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PRESSURE GRADIENT EFFECTS ON HEAT TRANSFER TO REUSABLE

SURFACE INSULATION TILE-ARRAY GAPS*

David A. Throckmorton

Langley Research Center

SUMMARY

An experimental investigation was performed to determine the effect of pressure

gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-

array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pres-

sure measurements were obtained on a curved array of full-scale simulated RSI tiles in

a tunnel-wall boundary layer at a nominal free-stream Mach number of 10.3 and free-

stream Reynolds numbers of 1.6, 3.3, and 6.1 × 106 per meter. Transverse pressure

gradients of varying degree were induced over the model surface by rotating the curved

array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was

obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and

heat transfer.

Flat-plate heat-transfer data were correlated and a method was derived for pre-

diction of heat transfer to a smooth curved surface (i.e., no gaps) in the highly three-

dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-

array gap followed the trends of the external surface pressure. Heat transfer to the

surface immediately downstream of a transverse gap is higher than that for a smooth

surface at the same location. Heating to the wall of a transverse gap, and immediately

downstream of it, at its intersection with a longitudinal gap is significantly greater than

that for the simple transverse gap. No systematic effect of transverse pressure gra-

dient on heating was observed. Simulation of full-scale space shuttle vehicle boundary-

layer thickness and pressure-gradient level was good.

INTRODUCTION

The space shuttle orbiter is being designed for an operational life in excess of

100 reentry missions with minimal refurbishment between those missions. In order to
i ........

*Part of the information presented herein was included in a thesis entitled "An
Experimental Investigation of the Heat Transfer to Reusable Surface Insulation Tile-
Array Gaps in a Turbulent Boundary Layer With Pressure Gradient," submitted in par-
tial fulfillment of the requirements for the degree of Master of Science, The George
Washington University, February 1975.



meet this requirement, the vehicle thermal protection system (TPS)will be a surface
covering of a nonmetallic, low-density refractory oxide. This material, referred to as
reusable surface insulation (RSI),must be capableof withstanding, without degradation,
repeatedexposure to the harsh reentry environment, while insulating the structure of the
vehicle from surface temperatures in excessof 1500K. The material will be attached to
the vehicle surface in a "brick-like" array of squaretiles (15.25by 15.25cm) whichvary
in thickness from approximately 1 to 10centimeters according to the intensity of the local
heating. Small gaps betweentiles will allow for thermal expansionof the tile material.
Interference heat transfer to the tile exterior and gapwall surfaces is of major concern
to the TPSdesigner. The presenceof the gaps may result in increased boundary-layer
turbulence andattendant increased surface heating. Heating levels within the gaps,which
wouldbe expectedto be substantially lower than surface values, may approachsurface
values due to flow reattachment phenomena. In addition, radiation blockagewithin the
gaps may produceextreme temperatures even at low heating levels, and the shortened
heatpaths (i.e., from gapwall instead of tile exterior surface) may result in excessive
bond-line temperatures.

Effective designof the TPS requires a soundknowledgeof the aerodynamic heating
environment to which the RSI tiles will be subjected. This knowledgemust include an
accurate definition of the heat-transfer distribution within the tile gaps anda goodunder-
standingof howthis distribution is affected by boundary-layer state (laminar/turbulent),
boundary-layer thickness, flow angularity, gap width, tile edgeradius, tile stacking
arrangement, and other parameters.

As a part of the spaceshuttle developmentprogram, an experimental effort has
beenfocusedon the shuttle-related gap heatingproblems. Evaluation of TPS tile material
thermal performance (ref. 1)and definition of the gapheatingenvironment are important
_lements in this effort. Johnson(ref. 2) studied the effects of gap width andboundary'
layer thickness on TPSgap heating for turbulent flow over a simulated tile array at
Mach 8. This work revealed a potential heatingproblem area at the intersection of
streamwise and transverse gaps. The present author obtaineddata on a simulated tile
array in a turbulent boundarylayer to investigate the effects of gapwidth, flow angularity,
and tile surface mismatch on tile gapheating. (Seeref. 3.) Foster et al. (ref. 4) investi-
gated the effect of similar parameters for single gaps andgap intersections in laminar
flow. A compilation and analysis of theseand other recent gap heatingdata maybe found
in reference 5.

Becauseof entry anglesof attack and the complex curvatures of the orbiter external
surface, boundary-layer flows over muchof the flight vehicle will be strongly influenced
by surface pressure gradients. Eachof the recent studies of TPSgapheatingphenomena,
however, hasbeenconductedon sharp-leading-edgeflat plates or in tunnel-wall boundary
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layers under conditions of zero pressure gradient. The present investigation was under-

taken to assess possible effects of pressure gradient on the heat transfer to RSI tile-array

gaps in a thick, turbulent boundary layer.

Heat-transfer and pressure-measurement tests were made on a curved array of

full-scale simulated RSI tiles submerged in a thick, turbulent, tunnel-sidewall boundary

layer. Transverse pressure gradients of varying degree were induced over the model

surface by rotating the curved array with respect to the flow direction. This enabled

the study of RSI tile-array gap heating as affected by pressure gradient. The tile-array

model was tested both with gaps present, and with the gaps filled and smoothed to pro-

vide smooth-surface reference data. Heat-transfer and pressure measurements were

also made on a flat plate mounted in the tunnel sidewall. These data, along with meas-

ured pitot pressure profiles, provided a definition of the characteristics of the three-

dimensional boundary-layer flow in which the tile-array tests were conducted.

SYMBOLS

A constant in equation (7), cm -1

B constant in equation (7)

Cp

Cp,m

constant pressure specific heat of air, J/kg-K

specific heat of model material, J/kg-K

d depth into gap, cm (see fig. 5)

heat-transfer coefficient, W/m2-K

constant in equation (14)

L full-scale tile dimension, cm

M Mach number

NSt Stanton number, h//PwUeC p

P pressure, N/m 2

Pt,2 total pressure behind a normal shock in the free stream, N/m 2



q

R

Rw,0

a_

r

T

X,Y, Z

x,y,z

Ymax

Zsurf

Ol

5*

,
5elf

0

)t m

heat-transfer rate, W/m 2

universal gas constant, m2/sec2-K

Reynolds number based on wall conditions and boundary-layer momentum

thickness, PwUe 0/pe

free-stream Reynolds number, P_U/#oo,
m-1

recovery factor

surface dimension defined in figure 30, m

temperature, K

time, sea

velocity, m/sec

coordinate system defined in figure 10

coordinate system defined in figures 3 and 10

maximum vehicle planform dimension defined in figure 30, m

z-dimension of local curved model surface, cm

array rotation angle, deg (see fig. 10)

ratio of specific heats of air

boundary-layer displacement thickness, cm

"effective" boundary-layer displacement thickness defined in equation (14), cm

boundary-layer momentum thickness, cm

model material thickness, m



P

Subscripts:

aw

viscosity, N-sec/m 2

density of air, kg/m 3

model material density, kg/m 3

angle between surface tangent plane and flow velocity vector, deg

adiabatic wall

e

fp

sm

boundary-layer edge

flat plate

surface of the smooth, curved array

t total

w wall

oo free stream

APPARATUS AND TESTS

Facility

The experimental results presented herein were obtained in the Langley continuous

flow hypersonic tunnel. This facility, which has a 78.74-cm square test section, operates

at a nominal free-stream Mach number of 10.3 over a free-stream Reynolds number range

of 1.5 to 8.2 x 106 per meter using air as the test gas, and may be operated in either a

blowdown or continuous, closed-circuit mode. To prevent liquefaction, the air is heated

by use of electrical resistance tube bundles. The tunnel-throat, expansion, and diffuser

sections are all water cooled. A photograph of the facility test section is presented in

figure 1.

For these tests, the models were moun_ed on the model injection mechanism which

is shown adjacent to the test section in figure 2. This device allows a model to be iso-

lated from the hypersonic airstream for model cooling or configuration changes while



the tunnel is operating. The mechanism also provides rapid injection of a model into

the hypersonic airstream.

Models

Pressure-gradient model.- The RSI tile pressure-gradient model was a curved

array of simulated full-scale RSI tiles fabricated of Inconel sheet with a nominal thick-

ness of 0.0483 cm. Surface curvature was generated from a right circular cylinder of

102.28-cm radius, cut by a plane at a 5 ° angle to the axis of the cylinder. A schematic

drawing of the model is shown in figure 3. Individual tile size was 14.92 cm square.

The model was fabricated such that each transverse row of simulated tiles was a

continuous sheet of material with the longitudinal gaps formed by bending. The transverse

gaps were fabricated separately and electron-beam welded between tile row sections to

form the complete tile array. Stress relief in the material following the welding process

resulted in a "pinching down" of the transverse gaps from the desired width. Resulting

gap width between tiles was nominally 0.30 cm for longitudinal gaps and 0.20 cm for trans-

verse gaps. Gap depth was 2.86 cm.

Spacer plates were also fabricated to maintain model edges flush with the tunnel

sidewall. Three sets of spacer plates were fabricated to allow testing at model flow

angularities of 0°, +22.5 °, and +45 °. The model and spacer plates mounted on the facil-

ity injection system are shown in figure 4.

The model was instrumented with 67 chromel-alumel thermocouples spotwelded to

the model back surface at tile-surface and gap locations indicated in figure 5. The model

was also fitted with 12 static pressure orifices (7 located on the surface of a tile and

5 located on the floor of a transverse gap) as indicated in figure 5. Precise thermocouple

and pressure orifice locations are listed in table I.

For smooth-surface testing of the model, the gaps were eliminated by filling them

with twine to a point approximately one gap width below the tile exterior surface. The

remainder of the gap was filled with plaster of paris which was allowed to dry and then

smoothed by sanding to match the surrounding surface. This created a smooth model

with correct curvature for measurement of surface reference data.

Fiat-plate model:- A smooth flat-plate model, used to measure undisturbed wail-

heat-transfer coefficients, was fabricated from 321 stainless steel sheet with a nominal

thickness of 0.i27 cm. The 50.8-cm square panel fit flush with the injection plate fab-

ricated for testing of this model. The model and injection plate are shown mounted on

the injection strut, ready for testing, in figure 6. The flat-plate model was instrumented

with 11 chromel-alumel thermocouples spotwelded to the model back surface, located

as shown in figure 7.
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Boundary-layer probe.- An l 1-tube pitot-probe rake was placed downstream of the

flat-plate model at four spanwise locations. Individual pitot probes were located at sta-

tions normal to the wall as shown in figure 8. Tube diameters varied with position rela-

tive to the wall. The rake is shown installed with the flat-plate model for testing in

figure 6.

Instrumentation

Temperature data were obtained using the chromel-alumel thermocouples with a

reference junction of 324.8 K. The reference-junction temperature was thermostatically

controlled to within +0.55 K.

Pressures were measured using baratrons mounted on the injection strut imme-

diately behind the model. The baratron is a capacitance-type transducer, operated in

conjunction with a signal conditioner to allow measurement of pressure over seven ranges

from 0 to 68.9 N/m 2 to 0 to 68.9 kN/m 2. The signal conditioner provides automatic rang-

ing such that the measurements were obtained on the lowest possible range. Measure-

ment accuracy is estimated to be within ±7 percent of reading.

Test Procedures and Conditions

The transient-calorimeter technique was used to measure heat-transfer rates to

the surfaces of the thin-skin models. The tests were conducted with the models initially

at room temperature, isolated from the hypersonic airstream within the injection chamber,

at a pressure equal to the test-section static pressure. With the hypersonic flow estab-

lished in the test section, the model was rapidly injected to the test position, flush with

the tunnel sidewall, and temperature and pressure data were automatically recorded on

magnetic tape by an analog-to-digital converter at a rate of 20 samples per second. The

model was exposed to the airstream for an interval of time sufficient to allow pressure

transducer outputs to "settle out," and then retracted.

Both the tile-array and flat-plate reference models were tested at total pressures

within the settling chamber of 2.41, 5.17, and 9.65 MN/m 2, corresponding to free-stream

Reynolds numbers of 1.6, 3.3, and 6.1 x 106 per meter. Additional flat-plate data were

obtained at a total pressure of 12.07 MN/m 2 (Reynolds number of 7.4 x 106 per meter}.

The tile-array model was tested at flow angles o_ of 0 o, +22.5 o, and +45 °. Testing

at positive and negative flow angles allowed measurement of both temperature and pres-

sure data over the entire model surface while instrumenting only one side of the plane of

symmetry for either temperature or pressure as shown in figure 5. By "mirror imaging"

the data obtained at negative flow angles, data for the entire model surface were obtained

for flow angles of _ = 0 °, 22,5 °, and 45 °.
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DATA REDUCTION

Boundary-Layer Profiles

Boundary-layer velocity and density profiles were derived from wall boundary-

layer pitot pressure measurements. These calculations required assumptions of the

distribution of static pressure and temperature through the boundary layer. As shown

in figure 9, the measured wall static pressure was significantly higher than the free-

stream static pressure computed from one-dimensional flow considerations. However,

pressure measurements in the free stream of the facility (ref. 6) show good agreement

with the computed free-stream static pressure. Static pressure within the boundary

layer was assumed to vary linearly between the measured wall and computed free-stream

values.

Total temperature within the boundary layer was assumed to vary as the square

of velocity, that is,

T t- T w =[--_2 (1)

Tt,e Tw  Ue/

which is characteristic of turbulent tunnel-wall boundary layers (ref. 7). Unpublished

total temperature measurements made by D. H. Crawford in the wall boundary layer of

this facility show good agreement with the quadratic temperature-velocity relation.

With the measured pitot pressure and assumed static pressure at each point, the

Rayleigh pitot equation was applied to calculate local Mach number. Local velocity and

density were then computed using the assumed temperature distribution and the perfect-

gas equation of state.

Heat-Transfer Data

The test procedure of rapid injection of the isothermal model to the test position

provided a step input in heat transfer to the thin-skin model. Heat-transfer rates were

determined by the transient-calorimeter technique of measuring the time rate of change

of the model skin temperature. For data reduction purposes, the one-half second inter-

val of temperature data immediately following model injection was disregarded to allow

flow conditions to stabilize in the gap. This time is in excess of the required time as

reported by Nicoll (ref. 8). A quadratic least-squares curve was fit to the subsequent

4-sec interval of data for each thermocouple. Rates of change of temperature with

time _Tw/at were evaluated analytically from the curve-fit expressions at the initial

point of each curve fit. Heat-transfer rates were then computed from the expression

8
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(2)
q = PmCp, m)'m st

The long interval (4 sec) of temperature-time data used for heat-transfer rate calculation

allowed measurement of the low heating rates found within the gaps which were not dis-

cernible when a shorter interval (1 sec) of data was considered. An assessment of con-

duction effectswhich result from the long data interval,for representative data from this

test,indicatesa maximum error in computed heating rate of less than 10 percent for the

"worst case" thermocouple.

Heat-transfer data are expressed in the form of the heat-transfer coefficient h

defined as

h = q (3)
Taw - T w

Adiabatic wall temperature Taw was computed from the relation

Taw - Too

r = (4)
T t - Too

where recovery factor r was assumed equal to 0.89 for the turbulent test conditions.

This relation was applied to both flat-plate and curved-array data.

RESULTS AND DISCUSSION

Coordinate Definition

In the discussion of experimental results which follows, the data are referenced to

coordinate systems defined in figure 10. All flat-plate and wall boundary-layer data are

referenced to a stream-oriented coordinate system (X,Y,Z) which is fixed within the flow.

All curved-panel data, both smooth and with gaps present, are referenced to a coordinate

system (x,y,z) fixed within the rotating curved array. The origins of both coordinate

systems are located on the tunnel sidewall at the center of rotation of the tile-array

model. The coordinate pairs of any point (x,y and X,Y) are related by the rotation

transformation:

X= xcos _ - y sinot

Y=xsin_+ y cos



Boundary-Layer Surveys

Boundary-layer velocity profiles measuredon the sidewall center line are pre-

sented in figure II for the four free-stream unit Reynolds numbers at which flat-plate

data were obtained. The profile shapes are characteristic of a fully developed turbulent

boundary layer and the profiles tend to "fill out" (boundary-layer thins) with increasing

unit Reynolds number. Profiles obtained at several transverse locations at a single

unit Reynolds number are compared in figure 12. A significant change in the boundary-

layer profile shape as a function of transverse position is observed. This transverse

variation in boundary-layer profile is an indication of the three-dimensional character

of the boundary-layer flow in a nozzle of square cross section. The three dimension-

ality results from the corner interaction of the tunnel sidewall, floor, and ceiling

boundary layers.

The measured profile data were integrated to obtain values of the bulk quantities

of boundary-layer displacement O* and momentum 0 thicknesses, defined by the

relations

oo

°* (1- eUe  U dz (5)

oO

0 = 1 _PeU--- _ dZ (6)

The variations of these quantities with free-stream unit Reynolds number and transverse

position are presented in figure 13. Momentum thickness decreases, as expected, with

increasing unit Reynolds number, and shows little transverse variation. Boundary-layer

displacement thickness does not change significantly with unit Reynolds number, but does,

however, decrease rapidly with transverse position reflecting the changes in boundary-

layer profile shape noted in figure 12.

Flat-Plate Results

Heat-transfer data.- Measured flat-plate heat-transfer coefficients are shown in

figure 14 for the full range of test conditions. At each Reynolds number, the heat trans-

fer increases in the transverse direction, primarily as a result of the thinning of the

boundary layer, and is symmetric about the center line. The streamwise distribution of

heat transfer shows a small heating decrease characteristic of a fully developed, thick-

ening boundary layer.
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Pressure data.- The flat-plate pressure data (fig. 15) show a transverse distribu-

tion similar to that of the heat-transfer data. Streamwise, however, the pressure

decreases to a minimum and increases in the downstream (+X) direction. This behavior

is attributed to the fact that the test-section area of this facility does not represent a com-

plete expansion of the flow from the tunnel throat. The tunnel nozzle expands the flow to

a point approximately 1 meter upstream of the test-section center, at which the flat, par-

allel walls of the test section begin. The intersection of the expansion-section and test-

section walls then constitutes a compression corner for the wall boundary-layer flow.

The data presented herein were obtained in the compression region downstream of this

corner.

Flat-plate data correlation.- In order to understand the mechanisms controlling the

wall boundary-layer heat transfer, the heating data of figure 14 were correlated with

parameters which could be expected to influence heat transfer. Figure 16 presents flat-

plate heating data expressed in the form of Stanton number NSt plotted as a function of

Reynolds number based on wall conditions and boundary-layer momentum thickness Rw, 0.

The heat-transfer data points were inferred from the data of figure 14 for the transverse

locations at which boundary-layer profiles were obtained.

At each transverse location, Stanton number and Reynolds number correlate the data

over the range of free-stream flow conditions with Stanton number varying as the wall

Reynolds number Rw, 8 to the -0.07 power as indicated in figure 16. Failure to corre-

late the data for the three transverse locations is not surprising, as the Stanton-Reynolds

number correlation relates changes in streamwise variables and has no application to

transverse flow phenomena. The upstream histories of the boundary layers affecting

each transverse location are unique and no simple boundary-layer parameter relates the

transverse influence of boundary-layer characteristics. The single parameter which

varies significantly in the transverse plane is boundary-layer displacement thickness,

and, for a given boundary-layer flow, heat transfer is known to decrease with increasing

boundary-layer thickness. As previously noted, for this tunnel-wall flow, displacement

thickness does not vary significantly with unit Reynolds number. The effect of transverse-

boundary-layer-thickness variation on tunnel-sidewall heat transfer is indicated in fig-

ure 17 where the data of figure 16 are presented as a function of displacement thickness.

The flat-plate heat-transfer data correlate with pertinent flow variables according to the

relation

N _0.07
Strtw, 0 = AS* + B (7)

where

A = -0.000277 cm-1

B = 0.00466

11



This expression quantifies the relationship betweenmeasuredboundary-layer parameters
and measuredwall heat transfer for this tunnel-wall flow. The correlation has noappli-
cation to any flow other than this tunnel-wall boundarylayer; however, it indicates a good
understandingof this flow and lends confidenceto the curved-array datawhich follow.

RSI Tile Array - Smooth-ModelData

Becauseof the complexity of the wall boundary-layer flow indicated by the flat-plate
andboundary-layer-probe results, heat-transfer andpressure data were obtainedon the
RSI tile-array modelwith nogaps present. Thesedata were used to relate measured
surface andgap heating to an undisturbed surface reference.

Pressure data.- Smooth-model pressure data and fourth-order least-squares curve

fits of the data are presented in figure 18 for all test conditions. The data from the ori-

fice located at y = +5.08 cm were not considered for computation of the curve-fit

expressions as data from this transducer were consistently higher than those from the

other transducers. At an array rotation angle a of 0°, the pressures show the same

transverse trends demonstrated by the flat-plate data. Flow deflection angle ¢ (i.e., the

angle between the free-stream velocity vector and the plane of tangency of the surface at

a point) has negligible point-to-point variation between orifices when a = 0 °. With

increases in rotation angle to 22.5 ° and 45 °, flow deflection angles on the upstream por-

tion of the model increase, those onthe downstream portion decrease, and static pres-

sures vary accordingly. 1

Heat-transfer data.- Measured smooth-surface reference heat-transfer data are

presented in figure 19 for the curved-array model. For the zero-rotation case, the flat-

plate heating data are also presented for comparison. Because of the 5° surface inclina-

tion of the curved panel, heat transfer to the panel was greater (as shown) than to the flat

plate. Based on the flat-plate results, the increase in heat transfer with transverse dis-

tance from the center line was expected. However, at a = 0 ° the rate of increase in the

transverse direction was expected to be nearly equal to that for the flat plate since flow

deflection angle remains constant with transverse position. As figure 19 (_ = 0°) shows,

the transverse rate of increase of heating to the curved array is significantly greater

than that for the fiat plate. This more rapid increase is hypothesized to be the result of

an effective "thinning" of the boundary layer due to the protrusion of the model into the

boundary-layer flow. With a boundary layer which is much thicker than the protruding

height of the tile-array model, it is not thought that the model will significantly affect

1Note that the y-coordinate is fixed in the rotating array, while the Y-coordinate
is fixed in the tunnel sidewall. While y-values are constant for each orifice, the orifice
locations within the complex boundary-layer flow vary with array rotation angle. There-
fore, the pressure and heat-transfer variations shown in the figures as functions of the
y-coordinate are a superposition of effects of changing flow deflection angle and changes
in the Y-coordinate position (boundary-layer conditions affecting the point).

12



the outer portions of the boundarylayer as would be the case if the characteristic dimen-
sion of the model wasof the sameorder as the boundary-layer thickness. Rather, the
boundary-layer edgelocation remains essentially unchangedfrom the flat-plate caseand
the boundary-layer thickness is decreasedby the protrusion of the curved model into the
flow.

Smooth-surfaceheatingdata for the ot = 22.5 ° and 45 ° cases show increased sur-

face heating with increasing flow deflection angle (y increasing) as expected. The data

also show, however, increases in heatlng where the flow deflection angle is decreasing

(y decreasing). This anomaly is explained by the fact that these heating increases, in

regions of decreasing flow deflection, are occurring at wall positions where boundary-

layer thickness is decreasing. The opposing effects of decreasing boundary-layer thick-

ness and flow deflection angle are dominated by the boundary-layer thinning effect, and

heating increases. In the following section, a method will be developed to predict smooth-

model-surface heat transfer.

Prediction of smooth-surface heating characteristics.- Consider the correlation of

flat-plate heating data presented in figure 17

0.07 .
NstRw, 0 =A6 + B

and assume that a correlation of this form is valid for the smooth-curved-panel data.

Therefore, for curved-panel data,

N n0.07
Strtw, 0

X

(N R
\ St w,0]fp

ASef f + B

(A6* + B)fp

where 6eft is an effective boundary-layer thickness as hypothesized in the previous

section. By definition,

(8)

h

NSt PwU_Cp

(9)

13



Substitutingthese expressions in equation (8) andassuming uoo_ uoo,fp,

Assuming a perfect gas,

P
RT

ASeff+ B

(A6* + B)fp

and assumingwall-temperature variations are negligible,

and

Then,

T w _- Tw,fp

Pw _ Pw,fp

F --IF--7°°' B

Neglecting the weak dependence on 8

hfp (A-'_ _-B)f"'p

Now, estimate

6$ff 6'= _ kzsurf

(10)

(11)

(12)

(13)

(14)

where Zsurf is the local protrusion of the smooth model surface into the boundary-layer

flow, and k is an unknown constant.

If the value of the constant k and the local pressure on the curved array are known,

the distribution of heat transfer to the surface of the smooth curved panel may be predicted

using equations (13) and (14) with the measured flat-plate pressure, heat transfer, and

boundary-layer data. Surface pressure was measured, however, on one transverse ray of

the smooth curved panel. Figure 20 presents measured heat-transfer data for that ray

14



for a Reynoldsnumber of 3.3 × 106per meter, along with the predicted heating from equa-
tions (13)and (14), using the measuredpressure data. The value of the constant k which
provided a "best fit" to the experimental datawas 0.5. The predicted heat transfer shows
excellent agreement with the experimental data. Similar results were observed in the
dataobtainedat Reynoldsnumbers of 1.6 and6.1 x 106per meter.

RSI Tile-Array Results - GapsPresent

Pressure data.- Measured pressures for the simulated RSI tile array are presented

in figure 21 for all test conditions. Tile-surface data are shown as open symbols and gap-

floor data, as solid symbols. Comparison of these data with those of figure 18 indicates

that the surface pressure distributions with gaps present are essentially identical to those

obtained with a smooth model. Pressure level within the gaps closely follows that of the

tile exterior surface.

Gap heat-transfer data.- Measured distributions of heat transfer 2 along the instru-

mented transverse gap are shown in figures 22 to 24 for each array rotation angle and

Reynolds number. For the zero-rotation case (fig. 22), at transverse positions off the

center line (y ¢ 0), no intense reattachment heating occurs at the gap corner, and no sig-

nificant increase in surface heating occurs downstream of the transverse gap, indicating

negligible flow separation over the transverse gap. Note also that off the center line at

a depth into the gap of less than four gap widths ([_-symbol), the local heating level is

less than 2 percent of the undisturbed surface value. The solid symbols in figures 22

through 29 indicate extremely low heat-transfer-rate data which are of questionable

accuracy. These data are included for completeness.

For the zero-rotation case (fig. 22) on the array center line (y = 0) the gap geometry

consists of a longitudinal gap intersecting the transverse gap. Heat transfer to the trans-

fer gap at the intersection point and to the tile surface immediately downstream of the gap

is significantly higher than for a simple transverse gap as exists away from the center

line. This heating increase at the gap intersection is attributed to a large region of flow

separation within the longitudinal gap and a strong shear-layer reattachment on the

forward-facing wall of the transverse gap. Heating at the intersection point is depend-

ent upon Reynolds number. Dunavant and Throckmorton (ref. 9), using gap-intersection

data from several facilities, have shown that such data may be correlated as a function

of boundary-layer displacement thickness, streamwise-gap running length, gap width,

and depth location within the gap.

2All beat-transfer data discussed in this section are nondimensionalized by the
measured heat transfer to the smooth-surface model. Surface data are normalized by
the smooth-model measurement of the same thermocouple; gap-wall data are normalized
by the smooth-model-surface measurement at the thermocouple location nearest the gap.
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Rotation of the tile array (figs. 23and 24)produces increased surface reattachment
heating immediately downstreamof the transverse gap. As in the zero-rotation case,
the surface reattachment heating is most severe downstreamof the longitudinal-gap--
transverse-gap intersection. Within the gap,array rotation doesnot significantly affect
the level of heat transfer, but it does result in a transverse shift of the heating peakon
the gapwall downstreamof the longitudinal gap, toward the low-pressure side of the gap
intersection. Again, the heating level in this region of flow reattachment is dependent
uponReynoldsnumber.

Figures 25 and 26present heat-transfer data for the longitudinal gapat each
Reynoldsnumber as a function of array rotation angle. The significant variations in
gapheating observed in theseplots result from the changein orientation of the wall,
from one which is forward facing to one which is rearward facing, as array rotation
anglechanges. With the exceptionof certain low Reynoldsnumber data, whenthe wall
is rearward facing (o_> 0°), the flow appears to separateupstream of the tile gapcor-
ner, resulting in substantially lower heating to the corner (A-sTmbol) than to the undis-
turbed surface. Whenthe wall is forward facing (_ < 0°), the flow reattaches in the

vicinity of the corner resulting in heatingequal to or greater than the undisturbed sur-
face value.

At ot = -45 ° the longitudinal gap (figs. 25 and 26) presents nearly the same geom-

etry to the flow as does the transverse gap at _ = 45 ° (fig. 24, y = 3.81 cm). However,

the gap-corner flow reattachment observed for the longitudinal gap was not present on the

transverse gap. These contrasting results are attributed to differences in the gap width

and corner radii between the longitudinal and transverse gaps. As a result of the model

fabrication process discussed previously, longitudinal gap width was approximately

1.5 times as large as transverse gap width and longitudinal gap edge radius was larger

than that of the transverse gap. The increased gap width and large exposed surface area

at the longitudinal gap edge allow for diffusion of a shear layer into the gap and flow

reattachment at the tile corner as opposed to the negligible separation and reattachment

observed for the transverse gap.

The variations of gap heat transfer with rotation angle for the simple transverse gap

and the gap intersection are presented in figures 27 and 28, respectively. Array rotation

angle has little effect upon the heating within the simple transverse gap (fig. 27), but tends

to increase slightly the heating to the surface immediately downstream of the gap. For

the gap intersection location (fig. 28) at the lower Reynolds numbers, array rotation again

has minimal effect on heating within the gap. However, at the highest Reynolds number

(fig. 28(c)) array rotation decreases the gap heating level at the gap intersection. It

should be noted that this heating decrease is a result of the previously discussed shift of

the heating peak within the gap (figs. 22 to 24), and does not reflect a lessening of the

heating load within the gap. Figure 28 also clearly demonstrates the large increase in
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tile surface heating which occurs immediately downstream of a longitudinal-gap--

transverse-gap intersection. All surface data of figure 28 are significantly higher than

the corresponding data for the simple transverse gap (fig. 27).

Pressure-Gradient Effects on Gap Heat Transfer

Rotation of the curved array not only produced crossflow over the array, but also

the desired pressure gradient within the gap. The magnitude of this pressure gradient

was determined by differentiating the curve fits of the gap pressure data of figure 21. In

figure 29 measured heat transfer in the transverse gap at y = +3.81 and +11.43 cm is

presented as a function of a nondimensional pressureTgradient parameter. This param-

0PL
eter is the local pressure gradient divided by the local pressure times some

0y P

characteristic length. Using the full-scale tile dimension as the characteristic length

(L = 15.24 cm), this parameter is physically the nondimensionalized pressure drop for

one tile length along the gap. No systematic effect of pressure gradient on gap heat

transfer is evident.

Shuttle Pressure-Gradient and Boundary-Layer Simulation

In order to evaluate the full-scale shuttle pressure-gradient simulation obtained

with the curved-array model, full-scale-vehicle spanwise pressure distributions were

obtained at two longitudinal stations. These pressure distributions were calculated,

using the method of reference 10, for a full-scale vehicle at Mach 10.0 and 30 ° angle of

attack in an ideal gas with _ = 1.12. The surface pressure distributions were numeri-

cally differentiated to obtain the full-scale values of the pressure-gradient parameter

0P L Values of this parameter for the full-scale vehicle are presented in figure 30
0S P'

as a function of surface dimension S/Yma x for the two longitudinalstations illustrated.

The shaded area superimposed upon these data indicates the range of pressure-gradient

parameter values obtained in the wind-tunnel tests. Simulation of full-scale-vehicle

pressure-gradient levels is excellentwith the exception of the wing leading-edge regions.

Wing leading-edge TPS, however, willbe a solid material with no gaps present, therefore,

pressure gradient is not of concern on thatportion of the vehicle surface.

Reference 5 indicatesthat although the boundary-layer edge Mach number and unit

Reynolds numbers of the present tests are more extreme than expected in flight,the

boundary-layer displacement and momentum thicknesses provide good simulation for a

range of flightbody-point--trajectory-point combinations.
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CONCLUDING REMARKS

An experimental investigation has been conducted to assess the effect of pressure

gradient on the heat transfer to reusable surface insulation (RSI) tile-array gaps sub-

merged in a thick, turbulent boundary layer. The experimental program consisted of

heat-transfer and pressure measurements on a curved array of full-scale simulated

RSI tiles in the tunnel-wall boundary layer of the Langley Research Center continuous

flow hypersonic tunnel over a range of free-stream Reynolds numbers and flow angular-

ities. The tile-array model was tested with gaps present, and with gaps eliminated to

obtain smooth-surface reference data under conditions simulating full-scale-vehicle

pressure gradients. In order to gain a thorough understanding of the boundary-layer flow

in which these tests were conducted, pitot profile measurements of the tunnel-wall bound-

ary layer and wall-pressure and heat-transfer measurements were made.

Because of corner effects in the square cross section contoured nozzle, the wall

boundary layer of the continuous flow hypersonic tunnel is highly three dimensional with

significant transverse thickness variations. However, the measured flat-plate wall heat

transfer correlated with momentum-thickness Reynolds number and boundary-layer

displacement thickness. Heating to the curved tile array in this flow was more sensitive

to transverse position than was the flat-plate heating. This sensitivity resulted from

thinning of the boundary layer by the protrusion of the curved surface into the flow. A

method was developed for prediction of smooth-curved-array heat transfer in this tunnel-

wall boundary-layer flow. The method uses an estimated or measured surface pressure

to perturb the measured flat-plate heating data, and accounts for "effective" boundary-

layer thinning due to the protrusion of a model into the boundary layer. Simulations of

full-scale space shuttle transverse pressure gradient and boundary-layer thickness were

good.

The results of this investigation indicate the following:

1. The level and distribution of pressure on the floor of the RSI tile-array gaps

follow the trends of pressure on the external tile surface.

2. Heat transfer to a forwardffacing transverse-gap wall is significantly higher

at the intersection of a longitudinal and transverse gap than for a simple longitudinal

or transverse gap.

3. Heat transfer to the tile surface immediately downstream of a transverse gap

is higher than for the smooth surface with no gaps present. The increased surface heat-

ing due to the gaps is particularly significant downstream of a longitudinal-gap--

transverse-gap intersection.
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4. For a thick, turbulent boundary layer there is no systematic effect of transverse

pressure gradient on tile-array-gap heat transfer.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., April 14, 1975.
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TABLE I.- THERMOCOUPLE AND PRESSURE ORIFICE LOCATIONS

[Dimensions are in centimeters]

Thermocouple

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

x y

-27.0(] 0

-27.0(] 2.54 1
-27.00 5.08 -

-32.06 0

-29.53

-24.47

-21.94

-11.82 2.54

-11.81 5.08

-11.79 7.62 1

-11.77 10.16
-11.75 12.70

-16.85 7.62

-14.32

-9.26

-6.73

3.36 0

3.3_ 2.54

3.3_ 5.08

-1.7C 0

.83

5.89

8.42 t

3.41 10.16

3.43 12.70

3.46 15.24

3.50 17.78

-1.60

.93

5.99

8,52

-3.44 11,43

-4.01 11.43

-4.01 11.43
-15.61 1.87

1,30

.73
,

' .16

.16

t .16

-8.o2 1 1.87_

Zs --
1:33_ F :::

1.26 ---

.94 ---

1.16 ---

1.61 ---

1:83 ---

2.68 ---

2.59 ---

2.43 ---

2.21 ---

1.92 ---

1.99 ---

2.21 ---

2.65 ---

2.87 ---

4.04 ---

4.{)1 -- -

3.91 -- -

3.60 ---

3.82 ---

4.26 ---

4.48 ---

3.54 ---

3.25 ---

2.90 ---

2.49 ---

2.01 ---

2.46 ---

2.68 ---

3.12 ---

3.35 ---

2.80 ---

2.75 0

--- .57

2.36 ---
2.37 ---

2.38 ---

2.38 0

--- .57 ]

--- 1.14

3.08 ---

Thermocouple

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

6O

61

62

63

64

65

66

67

Pressure
orifice

1

2

3

4

5

6

7

8

9

10

11

12

x Y Zsurf I d

-8.02 1 30 3.04 [ ---

73 3.04 I ---

16 3.04 I 0

16 --- I .57

t 16 --- I 1.14

-2.35 3 81 3.47 1 ---

-2.93 3.42 1 ---

-3.50 3.37 i ---

-4.06 3.32 i 0

--- I .57

--- I 1.14 1

--- I 1.71

--- 12.29
|

-4.22 _ --- I 2.86

-2.36 _) 3.54 ] ---

-2.93 3.49 I ---

-3.50 3.44 J ---

-4.07 3.39 ] 0

--- I .57

--- ] 1.14

--- I 1.71

t --- ]2.29 1

-4.23 'P --- I 2.86

-4.07 1,14i --- I .57

-4.07 ,57 .... I .57

x y I Zsurf d

i -11.82 -2.54 2.68 t ---

-11.81 -5.08 2.59 I ---

-11.79 i -_.62 2.43 I ---

-11.77 -lC.16' 2.21 I ---

-11.75 -12.70 1.92 I ---

-14.32 -,.62 2.21 I ---

-9.26 -_.62 2.65 I ---

-4.22 -3.81 --- I 2.86

-4.20 -7.62

-4.17 -11.43

-4.13 -15.24

-4.07 -19.05
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(a) Roo = 1.6 x 106 per meter.

Figure 25.- Variation of heat transfer to the longitudinal gap with arra.y

rotation angle, x = -15.61 cm.
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Figure 25.- Continued.
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Figure 25.- Concluded.
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Figure 26.- Variation of heat transfer to the longitudinal gap with array rotation angle.

x = 8.02 cm.
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Figure 27.- Variation of heat transfer to the simple transverse gap with array

rotation angle.
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Figure 28.- Variation with array rotation angle of heat transfer to the transverse gap

at its intersection with the longitudinal gap.
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