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INTRODUCTION

A dual Trequency electromagnetic scattering technique has been developed
i .or measuring the rms height of a rendomly rough surface and has been applied

to the remote sensing of significent wave height on the ocean surface. This

. measurement involves e near-nadir looking radar that transmits and then re-

ceives two moumochromatic signals simultaneously. At the receiver, the two

radar returng are correlasted as a function of their wvariable frequency separa-

TN

tion., The resulting cross correlation depends primerily on the rms wave
height. A theoretical analyzis of this technique has been verified in s series
of laboratory measurements by WEissmanl, Presently, NASA/TLaRC is conducting

L an experimentel program with an airborne dual frequency scatterometer (DFS)

to verify this measurement concept under a variety of sea state conditions.

A future goal of this research is to conduct daily measurements of sea state

on & synoptic scale., This could be implemented by installing inexpensive,
} self-contained, compact radar units with low power reguirements on the ex-

terior of commercial and/or government aircraft that travel over ocean paths

of interest., PFigure 1 gives an idea of the commercisl coverage of the Atlantic

and Pacific oceans by one carrier,

This paper deals with the duel frequency technique, the aireraft pro-

gramn, and typical results for low and moderate sea states.
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THEORY

In the durl frequency technique, two monochromatic signals are
transmitted at normel incidence to the surface as shown in Figure 2. The back~
sratterad signal emplitudes are cross correlated as s function of the frequency
difference between the two carriers. Since the illuminated area conaists of
rondomly situated scattering points, the returned signel amplitude at each
frequency will flictuate randomly and the degree of correlation between the
two envelopes depends on the relative heights of the scatterers.

The time expressions for the backscattered fields, el(t) and ee(t), are
given in Figure 3, and the amplitude modulation terms, E& and.Ee,.are written
as phasors. The two frequency correlation function, R(Af), is defined as
the cross correlation of E, and E, normalized to the product of their
respective rms velues., Furthermere, it can be shown that |§L§£l[2 involves
the cross co;relation of ondJv the amplitude terms in Ei and EQ and no
phase information is required.

To derive the correlation function in terms of rms wave height, the
physicael ophtics approximation is used in solving Helmholtz integrals for the
backscattered fields at esch frequency. This leads to a specular point
surmation at each frequency, and when these are cross correlated the result
is as shown in Figure 4. Here, the first term in the first equation intreduces
8 deterministic phase angle that can be ignored fer studying roughness effects.
The second term is the mean value of the phase difference evaluated at the

difference frequency, Af, due to the rendom elevation, hn’ of the specular

points about the mean surface, This term is also the nharacteristic function
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of the specular point heights, or the Fourier transform of their probability
density function. Thus, the rms helght can be determined by inversion of
the transform, The right hand term in this equation includes the effects of
antenna beam spreading end off nedir alinement on the measurement of R(Af).
This effect can be made negligible by properly choosing system parasmeters.

Assuming that the specular point heights are Gaussien distributed,
then the theoretical result for R(Ak), where Ak = 2n(Af/c), is as shown in
Pigure 5. ‘Significant wave height, H1/3, the term used by oceanographers to
represent sea state, is approximetely equal to 4 times the rms wave height,

g, for a fully developed sea. The pattern function in this figure is a pre-
dictable term; thus, & measurement of |R(Af)|versus frequency seperation with
the DFS will infer the rms wave height on the surface.

Figure 6 shows the decorrelation effect due to beam curvature or off
nadir alignment. Points on the surface at the same elevation may be separsted
in renge and erroneous decorrelation may occitr. Thls effect determines the
maximum allowsble beam width and alinement error tolerances for a dual
frequency/seea state ﬁeasurement.

Theoretical calculetions of correlation ceoefficient versus Af for nadir
alinement end a 3.0° antenna beamwidth are shown in Figure 7. These curves
show how the correletion function vaires with roughness as 0 ranges from
0.1 meter to T.0 méters. At o = 0.1 meter , the correlation functinn is
meinly influenced by beam curvature decorreletion, but as O exceeds 0.5
meter the roughness term dominates so that it cen be accurately inferred
from sn observation. Figure 8 shows the off nadir al.nement efr'ect that has

been accentuated in the caleulations by setting the viewing engle equal to
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5.67°, Under these conditions, only very rough seas could be measured

gecurately,

AIRCRAFT MEASUREMENY PROGRAM

The aircraft in Figure 9 is the Johnson Space Center NC-130 B (MNASA
929) which has been used in the DFS flight program. Two missions have been
conducted ~~ the first in early June 1974 and the second in August 197k,
Figure 10 is & photogreph of the scatterometer mounted to a rail structure on
the lowered cargo ramp of the aircraft. In the measurement position, it views
the ocean surfece at incidence angles {rom 0-53 degrees.

The DFS herdwere is a modifisation to an existinpg secatterometer
(RADSCAT) that operates in s long pulse, beam limited mode and measures
average scattered power. Figure 11 is a block diesgram showing thet part of
the system that is pertinen” to the DFS. Pulses ere alternstely transmitted
at, £, = 13.9 GHz and £ _= £, + Af, where Af =0 - L 'z, Separate f&

b

end f. local osclllators are synchronized with the tinnmitter to maintrdn

b
8 300 MHz intermediate frequency. 7The envelopes of the received pulses are
separated.in the DFS correlestor, and the fa and fb pulses are sampled and
held to form continuous signals which are then cross ceorrelated.

Typical results from the June 1974 f1lights ere shown in Figures 12
and 3. When_these measurements were made, the winds and sea were calm,
epproximately 5 knots and 1 foot rms,respectively. Measurements at nadir just

barely detect the presence of roughness., The off nadir data in both Pigures

12 and 13 show excellent sgreement with the theory, and comparing the two
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sets of curves for 5000 feet and 10,000 feet shows the stronger decorrelation
at 10,000 feet due to a larger range spreading effect.

During the second mission extremely calm seas were agein encountered,
and Figure 1b stows some typical results at nadir., When the seas are so calm
that the roughness decorrelation cennot be resolved (less than 1 foot rms),
the pattern decorrelation effect is not great enough to lead to erroneous re-
sults. Fortunately, a tropical depression formed in the Caribbean during the
last week in August and flights were conducted in the vicinity of this storm,
which later grew into Hurricane Carmen. At one test site about 200 miles
northeast of Puerto Rico the surface winds were in the 20-30 knot range. Two
sets of data, upwind and downwind, were taken and the results have been fitted
to a theoretical curve for an rms wave height of 0.7 meter (Hl/3 = 9 feet) in
Figure 15. There is_appreciable scatter in these data, but this may be reduced
in the future by using longer integration times and by accounting for airecraft
pitch and_ro;l. Results thus fer ere considered preliminary since laser wave

profile deta teken on each flight have not yet been reduced for comparison.

SUMMARY

The therretical development of ¢ dusl frequency correlation technique
for remotely sensing R.M.S. wave height on the ocean surface has been developed,
and a flight progrem for proving the messurement concept is in progress.

Flight results have been obtained for lov and moderate sea states
and for incidence angles from nadir to 55 degrees. Preliminary results are

in excellent agreement with the theory for both surface roughness effects and

vt



antenna pattern decorrelation. The data anelysis is now belng refined to

correct for aircreft motion, Wave heights inferred by the DFS wil) also be

compared to laser wave profile datae. Futurc flights are planrned for high

sea ctetes; nevertheless, the results at this point indicate that this technique

iz valid and would be successful for measurements from aireraft.
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Figure 1. Pan Am Commercial Routes
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