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SUMMARY

Studies of rotor and propeller performance and induced potential
flowfields are made on the basis of a rotating actuator disk concept,
with special emphasis placed on rotors hovering out of ground effect.
A new theory for the optimum performance of rotors hovering OGE is
developed and presented. An extended theory for the optimum performance
of rotors and propellers in axial motion is also presented. Numerical
results are presented for the optimum distributions of blade-bound cir-
culation together with axial inflow and ultimate wake velocities for
the hovering rotor over the range of thrust coefficient of interest in
rotorcraft applications. Shapes of the stream tubes and of the velocities
in the slipstream are obtained, using available methods, for optimum and
"off-optimum" circulation distributions for rotors hovering in and out of
ground effect. Results of the optimum performence study show that
improvements made possible by the present performance theory, which fully
account for the effects of slipstream rotation, is important to the
optimum circulation as well as to the power and the thrust requirements
of the rotor in the higher thrust coefflicient range. A number of explicit
formulae useful in computing rotor and propeller induced flows are pre-
sented for stream functions and velocities due to “istributions of cir-
cular vortices over axi-symmetric surfaces. The computed slipstream
shape shows that the assumption of a uniform contraction ratio is
reasonable and that, within the limitations of the infinitely bladed model,

the computed results provide a reasonable description of the wake voundary.
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NOMENCLATURE
radial location ol perturbation in the ultimate wake
contraction ratio
power coefficient defined in Eq. (56)
thrust coefficient defined in Eq. (55)
domain of integration consisting of the rotor slipstrear
unit wvector
complete elliptic integral of the second kind
function defined in Eq. (B-10)
body force vector
Green's function for the streamfunction defined by Eq. (23)
Green's function for the axial velocity defined by Ea. (77)
fraction defined by Eqs. (43) and (B-6)
total head of the fluid
modulus of elliptic integrals
modulus defined by Eq. (A-26)
modulus defined by Eq. (A-27)
modulus defined by Eq. (A-54)
modulus defined by Eq. (A-55)
complete elliptic Integral of the first kind
indicates the Lth segment of constant circulation
total number of segments of constant circulation
characteristic defined by Eq. (A-51)
characteristic defined by Eq. (A-52)

figure of merit defined by Eq. (54)
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the "characteristic" of elliptic integrals of the third kind
unit outward normal vector to the control volume

8 constant defined by Eq. (45)

statlic pressure of the fluld

power expended by the rotor

velocity vector

radial coordinate in 4 cylindrical coordinate system
poeition vector of an observation point

inner radius of an annular surface

outer radius of an annular surface

position vector of a vortex filament

radial location of a vortex filement

raedius of the rotor or propeller disk

radial location of the Lth discontinuity in disk circulation
radius of the slipstream in the ultimate wake

radius of a control volume centered at the rotor hub

annular element of area

arc length of a vortex segment

the portion of the control surface which is cut out by the
wake slipstream

the portion of the control surface excluding Sl
time

thrust of the rotor

radial component of the velocity

tangential component of the velocity

axial component of the velocity

iv



W constant value of the axial velocity in the ultimate wake within
a streamtube of constant cirewlation

X is defined as 1&2
2z axial coordinate in a cylindrical coordinate system
Z axial location of a vortex fllament
o variable of integration of elliptic integrals
Y vortex strength per unit length
r bound circulation at the disk
6 function defined by Eq. (A-12)
A indicates a perturbed value in the ultimate weke
€ perturbed value of the angular velocity in the ultimate wake
C axial component of vorticity
Ul tangential component of vorticity
8 tangential coordinate in a cylindrical coordinate system
i ) vor :ex filament strength
A vortex strength per unit length
| N constant in Eq. (A-43) defining a linear vortex strength
Ao constant in Eq. (A-43) defining & linear vortex strength
13 constant for vortex strength on an annular surface
A advance ratio defined as w_/OR 4
g radial component of the vorticity
1 complete elliptic integral of the third kind
‘ { ) density of the fluid
Y stream function
6;‘ vorticity vector
v} angular velocity of the rotor



Superscripts

indicates a variable of integration

denotes a dimensionless variable defined by Eq. (k9)

Subscripts

4 denotes a variasble at the rotor disk

f refers to a quantity induced by a circular vortex filament
m indicates a value on the mth vortex tube

W refers to a value in the ultimate wake

indicates a variable at the rim of the slipstream in the
ultimate wake

denotes a value in the undisturbed freestream
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1. LNTRODUCTION

The development of a sultable theory for predicting the flow
field induced by a rotor has long been & central problem of rotoreraft
aerodynamics. Since the flowfield induced by the rotor is ultimately
responsible for the aérodynamic and dynamic behaviors of the rotorcraft,
improvements in methods for predicting the flowfield contribute to the
advancement of rotorcraft design in varlous ways.

The case of a rotor in hover is of special importance in & number
of practical problems. These problems include the familiar operational
problems, the problem of downwash impingement which leads to a grcund
boundary layer and particle entraimment, the problem of tail rotor
behavior when immersed in the slipstream of a main rotor, and the
problem of rotor performance. The general subject of & rotor in for-
ward flight involves, of course, many additional important problems and
is more complicated than the hovering case. It is generally expected
that a thorough understanding of the latter will precede and then con-
tribute substantially to research of the former. The hovering case,
however, is in itself of such complexity that a theory sufficiently
accurate and yet simple enough to be used as a design tool is yet
unavailable. The development of such a theory 1s emphasized in the
current literature.

A hovering rotor is a special case of a propeller, with zero
advance velocity. Marine and aircraft engineers have long beer -opn-

cerned with propeller aerodynamics. In the majority of situations of
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interest to the propeller aerodynamicist, however, the propeller-induced ¥
velocity is small in comparison with the propeller's velocity of advance.

As a consequence, the propeller aerodynamicist is accustomed to simplifi- .i
cations that are not necessarily valid for the hovering rotor problem.
Propeller theories therefore do not usually go over to rotor theories .
in a straight forward manner and predictions based on generalized .
propeller theories do not always correlate well with experimental dats

for rotors (Ref. 1).

Of the several problems mentioned earlier, the problem of pre-
dicting the rotor performsnce in hover out of ground effect (OGE) is
particularly important. Rotorcraft are typically required to be able
to hover OGE when occasion demands. Since the power required for a
rotor to develop a given amount of thrust is the greatest during hover
0GE, the payload capability of the rotorcraft is generally limited by
the hovering performance OGE. Moder:. rotorcraft characteristically
have small ratios of payload to gross weight at take off. Consequently,
erro.s in the predicted hovering performance are amplified in the cal- ;
culation of payload capability. For example, with a payload to gross
weight ratio of 1/5 at take off, a 5% error in the prediction of hover-
ing thrust means a 25% error in the predicted payload capability.

In recent years, a sizable effort has been in progress to
establish sultably simple, yet sufficiently accurate theories and
methods for predicting hovering rotor performance and induced flowfields.
A review of the state of art of the hovering rotor problem is presented
in Section II of this report. This review shows that, although recent

progress in this area has been extensiva, there still exists a need to



improve upon the available theories and methods for modern rotors with
high rotational speed, solidlity, and disk loading.

The purpose of this report is to present recent researchk -e.usts
thet serve to supplement the available theories and methods. In parti-
cular, an improved theory for the optimum performance of hovering rot-rs
is presented. This theory is based on the actuator disk conceri and
therefore subject to some of the limitations of the well known general
momentum theory. The correction factcr for finite number of blades
must be estimated separately, for example, by an extension of Lerbs'
method (Ref. 2) for heavily loaded propellers. The improved theory,
however, is more complete in that it fully accounts for the effects of
slipstream rotation. This improvement is not important in the case of
a lightly loaded rotor, but has finite contributions to thrust and to
pover reqQuirements of a heavily loaded rotor. The improved theory per-
nits the computation, in a straight forward manner, of the optimum
distributions of circulation and inflow velocity over the rotor disk.

These distributions, along with the figure of merit and the optimum

power coefficient, are presented for several values of the thrust coeffi-

cient.

In addition to the optimum performance theory, flow fields induced

by the infinitely bladed rotor hovering i1, as well as out of, ground
effect are presented for several cases of optimum and off-optimum cir-
culations. The computation of the flowfields is based on the integral
fo.mulation of Ref. 3. The numerical procedures a:‘e those of Ref, 5,
Several .seful analytical expressions developed during the course of

this research in connection with the computational approach are pre-
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sented in Appendix A of this report. A generalized optimum performance
theory applicable to rotors (or propellers) in axial motion is presented
in Appendix B.
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II. BACKGROUND

In recent years, the search for better methods of predicting
rotor induced flowfield and associated performance in hover yielded

a copious volume of literature on the subjJect. Several recent arvicles

contain comprehensive bibliographies (Refs. 6 and 7) of the earlier work

as well as review and reassessment of "classical" theories. The brief
discussion given below provides a summary account of previous theories
and present efforts. Only a few per“inent articles are referred to
here. In many cases, & large number of articles exist which are based
cn essentially the same approach. Only one representative article is
then mentioned.

As mentioned earlier, a hovering rotor is a speclal case of a
propeller, with zero advance velocity. In the following discussion,
however, the term "propeller” is used “o lescribe only the case where
the velocity of advance is of prima~y importance. The term "rotor" is
used to describe the stetic propeller or the hovering rotor.

The majority of recent articles on rotor theory are concerned
with the important problem of optimum performance. The central task
in the performance study is the determination of a distribution of the
rotor iaflow velocity, over a given rotor disk, that leads to 3 minimum
amount of power expenditure for a given amount of thrust. This infor-
mation, when used in conjunction with the well known blade-element
theory. permits the prediction of the performance limit and of the

required radial distribution of circulation in order to approach this
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limit. It thus provides a 1aticnal basis for blade design. The pre-
diction of the optimum rotor performance, however, does not necessarily
require & knowledge of the flowfield away from the rotor disk. In fact,
the major portion cf existing literature on rotor theory avoids the
evaluating of the entire flowfield and treats the subject of optimum
inflow velocity and optimum performance by themselves.

The earliest performance theory was the axial momentum theory
based on the actuator disk (infinitely-bladed propell.r) concept for
propellers (Refs. & ard 9). Within the context of this theory, the
propeller operates without any frietional drag on the blade and induces
no rotation in the slipstream. Since the flow upstrean of the pro-
peller disk is also irrotational, the tangential velocity component at
the disk is zero., It follows from the Kutta-Joukowski theorem that
the disk cannot be subjected to a 1lift force. Disregarding this incon-
sistency, two well known conclusions were obtained: first, an optimum
propeller is one with a uniform axiael velocity at the propeller disk,
and second, when applied to a hovering rotor, the minimum pow - coeffi-
cient is equal to the thrust coefficient to the 3/2 power divided by
the squcre root of 2. The theory provides no information on the radial
distribution of circulation over the disk and consequently nc indication
as to how the blades should be designed for optimum performance.

In general, the energy lcss due to the rotational motion in the
slipstream of a propeller is small, The neglect of the slipstream
rotation was therefore thought tc be justified for the purpose of pre-
dicting the performance of propellers. The actual performance of pro-

pellers, however, generally does not meet the expectation of the axial
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momentum theory even when the various loss factors, not including the
slipstream rotation, are taken into account. This deficiency is
explained by the general momentum theory, whici incorporates a pro-
cedure to account for some of the effects of slipstream rotaticn. OCne
of the major conclusions of the general momentum theory is that the
slipstream rotation, though small in terms of the energy content, exerts
an important influence on the optimum distribution of inflow velocity
over the propeller disk. A detailed presentation of the general
momentum theory is given in Ref. 10 which also contains a presentation
of efforts directed toward the study of helicopter rotors. The general
momentum theory does provide information on the optimum distribution
of circulation over the disk. The solution as given in Ref, 10, how-
ever, is approximate and only partially accounts for the effects of
slipstream rotation. Some of the neglected effects are of importance
in the study of hovering rotors. For example, the conservation of
angular momentum in the slipstream requires an exchange of energy
between the rotational mode and the axial mode to accompany the con-
traction of the slipstream. The effect of this exchange of energy is
neglected in the theory. For propellers where the velocity of advance
is large comperced to the induced velocity, the contraction is small
and the neglect of the energy exchange is justified as long as the
rotational energy is not excessively large. For hovering rotors, the
ultimate wake cross-section is, to the first order, one half the size
of the rotor disk. The exchange of energy the-efore has a significant
influence on the optimum distribution of circulation over the propeller

disk for the situation where the rctational energy 1is not extremely small.
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For rotor applications, it is therefore desirable to improve on the
general momentum theory by fully accounting for the effects of slip-
stream rotation,.

Until very recently, the theory which represents the current
state of the art for routine calculation of propeller performance was
the well-established vortex theory. The basic vortex theory represents
the wake trailing the blades by a distribution of concentric cylindrical
vortex sheets. These vortex sheets describe the radial variation of
the blade circulation and thus imply an infinite number of blades. The
effect of a finite numbe, of blades is obtained approximately by Betz
and Prandtl (Ref. 11) using a tip loss factor. An improved analysis
by Goldstein (Ref. 12) represents the trailing vortex sheets in the
ultimate wake, for optimum performance, by dis rete helicoidal surfaces
of constant helix angle and moving as rigid surfaces. Goldstein's work
formed the basis of much of the subsequent analyses by Lock, Theodorsen,
Lerbs, etc., (Refs. 13, 1k, 15, 2 and 17) that proved to be sufficiently
accurate for predicting propeller performance. The use of the vortex
theory for predicting rotor performance, however, yielded overly opti-
mistic results at high disk loadings (Ref. 1).

The convinuing requirements of higher rforward flight speed and
larger rotorcraft, coupled with the need to keep the rotor small from
weight and operational flexibility considerations, led to the develop-
ment of rotors with higher rotational speed and disk loading. This
resulted in increased inaccuracy of the vortex theory in predicting the
rotor performance. Reviews of the vortex theory suggest that the wake

contraction, the slipstream rotation, and the associated non-uniform

8
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inflow are the factors that contribute most to the inability of the
™ vortex theory to predict the hovering rotor performance accurately.
% This contention 1s supported by recent results obtained from the

} ~ 8 numerical. computation of the entire rctor-induced flowfield.

In the numerical methods, typically, each rotor blade is repre-
sented by a lifting line with piecewise uniform circulation. The
vorticity in the slipstream is represented by a number of discrete
vortex filaments whose strengths are related to the disconpinuities
in circulation at the blades. ZFach vortex filaments is in turn approxi-
mately by a number of straight segments. If the geometry of the trail-

ing vortex system is known, then the use of the Biot-Savart Law and the

blade element theory yields a set of simultaneous equations. The
solution of this set of equations gives the distribution of blade-
bound vortex strength and hence also the trailing vortex filament
strengths. The computations of velocities induced by the complete
vortex system at all points in space, including those on the rotor disk,
and of the thrust, the power, and the performance of the rotor are then
straight forward.

For some rotor configurations and thrust levels, flow visuali-
zation studies have yielded useful wake geomecry data. Methods that
utilize experimentally obtained wake geometries in the numerical Biot-
Savart Law approach described above are often referred to as the "pres-

cribed-wake" analyses (Refs. 18, 19). For cases where experimental

data permit the establishment of an accurate model for the wake geometry,
the prescribed-weke analyses have yielded results in good agreement with

experiments for overall performance (Ref. 7). For a general application
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of the prescribed wake approach, however, accurate experimental dats

g

about the wake geometry must be avallable for a wide range of rotor
configurations and thrust levels.

To remove the empiricism inherent in the prescribed wake approach,
several researchers have developed methods which generate the wake geo-
metry as a part of the computation procedure. This approach, sometimes
referred to as the "free-wake" analysis (Ref. 20), employs an iterative
or a time-step procedure to find, for a glven rotor configuration, an
arrangement of the vortex system which exists in "force-free equili-
brium". The free-wake analysis generally incorporates s procedure to
account for the convection of the vortex segments with the fluid but
neglects the process of viscous diffusion. The analysis requires a
relatively large amount of computer time for each combination of rotor
configuration and thrust level. In order to determine rotor configur-
ations that would give the optimum performance, a parametric study
involving a large number of geometries must be studied. The amount of
computer time required by the free-wake analyses in optimum performance
studies is therefore extremely large. Also important is the fact that
* 1ally the free-wake analyses do not accurately predict the geometry
of the wake in the region very near the rotor disk (Ref. 21) where the
vortex system contributes greatly to the inflow velocity at the disk.
For these reasons, the present utility of the free-wake analyses for
decign purposes is limited.

One advantage of the numerical Biot-Savart Law approach is that,

in contrast to the previous theories which answer only the questions of

P T LN

perrovmance, this approach provides information on the flowfield

10




surrounding the rotor as well. It must be recognized that the approach
in use today is based on the inviscid flow analyses and its ability to
accurately predict the rotor induced flowfield is subject to important
; i limitations. In this regard, it is noted that a new numerical method
: E . which utilizes a generalized Biot-Savart Law and accounts for the
process of viscous diffusion of vortices has been developed recently
(Ref, 22). This method is applicable to the rotor problem.

In the inviscid numerical approach, each rotor blade is typically
g represented by a lifting line with piecewise uniform circulation., Thus,
in addition to neglecting the viscous diffusion which tends to spread
* the vortex sheets into volume distributions of vorticity, the inviscid
approach further lumps the surface distribution of vortices into vortex
filaments for computational conveniences. A method formulated by T. Y.
Wu (Ref. 3) for heavily loaded propellers, in contrast, utilizes the
actuator disk concept and distributes the blade-bound vortex azimuthally
over the propeller disk in an axi-symmetric manmner. The trailing vortex
sheets are now represented by a volume distribution of vortices in an
exi-symmetric flow. The kinematics of the flow is formulated in terms
of Stokes' stream function and the rotational velocity component. By
the use of a Green's function, = non-linear integral equation for the
stream function is established, allowing the solution for the stream
function by successive approximations. The flowfield is thus formulated
as & boundary value problem with a prescribed arbitrary radial distri-
bution of circulation at the disk. The integral formulation of T. Y.
Wu for the calculation of the stream function requires numerical quad-

rature of a triple integral containing a product of Bessel's functions

n
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as the integrand. Two of the three ranges of integration are infinite.
For these reasons the computational effort required, though less than

the Biot-Savart Law approach, is still considerable.

Greenberg et al. (Refs. 4 and 5) utilized the integral formulation

to compute flowfields induced by rotors with prescribed uniform and
piecewise uniform circulation distributions. The Green's function in
the integral formulation i1s recognized in their works as the stream
function due to a circular vortex filament. By expressing the Green's
function in terms of a Legendre function, the flowfield computations
were accomplished reasonably rapidly. Similarly, Chaplin (Ref. 23) and
Cox (Ref. 24) used the integral formulation in studies of axi-symmetric
flows.

The actuator disk concept enjoys & substantial advantage in its
relative simplicity. Results obtained on the basis of the actuator
disk concept have been successfully used in the past as basic bullding
blocks for the understanding of the practical problem of a rotor with
a finite number of blades. For example, with the optimum distributions
of clrculation over infinitely-bleded rotor disks derived from the
general momentum theory, the effect of a finite mumber of blades is

obtained approximately by using Prandtl's formula (Ref. 11). Also,

Greenberg and Kaskel's flowfield results for the infinitely-bladed rotor

has been used by Erickson (Ref. 6) in a prescribed weke analysis. The
research reported in the present work utilizes the simplicity offered

by the actuator disk concept, but incorporates certain effects of slip-

stream rotation which have been neglected in previous theories for rotor

performance.
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III. GENERAL FORMUIATION

Consider a rotor hovering OGE in an incompressible and inviscid
fluld. Following Prandtl's lifting line theory, each rotor blade is
represented by a blade-bound vortex filament directed radially., If
the strength of this vortex filament, i.e., the blade circulation,
varies with the radial distance fram the rotor axis, then there exists
a vortex sheet trailing each blade. Within the context of the actuator
disk concept, the total circulation of the several blades of the rotor
is considered to be distributed uniformly over an infinite number of
thin blades, each with & vanishingly small chord width. The discrete
vortex sheets trailing the lifting lines (blades) are replaced by 2
volume distribution of vorticities within the slipstream. The problem
is then time-independent and axi-symmetric about the rotor axis in a
reference frame at rest relative to the fluid at infinity. That is,
in a cylindrical coordinate system (r, ©, z) with the origin at the
center of the disk and the z-axis coinciding with the rotor axis and
pointing downstream, the flow parameters are all independent of the
g-coordinate and of the time t. The tangential, or 6-, component of
the velocity vector, however, is not zero within the slipstream.

The general flow features for the hovering rotor OGE are shown
in Fig. 1. For the present problem, the entire flow is induced by the
rotor. Consequently the entire region outside of the slipstream and

the blade row is "upstream" of the rotor.

13
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The differentlal equations describing the flow are the familiar

continuity and momentum equations:

v:3=0 (1)
and
- by - l = =
(q-v)q=-;vp+F (2)

where ; stands for the equivelent body force exerted on the fluid by

the blade elements. The boundary conditions are ‘hat q vanishes infinite-
ly upstream of the rotor and is independent of z infinitely downstrean,
i.e., in the ultimate wake.

For axi-symmetric flows, Eq. (1) can be rewritten as

L2+ ¥=o (3)

where u and w are the radial and axial velocity components respectively.

Therefore a Stokes' stream function y(r, z) exists such that

-3 ®
and
w--%-g—} (5)

The flowfield is therefore completely determinate if § and the tangential
velocity component v are lknown.

Introducing the vorticity vector B defined oy
w=vVxq (6)

b
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one obtains the components of » in terms of § and v:

and

W (rv) (9)

The momentum equatlion can be rewritten in terms of 3 and the

total head H as

dxg=VH-F (10)
where
R, L
H=p+2 (11)

Outside the blade row, f‘. = 0 and therefore § * YH = O and ® VH = 0.
Consequently, the gradient of H is perpendicnlar to both the velocity
vector and the vorticity vector. In other words, the total head of the
fluid is a constant along each stream tube except at the blade row
where it may undergo an abrupt change. Upstream of the rotor, there-
fore, the total head is everywhere equal to the static pressure of the
fluid far upstream divided by the density. Inslde the slipstream, the

total head is a function of the stream function only:

P
H= -: upstream of the rotor (12)

15
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= f(y) inside the slipstream

Noting further that outside the blade row, since F = © und the 6-
component of VH 1s zero because of axi-symetry, one has

(i'xB)'39=0

or
3 9 (mw)=o0 (13)

Consequently, outside the blade row, the gradient of rv is perpendicular
to the velocity vector. In other words, the angular momentum of the
fluid remains a constant along each stream tube except at the blade

row where it may undergo an abrupt change. Since the angular momentum
of the fluid is zero far upstream of the rotor, the angular momentum

is zero everywhere outside the slipstream. Within the slipstream, the

angular momentum is a function of the stream function only:
vr = 0 upstream of the rotor (1)
= g(y) inside the slipstream

Consider the fluid passing the disk at r = ry 88 shown in Fig. 1.
Equation (14) states that the tangential velocity component v of the
fluid is zero on the upstream side of the disk and may be non-zero on
the downstream side. Let v. be the tangential velocity component of

qd
the fluid on the downstream side of the disk. There exists then a

16
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discontinuity in v at the disk described by a distribution of radially
directed vortices at the disk of strength vd. The circulation of the
blade-bound vortices at Ty is therefore 2nrdvd. The tangentiai velocity
at the disk is ﬁvd in the principal value sense.

Within the context of the actuator dlck concept, the blade-bound
vortices are radially directed and axi-symmetrical. Therefore,
the axial and radial velocity components of the fluid are both continuous
at the disk. The continuity of the axial velocity at the dlsk is of
course consistent with the law of conservation of macs.

Kutta- Joukowski theorem gives the 1ift (or thrust) and drag

forces on the annular element of the disk dsd = 2nrddrd as follows:

4T = p(nrd - Vd/a) ‘Vd de (15)

dD= p ds (16)

¥a Ya %4
The rate of work done, or power expended, by the disk element dsd is

therefore -

dP=Qrdd'D

= Wy vy Ty dsd (17)

The total thrust and total power of the rotor are obtalnable by inte-

grating Eqs. (15) and (17) respectively over the disk. -
The mass flow rate through dsd is Wy dsd. Therefore, from Eq.

(17), one finds the increase in total head across the rotor disk to be

nvd rd. The total head on the downstream side of the disk is therefore

JORY S
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H "?”"’d (18)

a Ta

According to Eqs. (12) and (14), H and vr are both functiors of ¥ only

in the slipstream. One therefore has, from Eq. (18), ia the slipstream

g% aq a%' (vr) (19)

The radial component of Eq. (10) gives

'

v{ -wl= %g = %% 9 (20)

By using Egs. (7), (9), (19), and (20). one obtains

N= - (Or--\r)%gwEZ (21)

Consider now Eq. (8) which relates T to 4. This equation is
readily identified with the problem of circular vortices having the
z-axis as a common axis. In many c¢lassical treatises on hydrodynamics
(e.., Ref, 25), the special case of an axi-symmetric rotational flow
with v, €, and { all zero is discussed. The present problem is more
general in that v, £ and { are non-zero within the slipstream and,
furthermore, v(= % gﬁ) and £ (blade-bound vortices) are non-zero at
the rotor disk. The differential equations relating u, w, and M to ¥
for the special case of 2zero v, £, and {, however, are identical to Egs.
(4), (5), and (8) derived for the general problem. This fact is not
svrprising since for the general axi-symmetric flow the continuity
equation does not contain v and neither the radial vorticity distribution

nor the axial vorticity distribution induces a velocity in a meridional

18
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plane. As a consequence of this fact, certal.. kinematic relations
between u. w, T and ¢ avallable in the classical treatises for the
special case of zero v, £, and { are directly applicable to the preszen*.
more general, problem., In particular, the differential equation (8) for

¥ may be immedlately recast into an integral representatioca for :

¥(r, z) = If G(r, 23 r*, z') 7' ar' dz' (22)
D
where the region of integration D covers the entire slipstream, G is
the stream function at a field point (r, z) associated wih a circular
vortex filament with unit strenr:h of radius 1' and cer*ers about the
2 axis in the plane z = 2', 7' 1s the vorticity value in the slipstream
at r', z'.

Several alternative forms of this Green's runction are available
in the literature (e.g., Ref. 25) and different authors developed
different forms in their studies of the rotor and propeller problems.
For example, an integral form involving Bessel functions of the first
kind was utilized in Ref. 3 and a Legendre function of the second kind
and the dzgree ﬁ was utilized in Refs. 4 and 5. A convenient form to

use is onz involving complete elliptical integrals (Ref. 25, 26):

2
Gegm v e -2 P {(1-5)kw -0} (e3)

where

“f (24)

Ler!
k=
[(r+r')2+ (z - 2')°

19
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n/2
K(k) = | L da (25)

° W1 - Bsin®y

E(k) = /2 ‘/ 1- kzsinaa dor (26)
o

The functions K and E are compiete elliptic integrals of the first and
the second kind respectively. Tne properties and numerical values of
these functions are readily available in mathematical handbooks.

The integral representation for §, Eq. (22) is a kinematic
relation allowing ¢ to be determined from any known distribution of
N in the slipstream. It replaces the differential Eq. (8) together
with certain boundary conditions. By putting Eq. (21) into Eq. (22),
one obtcing an integral representation equivalent to the ones derived
by T. Y. Wu and by Greerberg, et. al, (Refs. 3, 4, and 5) using Green's
functions. Greenberg et al. recognized the Green's function as the
stream function due to a ring vortex. They subsequently used a vortex
representation of the slipstream and developed an efficient method for
computing the flowfields induced by the rotor.

During tie course of the present investigation, several closed-
form analytical solutions have been developed for the stream function

and for velocities induced by several uniform and linear distributions

of circular vortices over finite circular cylinders and annular surfaces.

The solutions are expressed in terms of complete elliptic integrals

and are presented in Appendix A of this report.
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Iv. OPTIMUM PERFORMANCE THEORY

The Ultimate Wake

Consider the rotor hovering OGE. As shown in Fig. 1, the slip- LR
stream contracts downstream of the rotor and forms the ultimate wake
far downstream where it no longer contracts. Thus, in the ultimate wake
the radial velocity u vanishes and the flow is independent of the axial
coordinate z. The fluid passing through the disk element dsd passes
through the annular element dsw = 2'nrw drw in the ultimate wake as

shown in Fig. 1. By the law of mass conservation, one has

Wy dsy =W, ds_ (27) ;
Equation (14) gives
Vg Tq = Vy T (28)

(17) ov.
W W
ar. = T (29)
w w ;

This equation states simply that the centrifugal force of the fluid is
balanced by the radial pressure gradient in the ultimate wake. Consider
a spherical control volume of radius R centered at the origin of the
coordinate system. The control surface conslsts of two parts Sl and 82,
where Sl is & cross section of the slipstream and 32 is the remeining

portion of the sphere. At large distances from the rotor disk, the
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action of.the rotor on the fluld outside the slipstream is equivalent
to that of a sink, the strength of which is equal to tie volume rate

o: flow passing through the disk, and is finite, Therefore, in the
limit as R = =, p =p_ + O(l/Ru). Therefore the static pressure at the

rim of the ultimate wake is p . Equation (29) therefore gives
[- -}

wvw
Pp-P,=p ) — dr (30)

Equation (12) requires H =H;. It follows from Egs. (14), (18), and

(30) that
p V. 2
= X w W
%'p+“"wrw+f —dr (31)
Tw
However, in the ultimate wake, since u, = O, one has
2 2
P Vi Y
R=pt2ete (32)
Therefore
2 2 2
Y Vw J‘Rw Vi
T OV Tt T (33)
w
At the rim of the ult 'mate wake,
v 2 v 2
W, LA )
7 =0 R ()

Consider again the control surface described earlier. The momentum

theorem gives the following expression for the total thrust of the rotor

23




2 - 2 -
r=[ @+pd)E T a4+ @raHBT @, ()
8 S
1l 2
where n is the unit outward normal vector on Sl and S2' As R = o, LI
integrand in the second integral goes to P, + O(lﬂh). Therefore the
second integral gives - _c(anz). Equation (35) therefore gives, with

the use of Eq. (30) and Eq. (33),

T = 2p js [ VW(Eﬂrw - vw) + sz ] ds., (36)

1

The total power expended is, by using Egs. (17), (27), and (28),

P=mm js w, v, T ds. (37)
1

With a known radial distribution of the tangential velocity Vo
in the ultimate wake, Eq. (33) establishes the distribution of W
£quations (36) and (37) then give the thrust and power of the rotor.
A perturbation in the tangential velocity distribution therefore alters
the thrust and the power. In the following section, a criterion for
optimum performance i1s established by analyzing the changes in power
and thrv + resulting from the perturbation of the tangential velocity
distributicn. This criterion is first given in terms of the velocity
distributions in the ultimate wake. These velocity distributions will
subsequently ve related to the optimum distribution of bound vorticity,

thrust, and power.

2L




Criterion for Optimum Performence

An optimum rotor is a rotor giving a specified amount of thrust
while expending a minimum amount of power., Consider a given distribution
of tangential velocity Vo in the ultimate wake. If a perturbation Avw

in the tangential velocity is introduced as follows:

I.O , for 0« T, <a

&V, = l er, , fora<r, <a+ i (38)

0O , foura+ Axw < Ty < Rw

then, according to E+. (33), the resulting change in the axial velocity

distribution is

v, fo <
2vwa ar, e/ v r 0 r,<a

M, = Qa - Vﬁa)ae/w R for a <r_ <a+ ir, (39)
0 s for a + Arw < nw < Rw

where the subscript a indicates tha value of v is evaluated at r, = 8.

Only terms of the lowest order in ea/vwa and in pr/a are kept in each

interval of interest.

Equations (36), (37), together with (38) and (39) gives the

changes in thrust and power:

AT = 2mp(enr,) & (28 - v, ) (40)

and

o = 2npa(esr,) (a3 v (08 - v )

a5
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& V. T
redw_ +2v j LY ar } (1)

Equations (40) and (41) give

AP = h(a) AT (42)
where
2
2vwa a Vwrw
Q {avwa(na - vwa)/w'wa et a2 o o dry }
h(a) = Na - v (’43)
wa

is a function of a, the location where the perturbation of tangential
velocity is introduced.

Suppose that a perturbation in tengential velocity is introduced
at a. with resulting changes in power and thrust, APl and ATl. Suppose

1

a second perturbation in tangential velocity is introduced at a, with
resulting changes in power and thrust, AEb and AT2. By suitably select-
ing the values of eAr,w at &y and 855 the total change in thrust due to

the two perturbations is made to vanish. Then AT2 = = ATl and therefore
AP = 8P, + AP, = [h(a;) - h(a,)] AT; (blt)

Since Aml can be made either positive or negative by choosing the sign
of ¢ in Eq. (40), it will be possitle to obtain a negative value of AP
if h(a.l) #h (a,). In other words, it is possible, by altering the
tangential velocity distribution, to develop a given amount of thrust
while expending a smaller amount of power. The tangential velocity

distribution Va under consideration therefore does not zive optimum
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performance.
It follows therefore that the optimum distribution of tangential

1 and a2

arbitrarily selected radial locations, the criterion for optimum per-

velocity v, 1s one which gives h(al) = h(az). Since =2 are

formance is

h(rw) = constant (45)
In other words,
r, 3
j vw 2 fﬁ_ N 201'w L Qrw -V,
o w =g |\ ") ()
w W 4 W w

where N is a constant.

Comptation Procedure

Equation (33) relates W, to v.. As a consequence, Egs. (33) and
(46) permit the evaluation of the optimum distribution of the tangential
velocity Ve in the ultimate wake for specified values of N and Rw’

Alternatively, Egs. (33) and (46) are re-expressed in non-dimensional

forms:
v \7w2 J,l v
TNl o F (47)
r r
w
and
r o~ ~3 ~ ~ o~ o~
WV T ~ ,2r w T -V
R R
(o] ww I‘w Vw Vw ww
where

P
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(49)

From Eq. (47), one obtains at ;w =1

7, =¥ @-%OF (50)
(s} o] (o]

where the subscript "o" denotes the velocity components at the rim of

the ultimate wake. Differentiating Eq. (47) with respect to r g Yields

dﬁ; . 5 d?;
;}— = (rw - Vw)(vw + T, ;r"‘— )/'!"'w ww (51)
w W
From Eq. (48) and (50), one obtains at r, =1
~ ~ ~ é‘ ~ r ~ :~2 ~
(3 -2 v, )[vw /@ - v, ))2 + v, (vw T ﬁw) ar
o 0 0 oo
W= o _ % (52)
W

(o)

Differentiating Eq. (48) with respect to 'i"w and using Eq. (51) ylelds

4

vy ¥ wa - 2N(3rw -V /;w + vw(‘jrw B avw)"w " Ve VTw T vw) )

ar, ¥, 2 -V (R, -2 )N+ v (F, - vw)éj
28
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If the value of G; is specified, then ﬁ; is determinate from
Eq. (50). 1If, further, tge value of ¥ is given,oEquations (51) and
(53) can be re-written as & system of two first order ordinary differ-
ential equations with "initial" values specified at the point ;; =1,
i.e., the rim of the ultimate wake. Various numerical methods are
available for the solution of these equations. In the present work,
a fourth order Runge-Kutta method is used to determine the distributions
G; and ﬁ; from Equations (51) and (53) for specified values of 5; and
¥. An iterative procedure is used with which a value of ﬁ'is eutimated
for the initial iteration. The distributions -7w and v"w‘w, obtained using
this value of W from Eqs. (51) and (53) are placed into Eq. (52) to
compute a new value of N for the second iteration. The iterations con-
tinue until the value of ¥ changes insignificantly between two successive
iterations. In this manner, the optimum wltimste wake flow corresponding
to a specified value of Vw is established.

[o]
Contraction Ratio and Performance

The figure of merit of a rotor is defined by

M= == (54)

where CT and CP are respectively the thrust coefficient and the power

coefficient defined by

¢y = T/mefPR, (55)
and
Cp = P/npn3nd5 (56)
29
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For a given radius of the ultimate wake, Rw’ and a given angular
velocity ) of the rotor, the computed optimum distributions of ¥ W and W »
together with Eqs. (36) and (37) yield the corresponding thrust and
power of the rotor. In order to establish the performance of the rotor,

i.e., CT’ CP and M, however, the disk radius R. must be determined.

d
In theories cf propeller performance, it is customary to write

the thrust element in terms of the wake velocitles as follows:
2
ar = % p[(znrw - vw)vw + las, (57)

The acceptance of Eq. (57) permits the radius of a given stream tube

on the disk, r,, to be related to the radius of that stream tube in

d
the ultimate wake, rw. Equating the right sides of Egs. (15) and (57)

and using Eq. (28) gives

2
ary i [{ear, - Vw)"w twolry (58)

2
dre (znrd ~ Vu'w )vw

The boundary condition for this differential equation is

ry=0etr =0 (59)

With known distributions v, and w_, the quadrature of Eq. (58) gives r a

as a function of r W and thus, for the given value of K ? the value of

Rd.

Equation (57) obviously satisfies Eq. (36). However, it is not
the only expression that satisfies Eq. (36). Any function b(rw) which

R

{

gives | v bdr, = O can be added to the right side of Eq, (57) and the
[o]
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resulting expressicn for dr still satisfies Eq. (36). It has been
shown in Ref. 29, in tact, that no solution of Eq. (58) exists which

satisfies the boundary condition (59). Accordingly, in the present
research, an approach which does not utilize Eq. (58) is developed.

In this approach, the contrection ration
¢ = rw/rd (60)

is taken to be a constant independent of the radial location (rw or rd).

In general, the contraction ratio is a function of the radiasl
location. The results of Ref. & however, indicate that no serious
error is introduced by taking the contraction ratio to be a constant
for heavily loaded free-running propellers. Thus it is expected that
the assumption of constant contraciion ratio i1s reasonable for the
hovering rotor.

By taking ¢ inEq. (60) as a constant, Eqs. (15) and (28) yield

Qi v,
w w
dT=p(-—-—c2 -2 ) v, -, (61)

Integrating Eq. (61) and equating the right siae of the resulting
equation to the right side of Eq. (36) gives, after rearrangement of

terms,

c = [ 1+ o Y Y ] (62)

Noting that, using integration by parts,

31
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2R2 R 2
IRw 2 "ﬁb w & W dww 2
w, r dr = - I = pr ~ d4r
o v W 2 o dr' w w
Differentiating Eq. (33) gives
2 2 2
batem o, bt
w w w Ty
Placing Eq. (64) into (63) and noting that
IRW de 3 3 Rw 5
—=r 4 =v R~ -3 I v. r dr
o drw w w ww o ww w
and
2
oRdv,
J w drw r dr = v 2R e -2 o v 2 r dr
o w w wow o ¥ Wow
One then hus
Rw Y 2Rw R'w
r 2 __o 3 2.2 I 2
Jo Yo WTe T 2 nvaw + % Ve Ry ¥ Y o YTy &F

Using Eq. (34) then gives
R

I
wwrw

(o]

Consequently, Eq. (62) becomes

w
drwsaﬂ.ro Vw

o Piad

®

R

el

r 2
v

ar,,

(63)

(64)

(65)

(66)

(67)

(68)

(69)

o i -
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It 1s noted that ilhis contraction ratin is precisely the value predicted
by the axial momentum theorem.

With c known, R, immediately follows from the specified value

d
of R, (Rd =, /2 Rw)' The axial inflow velocity and the circulation at

the rotor disk are related to the axial and tangential velocities in e
the ultimate wake, The thrust and power coefficients as well as the
figure of merit can be easily evaluated from the known flow conditions
in the ultimate wake. In particular, once an optimum distribution of
Vo is established, the corresponding distribution of W Was and P, the

values of C and M immediately follow.

T’ CP’
The optimum rotor performance theory described here has been
generalized to the case of a rotor (or a propeller) in axial rnotion.

The analysis for this general case is presented in Appendix B of this

report.




/. ROT R INDUCED FLOWFIELD

A number of methods have been developed by various authors for
the sclution of Eqs. (21) and (22), with specified distribution of
disk-bound circulation (Refs. 3, 4, 5, 23, 24). The approach chr 2n
for the present work is the numerical method described by Greenberg
et al. (Refs. 4 and 5).

For the hovering rotor problem, the domain of integration in
Eq. {22) is the entire slipstream and is not known a priori. In fact,
the shape of the stream tubes boui:ding and within the slipstream is
to be established as a part of the solution. Following the approach
of Greenberg and Powers (Ref. 5), the specified distribution of circula-
tion at the disk is approximated by a piecewise uniform distribution
as shown in solid lines in Fig. 2. The disk radius is divided into L
segments at radii ry = Ro, Rl, . e RL’ with Ro =0, and R, = R,. In

L d

the 4 th semment, R < T3 <'RL’ the circulation is taken to be a

1-1
constant value r&' The trailing vortices are considered to be shed
only at the radial locations RL' The slipstream vortex system is then
represented by L discrete vortex tubes. The {th vortex trails the disk

atr, =T Equation (22) becomes

a”

L ©

y(r, z) = ¢ I G(r, z; tL" z') YL' az' (70)
L4=1"0

where tL is the radius of the 4th vortex tube and YL' is the st.rength

of the 4th vortex tube, tL' and y&' are both functions of z'.

3k
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With the above representation of the slipstream vortex system,
the vorticity in the regions between the vortex tubes is zero. The
angular momentum vr of the fluid is constant between the vortex tubes
and changes discontinuously across the tubes by the amount (I‘&l - r&)
/211. Consider for the moment a continuous, though rapid, change of
the angular momentum in the interval r = t& tor = 'uL + Ar. The
corresponding volume distribution of the tangential vcrticity 1 L is

given by Eq. (21), i.e.

1= - @ - v) 40 (71)

As Ar approaches zero, one obtains a vortex tube with strength

. : d
. v e--fo-5)He] @

The angular momentum vr at r = ¢ L is, in the principal value sense,
q
equal to % [(v-r)l’ + (vr)a_:L ] s or equivalently (FL + I"&l)/lm. Thus

Eq. (72) may be re-written as

Yo & ° {" ") mlz m) ] ( &l ) (r g‘% )Ht*, )

Using Eq. (5), one then obtains

ro-T
YLWL=—L_21T_M[Q -#(FL-"F‘HI)] (74)

where w& is the axial velocity on the 4th vortex tube in the principal
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value sense,

Equation (74) has been derived in Ref. 5 using the Bernoulli's
equation and the condition that the vorticity in the slipstream convects
with the fluid motion. The present, alternative, derivation of this
equation points out that, instead of considering the trailing vortex
tubes to originate at the disk radii RL’ it would also be appropriate

to lump the vortices shed within each interval R <r. <R, into a

-1 d 4

vortex tube originating at the mid-point of that interval, i.e., at

ry = (R 11t R L). This mid-point representation is shown in dashed

lines in Fig. 2. While the end-point representation used in Ref. 5
deseribes the disk bound circulation well, it appears that the mid-point
representation would describe the slipstream vortex system more accurately.
With the mid-point representation, if the circulation goes to zero contin-
uously at rs = Rd’ then the slipstream boundary is no longer identified
by the outermost vortex tube. For this situation, the mid-point repre-
sentation must be modified for the outermost interval if the slipstream
boundary is to be identified. The mid-point representation also presents
some difficulties for the innermost interval. In Ref. 5, attempts were
made to provide a cut-out, i.e., to let Fl = 0, representing the finite
hub of the rotor. These attempts failed to produce convergent results.
The use of the mid-point representation for the innermost interval is
computationally equivalent to the use of an end-point representation and
assign ') = O for the interval 0 <, < R1/2. Thus it is expected that
the use of the mid-point representation for the innermost interval would

also present convergence problems.

36
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A possible method of removing the above noted difficulties is to
use continuous distributic.us of blade-bound vortices, or circulation,
for the innermost and the outermost intervals., It should be noted
that in Refs. L4t and 5, it was pointed out that with the end point repre-
g sentation, the strength of the cutermost vortex tube becomes singular
3 at the tip of the slipstream. Furthermore, if the circulation for
the innermost interval is non-zero, then the tangential velocity v
becomes infinitely large at r = O and the rotor's thrust diverges.
Therefore there existed also difficulties in using end-point representa-
tions for the innermost and outermost intervals. Again, a possible
H method of removing these difficulties is to use continuous distributions
of blade-bound vortices for the innermost and outermost intervals.
Inasmuch as satisfactory results were obtained by the use of the method
described in Ref. 5 for the major portion of the flowfield of concern,
no attempt has been made to incorporate the "continuous" representatiocn
of blade-bound vortices.

Since the vortex tubes in the slipstream coincide with the

stream tubes, the application of Eq. (70) at each vortex tube m gives

L =)
bam 2, ] Gl 2 by 2) v e (75)
= 0o

where ¥ is a constant. Equations (5), (70) and (74) give

L oo t € -T_ )
G (t., z; ¢, ' A ~m_m m+l 1
L‘El J.O r( m z L zZ ) Y‘L Z _—"2" Y'm'_ * [n -l:T-r;;z (Fm + rm+l) ](76)
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where

G‘r(r, z; r', z') = 1 { K(k)
ot J (2'-2)% + (r'4r)?

_l
e —Eer) e ) (77)
(2'-2)° + (r'4r)" -

Equations (75) and (76) constitice a set of 2L coupled integral
equations containing the 2L unknown functions té(z) and YL(Z)' An
iterative method of solution of this sec of integral equations is

described in Ref. 5.
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VI. RESULTS AND DISCUSSION

Optimmum Performance

a. Optimum Circulation Distribution

Numerical results for the optimum radial distribution of circu-
lation and inflow velocities at the rotor disk and the associated per-
formance parameters have been obtained For 16 values of the thrust
coefficient between 0,001 and 0.050. This range of thrus* coefficient
wes considered to bracket the normal operating range of hovering rotors.
In Ref. 27, the optimum radial distributic-s of the circulation and of
the axial inflow velocity at the disk are presented for the 16 values
of the thrust coefficient. It is noted in Ref. 27 that for small values
of the thrust coefficient, the optimum circulation and tne axial inflow
velocity are nearly independent of the radial position except near the
axis. For higher values of the thrust coefficient, the deviations of
the ovtimum circulation and of the axlal inflow velocity from constant
values extend over larger regions and the magnitude of the deviations
are larger.

The optimum distribution of circulation is presented for the
t hrust coefficients of 0.001, 0.005, 0.010, and 0.050 in Fig. 3. 1In
Ref. 10, an approximate solution for the hovering rotor probvlem is
given based on the general momentum theory neglecting the radial pres-
sure gradient in the umtimate wake. The approximate distributions of
circulation of Ref. 10 are computed and compared with the present, more

exact, solution in Figure 3. The comparison shows that
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the approximate solution of Ref. 10 deviates significantly from the
present result, particularly in the inboard region of the disk. The
deviations are more severe for larger values of the thrust coefficient.
b. Axial Inflow Velocity

In Fig. 4, the optimum distributions of axial inflow velocity .
obtained in the present study are presented and compared with the approxi- ‘
mate solution of Ref. 10 for several values of CT' It is noted that
the approximate solution of Ref. 10 gives a zero value of the axial
inflow velocity at the axis of the disk. It has been shown in Refs.
27 and 29 that this zero axial inflow velocity is incorrect.
¢. Figure of Merit

Insofar as the overall performance of the rotor is concerned,
the approximate method of Ref. 10 yields a figure of merit more
optimistic than the more exact results of the present theory. Figure
5 shows that the computed figure of merit based on the present theory
is lower than that based on the approximate theory of Ref. 10, which
is in turn much lower than the ideal figure of merit of one. The
deviations between the results increases with the value of the thrust
coefficient.
d. Effect of Finite Number of Blades

While the present investigation is primarily concerned with an
infinitely bladed rotor, the effect of a finite number of blades may be
determined, for example, by extending Lerbs' work (Ref. 17) on heavily
loaded, free running propellers.

An estimate of the effect of number of blades on the optimum

distribution of circulation is provided by modifying Prandtl's approxi-
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mate method (Ref. 11) of calculating the "tip loss" factor and applying
the result to the hovering rotor case. The procedure is outlined in

/ Ref. 27. The results are shown in Figure 6 for rotors with 2, k4,

% ‘ and 6 blades at CT = 0,010. Based on thege results, the corrected
thrust coefficients for 2, 4, and 6 blades are respectively 0.00759,
0.00865, and .00906. The corresponding corrected power coefficients
are .000547, 0.000624, and 0.000655. The figures of merit are 0.855,
0.911, and 0.931. In comparison, without the tip loss correction, the
power coefficlients for the infinitely bladed rotor are respectively

(at C, = 0.00759, 0.00865, and 0.00906) 0.000479, 0.000585, and 0.000627.

L T
r The figures of merits are 0.975, 0.973, and 0.972. ‘

Rotor Induced Flow

Following the analyses described in the previous sections, a
computer program was prepared to compute the flowfields associated
with the optimum distribution of circulation. In these computations,
emphasis was placed on the determination of the shapes of the stream
tubes in the slipstream. As discussed earlier, the vortex tubes coin-
cide with the stream tubes in the slipstream.

The continuous circulation distribution was represented by a

number of piecewise uniform circulation intervals and the trailing
vortex tubes are congidered to originate from the end-points of each
¥ ' interval as was done in Ref. 5. The value of the circulation within

the Jth interval was taken to be

_ 2n 4
4 4~ 4-1
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‘ due to the constant circulation I, given by Eq. (78) 1is spproximately
d

equal to that due to the continuous distribution of circulation F& =

Py s

2n Vd rd.

a . Effects of Number of Intervals Used

Three sets of computations were made for the case of an optimum

rotor hovering OGE with a thrust coefficient of 0,010 using L, 5, and

M e
&
‘ It shall be shown later that the thrust developed in the 4th interval
J
<!
&
\j 7 constant circulation intervals. For the set of computations using

4 intervals, the values of R,'s were assigned to be 0.00 R, 0,15 R,

4
0.30 R, 0.60 R, and 1,00 R. For the 5- interval compntations, additional

RL values were assigned at 0.80 R. For the 7-interval computations,

additional R, values were assigned at 0.45 R, 0.75 R, and 0.90 R. A

4
comparison of the computed stream tube shapes based on Y-, 5-, and 7-

g s
)

? interval representations is shown in Fig. 7. The comparison revealed
that the three sets of computations gave practically identical stream
tube shapes. The maximum deviations in the computed radius of the
slipstream boundary was less than 0.2% between the three sets of results.
A similar comparison of the axial inflow velocities revealed that,

except in the immediate viclnity of the additional R&'s, the results

are virtually independent of the number of intervals used. These com-
parisons suggest that a 4- or 5- interval representation is adequate

for routine computations.

b, Effects of Second Order Terms

According to Eq. (15), if I', is such that the thrust developed

1
in the 4th interval due to FL is equal to that due to the continuocus
distribution of circulation I' = 2n Vq Ta then

L2
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2 2 1 ) 2
AR, =R,y )Ty -pzln ( Ry, ) Ty
= 27 IRL (h ry - vd) vy Ty drg (79)
Rpa1

The second term on the left side of Eq. (79) represents a second
order effect of the slipstream rotation. If this term is neglected,

then cne obtains the expression for I', given by Eq. (78). 1In general,

L
the maximum value of FL is approximately equal to 2nﬂRdch. For usuel
applications, since CT is much smaller than unity, the second term on
the left side of Eq. (79) is negligible for all intervals £ # 1. For
the first interval, {4 = 1, one has R{pl = Ro = 0 and the second term
becomes infinitely large. Thus, Ea. (79) is not appropriate for the
first interval. It should be noted that in reality, the area represented
by the first interval is equal to nR12 and is a small fraction of the
total disk area ﬂRLz. For example, by teking R, = 0.15 R, the area
represented by the first interval is 2,25% of the total disk area.
Since the value of the circulation in the first interval is also small,
the thrust developed in the first interval is only a small fraction of
the total rotor thrust. The piecewise constant circulation FL as deter-
mined by Eq. (78) therefore gives a total rotor thrust very nearly
equal to the total rotor thrust due to the continuous circulation dis-
tribution I' = 2n Vq Ta

The second term inside the brackets in Eq. (74) also represents
a second order effect of the slipctream rotation. This term again is

negligible for all except the innermost interval. In this investigation,
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the role cf this second order term in defining the vortex tube shapes
is examined by computing, for the CT = 0.0l case using T-intervals,
the vortex tube shapes neglecting and accounting for this second-order
effect. The results, shown in Figure 8, indicate that the neglect of
this second-order effect leads to a slightly smaller ultimate wake.
The effect is small for all except the innermost streamtube.

c. Restriction on the Radius of the Innermost Tube

Equation (79) shows that if as r, - O, the continuous distribution

d
of circulation, T', goes to zero as ra, with ¢> 0, then the thrust
developed in the first interval is finite. If the continuous distri-
bution of circulation is replaced by a constant, non-zero, circulation
in the first interval, then as ry ™ O the tangential veloclty component
goes to infinity as l/rd and the thrust becomes infinitely large.
Greenberg et. al. made several attempts (Ref. 5) to remove this diffi-
culty by letting Fl = 0., They pointed out that this is equivalent to
providing a cut-out to represent a finite hub of the rotor. These
attempts, however, failed to produce any convergence solution. In the
present lnvestigation, it was observed that the convergence of the
nmumerical solution was also sensitive to the value of Rl used in the
computation procedure. Convergence was not obtained with Rl = 0.10.

However, with R, = 0.15, convergence was obtained. The difficulties

1
experienced is attributable to the fact that the innermost vortex tube
was situated in an essentially aead-alr or recirculating flow region,
as can be shown by examinirg the axial velocity in the ultimate wake,
Since the vorticity between two adjacent vortex tubes is zero

and since the radial velocity is zero in the ultimate wake, the axial

Ly
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velocity in the ultimate wake is constant between two vortex tubes.

let W, be the constant ultimate axial velocity in the 4th interval

A
(1.e., between the (4-1)th and the 4th vortex tubes), then, in the o
ultimate wake
Yo=Yy " W (80) e
- \ )
LSRR A LR Ry (81] .

Applying Eq. (74) in the ultimate wake then yields

2 . 2.0 _ o 2 2
Wy =W 5 (T - Thy) w2, 2 Ty = Tpa ) (82)

<

Noting that the axial velocity and the circulation is zero out-

side the ultimate wake and neglecting the second order terms in Eq. (82)

gives
2_.q
wL "n rL
and in particular
2 A
Wp=a

Consequently, if one lets Fl

1= 0 and the net flow passing within the innermost stream tube

= 0 as was attempted in Ref. 5,
then W
is zero. Thus the innermost vortex tube contains a dead-air or recir-

culating flow region. Such regions obviously are not amenable to the

iterative proceedure used here, ;

It can be shown that the inclusion of the second order terms in

ks
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Eq. (82) increases the values of W. Therefore, Wl is non-zero even if .
one lets ri = 0. This non-zero value of wl, however, 1s small and the
innermost stream tube still contains essentially a dead-air region.

Similarly, since the continuous distribution of circulation approaches

R S

zero near the axis of the rotor, the value of Pl is small if the value .
of Rl is small.. As a result, Wl becomes very small and the innermost

stream tube again contains essentially a dead-air region. These

observations were substantiated by the numerical results obtained in

this investigation.

d. Stream Tube Shapes

In addition to the case of C, = 0.010, computations were made

T
for the previously discussed optimum distributions of circulations at

Cp = 0.001, 0.005, 0.050. For these additional computations, the L-

interval representation was used. The computed slipstream shapes are

presented in Figs. 9 for cases of 0.001, 0.010, and 0.050. The shape

for the case of CT = 0.005 lies between those for C,, = 0.001 and 0,010

T
and is not shown. The results show that with increasing values of CT’
the "dead-air" region near the hub Lecomes mor¢ piominent. The contraction
ratio is nearly independent of the radial location. For the cases studied,
this ratio deviated from the universal value of 0.742 by less than one

half of a percent. This value is samewhat larger than the value 0,707

O

predicted by i..2 momentum theory. The computed axial velocity in the
ultimate wake, also shown in Figs. 9, for CT = 0,010, is in good agree-
ment with that predicted by Eq. (82). Furthermore, for the smaller
values ot CT’ the computed axial velocity is in good agreement with the

coptimm ultimace wake velocity. For the case of C., = 0.050, however,

T
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the computed axial velocity 1s significantly lower than the optimum wake
velocity near the axis of the rotor.

In addition to the optimum circuletion distribution ceses, com-
putations were made using the circu.ation distribution given in Fig. 6
for the two-bladed rotor with tip-loss correction. This special distri-
bution of circulation shall b: referred to as off-optimum circulation since
the present computation procedure is specifically designed for infiniteiy
bladed rotors.

The slipstream geometry for the off-optimum circulation case is
compared with the optimum circrlation case of CT = 0,010 in Fig. 10.

The comparison shows that the ultimate wake radius is smaller for the
off-optimum case than for tle optimum case.

The slipstream btoundary shapes for & rctor with constant circu-
lation hovering in ground effect at heights Rd and 2Rd above the ground
plane are computed and shown in Fig. 11. Also shown in Fig. 11 are
the experimental results of Ref. 18 obtained from smoke pictures for
a two-bladed rotor hovering at a height of Ry above che ground plane,
It appears that, within the limitations of the infinitely bladed model
for the rotor, the computed results provide s reasonable description of
the wake boundary. Computations were also made for a rotor hovering at
a height 10 Ry above the grouna plane. It was found for this case,
the flowfield at distances 3Rd or more above the ground plane i3 nearly

identical to that of a rotor hovering OGE.

b7
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VII. CONCLUSIONS

Studies of the optimum performance and of the induced potential

flowfields of rotors and propellers are made on the basis of a "rotating
actuator disk" concept. By modifying and adopting certain principles and
techniques of propeller aerodynamics, & new criterion for the optimum
performance of rotors and propellers in axial flight is obtained. The
analysis leading to this criterion is more complete than the previous
analyses in that the present analysis fully accounts for the effects of
slipstream rotation and allows for the existence of a radial pressure
gradient in the ultimate wake., For flowfield computations, the radial
distribution of circulation at the rotor disk is represented by a piece-
wise uniform distribution of circulation., The slipstresm is represented
by a set of axi-symmetric vortex tubes shed from the disk at the locations
of circulation discontinuities. Existing numerical methods are utilized
to compute the shape and strength of the vortex tubes that satisfy the
required kine:ie and kinematic conditions for the slipstream. Numerical
results are obtained for hovering rotcrs (static prcpellers) in and out
of ground effect for cases of optinum and off-optimum circulation dis-
tributtons at various thrust levels.

Several conclusions of the present study are summarized below:

1. Previous investigators comparing experimental data with
theoretical results noted that the earlier theorles, in which the effect
of slipstream rotation is partly or totally neglected, generally over-

estimate the optimm performance of hovering rotors in the higher thrust

L8
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coefficient range of practical interest. The present theory provides
improvements ir theoretical predictions by fully accounting for the
effects of slipstream rotation. These improvements, which are not
important in the case of a lightly loaded propeller, heve significant
influence on the optimum distribution of blade-bound circulation and
hence power and thrust requirements of hovering rotors. The inaccuracies
of the earlier theoretical results that are attributable to the neglected
slipstreem rotaticn effects increase with increasing thrust coefficient.
Thus the improvements of the present theory are particularly important

in the higher thrust coefficient range.

2. The rotating actuator disk concept permits the calculation,
in a straightforward manner, of the optimum distribution of circulation
and inflow velocity over the rotor disk for the infinitely bladed case.
The potentisl flowfield induced by the infinitely bladed rotor and the
effect of finite blade number on the circulation distribution are
estimated, by using available methods, for the optimum circulation dis-
tributions.

3. In the flowfield computation, the continuous circulation dis-
tribution was represented by a number of pilecewise uniform circulation
intervals. The computed results show that representation of the continuous
circulation distribution by as few as four piecewise uniform intervals
is adequate for routine computations of the slipstream and of the stream-
tubes within it.

4, The computed slipstream shapes for rotors hovering OGE show
that the dead-air region near the hub becomes more prominent with increasing

value of the thrust coefficient. The slipstream contraction ratio is

k9
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nearly independent of the radial location and of the thrust coefficient.
The computed value of the contraction ratio is somewhat larger than the
value of 0.707 predicted by the axial momentum theory.
5. Computations for rotors hovering in ground effect show that
within the limitations of the infinitely bladed model, the computed results
provide a reasonable description of the wake boundary. For a rotor
hovering at a height of ten rotor radii above the ground plane, the
flowfield above about 3 radii distance from the ground plane is nearly
identical to that of a rotor hovering OGE.
6. A mumber of explicit formulae useful in computing rotor and
propeller induced flows are made available for the stream function and
velocities due to distributions of circulasr vortices over axi-symmetric

surfaces.

20
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Continuous Circulation Distribution

| / [™-Plecewise Constant Approximetion
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2 .__'\' Midpoint Representation

Figure 2., Plecewlse Constant Approximation of
Circulation at the Disk
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APPENDIX A

EXPLICIT FORMUIAE FOR AXI-SYMMETRIC VORTICES

In studies of flow fieclds induced by rotors and propellers,
information about velocity components and stream functions associated
with various axi-symmetric distributions of vortices is frequently
required. In the course of the present study, explicit formulae *~r
the velocity components and stream functions have been developed for
several important distributions of exi-symmetric vortices. The availa-
bility of these explicit formulae facilitates the computation of the flow
field associated with rotors and propellers. Selected formulae considered
to be of general interest are presented in this Appendix. Of equal,
perhaps even greater, utility is the approach developed for the
derivation of these explicit formulae. This approach can be easily
used to obtain explicit formulae for meny edditional distributions of
axi-symmetric vortices. The approach is described in this Appendix.

It is worth noting that anslogous problems involving axi-symmetric
distributions of singularities exist in many other fields of study such
as electrostatics, magnetostatics, and potential flows about axi-
symmetric bodies. The approach described here is easily adapted to
these analogous problems. For example, as an offspring of the present
study, explicit formulae for the velocity components due to sources

of uniform strength distributed over a circular cylindrical segment

were obteincd (Ref. 32) and utilized in conjunction with the A. M. 0.
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Smith method (Ref. 33) for computing potential flows associated with
lift-fan inflow.

It is well known that formulae for axi-symmetric flows frequently
involve complete elliptic integrals. Complete elliptic integrals of

the first, the second, and the third kinds are respectively defincd as

n
K(k A-1
() = E(l-ksina)a (a-2)
2 1
E(k) = F Q - 12 sin® o) a (a-2)
(o]
and
n
- dor
I = - A-
(\e) Ii A-n sin2 a)( - k.zsin2 a)? (h-3)

The behavior of the complete elliptic integrals are well under-
stood. Tabulated values as well as ~omputational formulae for these
integrals are available in standard handbooks of mathemetical functions.

Explicit formulae in terms of the complete elliptic integrals are there-

fore convenient formulae to employ in numerical procedures. Many defini e

integrals involving sines and/or cosines of the variable of integratiom
are expressible in terms of the complete elliptic integrals. Fror

example, the integral

may be reexpressed, upon integrating by parts, as
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,.g 2
1 (2 sin 3'12%1
1 (&) =5 |

k "o (1 - k> sin a)?

i
=.l_[(2'k)ji do -%jg(]_.k sin a)-éda]

Thus one has

1 "
- do _ 1 2 b
Fo im ka slzénaﬁ 2 [(2 k) K() - 2B(k) | (A-k)

\

As another example, consider the integral

1 =J2n cos B dB
2 Jo (8- % cos B)3/2

By letting B = 2(« + 7/2) and recognizing that the resulting integrand
is symmetric about ¢ = O, one obtains

T

4 (2 sin2 a - l)
I (A-5)
2" (& +G)3F 1 - ¥ sin® o)
where e %_
2
k = A-6
( a+ b (-6)

Rearranging the integrand of Eq. (A-5) gives

L
I. =
2 (& + ‘8’)3751:2(1 - %)

jut
(2 - 2K° 4 kh) dg
[ ‘l'j (1- K sin® a)l/2

, i
- (2 - k2) (1 - i sin’ a)® do

OLWI 3

6l

d



- kh @ - k2) J'g gsin2 Q- sinh ) dg]
o (1 - K sin® )32

Using Eqs. (A-1), (A-2), and (A-l4), one then obtains

T cos B dp

° (& - % cos 8)372

[- 2K(k) + (i : iz)E(k) ]

L
B (3.'+5)37é—k2

65

(A-7)

T T



Circular Vortex Filament

The velocity da due to an element of vortex filament ds is given

by the Biot-Savart Law:

(r' - 7) x ds (4-8)

where % is the strength of the vortex filament, r' is the position
vector of the vortex filament, and T is the position vector of the
observation point where dq is evaluated.

In a cylindrical coordinate system (r, 6, z), with a symmetric
distribution of vorticity about the z-axis, it is easy to show that the
r and z velocity components, u and w, are dependent only on the 6-
component of vorticity, M. Thus the basic building block for the com-
putation of u and w are the velocities and the stream functions associated
with circular vortex filaments. These quantities associated with a
circular vortex filaments shall be designated by the subscript "f".

Consider a circular vortex filament of strength x and radius R
centered about the z-axis in the z = Z plane. Since Up and Ve are

independent of @, one obtains from Eq. (A-8)

Rz - Z) j2n cos ©' 49'
u.(r, z; R, Z) = (A-9)
£’ ’ Hm ) [r2 + R - 2rR cos 8' + (z - Z)2}37§
and
n
R (R -r cos §') de'
w.(r, z; R, Z) = - Iz (A-10)
f B [r2 + R2 -2rR cos §' + (z - Z)2]3/§
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Equation (A-9) yields, with the use of Eq. (A-7),

. w(z-2)[ 2K
weles 5 2, 2) = B[ Bt ng - k)] (a-m)
where
8§ = [(r + R)2 + (2 - Z)2]é (A-12)
and

Ry
k= g-S%Rli (A'l3)

By writing the integral in Eq. (A-10) in terms of the integrals

in Egs. (A-1), (A-2), and (A-4), one similarly obtains from Eq. (A-10)

. = 2r - (r + RNE
wo(r, 25 R, 2) = 5 22(1 _rka) B(x) + K(k) | (A-1b)

The stream function ‘ff due to the circular vortex filament is

given by

Yf(r, z; R, 2) = JJ r'wf(r', 2; R, z) ar' (A-15)
o
where we have set Yf(o, z; R, Z2) to be zero.
Instead of placing Eq. (A-14) into Eq. (A-15) and performing the
integration with respect to r', it is simpler to use Eq. (A-10) and

integrate first respect to r'. Thus, one writes

2
WR <1 (Re' - r' cos 6') 40'ar’
¥ (v, 23 R, Z) = f r
£ e o o['2+R2-2r'Rcose'+(z-z)2]37§
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¥R \2” j‘r cos ' dr'
o - E-‘l;.o de‘ o '2 2

[r'“ + R -2r'Rcos 8' + (z - 2)2 ]%
R Jzﬂ agr [ o8 9' [2Rr' cos 0' - B - (2 - 2)°] - dr' (A-16)
" In o “'o [r' 2 - 2r'R cos ' + (z - )2]3E_

Integrating the first double integral by parts with respect to g' gives

_ M :‘2" 6" J‘r Rr' sin’ g' ar’
1E"o o [r'2 + B - 2r'R cos 8' + (z - Z)2]37—

One then obtains

cos 8§'[Rr' cos @' - R°- (z - Z)a

- B[
¥ (r, z; R, 2) = - de'r =
t b o o[r'2+R2-2r'Rcos e'+(z-Z)233"
n
R co ' de'
"'Eu;f 2 2240 51 (A-17)
o [r +R - 2rR cos 8' + (z - 2)°J°

Letting 6' = 2(a + m/2), one has

n n 2
Jz cos 8' dg' _ b2 (2sin” g -1)dg

&
o [r2 + & - 2rR cos 8' + (z - Z)2]§ 6 Jo (1 - k23m2 a)?

=-(_i§7§[(k_-l>x(k)- E(k)] (A-18)

Therefore
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v(r, 23 B, 2) = £ {2 - %) x(x) - 2 E(k) } (A-19)

The velocity components u and w associated with various axi-symmetri-
cally distributed vortices are expressible as integrals involving Uo and Voo
Consider, as an example, a distribution of circular vortices of consta.t
strength A\ over the surface of a circular cylinder of radius R centered
about the z-axis and extending between the planes z = 2, and z = za.

The vortices are in the 8-direction and the velocity components u and

w due to this distribution of vortices are expressible as:

z
2
u(r, z) = )\I uf(r, z; R, 2) dZ (A-20)
Z
1
and
Zo
w(r, z) = xj wo(r, 23 R, 2) a2 (A-21)
Z
1

Attempts have been made in the past to place Eqs., (A-11) and
(A-14) into integrals similar to those appearing in Egs. (A-20) and

(A-21) and to obtain explicit formulae for u and w for various axi-

symmetrically distributed vortices, Such attempts, however, have met

only with limited success. In particular, very few formulase are avail-

able in the literature for the velocity components and stream functions

for zeneral field points. In the present work, an alternative approach

was utilized and many new explicii. formulae were derived.

69



. e

Cylindrical Vortices

Consider the uniform distribution of vortices over a finite
circular cylindricel surface described earlier. The velocity components
due to this distribution of vortices are, according to Eqs. (A-9), (A-10),
(A-20), and (A-21):

Z

u(r, 2) = i f (z - 2) &z fn cos ' db’ 1 (a-22)

zy o[r2+R2-2chose'+(z-

AR i (R -r cos 8') de’
w(r, z) = az (A-23)
bn le J(; [r2 + R2 - 2rR cos 8' + (z - Z)a:l?f27

Instead of using Eq. (A-ll) to express the right side of Eq.
fA-22) in terms of an integral involving complete elliptic integrals,

the integration for (A-22) is performed first with respect to Z, yielding,
a(r, 2) ”2 cos 0' g’
s =

o [r +R - 2rR cos @' + (2-22) ]%
‘Jz cog @' 4g' (a-2k)

o [r2 + R2 - 2rR cos &' + (z - 21)2]%

3

One therefore has, using Eq. (A-18),

%
e =2 (B [ (- 2) x0g) - & 50y

—



k
] (EII - 3 ) K(,) + ill. B(k,) | (A-25)
where
4rR 3
k, = (A-26)
1 [(r+R)2+(z-z 2]
LrR H
= (A-27)
2 [(r+R)2+(z-z2)2]
Similarly, integrating with respect to Z, one obtains from Eq.
(A-23)

(R-rcos 8') (z - z2) ae'

¥, 2) = l‘—-{‘Izo (r24RC-2rR cos 0')[ro+R--2rR cos 8' + (z - z )2]2

2 (R - r cos e')(z-zl)de'
- 2, 2 — 2 . .3 : }(A-28)
o (r* +R° - 2rR cos 8')[r" + R” - 2rR cos 6 +(z-z)]

Noting that

f" (R-rcose)de'

o (r +R-2chose )[r +R2-2chos 8' + (z - 2) ]%

n
I 2
. [2 r-2rsin g)ig:
r+R) 8 o(l-nain a)(l-kasin or)5




p b
- H

‘\

K [ S
(r + R)z(rR;i R Yo (1 - K> sin® o)

(2

2, I
R°) ra dg
l.'o

R (L ~n sin’ a)(1 - ¥ 8in° a)§ ]

- k (k) - (r - R) k 1 A-D
R(rR)§ () R(r + R)(rR)% (n\e) (h-29)

where
n= ——u—rB—-—a' (A-BO)
(r + R)
one obtains

A - R
w(r, Z)=W (Z-ZZ)kg[;+Rn(n\lca)-K(k2)]

- (2 - 2) k[ S5 neney) - k() ]} (A-31)

Equations (A-21) and (A-27) are convenient explicit formulae to
use in the computation of velocities induced by cylindrical vortex
segments. In computing rotor lnduced flowfield, these formulae offer
the possibllity of representing the trailing vortex system in the slip-
stream by a set of vortex cylinder segments. The strength rnd radius
of the vortex segments may be determined in such a way that the kinematic

(¥ = constant along each vortex tube) and the kinetic (force free) con-
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ditions are satisfiled.

The behavior of u and w as given by Eqs. (A-25) and (A-31) can
be determined by examining the properties of the complete elliptic
integrals. In particular, it can be shown that u is well behaved
everywhere except at the ends of the cylinder, l.e. at r = Rand z =
zy or Zns where it possesses a logarithmic singularity. w is well
behaved except on the cyliander where it changes discontinuously by the
amount ) across the cylinder.

Equations (A-25) and (A-31) yleld directly a number of velocity
formulae for specialized cases. Some of these specialized formulae
have been studied by other investigators (Ref. 26, 31). These specialized
formulae include that of the velocitles on the cylinder of radius R
itself, the velocities on and away from the cylinder due to a semi-
infinite cylinder (zl =0, 2z, = ®), and that 2ue to an infinite cylinder.
The formulae presented here, i.e., Eqs. (A-25) and (A-31), can further
be utilized to derive an explicit formule for the stream function.
This formula for the stream function is also useful in axi-sgymmetric
flowfield computations.

Congider, for the moment, a semi-infinite vortex cylinder of
strength A and radius R, centered about the z-axis and extending from
z =2 to infinity. The vel ~city components induced by this semi-
infinite vortex cylinder shall be designated uy and Wy Equation

(A-25) gives, with 2, = = k; = 0, Equation (A-25) therefore reduces

to
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e =3 (DT (2 Bk a0 ] wm
Equation (A-3) gives
n
Bmo) = [ —2— 0Btz (A-33)
™ Ii l-n §in2 o e | R-r

Therefore, for r < R, Eq. (A-31) gives

A(z - zl) Xy [ r - R

i)} LTTRT () - K0xy) ]

AL
wl(r, z) = 5

and, for z = 2y and r < R, one has

wl(r’ zl) = % (A-Bh)

The stream function Yl for this semli-infinite vortex cylinder

can now be evaluated by using the relation
' ' ' ’.2 t '
Yl(r, zyp| r'w(r', zl) dr' - r | u(r, z') dz (A-35)
0 2
1

where the value ~f Yl is taken to be zero along the z-axis.
Placing Eqs. {A-32) and (A-34) into Eq. (A-35) and evaluating

the first integral gives,

R R AT D LRt peges
1
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where

)-H'R Té N
k., ' m (A-37)
L [(r+R)2+(z‘-z)2J
Equation (A-37) gives
4YrR d.kl‘
dz' = - (A-38)

kP[urR - (r+ R k2P

Using Eqs. (A-1), (A-2), and (A-38), Eq. (A-36) is reexpressed as

3 2
¥, (r, z)-ll; M’%‘)—-y }(n_x)%_[’"il:“i“—zﬂ% (A-39)

x sin” o)
Integrating by parts with respect to o gives
2 32 k,° 3 2 2
¥, (v z)-ﬁi—-l{ﬁ)__le dx J‘?sin cos e d
y
1 nir + R n (n _ x)g o (l - x 81!120)332

Integrating with respect to x then ylelds

AT [sin q - Bingl dg
¥ (r, 2) = + 73
1 Ry (1 - n 8in a)(l - k12 sinza)

2 )‘(rR)% nk |z - 24 J.g-
(o]

The integral in the above equation can be expressed in terms ol the

complete elliptic integrals. One obtains, afier some aigebraic mani-

pulations,

2 )\(rR)%k |z - 2, .
A 1 1 1 L =L
‘l’l(r, z) = -{— + 5 [ ( =gt “(kl)
1
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- A5 E0g) + 2220 () | (A-ho)

&

The stream function Ye(r, z) due to a semi-infinite vortex

v

cylinder of strength A and radius R extending from z = z, to infinity

and centered about the z-axis is, from Eq. (A-LO), obviously

1 :
1 Ar® + x(rR)Ekzlz _ ZZI [ ( 12 +1-n

T ¥p(r, 2) = 5~ B y n ) K(ky )

: 1 n-1 1

§ - — E(k,) + ~—=1 (n\k,) | (A-41)
ko

!

é By the use of the principle of superposition, one then obtains

the following formula for the stream function ¥(r, z) due to a finite
vortex cylinder of strength A and radius R centered abct the z-s

and extending tetween the planes z, and z,.:

]

] 2

g:.

% ¥(r, z) = Yl(r, z) - Yz(r, z)

g or

3 L

H _ A(xR)? 1 ,1l-n
¢ ¥(r; 2) 'L%L{kﬂz‘zll[( g+ S5 ) Kl
H kl

b

? 2 B(k,) + 2520 (k) ||

- T Bl n NG 7

¥ k)

el -l (70 5 ) ) - Sy sl BRR neg) [ (k)

16
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For cylindrical vortices with a non-uniform distribution of

strength, explicit formulae for the velocity components and for the
f ; stream function can be obtained by utilizing the approach and the
results presented above. For example, with a linear distribution of

.vorticity strength, A, i.e.,

A=Ayt A2 (A-43)

where Xl and l2 are constants, the velocity components and the stream

function are each expressible as a sum of two parts, one part due to

Kl and the other part due to Agz. The part due to ll has already been
expressed in terms of the complete elliptic integrals [Egs. (A-25),

(A-31), and (A-42)]. To demonstrate the procedure for establishing

e e 2

expressions for the part due to xzz, consider the radial velocity u,.

.o -

Z
AR A 2 4]
2 r cos 0' 4@’
u,(r, z) = e z(z - 2) az 7z (A-lk)
y t v "zl o [r2 + R2 - 2rRcos ' + (z - Z)2]3 e

Equation (A-4k4) may be rewritten as

Aot

AR m
2 (r + R - 2r R cos 6') cos @' 48’
w,(r,z) = dzf =
“ j r -2r Rcos 0' + 2 - 2) ]3

4 z 2n
+ )\2RZ (Z - Z) az r - [8]0]] e' de'
Zy Jo [r" + R® - 2rR cos g' + (z - Z)2]3/§
2 o cos @' a@' A
- az (A-45)

b jzl Jo [r2 + R2 - 2rR cos §' + (z - Z)a]i

g 77
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The double integrals in Eq. (A-45) can be rea.dﬂy expressed in terms

of the complete elliptic integrals using the approach preaented' earlier.
In particular, the first double integral is easily ex‘preésed in terms
of the complete elliptic integrals by first performing the integration
with re.-ect to Z. Th> second double integral is identical to that
appearing in Eq. (A-22), which has been expressed in terms of the com-
plete elliptic integrals [Eq. (A-25)]. The third double integral is
easily shown to be equivalent to the second integral appearing in Eq.
(A-35), which again has been expressed in terms of the complete elliptic

integrals.
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Ammular Vortices

Consider a distribution of circular vortices of strength )\3/ R,
where )\3 is a constant, over an annular surface in the z = Z plane.
The surface extends fromr =n tor = ry.

The velocity components due to this annular vortex surface are,

according to Egs. (A-9) and (A-10), given by

3 cos §' de'
u(r, z) = —=p—— dR (A-46)
m Jr:L Jo [r2 + R® - 2rR cos o' + (z - Z)2]3/2-
A, p2  2m
r (R ~rcos §') de’
w(r, z) = L dR (A-k7)
E% Jrl Jo [r2 + R - 2rR cos 0' + (2 - Z)2]37§

Integrating with respect to R gives

A, (z-2) -~ 2n cos 8' (r, - r cos §') de'
! 2
u(r,z) = -ju—— '
m l‘-.'Jo [r2+(z-2)° - racosaej [r2+ r22 - 2rr2cosé+(z-z)zj£
211 cos 6'(1'l -r cos §') ae'
- 2 2 2 2 2 2 2.5 (A-48)
Yo [r° + (2-2)%- rScosTe] [r +r,” -2rr cos ' + (z - Z)° R
A 21 t
w(r, z) = - E%J 48 (A-49)

o [r2+R2-2chose'+(z-Z)2]‘§

It is ea'y to show, by letting @' = 2(o + n/2) and using partial
fractions, that
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2T cos 8' (R - r cos 8') ag'

0 [r +(z—Z) -r2cosee][r +R2-2chose'+(z-Z) ]%

ot
-] L Sinza - 1)(R + r-2rsm Q)dﬁ
l-m,sin a)(l + m,sin a)(l Ksin a)a

L

T el s R+ 2R E Yo

_ ] (-2 @ __a
T2 2P+ R+ (@-2PF - T Yo (1-¥ sina)
2 n
[ (z-2) R*rx dg -
( er ]’E (- my sin2 a)f(l - e sin2 a)?
i
(z - Z_L R+r 12 do (A-50)
(_ er my ]Jo (L + m,, sm a)(l - k sin a)% }
where
- &x r (A-51)
" [r" + (2 Z)Z'F +r
and
m, = 2 (a-52)

[ +(z-,_)]%

Using Eqs. (A-1), (A-3), (A-4k) and (A-48), one then obtains
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)\(Z'Z)r r

u(r, z) = -i;;§7§__. 2 [hK(k 2) - ( _ 2 : - my ) n(mi\kra)

2

r

- ) n e, ) ]

k

- r? [hx(krl) - (2 -

r. +r
1

ml ) I (mi\krl)

rl +r
- (e~ my ) (- K, )J} (a-53)
where
4
-1 1 - ] (A-54)
(r+1r ) + (z -
and
Yrr 1
=T 2 5 ]2 (A-55)
Ta “(r + r2) + (z - 2)
It is easy to show that Eq. (A-45) gives
k
w(r, 2) = —3If —& K, RE —g Kk, > (A-56)
2 Ty
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Accordin: to Eq. (A-17), the stream function due to

vortex surface is given by

n cos §' 48’

the annular

T

ALY r‘2
‘Y(r,z):l’%—‘l dR"2
“r Yo

1 [r2 + R2 - 2rR cos §' + (z

Integrating by parts with respect to @' yields

Mrop2 2T R sin™® @' ao’

- 7)

o3 (8-57)

¥(r, z)=—ﬁ;—u§ dR |

) [r2+R2-2chos ' + (z -

2

Z)2 ]3/-2— i

To

2
= _,a_)\ £ e [cosg' rR - . (Z‘Z)zl sin_ 6’ df!
= 4q Jo [ 2 2

r +(z-Z)2 - r"cos e'][r2 + B> - 2rRcos@' + (z-Z)2]2

The last integral in Eq. (A-58) can be re-expressed

T (A-58)
R = rl

as

8 inl‘L o) da

m

16 (2 [2rR sin® g - 1R - 10 - (z - 2)°](sin® g -
z | 2

8z - 2)” "o 4

2

e

n
ol

5r

2 2
2r” ¢ 2 R ar (2
+ +1-r\/n(ml\k)+m——- —

m \my T 1 M

- 1+

LR

Therefore, one obtains from Eq. (A-58)

m

(1 -k sinzm)E (L -m sinea) (1 +m, gin®

@)

-2 (2 - 2P k&) R+ )P+ (2 - 2PTE®)

) n(-mpx) }

A
¥(r, z) = 53 ( L T {[r22 -® - (z -2 K(krz)

[(r+ 1, + (z - 2)°)

-H§+rf+(z-mzlﬂg;
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al

1

L {tr2 -7 - (2 - 2P ki, )

i [(r + rl)2 + (z - Z)Z]% 1

- [y + 2+ (2 - 2)%) Bk, )

el AR DRI
2r2 [ 2 !
fEE (i) ntmeg ) })

5 e rmeh pries sk

(B ag ) B (£ a0 ) s, ) )

1

(A~59)

It is clear that the approach described here permits explicit

formulae for the velocity components and stream function to be obtained

for other types of distribution of vortices in annular regions.
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APPENDIX B

OPTIMUM PERFORMANCE OF ROTORS AND

PROPELLERS IN AXIAL FLIGHT

Equations relating the thrust and the power of rotore or pro-
pellers in ax’al 1light to the velocity com, “nents in the ultimate
wake can be established rigorously by a simple extension of the analysis

of Chapter IV, They are:

P=gM _’rs v, W, T, ds (B-1)

LY
S

and

i 7 2
T=3zp | [(w -w) +(@r, -v)v]d, (B-2)
S
where w_ is the ascent speed of the rotor or the advance speed of the
propeller,
The relation between the axiel and tangential velocity components

in the ultimate weke, which also can be established rigorously by an

extension of the analysis of Chapter IV, is:

" L2 .2 R 2

v - SR A o -

LU 2+‘['r r & (8-3)
w

Following the approach described in Chapter IV, a perturbation

Avw in the tangential velocity 1is introduced at r, =@ and the resulting

8k




4

v
/

ORI 19 S AT AT B T e A s 0

changes in the axial velocity distribution, the power, and the thrust,

are sought. It is obvious from Eq. (B-3) that the relation between

- the tangential velocity perturbation and the change in the axial

velocity distribution is not altered by the presence of a non-zero
speed of advance. Consequently, since Eq. (B-1) also is independent
of w_, the expression for the change in power previously developed for
the hovering rotor is applicable to the present case of a non-zero

speed of advance. One therefore has

3 vwa QV“
oP = 2npliedr, & {T(““"’wa)* Yot X
we. a
2
v.r dr
iy (54)
o w

The change in thrust is dependent on v and is

we W

2 Ve
AT = 2mpehr & {ZQa -v._ - — (e - v“)
wa

2v. W
L o

Equations (B-4) and (B-5) may be combined to express AP in the

form

AP = h(a) AT (8-6)

where h(a) is a function only of a, the location where the tangential
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velocity perturbation 1s introduced. Following the analysis of Chapter
IV, the criterion for optimum performance is that h(a) is a constant,
independent of a. In other words, the criterion for optimum performance

is

rrw (rvw + Nww) rdr rwz
J W = 2v [N(amw - Vw)
(@] w w
rwvw + N'",,
Tyt T @ -] (B-7)

where N is a constant.

It is easy to show that, upon setting w; = 0, Eq. (B-7) reduces
to the optimum performance criterion previously obtained for the hover~
ing rotor,

A differential form of the optimum performance criterion is
obtained by 43~ erentiating both sides of Eq. (B-T) with respect to T,
The resu’..ng equation relates the derivatives dv w/drw and dw w/drw°
Diffe centiating Eq. (B-3) with respect to Ty ylelds a second equation
re.lating de/drz._ and dw w/d'rw‘ After some algebraic manipuiations, one

then obtains the following two first order differential equations:

d~
w A~ e ~ ~ 2 ~ Ny e ~ ~
T vw(rw’ vw)[2ww T N(hrw - vw) Y
dr
W
+2 AW+ 2V % CfF (B-8)
dw';'w N ~ 3 ,
'd—r: = Vw {3ww rw-zww (3rw - Vw,

w
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o~ ~ o~ ~ ~ ~ 2
+ {f3ANrw + vwrw(srw - 2vw)] v,

2 Y/ (B-9)

~
~ P~ Lo dand ~S
- -+ -
[N\ +VF 17V (7 v

where

F=d 'r, - & F +[1\N’f’w -vF(F

fand ~2
wow ww w'av\r)}w

A~-~~ ~ ~-~ 2~ -
+ (AN - F )N (T V)T (-10)

A= w JQRW is a non-dimensional advance speed, ﬁ'w and Vw are velocity
components non-dimensionalized with reference to nnw, f‘w and N are non-
dimensional Ty and N with r:ference to i\’

At the rim of the ultimate wake, Eq. (B-3) gives

2

‘:tl

nﬂo

2
=l—\2—+\7 (2 -¥
w W
(o} (6]

) (B-11)

Taking the upper limit of the integral in Eq. (B-7) to be R,

one obtains

~ 2~
TV

2 ~ ~ ~ W W .~

£+ v, [3-2vW +2wa-1~ ar, )

o o o'o W,
N= ~ ~ (B'].Z)
v, (2 - v, - A1 -~ v, )/ww - 2A v | - ]
o 0 o o oo W
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distributions 3; and G; for any given values of N and A, or, alterna-

tively 5; and A, An iterative method for computing Q; and G; is
(0]
described in Ref, 27 for various values of V; . Sample results are

(e}
presented in Ref, 30.

o
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