4.9}
\end{align*}
$$

Assume that the surface is given in the form

$$
\begin{array}{ll}
S=+\left[Z-Z_{u}(X, Y)-\tilde{Z}_{u}(X, Y) e^{i \Omega T}\right]=0 & \text { (Upper surface) } \\
S \equiv-\left[Z-Z_{l}(X, Y)-Z_{l}(X, Y) e^{i \Omega T}\right]=0 & \text { (Lower surface) }
\end{array}
$$

with

$$
\begin{align*}
& z_{u, l}(x, y)=O(\varepsilon) \tag{4,11}\\
& \tilde{z}_{u, f}(x, y)=O\left(\varepsilon^{2}\right) \tag{4.12}
\end{align*}
$$

or, in general by Eq. (E.7) with

$$
\begin{align*}
& S_{0}= \pm\left[z-Z_{u, i}(x, y)\right]=O(1) \tag{4.13}\\
& \frac{\partial S_{0}}{\partial x}=-\frac{\partial Z_{2},}{\partial x}=O(\varepsilon) \tag{4.14}\\
& V_{0}=O(1) \tag{4.15}
\end{align*}
$$

and

$$
\begin{align*}
& \tilde{S}= \pm \tilde{\Sigma}_{u, C}(X, Y)=O\left(\varepsilon^{2}\right) \tag{4.16}\\
& \frac{\tilde{\partial}_{I}}{\partial X}=O\left(\varepsilon^{2}\right) \tag{4,17}
\end{align*}
$$

Assume also

$$
\begin{equation*}
\Omega=O(1) \tag{4.18}
\end{equation*}
$$

This implies (see Eqs. E. 25 and E.26) that

$$
\begin{align*}
& \phi_{0}=O(\varepsilon) \tag{4.19}\\
& \tilde{\phi}=O(\tilde{\varepsilon}) \tag{4.20}
\end{align*}
$$

Neglecting the terms which contain $e^{i 2 \Omega T}$ (which are of order ε^{4}) and separating the steady from the oscillatory terms, one obtains

$$
\begin{align*}
& -\nabla_{x+2} S_{0} \odot \nabla_{x+2} \phi_{0}+\frac{1}{B} \frac{\partial S}{\partial X}+\frac{\mu^{2}}{f^{2}} \frac{\partial S}{\partial x} \frac{\partial t}{\partial x}=0 \\
& -V_{x v t} S_{0} \odot V_{r r^{\prime} t} \tilde{\phi}-V_{x r 2} \tilde{S} \odot V_{x+2} \phi_{0}+\frac{B}{M} i \Omega \tilde{S}+\frac{1}{2} \frac{\partial \tilde{S}}{\partial X} \tag{4.21}\\
& +\frac{\mu^{2}}{B^{2}}\left(\frac{\partial S}{\partial x} \frac{\partial \tilde{\phi}}{\partial x}+\frac{\partial \tilde{S}}{\partial x} \frac{\partial \phi}{\partial x}\right)=0 \tag{4.22}
\end{align*}
$$

Introducing such that

$$
\begin{equation*}
\hat{\phi}=\hat{\phi} c^{-i \Omega m x} \tag{4.23}
\end{equation*}
$$

Equation (4.22) reduces to

$$
\begin{align*}
& -\nabla_{x+\varepsilon^{N}, \circ} \circ \nabla_{x+z} \hat{\phi} e^{-i \Omega M x}+i \Omega M \frac{\partial S}{\partial x} \hat{p} e^{-i \Omega \mu x}-\nabla_{x r^{\prime} z} \tilde{S}^{N} \odot \nu_{x+2} \phi_{0} \\
& +\frac{B}{M} i \Omega \hat{S}^{N}+\frac{1}{B} \frac{\partial \tilde{S}}{\partial x}+\frac{M^{2}}{\hat{L}^{2}}\left[\frac{\partial S}{\partial x}\left(\frac{\partial \hat{i}}{\partial x}-i \Omega M \hat{\psi}\right) \tau^{-i \Omega M x}\right. \\
& \left.+\frac{\partial \tilde{S}}{\partial x} \frac{\partial p^{\partial}}{\partial x}\right]=0 \tag{4.24}
\end{align*}
$$

Finally, neglecting terms of order ε^{2} in Eq. (E.21) and terms of order $<^{3}$ in Eq. (E.24), one obtains

$$
\begin{align*}
& -\nabla_{x+2} S_{0} \odot \nabla_{x r r} \phi_{0}=-\frac{1}{B} \frac{\partial S}{\partial x} \tag{4.25}\\
& -V_{x, 2} S_{0} \odot \nabla_{x r i} \hat{\phi}=-\left(i \frac{B \Omega \tilde{S}}{M}+\frac{\partial \tilde{S}}{\partial x}\right) e^{i \Omega M X} \tag{4.26}
\end{align*}
$$

In particular, for

$$
\begin{equation*}
S= \pm \frac{1}{b}\left[2-z_{0, c}(x, y)-\tilde{z}_{u, b}(x, y) c^{i \omega t}\right] \tag{4.27}
\end{equation*}
$$

(where the npper[lower] sign holds on the upper[lower] surface), one obtains

$$
\begin{align*}
& S_{0}= \pm \frac{1}{l}\left[z-z_{u,}(x, y)\right] \tag{4.28}\\
& \tilde{S}=-\frac{1}{l} \tilde{z}_{u, l}(x, y) \tag{4.29}\\
& \frac{1}{\mid \nabla_{x r_{2}} S_{0}}=\left|N_{2}\right|= \pm N_{z} \tag{4.30}
\end{align*}
$$

and

$$
\frac{\partial \hat{\phi}}{\partial N^{c}}=\frac{\nabla_{x Y z} S_{0} \odot \nabla_{x+z} \hat{\phi}}{\left|\nabla_{x \gamma z} \dot{S}_{0}\right|}=-N_{z}\left(i K \frac{\tilde{z}}{\ell}+\frac{\partial \tilde{z}}{\partial x}\right) e^{i \Omega M x}
$$

where

$$
\begin{equation*}
K=\frac{3 \Omega}{M}=\frac{\omega L}{U} \tag{1.32}
\end{equation*}
$$

4.3 Pressure Coefficient

The pressure coefficient can be evaluated by using the linearized Bernoulli theorem, as

$$
\begin{align*}
c_{p} & =-\frac{2}{u_{N}^{2}}\left(\frac{\partial \rho}{\partial L}+u_{\infty} \frac{\partial f}{\partial x}\right) \\
& =-2\left(\frac{B}{M} \frac{\partial \phi}{i}+\frac{1}{z} \frac{\partial \phi}{\partial x}\right) \tag{4.33}
\end{align*}
$$

For oscillatory flow, setting

$$
\begin{align*}
& \phi=\hat{\phi} c^{i \Omega T}=\hat{\phi} e^{i \Omega(T-M x)} \tag{4.34}\\
& c_{p}=\hat{c}_{\nu} c^{i \Omega T} \tag{4.35}
\end{align*}
$$

one obtains

$$
\begin{align*}
\tilde{C}_{p} & =-2\left(\frac{B}{M} i \Omega \tilde{\phi}+\frac{1}{B^{3}} \frac{\partial \hat{\phi}}{\partial x}\right) \\
& =-2\left[i \Omega\left(\frac{B}{M}-\frac{M}{\Gamma}\right) \hat{\phi}+\frac{1}{3} \frac{\partial \hat{\phi}}{\partial x}\right] e^{\cdot i \Omega M x} \\
& =-\frac{2}{B}\left[\cdot \frac{2}{M} \hat{\phi}+\frac{\partial \hat{\phi}}{\partial x}\right] e^{i \Omega M x} \\
& =-\frac{2}{B}\left[e^{i \Omega x / M} \frac{\partial}{\partial x}\left(\hat{\phi} e^{-i \Omega x / M}\right)\right] e^{-i \Omega M x} \\
& =-\frac{2}{3} e^{\cdot i \Omega B^{2} x / M} \frac{\partial}{\partial x}\left(\hat{\phi} e^{-i \Omega x / M}\right) \\
& =-\frac{2}{\hbar} e^{-i K B x} \frac{\partial}{\partial x}\left(\hat{\phi} e^{-i \alpha x / 3}\right) \tag{4.36}
\end{align*}
$$

SECTION 5

NUMERICAL RESULTS

Abstract

5.1 Introduction

The formulation presented in the previous sections was imbedded into a computer program, called SOSSA ACTS (Steady and Oscillatory, Subscnic and Supersonic Aerodynamic for Aerospace Complex Transportation Systems). Typical results of this computer program are presented in this section.

5.2 Rectangular Wing in Both Steady and Oscillatory Flow

The results in Figs. 2 to 4 are relative to a rectangular wing with aspect ratio $A R=3$ and with a biconvex circular arc section, 5\% thickness, with sharp leading and trailing edges. Fig. 2 shows the distribution of the pressure coefficient C_{p} on the lower and upper surfaces of the wing with $\quad \alpha=0^{*}$ and $M=1.3$. Fig 3a shows the distribution of the lift coefficient on the wing with $c^{\prime}=5^{\circ}$ and $M=1.3$, while Fig. 3 b shows the distribution of C_{p} on the lower and upper surfaces of the wing with $\quad \alpha=5^{\circ}$ and $M=1.3$; these results are obtained with $N X=N Y=7$. Fig. 4 shows the distributions of the absolute values and phase angles of the lift coefficient C_{C}, of the same wing oscillating in bending mode
$Z=0.18043|2 y / b|+1.70255\left|2 y / 1 .\left.\right|^{2}-1.13688 / 2 y / b\right|^{3}+\left.\left..25387\right|^{21 / b}\right|^{4}$ with $K=\omega c / 2 U_{0}=1, M=1.3$ and $N X=N Y=10$. All the above results are compared with the ones obtained by Lessing, Troutman and Mences (Ref. 4). The results obtained for Fig. 2 are also compared with the analytical two dimensional solution
which can be easily evaluated. For, this problem can be treated as a two dimensional problem in the central region of the wing. For this case the pressure coeffizient is given by (Ref. 4)

$$
\begin{equation*}
C_{P}=\frac{2}{B} \frac{\partial Z}{\partial x} \tag{5.1}
\end{equation*}
$$

For biconvex circular-arc wing, the equation of wing section is approximately given as

$$
\begin{equation*}
z=-2 r\left(x^{2}-0.25\right) \quad, \quad(-0.5 \leq x \leq 0.5) \tag{5.2}
\end{equation*}
$$

Noting that $\tau=0.05$ and $B=0.83$, one obtains

$$
\begin{equation*}
c_{P}=\frac{2}{b} \frac{\partial z}{\partial x}=-0.48 \quad x \tag{5.3}
\end{equation*}
$$

i.e. c_{p} varies from -0.24 to 0.24 linearly. The results shown in Fig. 2 are in excellent agreement with Eq. 5.3.

5.3 Convergence Analysis

The convergence analysis of the problem considered in Figs. 2 and 4, is presented here. The distribution of the velocity potential elong $Y / \Delta=0$ for the problem for Fig. 2 (for different numbers of elements) is shown in Fig. 5. The curves are obtained with $N X=N Y=5,6$ and 7 . These curves, indicate that the convergence is very fast and that 144 elements on the whole wing, or $N X=N Y=6$ are sufficient for an accurate analysis. For oscillatory flows, the distributions of the real and imaginary parts of the velocity potential along $2 Y / b=0.5$ for the problem for Fig. 4 are shown in Fig. 6. The curves are ohtained with $N X=N Y=5,6$,
and 7. From these curves, it is safe to say that 144 elements (ie $N X=N Y=6$) are sufficient for an accurate analysis.

5.4 Delta Wing with Supersonic Leadiriy Edge

Fig. 7 shows the distribution of lift coefficient per unit angle of attack for a delta wing with supersonic leading edge and

$$
m=B / \tan \Lambda=1.2
$$

where Λ is the sweep angle of the leading edge. The results obtained with $N X=8, N Y=12$ and $M=1.2$ are compared with the exact solution which is given by (Ref. 5).

$$
\Delta C_{p}=\frac{4 \alpha}{\pi B} \frac{m}{\sqrt{m^{2}-1}} \operatorname{Re}\left[\cos ^{-1} \frac{1-m \gamma}{m-\gamma}+\cos ^{-1} \frac{1+m \gamma}{m+r}\right]
$$

where $f=B y / x$. The numerical results obtained are remarkably accurate.

5.5 Wing-body Configu action

The present method 13 general enough to extend to any arbitrary configuration. Following is an example of this application. A wing-body combination in supersonic flow with $M=1.48$ is considered in Figs. (Ba) and (Bb). The combination is composed of a wing with chord $C=3$, span $S=9$, thickness $\tau=0.05$, a forebody of length $L A=6.0$ and radius varying from 0.0 to 0.75 linearly and a midsection of length $L_{m}=3.0$ and radius $r=0.75$. Wake and at tody are not considered. The angle of attack of the wing is $\alpha=1.92$, while the angle of attack of the body is $\alpha_{B}=0$. To obtain
the results, 580 elements on the whole configuration $(N X=N Y=$ 10 on the wing, $\mathrm{NX}=5, \mathrm{NY}=3$ on the body, $\mathrm{NX}=10, \mathrm{NY}=3$ on the middle section) are used. In Fig. (8a), the distributions of the lift coefficient per unit wing angle of attack along chordwise direction are presented. The curves are plotted at different values of y / r, and are compared with the experimental, as well as analytical, ones obtained by Nielsen (Ref. 6) and Woodware, Tincoco and Larsen (Ref. 7). In Fig. 8 b , the distributions of the same quantity along fuselage at different meridian angles are shown.

5.6 Computer Time

All the above results are obtained on the IBM $370 / 145$ available at the Boston University Computer Center. The computer time for the problem for Figs. 5 and 6 are given in Tables 1 and 2 respectively, where N_{T} is the total number of the elements on the whole wing. $N_{e q}$ is the number of $e-$ quations to be solved (by using IBM Subroutine GELG), and N_{d} is the number of diaphragm element.

TABLE 1 Steady Case

N_{T}	NX, NY	Neg.	N_{d}	Computing Time
64	4	28	12	11 sec.
100	5	40	15	22.8 sec.
144	6	54	18	42.5 sec.
196	7	70	21	140.5 sec.

TABLE 2 Oscillatory Case

N_{T}	NX, NY	Neg.	N_{d}	Computing Time
64	4	25	9	21.4 sec.
100	5	34	9	38.0 sec.
144	6	45	9	65.4 sec.
196	7	58	9	118.9 sec.

It should be mentic ned that the advantage of symmetry with respect to z and y was taken. Therefore, the number of unknowns, or equations, to be solved is only one-fourth of the number of the elements on the whole wing plus the number of diaphragm elements.

1. Morino, L., "Unsteady Compressible Potential Flow Around Lifting Bodies Having Arbitrary Shapes and Motions," Boston University, College of Engineering, Dept. of Aerospace Eng., TR-72-01, June 1972.
2. Morino, L., "Unsteady Compressible Potential Flow Around Lifting Bodies: Gereral T cory," AIAA Paper No. 73-196, January 1973.
3. Morino, L., "A Finite-Element Formulation for Supersonic Flow Around Complex Configurations," Boston University, Dept. of Aerospace Eng., TR-74-01, 1974.
4. Lessing, H.C., Troutmaz, J.C. and G.P. Menees, "Experimental Determination of the Pressure Distribution on a Rectangular Wing Osc:illating in the First Bending Mode for Mach Numbers frcm 0.24 to 1.30, "NASA TN-D344, 1960.
5. Ashley, H., and M. Landahi, Aerodynamics of Wings and Bodies, Addison-Wesley, Reacing, Mass., 1965.
6. Nielsen, J.N., "Quasi-cylindrical Theory of Wing-Body Interference at Supersonic Speeds and Comparison with Experiments," NACA Rept. 1252, 1952.
7. Woodward, F.A., Tinoco, E.N. and J.W. Larsen, "Analysis and Design of Supersonic Wing-Body Combinations, Including Flow Properties in the Near Field, Part I, Theory and Applications," NASA CR-73106, 1967.

Figure 1. Hyperboloidal Element

Figure 2 . The pressure distribution on a symmetric rectangular wing for the comparison with results of Ref. 4.

Figure 3a. The lift distribution on symmetric rectangular wing with $A R=3, \tau=5 \%, \alpha=5^{\circ}, M=1.3$ and $N X=N Y=7$ for the comporison with results of Ref. 4 .

Figure 3 k . The distribution of C_{p} on the upper and lower surfaces of a symmetric rectangular wing with $A R=3, \tau=5 \%$, $\alpha=5^{\circ}, M=1.3$ and $N X=N Y=6$ for compa ison with results of Ref. 4 .

Figure 4 . Lift coefficient, \tilde{C}_{l}, for a rectangular wing oscillating in bending mode with $k=\omega c / 2 U_{\infty}=0.1, M=1.3, A R=3$ and $N X=N Y=10$.

Figure 5.Analysis of Convergence: Potential Distribution, \& , Versus x / c, of $y=0$, for Rectangular Wing With Biconvex Section, in Steady Supersonic Flow, for $A R=3, q=0.05, M=1.3, \alpha=0^{\circ}, N_{D}=3 N_{x}$.

Figure 6. Analysis of Convergence: Distribution of $\hat{\xi}=\tilde{s} e^{i n M X}$ Versus x / c, at $2 y / b=0.5$, for Rectangular Wing With Biconvex Section, Oscillating in Bending Mode in Supersonic Flow, for $A R=3, \tau=0.01, M=1.3$, $K=0.1, c=0^{\circ}, N_{D}=3 N_{x}$.

Figure 7, Lift Distribution Coefficient, $\mathrm{C}_{\ell_{\alpha}}$, for Delta Wing With Supersonic Trailing Edge, in Steady Supersonic Flow, With $B / \tan \Lambda=1.2$, $\tau=0, N_{x}=8, N_{y}=12$. Comparison With Exact, Conical-Flow Solution, Reference ${ }^{5}$.

Figure 8a. The distribution of $\beta C \ell / \alpha w$ on the wing section for a wing-body configuration (shown in Figure 27c) with $M=1.48, \alpha_{\nu}=1.92^{\circ}$ and $\alpha_{B}=0^{\circ}$, for the comparison with results of Ref. 21.

Figure 8 b . The distribution of $\beta C_{\ell} \alpha$ on the fuselage at three circumferential stations for the same problem of Figure 27a.

APPENDIX A

SUPERALGEBRA

A. 1 Super-product

As mentioned in Section 1, in order to simplify the algebraic manipulation for the supersonic flow theory, it is convenient to introduce a special algebra, called supersonic vector algebra or super-algebra. In addition to the rules of the ordinary vector algebra, the super-algebra includes a supersonic dot product or super-product

$$
\begin{equation*}
\bar{a} \odot \bar{b}=a_{x} b_{x}-a_{y} b_{y}-a_{z} b_{z} \tag{A.1}
\end{equation*}
$$

The additive and distributive rules are obviously valid for the super-product. Note that $\overline{\mathrm{a}} \circ \overline{\mathrm{a}}$ is

$$
\begin{equation*}
\bar{a} \circ \bar{a} \geq 0 \text { for } a_{x} \geq \sqrt{a_{y}^{2}+a_{y}^{2}} \tag{A.2}
\end{equation*}
$$

that is for \bar{a} pointed, respectively, inside, on, outside the Mach cone (Fig. 1). Hence, in addition to the ordinary norm of a vector (or dot-norm)

$$
\begin{equation*}
|a|=\sqrt{\bar{a} \cdot \bar{a}} \tag{A.3}
\end{equation*}
$$

it is convenient to introduce the supersonic norm (or supernorm)

$$
\begin{equation*}
\|Q\|=\sqrt{|\bar{a} \circ \bar{a}|} \tag{A.4}
\end{equation*}
$$

Finally, it is convenient to introduce the concept of covector

$$
\bar{a}^{c}=\left\{\begin{array}{c}
a_{x} \tag{4.5}\\
-a_{y} \\
-a_{z}
\end{array}\right\}
$$

With these notations, it is immediately verified that

$$
\begin{equation*}
\bar{a} \circ \bar{b}=\bar{a}^{c} \cdot \bar{b}=\bar{a} \cdot \bar{b}^{c} \tag{A.6}
\end{equation*}
$$

It may be worth noting that

$$
\bar{a} \cdot \bar{b} \times \bar{c}=\bar{a}^{c} \odot \bar{b} \times \bar{c}=\bar{a} \odot \bar{b} \times \bar{c}_{i}^{c}=\bar{a} \odot b^{c} \times c^{c} \quad \text { (A.6a) }
$$

A. 2 First Super-rule

Throughout the subsonic finite-element formulation (Ref. 6) the following rule is used

$$
\begin{equation*}
(\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{c})=(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{d})-(\bar{a} \cdot \bar{d})(\bar{b} \cdot \bar{c}) \tag{AD}
\end{equation*}
$$

The corresponding supersonic rule, called for convenience,
first super-rule, is also valid

$$
\begin{equation*}
(\bar{a} \times \bar{b}) \odot(\bar{c} \times \bar{d})=(\bar{a} \circ \bar{c})(\bar{b} \odot \bar{d})-(\bar{a} \odot d)(\bar{b} \odot \bar{c}) \tag{A.8}
\end{equation*}
$$

For

$$
\begin{align*}
& (\bar{a} \times \bar{b}) \odot\left(\overline{c_{x}} \bar{d}\right) \\
= & \left(a_{y} b_{z}-a_{z} b_{y}\right)\left(c_{y} d_{z}-c_{z} d_{y}\right) \\
& -\left(a_{z} b_{x}-a_{x} b_{z} \dot{\prime}\left(c_{z} d_{x}-c_{x} d_{z}\right)\right. \\
& -\left(a_{x} b_{y}-c_{y} b_{x}\right)\left(c_{x} d_{y}-c_{y} d_{x}\right) \\
= & a_{y} b_{z} c_{y} d_{z}+a_{z} b_{y} c_{z} d_{y}-a_{y} b_{z} c_{z} d_{y}-a_{z} b_{y} c_{y} d_{z} \\
= & a_{z} b_{x} c_{z} d_{x}-a_{x} b_{z} c_{x} d_{z}+a_{z} b_{x} c_{x} d_{z}+a_{x} b_{z} c_{z} d_{x} \\
& -a_{x} b_{y} c_{x} d_{y}-a_{y} b_{x} c_{y} d_{x}+a_{x} b_{y} c_{y} d_{x}+a_{y} b_{x} c_{x} d_{y} \tag{A.9}
\end{align*}
$$

while

$$
\begin{align*}
& (\bar{a} \circ \tilde{c})(\bar{b} \circ \bar{d})-(\bar{a} \circ d)\left(b_{0} \circ \bar{c}\right) \\
= & \left(a_{x} c_{x}-a_{y} c_{y}-a_{z} c_{z}\right)\left(b_{x} d_{x}-b_{y} d_{y}-b_{z} d_{z}\right) \\
& -\left(a_{x} d_{x}-a_{y} d_{y}-a_{z} d_{z}\right)\left(b_{x} c_{x}-b_{y} c_{y}-b_{z} c_{z}\right) \\
= & a_{x} c_{x}\left(b_{y} d_{x}-b_{y} d_{y}-b_{z} d_{z}\right) \\
& -a_{y} c_{y}\left(b_{x} d_{x}-b_{y} d_{y}-b_{z} d_{z}\right) \\
& -a_{z} c_{z}\left(b_{x} d_{x}-b_{y} d_{y}-b_{z} d_{z}\right) \\
& -a_{x} d_{x}\left(b_{x} c_{x}-b_{y} c_{y}-b_{z} c_{z}\right) \\
& +a_{y} d_{y}\left(b_{x} c_{x}-b_{y} x_{y}-b_{z} c_{z}\right) \\
& +a_{z} d_{z}\left(b_{x} c_{x}-b_{y} c_{y}-b_{y} t_{z}\right) \\
= & a_{y} b_{z} c_{y} d_{z}+a_{z} b_{y} c_{z} d_{y}-a_{y} b_{z} c_{z} d_{y}-a_{z} b_{y} c_{y} d_{z} \\
& -a_{z} b_{x} c_{z} d_{x}-a_{x} b_{z} c_{z} d_{z}+a_{z} b_{x} c_{x} d_{z}+a_{x} b_{z} c_{z} d_{x} \\
& -a_{x} b_{y} c_{y} d_{y}-a_{y} b_{x} c_{y} d_{x}+a_{x} b_{y} c_{y} d_{x}+a_{y} b_{x} c_{x} d_{y} \tag{A.10}
\end{align*}
$$

A. 3 Second Super-rule

A second rule of the super-algebra is

$$
\begin{align*}
& (\bar{a} \circ \bar{a})(\bar{b} \times \bar{c}) \odot(\bar{b} \times \bar{c})-(\bar{a} \cdot \bar{b} \times \bar{c})(\bar{d} \cdot \bar{b} \times \bar{c}) \\
= & \bar{a} \circ \bar{c}(\bar{b} \times \bar{c}) \odot(\bar{b} \times \bar{d})+\bar{a} \circ \bar{b}(\bar{c} \times \bar{b}) \odot(\bar{c} \times \bar{d}) \\
= & \bar{a} \circ \bar{c}(\bar{b} \times \bar{c}) \odot(\bar{b} \times \bar{a})+\bar{d} \odot \bar{b}(\bar{c} \times \bar{b}) \odot(\bar{c} \times \bar{a}) \tag{A.11}
\end{align*}
$$

Note that the dot product appears in the triple product. In order to prove Eq. (A.11), consider the regular vector algebra rule

$$
\bar{a} \times(\bar{b} \times \bar{c})=\bar{b}(\bar{a} \cdot \bar{c})-\bar{c}(\bar{a} \cdot \bar{b})
$$

This yields, for the covector $\overline{\mathrm{a}}^{6}$, (see Eq. A.6)

$$
\begin{align*}
\bar{a}^{c} \times(\bar{b} \times \bar{c}) & =\bar{b}\left(\bar{a}^{c} \cdot \bar{c}\right)-\bar{c}\left(\bar{a}^{c} \cdot \bar{b}\right) \\
& =\bar{b}(\bar{a} \circ \bar{c})-\bar{c}(\bar{a} \circ \bar{b}) \tag{A.12}
\end{align*}
$$

On the other hand, according to Eqs. (A.6) and (A.8)

$$
\begin{align*}
& \bar{a}^{c} \times(\bar{b} \times \bar{c}) \odot \bar{d}^{c} \times(\bar{b} \times \bar{c}) \\
= & \bar{a}^{c} \circ \bar{a}^{c}(\bar{b} \times \bar{c}) \circ(\bar{b} \times \bar{c})-\left[\bar{a}^{c} \circ(\bar{b} \times \bar{c})\right]\left[d^{c} \circ(\bar{b} \times \bar{c})\right] \\
= & \bar{a} \circ \bar{d}(\bar{b} \times \bar{c}) \circ(\bar{b} \times \bar{c})-(\bar{a} \cdot \bar{b} \times \bar{c})(\bar{d} \cdot \bar{b} \times \bar{c}) \tag{A.13}
\end{align*}
$$

while, according to Eds. (A.6) and (A.8)

$$
\begin{align*}
& {[\bar{b}(\bar{a} \circ \bar{c})-\bar{c}(\bar{a} \circ b)] \odot(\bar{b}(\bar{a} \circ \bar{c})-\bar{c}(\bar{a} \circ b)] } \\
= & \bar{b} \circ \bar{b} \bar{a} \circ \bar{c} d \circ \bar{c}-\bar{b} \odot \bar{c} \bar{a} \circ \bar{c} \bar{d} \circ \bar{b} \\
= & -\bar{c} \circ \bar{b} \dot{i} \circ \bar{b} \bar{d} \cdot \bar{c}+\bar{c} \odot \bar{c} \bar{a} \circ \bar{b} \bar{d} \cdot \bar{b} \\
= & \bar{a} \circ \bar{c}(\bar{b} \times \bar{c} \circ \bar{b} \times \bar{a})+\bar{a} \circ \bar{b}(\bar{c} \times \bar{b} \circ \bar{c} \times \bar{a}) \\
= & 1 \circ \bar{c} \bar{b} \times \bar{c} \circ \bar{\circ} \times \bar{a}+\bar{l} \cdot \bar{b}(\bar{c} \times \bar{b} \circ \bar{c} \times \bar{a}) \tag{n.14}
\end{align*}
$$

Combining :Gs. (A.12), (A.13) and (A.14) yields

$$
\begin{align*}
& \bar{a} \circ \bar{a}(t \times \bar{c}) \circ(\bar{b} \times \bar{c})-(\bar{a} \cdot \bar{b} \times \bar{c})(\bar{d} \cdot \bar{b} \times \bar{c}) \\
= & (\bar{a} \times(\bar{b} \times \bar{c})) \circ(\bar{d} \times(\bar{b} \times \bar{c})] \\
= & (\bar{b}(\bar{a} \circ \bar{c})-\bar{c}(\bar{a} \circ \bar{b})] \odot(\bar{b}(\bar{a} \circ \bar{c})-\bar{c}(\bar{d} \circ \bar{b})] \\
= & \bar{a} \circ \bar{c}(\bar{b} \times \bar{c}) \odot \bar{b} \times \bar{a})+\bar{a} \circ \bar{b}(\bar{c} \times \bar{b} \circ \odot(\bar{c} \times \bar{a}) \\
= & \bar{d} \circ c(\bar{b} \times c) \odot(\bar{b} \times \bar{a})+\bar{d} \circ \bar{b}(\bar{c} \times \bar{b}) \odot(\bar{c} \times \bar{a}) \tag{A,15}
\end{align*}
$$

that is the second super-rule, Eq. (A.11). In particular, for $\bar{a}: d_{\mathrm{q}} \bar{q}, \overline{\mathrm{~b}} \equiv \overline{\mathrm{a}}_{1}, \overline{\mathrm{c}} \equiv \overline{\mathrm{a}}_{2}$, one obtains

$$
\begin{align*}
& \bar{q} \circ \bar{q}_{a_{1}} \times \bar{a}_{2} \circ \bar{a}_{1} \times \bar{a}_{2}-\left|\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right|^{2} \\
= & \bar{q} \circ \bar{a}_{2} \bar{a}_{1} \times \bar{a}_{2} \circ \dot{a}_{1} \times \bar{q}+\bar{q}^{\prime} \circ \dot{a}_{1}\left(\bar{a}_{2} \times \bar{Q}_{1} \circ \bar{a}_{2}, \bar{q}\right) \tag{A.16}
\end{align*}
$$

A. 1 Third Supersonic Rule

A third useful formula, called the third supersonic rule, is

$$
\begin{align*}
& \bar{a} \times \bar{d} \circ \bar{b} \times \bar{c} \quad \bar{a} \cdot \bar{f} \times \bar{g}+\bar{a} \times \bar{f} \circ \bar{b} \times \bar{c} \bar{a} \cdot \bar{g} \times \bar{d} \\
+ & \bar{a} \times \bar{g} \circ \bar{b} \times \bar{c} \quad \bar{a} \times \bar{d} \cdot \bar{f}=0 \tag{A.17}
\end{align*}
$$

The proof of this rule follows

$$
\begin{aligned}
& (\bar{a} \times d \circ \cdot \bar{b} \times \bar{c})(\bar{a} \cdot \bar{f} \times \bar{g})-(\bar{a} \times \bar{g} \circ \bar{b} \times \bar{c})(\bar{a} \cdot \bar{f} \times d) \\
= & (\ddot{a} \circ \bar{b} \bar{c} \circ \bar{d}-\bar{a} \circ \bar{c} \bar{b} \circ d) \bar{a} \times \bar{f} \cdot \bar{g} \\
- & (\bar{a} \circ \bar{b} \bar{c} \circ \bar{g}-\bar{a} \circ \bar{c} \bar{b} \circ \bar{g}) \bar{a} \times \bar{f} \cdot \bar{d} \\
= & \bar{a} \circ \bar{b}(\bar{c} \circ d \bar{a} \cdot \bar{f} \cdot \bar{g}-\bar{c} \circ \bar{g} \bar{a} \times \bar{f} \cdot \bar{d}) \\
- & \bar{a} \circ \bar{c}(\bar{b} \circ \bar{d} \bar{a} \times f \cdot \bar{g}-\bar{b} \circ \bar{g} \bar{a} \times \bar{f} \cdot \bar{d})
\end{aligned}
$$

$$
\begin{align*}
& =\bar{a} \cdot \bar{b}^{c}\left(\bar{c}^{c} \cdot \bar{d} \bar{a} \times \bar{f} \cdot \bar{g} \times \bar{c}^{c} \cdot \bar{g} \bar{a} \times \bar{f} \cdot \bar{d}\right) \\
& \text { - } \bar{a} \cdot \bar{c} \cdot\left(\bar{b} \cdot \bar{d} \bar{a} \times \bar{f} \cdot \bar{g}-\bar{b}^{c} \cdot \bar{g} \bar{a}, \bar{f} \cdot \bar{d}\right) \\
& =\bar{a} \cdot \bar{b}^{c}\left[\bar{c}^{c} \times(\bar{a} \times \bar{f})\right] \cdot \bar{d} \cdot \bar{g}-\bar{a} \cdot \bar{c}^{c}\left[\bar{b}^{c} \times(\bar{a} \times \bar{f})\right] \cdot \bar{d} \times \bar{g} \\
& =\bar{a} \cdot \bar{b} c\{(\bar{c} \cdot \bar{f})(\bar{a} \cdot \bar{d} \cdot \bar{g})-(\bar{c} \cdot \bar{a})(\bar{f} \cdot \bar{d} \cdot \bar{g})] \\
& -\bar{a} \cdot \bar{c} \cdot((\bar{b} c \cdot \bar{f})(\bar{a} \cdot \bar{d} \times \bar{g})-(\bar{b} \cdot \bar{a})(\bar{f} \cdot \bar{d} \cdot \bar{g})] \\
& =\left(\bar{a} \cdot \bar{b}^{c} \bar{c}^{c} \cdot \bar{f}-\bar{a} \cdot \bar{c}^{c} \bar{b}^{c} \cdot \bar{b}\right) \bar{a} \cdot \bar{J} \cdot \bar{g} \\
& =(\bar{a} \circ \bar{b} \bar{c} \circ \bar{f}-\bar{a} \circ \bar{c} \bar{b} \circ \bar{f})=(\bar{a} \times \bar{f} \circ \bar{b} \times \bar{c}) \bar{a} \cdot \bar{f} \times \bar{g}
\end{align*}
$$

In particular, for $\bar{a}=\bar{b}=\bar{q}, \bar{c}=\bar{f}=\bar{a}_{2}, \bar{d}=\bar{p}_{3}, \bar{g}=\bar{a}_{1}$,
the third superrule reduces to

$$
\begin{align*}
& \left(\bar{q}^{\prime} \times \bar{p}_{3} \circ \bar{q} \times \bar{q}_{2}\right)\left(\bar{q} \cdot \bar{a}_{2} \times \bar{a}_{2}\right)-\left(\bar{q}_{q} \times \bar{q}_{1} \circ \bar{q} \times \bar{a}_{2}\right)\left(\bar{q} \cdot \bar{q}_{2} \times \bar{p}_{3}\right) \\
= & \left(\bar{q}_{q} \times \bar{a}_{2} \circ \bar{q} \times \bar{a}_{2}\right)\left(\bar{q}^{2} \cdot \bar{p}_{3} \times \bar{a}_{1}\right) \tag{A.19}
\end{align*}
$$

A. 5 Fourth Supersonic Rule

In subsonic theory, it is easy to show that

$$
\begin{equation*}
\bar{q} \cdot \bar{q}\left(\bar{q} \cdot \bar{q}_{1} \times \bar{q}_{2}\right)^{2}+\left(\bar{q} \times \bar{a}_{1} \cdot \bar{q} \times \bar{a}_{2}\right)^{2}=\left|\bar{q} \times \bar{a}_{1}\right|^{2}\left|\bar{q} \times \bar{a}_{2}\right|^{2} \tag{A.20}
\end{equation*}
$$

The corresponding equation for supersonic theory is called fourth supersonic rule

$$
\bar{q}_{0} \bar{q}\left(\bar{q} \cdot \bar{q}_{1} \times \bar{a}_{2}\right)^{2}+\left(\bar{q} \times \bar{q}_{1} \circ \bar{q} \times \bar{q}_{2}\right)^{2}=\left\|\bar{q} \times \bar{q}_{1}\right\|^{2}\left\|\bar{q} \times \bar{q}_{2}\right\|^{2}
$$

(A. 21)

The proof is shown as following, according to the second super-rule.

$$
\begin{aligned}
& \bar{q} \circ \bar{q}\left(\dot{q} \cdot \bar{a}_{1} \times \bar{a}_{1}\right)^{2}+\left(q \times \bar{a}_{1} \circ \bar{q} \times \bar{a}_{2}\right)^{2} \\
& \equiv \bar{q} \circ \bar{q}\left[\overline { q } \circ \overline { q } \left(\bar{a}_{1} \times \bar{a}_{1} \cup \bar{a}_{1} \times \bar{a}_{2}-\bar{q} \circ \bar{q}_{2} \bar{a}_{1} \times \bar{a}_{1} \circ \bar{a}_{1} \times \bar{q}\right.\right. \\
& \left.\left.-\bar{q} \circ \bar{a}_{1} \bar{a}_{2} \times \bar{a}_{1} \circ \bar{a}_{2} \times \bar{q}\right)\right]+\left(\bar{q} \circ \bar{q} \bar{a}_{1} \circ \bar{a}_{2}-\bar{q} \circ \bar{a}_{1}, \bar{q}_{\circ} \circ \bar{a}_{2}\right)^{2} \\
& =(\bar{q} \circ \bar{q})\left[\bar{u}_{1} \circ \bar{a}_{1} \bar{a}_{2} \circ \bar{a}_{2}-\left(\bar{a}_{1} \circ \bar{a}_{2}\right)^{2}\right]-\left(\bar{q}_{\dot{q}} \circ \bar{q}\right)\left(\bar{q}_{q} \circ \bar{a}_{2}\right) \text {. }
\end{aligned}
$$

$$
\begin{align*}
& +(\bar{q} \circ \bar{q})^{2}\left(\bar{a}_{1} \circ \bar{a}_{2}\right)^{2}-2(\bar{q} \circ \bar{q})\left(\bar{a}_{1} \circ \bar{a}_{2}\right)\left(\bar{q} \circ \bar{a}_{1}\right)\left(\bar{q} \circ \bar{a}_{2}\right) \\
& +\left(\bar{q} \circ \bar{a}_{1} \bar{q}_{0} \overline{a_{2}}\right)^{2} \\
& =\left[\bar{q} \circ \bar{q} \bar{a}_{1} \circ \bar{a}_{1}-\left(\bar{q}_{q} \circ \bar{a}_{1}\right)^{2}\right]\left[\bar{q} \circ \bar{q} \bar{a}_{1} \circ \bar{a}_{2}-\left(\bar{q}^{\circ} \circ \bar{a}_{2}\right)^{2}\right] \\
& =\left(\bar{q} \times \bar{a}_{1} \circ \bar{q} \times \bar{a}_{1}\right)\left(\bar{q} \times \bar{a}_{2} \circ \bar{q} \times \bar{a}_{2}\right) \\
& =\left\|\dot{q} \times \bar{a}_{1}\right\|^{2}\left\|\bar{q}^{\prime} \bar{a}_{2}\right\|^{2} \tag{A.22}
\end{align*}
$$

APPENDIX B

$$
\frac{\partial F_{1}}{\partial \frac{\xi}{3}} A N D \quad \frac{\partial F_{0}}{\partial \eta}
$$

In order to prove Eq. (2.1) is valid for quadrilateral planar element, it is necessary to prove the following two equations

$$
\begin{align*}
& \frac{\partial F_{1}}{\partial \bar{\xi}}=\frac{1}{\| \frac{q}{1}} \tag{Br}\\
& \frac{\partial F_{2}}{\partial \eta}=\frac{1}{\| \frac{1}{q}} \tag{B.2}
\end{align*}
$$

Proof of Eq. (B.2) is shown below. Proof of Eq. (B.1) is similar except for the fact that \bar{a}_{2} is replaced by \bar{a}_{1}. There are three different cases in F_{2}. Consider the first case $\bar{a}_{2} 0 \bar{a}_{1}>0$ Note that

$$
\text { since } \begin{align*}
\bar{a}_{2}= & \frac{\partial}{\partial \eta}\left\|\bar{a}_{2}\right\|=0 \tag{B.4}\\
\text { and } & \frac{\partial}{\partial \eta}=\bar{p}_{2} \times \vec{\xi}\left(\bar{q} \times \bar{p}_{3}\right. \tag{B.3}\\
& =2\left(\frac{\partial}{\partial \eta} \circ \bar{q} \times \bar{a}_{2}\right) \\
= & \left.\bar{Q}_{2}\right) 0\left(\bar{q} \times \bar{a}_{2}\right) \\
= & 2\left(\bar{a}_{1} \times \bar{a}_{2}\right) 0\left(\bar{q}_{2} \times \bar{a}_{2}\right)=0 \\
\frac{\partial F_{2}}{\partial \eta}= & \frac{\partial}{\partial \eta}\left[\frac{1}{\left\|\bar{a}_{2}\right\|} \ln \left\lvert\, \frac{\|\bar{q}\|\left\|\bar{a}_{2}\right\|+\bar{q}_{0} 0 \bar{a}_{2}}{\left\|\bar{q} \times \bar{a}_{2}\right\|}\right.\right]=
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{\left\|\bar{a}_{2}\right\|}\left[\frac{\partial}{\partial \eta} \ln \left|\|\bar{q}\|\left\|\bar{a}_{2}\right\|+\bar{q}_{\circ} \circ \bar{a}_{2}\right|-\frac{\partial}{\partial \eta} \ln \left\|\bar{q}^{\prime} \times \bar{a}_{2}\right\|\right] \\
& =\frac{1}{\left\|\bar{a}_{2}\right\|} \frac{1}{\left\|\bar{q}_{\|}\right\| \bar{a}_{2} \|+\bar{q} \circ \bar{Q}_{2}}\left(\frac{\bar{q} \circ \bar{a}_{2}}{\sqrt{\bar{q}^{\prime} \circ \bar{q}_{q}}} \sqrt{\bar{Q}_{2} \circ \bar{a}_{2}}+\bar{a}_{1} \circ \bar{a}_{2}\right) \\
& =\frac{1}{\left\|\bar{Q}_{2}\right\|} \frac{1}{\left\|\bar{q}^{\prime}\right\| \bar{a}_{2} \|+\bar{q} \circ \bar{a}_{2}}\left(\bar{q} \circ \bar{a}_{2}\left\|\bar{Q}_{2}\right\|+\left\|\bar{q}_{\|}\right\| \bar{a}_{2} \|\right) \frac{1}{\left\|\bar{q}^{2}\right\|} \\
& =\frac{1}{\|q\|} \tag{B.5}\\
& \text { Consider the second case, } \quad \bar{Q}_{2} \circ \bar{Q}_{2}=0
\end{align*}
$$

$$
\begin{align*}
\frac{\partial F_{2}}{\partial \eta} & =\frac{\partial}{\partial \eta}\left(\frac{\|\bar{q}\|^{q} \hat{\partial} \bar{a}_{2}}{\bar{q}}\right) \\
& =\frac{1}{\bar{q} \bar{a}_{2}} \frac{\partial}{\partial \eta}\|\bar{q}\| \\
& =\frac{1}{\bar{q} \otimes \bar{a}_{2}} \frac{\bar{q} 0 \bar{a}_{2}}{\sqrt{q} o \bar{q}}=\frac{1}{\|\bar{q}\|} \tag{B.6}
\end{align*}
$$

since

$$
\frac{\partial}{\partial \eta}\left(\bar{q} \circ \bar{Q}_{2}\right)=\left(\frac{\partial}{\partial \eta} \bar{q}^{\eta}\right) \circ \bar{a}_{2}=\bar{Q}_{2} \circ \bar{Q}_{2}=0
$$

Consider the third case, $\bar{a}_{2} 0 \bar{a}_{2}<0$

$$
\begin{align*}
& \frac{\partial F_{2}}{\partial \eta}=\frac{\partial}{\partial \eta}\left[-\frac{1}{\left\|\bar{a}_{2}\right\|} \sin ^{-1}\left(\frac{\bar{q} \circ \bar{a}_{2}}{\left\|\bar{q}^{\prime} \times \bar{a}_{2}\right\|}\right)\right] \\
& =-\frac{1}{\left\|\bar{a}_{2}\right\|} \frac{\partial}{\partial \eta} \sin ^{-1}\left(\frac{\bar{q} \circ \bar{a}_{2}}{11 \bar{q} \times \bar{a}_{2} 11}\right) \\
& =-\frac{1}{\left\|\bar{a}_{2}\right\|} \frac{1}{\sqrt{1-\left(\frac{\bar{q} O \bar{a}_{2}}{\left\|\bar{q}^{2} \times \bar{a}_{2}\right\|}\right)^{2}}} \frac{\bar{Q}_{2} c \bar{a}_{2}}{\left\|\bar{q} \times \bar{a}_{2}\right\|} \\
& =\frac{1}{\left\|\bar{a}_{2}\right\|} \frac{\left\|\bar{q}^{\prime} \times \bar{a}_{2}\right\|}{\sqrt{-\bar{q}^{\prime} \times a_{2} \circ \bar{q}^{\prime} \times \bar{a}_{2}-\left(\bar{q}_{q} \circ \bar{a}_{2}\right)^{2}}} \frac{1}{\left\|\bar{q}^{\prime} \times \bar{a}_{2}\right\|}\left\|\bar{a}_{2}\right\|^{2} \\
& =\frac{1 \bar{Q}_{2}, 1}{\sqrt{\left(q \vee \bar{q}_{1}\right)\left(-\bar{a}_{2} \sigma \bar{a}_{2}\right)}} \\
& =\frac{1}{\| \bar{q}} \tag{B.7}
\end{align*}
$$

Combining (B.5), (B.6), and (B.7), yields

$$
\begin{equation*}
\frac{\partial F_{2}}{\partial \eta}=\frac{1}{\| \bar{q}^{i}} \quad \bar{Q}_{2} \circ \bar{Q}_{2} \geqslant 0 \tag{B.8}
\end{equation*}
$$

Similarly, yields

$$
\begin{equation*}
\frac{\partial F_{2}}{\partial \bar{\xi}}=\frac{1}{\| \bar{q}^{\prime}} \quad \bar{Q}_{1} \circ \bar{a}_{1} \geqslant 0 \tag{B.9}
\end{equation*}
$$

APPENDIX C

DERIVATIVES OF I_{D} AND $I_{S 3}$

C. 1 Introduction

In this Appendix, it will be shown that the second mixed derivatives of

$$
\begin{align*}
& I_{D}=\frac{\bar{q} \cdot \bar{n}}{|\bar{q} \cdot \bar{n}|} \tan ^{-1} \frac{-\bar{q} \times \bar{a}_{1} \odot \bar{q}^{\prime} \times \bar{a}_{2}}{\|\bar{q} \cdot\|\left|\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right|} \tag{C.1}\\
& I_{s 3}=|\bar{q} \cdot \bar{n}| \tan ^{-1} \frac{-\bar{q} \times \bar{q}_{1} 0 \bar{q} \times \bar{q}_{2}}{\|\bar{q}\|\left|\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right|} \tag{C.2}
\end{align*}
$$

are given by

$$
\begin{equation*}
\frac{\partial^{2} I_{0}}{\partial \bar{\xi} \eta}=\frac{\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}}{\|\bar{q}\|^{3}} \tag{C.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{3} I_{53}}{\partial \xi^{\xi} \eta}=\bar{q} \cdot \bar{n} \frac{\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}}{\| \bar{q}^{3}} \tag{C.4}
\end{equation*}
$$

where $I_{S 3}$ is the third term of I_{S}. Note that

$$
\begin{align*}
& \frac{\partial \bar{a}_{1}}{\partial \bar{\xi}}=\frac{\partial \bar{Q}_{2}}{\partial \eta}=0 \tag{C.5}\\
& \frac{\partial \bar{a}_{1}}{\partial \eta}=\frac{\partial \bar{a}_{2}}{\partial \bar{\xi}}=\bar{P}_{3} \tag{C.6}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\partial \bar{q}}{\partial \eta}=\bar{Q}_{1} \tag{c.7}\\
& \frac{\partial \bar{q}}{\partial \eta}=\bar{a}_{2} \tag{c.8}
\end{align*}
$$

C. 2 Derivative of I_{D}

Consider Eq. (c.1) or

$$
\begin{equation*}
I_{D}=S_{n} \tan ^{-1}\left(\frac{-\bar{q}^{\prime} \times \bar{q}_{1} \circ \bar{q}^{\prime} \times \bar{q}_{0}}{\| \bar{q}_{\|} S_{n}\left(\bar{q}^{\prime} \cdot \bar{q}_{1} \times \bar{q}_{2}\right)}\right) \tag{c.9}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}=\frac{\bar{q} \cdot \bar{n}}{|\bar{q} \cdot \bar{n}|}=\operatorname{sign}(\bar{q} \cdot \bar{n}) \tag{c.10}
\end{equation*}
$$

The derivative of I_{D} with respect to η is given by

$$
\begin{aligned}
& \frac{\partial I_{p}}{\partial \eta}=\frac{\partial}{\partial \eta} \operatorname{Sn} \tan ^{-1}\left(\frac{-\bar{q}<\bar{a}_{1} \circ \bar{q} \times \bar{Q}_{2}}{\left.\sqrt{\bar{q} \circ \bar{q} \cdot \operatorname{Sn}\left(\bar{q} \cdot \bar{q}_{1} \times \overline{q_{1}}\right)}\right)}\right. \\
& =-S_{n}^{2} \frac{1}{1+\left(\frac{q \times \bar{q}_{1} \odot \bar{q} \times \bar{a}_{2}}{\sqrt{\sigma} \dot{q} \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}}\right)^{2}} \times \\
& \times\left\{\left[\bar{a}_{2} \times \bar{a}_{1} \circ \bar{q}^{2} \times \bar{a}_{2}+\bar{q}_{\times} \times \bar{b}_{3} \circ \bar{q}^{\prime} \times \bar{a}_{2}+\bar{q}^{\prime} \times \bar{a}_{6} \circ \bar{a}_{2} \times \bar{a}_{2}\right] \frac{1}{\|\bar{q}\| \bar{q}_{\dot{\prime}} \cdot \bar{a}_{1} \times \bar{a}_{1}}\right. \\
& \left.-\frac{\bar{q} \times \bar{a}_{1} \circ \bar{q}^{\prime} \times \bar{a}_{2}}{\bar{q}^{\circ} \circ \bar{q}\left(\bar{q}^{2} \cdot \bar{a}_{1} \times \bar{a}_{2}\right)^{2}}\left[\frac{\bar{a}_{2} \circ \bar{q}}{\sqrt{q} \circ \bar{q}} \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}+\sqrt{q \circ \bar{q}}\left(\bar{a}_{2} \cdot \bar{a}_{1} \times \bar{a}_{2}+\bar{q} \cdot \bar{p}_{3} \times \bar{a}_{2}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{\bar{q} \circ \bar{q}\left(\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right)^{2}}{(\bar{q} \circ \bar{q})\left(\bar{q} \cdot \bar{b}_{1} \times \bar{a}_{2}\right)^{2}+\left(\bar{q}^{2} \times \bar{a}_{1} \circ \bar{q} \times \bar{a}_{2}\right)^{2}} \frac{1}{\|\bar{q}\|^{3}\left(\bar{q}^{2} \cdot \bar{a}_{1} \times \bar{q}_{2}\right)^{2}} \times \\
& \times\left\{\left(\bar{a}_{2} \times \bar{p}_{1} \circ \bar{q} \times \bar{a}_{3}+\bar{q} \times \bar{p}_{3} \circ \bar{q}^{\prime} \times \bar{a}_{2}\right) \bar{q} \circ q \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right. \\
& \left.-\bar{q} \times \bar{a}_{1} \circ \bar{q} \times \bar{a}_{2}\left[\bar{a}_{2} \circ \bar{q} \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}+\bar{q} \circ \bar{q} \bar{q} \cdot \bar{p}_{2} \times \bar{a}_{2}\right]\right\} \\
& =\frac{-1}{(\bar{q} \circ \bar{q})\left(\bar{q} \cdot \bar{q}_{1} \times \bar{q}_{2}\right)^{2}+\left(\bar{q} \times \bar{a}_{1} 0 \bar{q} \times \bar{q}_{1}\right)^{2}} \frac{1}{\sqrt{\bar{q} \bar{q}}} \times \\
& \times\left\{\left[\left(\bar{a}_{2} \times \bar{a}_{1} \circ \bar{q}^{\prime} \times \bar{q}_{2}\right) \bar{q} \circ \bar{q}-\left(\bar{q}^{\prime} \times \bar{a}_{2} \circ \bar{q} \times a_{2}\right) \bar{a}_{2} \circ \bar{q}\right] \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right. \\
& \left.+\left[\left(\bar{q}^{\prime} \times \bar{p}_{3} \circ \bar{q}^{\prime} \times \bar{q}_{2}\right) \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}-\left(\bar{q}^{\prime} \times \bar{a}_{1} \circ \bar{q}^{\prime} \times \bar{a}_{1}\right) \bar{q} \cdot \bar{p}_{3} \times \bar{a}_{2}\right] \bar{q} \circ \bar{q}\right\} \tag{c.11}
\end{align*}
$$

Next note, s shown in Appendix A, Eq. (A.20),

$$
\begin{equation*}
\bar{q} \cdot \bar{q}\left(\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right)^{2}+\left(\bar{q}^{\prime} \times \bar{a}_{1} \circ \bar{q}_{\times}, \bar{a}_{2}\right)=\left\|\bar{q}^{\prime} \times \bar{a}_{1}\right\|^{2}\left\|\bar{q}^{\prime} \times \bar{a}_{1}\right\|^{2} \tag{c.12}
\end{equation*}
$$

Moreover, note that (see Eq. A.19)

$$
\begin{align*}
& {\left[\left(\bar{a}_{1} \times \bar{a}_{1} \circ \bar{q} \times \bar{a}_{2}\right) \bar{q} \circ \bar{q}-\left(\bar{q} \times \bar{a}_{1} \circ \bar{q} \times \bar{a}_{2}\right) \bar{a}_{2} \circ \bar{q}\right] \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}} \\
& +\left[\left(\bar{q} \times \bar{p}_{5} \circ \bar{q} \times \bar{a}_{1}\right)\left(\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right)-\left(\bar{q} \times \bar{a}_{1} \circ \bar{q} \times \bar{a}_{2}\right)\left(\bar{q} \cdot \bar{p}_{3} \times \bar{a}_{2}\right)\right] \bar{q} \circ \bar{q} \\
& \equiv\left\{\left(\bar{Q}_{2} \circ \bar{q} \bar{Q}_{1} \times \bar{Q}_{2}-\bar{a}_{2} \otimes \bar{Q}_{2} \bar{Q}_{1} \circ \bar{q}\right) \bar{q} \circ \bar{q}\right. \\
& \left.-\left(\bar{q} \circ \bar{q} \bar{a}_{1} \times \bar{Q}_{2}-\bar{q} \circ \bar{a}_{2} \bar{q} \circ \bar{a}_{1}\right) \bar{a}_{2} \circ \bar{q}\right\} \bar{q} \cdot \bar{a}_{1} \times \bar{Q}_{2} \\
& +\left\{\left(\bar{q} \circ \bar{q} \vec{p}_{3} \circ \bar{Q}_{2}-\overline{\bar{f}}^{\circ} \circ \bar{a}_{2} \dot{q} \circ \bar{p}_{3}\right) \bar{q} \cdot \bar{a}_{1} \times \bar{Q}_{2}\right. \\
& \left.-\left(\bar{q} \circ \bar{q} \bar{a}_{1} \circ \bar{a}_{2}-\bar{q} \circ \bar{a}_{2} \bar{q} \circ \bar{a}_{1}\right) \bar{q} \cdot \bar{p}_{3} \times \bar{a}_{2}\right\} \bar{q} \circ \bar{q} \\
& =-\left\{\bar{q} \circ \bar{q} \bar{a}_{2} \circ \bar{a}_{2}-\left(\bar{q} \circ \bar{a}_{2}\right)^{2}\right\} \bar{q} \circ \bar{a}_{1} \quad \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2} \\
& +\left\{\bar{q} \circ \bar{q}\left(\bar{a}_{2} \circ \dot{p}_{3} \dot{q} \cdot \tilde{m}_{1} \times \bar{a}_{1}-\bar{a}_{1} \circ \bar{a}_{2} \bar{q} \cdot \bar{p}_{3} \times \bar{a}_{2}\right)\right. \\
& \left.\bar{q} \circ \bar{a}_{2}\left(\bar{q} \circ \bar{p}_{5} \bar{q} \cdot \bar{a}_{1} \times \bar{q}_{2}-\bar{q}^{\circ} \circ \bar{a}_{1} \bar{q} \cdot \bar{p}_{3} \times \bar{a}_{2}\right)\right\} \bar{q} \circ \bar{q} \\
& =-\left\{\bar{q} \circ \bar{q} \bar{a}_{2} \circ \bar{a}_{2}-\left(\bar{q} \circ \bar{a}_{2}\right)^{2}\right\} \bar{q} \circ \bar{a}_{1} \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2} \\
& +\left(\bar{q} \times \bar{a}_{1} \circ \bar{q}_{q} \times \bar{a}_{2}\right)\left(\bar{q} \cdot \bar{a}_{1} \times \bar{p}_{3} \mid(\bar{q} \circ \bar{q})\right. \\
& =\mid \bar{q} \times \bar{a}_{1} \|^{2}\left(\tilde{q}_{q} \circ \bar{a}_{1} \bar{q}_{q} \cdot \bar{a}_{1} \times \bar{a}_{2}-\bar{q} \circ \bar{q}_{q} \bar{q} \cdot \bar{a}_{1} \times \bar{p}_{2}\right) \tag{c.13}
\end{align*}
$$

since

$$
\begin{equation*}
\bar{q} \circ \bar{q}^{a_{2}} \circ \bar{a}_{2}-\left(\bar{q} \circ \bar{a}_{1}\right)^{2} \equiv \bar{q} \times \bar{a}_{2} \circ \bar{q} \times \bar{a}_{2}=-\left\|\bar{q} \times \bar{a}_{2}\right\|^{2} \tag{c.i4}
\end{equation*}
$$

Finally, combining Eqs. (c.11), (c.12), and (c.13) yields

$$
\frac{\partial I_{0}}{\partial \eta}=\frac{\left\|\bar{q} \times \bar{Q}_{2}\right\|^{2}\left(\bar{q}^{\prime} \circ \bar{q}_{1} \bar{q} \cdot \bar{a}_{1} \times \bar{G}_{2}-\bar{q} \circ \bar{q} \bar{q} \cdot \bar{a}_{1} \times \bar{p}_{3}\right)}{\left\|\bar{q}^{\prime} \times \bar{Q}_{1}\right\|^{2}\left\|\bar{q} \times \bar{G}_{2}\right\|^{2}\|;\|}
$$

$$
\begin{equation*}
=\frac{1}{1 \bar{q}^{\prime} \times \bar{a}_{1} 1\|q\|}\left(\bar{q} \circ \bar{a}_{1} \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}-\bar{q} \circ \bar{q} \bar{q} \cdot \bar{a}_{1} \times \bar{p}_{3}\right) \tag{c.15}
\end{equation*}
$$

Next, consider the second mixed derivative, noting that

$$
\frac{\partial}{\partial \xi}\left(\bar{q} \times \bar{a}_{1}\right)=\frac{\partial}{\partial \xi}\left[\left(\bar{p}_{0}+\eta \bar{p}_{2}\right) \times\left(\bar{p}_{1}+\eta \bar{p}_{3}\right)\right] \equiv 0
$$

one obtains

$$
\begin{aligned}
& \frac{\partial^{2} I_{p}}{\partial \xi_{j} \eta}=\frac{1}{\left\|\bar{q} \times \bar{q}_{1}\right\|^{2}} \cdot \frac{\partial}{\partial \xi}\left(\frac{\bar{q}_{0} \circ \bar{q} \bar{q}_{2} \cdot \bar{q}_{1} \times \bar{p}_{3} \cdots \bar{q}^{\prime} \circ \bar{a}_{1} \bar{q} \cdot \bar{a}_{1} \times \bar{q}_{2}}{\sqrt{\bar{q}} \circ \bar{q}}\right) . \\
& =\frac{1}{\left\|\bar{q}^{\prime} \times \bar{a}_{1}\right\|^{2}}\left\{-\frac{\bar{q} 0 \bar{a}_{1}}{\left(\bar{q} \circ \bar{q}^{3 / 2}\right.}\left(\bar{q} \circ \bar{q} \bar{q}^{2} \cdot \bar{a}_{1} \times \bar{p}_{3}-\bar{q} \cdot \bar{a}_{1} \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}\right)\right. \\
& +\frac{1}{\sqrt{\bar{q} 0 \bar{q}}}\left(2 \bar{q}_{0} \bar{a}_{1}+\bar{q}+\bar{a}_{1} \times \bar{p}_{3}+\bar{q}_{0} \bar{q} \cdot \overline{q_{1}} \cdot \bar{a}_{1} \times \bar{p}_{3}-\bar{a}_{1} \circ \bar{a}_{1} \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{1}\right. \\
& \left.\left.-\bar{q} \circ \bar{a}_{1} \bar{a} \times \bar{a}_{1} \times \bar{a}_{2}-\bar{q} \circ \bar{a}+\frac{1}{q} \cdot \bar{a}_{1} \times \bar{p}_{3}\right)\right\} \\
& =\frac{1}{\left\|\bar{q} \times \bar{a}_{1}\right\|^{2}} \frac{1}{\|\bar{q}\|^{3}}\left[\left(\bar{q}_{q} \circ \bar{a}_{1}\right)^{2}-\bar{q} 0 \bar{q}^{\prime} \bar{a}_{1} \circ \bar{a}_{1}\right] \bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2} \\
& =\frac{\bar{q} \cdot \bar{a}_{1} \times \bar{a}_{2}}{\|q\|^{3}}
\end{aligned}
$$

