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rOREWORD

The present report is part of broader effort which concerns an

investigation of ESSA VII radiation data for use in long-term earth

energy experiments, performed under Langley Research Center Contract

No. NAS1-11871 for the National Aeronautics and Space Administration.

This report is one of three companion reports which together constitute

the final report of phases I and II of subject contract. The other

two reports are entitled; "An Investigation of ESSA VII Radiation

Data for Use in Long-Term Earth Energy Experiments," published as

NASA CR-132623, and 'bur Contaminated Atmosphere - The Danger of

Climate Change," published as NASA CR-132625.
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STEADY-STATE SOLUTION TO THE CONDUCTION PROBLEM

OF A SPHERICAL BALLOON RADIOMETER

INTRODUCTION

House and Sweet (1973) have proposed a satellite system for

observing the cart},'s radiation balance employing spherical balloon

radiometers. The instrumentation consists of three inflatable,

spherical structures which are exposed to external irradiances of

the radiation budget. In the steady-state condition of radiative

equilibrium, the magnitud,!s of absorbed external irradiances are

sensed by internal radiometers mounted on the skin of each balloon.

The temperatures of the radiometers are monitored as a measure of

the balloons' internal irradiances (equal to absorbed external

irradiances) and then telemetered to earth. These temperatures

will vary depending on the external optical properties of their

respective balloons, whose properties are selected to effectively

discriminate the components of the earth's radiation balance.

In the discussion of measurement principle cited above, two

assumptions are made concerning conduction of heat:

• lateral conduction along the balloon skin represents a
negligible contribution to the overall power density
balance on an area element of a balloon.

• the difference between the inside and outside temperatures
of an area element is negilgibly small.

The effect of lateral conduction becomes small when the balloon

radius is many times larger than its thickness. In the case of the

balloons considered above, the radius is about 10 4 times the thickness.

Therefore, it is reasonable to neglect lateral heat conduction in the

first approximation.

1
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The assumption that the difference between the inside and

outside temperatures of an area element is negligibly small implies

that the skin is quite thin and/or the thermal conductivity is quite

large. Materials under consideration will lead to balloon thicknesses

from about 0.5 to 3.0 mils and possibly thicker for those surfaces

which are painted. Thermal conductivities of materials will vary.

In the case of aluminum it is large; however, plastics such as mylar

and teflon, and paints have lower magnitudes of thermal conductivity.

Small, but significant temperature gradients may be established across

the skin for the balloon thicknesses and materials currently under

consideration. Furthermore, the effect of temperature gradients

through the skin are enhanced by the fourth power of temperature when

considering radiant power densities according to Stefan-Boltzmann's

Law CT4.

The purpose of this investigation is to assess the conduction

problem mathematically in order to determine its impact on measurement

accuracy. It is desirable to develop the problem in terms of the

magnitude of irradiant sources, balloon thickness and thermal conduc-

tivity so that the results may be utilized effectively in the

engineering design of the satellite system under realistic irradiant

ey.vironments .
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PROBLEM DEVELOPMENT

Consider the measurement process depicted in figure 1. The

spherical balloon shell absorbs radiant power from irradiant sources

Ha over its cross-sections+ R. arealra2 , assuming the upper limit case

that all irradiation is parallel. When the balloon is in radiative

equilibrium with its environment, the absorbed power is balanced by

an equal loss of power W e back to space from its surface area 41ra2.

The magnitude of power loss from an area element depends on the external

temperature T  according to Stefan-Boltzmann's Law CTa4 if the balloon

is a black body.

An internal radiometer is located at the inside skin of the

balloon. This radiometer absorbs radiant power Hi from the inside
4

of the balloon W  where W i = C Ti . The temperature of this radio-

meter Tr is monitored and eventually telemetered to earth. The point

in question is whether it is possible to work backwards from an

observed temperature of the internal radiometer to obtain an accurate

measurement of irradiant sources?

Several mathematical expressions hold for the balloon configuration

under different bounding conduction assumptions. Under conditions of

infinite conductivity, the balloon will be isothermal. Thus,

Te--Ti_—Tr• Then,	
U

7re K'= 4'R'0. We^ 

and

We= wz = N;= ^^^`	 (1>

It is evident in equation (1) that Hs is related to the temperature

observation Tr.

A more general case is to assume that lateral conduction can be

neglected (i.e., the radius to thickness ratio is very large) and the

akin thickness i.s quite small. For these conditions temperature gradients

through the skin are negligible and Ti = Te for an area element.

3
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Figure 1. Schematic representation of measurement by a spherical
balloon radiometer.
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However, the temperature will vary from one area element to the other.

Defining the external and internal average radiant power densities as
1

^e = — 6" 1e^' d5	 (2)
S S

and

W
!_ Q- T 4 d S 	(3)

^ s
respectively, a similar chain relation: >hip as equation (1) is valid:

µ Hs  Ve 7 HAP
Again the irradiant sources N

s 
are related to the observed tempera-

tune Tr.

The bounding conduction characteristics assumed in this work are:

• lateral conduction can be neglected

* conduction through the skin is a significant part of
the heat transfer

When thermal conduction through the skin thickness is slow, T i f T 

and Hi M W1 0 We by some amount ( see Figure 2a). This condition will

lead to an error in measuring H s , utilizing the observation Tr.

Defining an error parameter 	 2 (We - Wi ), the error in the irradiant

sources H	 defined b y E , is related by

^s = c,L Wz 4- E _ 4L W^ 4- z d'. 4 We	 (5)

where.

E =2J'
	

(6)

The factor of two in equation (6; is for convenience in later mathe-

matical development ( see equation 9). The goal of the solution to the

balloon conduction problem is to formulate the error C- in terms of

the magnitude of irradiant sources H., the the thickness of the balloon

and the thermal conductivity of balloon materials.

5
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SOLUTION

The balloon conduction problem can be represented by the diagram

in figure 2(a). In this case, the sphere is depicted ac two separate

hemispheres; one liranisphere (I) is exposed to irradiant sources li s , and

the second ht-misphere (II) is in the shadow of the first. Since lateral

conduction is negligible, the transfer of heat from the first to the

second hemisphere is accomplished solely by radiative transfer within

the balloon interior. The geometry in figure 2(a) is approximated

nicely by considering each hemisphere as a semi-infinite slab of similar

physical properties. This representation is shown in figure 2(b).

Tn the slab configuration, irradiation impinges on the outer

surface of slab I	 A portion of the radiant power is conducted through

slab I, radiated to the inner surface of slab II, and, after conduction,

exits from the outer surface of slab II. The radiometer views both

slabs equally in figure 2(b) and in a manner similar to viewing both

hemispheres in figure 2(a). Expressions relating various parameters

discussed previously are as follows:

W^
2.	 ,L	 J

and	 ~	 ^'

+Wµ/	 T W3)	 (9)

In figure 2(a), energy (heat) Mows per unit area and time from

the illtaninated side, represented by temperature T 1 , through slabs

I and II, and is radiated out to space at an effective temperature T4.

For this energy flow to maintain itself, the relationship between

temperatures is that T  7 T 2 > T3 > T4.

(7)

4
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A chain relationship depicting this energy flux (power) 6ensity is

(10)I NS - W^ = -le  (r- r) = wz_ W = - ^T - T4t)= W^.tr
where Y is the ratio of skin thickness to the thermal conductivity

of the material in units of m/(watts/(m - K)). The expression

+(T 1 - T 2 ) in equation (10), for example, is the power density

conducted through slab I in units of watts/m 2 . For simplicity the skin
material is assumed to be homogeneous with an average thermal con-

ductivity.

Referring again to figure 2(b), in the condition of radiative

equilibrium, each of the four surfaces will be at temperatures T 

and corresp:,nding radiant flux densities W  - CT  . The thermal
configuration of the system will depend only upon the magnitude of

Hs , the plate thickness and the thermal conductivity of the materials.

In this regard, four equations can be written using equation (10)

to describE the steady-state condition of the system.

,Z Hs- ^'Ve = Wi_ W/3	 (11a)

C	 Ti,=Y(, Ht — WI)	 (Ilh)
Cr. -T,,)  = 0 WX_ W3/	 010

WL- W3 = W^	 (Ild)

Equations Ila and llb describe the radiant power balance and the Beat

conduction, respectively, for slab I. Similarly, equations llc and lld

describe conditions for slab II.

The problem at hand is now one of finding the simultaneous

solution of the system of equations in set (11) with H s and _r as

adjustable parameters. Since these equations are non-linear in tempera-

ture, a simple algebraic solution is not possible. One way of approaching

8



this type of problem is to employ a perturbation technique involving;

a Jacobian operation which leads to an iterative solution to the

equations. A further simplification results in the realization that

it is not necessary to find a solution which explicitly determines all

r
unknown quantities -- it is necessary only to find the parameter 0 in

equation (9).

The procedure for solution would be as follows:

1. Choose a Ysuch that tFo trivial solution (i.e., Y-0) for 4ris

found.

2. perturb the initial choice to the general case (i.e., Yy 0).

3. Using the choice in 1. and the required perturbation as inputs

to the Jacobian technique, find a solution for f in terms of

and H .
3

First assume that the material has an infinite conductivity (i.e.,

Y= 0) . Then the equations in set (11) become

f L^—we—WX+W3	 (12a)O.Q,1 

Q= 	 =r^^._T^t	 (12c)

—	 W*	 (12d)

Under this condition,

Tt r-,6	implying that	 WI ^ key	 (13a)

T'= T* implying that	 W3 = W*	 (13b)

or,	 + v4„= W +	 Therefore,

d= (W,+ raw}- (WI6 + w, ) : 0

and no error in the measurement results.

9



Now perturb the solution above to the realistic care for

Q >0. Li doing so equations in set (12) become

Hs- ^^f
O = ^f = ?; Ns - W, — W1. * V3	 (14a)

v	

NL0= = Cr-T3.-  	 NS - W	 ri4r)

a = 13 _ ( T,- TO ) --  ( Wes - V3)	 (14r)

0= 2 4 =  W2— 
W3 

 W
4C
	 (?4d)

The equations in set (14) have been changed by the following amounts

o ^, = a 14 = o = I$ - a  = 3w- go K
All -^Y(z Hs—W ) ^

A g3=-r ( 	 ^,- 903
where Q9,-, is defined as the required perturbation of the i th equation.

Also for -p0 assume that

o=(W^^Q^vj) "'CW4t+dWjL)—(4'7.+4W,t)—(W34-AW1) 	 (15)

Subtracting equation (15) from equation (9) gives

'= — L(AW, ,6 W.)—(AWE+AW	 (16)

where the d wi 's correspond to the changes in the power densities required

to solve set (14). The d wi 's are found using the Jacobian technique.

The Jacobian operation on set ( 14) gives, in matrix form,

T(W) A W = a
where	 ( 	 — dG^^ d 	 a
of

o	 Awl	 o
r+ ►̂ µ To -V*CT '	 o	 O	 d wit

—	 c1>>o	 -Y r+ ^^^r -i/Ka-TOL 	 - r (W^- WS)

a

io
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Incorporating information in equation (10) and set (13), equation (17)

can be expressed as four simultaneous equations

— d W, — d W3. + d Nis = J	 (11," )

(Y + 1/*cr ; 3)QW, —(//*r7,*3' AI L =—^(,—^ ^{ S -1^,}	 c^^h>

r^) A wj=-Y(4- W.,) 	 0 "r I

dw^-a W3 - AW,V =0	 (l Rd)

If equations (18a) and (18d)

-AM-44= (D;

Therefore, the solution

`
 for

v

The remaining portion of the

are added,

o Wl -- Q W4. 	 )

in equation (lb) reduces to

(^► W-'. + a W,)	 (20)

problem involves the determination of

(d W2 + Q W 3 ) from equation set (18). However, the solution includes variables

Wj and Tj in addition to it s and Y	 It is desirable to

express the solution only in terms of the adjustable parameters Hs

and Y	 The following identities follow from equation (10) and

set (13) which aid in the elimination of W, and T,.
7	 ^

Hs= 3 ^, ^Mo T 3 _    S(H,13d—)

14s = to w	 ,,N&	 T'	 H., C, ^-
11 't^

W)*	w ^ ^ I
The expression for the error parameter 4fis

7 #̂.	 C • S

	

b 0.0309 ?S ." (1.S11rq'4'4 i-11O- 8	 (21)

when a value of C = 5.6697 x 10-8 watts/mz-K4 is used in the evaluation.

11



Equation (21) reduces to the compact expression

^- a 00 1 	 Hs"
L
	 (22)

since the 11 3/4 term in the denominator is insignificant for reasonable
s

-3 2
values of H 4C 2000 watts/m 

2 
and Y ^1U	 m -K/watt. From equation (6),

s

the error in the observed irradiant sources becomes

= o, 00 3 6 'C Hs/̂E 	 (23)

Equation (23) can also be expressed as a percent error of 118.

E	 3/4.
E RaoR _	 X 100 = 0.3G Y NS ( J)	 (24)

s
This concludes the development of a steady -state solution to the

conduction problem of a spherical balloon radiometer. The impact of

these observational errors as related to earth radiation balance

measurements are discussed in the results section below.

12



RESULTS

The solution to the conduction problem in equation (23) indicates,

as would be expected from the physical characteristics of the problem,

that the observational error of a balloon radiometer increases as the

magnitude of irradiant sources increases, as the balloon thickness

increases and as the thermal conductivity of the skin materials decreases.

Quantitatively E increases as the 1.75 power of H s and is directly pro-

portional to the parameter 7	 Thus, the observational error increases
linearly with balloon thickness and inversely with the thermal conductivity

of the materials. Consequently, skin materials such as alumin.= which are

good thermal conductors have reduced observational errors, whereas, plastics

which are poor thermal conductors have larger observational errors compared

to aluminum. Also the solution indicates that thin skinned balloons are a

desirable engineering design goal.

Further examination of equation (23) indicates that the errors in

observations comprise a family of straight, parallel lines on a log-log

plot of E vs. Y , having slopes of one. Figure 3 presents such a plot
for representative values of Hs and CY. In order to utilize figure 3,

all one has to do is compute the ratio of skin thickness to average thermal

conductivity, and then examine the variation in the observational error for

different magnitudes of irradiant sources associated with components of the

earth radiation balance. As an example, assume the parameter r= 5 x 10-4

in magnitude, the observational error during typical nighttime observations

(H s = 240 watts/m 2 ) would be .026 watts/m 2 , and during daytime observations

(Hs = 1800 watts/m 2 ) is .90 watts/m2.

13
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In a similar manner, equation (24) can be plotted on a log-log

graph of % error vs. Y . The graph in figure 4 illustrates such a

plot for representative values of H a . This graph can be utilized in

the same manner as that in figure 3. The percentage errors associated

with the examples above for nighttime and daytime observations are .01/,

and .05%, respectively.

The balloon radiometers discussed by House and Sweet (1973) consist

of thin, laminated layers of aluminum and plastic materials which are

joined by an adhesive. Three balloons are employed in their satellite

system having different external optical properties. One balloon is

painted black, the second is white (either a paint or second surface

mirror) and the third is an aluminum surface. These balloons may be

denoted by the optical colors as black, white and aluminum.

Estimates of the observational errors caused by thermal con-

duction through the balloon skin were made, using the solution developed

in this work. The thermal properties and construction characteristics

are needed in order to determine these errors. Table I is a list of

thermal conductivities for paints and various balloon materials. Table

2 summarizes the construction details of realistic balloons under con-

sideration. Weighted average thermal conductivities were computed from

the coefficients in Table 1, weighted by the thickness of each material.

Aluminum is neglected in the calculations since the conductivity is large

compared to other materials and, therefore, contributes little to the

observational error. Corresponding magnitudes of r were computed for

each of the balloon configurations in Table 2.

It should be borne in mind when using the graphs in figures 3 and

r-

15
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TABLE 1

Approximate Thermal Conductivities of Balloon Materials

Material

Black paint

White paint

Aluminum

Mylar

Teflon

Adhesive

Captone

Coefficient of Thermal
Conductivity k, watt/(m-K)

0.17

0.17

221.0

0.15

0.21

0.20

0.20

17
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TABLE 2

Thickness of Construction Materials and Conductivity

Parameters of Typical Balloon Radiometers

External Material Thickness Average Conductivity Parameter

Balloon Color d	 mil k	 (watt/(m-K)) ((m2-K)4

Aluminum* 0.5

Aluminum
Captone 0.2 0.17 1.4 x 10 4
Adhesive 0.2
Mylar 0.5

Black Paint 3.0 4
Black Aluminum* 0.5 0.17 5.5 x 10

Adhesive 0.2
Mylar 0.5

White Paint 5.0
Aluminum* 0.5 0.19 7.6 x 10 4White Adhesive 0.2

Painted Mylar 0.5

Aluminum* 2.0

White
Adhesive 0.2 0.16 1.1 x 10 4

Anoeized Al Mylar 0.5

Teflon 2.0 4
White Aluminum* 0.5 0.20 3.4 x 10

2d Surface Adhesive 0.2
Mirror using Mylar 0.5
Teflon.

*
Aluminum is neglected in the calculations because of its large coefficient of thermal
conductivity.

I
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4 that the theory developed herein applies to a perfectly black balloon.

The balloons listed in Table 2 have varying optical properties both

externally and internally. The black balloon most closely approaches

the idealized situation of the solution to the conduction problem in

equation (23). The white balloons will absorb about one fourth as [such

direct and reflected solar radiation as the black balloon. However,

the thermal emitting properties of the white balloons would be similar to

that of a black balloon.

The aluminum balloon is considerably different than either the

white or black balloons. An aluminum surface absorbs about the same

portion of solar radiation as the white balloon. But the capacity of an

aluminum surface to loose heat through thermal emission is about five

percent that of a black balloon.

Surfaces exposed to solar radiation frequently are classified by

their external shortwave absorptivity to longwave emissivity ratio, termed

the alpha over epsilon ratio. For the surfaces under consideration, the

black balloon has an optical ratio of about 1.0, the white balloon about

0.25 and the aluminum balloon about 4.0 in magnitude. As a result, the

white balloon acquires an equilibrium temperature colder than the black

balloon, and the aluminum balloon is warmer than the black balloon.

One approach in the application of the theory to a balloon with

typical optical properties is to scale the incident irradiance H a by the

corresponding alpha over epsilon ratio. 	 Using the above ratio magnitudes,

a value of irradiance Ha equal to 1600 watts/m 2 for the black balloon wt,uld

be increased to 6400 watts/m 2 for the aluminum balloon and reduced to 400

watts/m2 for the white balloon. This approach is a first order approximation

which can be justified for purposes of this preliminary analysis,

19



Observational errors for the balloon configurations of figure 2 are

summarized in figure 3. Night and day values of 240 and 1800 watt/m2 were

assumed, respectively, as reasonable magnitudes of irradiance It s (see

black balloon in table 3). These magnitudes are scaled by the alpha over

epsilon ratios above and are listed in table 3, for reference. Observa-

tional errors for the black and aluminum balloons are larger than those

for the white balloon even though the	 parameter in table 2 for the

white balloon is larger than that for the other two balloons. During

daytime observations, the error magnitude for the white balloon is 0.12

watt/m2 , whereas, the errors for the black and aluminum balloons may be

as much as 0.98 watt/m2 and 2.84 watt/m2 , respectively. In terms of

percent errors of Hs , all values are less than 0.05 percent.

It should be kept in mind when analyzing the results that the assump-

tion is made where the incident irradiances all come from the same direction.

Such an assumption maximizes the observational error. In reality, a

balloon radiometer in orbit is exposed to irradiances from various di-

re.tions and of different magnitudes, depending on the relative positions

of the satellite, earth and sun. When these irradiances are incident on

different portions of the balloon skin, the observational error is reduced

since the surface area of the balloon is at a more uniform temperature. Thus,

the estimates of observational errors in table 3 are larger than would be

expected under normal operating conditions in orbit.

In summary, the results of this analysis indicate that observational

errors during the day are st least an order of magnitu&- larger during

daytime observations than those at night. Observations I,y all three white

balloon configurations are acceptable both during daytime and nighttime

20
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TABLE 3

Estimated Observational Errors of

Typical Balloon Radiometers

Balloon	 Scaled Zrradiances
Color	 H_, watt/m2

Observational 2	 Observational
Error e, watt/m	 Error in (%)

Night - 240
Black

Day - 1800

Night - 960
Aluminum

Day - 7200

Night - 60
White
Painted Day - 450

Night - 60
White
Anodized Day - 450
Aluminum

Night - 60
White
2d Surface Day - 450
Mirror
Teflon

0.03 0.01

0.98 0.05

0.08 0.01

2.84 0.04

0.003 0.01

0.01 0.03

0.001 0.001

0.02 0.004

0.002 0.003

0,05 0.01
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modes of operation. In the case of the black balloon, observational errors

are less than 1.0 watt /m2 during the day and probably about 0.5 watt/m2 for

realistic orbital conditions. These errors are acceptable for purposes of

earth energy budget observations.

Finally, errors for the aluminum balloon are less than 0.1 watt/m2
t 

'	 at night, but may be as large as 2.8 watt /m2 during daytime operation.
r

The latter magnitude may not be acceptable for accurate observations of

the earth energy budget. However, it should be remembered that the

solution to the conviction problem developed in this report applies to

black optical properties, considerably different than an aluminum surface.

The results here suggest that a more detailed model of the conduction

problem should be developed to determine a better estimate of the obser-

vational error for an aluminum balloon radiometer.
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