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SUMMARY 

Studies of rotor and propeller performance and induced potent ia l  

flowfields are mde on the basis of a rotat ing actuator disk concept, 

with special emphasis placed on rotors  hovering out of ground effect .  

. A new theory for the optimum performance of rotors hovering O ( E  is 

developed and presented. An extended theory fo r  the  optimum performance 

of rotors and propellers in  ax ia l  motion is a lso  presented. Numerical 

resul ts  are  presented fo r  the optimum distr ibutions of blade-bound c i r -  

culation together with ax i a l  inflow and ultimate wake velocit ies for  

the hovering rotor aver the range of thrust  coefficient  of in te res t  i n  

rotorcraft  applications. Shapes of the  stream tubes and of the veloci t ies  

in  the slipstream are obtained, using available methods, for optimum and 

"off -optimum" circulat ion distr ibutions fo r  rotors hovering i n  and out of 

ground effect .  R e s ~ l t s  of the  optimum performance study show tha t  

improvements made possible by the  present performance theory, which fu l l y  

account for the effects  of slipstream rotat ion,  is important t o  the 

optimum circulation as well as t o  the puwer and the  thrust  requirements 

of the rotor i n  the  higher thrust  coefficient  range. A number of e ~ l i c i t  

formulae useful i n  computing rotor and propeller i nd~~ced  flows are pre- 

sented for stream functions and velocit ies due t o  J is t r ibut ions  of c i r -  

cular vortices over axi-symetric surfaces. The computed slipstream 

shape shows that the assumptim of a uniform contraction r a t i o  is 

reasonable and tha t ,  within the  limitations of the in f in i t e ly  bladed model, 

the  computed resul ts  provide a reasonable description of the  wake ooundary. 



NOMENCLATURE 

rad ia l  location 01' perturbation i n  the  ultimate wake 

contraction r a t i o  

power coefficient defined i n  Eq. (56) 

thrmst coefficient defined i n  Eq. (55) 

domain of integration consisting of t he  rotor slipstrean! 

unit  vector 

complete e l l i p t i c  in tegral  of the  second kind 

function defined i n  Eq. (B-10) 

body force vector 

Green's k c t i o n  for  the s t r e ~ c t i o n  defined by Eq. (23) 

Green's function fo r  the  axial veloci ty  defined by Eq. ('7'7) 

fraction defined by Eqs . (43 ) and (B-6) 

t o t a l  head of the  f l u id  

modulus of e l l i p t i c  integrals  

modulus defined by Eq. (A-26) 

modulus defined by Eq. (A-27) 

modulus defined by Eq. (A-54) 

modulus defined by Eq. (A-55) 

cmplete  e l l i p t i c  in tegral  of the  first kind 

indicates the ath aegment of conatant circulat ion 

t o t a l  number of segments of constant circulat ion 

characterist ic defined by Eq. (A-51) 

chazacteristic defined by Eq. (A-52) 

figure of msrit defined by Eq. (54) 

iii 



the "characterietic" of e l l i p t i c  integrals of the third kind 

unit outward nonnal vector t o  the cont~olvolume 

a constant defined by Eq. (45) 

s t a t i c  preeeure of the f luid 

power elrpended by the rotor 

velocity vector 

radial  coordinate i n  n cylindrical coordinate system 

poeition vector of an obsemt ion  point 

inner radius of an annular surface 

outer radius of an annular surface 

position vector of a vortex filament 

radial  location of a vortex filament 

radius of the rotor or propeller disk 

radial  location of the hth discontinuity in disk circulation 

radius of the slipstream i n  the ultimate wake 

radius of a control volume centered a t  the rotor hub 

annular element of area 

arc length of a vortex segment 

the portion of the control surface which is cut out by the 
wake slipstream 

the portion of the control surface excluding S1 

time 

thrurrt of the rotor 

radial  component of the velocity 

tangential component of the velocity 

axial  component of the velocity 



constant va11:e of the axial  velocity in  the ultimate wake within 
a streamtube of constant circulation 

i a  defined as kl 2 

axial  coordinate i n  a cylindrical coordinate aystem 

axial  location of a vortex filament 

variable of i n t e g r a t i ~ n  of e l l i p t i c  integrals 

vortex strength per unit  length 

bound circulation a t  the disk 

function defined by Eq. (A-12) 

indicates a perturbed value in  the ultimate wake 

perturbed value of the angular velocity i n  the ultimate wake 

axial  component of vort ic i ty  

tangential component of vort ic i ty  

tangential coordinate i n  a cylindrical coordinate system 

vor :ex filament strength 

vortex strength per unit  length 

constant in Eq. (A-43 ) defining a linear vortex strength 

constant in  Eq. (A-43 ) defining a Unear vortex strength 

constant for vortex strength on an ann- surface 

advance rat io  deiined aa wd- 
radial  cmponent of the vort ic i ty  

complete e l l i p t i c  integral of the t h i r d  kind 

density of the f luid 

stream function 

vorticity vector 

angular velocity of the rotor 



Superscripts 

1 indicates a variable of integration 

N denotes a dimensionless variable defined by Eq. (49) 

Subscripts 

d denotes a variable a t  the rotor disk 

f refers t o  a quantity induced by a circulaz vortex filament 

m indicates a value on the mth vortex tube 

w refers t o  a value i n  the ultimate wake 

o indicates a variable a t  the rim of the slipstream in  the 
u l t  h a t e  wake 

a~ denotes a value i n  the undisturbed freestream 



m e  development of a suitable theory fo r  predicting the flow 

f i e ld  induced by a rotor has long been a centra l  problem of rotorcraft  

aerodynamics. Since the flowfield indixed by the rotor is ultimately 

responsible for  the  aerodynamic and dynemic behaviors of the rotorcraft ,  

improvements i n  methods fo r  predicting the flowfield contribilte t o  the 

advancement of rotorcraft  design i n  various ways. 

The case of a rotor i n  hover is of special  importance i n  a number 

of pract ical  problems. These problem include the  familiar operational 

problems, the problem of dm~wash impingement which leads t o  a grcund 

boundary layer and par t i c le  entrainment, the problem of t a i l  rota: 

behavior when immersed i n  the s l ips t rean of a main rotor,  and the  

problem of rotor performr~nce. The general subject of a rotor i n  for-  

ward f l i gh t  Tnvolves, of course, many additional important problems rtnd 

is more complicated than the  hovering case. It is generally expected 

t ha t  a thorough understanding of the l a t t e r  w i l l  precede and then con- 

t r ibu te  substarrtially t o  research of the former. The hovering cane, 

however, i s  i n  i t s e l f  of such complexity t h a t  a theory suff ic ient ly  

accurate and yet simple enough t o  be uaed as a design t oo l  is yet 

unavailable. The development of such a theory i s  emphasized i n  the 

current l i t e ra tu re .  

A hovering rotor  is a special  case of a propeller, with zero 

advance velocity. Marine and a i r c r a f t  engineers have long beep :::s~i- 

cerned with propeller aerodynamice. I n  the  majority of a i tua t iom of 



in te res t  t o  the propeller aerodynamicist, however, the propeller-induced 

velocity is small i n  comparison with the propeller 's velocity of advance. 

As a consequence, the propeller aerodynamicist is accustomed t o  simplifi- 

cations tha t  are not necessarily valid fo r  the hovering rotor problem. 

Propeller theories therefore do not usually go over t o  rotor theories 

i n  a s t ra ight  forward manner and predictions bmed on generalized 

propeller theories do not always correlate well with experimental data 

fo r  rotors (~ef. 1) .  

O f  the  several problems mentioned ear l i e r ,  the problem of pre- 

dicting the rotor performance i n  hover out of ground effect  (OGE) is 

part icularly important. Rotorcraft are typical ly  required t o  be able 

t o  hover OGE when occasion demands. Since the power required fo r  a 

rotor t o  develop a given amount of thrust  is the greates t  during hover 

Om, the payload capabil i ty of the rotorcraf t  is  generally limited by 

the  hovering performance OGE. Model:, ro torcraf t  character is t ica l ly  

have small ra t ios  of  payload t o  gross weight a t  take ~ f f .  Consequently, 

erro,; i n  the  predicted hovering performance are  amplified i n  the cal-  

culation of payload capability. For examgle, with a payload t o  groes 

weight r a t i o  of 1/5 at  take of f ,  a 5& error  i n  the  prediction of hwer- 

ing thrust  means a 25% error  i n  the  predicted payload capability. 

In recent years, a sizable effort; has been i n  progress t o  

establish suitably simple, yet suff ic ient ly  accurate theories and 

methods for  predtcting hovering rotor performance and induced flowfieldti. 

A review of the s t a t e  of art of the hwering rotor problem is presented 

in  Section I1 of t h i s  report. This review s h m  tha t ,  although recent 

progress i n  th ie  area has been extensiva, there a t i l l  exiatlr a need t o  



improve upon the available theories and methods fo r  modern rotors with 

high rotat ional  speed, sol id i ty ,  and disk loading. 

The purpose of t h i s  report is  t o  present recent research --e.auCs 

tkt serve t o  supplement the available theories and methods. In part i -  

cular, an improved theory fo r  the optimum performance of hovering rot:?r*s 

is presented. This theory is based on the actuator disk concey'i, ana 

therefore subject t o  some of the l h i t a t i o n s  of the well known general 

momentum theory. The correction factor for  f i n i t e  number of blades 

must be estimated separately, for example, by an extension of Lerbsf 

method ( ~ e f .  2 )  fo r  heavily loaded propellers. Tie improved theory, 

however, i s  more complete i n  that  i C ,  f u l l y  accounts for  the effects of 

slipstreem rotation. This improvement is not important i n  the case of 

a l i gh t l y  loaded rotor,  but has f i n i t e  contributions t o  thrust  and t o  

p ; e r  requirements of a heavily loaded rotor.  The improved theory per- 

mits the computation, i n  a s t ra ight  forward manner, of the optimum 

distr ibutions of circulat ion and inflow velocity over the rotor disk. 

These distr ibutions,  along with the f igure of merit and the optimum 

power coefficient ,  are  presented for  several values of the thrust  coeffi- 

c ient  . 
In  addition t o  the  optimum performance theory, flow f ie lds  induced 

by the in f in i t e ly  bladed rotor hovering in, as well as out of, ground 

effect  are  presented for  several case8 of optimum and off-optimum c i r -  

culations. The computation of the flowfields is based on the in tegral  

fo,muLe,tion of Ref. 3. The ntnnerical procedures we those of Ref. 5. 

Several . ~ e f u l  analytical  expreesiom developed during the  course of 

t h i s  research i n  connection with the computational approach are pre- 



sented i n  Appendix A of this  report. A generalized optimum performance 

theory ~ppl icable  t o  rotor6 (or propellers) i n  axial motion i e  presented 

i n  Appendix B. 



In recent years, the search for bet ter  methods of predicting 

rotor induced flowfield and associated performance i n  hover yielded 

a copious volume of l i t e ra tu re  on the subject. Several recent a r l i c l e s  

contain comprehensive biblfographies (fiefs. 6 and 7 )  of the ea r l i e r  work 

as  well as review and reassessment of "chss ica l"  theories. The brief  

discussion given below provides a summary account of previous theories 

and present effor ts .  Only a few pe9,inent a r t i c l e s  are referred t o  

here. In many cases, a large rmtnl~er of a r t i c l e s  ex i s t  which are based 

cn essent ia l ly  the sane approach. Only one representative a r t i c l e  is 

then mentioned. 

As mentioned ea r l i e r ,  a hovering rotor i s  a special  case of a 

propeller, with zero advance velocity. I n  the following discussion, 

however, the  term "propeller" is used 50 .Itscribe only the case where 

the velocity o r  advance .is of prims-y importance. The term "rotor" is 

used t o  describe the s t a t i c  propeller o r  the hovering rotcr .  

The majority of recent a r t i c l e s  on rotor theory are concerned 

with the important problem of optimum performance. The central  task 

i n  the  performance study i s  the detennirmtidn of a distr ibution of the  

rotor i i ~ f l ~  velocity, w e r  a given rotor disk, that leads t o  z minimum 

mount of power expenditure for  a given amount of thrust .  This infor- 

mation, when used i n  conjunction with the well h m  blade-element 

theory, permits the  prediction of the  pezfonna?ce lhit and of the 

required radial distributio?, of circulat ion i n  order t o  approach t h i s  



l imi t .  It thus provides a ra t ional  basis f o r  blade design. The pre- 

diction of the optimum rotor performance, however, does not necessarily 

require a knowledge of the flawfield away from the rotor disk. In fac t ,  

the major portion cf existing l i t e ra tu re  on rotor theory avoids the  

evaluating of the ent i re  flowfield a2d t r e a t s  the subject of optimuin 

inflow velocity and optimum p e r f o m c e  by themselves. 

'i'he ea r l i es t  performance theory was the axia l  momentum theory 

based on the actuator disk (inf initely-bladed propel1,r) cone ,p t for  

propellers ( ~ e f s .  8 ard 9). Within the context of t h i s  theory, the 

propeller operates without any f r i c t iona l  drag on the blade and induces 

no rotation in  t'ne slipstream. Since the flow upstrean. of the pro- 

pel ler  disk is also i r rota t ional ,  the tangential velocity component at  

the disk i s  zero. It follows frm the Kutta-Joukowski theorem tha t  

the  disk cannot be subjected t o  a lift force. Disregarding t h i s  incon- 

sistency, two well known conclusions were obtained: f i r s t ,  an optimum 

propcl l e r  i s  one v i t h  a uniform axial  velocity a t  the  propeller disk, 

and second, when applied t o  a hovering rotor,  the min imum powz. - coeffi-  

cient i s  equal t o  the thrust  coefficient t o  the 3/2 power divided by 

the squr-e root of 2. The theory p~ovides  no information on the  rad ia l  

distr ibution of circulat ion over the disk and consequently nc indication 

as t o  how the blades should be designed fo r  optimum performance. 

In general, the energy loss due t o  the  rota t ional  motion i n  the 

slipstream of a propeller i s  small. The neglect of the slipetream 

rotat ion was therefore thought t c  be jus t i f ied  fo r  the purpose of pre- 

dicting the performance of propellers. The actual  performance of pro- 

pellers,  however, generally does not meet the  expectation of the ax ia l  



momentum theory even when the various loss factors, not including the 

slipstream rotation, are taken into  account. This deficiency is 

explained by the  general momentum theory, which incorporates a pro- 

cedure t o  account fo r  sane of the effects of slipstrem r a h t i c n .  Cze 

of the major conclusions of the general momentum theory i s  tht the  

slipstream rotation, though small i n  t e r n  of the  e n e r a  content, exerts 

an important influence on the optimum dis t r ibut ion of inflow velocity 

over the propeller disk. A detailed presentation of the general 

I momentum theory i s  given i n  Ref. 10 which a lso  contains a presentation 

of e f fo r t s  directed toward the  study of helicopter rotors.  The general 

momentum theory does provide information on the  optimum dis t r ibut ion 

of circulat ion over the disk. The solution as given i n  Ref. 10, how- 

ever, is approximate and only ya r t i a l l y  accounts fo r  the effects  of 

slipstream rotation. Some of the neglected effects  are of importance 

i n  the stu3y of  hovering rotors. For example, the  conservation of 

a-ar momentum i n  the slipstream requires an exchange of energy 

between the  rotat ional  mode and the axia l  mode t o  accompany the con- 

t ract ion of the slipstream. The effect  of t h i s  excharqe of energy is  

neglected i n  the theory. For propellers where the velocity of advance 
a 

i s  large comparzd t o  the induced velocity, the contraction is small 

and the neglect of the energy exchange is jus t i f ied  as long as the . % 

I / 

rotat ional  energy ? s  not excessively large. For hovering rotors,  the 

1 '  ultimate wake cross-section is,  t o  the f i r s t  order, one half the s ize  j ; -* -. 4 ~ 

of the rotor disk. The exchange of energy the-efore has a significant  t i .a 

influence orl the optimum distr ibution of circulat ion over the propeller 

d isk  f o r  the s i tuat ion where the rc ta t ional  energy i s  not extremely small. 



stream ro t a t ion .  

Unt i l  very  recent ly ,  t h e  theory which represents  t h e  cur ren t  

s t a t e  of t he  a r t  f o r  rout ine ca lcu la t ion  of propel le r  performance was 

the  wd l -e s t ab l i shed  vortex theory. The basic  vortex theory represents  

t he  wake t r a i l i n g  t h e  blades by a d i s t r i b u t i o n  of  concentric cylindrj.ca1 

vortex sheets .  These vortex shee ts  descr ibe the  r a d i a l  v a r i a t i a n  of 

t h e  blade c i r cu l a t ion  and thus imply an i n f i n i t e  number of blades.  The 

e f f e c t  of a f i n i t e  numbe; of blades is obtained approximately by &tz  
_ _  - -  

and Prandtl  ( ~ e f .  11)  using a t i p  l o s s  f ac to r .  An improved ana lys is  

by Goldstein ( ~ e f .  12)   represent,^ t h e  t r a i l i n g  vortex shee ts  i n  t h e  

ul t imate wake, f o r  optimum perf  omance , by d i s  r e t e  he l i co ida l  surfaces 

of constant he l ix  angle and moviw as  r i g i d  sur faces .  Goldstein's work 

formed t h e  bas is  of much of t h e  subsequent analyses by Lock, Theodorsen, 

Lerbs, e t c . ,  ( ~ e f s  . 13, 14, 15, 2 and 17 )  t h a t  proved t o  be s u f f i c i e n t l y  

accurate f o r  pred ic t ing  propel le r  performance. The use of t he  vortex 

theory f o r  pred ic t ing  r o t o r  performance, however, yielded overly opt i -  

mi s t i c  r e s u l t s  at high d i s k  loadings ( ~ e f .  1 ) .  

The conLinuing requirements of higher r'srwcd f l i g h t  speed m d  

l a r g e r  ro to rc ra f t ,  coupled with the  need t o  keep t h e  r o t o r  small  from 

weight and opera t iona l  f l e x i b i l i t y  considerat ions,  l e d  t o  t h e  develop- 

ment of ro to r s  wi th  higher ro t a t iona l  speed and d i s k  loading. This 

r e su l t ed  i n  increased inaccuracy of t he  vortex theory i n  pred ic t ing  the  

r o t o r  performance. Reviews of the  vortex theory  suggest t h a t  t h e  wake 

contract ion,  t he  s l ips t ream ro t a t ion ,  and tho  assoc ia ted  non-uniform 

6 
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inflow are the  factors tha t  contribute most t o  the inab i l i ty  of the  

vortex theory t o  predict the hovering rotor  performance accurately. 

This contention i s  supported by recent resul ts  obtained from the 

numerical. computation of the  ent i re  rctor-induced f lowfield. 

In the numerical methods, typically, each rotor blade is repre- 

sented by a l i f t i n g  l i ne  with piecewise uniform circulat ion.  The 

vor t i c i ty  i n  the  slipstream is represented by a number of discrete 

vortex filaments whose strengths are related t o  the discontinuities 

i n  circulat ion a t  the blades. Each vortex filaments i s  i n  turn approxi- 

mately by a number of s t ra igh t  segments. If the geometry of the  t r a i l -  

ing vortex system is  known, then the use of the  Biot-Savart Law and the  

blade element theory yields a s e t  of simultaneous equations. The 

solution of t h i s  s e t  of equations gives the  dis t r ibut ion of blade- 

bound vortex strength and hence a lso  the t r a i l i ng  vortex filament 

strengths. The computations af veloci t ies  induced by the complete 

vortex system a t  a l l  points i n  space, including those on the  rotor disk, 

and of the thrust ,  thc power, and the performance of the rotor are  then 

s t ra ight  forward. 

For some rotor configurations and thrust  levels,  flow visual i -  

zation studies have yielded useful wake geomexry data. Methods tha t  

u t i l i z e  experimentally obtained wake geometries i n  the numerical Biot- 

Savart Law approach described above are often referred t o  as the "pres- 

cribed-wake" analyses ( ~ e f s  . 18, 19). For cases where experimental 

data permit the establishment of an accurate model f o r  the wake geometry, 

the prescribed-wake analyses have yielded resu l t s  i n  good agreement with 

experiments fo r  overall performance ( ~ e f .  7). For a general application 



of the prescribed wake approach , however, accurate experiment a1 data 

about the  wake geometry must be available fo r  a wide range of rotor 

conf igurat ion8 and thrust  levels. 

To remove the empiricism inherent i n  the  prescribed wake approach, 

several researchers have developed methods which generate the wake geo- 

metry as a par t  of the  computation procedure. This approach, sometimes 

referred t o  as  the "free-wake" analysis ( ~ e f .  20), employs an i t e ra t ive  

or a time-step procedure t o  find, fo r  a given rotor configuration, an 

arrangement of the  vortex system which exis ts  i n  "force-free equi l i -  

brium". The free-wake analysis generally incorporates a procedure t o  

account fo r  the convection of the vortex segments with the  f l u id  but 

neglects the process of viscous diffusion. The analysis requires a 

re la t ively  1a:ge amount of computer time fo r  each combination of rotor 

configuration and t h m t  level .  I n  order t o  determine rotor configur- 

ations tha t  would give the optimum performance, a parametric study 

involving a large number of geometries must be studied. The amount of 

computer time required by the free-wake analyses i n  optimum performance 

studies is therefore extremely large. Also important is the fac t  tha t  

* ~ r r r l l y  the  free-wake analyses do not accurately predict the geometry 

of the wake i n  the region very near the rotor disk ( ~ e f .  21) where the  

vortex system contributes greatly t o  the  inflow velocity a t  the disk. 

For these reasona, the present u t i l i t y  of the free-wake analyses fo r  

d e ~ i g n  purposes i s  limited. 

One advantage of the numerical Biot-Savart Law approach i s  that, 

i n  contrast t o  the previous theories which anewer only the queetions of 

per2=rmance, t h i s  approach prwidee information on the flowf i e l d  



surrounding the  rotor as well.  It must be recognized that  the approach 

i n  use today i s  based on the  inviscid flow analyses and its a b i l i t y  t o  

accurately predict the rotor induced flawfield is subject t o  important 

limitations. In  t h i s  regard, it is noted tha t  a new numerical method 

which u t i l i z e s  a generalized Biot-Savart Iaw and accounts fo r  the  

process of viscous diffusion of vortices has been developed recently 

( ~ e f .  22). This method is applicable t o  the  rotor  problem. 

In the  inviscid numerical approach, each rotor  blade is typically 

represented by a l i f t i n g  l i n e  with piecewise uniform circulation. Thus, 

i n  addition t o  neglecting the  viscous diffusion which tends t o  spread 

the vortex sheets in to  volume distr ibutions of vor t ic i ty ,  the inviscid 

approach f'urther lumps the  surface dis t r ibut ion of vort ices in to  vortex 

filaments for computational conveniences. A method formulated by T. Y. 

Wu ( ~ e f .  3) for  heavily loaded propellers, i n  contrast,  u t i l i zes  the 

actuator disk concept and dis t r ibutes  the blade-bound vortex azimuthally 

over the  propeller disk i n  an axi-symmetric manner. The t r a i l i ng  vortex 

sheets are now represented by a volume dis t r ibut ion of vort ices i n  an 

axi-symmetric flow. The kinematics of the  flow is formulated i n  terms 

of Stokes' stream h c t i o n  and the rotat ional  velocity component. By 

the  use of a Green's function, 2 non-linear in tegral  equation for  the 

stream flrnction i s  established, allowing the  solution fo r  the  stream 

function by successive approximartiom. The flowfield is thus formulated 

as a boundary value problem with a prescribed arbi t rary  radia l  d i s t r i -  

bution of circulat ion at  the disk. The in tegra l  formulation of T. Y. 

Wu fo r  the calculation of the stream function requires nwnerical quad- 

rature of a t r i p l e  in tegral  containing a product of Beseel'a functions 



as the integrand. Wo of the three ranges of integration are inf ini te .  

For these reasons the computational effort  required, though lees than 

the Biot-Savart Law approach, i s  s t i l l  considerable. 

Greenberg e t  sl. (Refs. 4 and 5 )  uti l ized the integral formulation 

t o  compute flowfields induced by rotors with prescribed uniform and 

piecewise uniform circulation distributions. The Green's function i n  

the integral formulation i s  recognized in  the i r  works a6 the stream 

function due to  a circular vortex filement. Ity expressing the Green's 

function i n  terms of a Iegendre function, the flowfield camputations 

were accomplished reasonably rapidly. Similrrrly, Chaplin ( ~ e f .  23) and 

Cox (Ref. 24) used the irrtegral formulation i n  studies of axi-symmetric 

flows. 

The actuator disk concept enjoys a substantial advantage :n its 

relative simplicity. Results obtained on the basis of the a c t u a t ~ r  

disk concept have been successfully used i n  the past as basic building 

blocks for the understanding of the practical problem of a rotor with 

a f in i t e  number of blades. For example, with the optimum distributions 

of circulation over infinitely-bladed rotor disks derived Prom the 

general mamentun theory, the effect of a f i n i t e  number of bladea is  

obtained approximately by using Prandtl' s formule, ( ~ e f  . ll ) . Also, 

Greenberg and Kaakel's flowfield results for  the infinitely-bladed rotor 

haa been used by Erickaon ( ~ e f .  6)  i n  a prescribe? w e k  ana!!is. The 

research reported i n  the present work ut i l izes  the s inpl ici ty  offered 

by the actuator disk concept, but incorporates certain effects of s l ip-  

stream rotation which have been neglected i n  previous theories for rotor 

p e r f o m c e  . 
12 



111. GENERAL R3RMULATION 

Consider a rotor hovering OGE i n  an incompressible and inviscid 

f luid.  Following Prandtl's l i f t i n g  l ine  theory, each rotor blade is 

represented by a blade-bound vortex filament directed radial ly.  If 

the strength of t h i s  vortex filament, i .e . ,  the  blade circulat ion,  

varies with the radia l  distance fran the  rotor axis, then there exis ts  

a vortex sheet t r a i l i n g  each blade. Within the context of the  actuator 

disk concept, the  t o t a l  circulat ion of the several blades of the rotor 

i s  considered t o  be distr ibuted uniformly over an in f in i t e  number of 

th in  blades, each with a vanishingly small chord width. The discrete 

vortex sheets t r a i l i ng  the l i f t i n g  l ines  (blades) are replaced by -z 

volume distr ibution of vo r t i c i t i e s  within the s l ips t rean.  The problem 

is then time-independent and .wi-symmetric about the rotor axis i n  a 

reference frame a t  r e s t  re ia t ive  t o  the  f l u id  a t  inf ini ty .  That i s ,  

i n  a cylindrical  coordj-mte system (r, 8, z) with the origin at the 

center of the  disk and the z-axis coinciding with the  rotor axis and 

point- downstream, the  f l o w  parameters a re  all independent of the 

+coordinate and of the  time t. The tangential,  or 8-, component o f  

the velocity vector, however, i s  not zero within the slipstream. 

The general flow features for  the hovering rotor OGE are shown 

i n  Fig. 1. For the  present problem, the en t i re  flow i s  induced by the 

rotor. Consequently the  en t i re  region outside of the slipstream and 

the blade row is  "upstream" of the rotor.  



The differential  equations debcribing the f law are the familiar 

continuity and momentum equations : 

and 

4 

where F stands for the equivalent body force exerted on the f luid by 

the blade elements. The boundary conditions are ',hat vanishes infinite- 

ly upstream of  the rotor and is  independent of 2 inf ini te ly downstream, 

i.e., i n  the ultimate W e .  

For axi-synrmetric flaws, Eq. (1) can be rewritten as 

where u and w are the radial  and axial  velocity components respectively. 

Therefore a Stokes' stream Punction *(r, z) exists such that  

and 

The flowf'ield is  therefore completely determinate i f  $ and the tangential 

velocity component v are known. 

Introducing the vort ic i ty  vector defined by 



one obtaina the coqponents of i n  t e r m  of $ and v: 

and 

The mcmentum equation can be rewi t ten  i n  terms of 2 and the 

t o t a l  head H as 

where 

r) 

Outside the blade ruw, = 0 and therefore ok = 0 and u % 71. 0. 

Consequently, the gradient of H is  perpendic~dar t o  both the velocity 

vector and the vort ic i ty  vector. In other words, the total head of the 

fluid is a constant along each stream tube except a t  the blade row 

where it m y  undergo an abrupt change. Upstream of the rotor, there- 

fore, the t o t a l  head is everywhere equal to  the s t a t i c  pressure of the 

fluid f a r  upstream divided by the denaity. Inside the slipstream, the 

t o t a l  head i s  a f'unction of the stream f'unction only: 

P 
H = a upatreeun of the rotor 

P 



P f ( $ )  inside the  slipstreem 

Noting further that  outside the  b l a b  row, since ? = C t ~ d  the 8- 

component of % i s  zero because of axi-synnnetry, one has 

Consequently, outside the blade row, the  gradient of rv is perpendicular 

t o  the velocity vector. In other words, the angular momentum of the 

f lu id  remains a constant along each streem tube except at the  blade 

row where it may undergo an abrupt change. Since the angular momentum 

of the f l u id  is zero far upstream of the  rotor,  the  angular momentum 

is zero everywhere outside the slipstream. Within the  slipstream, the  

angular momentum is a f'unction of the  stream f'unction only: 

vr = 0 upstream of the rotor (14) 

r g($) inside the  slipstream 

Consider the  f l u id  passing the  disk a t  r = rd as shown i n  Fig. 1. 

Equation (14) s ta tes  t ha t  the tangential velocity carpgonent v of t he  

f lu id  i8 zero on the  upstream side of the disk and may be non-zero on 

the  downstream aide. Let vd be the tangentitbl velocity c a p n e n t  of 

the  f l u id  on the downstream s ide  of the disk. There ex i s t s  than a 



discontinuity i n  v a t  the disk described by a dis t r ibut ion of radia l ly  

directed vortices a t  the  disk of strength vd. The circulat ion of the 

blade-bound vortices a t  rd is therefore 2mdvd. The tangential v e h c i t y  

a t  the disk is &rd i n  the principal value sense. 

Within the context of the actuator diek concept, the  blade-bound 

vortices are radia l ly  directed and axl-symmetrical. Therefore, 

the axia l  and radia l  velocity components of the f lu id  are both continuous 

at  the disk. The continuity of the  axia l  velocity a t  the disk is of 

course consistent with the law of conservation of mass. 

Kutta- Joukows ki  theorem gives the  l i f t  (or thrust  ) and drag 

forces on the u v u l a r  element of the disk dad = 2m dr as follows: d d 

I The ra te  of work done, or power expended, by the  disk element dad is 

therefore 

= p n w  v r dad d d d  (17) 

The t o t a l  thrust  and t o t a l  power of the  rotor are obtainable by inte-  

grating Eqs, (15) and (17) respectively over the  disk. 

The mass flow ra te  through dad i s  pwd dad. Therefore, fmm Eq. 

(17), one finds the increase i n  t o t a l  head across the  rotor  disk t o  be 

% rd. The t o t a l  head on the dnnatream side of the  disk  is therefore 



According t o  Eqs. (12) and (14), H and vr %re both functions of $. only 

i n  the slipstreem. One therefore has, fram Eq. (18), i n  the slipstream 

The radial  component of Eq. (10) givee 

BY using ~ q s .  (71, (91, (191, and (20): one obtains 

Consider now Eq. (8) which relates t o  $ . This equation is 

readily identif ied with the problem of circular vortices having the 

z-axis as a cumon exis. In  many classical t rea t i ses  on hydrMymnics 

(e.g., Ref. 25), the special  case of an axi-synnnetric rotational flow 

with v, 5, and 6 all zero is discussed. The present problem is more 

general in tha t  v, 5 and C are non-zero within the  slipstream and, 

f'urthexmore, v(= & vd ) anb 5 (blade-bound vortices ) are non-zero a t  

the rotor disk. The d i f fe ren t ia l  equations re la t ing u, w, and 7] t o  $ 

fo r  the special case of zero v, 5, and 6 ,  however, are identical  t o  Eqs. 

( b ) ,  ( 5 ) ,  and (8) derived for  the  general problem. This fac t  i e  not 

surprising eince for  the general axi-rqymu&rlc flow the continuity 

equation doe8 not contain v and neither the radial vor t ic i ty  distr ibution 

nor the wid  vort ic i ty  distr ibution itxiuces a velocity i n  a meridions1 



plane. As a consequence of t h i s  f ac t ,  certai:: kinematic relat ion8 

between u: w, 7 and $ available i n  the c lass ica l  t r ea t i ses  fo r  the 

special  case of zero v, 5, and 6 are  d i rec t ly  applicable t o  the preeent., 

more general, problem. I n  past icular ,  the d i f fe ren t ia l  equation (8 j fo r  

$ may be innnediately recast in to  an in tegral  r ep r e~en t a t i o~z  for  $: 

*( r ,  2 )  = JJ G(r, z; r', z )  ' dr' dz' 

where the region of integration D covers the en t i re  slipstream, G is 

the a t r e ~ l  functior. a t  a f i e ld  point (r, z )  assoclsted wi:h a c i rcular  

vortex filament with unis; strerrrih of r a d l ~ u  r '  and cer..t,?rs about the 

z axis i n  the plane z = z ' .  7' i a  .:he vor t i c i ty  val.ue i n  the slipstream 

a t  r ' ,  z l .  

Several a l tenla t ive  forms of t h i s  Green's Amction tiwe available 

i n  the l i t e ra tu re  (e.g., Ref. 25) and dif ferent  authors developed 

different  forms i n  t he i r  s tudies of the  rotor aRd propell-r problems. 

For example, an in tegral  form involving Beesel f'unctiorus of the f i r a t  

kind was u t i l i z ed  i n  Ref. 3 and a Legendre function of the second kind 

and the dsgree 4 was u t i l i z ed  i n  Refs. 4 anb 5. A convenient form t o  

use is on? involving canplete e l l i p t i c a l  integrals  ( ~ e f .  25, 26) : 

where 



n/2 2 2 
~ ( k )  = J J 1 - k s i n  

0 
(26 

The functions K and E a re  cmpiete  e l l i p t i c  integrals  of the f i r s t  and 

the second kind respectively. Tie properties and numerical values of 

these f'unctions are  readily available i n  mathematical handbooks. 

The in tegral  representation f o r  $, Eq. (22) is a kinematic 

re la t ion allawing g t o  be determined frun &ny known dis t r ibut ion of 

r) i n  the  slipstream. It replaces the d i f fe ren t ia l  Eq. (8) together 

with cer ta in  boundary conditions. & putting Eq. (21) in to  Eq. (22), 

one obtctns an in tegral  representation equivalent t o  the ones derived 

by T. Y. Wu and by Greerherg, e t .  a l .  (~e f , ? .  3, 4, and 5 )  using Green's 

functions. Greenberg e t  a l .  recognized the Green's f'unction as the 

stream function due t o  a ring vortex. They subsequently used a vortex 

representation of the slipstream arld developed an e f f ic ien t  method fo r  

computing the fluwfields induced by the  rotor.  

During ti.e course of the  present investigation, several closed- 

form analytical  solutions have been developed for  the  stream function 

and for velocit ies induced by several uniform and l inear  distr ibutions 

of circular  vortices over f i n i t e  c i rcular  cylinders and annular surfaces. 

The solutions are  expressed i n  terms of complete e l l i p t i c  integrals  

and are presented i n  Appendix A of th ia  report. 



The availability of these analytical expressions contributes to the 

efficient and accurate computation of axi-symmetric flows. 
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vd rd = vw rw 

The rad ia l  component of Eq. (2) gives i n  the  ultimate wake 

2 
PVW 

f - (29) 
&w r 

W 

This equation s ta tes  simply t ha t  the centrifugal  force of the  f l u id  is 

balanced by the  radial pressure gradient i n  the  ultimate wake. Consider - ;  . ,, 

a spherical control volume of radius R centered at the or igin  of the i !  . , 
I '  . ~ 

coorainate system. The control surface consists of two par ts  S1 and S2, 2 !~ - r' 
;$ 

where S1 is a cross section of the  slipstream anO S2 i s  the  rmalning ' f  5 

s .  1 - 

portion of the sphere. A t  large distances from the  rotar  disk, the 

22 
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N. OPTIMUM PeRFORMANCE THEORY 

The Ultimate Wake 

Consider the  rotor hovering OGE. As shown in Fig. 1, the s l i p -  

stream contracts downstream of the rotor and forms the  ultimate wake 

f a r  d~wnstream where it no longer contracts. Thus, i n  the  ultimate wake 

the radia l  velocity u vanishes and the flaw is independent of the ax ia l  

coordinate z. The f l u id  passing through t he  disk element dsd passes 

throwh the annular element dsw = 2 5  drw i n  the  ultimate wake as 

shown i n  Fig. 1. By the  l a w  of mass conservation, one has 

Equation (14) gives 



action of the rotor on the fluid outside the slipstream is  equivalent 

t o  that of a sink, the strength of which is equal t~ ti.% volume rate  

01 flow passing through the disk, and is f ini te .  Therefore, i n  the 

4 l i m i t  as R - -, p = p, + o ( ~ / R  ). Therefore the s t a t i c  pressure a t  the 

rim of the ultimate wake is pa. Equation (29) therefore gives 

Equation (12) requires Hw = Hd. It follows from Eqs. (14), (18), and 

(30) that 

However, i n  the ultimate wake, since uw = 0, one has 

Theref ore 

A t  the r i m  of the ult 'mate wake, 

Consider again the control surface described ear l ier .  The momentum 

theorem gives the following expression for the total thrust of the rotor 



2 '.. . where i s  the un i t  outward nomal vector on S1 and S As A - =, .. 2 ' 
4 integrand i n  the second integral  goes t o  pm + 0 ( 1 b  ). Therefore the 

2 
second integral  gived - -=(rr% ). Equation (35) therefore gives, with 

the use of Eq. (30) and Eq. (3j ) ,  

The t o t a l  power expended is, by using Eqs . (17), (27), and (28), 

With a knm radia l  d is t r ibut ion of the tangential velocity vw 

i n  the ultimate wake, Eq. (33) establishes the  distr ibution of ww. 

equations (36) ana (37) then give the thrust  and power of the rotor.  

A perturbation i n  the  tangential velocity dis t r ibut ion therefore a l t e r s  

the  thrust and the  power. In the  following section, a c r i t e r ion  fo r  

optimum performance is established by analyzing the changes i n  power 

and thrv +, result ing from the perturbation of the  tangential  velocity 

d i s t r i b u t i ~ n .  This c r i t e r ion  is f i r s t  given i n  terms of the velocity 

distr ibutions i n  the ultimate wake. These velocity distr ibutions w i l l  

subsequently be re la ted t o  the optimum dis t r ibut ion of bound vor t i c i ty ,  

thrust ,  and power. 



Criterion for  O p t i m u m  Performance 

An optimum rotor is  a rotor giving a specified amount of thrust  

while expending a minimum mount of power. Consider a given dis t r ibut ion 

of tangential velocity vw i n  the ultimate wake. If a perturbation Avw 

i n  the tangential velocity is  introduced as follows: 

fo r  a < r w C a +  & 
W (38 ) 

then, according t o  E-;. (33), the  result ing change i n  the  axia l  velocity 

distr ibution i s  

~ V , ~ ~ S / W ~  f o r O < r  < a  
W 

(na - v wa )aa/ww, fo r  a < rw < a + hrw (39 ) 

0 , for a +  % c r w c s  

where the subscript a indicates th,2 value of vw i s  ovaluated a t  rw = a .  

Only terms of the lowest order i n  ra/vwa and i n  bdta are kept i n  each 

in terval  of in teres t .  

Equations ( 36 ) ,  (37), tcgether with (38) and (39) gives the 

changes i n  +,hrust and power: 

2 D = 2np(ebW) (ma - v wa 

and 



Equations (40) and (41) give 

where 

a v r  2 

n b v W a ( n a  - vwa)/wwa + awn + 
W a o w  1 

h(a)  = m a  - v (43 1 wa 

i s  a function of 8, the location where the  perturbation of tangential  

7~elocit.y i s  iztrcduced. 

Suppose tha t  a perturbation i n  tangential  ve loci ty  is  introduced 

at a with result ing changes i n  power and th rus t ,  AP1 and ATl. Suppose 
1 

a second perturbation i n  tangent ia l  velocity i s  introduced a t  a2 with 

result ing changes i n  power and th rus t ,  and AT2. By suitably se lec t -  

ing the values of sArw a t  al and a2, the t o t a l  change i n  th rus t  due t o  

the two perturbations is made t o  vanish. Then AT2 = - AT1 and therefore 

Since AT can be made e i the r  posi t ive or  negative by choosing the  sign 
1 

of c i n  Eq. (40), it w i l l  be possible t o  obtain a negative value of AP 

if h(al) h (a*). I n  other words, it is  possible, 5y a l t e r ing  the  

tangent ia l  velocity d is t r ibut ion,  t o  develop a given mount of thrus t  

while expending a smaller amount of power. The tangent ia l  velocity 

d is t r ibut ion v under consideration therefore does not give optimum 
W 



performance. 

It follows therefore tha t  the  optimum dis t r ibut ion of tangential  

velocity vw is  one which gives h(al) = h(a2). Since sl and a are 2 

a rb i t r a r i l y  selected rad ia l  locations, the c r i t e r ion  fo r  optimum per- 

formance is  

h(rw) = constant (45 

In  other words, 

where N is a constant. 

C m ~ ~ t a t i o n  Procedure 

Equation (33) re la tes  ww t o  vW. AS a consequence, Eqs . (33) and 

(46) permit the evaluation of the optimum dis t r ibut ion of the tangential  

velocity vw i n  the  ultimate wake fo r  specif ied values of N and Rw. 

Alternatively, Eqs. (33) and (46) are  re-expressed i n  non-dimensional 

and 

where 



and 

From Eq. (47), one obtains a t  FW = 1 

where the subscript "0" denotes the velocity components at the r i m  of 

the ultimate wake. Differentiating Eq. (47) with respect t o  r yields 

From Eq. (48) snd (50), one obtains a t  t = 1 

Differentiating Eq. (48) with respect t o  and using Eq. (5') yields 



I f  the  value of 7 i s  specified, then < is  deteminate from 
wo 0 

Eq. (50). I f ,  f'urther, the  value of is  given, Equations (51) and 

(53) can be re-written as a system of two first order ordinary d i f fe r -  

e n t i a l  equations with " in i t i a l "  values specified a t  the point < = 1, 

i . e . ,  the r i m  of the ultimate wake. Various numerical methods are  

available fo r  the solution of these equations. In  the present work, 

a fourth order Runge-Kutta method i s  used t o  determine the dis t r ibut ions  

v" and v" f rm Equations (51) and (53) f o r  specif ied values of  Fw and 
W W 

H 0 
8. An i t e r a t i ve  procedure i s  used with which a value of N is esfimated 

f o ~  the i n i t i a l  i tera t ion.  The distr ibutions < and <, obtained using 

t h i s  value of W from Eqs . (51) and (53) are  placed i n to  Eq. (52) t o  

compute a new value of fo r  the second i tera t ion.  The i tera t ions  con- 

t inue u n t i l  the value of ff changes insignificantly between two successive 

i tera t ions .  In t n i s  manner, the optimum u l t h t e  wake flow corresponding 

t o  a specifled value of yw is  established. 
0 

Contraction Ratio and Performance 

The f igure of merit of a rotor is defined by 

where CT and C are  respectively the thrust coefficient  and the power P 

coefficient defined by 

and 



For a given radius of the ultimate wake, Rw, and a given angular 

velocity of the  rotor,  the computed optimum distr ibutions of qW and % 
together with Eqs , (36) and (37) yield the corresponding thrust  and 

power of the rotor. In order t o  es tabl ish  the performance of the  rotor ,  

i . e . ,  CT, Cp and M, however, the disk radius R d m u 8 t  be determined. 

I n  theories cf propeller performance, it i s  customary t o  write 

the thrust  element i n  terms of the wake veloci t ies  as follows: 

The acceptance of Eq. (57) permits the radius of a given stream tube 

on the disk, rd, to be rel%ted t o  the radius of t ha t  stream tube i n  

the ultimate wake, rw. Equating the r igh t  sides of Eqs . (15 ) and (57) 

and using Eq. (28) gives 

The boundary condition fo r  t h i s  d i f fe ren t ia l  eqlation is  

With known distr ibution8 vw and ww, the quadrature of Eq. (58) gives rd 

as a Punction of rw and thus, for  the given value of hw, the value of 

Rd' 

Equation (57) obviously mt i s f i eu  Eq. (36). However, it i s  not 

the only expression that sa t i s f i e s  Eq. (36). Any function b(rw) which 

f3W gfvea J % = 0 can be added t o  the  r ight  side of Ep. (57) tmd the  
0 



result ing expreesicn for  &I s t i l l  s a t i s f i e s  Eq. (36). It has been 

shown in  Ref. 29, i n  ract ,  t ha t  no solution of Eq. (58) exis ts  which 

s a t i s f i e s  the boundary condition (59). Accordingly, i n  the present 

research, an approach which does not u t i l i z e  Eq, (58) i e  developed. 

In t h i s  approach, the contraction ra t ion 

i s  taken t o  be a constant independent of the rad ia l  location (C or  ra). 

In general, the contraction r a t i o  i~ a function of the radia l  

location. The resul ts  of Ref. 5 however, indicate that no serious 

error  is introduced by taking the  contraction r a t i o  t o  be a constant 

fo r  heavily loaded free-running propellers. Thus it i s  expected that  

the assumption of convtant contrac'kion r a t i o  i s  reasonable fo r  the 

hovering rotor.  

By taking c i n  Eq, (60) as a constant, Eqs . (15 ) and (28) yleld 

Integrating Eq. (61) and equating the r igh t  e iac  of the result ing 

equation t o  the r ight  side of Eq, (36) gives, a f t e r  rearrangement of 

terms, 

Noting that, using integration by par ts ,  



Differentiating Eq. (33) gives 

P lacw  Eq. (64 ) into (63 ) und noting that 

and 

One then h w  

w 2~ 
W W 
0 

J w r d r  = 2 - & R  3 
W W W  vr W 

Rw 2 +as v r % (67) 
0 + 4.w 'l 0 W W 

Using Eq. (34) then gives 

Consequently, Eq. (62 ) becomes 



It is noted thai; t h i s  contraction r a t i ~  is precisely the value predicted 

by the axia l  morcentm theorem. 

With c known, Rd imnediately follows fran the specifies value 

of qi ( R ~  = f l  %). The ax ia l  inflow velocity and the  circulat ion a t  

the rotor disk are  re la ted  t o  the axia l  and tangential  veloci t ies  i n  

the ultimate wake. The thrus t  and power coefficients  as well arr the 

f igure of merit can be eas i ly  evaluated fronc the known flow conditions 

i n  the ultimate wake. In par t icular ,  once an opthum dis t r ibut ion of 

vw is established, the corresponding distr ibutior .  sf ww, wd, end P, the 

values of CT, Cp, and M immediately follow. 

The optimum rotor performance theory described here has been 

generalized t o  the case of a rotor (or a propeller)  i n  ax i a l  cotion. 

The analysis f o r  t h i s  general case i e  presented i n  Appendix B of t n i s  

report.  



I .  ROT R INDUCED FMWFIELD 

A number of methods have been developed by various authors fo r  

the sclution of Eqs. (21) and (22), with specified distr ibution of 

disk-bound circulat ion ( ~ e f s .  3, 4, 5, 23, 24). The approach chr jn 

f o r  the present :fork is the numerical method described by Greenberg 

e t  a l .  ( ~ e f s .  4 and 5). 

For the hovering rotor problem, the danain of integration i n  

Eq. (22) is the en t i re  slipstream and is not k n m  a p r io r i .  In  fac t ,  

the shape of the stream tubes bouitding and within the  slipstream i s  

t o  be established as a par t  of the solution. Following the  approach 

of Greenberg and Powers ( ~ e f .  5 ) ,  the specified dis t r ibut ion of circula- 

t ion  a t  the disk is approximated by a piecewise uniform dis t r ibut ion 

as shown i n  solid l ines i n  Fig. 2. The disk radius is divided in to  L 

segments a t  r ad i i  rd = ao, R,, , . . RL, with Ro = 0, and RL = Rd. In  

the 4 t h  segnent, R < r c R .the circulat ion i s  taken t o  be a G1 d 4.' 

constant value r4.. The t r a i l i n g  vortices are considered t o  be shed 

only a t  the radial  locations R4. The slipstream vortex system is then 

represented by L discrete vortex tubes. The 4th vortex t r a i l s  the disk 

a t  rd = rC. Equation (22 ) becunes 

where t4 i s  the radius of the  4th vortex tube and yCt i s  the st2ength 

of the 4th vortex tube. l and y ' are  both f'unctions of 2 ' .  
4. 



With the above representation of the slipstream vortex system, 

the vor t i c i ty  i n  the  regions between the vortex tubes is zero. The 

angular momentum vr of the  f l u id  i s  constant between the  vortex tubes 

and changes discontinuously across the tubes by the amount - r4) 

/2n. Consider fo r  the moment a continuous, though rapid, change of 

the angular momentum i n  the in terval  r = t4 t o  r = ' + &. The 

corresponding volume dis t r ibut ion of the tangential  vc~Cticity rl is 4 

given by Eq. (21), i.e. 

As hr hpproaches zero, one obtains a vortex tube with strength 

The angular momentum v r  a t  r = t is, i n  the  principal  value sense, 4 

equd  t o  f 1 (v r  )& + (vr ICI1 j , or  equivalently ( r4  + r4+1 )/4n. T ~ U S  

Eq. (72) may be re-written as 

Using Eq. (5 ), one then obtains 

where w 4 i s  the ax ia l  velocity on the 4th vortex tube i n  the principal  



value sense. 

Equation (74) has bden derived in Ref. 5 using the Bernoullits 

equation and the condition that the vorticity in the slipstream convects 

with the fluid motion. The present, alternative, derivation of this 

equation points out that, instead of considering the trailing vortex 

tubes to originate at the disk radii Ray it would also be appropriate 

to lump the vortices shed within each interval RG1 < rd < Rainto a 

vortex tube originating at the mid-point of that interval, i.e., at 

rd = f (RG1 + R~). This mid-point representation is shown in dashed 

lines in Fig. 2. While the end-point representation used in Ref. 5 

describes the disk bound circulation well, it appears that the mid-point 

representation would describe the slipstream vortex system more accurately. 

With the mid-point representation, if the circulation goes to zero contin- 

uously at r = Rd, then the slipstream boundary is no longer identified d 

by the outermost vortex tube. For this situation, the mid-point repre- 

sentation must be modified for the outennost interval if the slipstream 

boundary is to be identified. The mid-point representation also presents 

sane difficulties for the innermost internal. In Ref. 5, attempts were 

made to provide a cut-out, i .e., to let rl = 0, representing the finite 

hub of the rotor. These attempts failed to produce convezgent results. 

The use of the mid-point representation for the innermoat interval is 

camputationally equivalent to the use of an end-point representation and 

assign r i  = 0 for the interval 0 4 rd s ~ ~ 1 2 .  Thus it is erpected that 

the use of the mid-point representation for the innermost interval would 

also present convergence problems. 



A possible method of remaving the above noted d i f f icu l t ies  is t o  

use continuous distributic-1s of blade-bound vortices, or  circulation, 

for  the innermost and +,he outermost intervals. It should be noted 

tha t  i n  Refs. 4 and 5 ,  it was pointed out tha t  14th the end point repre- 

sentation, the strength of the odtermost vortex tube becomes singular 

a t  the t i p  of the slipstream. Furthermore, i f  the circulation for 

the innermost interval is  non-zero, then the tangential velocity v 

becomes inf in i te ly  large a t  r = 0 and the rotor 's  thrust  diverges. 

Therefore there existed also d i f f icu l t ies  in  using end-point representa- 

t ions for the innermost and outermost intervals.  Again, a possible 

method of removing these d i f f icu l t ies  is t o  use continuous distributions 

of blade-bound vortices for  the innermost and outennost intervals. 

Inasmuch as satisfactory resul ts  were obtained by the use of the method 

described i n  Ref. 5 for the major portion of the flowfield of concern, 

no attempt has been made t o  incorporate the "continuous" representation 

of bide-bound vortices. 

Since the vortex tubes i n  the slipstream coincide with the 

stream tubes, the application of Eq. (70) at each vortex tube m gives 

where (m is a constant. Equstions ( 5 ) ,  (70) and (74) give 



where 

1 
G (r, z; rt, zt) = - 
r - 

2 
{ ~ ( k )  

2mt J (2 .-z12 + (rt+r) 

Equations (75) and (76) consti%~.c;e a s e t  of 2 L  coupled integral 

equations containing the 21, unknown flmctions t .(z) and Y4(z). An * 
iterative method of solution of this  s e c  of integral equations i s  

described in  Ref. 5 .  



V I .  RESULTS AND DISCUSSION 

Opt imum Ferfomance 

a. Optimum Circulation Distribution 

Numerical resul ts  f o r  the optimum radial dis t r ibut ion of circu- 

l a t ion  and inflow veloci t ies  a t  the rotor disk and the associated per- 

formance parameters have been obtained inor 16 values of the  thrust  

coefficient between 0.001 and 0.050. This range of t h . +  coefficient  

was considered t o  bracket the normal operating range of hovering rotors.  

In  Ref. 27, the  optimum rad ia l  d i s t r i b u t i r ? ~  of the circulat ion and of 

the ax ia l  inflow velocity a t  the  disk are preoented for  the 16 values 

of the thrust  coefficient. It is noted i n  Ref. 27 that for  small values 

of the thrust  coefficient ,  the optimum circulation and tne ax ia l  inflow 

velocity are nearly independent of the rad ia l  position except near the 

axis. For higher values of the  thrust coefficient ,  the  deviations of 

the o?timum circulation and of the axia l  inflow velocity from constant 

values extend aver larger  regions and the  magnitude of the  deviations 

a re  larger.  

The optimum dis t r ibut ion of circulat ion i s  presented for the  

t h r u s t  coefficients of 0.001, 0.005, 0.010, and 0.050 i n  F i g .  3.  In  

Ref. 10, an approximate solution fo r  the  hwering rotor problem i s  

given based on the general momentum theory neglecting the  rad ia l  pres- 

sure gradient i n  the mtimate wake. The approximate distr ibutions of 

circulat ion of Ref. 10 a re  computed end compared with the present, more 

exact, solution i n  Figure 3. The camparison shows that 



t he  approximate solution of Ref. 10 deviates s ignif icant ly  +om the 

present resu l t ,  part icularly i n  the inboard region of the  disk. The 

deviations are more severe fo r  larger values of the thrust  coefficient .  

b. Axial Inflow Velocity 

In Fig. 4, the optimum distr ibutions of ax ia l  inflow velocity 

obtained i n  the present study are presented and compared with the approxi- 

mate solution of Ref. 10 for  several values of CT. It is noted tha t  

the approximate solution of Ref. 10 gives a zero value of the ax ia l  

inflow velocity a t  the  ~ x i s  of the disk, It has been shown i n  Refs. 

27 and 29 tha t  t h i s  zero ax ia l  inflow velocity is incorrect. 

c. Figure of Merit 

In60far as the  overall  performance of the  rotor is concerned, 

the  approximate method of Ref. 10 yields a figure of merit more 

optimistic than the more exact resul ts  of the  present theory. Figure 

5 shms tha t  the computed figure of merit based on the present theory 

is lower than tha t  based on the  approximate theory of Ref. 10, which 

is in  turn much lower than the ideal  f igure of merit of one. The 

deviations between the  resul ts  increases with the value of the  thrust 

coefficient. 

d. Eff2ct of Finite Number of Blades 

While the present investigation i s  primarily concerned with an 

i n f i n i t e ly  bladed rotor,  the  effect  of a f i n i t e  number of blades may be 

determined, for example, by extending Lerbs ' work ( ~ e f  . 17) on heavily 

loaded, f ree  running propellers. 

An estimate of the  e f fec t  of nusber of blades on the optimum 

dis t r ibut ion of circulat ion is provided by modifying ,&andtlts approxi- 



mate method ( ~ e f .  11) of calculating the  " t i p  loss" factor and applying 

the resu l t  t o  the hovering rotor  case. The procedure is outlined i n  

Ref. 27. The resul ts  are shown i n  Figure 6 for  rotors  with 2, 4, 

and6 blades a t  CT = 0.010. Eased on these resul ts ,  the  corrected 

thrust  coefficients for  2, 4, and 6 blades are respectively 0.00759, 

0.00865, and .00906. The corresponding corrected power coefficients 

are .000547, 0.000624, and 0.000655. The figures of merit are 0.855, 

0.911, md 0.931. In  comparison, without the  t i p  loss  correction, the  

power coefficients for  the  i n f i n i t e ly  bladed rotor  are respectively 

( a t  CT = 0.00759, 0.00865, and 0.009C6) 0.000479, 0.000585, and 0.000627. 

The figures of ne r i t s  are 0.975, 0.973, and 0.972. 

Rotor Induced Flow 

Following the analyses described i n  the  previous sections, a 

computer program was prepared t o  compute the flowfields associated 

with the optimum dis t r ibut ion of circulation. In these computations, 

emphasis was placed on the determination of the shapes of the stream 

tubes i n  the slipstream. As discussed ea r l i e r ,  the vortex tubes coin- 

cide with the stream tubes i n  the  ~ l i p s t r e m .  

The continuous circulat ion dis t r ibut ion waa represented by a 

number of piecewise uniform circulat ion intervale and the t r a i l i n g  

vortex tubes are  considered t o  originate frm the end-points of each 

in terval  as was done i n  Ref. 5. The value of the circulat ion within 

the 4th in terval  was taken t o  be 

r4 = 2n 
2 2 f4 ( m d  - v d ) v  r cir 

- R&J 
d d d  (78) 

r&l 



It sha l l  be shown l a t e r  that  the thrust  developed i n  the  4th in terval  

due t o  the constant circulat ion T4 given by Eq. (78) is approximately 

equal t o  tha t  due t o  the continuous dis t r ibut ion of circulat ion T4= 

2n vd rd. 

a .  Effects of Number of Intervals Used 

Three s e t s  of computations were made for  the case of an optimum 

rotor hovering OGE with a thrust  coefficient  of 0.010 usi re  L, 5, and 

7 constant circulat ion intervals.  For the s e t  of computations using 

4 intervals,  the values of R ' s  were assigned t o  be 0.00 R,  0.15 R ,  4 

0.30 R ,  0.60 R ,  and 1.00 R. For the 5- in terval  compiltations, additional 

R values were assigned at 0.80 R.  For the 7-interval computations, 
4 

additional R values were assigned a t  0.45 R,  0.75 R,  and 0.90 R. A 4. 

comparison of the computed stream tube shapes based on 4-, 5-, and 7- 

in terra1 representations i s  shown i n  Fig. 7. The comparison revealed 

tha t  the  three s e t s  of camputations gave pract ical ly  ident ical  stream 

tube shapes. The maximum deviations i n  the computed radius of the 

slipstream boundary was l e s s  than 0 . e  between the three s e t s  of results .  

A similar comparison of the axia l  inflow veloci t ies  revealed t ha t ,  

except i n  the immediate v ic in i ty  of the additional R4'a, the resul ts  

are v i r tua l ly  independent of the number of intervals used. These com- 

parisons suggest t ha t  a 4- or 5- in terval  representation i s  adequate 

for  routine computations. 

b. Effects of Second Order Terms 

According t o  Eq. (15), i f  T4 is such that  the thrust  developed 

i n  the  4th in terval  due t o  r is equal t o  t l u t  due t o  the  continuous 
4 

distr ibution of circulat ion I' = 2n vd rd, then 



The second term on the  l e f t  s ide of Eq. (79) represents a second 

order e f fec t  of the slipstreem rotation. If t h i s  term i s  neglected, 

then one obtains the expression for  r' given by Eq. (78). In general, 4. 

the maximum value of r4 i s  approximately equal t o  2dRdCcT. For usual 

applications, since CT is much smaller than unity, the  second term on 

the  l e f t  side of Eq. (79) is negligible fo r  a l l  in tervals  4. # 1. For 

the first interval ,  4, = 1, one has R L-l = Ro = 0 and the second term 

becomes in f in i t e ly  large. Thus, Eq. (79) i s  not appropriate fo r  the 

f i r s t  interval .  It should be noted tha t  in  rea l i ty ,  the  area represented 

by the  first in terval  is equal t o  n ~ ~ "  and i s  a small fraction of the  

t o t a l  disk area 7 ~ ~ ' .  For example, by taking R1 = 0.15 RL, the  area 

represented by the  f i r s t  in terval  is 2.25% of the t o t s 1  disk area. 

Since the value of the  circulat ion i n  the  first in te rva l  is a lso  small, 

the thrust  developed i n  the  f i r s t  in terval  is only a small fraction of 

the t o t a l  rotor th rus t .  The piecewise constant circulat ion T4. as deter- 

mined by Eq. (78) therefore gives a t o t a l  rotor thruet  very nearly 

equal t o  the t o t a l  rotor thrust  due t o  the continuous circulat ion dis-  

t r ibut ion r = 2n vd rd. 

The second t e rn  inaide the brackets i n  Eq. (74) a lso  represents 

a second order e f fec t  of the  slipctream rotation. Thin t e rn  again i s  

negligible fo r  a l l  except t he  innermost interval .  In  t h i s  investigation , 



the  role  cf t h i s  second order term i n  defining the  vortex tube shapes 

i s  examined by computing, f o r  the CT r: 0.01 case using 7-intervals, 

the vortex tube shapes neglecting and accounting fo r  t h i s  second-order 

effect .  The renults ,  shown i n  Figure 8, indicate t ha t  the  neglect of 

t h i s  second-order effect  leads t o  a s l i gh t l y  smaller ultimate wake. 

The e f fec t  i s  small f o r  a11 except the  innennost streamtube. 

c. Restriction on the  Radius of the Innermost Tube 

Equation (79) shows t ha t  i f  as rd - 0, the  continuous dis t r ibut ion 

of circulat ion,  r, goes t o  zero as ru, with a> 0, then the  thrust  

developed i n  the  f i r s t  in terval  i s  f i n i t e .  If the continuous d i s t r i -  

bution of circulat ion is replaced by a constant, non-zero, circulat ion 

i n  the first interval ,  then as rd -. 0 the  tangential  velocity component 

goes t o  i n f i n i t y  as l/rd and the t h m t  becomes i n f i n i t e ly  large. 

Greenberg e t .  al. made several attempts ( ~ e f .  5 )  t o  remove t h i s  d i f f i -  

culty by l e t t i ng  T1 = 0. They pointed out that t h i s  i s  equivalent ts 

providing a cut-out t o  represent a f i n i t e  hub of the rotor.  These 

attempts, however, f a i l ed  t o  produce any convergence solution. In the 

present investigation, it wes observed tha t  the  convergence of the 

numerical solution was also sensit ive t o  the  value of R1 used i n  the 

computation procedure. Convergence w%s not obtained with R1 = 0.10. 

However, with R1 = 0.15, convergence was obtained. The di f f icu l t i es  

experienced i s  a t t r ibutable  t o  the f ac t  t ha t  the  innermost vortex tube 

w a s  s i tuated i n  an essent ia l ly  aead-air or recirculat ing flow region, 

as can be shown by examinkg the axia l  velocity i n  the  ultimate wake. 

Since the vor t i c i ty  between two adjacent vortex tubes is zero 

and since the radia l  velocity is  zero i n  the  ultimate wake, the a ~ c i a l  



velocity i n  the ultimate wake is constant between two vortex tubes. 

Let WC be the  constant ultimate ax ia l  velocity i n  the 4th in terval  

(i .e., between the ( 4 ~ l ) t h  and the 4th vortex tubes ), then, i n  the 

ultimate wake 

Applying Eq,  (74) i n the  ultimate wake then yield6 

Noting tha t  the  ax i a l  velocity and the  circulat ion is zero out- 
, 

side the ultimate wake and neglecting the  second order tenas i n  Eq. (82) 

gives 

and i n  part icular  

Consequently, i f  one l e t s  I'l 5 0 as was attempted i n  Ref. 5, 

then W1 = 0 and the net flcm passing within the innennost stream tube 

is  zero. Thus the innermost vortex tube contains a dead-air or  reci r -  

culating flow region. Such regions obviously are  not amenable t o  the 

i t e ra t ive  proceedwe used here. 

It can be ahawn tha t  the  inc lwion  of the second order tenas i n  



Eq. (82) increases the values of W. Therefore, W1 i s  non-zero even i f  

one l e t s  I'l E 0. This non-zero value of W1, however, is m ~ l l  and the 

innennost stream tube s t i l l  containe essentially a dead-air region. 

Similarly, since the continuous distribution of circulation approaches 

zero near the axis of the rotor, the value of Tl is small i f  the value 

of R1 is smaU. As a result ,  W1 becomes very small and the innennost 

stream tube again contains essentially a dead-air region. These 

observations were substantiated by the numerical results obtained i n  

th i s  investigation. 

d. Stream Tube Shapes 

In addition t o  the case of CT = 0.010, computations were made 

for  the previously discussed optimum distributions of circulations a t  

CT = 0.001, 0.005, 0.050. For these additional ccmputationa, the 4- 

interval representation was used. The computed slipstreem shapes are 

presented i n  Figs. 9 for caeee of 0.001, 0.010, and O.@0. The shape 

for the caae of CT = 0.005 l i e s  between those for CT = 0.001 and 0.010 

and is not shown. The results show that  with increarring value6 of CT, 

the "dead-air" region near the hub becomes morc ;;2aninsnt. The contract+on 

ra t io  is nearly independeat of the radial location. For the cases studied, 

this ra t io  deviated fzcom the universal value of 0.742 by less than one 

half of a percent. This value is sauewhat larger than the value 0.707 

predicted by t;.e momentum theory. The computed axial  velocity i n  the 

ultimate wake, also ahown i n  Figs. 9, for CT = 0.010, is in  good agree- 

ment with that predicted by Eq. (&). W h e r n o r e ,  for the smaller 

valueis of CT, the computed axial velocity is in eood agreement with the 

qtimrol ult i ruie  wake velocity. For the cwe of CT = 0.050, however, 



the  canputed a x i a l  velocity is s igni f icant ly  lower than the optimum wake 

velocity near the axis  of the  rotor .  

In addition t o  the optimum ci rcule t ion dis t r ibut ion cases, c m -  

putations were made using tke c i rcu-a t ion dis t r ibut ion given i n  Fig. 6 

fo r  the  two-bladed ro tor  with t ip- loss  correction. This special  d i s t r i -  

bution of c i rcula t ion shall bit referred t o  acr off-optimum ci rcula t ion srnce 

the  present computation procedure is speclficall?r designed fo r  i.l.fini+,c?ij 

bladed rotors. 

The slipstream peacetry f o r  the  off-optbun circulat ion case is 

compared with the optimum ci rcvla t ion case of C , c  0.010 i n  Fig. 10. 

The comparison shovs t!i& the ultimate wake radius i s  smaller f o r  the  

off-optimum case than f o r  tl-e optimum case. 

The slipstream boundary shapes f o r  a r c t o r  with constant circu- 

l a t ion  hwering i n  ground e f fec t  a t  heights Rd and 2Rd abwe the ground 

plane are  computed and shown in Fig. 11. Also shown i n  Fig. 11 are 

the experimental r e su l t s  of Ref. 18 obtained from smoke pictures fo r  

a two-blsded ro to r  hwering st a height of Rd above ,$he ground plane. 

It appears that, within the  limitation6 of the i n f i n i t e l y  bladed model 

f o r  the rotor ,  the  computed resu l t s  provide r, ressonable delrcription of 

the wake b~undary. Computatians were a l so  made f o r  a ro tor  hovering a t  

a height 10 Rd abwe the  grouna plane. It mre found f o r  t h i s  case, 

the flowfield a t  distances 3Rd or more above the  groun? plane i a  nearly 

ident ica l  t o  t h a t  of  s ro to r  hwering OGE. 



Studies of the optimum performance and of the  induced potential  

flowfields of rotors and propellers are  made on the  basis of a "rotating 

actuator disk" concept. By modifying and adopting ce r ta in  principles and 

techniques of propeller aerodynamics, a new cr i t e r ion  fo r  the  optimum 

performance of rotors and propellers in ax ia l  f l i gh t  is obtained. The 

analysis leading t o  t h i s  c r i t e r ion  i s  more complete than the  previous 

analyses i n  that  the  present analysis f'uUy accounts for  the  effects of 

slipstream rotat ion and alluws for  the existence of a rad ia l  pressure 

gradient i n  the ultimate wake. For flowfield canputations, the rad ia l  

distr ibution of circulat ion at the  rotor disk is repreeented by a piece- 

wise uniform distr ibution of circulation. The slipstream i s  represented 

by a s e t  of axi-symmetric vortex tubes shed from the disk a t  the  locations 

of circulation discontinuities. Existing numerical methods a re  u t i l i zed  

t o  compute the shape and strength of the  vortex tubes t ha t  s a t i s f y  the 

required MneLic and kinematic conditions for  the slipstream. Numerical 

resul ts  are cibtained fo r  hovering rot< rs ( s ta t i c  prcpellers)  i n  and out 

of ground effect  for  caEes of opthim and off-optimum circulation dis-  

tribut+.ons a t  various thrust  levels. 

Several conclusions of the  present st.* a re  summarized below: 

1. Previous investigators comparing experimental data with 

theoretical  resul ts  noted t h a t  the ea r l i e r  theories, i n  which the  effect  

of slipstream rotat ion is par t ly  or t o t a l l y  neglected, generally w e r -  

estimate the optimum performance of hovering rotors i n  the higher thrust 
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coefficient range of pract ical  in teres t .  The present t b o r y  provides 

imprwements i n  theoret ical  predictions by f'ully accounting for  the  

effects of slipstream rotation. These improvements, which are  not 

important in the case of a l i gh t l y  loaded propeller, heve significant  

influence on the optiwun distr ibution of blade-bound circulat ion and 

hence power and thrust  requirements of hovering rotors. The inaccuracies 

of the  ea r l i e r  theoret ical  resul ts  tha t  a re  a t t r ibutable  t o  the  neglected 

slipstream rota t icn effects  increase with increasing thrust  coerficient .  

Thus the impravemonts of the present theory are par t icular ly  important 

i n  the higher thrust  coefficient range. 

2. The rotat ing actuator disk concept permits the calculation, 

i n  a straightforward manner, of the optimum dis t r ibut ion of circulat ion 

and inflow velocity over t he  rotor disk f o r  the inf ini3ely  bladed case. 

The potential  flowfield induced by the i n f i n i t e ly  bladed rotor e.nd the  

effect  of f i n i t e  blade nunber on the circulat ion dis t r ibut ion are  

estimated, by using available methods, for  the  optimum circulation d i s -  

t r ibu t  ions . 
3 .  In the flowfield computation, the  continuous circulation dis- 

t r ibut ion was represented by a number of piecewise uniform circulat ion 

intervals. The computed resul ts  show tha t  representation of the  continuous 

circulat ion dis t r ibut ion by as  few as four piecewise uniform intervals 

is adequate for  routine cmputations of the  slipstream and of the  s t -  -em- 

tubes within it. 

4. The computed slipstream shapes fo r  rotors hovering Om show 

that  the dead-air region near the hub becanes more prominent with increasing 

value of the thrust  coefficient. The slipstream contraction r a t i o  is 



nearly independent of the radial  location and of the thrust coefficient. 

The ccmputed value of the contraction ra t io  is samewhat larger than the 

value of 0.707 predicted by the axial  momentum theory. 

5 .  Computations for  rotors hovering in ground effect show that 

within the limitations of the inf ini te ly bladed model, the cmputed results 

provide a reasorlable description of the wake boundary. For a rotor 

hovering a t  a height of ten rotor rad i i  above the ground plane, the 

Marfield above about 3 radii distance from the ground ?lane is  nearly 

identical t o  that of a rotor hovering Om. 

6. A nmber of explicit  formulae useful i n  canputing rotor and 

propeller induced flars are made available for  the stream function and 

velocities due t o  distributions of circular vortices over axi-synanetric 

surfaces. 
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Figure  11, Slipatream Boundary S b p r  for Rotors Hovering 
i n  Ground Effect at Height8 of Rd and 2Rd 



EXPLICIT FORM[TIAF: FOR AXI-SYMMETRIC VORTICES 

In studies of flow f ie lds  induced by rotor- and propellers, 

information about velocity components and stream functions associated 

with various axi-symmetric distr ibutions of vortices is frequontly 

required. In the course of the  present study, exp l ic i t  formulae '-r 

thk velocity components and stream functions have been developed for 

several important distr ibutions of axi-symmetric vortices. The ttvaila- 

b i l i t y  of these expl ic i t  f o d a e  f ac i l i t a t e s  the computation of the flow 

f i e ld  associa%ed with rotors and propellers. Selected formulae considered 

t o  be of general in teres t  are presented i n  t h i s  Appendix. Of equal, 

perhaps even greater, u t i l i t y  is the approach developed for the 

derlvation of these expl ic i t  formulae. This approach can be eas i ly  

used t o  obtain expl ic i t  formulae for many additional distr ibutions of 

axi-symmetric vortices. The approach is described i n  t h i s  Appendix. 

It is worth noting tha t  analogous problems involving axi  -symmetric 

distributions of s ingular i t ies  ex i s t  i n  maqy other f i e lds  of study such 

as electrostat ics,  magnetostatics, and potential  flows about axi- 

symmetric bodies. The approach described here is eas i ly  adapted t o  

these analogous problems. For example, as an offspring of the present 

study, expl ic i t  formulae fo r  the velocity ~omponents due t o  sources 

of uniform strength distr ibuted over a circular  cylindrical  segment 

were 0btail,c3 ( ~ e f .  32) and u t i l i zed  i n  conjunction with the A. M. 0. 



Smith method ( ~ e f .  33) for computing potential  flows associated with 

l i f t - f an  inflow. 

It is well known tha t  formulae for  axi-synnnetric flows frequently 

involve complete e l l i p t i c  integrals. Complete e l l i p t i c  integrals of 

the first, the second, and the th i rd  kinds are respectively defincd as 

~ ( k )  = f & 2 2 1  o ( 1  - k s i n  a)? 

and 

n (nyc) ao! 2 2 2 2 o (1 - n s in  a ) ( l  - k s i n  a) 

The behavior of the complete e l l i p t i c  integrals are well under- 

stood. Tabulated values as w e l l  as oamputational formulae for  these 

integrals are available i n  standard handbooks of mathematical functions. 

- l ic i t  ~'ormulae i n  terms of the complete e l l i p t i c  integrals are there- 

fore conven; snt  formulae t o  employ i n  numerical procedures. Many d e f f d  '-2 

integrals involving sines and/or cosines of the variable of integration 

are expressible i n  terms o f  the complete e l l i p t i c  integrals. %or 

example, the integral  

2 = 7 s i n  a cos2 da f jsin2 - SF4 ;j2h 
'1 o (1  - k2  in * a )  312-  o ( l - k  s i n  a )  

may be reexpressed, upon integrating by parts, as 



where 

TI 

&t 
TI 

2 2 l  r' 1-k s i n  a)' dp ] - -VJo  ( 
o (1  - k2 s i n  a); k 

Thus one has 

1 
f ~ * = % [ ( 2 - k ~ ) i ( ( k ) - 2 ~ ( k ) ]  o ( 1  - k s i n  a) k (A-4) 

As  another example, consider the in tegral  

1 2 = r -  b cos @) 

By l e t t i ng  i3 = 2(cy + n/2) and recognizing that the result ing integrand 

is symmetric about cr = 0, one obtains 

- 

Rearranging the  integrand of  Eq. (A-5) gives 

4 [(2 - 2k2 + k4) -- o ( 1  - k s i n  a) 



4 k2 f (sin2 u ; sin: 1 
- k  ( 2 -  

o ( l - k  s i n  a) 

Using Eqs. (A-l), (A-2), and (A-4), one then obtains 

- 
j0 (z - s coa 13)3/2 

- - 4 2 - k  
2 

+ a)3I2 k2 
[- 2K(k) + (7) E(k) ] 

l - k  



Circular Vortex Filament 

The velocity d< due t o  an element of vortex filament d z  i s  given 

by the  Biot-Savart Law: 

@ 

where n is the strength of the  vortex filament, r '  is the position 

vector of the vortex filament, and i s  the  position vector of the 

observation point where d? i s  evaluated. 

In  a cylindrical  coordinate system (r ,  8, z) ,  with a symmetric 

distr ibution of vor t i c i ty  about the z-axis, it i s  easy t o  show tha t  the 

r and z velocity components, u and w, a re  dependent only on the 0- 

component of vor t ic i ty ,  7. Thus the basic building block fo r  the com- 

putation of u and w are  the veloci t ies  and the  stream fbnctions associated 

with circular  vortex filaments. These quanti t ies associated with a 

circular  vortex filaments sha l l  be designated by the subscript "f". 

Consider a c i rcular  vortex filament of strength n and radius R 

centered about the z-axis i n  the z = Z plane. Since u and -J are f f 

independent of 8, one obtains from Eq. (A-8) 

z ;  R ,  Z )  = - f n  
cos 8' dot 

uf ('9 
o [r2 + R2 - 2rR cos 8' + (z - z ) ~ ?  12 (A-9) 

and 

nR fn (R - r cos 8 ' )  dB' 
wf(r, 2; R,  Z )  = 2 3/2 (A-10) 

0 [r2 + R2 - 2rR cos 0 '  + (2 - Z)  ] 



where 

and 

Equation (A-9) yields, with the w e  of Eq. (8-71, 

2 3 a = [(r + R ) ~  + (z - Z )  1 

By writing the in tegra l  i n  Eq. (A-10) i n  terms of the  integrals  

i n  Eqs . (A-1), (A-2), and (A-k), one similarly obtains from Eq. (A-10) 

The stream f'unction Yf due t o  the  c i rcular  vortex filament i s  

given by 

where we have s e t  ~ ~ ( 0 ,  z; R ,  2 )  t o  be zero. 

Instead of placing Eq. (A-14) in to  Eq. (A-15) and performing the  

integration with respect t o  r ' ,  it i s  simpler t o  use Eq. (A-10) and 

integrate f i r s t  respect t o  r ' .  Thus, one writes 

UR TT Rr' - r'* cos 0 ' )  de'dr'  
Y ,  z; R, Z) = 4;; 1 [rt2 + R2(- 2r1R eos B 1  + (Z - z ) ~ ? "  



pn de' s' cos 8' dr' 
= - G .  o o [rt2 + R~ - 2r'R cos 8 '  + (z - z ) ~  1' 

2 2 
COB 8' [2Rr1 cos 8' - R - (2 - Z - ' d r '  (A-16) - G 2 3/ XRfnde'r 0 O Lr 1 2 + R 2 - 2 r 1 R c o s 0 ' + ( Z - ~ ) 1 ]  

Integrating the first double integral  by par ts  with respect t o  8' gives 

XR 12n dB1 $ R r '  s i n  2 8' d.' 
- G ?  2 

0 0 Cr + R~ - 2r'R cos 8 '  + (2 - z12?' 

One then obtains 

2 
cos 8 ' [ ~ r '  cos 8' - R  - (z - ~ ) ~ l d r '  

y f ( r ,  z; R,  Z) = - 
o [r12 + R~ - 2r1R cos 0' + (z - ~ 3 ~ 3 3 ' ~  

* r R  cos 8' del  = 
o [r2 + R~ - 2rR cos 8' + (o - z)~] '  

Letting 8' = 2 (a  + n/2), one has 

n 
TI cos 8 '  do1 4 6 (2 sin: a 1lA% 

= - 
- 2 r R c o s  8' + (z - Z12$ ' J o  ( 1  - k s i n  

Theref ore 



The velocity components u and w associated with varioua axi-symmetri- 

ca l ly  distr ibuted vortices are expressible as integrals  involving uf and wf . 
1 

Consider, as an example, a distr ibution of cLrcular vortices of consta. f t - .  

strength X over the surface of a circular  cylinder of radius R centered 

about the z-axis and extending between the planes z = el anrl z = =2* 

The vortices are i n  the 0-direction and the  velocity components u and 

w d ~ e  t o  t h i s  d is t r ibut ion of vort ices are expressible as: 

and 

Attempts have been made i n  the  past t o  place Eqs . (A-11) md 

(A-14) into integrals  similar t o  those appearing i n  Eqs . (A-20) and 

(A-21) and t o  obtain expl ic i t  formulae fo r  u and w fo r  various axi- 

symmetrj.cally distr ibuted vortices. Such attempts, hawever, have met 

only with limited success. In part icular ,  very f e w  formulae are  avail-  

able i n  the l i t e ra tu re  fo r  the velocity components and stream functions 

for  henera1 f i e ld  points. I n  the present work, an al ternative approach 

was ut i l i zed  and many new explici-t. formula were derived. 



Cylindrical Vortices 

Consider the uniform dis t r ibut ion of vortices over a f i n i t e  

circular  cylindrical  surface described ea r l i e r .  The velocity components 

due t o  t h i s  d is t r ibut ion of vort ices are, according t o  Eqs. (A+), (A-lo), 

(A-20), and (A-21): 

cos 8' dB1 
u(r, Z )  = 2 312 (A-22 ) 

o [? + R~ - 2rR cos 8' + (z - 2 )  ] 

Z 

AR r * dZ (R - r cos 8 ' )  d8' 
d r y  2) = J 2 3/2 (A-23 ) 

Z1 (; [r2 + R~ - 2rR cos 8' + ( Z  - Z) ] 

Instead of using Eq. (A-11) t o  express the r ight  side o f  Eq.  

'4-22) i n  t e r n  of an in tegral  involving complete e l l i p t i c  integrals ,  

the integration for  (A-22) i s  per-formed f i r s t  with respect t o  Z, yielding, 

AR cos 8'  d8' u ( r ,  Z )  = 2 G !  [ [r2 + $ - 2rR cos 8' + (Z  - zp) I* 

n - cos 8' do' 
2 3 12 [r2 + R~ - 2rR COB I' + (Z - z$ 1 

One therefore has, using Eq. (A-181, 



where 

Similar ly,  integrating with respect  t o  Z, one obtains  from Eq.  

(8-2 3 ) 

TI (R - r coe 0 ' )  (2 - z2) dB' 
~ ( r ,  2 )  = - hR 2 2 F{jid ( r2+~22-2 r~  cos g f ) [ r  +A -2rR cos 0' + (2 - z 2 ) 2 P  

(R - r cos 8 ' )  (Z - zl) 8' 

2 J o  (r2 + R2 - 2rR COB e1 ) [ r  + R* - 2rR COB 8 '  + (2 - zl) 

Noting t h a t  

R R - r cos 0 ' )  d 8' f 0 ( 1  2 + R 2 - 2 r ~ ( c o ~ ~ 1 ) [ r 2 + ~ 2  - 2 r R c o 8  0' ~ ( z - z I ~ $  

n 
4 

- 
R + r - 2 r  sin 

2 
I 2 2 

( r  + 1 t [ 



where 

n 

P 
k [ ( r  + R ) ~  " da 

(r + R ) ~ ( ~ R ) *  R 
d o ( 1  - k 2 s i n  2 

au - (2 - RZ) p 
R 

''0 ( 1  - n s i n  2 .)(I - k 2 s i n  2 I 

one obtains 

Equations (A-21) and (A-27) are  convenient expl ic i t  fonnulae t o  

use i n  the casputatiorr of velocit ies induced by cylindrical  vortex 

see~nents. In computing rotor induced flawfield, these formulae offer  

the  poss ibi l i ty  of representing the t r a i l i ng  vortex system i n  the s l i p -  

stream by a s e t  of vortex cylinder segments. The strength rnd radius 

of the  vortex segments may be determined In  such a way tha t  the  kinemtic  

( Y  = comtant along each vortex tube) and the  kinetic (force f ree )  con- 



d i t i o m  are sa t i s f i ed .  

The behavior of u and w as given by Eqs. (A-25) and (A-31) can 

be determined by examining the  properties of the complete e l l i p t i c  

integrals .  In  par t icular ,  it can be shown tha t  u i s  well behaved 

everywhere except a t  the ends of the cylinder, i .e .  a t  r = R and z = 

z or z,, where it possesses a logarithmic singularity. w i s  well 1 - 
behaved except on the cyliader where it changes discontinuously by the 

amount X across the cylinder. 

Equations (A-25) and (A-31) yield  di rect ly  a number of velocity 

formulae for specialized cases. Same of these specialized formulae 

have been studied by other investigators ( ~ e f .  26, 31). These specialized 

formulae include t ha t  of the velocit ies on 5he cylinder of radius R 

i t s e l f ,  the veloci t ies  on and away from the cylinder due t o  a semi- 

in f in i t e  cylinder (al = 0, z2 = =), and tha t  Cue t o  an i n f i n i t e  cylinder. 

The formulae presented here, i.e., Eqs. (A-25) and (A-31), can further 

be u t i l i zed  t o  derive an exp l ic i t  formula for  the stream fufiction. 

This formula for the stream f'unction i s  a lso  ueef'ul i n  axi-8ymmet:ic 

flawfield computations. 

Consider, for the moment, a semi-infinite vortex cylinder of 

strength A and radius R,  centered about the  z-axis and extending from 

z = z t o  inf ini ty .  The vel.city components induced by t h i s  semi- 
1 

inf in i te  vortex cylir~der sha l l  be designated ul and wl. Equation 

(A-25) gives, with z2 = =, $ = 0. Equation (A-25) therefore rechces 

t o  



Equation (A-3 ) gives 

dm n R + r  
2 

o 1 - n s i n  ~y 
' i l l  

Therefore, f o r  r < R ,  Eq. (A-31) gives 

and, for  z = z1 and r < R, one  ha^ 

The stream function Y1 for t h i s  semi-infinite vortex cylinder 

can now be evaluated by using the  re la t ion  

where the  V Y ? ~ ~ P  ',f prl i s  taken t o  be zero &lag the  z-axis. 

Placing Eqs . (A-32) and (A-34) i n t o  Eq. (A-35) and evaluating 

the f i r s t  in tegra l  gives, 



where 

Equation (A-3 7) gives 

Using Eqs, (A-1), (A-2), and (A-38), Eq. (A-36) i s  reex~ressed as 

Integrating by parts with respect t o  a gives 

Integrating with respect t o  x then yields 

B 2 A ( ~ R )  n ) r l l ~  - "I Xr [sin2. - ein4m1 do 
ul(r, 2 )  = t + 2n 

o (1 - n s i n  2 @)(I - k12 s i n  2 el6 

The integral in the above equation can be expressec? in  terms of the 

cmplete e l l i p t i c  integrals,  One ~ b t a i n s ,  af;er sane aigebraic marii- 

pulat ions, 



The s t r e m  function Y 2 ( r ,  z )  due t o  a semi-infinite vortex 

cylinder of s trength A and radius R extending from z = z2 t c  i n f k i t y  

and centered zbout the  z-axis is, frm Eq. (A-40), obviously 

By the use of the principle of superposition, one then obtains 

the following formula for  the stream function ~ ( r ,  z )  due t o  a f i n i t e  

vortex cylinder of s trength A and rad i l~s  R centered abo--t the  z-: 

ane extending between the planes zl and z, c ' 

~ ( r ,  z )  = r ,  z) - ( r ,  Z )  



For cylindrical  vortices with a non-uniform dis t r ibut ion of 

strength, expl ic i t  formulae fo r  the velocity components and for  the  

stream function can be obtained by u t i l i z ing  the approach and the  

resul ts  presented above. For example, with a l inear  distr ibution of 

. vo r t i c i t y  strength, A ,  i .e . ,  

where X1 and X2 are constants, the  velocity components and the  stream 

flmction are each expressible as a sum of two parts ,  one par t  due t o  

l1 and the other part  due t o  A2z. The par t  due t o  A1 has already been 

expressed i n  terms of the comglete e l l i p t i c  i n t e g r a h  [Eqs. (A-25), 

(A-31), and (A-k)]. To demonstrate the procedure fo r  establishing 

expressions for  the par t  due t o  %z, consider the rad ia l  velocity u .t 

z X R  2 TT r z(z - z)  dz cos 8' d8' 
Z )  = ,, 2 3/2 (A") 

Z 1 
[ [r2 + R2 - 2rRcos 8' + (2 - Z) 1 

Equation (A-44) may be rewritten as 

" ( r2  + R2 - 2r  R cos 8 ' )  cos 8' dB' 
2 3/2 - 2r  R cos 8' + ( 2  - Z) I 

2n 
cos 8' do' 

z1 [rC 
+ R2 - 2rR cos 8' + (2 - 2l2 l3I2 

h2R z2 r2" cos 8' 68' 
(A-45 ) - K dZ 

+ $ - 2rR cos 8' + (2 - z ) ~ ] *  
z1 0 rr 



The double integrals in  Eq. (A-45) can be re8diiy expressed i n  t e r n  

of the cunplete e l l i p t i c  integrals using the emroach presented' earlier. 

In particular, the first double integral is easily wrpr&sed i n  t e r m  

of the complete e l l i p t i c  integrals by f i r s t  performing the integration 

with re--,-ect t o  Z. Th3 second double integral is identical t o  that  

appearing i n  Eq. (A-22), which has been expressed i n  tern of the com- 

plete e l l i p t i c  integrals [Eq. (A-25)]. The th i rd  double integral is 

easily shawn t o  be equivalent t o  the second integral appearing i n  Eq. 

(A-35), which again has been expressed i n  terms of the camplete e l l i p t i c  

integrals. 



Annular Vorticee 

Consider a distr ibution of circular  vortices of strength X /R, 3 
where A is a constant, over an annular surface i n  the z = Z plane. 

3 
The surface extends from r = rl t o  r = r 2 ' 

The velocity components due t o  t h i s  annular vortex surface are, 

according t o  Eqs. (A-9) and ( A - l o ) ,  given by 

13(z - Z)  t2 ,277 cos 8' de' 

U(r9 Z ) = ~ ~  r d R J o  I? + R2 - 2rR + - z)233/2 (A-46) 
1 

Integrating with respect t o  R gives 

A ( z - 2 )  2l-r cos 8 '  (r2 - r cos 8 ' )  dBf 
r ,  = -+ [j 2 2 2 2 2 

o [r + ( z - z ) ~  - r coa B] [r + r: - 2rr2cosd+(z-Z) ]$ 

cos e t ( r l  - r cos 0 ' )  d0' 

2 2 2  2 [r2 + ( z )  - r cos 81 [r + r12 - 2 rrl cos + (z - z ) ~ ] *  
(A-Yi) 

A 2n 
w(r, z )  = - d8' 

+cZ-Z,2P (A-kg ) 
'do [r2 + R~ - 2 r R cos 8 

It i s  eaey t o  show, by letting 8'  = 2(@ + n/2) and w i n g  p a r t i a l  

fractions, tha t  

79 



2n cos gt  (R - r cos 8 ' )  dBt 
j - cr2 + (Z - z12 - r2 cos2 0 1 1  [r 2 + - R ~  - 2r R coa e t  + ( z  - 2)*lf 

E 
4 2 

- 18 (2 s i n  - 1)(R + r-2rsin2o)d - 2 2 2 2 
z z 2 r  + + ( z - z ) ~ ?  ' o  (1-mlsin .)(I- + %sin a )  (1-k si: o P  

- - -  da 
2r 2  2  2 

o ( l - m l s i n  ~ j ( l - k  s i n  a)' 

where 

IJsiw Eqs . (A-1), (A-3), (A-44) and (A-48), ane then obtains 



it is easy t o  show t h a t  Eq. (A-45) gives 



Accordin; t o  Eq. (A-17), t he  stream f'unction due t o  the  annular 

vortex surface is given by 

n r p2.2 
~ ( r ,  2 )  = & cos 8'  d0' 

T (A-57) 
r 1 .c [? + R~ - 2rR cos 8 '  + (z - z ) ~ ] ~  

Integrat ing by p a r t s  with respect t o  0 '  yie lds  

Ar" '2 +!TI - 2 
~ ( r ,  z )  = +- d~ j 

R s i n  Q 1 d Q '  

r 2 3/2 
1 

o [r2 + R ~  - 2 r R c o s  0' + (z - z )  ] 

2 2 2 
r2 

2n [cosQt r R  - r - ( z - z ) ~ ]  s i n  0' dB' 
2 2 (A-58) 

= J [r2 + ( z - z ) ~  - r cos Q'][r2 + R2 - 2rRcose' + ( ~ - 2 ) ~ ~ '  

The l a s t  i n t eg ra l  i n  Eq.' (A-58) can be re-expressed as 

TI 

16 2 2 2 
2 s i n  a - r - r - (z -  sin a - s i n  

z)2 .: 
a )  dp  

6(z - o (1 - k2sin2a)* (1 - mlsin2w) (1 + 9 sin2 0 )  

'Fherefore, one obtains f ~ m  Eq. (A-58) 



I t  is  clear tha t  the approach described here permits exp l ic i t  

fonnulae f o r  the velocity components and stream function t o  be obtained 

f o r  other types of d is t r ibut ion of vort ices i n  annular regions. 



APPENDIX B 

OPTIMUM PERFORMANCE OF ROTORS AND 

PROPELTXRS IN AXIAL FLIGHT 

Equations relat ing the thrust  and the power of rotors or pro- 

pel lers  i n  axla1 f l i gh t  t o  the velocity cm~*-,rlents in  the ultimate 

wake can be established rigorously by a simple extension of the analysis 

of Chapter I V .  They are: 

and 

where waD i s  the ascent speed of the rotor or the advance speed of the 

propeller. 

The re la t ion between the  axia l  and tangential  velocity components 

i n  the ultimate wake, which a lso  can be established rigorously by an 

extension of the analysis of Chapter I V ,  is : 

W 
2 2 v 2 3 2  

W - =  W, W vw 
n v W r w + - - - +  r -az 

2 -. 2 2 J r 
03-3 

rw 

Following the approach described i n  Chapter I V ,  a perturbation 

Avw i n  the tangential velocity is introduced at rw = a and the  result ing 
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changes i n  the axial velocity distr ibution,  the power, and the thrust ,  

are  sowht.  It is  obvious from Eq. (8-3) that the relation between 

- the tangential velocity perturbation and the chnge i n  the axial  

velocity distr ibution is not a l tered by the  preeence of a non-zero 

speed of  advance. Consequently, since Eq. (B-1) also i s  independent 

of wm, the expression for  the  change i n  poker previously developed for 

the hovering rotor i s  applicable t o  the  present case of a non-zero 

speed of advance. One therefore has 

The change i n  thrust  is dependent on wm and is 

Equations (B-4) and (B-5) may be canbined t o  express AP i n  the 

f om 

hP = h(a) &I (3-6 ) 

where h(a)  i s  a function only of a, the location where the  tangent id  



velocity perturbation i s  introduced. Following the analysis of Chapter 

IV, the c r i t e r ion  fo r  optimum performance i s  t ha t  h(a) i s  a constant, 

independent of a ,  In  other words, the  c r i t e r ion  for optimum performance 

is 

where N is  a constant. 

It is easy t o  show tha t ,  upon set t ing ww = 0, Eq. (B-7) reduce8 

t o  the optimum performance c r i t e r ion  previously obtained fo r  the hover- 

ing rotor,  

A d i f fe ren t ia l  form of the optimum performance c r i t e r ion  i s  

obtained by dj' erentiat ing both sides of Eq. (B-7) with respect t o  rw. 

The maul '.~n(: equation re la tes  the derivative8 dvJdrw and &w$drw. 

Diffc~%ntiat ing Eq. (B-3) with respect t o  rw yields a second equation 

rclat ing dvddr, and dwJdrw. After some algebraic m a n i p u ; 8 t h  , one 

then obtains the following two f i r s t  order d i f fe ren t ia l  cquat ion~:  

d'", N N 

- =  a? 7 (F - vw)[2G; $ - Ej(4Fw - vw) wv 

d.', 
W W W  



- - u  - 2 + [3ANrw + vwrw(5Tw - sw)w)l ww 

- [NA + air 1 F ~ ( <  - %l2 I/F 
W W 

where 

A = W J ~ R ~  is a non-dimensional advance speed, and 7 art ve loci ty  
W W 

H 

mmponents non-dinensionalized with reference t o  O I ( ~ ,  < and N are non- 

dimensional r and N wi th  r-~ference t o  Q. 
W 

At the rim of the ultimate wake, Eq. (B-3) give8 

Taking- the upper limit of the integral i n  Eq. (B-7) t o  be Rw, 

one obtains 

Equations (B-8) through (B-12) pennit the canputation of optimum 



H 

dlstributiona vw and ; for any given values of and A, or, alterna- 
W 

t i v c l y  7 and A. An iterative method for computing Yw Md i s  
w( 1 

W 

described i? Ref, 27 for various values of G . Samgle results are 
Wo 

presented in Ref, 30. 
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