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Abstract

The present study is concerned with the application of vortex lattice techniques
to the problem of describing the aerodynamics and performance of statically
thrusting propellers. A numerical lifting surface theory to predict the aero-
dynamic forces and power is performed. The chordwise and spanwise loadlng is -
modelled by bound vortlces fixed to a twisted flat plate surface.

In order to eliminate any apriori assumptions regarding the wake shape, it is
assumed the propeller starts from rest. The wake is generated in time and
allowed to deform under its own self-induced velocity field as the motion of the -
propeller progresses. The bound circulation distribution is then determined-

with time by applying the flow tangency boundary condition at certain selected
control points on the blades.

. The aerodynamics of other less complex configurations, namely the infinite wing
and finite wing, are also considered since many of the numerical problems involved
are common with those of the propeller. The details of wake formation and roll-

up are investigated, particularly the lecalized induction effect. It is tentative4

- 1y concluded that proper wake roll-up and roll-up rates can be established by
considering the details of motion at the instant of start. Investigations into-

blade-wake interference effects and wake-wake interactions lead to the conc1u51oﬁ &

“that an effort is needed to develop vortex core requlrﬂments s0 that the singu-
1arity in the Biot-Savart law can be avoided
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Summary

Jihe‘present study is concerned with the application of vortex

’ lattice techniques to the problem of describing the aerodynamics

and performance of statieally thrusting propellers. A numerical
lifting surface theery to predict the aerodynamic forces and power,
including corrections for viscous effects is performed. The lifting
surface is replaced by a twisted flat plate which reflects the
,radial‘twist distribution of the propeller blades. The chordwise
and spanwise loading is then modelled by bound vortices fixed to

the flat plate surface.

-Since the major problem in predicting statically:thrusting
propeller performance is the prediction of the wake induced inflow,
partlcular attentlon is paid to the formation of the wake. 1In
order to eliminatefany aprieri assunptions regarding the wake
shapé as‘well as mereraccurately describe the physieal prucesses
involved.‘it is assumed the propeller starts from rest. The wake
is generated in time and allowed to deform under its own self-
induced velocity field as the motion of the propeller progresseso

Thus the time history of its shape as well as the inflow at the

ié %, ’ blades is.known. A unique c1rculation distributlon is then deter-

" 'mined by applying the flow tangency boundery conditionuat certain
selected control points on the blades.’ ihé poéitions of the

3 ; " i ,controllneints relative to the bound vortices are fixed;ny well

'established rules. The results, with certain reservations,

: generally point to the usefulness of such a model as a research tool.
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The aerodynamics of other configurations, namely the infinite wing

ey

and finite wing, are also considered since many of the numerical
e problems involved are common with those of the propeller but the
configurations are much less complex.

The details of wake formation and roll-up are investigated,

particularly the localized induction effect. It is tentatively concluded
that proper wake roll-up and roll-up rates can be established by

considering the details of motion at the instant of start.

i N -

1nvestigations into blade-wake interference effECts and wake-wake
interactions lead to the conclusion that an effort is needed to develop
vortex core requirements so that the siﬁgﬁlarity'in the Biot-Savart law
can be avoided while physically realistic flow géometries and performance

results are consistently obtained.
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Chapter 1

Introduction

1.1 Ceneral Introduction

With the evaluation and acceptance of helicopters and other VIOL
aircraft employing propellers as lifting elements, a greater need exists
for the accurate prediction of performance at the early stages of design.
With payloads now on the order of 25 percent of the gross weight, a 5
percent error in thrust estimation could mean a 20 percent error in the
payload estimate. Thus‘it is necessary to develop methods for
predi;ting the static (zero forward speed) performance of a propeller to
a high degree of accuracy. - o

The problem is further complicated because economic considerations
dictate that the propeller be designed for the mission cruise condition.
High speed cruise specifies highly twisted inboard blade sections to
maintain efficient loading over as much of the blade as possible, but:
this ;hen-;gads to a configuration with a large percentage of the
1nboa:d radius sialled during static operation. Thus the static
performance prediction problem ;s wagnified by the requirement of
extreme accuracy at a decided oé;gsfiggncondition.

Comparisons between experimental results and theoretical
analysis show predicted thrust valﬁes generally to be on the order -

|

of 10 percent optimistic. (Refs. 1 thru 13). General lack of

N knowledge in methods of static performance prediction has been

‘reported by Adams (4) in citing some of the more extreme perfotmance




claims of certain manufacturers. To make matters worse, Borst and

Ladden (5) show inconsistencies on the order of 5 percent in figure-of-
merit between test results obtained on different test rigs. Jenny,

et al. (7) are able to show the sensitivity of hovering rotor performance
on the tip vortex axial position and have observed the éenéitivity of
this location to raadom wind during open whirl tower tests. With such
errors existing between theory and experiment, as well és apparent
inconsistent measured values in simply changingvinstallatiéns, the need
for a sound analytic base to predict the static performance of a
propeller or rotor is apparent. “

As in any aerodynamic problem the crux of predicfihg propeller
static performance is the determination of the inflow veldci;ies aﬁ
the‘bladegf Generally speaking, this inflow is determined by fhe
flight speed and wake induced velocities of the prope1ler; but in
hover the flight speed is zeto sorthe inflow is entirely determined
by the induced velocities of the system. The sensitivity‘of i
proéeller static petformandé‘to the inflow can be appreciaté& when
it is rea;ized that for-é given errbrfih inflow, the percent.errof
~dn thrﬁstTpiedigggdﬂin,hover is approximately twice that in axial

flight.

iIn ofder to predict the iﬁéldw at the

to‘déécribe the blade surfaces and wake. Since the blades are simply
1if£ing surfaces of finite span they can be replaced by a chordwise

distribution of bound vorticity. [he wakes must consist of vorticicy‘

trailing streamwise which accounts for spanwisevvariation in loading




and,lif unsteady motion is present, vorticity must be deposited
parallel to the trailing edge to satisfy the Kutta condition. These
trailing vortex filaments travel in a generally helical path due to
the propeller rotation but do distort under their own self-induced
effects and the influence of other filaments. The fesulting wake
is ah extremely complex form consisting of an intense tip vortex
and a diffuse inboard Sheet."By continuity the wake contracts
drgwfng the tip vortex’iﬁ radially.sq‘that it passes under the next
following blade. This biade-vortex interference phenomenon can
result in>stfong radial flows along the blade span and large
variations in the radial distribution of angle of attack which, in.
turn, cgnmpfsmot; tip stall. 7

If’thewpropeller is in-axial flight, the flight velocity is
the priﬁ;ry‘facfor in establishing the mass flow rate into the wake
so -that contractién éffecfs can generally be neglected. This

velocity also carries the tip vortex away from the disc plane so

‘that it ié relatively far removed from the next following blade at

the instant of passage. The preSenée 6f the axigl flight velodity
tends to negate the serioﬁs=ihterference effects. ﬁowever, in

static operation, the tip v&rteg remains'in‘the plane of the ptdpeller,
drifting only with the induced velocity field,until it is driven
axlally, almost impulsively, by the next following blade. With

wake contraction now important because of continuity considerations,

"~ the tipvvortex passes under the next following blade at the 80495

percent blade radius, depeﬁding on‘loading and number of blades.




Hence, for the hovering proﬁe;let the blade~wake interference
problem is at its worst. Such.a wake has been observed physically
by several investigators (Reference 12, for example).

It is, in fact, the assumption of axial flight which leads to
the classical vortex theory models for the propeller in which the
wake is assumed to lie on constant pitch helical sheets. This

idealization is permitted by assuming a loading light enough sio

that the induced velocity field is negligible regarding wake con-

" traction, deformation and interference. Further, the solution to

these models depend on normality relations between the induced
velocity components in the ultimate wake. Considering the restrictions

on the propeller and wake model implied by the axial flight velocity,

1t 1s not surprising that the representation becomes invalid in the

static éperatibp,

The classical vortex models as well as most ensuing omnes
generally neglect the chordwise variation of loading by simply re-
placihg each blade by a coﬁcentrated bound vortex, a Prandtl
1ifting line model. Unforthnately, the strongAradial flows noted
in the vicinity of the blade-vortex interference region and the
highly twisted inboard sections imply three-dimensiénal effecgs not
adequately treated by such a simplification. These cénside;ations

caé be quite far-reaching since they not only affect the 1lift

loﬂding but also the viscous boundary layer and so can alter con-

sidethbly the drag characteristics. The boundary layer chafacteristics

on propeller and rotor blades are quite complex and any attempt at




analyzing‘thgm requires a reasonable estimate of the pressure
distribution.

A liftihg l1ine model requires implicit satisfaction of the flow
tangency boundary condition at the blade surfaces. This means the
wake geometry must be completely described before the loading can
be determinied, leading to either a semi-empirical method or an
analytical method involving an iterative technique. The former
correlates experimentally determined wake shapes with propeller
design parameters and ioading, and its accuracy is bounded by ex-
perimental accuracy and the particular parameters investigated. The
latter assumes an initial wake shape, and then allows the wake to
convgct~uhder”its own induced velocity field to a final shape with
the blade loading adjusting 1£se1f’under the changing inflow to a
value consistent with the final deformed wake shape. ‘A typical
procedure is to begin with an initial wake geometry énd wake cir-~
culation distribution based on a given bound circulation distribution.
The wake points are then allowed tobconVect under the induced

velocity field until a wake geometry consistent with this circulation

distribution is attained. The dgformed wake alters the inflow
" which changes the bound circulation distribution which fixes a new

geometry. The iterations are continued until a compatibLe wake

geometry-circulationkﬂistribution'is attained. Unfortunately, some

 evidence exists that the accuracy of the solution depends on the in-
{tial assumed values: certainly the fate of convergence of such a

 ponderous technique depends on how accurate are the initial assumptions.




The‘aerodynamics of the statically thrusting propeller depends
entirely on the inflow as determined by the induced velocity field and
this, in turn depends entirely on an accurate wake geometry. It has
been shown too thac a strong interference problem between a wake and
the blades exists even after a final steady flow geometry is attained.
This leads to considerations of ;he wake which until recently have
received very little attention, notably the roll-up characteristics
of the individual blade wakes. Historically, little interest has been
showb in this areﬁ, probably because the vortex wake roll-up has
negligible effect on the loading of the generéting surface. What
interest has developed has been in the area of wing wake interference
with the tail-plane of an aircraft. Renewed interest has‘been
generated along the same lines with regard to highly loaded V/STOL
aircraft. However, the aerodynamic interference between propeller

blades and their wakes is essentially the same problem so that

‘accurately prescribed roll-up characteristics may be quite important

in predicting an accurate wake geometry.

Apparently, then, what is needed to form a solid base for the
prediction of propeller static performance is a completely analytical
mode;yqf thgméropeller and waké system which can generate dopsisﬁent
wake (i.e;, inflow) and 1dading conditions for arbit:ary design
parameters and which are flexible enough to consider three-dimensibnal

flow considerations at the blades.



1.2 Statement of ;he‘Problem

The purpose of this investigation is the development of an
analytical method for the prediction of propeller and rotor static
performance. The method is to be general enough to permit determination
of the blade pressure distribution. This implies an ability to
consider blade aervelastic and boundary layer characteristics, if
desired, since these are both depéndent in some measure on the shape
of this distribution while performance is more or less dependent on
the chordwise integrated value. This imparts no particular hardship
since three-dimensional effects due to the strong radial flows in the
vicinity of the blade~vortex interference region and the highly
twisted inboard section must be treated. Hence lifting surface theory
will be applied instead of the usual lifting-line theory.

As observed previously, the problem in determining the static

performance lies in determining the correct inflow distribution

‘which means knowing the correct wake shape. In order to eliminate

any assumptions or empirical restrictions regarding wake shape it

;dan be noted that the inflow is known exactly at one-instant of

time for any propeller; namely, at the instant of start of the

propeller motion. Since ﬁovwake exists at this instant, the inflow

is entirely determined by the blade motion. As the motion progresses,
the wake is deposited and deforms continuously under its own self-‘
induced effects until a final shape such as observed in Reference (12)

is estéblished.s This means the inflow and therefore the loading change




continuously in time until the final wake is established and a steady
state performance is reached. Essentially, the wake formation is
treated as aﬁ initial condition problem in time. Such a formulation
implies an unsteady aerodynamic analysis for propellers similar to the
classical Wagner problem'of fixed-wing aerodynamics.

Treating the wake as an iniéiai condition problem gives rise to
a completely different wake:model during the response of the flow to
the impulsive start. It haé‘ﬁgen observed physically that an impulsive
thrust change by an impulsive ;hange in eitier propeller;rotational
speed (14) or blade angle (15) results in a'doughnut shaped starting
vortex forming in the propeller plane and moving axially as a unit
after the new thrust level is reached, leaving a wake as described in
Reference (12) traiiing from the blades.

fThe method of this investigation‘treats the wake formation of the
statically thrusting propeller as an initial condition problem in
time. Since lifting-surface theory is to be used and the wake
generated serially in time with the inflow known at each instan£;>thg

flow tangency boundary condition and Kutta condition can be uniquely

satisfied at each instant of time giving the bound vortex distribution
explicitly. The loading is theﬁ determined by applying the unsteady

Bernoulli equation.

Sincé a major element of the analysis is the self-convection of

the wake, a nonlinear flow problem exists which precludes any hopé

;bf closed form solution. Therefore, numerical techniques are

used, particularly vortex lattice methods. Such modelskrepreseni




the simplest techniques, contain all the essential aerodynamics of
the blades and wake and are most amenable to the nonlinear flow
problem.

In suﬁmary, then, the problem to be investigated consists of
applying numerical unsteady lifting-surface theoty based on vortex
lattice techniques to the problem of a propeller stattinghfrom rest.
The wake is allowed to generate and deform under its own self-induced
effects, thus presanting a consistent time”histoéyrof the wake
formation, blade inflow and blade loading aé ﬁbe motion progresses.
Wake self-induced effects are due to the classical far-field effects .
as well as localized effects. Oncé the wake and inflow distributions
are formed according to a potential flow model, final performance

results are obtained by correcting for real fluid effects with

existing airfoil data.




Chapter I1

Previous Investigations

2.1 Propeller/Rotor Characteristics

A survey Qf the literature concerning propeller/rotor operating
characteristics reveals the effects of the majer design parameters on
the static performence. Reference (5) contains a parametric study of
the effects of these design parameters on the figure of merit. The
results show an increase in the power coefficient for peak figure of
merit as blade activity factor increases. Above peak figure of merit
blade angle seems to have little effect on performance but peak figure
of merit is'redﬁced with increasing blade angle toward the tip; hence,
performance at the highest efficiency is very sensitive to blade loading.
Finally, figure of‘merit incre#ses with increasing Reynolds' number,
indicating difficulties in applying model results to full scale. Chopin
(8) has perfd:med a parametric study of a statically thrusting propeller
including the effeéts of tip shape, twist, blade activity factor, total
activity factor, blade camber and airfeil section. The results, in
" general, agree with those of Reference (5) in addition to ﬁhich it is
shown that camber increases the thfust coefficient at a given power
.coefficient, becoming more evide;t at the higher power coefficients.
:Round tips are seen to improve performance over square tips near the
bést 1if£-drag ratio but the‘adVanfage decreases as the power
éoefficiéntmihcreases. While absolute performance values might be
questioned dué‘to the accuracy of the test facility (Reference’(S)),

tﬁe changes due to varying the design parameters should be quitevgoodu‘
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Attempts have been made to measure the bressure distributions on the
blades of hovering rotors and statically thrusting propellers. Rabbott
(2) showed that chordwise loadings maintain essentially classical form
out to 95 percent radius with only minor differences in the vicinity of
the trailing edge near the tip. Such differences might be expected to
alter the agrodynamic moment but have llttle effect on performance.

However, the spacing of the pressure taps was not fine enough to ohbserve

the flow details at the tip. Gilmore (9) has made extensive measurements

: of priopeller blade chordwise pressure distributions showing a strong

three~dimensional effect near the tip. Unfortunately, the reduced data
yields integrated results which are implausible al best and measured
forces show nonrepeatability as high as 50 percent, making the results in
general suspect. It should be mentioned, however, that inboard of 95
percent radius the chordwise pressure distributions are similar to the
classical forms.

The classical methods used to predict performance are mainly those
analyses originally derived for axial flight and suitably modified for
the static case. These methods, the Rankine-Froude momentum theory, thg
combined momentum~blade element theory and the vortex theories of Prandtl
and Goldstein are well-known and_ can be found in the literature (16, 17,
18, for example). The Rankine-Froude theory assumes the propeller to be
replaced byﬁaﬂ actuator disc. The actuator &isc is uniformly loaded and

so devélops a uniform axial induced velocity. The theory deals with

average performance values and does not give detailed information on the

" blade loading énd induced velocity distribution. The'combined'mohentum-

blade element theory attempts to remove the uniform inflow assumption by
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balancing the blade thrust against wake momentum in radialvanpuli.
Prandtl's vortex theory shapes the radial inflow distribution by assuming
the flow in the ultimate wake to be very nearly like the flow exterior to
ah infinite number of semi-infinite strips., The results are expressed in
terms of a tip-loss factor dependent on the number of blades, radial
position and the wake helix angle at the tip. The vortex theory of
Goldstein defines the inflow by-assuming‘the ultimate vortex wake to.lie
on rigid helicoidal surfaces of fixed pitch. The results are expressed
in a semi-infinite series of modified Bessel functions and cannot be
easily handled for the general case without the aid of high-speed
computation devices. It should be mentioned that with the advent of
such aids in recent years, Goldsteiﬁ's analysis has bécome more or less
the standard claésic analysis since it would appear to represent the
most exact mo&el. Prandti's theory is easier to use since it is
expressible in a éingle closed form and has been used successfully in
propeller design (17). In one instance (2), it ?as even more accurate
in predicting performance than Goldstein's analysis.

Reference (7) presents a correlation of conventional hethods
of hovering rotor performance showing 2 zandency‘té underpredict the
power at given thrust by ﬁs_much.as 50 percen;”depending on blade
loading, numBer"bf blades, tip Mach Number and twist. Generally,
the predictions become more optimistic as these quantities increase.
It is also shown that empirical correction factors to correlate
experiments with theory developed for one configuration,cannét be

confidently generalized for another design.




35 : Attempts at predicting rotor inflows have followed two courses,

semi-empirical and analytical. The complex flow field of the steady

- state propeller has been visuallyvobserved and reported in References

(4,7,10,12,19). This has led to experimental determination of wake
position as a function of the propeller design parameters. This
approach was initiated by Jenny, et al. (7) for a hovering rotor and
extensively investigated by Landgrehe (12). It is shown in Reference
(12) that: (1) the tip vortex axial coordinate before interaction by
the next following blade is primarily a function of the blade loading

and twist while following the intersection the primary dependence is on

momentum induced velocity, i.e., proportional to /E; ; (2) the radia]
coordinate is primarily a function of thrust coefficient or disc

loading; and (3) the inboard sheet coordinates are prircipally functions

g o AR 0

of the momentum induced velocity. Based on this study, empirical
determination of the wake trajectory general enough to apply to a wide
§ 5 , class of rotors is carried out.
Ladden (10) has applied Landgrebe's techniﬁre to 3- and 4—-bladed
| : L prOpellers. The results in general fortify'those of Reference (12)

' except that the axial coordinate after intersection by the next

z{t T | following blade seems to exhibit a weak dependence on the number of
ifi ‘.1r ‘blades as well as thrust coefficient. Both Reference (10) and

‘ Reference (12) show ‘the sensitivity of performance to the tip vortex
;" ; | 1-location. |

Analytical approaches to :l.nflow prediction for the hovermg
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rotor were preceded by models developed for the rotor in forward
flight. 1In general thgse methods utilize lifting lineitheory‘and

some iterative techniques to determine a realisticlﬁéké. Voftex
lattice techniques representing the wake by vortex segmentéﬁare used

to treat the deforming wake;” The first of these methods was that of
Piziali and bﬁWaldt (20) for investigation of harmonic airloading on
thé rotor in forward flight. The vorte? wake is broken up into
straight line segments with shed and trailing filaments lying on a
prescribed trajectory andvétrengthé aetermined by the time rate of
changé of bound vorticity and the blades replaced by lifting lines.

The wake is truncated after approximately threé'révslutions. Crimi (21)
attempted tb include realistic wake effects byireplécing‘the blade wake
by a single tip vortex with a rotational core énd‘a.strength changing
with the bbund circulation. The trajedtory of this vortex is
prescribed, butbas‘the blade moves, it is allowed to move (défofm) under
the ensuing induced velocity field. The segments of the vortex are
taken to be straight line segments with curvature accounted for
locally. The blades'again are lifting lines. Trenka (22) applied

the model of Reference (20) to a VIOL propeller, attempting to account
for wake contraction by determining an axial contraction envelope ffom
the trajectories of ring vortices shed below the propéller. Scully
(23) :épresented the rotor By two trailing vortices with'déformation

permitted and was able to show that accurate-inflow prediction

" required inclusion of both shed and trailing vorticity effects. A

‘model by Landgrebé (Zk)ttreats each wake point asvhaving a near
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field in which deformation velocities depend on the local geometry and a
far field in which the velocities are well represented by average values

determined from an initial undistorted wake model.

‘Static operation of the propeller has been investigated directly by

Erickson-and Ordway (6). The blades are represented by single bound

vortices and the wake by continuous vortex sheets.: The model described

‘attempts to account for the continuous deformation of the vortex sheets.

The pefformence is determined by guessing at the inflow {thus the blade
circdlation) and the induced velocity field in the wake. Application of
integral operators (The Biot-Savart Law) while allowing the wake to

deform under the force-free condition and applying iteration techniques

' permit convergence to the final induced velocity field. The performance

is then determined. The prominent result determined here is the
dependence of the final results on the initial assumed inflow distri-

bution. The method is extended by Erickson (25) in which heavily

loaded actuator disc theory is used to fix the wake contraction. The

results in general fortify those of Reference (6) in that the final
results depend on the assumed initial ones. One important addition,
however, is that the axial induced velocity over the chord varies
sufficiently that large induced camber exists wnich negates liftingéiine
models and reqnires‘lifting-surface considerations.

Clark and Leiper_(26) utilize a wake model which does start

~with an assumed shape=and conVerges to a final, force-free and

realistlc deformed shape while predicting accurate performance.

This model computes an induced velocity field at carefully selected
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field points near the rotor and the wake is allowed to deform as it
passes through‘thisyvelocity field. The prdblgm is a boundary value
problem with the accuracy dependent on the selected field points.
Rorke and Wells (27) having managed to comgine the theory of Reference
(26) and the experimental investigation of Reference (7), are able to
formulate a wake which‘can be used to modify the combined momentum-blade
element theory so that'accurate perféfmancé estimaﬁés can be made for a
wide range of rotors in the hovéf mode, Lahdgrébe (28) has compiled an
extensive bibliography of propeller and rotor inflow prediction methods.
A significant deviation.from the analytical models previously
described is pfovided by Sadler (29).‘ Iﬁstead of assuming an initial
wake geometry and circulation distortion and iterating to a consistent
wake geometry-circulation distribution model, he performs the simple
expedient of letting the rotor start from rest, impulsively, while
letting the wake generate and convect under its own induced velocity
field as time progresses. This is simply the classic Wagner problem of
fixed wing aerodynamics applied to the rotor. The wake geometry and
circulation distribution are thus compatible at each instant of time.
Local induced effects are included as by Crimi (21). The loading is
modeled with lifting-line theory. The cases run are fairly coarse
models of the forﬁard flight rotor, and downstream truncation and
neglect of shed vorticity in the wake may influence the results; but in
principle this representé the most éhysically realistic‘apprdach to,the

problemq
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2.2 Numerical Techniques

The accurate determination of inflow to a statically thrusting
p:opeller or rotor system depends on the solution of a nonlinear
flow problem. The problem will be treated in classical fashion by

replacing the propeller blades and waké by distribufed vorticity and
tréating the ensuirng diéturbance motions as a potential motion. The
complexity precludesvan& ﬁope of a closed fdrm so1ution; hence,
numerical methods employing vortex'latticé techﬁiques are used. A
fairly complete'bibliography of numerical lifting surface theory to
1968 is given by Landahl and Staark (30) which certainly shows the
attention given these methods, particularly siﬁce the advent of high-
speed digital}cqmputation techniques. Vorték lattice techqiques have
their foundation in the‘work of Falkner (31,32) in which finite ﬁings
in steady flight, with and without twist, weré considered. The problem
is soivéd by satisfying the flow tangency boundary condition at selected
control points on the surface. In order to minimize computationai

_details»special loading functions are used. Kulakowski and Haskell

(33)'invéétigated the twisted delﬁa wing case utilizing high-speed

‘digital computers. An extensive numerical analysis of the steady
‘motion of arbitrary planforms isrperfdrmed‘by:Rubbert (34). 1In

“this method the bound vorticity is determined directly, eliminating

-the:néed for special loading functions. Hedman (35) applies the
éame hodel to the Quasi—steady problem.while utilizing locally swépc
spénwise vortices in his model. Belotsefko?ski (36) treats a |
similar model but allows for vortiéity ;o:be'shed,all along the

chord in response to unsteady motion.
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The results of nnmefical analysis will depend on the locations of
the vortices and the boundary control points. ‘Thé propér chordwise
positioning is indicated by Falkner (31,32) utilizing‘two-dimensional
considerations and verified numerically by Rubbert (34). Reference (34)
also evolves rules for handling spanw?se spacing and the tips; it is
noted that spanwise spacing is not ﬁbo critical and that generally a
constant (regular) or cosine law can be used. The chordwise spaéing is
verified in a more general sense by James (37) for two-dimensionalv
steady motion by requiring both loading and moment tobbé accurately
determined by the numerical results. This chordwise spacing consists of
the following: if the‘wing is broken up into a number of chordwise
segments, vortices placed on the 1/4-chord of the Segments and the
tangency condition satisfied at ﬁhe 3/4-chord points will yield the
proper_chordwiée loading and aerodynamic moment. DeYoung (38)‘shows the
ioa&ing Aeveloped for this spacing coﬁverges to the classic form for an

infinite number of chordwise panels.

2.3 Vortex Wake Roll-Up

The wake roll-up problem wpé‘;tudied initially by Kaden (39),
both analytically and experimenfally. The wake behind aywing is
assumed to be initiaily a flat vortgx>éheet. A Trefftz ?léne
analysis which assumes geometrically Similar filow in any t:aﬁsv§§§e
plane behind the wing is performed. 1In treating the wake Kaden o

also assumed it is necessary to consider only one tip so that for
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analysis the semispan of the wake is stretched into a semi-infinite
lepgth. The problem is then solved by treating the unsteady de- -
fotmation of this semi-infinite strip of discontinuous potential

in time, the result being the equation of a spiral.

Westwater (40) performed a numerical analysis on the roll ﬁp
problem by replacing the continuous distribsution of wake vorticity
by 20 discrete vortices. The unsteady problem of determining the
véioéities and displacement of the individual vortex filaments
o&er finite time intervals is performed with the wake assuﬁédlfiat
initially. The trailing vortices are assumed to be doubly infinite
which implies a Trefftz plane analysis and two-dimensional flow. ‘
Wéstwater does test this assumption and finds that at about two
spans déwnstfeap the flow is essentially two-dimensional.

Hackett and Evans (41) extend the Westwater model to wings:with
sweep, geometric incidence, high 1lift coefficients, ground effect
aéd wind tunnel wall constraint. The finite upstream length of the |

trailing vortices and the wing bound vortex system are included.

: They expect geometric incidence to lower the whole sheet by an

amount determined by the trailing edge position. Variation in lift
c;efficient has its major effect on streamwise length scales measured
f;om the trailing edge, 1. e., halving the 1ift coefficient doubles
the downstream distance to a given roll up pattern. It is alsé-;l
implied that better roll up patterns are obtained by using equi— |
sbéced, vatiable‘strength vo;tices rather than variable spaced,

equal strength vortices. Numerical problems that can arise are
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illustrated by a case in which the vortex sheet crosses itself, a
physical impossibility.

Butter and Hancock (42) utilize a similar model but numerically
sqmewhat cruder, 1. e., fewer vortices and longer time steps.

Tﬁey experienced no difficulty in the program more by "good fortune

‘tﬁan numerical insight”, but correlation with experiment is not

particularly good. They do note that current wake roll up models
utilize Trefftz plane analyses.

Wilson (43) presents an analysis of wake roll up which departs
from the Trefftz plane analyses of most investigators. ‘The wing
is allowed to start from rest so that the wake is generated in time
and allowed to convect under its own self-induced velocity field.
The model is somewhat constrained since the loading ié ﬁeld constant
but this does eliminate the existence of shed vorticity in the
wake. Also, no deformation of the starting vortex is permitged.
The induced velocity field is computed in a more or 1ess classical
manner with the trailing vorticity laid down in straight line
segments describes the wake motion. The induced velocity is calcu-
l%ted at the end points by application of the Biot-Savart law bﬁt

no local effect, i. e., the effect of the vortex filament in the

- region near the point in question, is considered; this is usual in

sﬁch a model since standard applicatioﬁ of the Biot-Savart law
I

results in an infinite velocity when the point at which the velocity

‘is calculated lies on a vortex filament. Wilson's model yields

reasonable wake geometries with the outboard filaments tolling up
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iﬁtq an intense tip vortex which remains near the plane:of»the wing
wﬁile the inboard vortices remain in a diffuse sheet and are con-
vécted downward much faster. The results compare favorablf at
least qualitatively with other analyses and experiments.

Jordan (44) questions the Westwater approach on the argument
that roll up in his model is initiated by an artificial disturbance
in the downwash field which is created by the replacement of the |
continuous sheet by a finite number of vortices. In the finite
véifex representation, a given vortex convects under the velocity
1ﬁduced by all other vortices. According to Jordan's arguments
there is a definite deficiency in tﬁis velocity due to what amounte
to be the effect of that part of the continuous distribution that
ig replaced by the discrete vortex in question. This downwash
deficiency is the artificial dist:vbance which initiates the roll up
of the flat sheet.

Jordan (44) further notes the failure c¢f standard hnalyses tb
predict the correct roll up rate; typically these rates are much too
siow. He places thé blame on classical aerodynamicytheory and the
elliptic loading. As a consequence he presents an analysis which
contains a logarithmic singularity just inside the tip at the trail-
ing edge and claims this singularity will drive»ché roll up at a

mﬁch faster rate. Unfortunately, he presents no hypothesis as to

" what this singularity might correspond physically.

"~ In summary, it must be concluded that relatively little is

ﬁresently known regarding the mechanism of vortex wake roll up as

'well as the numerical modelling of the phenomenon. Yet it promises
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to be an important consideration in the det;:ex_:minat:ion of the interference
? chatécteristics ofafhemstat;cally thrustiné ﬁfopelleru A more complete
i bibliography of wake foll-up considerations can be found in the‘;ﬁrvey

% report by El1 Ramly, Reference (45).

;_:




Chapter III

Theoretical Cpnsiderations

3.1 Assumptions

7 Consistent with classical 1lifting aerodynamic theory the dis-
tutﬁance in the fluid created by the 1liftingy blades and wakes is
assumed to be a potential motion. This permits a lifting blade and
wvake to be replaced by a continuous sheet of distributed'vorticiiy.
The disturbance velocity is then given by the Biot-Savart law and
the pressure ﬁield by the classic unsteady Bernoulli equ#tion. The
problem is sol§ed at each instant in time for unknown bound vortex
strengths by satisfying the tangency boundary condition on the blades,
V° n = 0vhere V = V,(Blade Motion) + w, (Wake Induced) Yy (Blade

Induced) and n = Unit Normal on Blade Surface at each instant of

time. The problem is time dependent, since V_can be time dependent

and the wake continuously deforms so that w, and xiiate, in the
general case, also time dependent. Thickness effects are neglected
so the load generating surface is approximated by a cambered twisted
pl&te; hence, the boundary condition satisfied by the bound vortices

is applied to this cambered, twisted plate. With the blades so

approximated, the planar wing assumption is applied so that the

éaﬁber is taken to be small with respect to the chord. Thiéiamounts .
i i

éo placing the bound vortices on a twisted flat plate. Fin%lly, it
is noted that vorticity comprising the wake consists of tﬁbjtypes.
Oné is shed vorticity which is laid down initially parallel to the

trailing edge and the other is trailing vorticity which provides for

-
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spanwise variations in loading and 1is initially parallel to the blade
chord.

The propeller is assumed to be operating in hover, 1. e., a
statically thrusting propeller. The fz: of the blade is just due
to rotation; in general no flight speed exists. This simplifies the
préblem somewhat in that azimuthal symmetry for a multi-blade cun-—

figuration exists which will allow the problem to be solved on one

‘reference blade with identical conditions existing on the other

blédes. The following analysis considers only one blade and its
wake with the necessary symmetry conditions for the multi-blade con-
figuration discussed in Section (3.10).

The blade is taken as rigid so no blade flapping or aeroelastic
motions are considered. These could of course be included in the

ﬂ!: term, however.

3.2 Description of the Numerical Model

‘The numerical ﬁédel for the blade and its wake consists of
replacing the continuous distribution of vorticity by a mesh 6f,
vortex segments of £in1te length and strength. The geometry 6f the
wake vortices 1is fixédqby the motion of an ever increasing number of

points moving under the influence of the bound‘vorticity and its

own self-induced effect since it is assumed that these wake points

are connected by straight-line vortex segments identified as shed

hnd trailing vorticity. The description of the blade bound vortices

is fixed by the blade geometry.

The vortices on the surface are arranged in a conventional
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manner. The surface is broken up into a number of spanwise segments
and each spanwise segment is subdivided into a number of chordwise
segments. Each resulting panel contains a control point and is
;panned by a straight-line vortex segment. The lifting surface
planform is variable and the panel corners occur in pairs along the
span located at the same percent local chord; hence, the spanwise
vortex on a segment has sweep reflecting the variable chord. This
vo:ticity must be supplied and removed according to the Helmholz
law so the vortex is extended along the local chords at spanwise.
edges of the panel to the vortex lying along the trailing edge of
the surface (this vortex is shed into the wake at the end of a time
step to be replaced by another reflecting the time rate of change
of bound circulation). This describes a rectilinear horseshoe vortex
model like those of references (31, 32, 34, 35, 36) except that
instead of extending to infinity as in the steady and quasi-steady
cases they are truncated at the vortex to be shed. One major’
diﬁference exists, however. The blade twist 1is reflected in the
model, in part, as a skew to the horseshoe vortex since the chord-
wise elements are skewed with respect to each other. Hence, the
conf {guration is highly nonplgnar since for a ptopellef‘tﬁe twist
distribution can be much greater than for a typical wing. For the
horseshoe representation the twisted flat plate becomes a segmented
(qunwiue) plate with each segment being flat but h&ving a different

spatial orientation from its adjacent segments.

_ One requirement of this straight-line representation is that



26

the spanwise segments be small enough that the chord variation is
adequately represented by straight-line segments between y and

y + 4y. Typical airplane propellers and rotors will fulfill this

adequately except perhaps at the tips. In keeping with well-
documented methods of vortex lattice theory (31, 32, 34, 35, 36)
based on two-dimensional analysis and Weissinger's lifting surface

theory and recently verified for the two-dimensional case (37, 38),

the proper load on a segment is obtained by determining the flow
%7 deflection at a point one-half the segment chord length from the

vortex. Hence, the control points are located on the local chord

G c(y +,%Z) with a chordwise spacing equal to one-half the segment
chord from the spanwise vortex. In order to obtain the correct
aerodynamic moment, the spanwise vortex must be located at one-
quarter segment chord from the segment leading edge. Thus the_fifst
spanwise vortex filament lies at the 1/4-segment chord back from the
leading edge. The final spanwise filament is 1/4-segment chord

downstream from the blade trailing edge; this implies that the Kutta

condition is satisfied approximately, the accuracy of approximation

increasing as the number of chordwise segments increases. The first
conttoi,point lies at 3/4-segment chord behind the blade leading
edge, the last one at 1/4-segment ahead of the blade trailing edgé.
Figure (1) shows an éxample of this vortex system on an arbitrary

spanwise‘pahél.

3.3 Coordinate Systems
In dealing with ptopeilers and rotdfa various coordinate systems

exist and are convenient to consider for various calculations,
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(1) Blade Fixed: An orthogonal system with the origin fixed at

the axis of rotation, y directed along the span, x along the

chord and z along the rotation vector. Hence, x and y lie in |
the disc plane and rotate with the blade. This system is
convenient for blade force determination.

" (2) Propeller Disc-Plane Fixed: This is a typical wind-tunnel

Q configuration and allows a wake visualization és.mightvbe
seen in a wind tunnel or whirl tower. x ana y are orthogonal
but fixed in directioﬁ so the blades rotate relative to them.
z”ié also perpendicular to the disc plane. Wake deformation
will be cbnsidered in this system.

(3) Fluid at Rest Fixed: . Allows visualization of the wake at

one position as a function of time as the rotating propeller

passes with some flight speed. This is a spatially fixed

; j Cartesian system. In general, concern is directed toward (1)
and (2) but note that (2) and (3) coincide for the statically

thrusting case. Figure (2) shows coordinate systems (1) and

(2).

3.4 The Elementary Flow Field

“Since the distﬁrbance created in the fluid is a potential flow,

- the application of‘yértex 1éttice techniﬁues is pefmittedo As previously
déscfibed, the blade surfaces are replacéd by é“mesh of Fgctilinear
vortices in order to appfoximate the cOntinuods distributién ‘

with numerical analysis. Further, since small but finite time

incrementéfare considered, the wake contains a finite number
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oﬂ points whose motion describes the deformation. These points ar;

tdken to be connected by straight line vortex segments which repre-~

sent the disturbance. Hence, at a point in space and time, the

elen:gnt_ary flow field is that due to a strajght line vortex segment.
" Referring to Figure (3), for a straight line vortex segment

with end points at _)gAand X 8 velocity at _Igcis induced according

to the Biot-Savart Law

o
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Superposition of the results of equations (3) for all the
elements of the vortex mesh representing the blades and wakes give
the components of disturbance velocity at any point in the field.

The form of equations (3) is suitable for the vortices fixed to
the lifting surface since the geometry is fixed. For the wake
vortices which are free to deform whi;e conserving total circulation

~according to :
r(t) |L(t)]| = r() |1 (x)| = const. t>r (4)
where T(T1), 1(T) are the circulation and length at the time of
shedding, T, respectively. It is convenient‘to use

r(¢) = I(r) [1(7) | o
(t) J_rl_(%.ll (5)

and rewrite the Biot-Savart Law in the form

= N7 |_]_._("T)| cos a + cos B n

—_— n v (6)

b |1(t)|n

which has components similar to equations (3).

3.5 Influence Coefficients for the Twisted, Cambered Plate
The influence coefficients are simply the normal component of

h

velocity induced by the qt unit strength horseshoe vortex on the

. 1lifting surface at the pth control point. The ch

horseshoe vortex
is identified in a coordinate system rotating with the blade. The
origin lies on the axis of rotation with y coinciding with the
stacking axis and x parallel to the chdrd. The p"".h coordihate system
is located the same way. Now if we imagine i, J to represent the

chordwise coordinate and k, 1, the spanwise coordinate, the horseshoe

- vortex is identified by the coordinate of the left hand corner
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gearest the leading edge Eﬁk° The point,;uk has thg Cartesian
coordinates Xyp = L xg * Jyk + E-zjk' Thé control points are
similarly identified by x,,. Figure (4) 1illustrates the convention
for defining the vortices and control poinfs.

The normal component of velocity induced at X.41 by the Jth
unit strength horseshoe vortex is

vn(:_gcil) = % [cos o + cos B (1L x A(_!_)]m *n(

) (1)
=1 i1
. br|1] |ac]? (1 - cos® a)

X

vhere n is the unit normal at X,;, and m identifies a particular
segment in the horseshoe filament. The coordinates associated with
one vortex filament are X,.n. s Xyk» Xype1® Xpumk+l® starting at the
trailing edge (shed vortex) and progressing clockwise around the
vortex so that the filament has a horseshoe shape (see Fiéure (4)).
"Num" identifies the trailing edge vortex whereas j identifies the
chordwise position of the spanning element.

Thus,

3

v = v + +v = influence coefficient
n(.’Ecil) llél ( xm nx | Vym n zn nz) eff1 ,

A .
pq . (8)
vhere v. , v, Vv are given by equation (3). The indices p and q

2

noon th = th
give the velocity induced at the p°" control point by the @”" recti-

linear filament where p and q are serially numbered starting at.the
1ert-hand leading edge panel and progressing chordwise over the
surréce ending at the right-hand tip trailing edge (see Figure (h)).
Note that qu due to a ff#iiing édge‘vortex segment which is shed |

into the wake is due to & straight-line segment, a degenerate form
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of the basic horseshoe configuration of the bound vortices.

The unit normal, utilizing strip theory for the moment, is

given by a5 az”
T - — + k cos (- —)
n(X ;) = i sin ( dxzil k ( =4 (9)

vhere x“, 2° are coordinates parallel and perpendicular to the blade

chord, respectively. If the chord is pitched through an angle Bc
j 1

with respect to the disc plane,

L4

z
-(=—)

B=isin [Bcl T 11

B8O that
X

dz‘) ]
n = gin [Bcl -(y i1

ny =0

dz”
| n, = cos [Bcl _(Efr)il]

]+ g_cos.[ﬁc -(

r

) a'x")n] (10a)

Including the effect of twist in‘satisfying the boundary condition

it can be seen that within the limits of the model each spanwise

segment has an effective dihedral.

components

in [ | dz‘) ] cos A
= -
n, = sin Bcl '(HE_ 11 11

ny s gin Ail

8 _ n_ = cos [B
oL E ¢

;. dz”
-(5;7911] cos Ail

where Ail is this dihedral angle.

Thus, the unit normal has

(10b)

Figure (5) shows the geometry of the unit normal. Referring to

- Mgure (5) the local dihedral of the panel segment is taken to be

the slope of the strhight_line Joining the chordwisa bound vortices

o it e et i . B e o e i s b i
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at the location of the control point. For the control point, i.e., the

panel segment is bdhn&ed by chordwise vortices at k and k+l. The z-

h

displacemeht of kt vortex element at'xcil is ("xcil tan Bi) and for the

k+l element, (‘xcil tan Bk+1)' The slope defining the dihedral then is

just

-1 =X
cil ¢
Ail = - tan By, {[tan B4y ~ tan Bk]} (11)

from which sin 147, cos Aj; can be determined.

3.6 The Boundary Condition

The unknown vortex strengths are determined by satisfying the
boundary condition V « n = 0 at all control points which, in matrix form,

is expressed as

bpafq =" Vo 12

where Vnp iz the resultant normal component of all the externally

h

applied velocities as the pt control point. For the propeller in hover

this is rotational motion of the blade and the wake induced velocity.
VY= rxuw+w/(t) o (13)

where r is from the axis of rotation to the control point in the disc
ﬁlane and w is parallel to the z-axis. w;(t) is the induced velocity of

the wake at the control point. Thus,

Vpp = (T xpd gi(t)) e n X |
(14)
= Loy +u©) stn (8 = E5)y] cos Ay



33

¢+ [y xcn + wy(t)] sin An
+ v () cos [Bcl - (;;,)11]

To utilize strip theory set A, = 0 in equation (11). The wake

il
induced velocities are determined by utilizing equation (2) and

suming over the trailing and shed vortex segments. Rec311 the‘ahed
vortices are laid down between spanwise segments to satisry the Kutta

condition while the trailing segments are formed essentially by the

motion of the surface.

3.7 The Deformed Wake

The wake at any instant of time consists of those shed ahd |
trﬁiling vortex segments which have been laid down between time equalj
0 and the instant under consideration. These segments are allowed
to move and deform under the influence of the velocity field at
their end points due to the bound and wake vortices. Equations (3)
gnd (6) yield these velocities with local induction effects of
equation (19) also included. Wake elements are tracked by tracking
tﬁé end points. Each end point initially lies at tﬁe shed vortex
(trailing edge) at a particular spanwise station, Yo and hence has

a coordihate,in the propeller disc plane at its instant of shedding

of

e () =ixpp, (8) +dy (v) +x Zp.E., (15)

The motion of this point is traced by alloving it to convect under

the induced velocity field, wy (E"k’ t)
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z*k (t + at) '5'x () +w, (Z'kt) by (16)

and i;t is replaced by another end.point at Vi In this way the wake
grovs and deforms continually. It is entirely recalculated at each
time ste'p; Each "end point" is really the end point of four vortices,
two f.ra.il:lné ami two shed.
In the coordinate system fixed to the propeller disc plane
'xT_E,k (t) = X, cos 6(t) - ymmk sin o(t)
(17)

Yr.E., (8) = xpp sin 0(t) + Youn 08 o(t)
vl;eré © is the azimuth angle between the blade and disc plane y axis
um, and y umy are the coordinates in the blade fixed system.
Then the coordinates of the deforming wake are computed by equation

(16‘). When the blade moves to © + A0 = © + wAt the new end point is
x (t + At) = x cos(0 + wAt) - y gin (O + wit)
T.E.k num, } : num,
(18)
¥y (v + 8¢) =x sin (0 + wAt) + +
T.E., num, ynnmk cos (O wAt)

Note 2z is unaffected by the coordinate transformation.

3.8 Self-Induced Velocity Field of the Vortex Wake:

" The induced velocity, LA Q{v, t) of equations (16) is the veloc-
ity induced at the wake coordinate, X, (t), at time, t, by all the
vort'icity in the lifting surface-wake system at time, t. This
velocity field consists of that induced by the bound vorticity and
that induced by the wake vorticity. The vﬁke‘contribntion c’onsvistsk

of the effect of the vortex filament containing X (t) on itself as

R, 4 e



¥ e

s e e

35

well as the inductance 6f all the other filaments. These contributions
are all determined by application of the Biot-Savart Law. In
principle, no difficulties arise except when the contribution of thé
filament containing §w(t) to the velocity at §w(t) (ije., the velocity
induced by a vortex on itself) is cons;dered; then a logarithmic
singularity arises at X (t) which‘réquires special handling. Efforts
in treating this problem (46, 47,‘48, 49) have led to considering the
velocity induced 5y a filament on i;self as consisting of two parts:
(i) the far-field contribution due to all the filaments except that
point at which the velocity is calculated, and (ii) the contribution
of the region containing this point, the localized-induction
contribution. Investigation of the (ii) contribution shows that the
local contribution to the indﬁced velocity is proportional to the
local curvature and directed along the binormal to the filament.

The majority of analyses which try to account for the deformed
wake consider all the contributions except (ii), the localized
induction (exceptions are (21, 23, 28) which account for localized
induction by a circular arc model). The more or less classical
numerical approach with straight-line segments mecdelling the wake
elements approximates the flow.field due to the entire wake except
those elements adjacent to the point, X,(t), in question. This

classical contribution is determined by repeated application of

equation (1) or (3).

The localized-induction contribution to the induced velocity has

been determined (49) to be
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2

. p (Gr/as) x (3x/28)

q =~ :
=10 ar/0e)3

zn(%:'-) (19)

where r 1s the position vector of a point on the vortex filament, s;
I is the circulation; and ¢ is an effective core radius. For a con-
tinuous filament 3r/3s and azr/asz can be determined hmediately;

For the numerical problem with the vortex filament being approximated
by a finite number of points it is possible to express the deriv-
atives at a field point in terms of the locations of the field point
and. the ones adjacent on either side. Let r be the position vector
of the vortex filament with x;, X,, X5 the location of three numer-
ically determined adjacent position vectors of the filament in the:
poaiﬁive direction of the filament, s. Then, using second order

Taylor series expansions about x, a forward difference gives

2 A -2
Brx;te 2T 2 T

while a backward difference gives

. ar(x)) 2 r(x,) 88
X, = X, -

As, +
X X 1 Z 2
1 2 a8 98

With Asl'l X, - x;|and “2-' Xy - _agzl two equations in two unknowns

. , 2 2
yield the necessary derivatives at xj, 3};(5_2) /3s and 3 E.(.’Sz) las .

32_1_»‘_(352) . X4 - Xy + X -x ,
2 ¥ (20)
a8 A8, He, 8% o5y, |

N
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la) b Gtz b, o) (21)

3 as, (88, + 8s,) 48y (85, + 8s)

1

Equations (20) and (21) can be written in Cartesian component

form for ccmputation as

; 2
Lo x(xy) _ 1 X3 =Xy X =X,
L ‘ 1 -
- w? (Mt B b, b,
:
5 i ‘ Y. - - 2 - zZ =
3037 %2, "V 3B L5 TH (2
' ‘ As A
Asl Asz 2 32
ar(xy) | 1 8s, b,
L2 k) - =2 (x - %)
®  sm,ele  t, 3772 T (1%
(23)
+5_‘:_( ) A’a( bo L,
5, }'3 Y2 -EI ¥y Yz) k Asz 23 2.2 = (zl z2)
1

The total velocity induced at the wake point x (t) at time, t,
is the sum of effects of the bound vortices, all filaments not
containing x_ (t) and the filaments; one trailing and one'sﬁed,
containing x, (t) up to the a&Jacent points as determined by re-
peated application of equation (6); to this is added the effects
| of the four segments having X (t) as one end point and the four
- adjacent points as the other by equation (19). This velocity
: ﬁ ' then determines the wake distortion by way of equation (16).

g; §-~ ‘ ‘ In principle, no dirficnlties arise in evaluatins or/93 and
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32t/8s2 at any of the wake points except those on the edges of the wake
sheet. The problem here lies in trying to determine the curvature of a
filament at the point where it ends at the sheet's edge. Criﬁi (21)
assumes the circular arc representation. It is assumed here that the
curvature of the truncating filament is zero at the coordinate on which
it ends so that the filament has no localized effect here.

‘Another problem concerned with the numerical evaluation of equation
(19) is the determination of the proper I at X9. In the numerical
analysis the straight line segments connecting the field points have
constant circulations and change discontinuously across the field points,
i.e., a step change in T occurs at.ga. The local value at x, can be
taken as the average value, (f1(e) + Pz(t))lz, where T'y(t) is the

circulation on Asy = x; - Xj and T'p(t) is the circulation on As, =

X3 - Xy. Finally, since Ij(t),Iy(t) obey the conservation of circulation

as the wake deforms, it is convenient from the numerical standpoint to

apply
- I(t)As(T)
r(t) As(t) t >
sa@ that

Pl(T)Asl(r) . rz(t)Asz(T)
Asl(t) Asz(t)

I(xp,t) = 1/2 (24)

where (1), As(t) are the circulation and length at the time of
shedding, 1, respectively, and As(t) is the length at the current

time, t.
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3.9 The Force on a Twisted Flat Plate Segment

Any given segment of the lifting surface is bound on three sides by

' straight-line vortex segments. It is known for unsteady flow that the

pressure difference across a plate supporting a continuous distribution

of circulation is given by the unsteady Bernoulli equation

ap = ovy +p 52t (25)

where pVy is a quasi-static Kutta-Joukowski force.aﬁd poAd/at reflects
the unsteady character of the flow. A¢ is the pqtential jump across the
plate. V is the velocity tangent to the plate and Ap is normal to it.
If, in the numerical model, only the velocity tangent to the plate
is considered, a force directly equivalent to Ap in the unsteady
Bernoulli equation iérobtained. However, according to Betz (50) the net
force produced by a bound vortex is due to its effective velocity. This
effective velocity is that found at the midpoint of the vortex due to
all othef distﬁrbances. Now the force that is détermined includes the
leading edge suction force associated with airfoil and wing theory.
This is a direct result of using thg effecti&e‘velocity at the bound |
vortex midpoints and results‘in‘correct estimates of induced drag.
Finally, it is also nbted that the vdrticity on a segment is the net

chordwise vorticity along the segment chord, directed positive toward the

~ leading edge at y and y + Ay, and the spanning vortex at the segment

1/4—chord.‘ Figtre (6) shows this geometry. jUtilizing the effects of

the bound vortices, the wake at any instant of time and free stream
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and propeller rotation, the effective velocity at any vortex midpoint is
known. Ty, Iy, '3 on the segment are also known, fz being determined
directly since it is a spanning vortex while I'3 and Tj are combinations
of‘chordwise sums and spanwise differences at y and y + Ay; :Referring
to Figure (6) the zffective chordwise vorticity on a segment extends
from the spanning filament on its segment to the spanning filament on
the next éhordwise segment.

Accordingly, the quasi-static force on a segment defined by the
control poiht 3211 is found from the Kutta-Joukowski Law. On the panel
defined by the control point X041

Fqsil | >
= ye xTI.1 r,1

> L ran +-!exz-—z 2 *'!exj- e

or, in component form

F
x ;
_u | | v r.j1
p - [Vey P21 7 Vez I‘yV].].ll + [Vey T22 ™ Ves y2] 2
1 1 2 2
+ [Vey3rz3 - vez3ry3] 13
F
Yas ~ A
4l v r.-v_ T . ]1,+[V_ T ,-V_T,]1
p ez, x1 ex,-zld ~1 ez, x2 ex, z2° "2
| ez 177 2 2
(27)
t VT v¢*3r=3] 1,




:’12 = [(

b1

F
zqsil
: r_ =-v T + -
P = [vexl vyl ey; xll 1 [vex2 ry2 ve¥2 | -"xa] 12
+[V -V
[ exy ry3 ey I'3:3] 13
vhere x, y, z here refer to blade fixeﬁ.coordinates.
Now:
X =X ' x -x
Jk T Jk=1k Jk+l J+1 k+l
I = I‘l r = T 3
xl 1l x3 N
l
I =0 ' =9
n o ¥3
zZ,. -2z : z -2
Jk  TJelk Jktl  3+1k#l
P T 1 T r
2l 1 | 23 3 3
and
X - X Y + -y
r . 961 gk r P o K I,

;;
w:léth the segments of the rectilinear vortex supplying the load to
th;e panel containing the "i1l" control point given by

\ 2 ‘ 2.1/2
1, = -x * -
1 ‘f[‘?dk xak+1)‘ * (zdk ka+1) ]

= 2. -2 . 21)/2 -
| ’x.jk-fl - xJk,)",*v (yk,*l_- ?k)  +‘ ‘zdk*l - ka) ]
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' 2 21/2
1 = -
3 [(*ak+1 X401 x+1) (23k+1 = 53*1 k+1) }

Hence, the force components are given by

. ,

; .
38 = (v (z_ =% )1’ T
P €3 Jk  J¥x 1

+[Vey2 (zjk+1'- ka) - ve22 (yk+1 - Yk)] ry

+[v Nt

ey, ‘zax+1 " Y k!l 3

F
y« ;
——3’—:- [v - X - - -

[ s | (xdk , J*lk) vexl (zdk z_J+1k)] r1

+ [V -X ) a | ' - |
ez, (xJkﬂ xdk) vex2 (ka+1, ka)]ra ‘(28)

+ [v ) =V

Ir

(x,  -x (z -
ez3 Jk+l J+;k+l exq - Jk+1 2341 k+1) 3

F

z e
ey (x -x T o+ [V T
g ¥, ik 'idiik)J 1 exy Gy = %]

-V (

s, Xieal " xdk)] r,* (-v  (x )1r

-x

eY3 Jk+l J*1 k41 3

Noté?thnt F‘ is essentially the induced drag and ¥ the thrust on
' ~ 2

the panel. F& is a spanwise force, due in part to the interaction

of g-velocity with what is ultimately flow around the tip and in.

-part to the fact that twist présents spanwisc,area to the,rloi._
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The unsteady cqhtribution is determined. from the unsteady

pressure term

2% = n (Segment Area) {A_¢_ (29)
b it -

Cutting the lifting surface at a spanwise station it can be shown,
for a continuous distribution of vorticity that ;
o N ;
Ap(x,t) = 5 y(z, t) ag ¢» X chordwise coordinates
L.E. ~(30)

In numerical notation

J

alxt) =2 T, (8)
L.E. Y

!

. where I'j's are the solution to the simultaneous equations. Since

the disturbance is potential, 4¢ is independent of the path of

integration; hence, the integral of (30) should suffice to describe

_ the unsteady pressure terms and

i

9 ? x
we) = vt
L.E. : |
(31)
elosr (t4at) =T ()]
At J 3

L.E'

in numerical form.
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Referring to Figure (6)

i +k 'J‘ZzlS
=

e x 3

1k x1l 1 1
=2 ‘ = Xk .
n (Segment Area) = ——:—3-— ch = 3 i_l_el sin o Axc

Roxly]  |Epcinae [i

AX.

n (Segment Area)--?— 1l x1

vhere

| =5 > 2.1/2
1) = [(x x ) + (2 -
|25 [ R T e " g1 ! )

Expanding the x-product yields the components of the unsteady force

P‘ | .
. uﬂil -3A¢ Axc [(y y

k+l Y3k
'3 3*' Il 9 J

) ( z )]

z -
Je*tl gk

s ® L] 1 ™ 2 By~ Xy

) (32)

‘it T P4a 'k+1)]-
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5o tbat the total force on the segment is

p7 L ey, vy (33)

Sumning the forces chordwise gives the spanwise distribution and

the total is obtained,byksumming spanwise

F(t)  no. of span no. chora E, (t)

= nels )
o Ty e T (3w

1=1 i=1

A more formal determination of the numerical approximation

(equations (28) and (32)) to the components of the unsteady Bernoulli
eqnatibn can be found in Appendix A. An unsteady induced power is
also presented here.

The force of equation (34) is determined in & blade fixed
coordinate system. Sincé‘the induced velociﬁies are‘calculated in a
propeller fixed system they must be transformed to:fhe blade system.
Considering the horseshoe vortex modelling the load on the pénél
defined by the "il" control point, the effective velocity on that
segment lying along the chord nearest the left-hand (m=1) tip has

components given by

v + W k i
ex, = Wy, ix ©O8 0+ wiy sin @
b4 + X
; Jk J+lk
v (Y SRR +w - .
v, = W( P ) 1y €08 0 Vi sin © (353)
vezl = Yz .
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vhere _v_v_z is the induced velocity determined in the piropeller disc

plane at the midpoint of the segment (Ejk + )/2. 6 is the

p 4
“J+lk
inétantaneous angular orientation of the blade~fixed system with

i

respect to the propeller disc axis system. V » Vv s &re

thus the effective velocity components in the blade fixed system.
Similarly, on that vortex segment lying on the chord bounding the
penel on the right-hand side (m = 3) the effective velocity

components are

v = o +w '
X3 Wi ix 08 +wi¥ sme
x +x
k+l +1 k+
v ‘w(a JH Lk, oy cos 8 -w sin® - (350)
vy~ 2 iy ix
v =y
z
e3 iz

vhere ¥, is determined at (x )/2. On the spanning

+
Skl T Egag ke
vortex across the panel (m = 2), the effective velocity components

in the blade-fixed system are

v “'am‘(k‘.l k

)+ W cos 8+w gin ® (35¢)
ix iy

xJk...l + x | o
v vxre ik o8 6 + in |
= o > )+viycse “wixsine

e i e N e s 5B s e

I
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vhere wy is determined at (Xjy41 + !dk)/z in the propeller disc

plane.

3.10 Multi-Blade Effects

So far only one Slade‘and its wake have been considered wﬁereas
proéellets generally have B equi-spaced blades such that the
separation angle isyZn/B. For pure hover or static operation it can
be assumed that all blade wakes and loading are identical, and the
motions are identical. Heﬁce, the effect of all blades and wakes on

a réference blade can be calculated which then yields the propeller

performance.

Epop(t)  BE()
p p

-}
]

No. of Blades (36)

Also, if x,y is a point in the propeller disc fixed system from the

reference blade, the corresponding point from the nth blade is given

by
X = X cos zﬁig:;l - y sin 2ES§:£l
‘ , (37
y_ = % sin Eﬁig:ll + y cos 231;:;1

The same relation will put a point on the nth blade into the

coordinate system fixed to the reference blade.

3.11 Computational Procedure

Theyresulting computational procedure for caléulating the

¥
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loading on the lifting surface Wagner problem applied to the propeller

is presented in the following five steps.

(1) Input blade planform characteristics (chord, camber and twist

(2)

3)

distribution), external velocity, number of blades, RPM.
Determine influence'coéfficients for unknownrﬁound vortices
(including vortex which is shed at the trailing edge at the
end of each time step) at a prescribed number‘bf control points
(equation 5).

Satisfy the boundary condition, V » n = 0 at all control points

simultaneously,

A T (t) =-V_(t) P=1,..., no. of control points
q A

Pq p
q=1l,..., no. of vortices

(38)

Where qu is the velocity component normal to the surface at

h control point due to the qth

is the strength of the qth unknown vortex and Vnp is the total

normal velocity at the pth control point due to external

the pt unit strength vortex, Pq

sources. For a propeller or rotor this could include flight

speed, rotational speed, blade flapping and aeroelastic

motions, and wake induced velocities. For the rigid statically'

thrusting propeller only rotational speed and wake induced
velocities are considered.
In general the number of unknown vortices exceeds the

number of dontrol points by the number of spanwise panels into

which thevsurface is divided because the vortices to be shed at

AL
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the end of a particular time step are considered unknown. We
make up this deficit in the simultaneous equations by applying

the Kutta condition (51)

num num-1
I r,(e) = £ TI,(t-At) (39)
3=1 3 =1 3

which corresponds to conservation of circulétiqn,on any "1"
spénwise station. "num" represents the number of unknown
voﬁtices on a spanwise segment; "num-1" are bound and 'num" is
that which is_éhed at the end of a time step. The two
conditions can be considered one set of N x N simultaneous

equations of the form

r = G '
Pq q P _ (40)
where
,
qu p=1,..., no. of control points 41y
q=1,..., no. of unknown vortices
qu =411...10...00...0 p = no., of control points,...,

no. of unknown vortices

00...01...10...0 q=1,..., no. of unknown
vortices

L 0 0------.&...1..01

i.e., the coefficients in any row take on the value of 1 with
the vortices on the particular spanwise segment on which the

Kutta condition is applied; the remainder are O.

L et bkl B e 1o i ¢ e
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- Vnp(t)v p = 1, no. of control points

Gp(t) = num-1 ! (42)

z Pj(:fAt) P = no, of control points,
=1 no. of vortices

The equations are solved numerically by standard matrix

inversion and multiplication techniques for the unknown I 's

-1
rq(c) = qu Gp(t) | (43)

(4) With Pq's known the unsteady loading is determined.

(5) The Vake deformation and motion is then obtained by determining
the velocitiesﬁinduced in;tﬁe'wake by itself and the bound
vorticity and édvancing tﬁevlifting surface at the rate, V_.

A new wake is then determined by evaluating new wake

coordinates. ,
X(t + At) = X(t) + V(t)At (44)

wheré1!‘= v, .+ and Y, the total induced velocity at a wake

¥
fo

point. V_ = 0 for hover. With the new wake coordinates, the

i

velocity induced at the control points on the surface is
o num-1 .
determined and I Pj(t) obtained for each spanwise station
j=1
so that Gp(t + At) is known at t + At. Hence, Pj(t + At) is

determined and the process is repeated for a desired number of

time'steps.

3012’ Real Fluid Effects

~Equatioh (33) yields a force distribution based on potential flow
theory. 1In order to estimate the true performance characteristics,
real fluid effects must be included as best as is possible. Realistic

1ift curve slopes and drag coefficients must be estimated for
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the propeller sections, with Reynolds' number ard Mach number effects
also included. While two-dimensional data below the stall has |
been well tabulated (52), data, particularly drag data, at the

stall and beyond is sparse. Since the propeller at the higher
tv;sts can have a large portion of the inbcard sécﬁions stalled

thia can lead to difficulties in accurately predicting the power and
thrust. Further, recent measurements of the pressure distribution
on a propeller blade (9) indicate enough three-dimensionality, at
least in the tip region, to make the application of two-dimensional
data questionable. Unfortunately there is nothing better so this
must be considered.

To apply the real section charapteristics to propeller per-
ro#mance, the radial distribution of angle of attack must be deter-
miéed. With the steady state radial distribution of x-force and
z=force (Fxl and le) determined by the equation (33) all the
fbfce is Kutta-Joukowski force; hence Fxla + lea is normal to
the effective velocity. Then, referring to Figure (7), the effec-

tive angle of attack at the 1 section is

F

: -1 “x1 |
a, =B -tan — : (45)
Tzl
vhere g, is the pitch of the 1%® gection. Assuming the section

characteristics are known,
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C - a 4]
‘ (4]
L 9
(46)
c, «=C, (R , M C)
4 44 1
This yieida the section thrust and power on a spanvise segment,
Ayl’
AT =JspV 2C (C, cosd, -C, sin¢ ) Ay
e e ¢ Y 17 T TR
; (47)
: 2
sin +C cos :
ap =3 pv " C (C, o, +¢C, ¢, wy A8y,
: 1 1 1 1
For a B-bladed propeller, the total thrust and power are
B R 2 )
=g L B ( -
: TepL V. € (G cose, -C, sing)) by,
| (48)
g R 2 ,
P=3pE V ¢ (C sing +C cosg )uy 4y
; rh ;e'l cl 11 1 di | 1 cl 1
" Thus, with
c - T e
T ;
P
PER Vy
2
v :
1.00. e :
' , ay
C,® £ —3 o (C. cos¢, -C, sing) -1
| T x v 1l 11 1l dl 1 R
| | h T , (50)
§
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2
1.00 vel e c | by,
‘- —_ + . 3
Cp I — 0 R ( 1 ein ¢, +C, cos ¢) -
xh VT 1

Pinally, since p 2 4 p 2 ig normal to V e » 1ts reaction in the
; X z
; 1 1 1

flhid, the induced velocity at the blade is also normal to Ve .

1
Then, agdin referring to Figure (7),

V, =wy, cos ¢,

el ¢
Fhen o (51)
vel Ycl
—_— " e cos ¢
V.r R
so that
2 -
1.007 2 A}'c
el Cy
= L -—y—cos 6,(C; cos¢_ =-C, sing,)
c’r X R ’1 1l 11 e dl | "
h ,
| 3 | , (52)
N2
1.00 Y, 2 ¢,
Cp= I -y cos ’1°i(c1 sing, +C, cos ¢1) t
X, R 1 1
where cos ¢,, 8in ¢, can be determined from
F
2
Cos ¢ 1
o8¢, = — o
1.
RS (53)
1 1l
sin ’1 - 1
2 2
Fz + F’x

B R S R
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ﬁote that no effects due to radial flow are considered here except

those whici: arise in the determination of F‘l, Fz from the
‘1
numerical lifting surface theory.
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Chapter IV

RESULTS AND DISCUSSION

4.1 Capabilities of the Analysis

The foregoing analysis leads to a digital program capable of

treating the following lifting systems and their wakes:

(1) an infinite or finite wing moving unsteadily and
generating either a linearized (flat) wake o} a

free, self-convecting (deformed) wake.

(11) a multi-bladed propeller in static thrust. It is
unsteady since the propeller usually starts from
rest and the wake is deformed. It is restricted to
the static thrust problem since wake symretry beiween

blades is assumed.

4.2 Comparison of Two Computation Systems

It is well-known that numerical lifting surface analyses based
on vortex iattice techniques require large amourits of computer time
and storage. As a result, eyen though initial programming was done
o@ an IBM 360/67 computer at the Pennsylvania State Uhiversity, it
beéame obyious this machine was inadequate for the comp1ete propeller

sQlution. Maximum time available and core storage are both in-

sufficient and for these reasons, the CDC 6000 series machines, with

lirger usable core, at NASA-Langley Field, Virginia, were considered.
The analysis was re-programmed for this installation and, as will

be shown subsequently, time requirements were measurably reduced.
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As an added bonus much greater numerical accuracy was noted. Compile
times on the CDC units are also considerably faster than on the 360/67.
A short study of the time requirements on the Penn State IBM 360/67
computer was made utilizing a model of the rectangular wing with 19
panels spanwise (20 trailing vortices). The wing was set at .1 rad.
angle of attack, started impulsiveiy from rest and allowed to generate
its own wake. Run times up to 2000 sec., the maximum allowablé, were

[,

considered. It was found that

. 1 » i Gtan 2\.59
Computation Time (sec.) = .937 (W1ng t‘z;giddlstdhge x 10)

not including compile time. While this case was not rum on the CDC 6000
machines, the results for one wing geometry (three spanwise panels at .1
rad. angle of attack) were compared and shown in Figure (8). It can be
seen the rate of increase of computation time is greater on the 360/67
than on the 6000 sefiesu It was also foundAthat the compile times are
on the order of six times faster on the CDC machines.

Accuracy of the CDC machineé are greater wi;h‘the single-precisiocn
rode roughly equivalent to the 360/67 double précision mode and double
precision arithmetic was necessary onrthe 360/67 to obtain acceptable
resultsuv'Single-precision arithmetic oé the CDC machines was quite

adequaté and ‘this in turn results in a computation time saving.

4.3 Vortex Kinematics

- Soﬁe‘time was spent in observing the velocity fiéld induced by a
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straight line vortex segment in hopes that some a priori assumptions
régarding the wake and the number of elements needed to describe

i# could be made. Figure (9) shows the variation of induced
velocity at a point located a fixed h/l from the vortex segment, but
at different lateral locations; this effecgively describes the
variation a point would see as it translates in a plane past the
filament. Figure (10) shows the variation this point would see as
it moves on a circular path, in the plane, about the filament. As
expected, regular variations oééut from maximal when the point is

at mid-segment to minima (zero) when the point is aligned with the
segment. While these computations were done for a distance from
segment mid-point to segment length ratio of 2, the trends will

be the same for ény other value, being higher or lower as the ratio

is smaller or greater, respectively, and passing through 0 at § or B

equal 0.

Figutéi(ll) illustrates an attempt to correlate the velocity
at a poinﬁ in the‘plane dﬁé to an angularly oriented filament
with the’projected length normal to the line from the point. It
can be seen thét the greatest difference for any éngﬁlar orientation
occurs at approximately h/l £ .2. This vanishes rapidly until, at
h/1 & 5, the effect of tﬁe orientation vanishes.

Figure (12) shows the variation of induced velocity as a
function of normal distance from the liné segment. This

figure is interesting because it shows the transition of the

oo o i
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induced velocity from an essentially two-dimensional flow near
the segment (v ~ 1/r for h/1 < .1) to a fully three-dimensional
field farther away (v ~ 1/r for h/1 5> 1).

While the foregoing figures describe o some extent the
ch;racter of the élementary velocity field and the region of
influence of an elementary piece, no particular convenient
approximations applicable to tﬁe self-generating wake could be
discerned. First, the results apply to the magnitude of the
velocity field and so even if an approximatioﬁ could be found
to this, one is stili faced with calculating the orientation
relative to the specified coordinate system. This is the
difficult part of numerically integrating the Biot;Savart
Law. Hence the prdblem of streaﬁlining the wake calculations
reduces to the qﬁestion of whether or-ﬁbt the wake can be
numerically truncated. Since a major part of the static
propellor problem concerns the interférence of the vortex
wake ftbm one blade with another blade, it seems that no
elements can be dropped, at least until the wake is well

formed.
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4.4 Results of the Unsteady Lifting Surface Theory

The following results have been accumulated as the program
developed from the case of a finite wing with a linearized (flat)
wake to that final one which treats the propeller starting impulsively
in static thrust. Since concern is directed toward the propeller
starting impulsively, most of the results utilize this mode of
initiating motion; this is the cléssical Wagner problem. However,
prior to investigating the propeller, considerable time was spent
with the finite wing since this configuration contains essentially
the same numerical problems as the propeller but is less complex.

The wakes considered here are the classical types, either flat or
deforming, without the localized induction results of Section (3.8).
The infinite wing case is treated by simply considering a sufficiently

high aspect ratio wing.

4.5 Infinite Wing

The infinite wing was modelled by considering a single spanwise
panel; AR = 1000, at an angle of attack of 0.1 réd. The non-
dimensional time step is VAt/C = 0.1. Giving the wing an impulsive
start desctiﬁes a good approximation to the classical two-dimensional
Wagner problem.g These are compared in Figure (13) which shows the
lifc buiidiné u? from rest to steady state with the distance the
wing travels per uhi; cho:d. The comparison is good except in the
1&1:131 instants whe¥e large déﬁiatibns occur. The,Wagner solution

contains only the effect of the wake whereas the numerical solution
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contains an "infinite" added mass 1lift solution with the impulsive
start, or infinite frequency with the st2p change in angle of attack,
which dies out‘rapidly.

To get some feel for aspect ratio effects, the results for AR = 0,1
are also shown., The 1ift drops rapidly from the high added mass
condition to a steady state value somewhat less than the two-dimensional
value. Here the trailing vortices are very effective in satisfying the
boundary condition so that the bound circulation does not need to
contribgte as muéh as in the two-=dimensional case.

Figure (14) shows the rapid change in the éhape of the chordwise
lToading in going from predominantly added mass 1ift to the final
predominantly steady state distribution fdr the AR = 1000 wing. The
shape of the final distribution is evident after only .2 sec. time of
motion or .2¢c distance of travel by the wing. It should be noted that
in these calculations that the wake is a flat, classical wake. The
chordwise pressure distribution was approximated by eight bound
vortices; however, as will be seen subsequently, C; 1is quite insensitive
to the number selected.

A two-dimensional model was started from rest in a simple harmonic
motion (Theodorsen) at a reduced frequency of 0.2. The fluctuating

1ift exhibited the'“infinite" added mass charac;etistic at the instant

of start but subsided into the classic form well within the first cycle

of motion. It can be noted that convergenée to the classic results of
both the Wagner and Theodorsen probiems was slightly better than the

results of Reference (53).
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4.6 Finite Wing

The finite wing investigated consists of an AR = 3 untwisted
rectangular wing at ¢ = 0.1 rad. starting impuleively. This aspect
ratio was selected as one sufficiently in the niddle range so that
neither lifting lize nor slender wing approximations would enter
the calculations. The numerical results for Cp» the wing 1lift
coefficient, are cinpared to aﬁ approximation to DeYoung's (16)

results for steady motion.

2%ARq
C. =

L AR + 4

AR+2(AR+? 47)

The AR is small enough that the loading is nearly elliptic so that

the induced drag is given by
L (48)

for steady motion.

The effect of the number of spanwise panels on the wing‘lift
coefficient is shown in Figures (15) (AR = 3) and (16) (AR = 1.5).
In both cases convergence to the Derung value requires a relatively
large number of panels. Intermediate mlculations indicate a
néticeable loss of accuracy in CL as less than 10 panels are con-

sidered. The C 's are shown as functions of the length of the

L
tfailing vortices with a linearized wake. For AR = 3, a wake
|

approximately 5 chords long is sufficient to guarantee convefgence

»

to the proper CL’ For AR = 1.5 the wake length required is less,
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about 3 chords. This is due to the trailing vortices being more
effective socner in satisfying the boundary condition as the AR

decreases as previously implied in Figure (13). It can be noted,

ho%ever. that convergence is relatively insensitive to the number
oféspanwise panels modelling the wing. Five chord lengths for the
AR§- 3 wing suffices for 3 panels or 19 panels. Further, these
wa?e lengths represent maxima in that no shed vorticity is present.
These comparisons are based on steady state models and, 1if an un-
steady Hagner motion and the shed wrtices were present, convergence
would occur faster.

Finally it must be noted that AR's are based on the spanwise
d1§tance between the tip vortices with no regard for Rubbert's
ruies (34) for handling the tips. If Rubbert's criieria are
followed slightly better éorteiation between numerical CL's and
thbse given by equation (47) for the coarser spanwise spacing will
be observed since the AR is measurably larger. Convergence to the
proper CL could then be expected to be more rapid. The present
reéhits are perhaps more properly interpreted as indicating the
miﬁimum spanwise spacing necessary so that Rubbert's rules for
haﬁdling the tips can'be neglected. Br a givep AR, then, these
results should be more thaﬁ aufficiehﬁ’to guatanﬁee'cqnvergence to
the proper CL'

‘The effect of the chordwise distribution qf”bound vorticity

bnjthe~wing 11ft and induced drag is shown in Figuré'(17). The

»Wagdet problem is considered here with the wing given an,impdlsive

start and laying down a linearized wake. Shed vorticity 1is present
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and convergence to the steady state values occur in about 1.5 chords
of travel. Twenty spanwise panelsmdel the loading distribution.
The initial "infinite" added mass force associated with the impul-
sive start is seen to quickly subside a the wing approaches the
steady state condition. The cases considered compare chordwise
loﬁding approximated by 1 and 4 bound vortices and it is easily

se;n that both CL and Cpy are insensitive to the number selected
after the steady state is reached. RPr both quantities the tendency

%g_to drop under the steady state value, then approach asymptotically

~from the low side. Figure 18 shows the effect of number of spanwise

panels on induced drag. For the configurations shown the 3 panel
vortex lattice over-predicts the 20;§ne1 model by approximately
9%.

An attempt to show the effects of removing the linearizing
éffects on both the boundary condition and the wake (allowing 1t
to deform) is given in Figure (19). Linearizing the boundary
condition implies an inflow to a wing control point to be given by !

Va - Vpi1 instead of V sin & - W 4, 08 a+ Veiq sin a. For & = (.1

| rad. the differences are negligible on the plot but consistent results

could be seen in the computer output. Linearizingithe»bbundary

- condition while allowing the wake to deformmesults in higher CL's;

{
then if the wake is linearized, the C, 's increase more. The

L
greatest differences appear to be in whether or not the boundary
condition is linearized and becomes more apparent at greater time.

Appa:ently, at the instant of start whenwske elements are strongest

b
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and their effects would be greatest, they are very near the plane
of the wing and so approximate the linearized wake; also strong
aéded mass effects near the start will tend to overshadow the wake
effects. Then as time progresses the strong shed vortices are
carried avay (their influence going like 1/r2) and the trailing
vortices which now have nearly constant strength tend to be most
effective. Taking the wing to be most sensitive to this near wake
and noting the displacement of this portion from the plane of the
wing to be small, the differences between the linearized andldeformed
wakes are small, Greater diffefénces exist when considering the
linearized vs. non-linearized boundary condition for this alters
the impact velocity on the wing. In general this will decrease as
V sin a instead of Va; hence, less circulation is needed to satisfy
the boundary condition so a smaller CL results.

| Examples of the deformed wake for crude models (2 chordwise
§anels, 4 trailing vortices) are shown in Figures (20) (a0 = 0.1
rad.) and (21) (a = 1.0 rad.). It is seen that the wake is convected
dowvnward behind the wing’except for the first éhed vortex which
remains in the plane of the wing. The inboard filamen;s are con-
vected downward more than the outboard, a fact in qualitative

agreement with physical observation and numerical results (43).

" As time progresses:more,shed vorticity is collected in the vicinity

of the one shed initially to form the fluid starting vortex. This
vortex remains more or less in the plane of the wing, but siightly
underneath it. There is little tendency for the vortices to roll

up into the tip vortices. This is due probably in part to the
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crudeness of the model in spanwise spacing, but also in part to the
neglect of the localized-induction effects of (3.8). The case of

o é 0.1 rad. produces smooth, continuous results using just the
integration technique of equation (44). The a = 1.0 rad. case,
however, exhibits an apparent oscillation in the tip filament.

This oscillation is really a spiral motion of this filament due to
the error involved in applying equation (44) directly. The tra-
jectory needs to be determined by a more sophisticated integration
scheme such as predictor-corrector (modified Euler).

The growth in C; and‘cDi with time for a = 1.0 rad. angle of
actack is shown in Figure (22). Small amplitude oscillations, a
diéect result cf the spiral trajectory of the strong tip vortices,
is noted. The asymptotic CL appears to be =3.0, something less
than 10 times the a = 0.1 rad. case (Figure 18). In fact, it is
only slightly less than the value obtained if cL varies as sin a
rather than a , a direct effect of a nonlinearized houndary condi-~
tion. One should take care in interpreting the results entirely
in this light, however, since wake deflection and the ensuing tilt-
back 6f the Kutta-Joukowski force vector (16) will also result in
a decreased CL' v i

Finally; even at the high CL’ little interaction between
grailing vortices was observed so that no strong tendency‘for the
éake to roll-up could be seen. A model at a = 0.1 rad., éut with
50 spanwise panels to model the loading, was runkand‘étili no
sttoﬁg roll-up tendency coﬁld.be seen. Although not so long a wake

could be generated with this larger number of spanwise panels due
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to computer limits, qualitative agreement among the three cases
exists. However, r0114up rates as determined by these classical
apbroaches appear to be much too slow. This leads to the belief
that a further mechanism, notably the localized-induction effects

of (3.8) must he considered.

4.7 Lopalized Induction Effects on the Vortex Wake Roll-up
Previous Attempts (39, 40, 41) to model vortex wake roll up

have generally considered a Trefftz plane analysis and treated the
wake distoftion as an unsteady motion proceeding from an initially
flat wake geometry. While the final geometries are generally
realistic all show roll-up rates which are much ﬁoo slow. Jordan
(44) takes exception to the numerical procedures and develops a
lifting surface theory which contains a logarithmic singularity in
the downwash at the trailing edge slightly inboard of the tips. He
claims this singuiarity will drive the-wake roll-up at a mﬁch faster
rate but anottunately he cén pro;ide no physical insight into the
exis;ence of this singularity. |

" In an aftempt to better model the vortex rcll up rate con-
siderécion wvas given to the localized-induction concept presented
in (46, 47, 48,‘49). This apprOaph was taken based on the physical
obéervation of fiow field development at the start of the motion,
what is necessary to generate wake roll up, and the manner in which

the localized induction concept can describe this requirement.

At the initial instant of start a shear layer leaves the

‘trailing edge and rolls up into a well defined starting vortex with
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circulation equal and opposite to that around the wing. In the
case of a two dimensional flow this vortex is simply swept away by
the free stream (for example, Ref. 5%, Fig. 22). Similarly, at the
instant of start of a finite wing the motion is nearly two-dimensi-
onal with the starting vortex forming essentially parallel to the
trailing edge. The shear layer feeding this vortex from the trailing
edge is highly curved, streamwise, as it is drawn into the starting
vortex.

In order eo promote wake roll-up the two dimensionality of the
flew must be disturbed; a strong spanwise flow tending to convect
the wake laterally provides .this. Thé shear layer which feeds the
starting vortex contains the shed and trailing vortex filament
which model the wake. Hence, soon after the motion stares, the .
curved shear layer is reflected in the streamwise curvature of the
trailing vortex filaments. According to the localized induction
comcept described in (49) a curved vortex filament induces at a
point on itself a velocity proportional to the local curvature and
diéecﬁed along the local binormxl. This means that the curvature
of the trailing vorticity can induce a spanwise flow which will
tend to destroy the initial two dimensional character of the motion.
Under this influence the vortex segment endpoints describing the
wake will travel spiral paths which should promote interference
betweeh filaments and increase the roll up rate.

In orde:rgo assess the relative impo;tance of considering
the localized induction concept wake roii-up a short numerical

study was performed. An aspect ratio 3 wing at (.1 radian angle of

attack was started impulsively from rest. The chordwise loading




i~ Nt o

68

was modeled by two bound vortices and the spanwise loading by four

~vortices. It traveled 0.1 chord lengths in each time step. Figures

(23) and (24) show the Z-component (downwash) and y-component (spanwise)
of induced velocity, respectively after 1.2 chord lengths of wing travel
for the case of no localized induction. The downwash varies spanwise
but is fairly uniform streamwise until the end of the wake is reached.
This induced velocityjis on the order of 0.03 ft./sec. to 0.08 ft./sec.
The spanwise velocity, while appearing more erratic than the downwash,
is genefally smaller than the downwash by a factor of 10. The exception
is in the vicinity of the end of the wake where it increases or exceeds
the order of the downwash; this is due to the vortices shed initially
beginning to distort. However, over the majority of this wake the fact
that the downwash is greater than the spanwise Velocity by an order of
magnitude indicates the flow in transverse planes of the wake will be
essentially two-dimensional.

The wing was reiun for the same conditions but with the wake
allowed to convect under the localized induction process. Figures (25)
and (26) sﬁow the induced velocity field in the wake after 1.2 chord
lengths of trﬁvel. It can be seen that the downwash and spanwise
components are both of the same order of mégnitude, approximately 0.1
ft./sec., with the‘y—componeﬁt peaking at over 0.8 ft.fsec, The shapes
of the curves indicate the trailing vortices are performing a épiral
motion, and while the model is too coarse tdypermit interaction between

the trailing vortices, the flow field is highly three-dimensional.




Another indication of the potential that the streamwise curvature

has for inducing a spanwise flow can be estimated from Figure (22),

= Reference (53). The two~diisiensional starting vortex shown in Reference

(53), Figure (22), can be reasonably approxiunated by two turns of an

hyperbolic spiral with an asymptotic displacement to chord ratio of
approximately l/Bu\QIQg Velocity induced by this spiral filament on
itself by equation (19) is shown in Figure (27). The self induced,
velocity is normal to the plane of the spiral and increases as the
centér‘is‘approachedu Utilizing circulatioﬁ'values from the AR = 3 wing
at 0.1 radian with 2 chordwise vortices and 4 trailing vortices, a
veloéity on the order of 10 ft./sec. could be obtained. This means
that, at the instant of formation shown in Reference (52), if the two-
dimensional constraint could be removed a velocity parallel to the
trailing edge on the order of 10 ft./sec. would exist. Such a velocity
should be of sufficient magnitude to destroy the two-dimenéional
character of the flow typified by the 0.05 ft./sec. spanwise velocities
of Figure (24)9

As a final compafison an AR = 3 wiﬁg at b;l radian angle of attack
wigh 2 chordwise vo;tiaes>and 21 spanwise vortices to model the loading
was run with and wi£hout the localized induction effect of equation (19).
Figures (28) and (29) represent the classic wake with ne localized
induction while Figurgﬁ (30) and (31) include the effect. Comﬁaring
the wake str#cture with and without this effect it can be seen that

nearly 6 times the distance of wake is included to promote wake roll-up

L SV
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without the effect of equation (19) as with it. The classic wake shows
littie interaction until it is about 3 chord lengths long and the
distortions are quite gradual. At this point only two_trailérs are
measurably affected. On the other hand, with localized 1nduction, the
tip vortex.has broken down into a spiral motion after only ébouc 0.5
cho;ds of travel, is interacting strongly with the second and is
beginning to affect the third. A further important observation is that
once the vortices enter the spiral motion they apparently never recover
and the wake roll-up is governed entirely by the localized induction
process.

While the preceding results are quite limited they do give some
inéication into the requirements of wake roll-up modeling. Basically
itican be concluded that in order to predict the proper wake roll-up,
both as to shape and rate, the motion at the instant‘pf start must be
coﬁsidered. The high curvatures of the trailing vorticiﬁy are required
to‘induce the spanwise flow and destroy the initial two-dimensional
chéracter cf the motion. Apparently it is precisely this two-dimensional
naéure of Trefftz plane motion that precludes the usual analyses from
predicting the proper roll-up rate, also, apparently classical aero-
dynaﬁic theory is quite capable.of predicting proper wake roll-up
characteristics provided the problem is properly posed, and recourse to

new theory as has bheen suggested (44) is not required.

4.8 Effect of Core Radius

The Biot-~Savart Law (equation (1)) contains a singularity if
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;he point at which the induced velocity is determined lies on the
filament. In order to circumvent this difficulty it has been

standard practicz to define a core radius inside of which the

‘potential flow field induced velocity does not exist. Either no

velocity or a simple solid body rotation is assumed. A variety of
methods for defining this radius (see Appendix B) exist with ﬁo
particularly strong argument for any.

Comparison of Figures (28) and (29) show the effect of varying
the core radius on the formation of the classic wake while Figures
(30) and (31) show the same comparison for the wake with localized
induction. Figures (28) and (30) illustrate a core radius which
is proportional to the length of the filament while Figures (29)
and (31) show the results for a fixed core radius of 10-6 ft. The
proportional core varies slightly but generally has a radius of
thé order of 10-4 ft. In any case no discernible effect on the

wake formation due to changing the core radius can be observed.

) Figure (32) shows the wake behind the wing with a core radius
of 10‘10 ft., including the localized induction effect. Comparing
with the 10‘6 ft. core, the disturbances at 1.5 chords of travel
are noticably stronger for Ehe former. At 1.0 chord of travel,
interaction between the two outboard filaments is much more
prominent with the third also being affected. At around 2 chord
iengﬁhs of wing travel the first three outboard filaments are intef-
acting with the fourth beginning to digtort spanwise for the

\~10

10 ft. core. By the time the wing has moved through 2.9 chords,

, , -10 :
_relatively strong interaction for the 10 1 ft. core is observed,
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among the far outboard filaments. Obviously, then the core radius
can be an important consideration if it is allowed to be small
enough~— It is important to notice these results are due primarily
to‘the effect of core radius in the localized induction contribution
(equation (19)) and not in the mutual interaction between filaments
that has a maximum velocity defined by a minimum cut-off distance

in equation (1).

Figure (33) compares the Cy and Cpy distributions for the
classic wake and the localized-induction wake for the proportional
core while Figure (34) makes the same comparison for the fixed
co?e, 10'6 ft. In both cases the classic wake CL'S and CD1'5
do not vary significantly from the ideal flat (linearized) wake
ca%e. Small but measurable increases in the force coefficients for
tﬁe localized induction wake over the classic wake exist due to
small streamwise velocities induced by the spiral motion of the‘
filaments.

‘One inconsistency in the wake analysis with localized in-
duction has been permitted. The term, €, in equation (19) is a

core radius non-dimensionalized on the length of vortex segment

which is used to determine the localized induction effect whereas

in equation (1) the core radius is a minimum value of h, say h.,,

used to cut off the velocity at a maximum and is a dimensional

-

- quantity. In the analysis both these core radii have been given

the same value which is not necessarily correct since, conceptually,
there is no reason they should be the same. In view of the fact

that the logarithmic function in equation (19) is iery slowly

L
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v#rying the error involved in the velocity field of the wake is
small. This is apparently borne out by the fact that discernible
differences in the wakes were observed only when the core radii
differed by several orders of magnitude.

| The preceeding observations wduld imply the generated wakes

are relatively insensitive to the selection of core radius, at

léast insofar as physically reasonable geometries are concerned.
ﬁowever it must be recognized that two core radii to be determined
b& different criteria can exist. The core radius, ¢, of equation

(19) should be selected to give reasonable locally induced velocities,

while the core radius, h., of equation (1) will govern the velocities

c

encountered in vortex interaction problems and will be determined.
By iimits on the velocities and/or displacements due to this
phenomenon. As will be seen subsequently, this core radius associ-
ated with interaction can be critical since it can ultimately affect

the stability of the wake generation.

4.9 The Statically Thrusting Propeller

With the aﬁalysis established and verified for the finite wing
under an impulsive start, the case of a statically thrusting pro-
éeller was run. The lack of a suitable test facility precluded
any test procedure for experimental verification so recourse was
maée to the literature. The propeller selected is fully described
in Reference (9), but briefly can be said to be a 4-bladed con-
figuration with a radius of 3 ft., B8 at 0.75 radius of 7.3° and run

at a tip speed of‘600 ft./sec. This propeller was selected on the
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basis of having blade load and power radial distributions as well
as average thrust and power values available.

The computed performance is summarized in Figures (35) througﬁ
(42). The numerical configuration consisted of 16 spanwise panele
to model the radial load distribution and 2 chordwise panels to

6 ¢,

medel the chordwise distribution. A vortex core radius of 10-
wes chosen initially and this configuration was run for 20000 sec.
on a digital computer for each of three azimuth increments (time
steps), A0 = 150, A8 = 7° and A8 = 3°. The propeller moved through
615°, 2870, and 122° respectively. In order to assess the effect of
eelected core radii on the wake the A8 = 15° case was re-run with a
core radius of 1070 ft.

The performance is determined by two methods. Omne is the

direct numerical integration of the segment forces and powers as

- given by equations (33) or (A 13) and (A 14), respectively. In order

to convert these to coefficient form, the integrated results are

2

non~-dimensionalized by pVTZnR2 on the thrust and pVT3ﬂR on the

- power. The second method takes the z- and x-components of the

‘spenwise load distribution as determined by integrating equation (33)

; . -1 F

or (4 13) chordwise to determine an inflow angle tan “‘Fxllel.

The section angle of attack is known from equation (45). This, e
in turn, permits the use of real airfoil data and equations (48)

or (50) can be used to determine thrust and power including real

flpid effects. The results are strictly valid, however,'only in

‘the limit as the steady flow state is reached. Eipally, it Shogld{

be noted that to drawra direct comparison with theiresulté'ef"i:
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f 3
Reference (9), the Cp and Cp values must be multiplied by w /4

and 14/4, respectively, since Reference (9) uses standard propeller

‘ 4
convention (Cp = /6 (/27)” (20" and C, = B/p (@/27)° (2m)%).

The thrust performance for the three configurations with

varying 8 @ is given in Figure (35) through (37). In all cases

‘the propeller responds much like a small aspect ratio finite wing

up until blade-wake interference with the starting vortex from the
preceeding biade occurs. The interference effects are generally
ﬁost severe with the first intersection as can be seen by the thrust
o

response and occur approximately every 90 of azimuth travel. For

ihe A 8 = 15° case interference extends from 75° to 90° from the

" direct numerical integration, but the change in C,r is only 0.025.

At.lSOo of blade travel no significant interference effects are
noticeable. Far A 8 = 7°, Figure (36), the first interference
%egion extends from approximately 77° to 98o with the maximum
;haﬁge in Cp of 0084, A second but weaker region appears at 1750

ﬁo 1820- It should be observed that the interference effect for

: ﬁhezsmaller azimuth steps are more pronounced following the inter-
'éection due to the larger number of disoriented vortex segments

:in the wake. This is borne’'out by the results for 4 8 = 30 shown

in Figure (37) . Following the intersection with the starting vortex
the interference effects appear to decrease in magnitude but do
ﬁot really die out. For this small step size the region of inter-..

. ' o
ference extends from about 48° to 93°, a region covering 45  of

_ °
" blade travel as compared to 21° for the A 8 = 7° and 15  for

A0 ™ 15°Q This 1ﬁcféase‘in the size of the region is due,to the
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wore gradual progression of the blade into the starting vortex for
Ehe smaller step size. Thée intensity of the interference is much
greater for the A6 = 3° with a maximum change in Cp = 0.27 observed.
| The steady state Ct given by equation (52) is also shown on

Figures (35) through (37). This includes real fluid effects by , o

htilizing two-dimensional static airfoil data and the section angle
"of attack determined by equation (45). The average values of Cy
de;ermined compare favorably with the numerical integrationzbgt
thé details of the interference are markedly different. This is due
to the blade angle of attack being dependent on the induced drag as
“well as thrust and the two can be entirely different in behavior.
For A8 = 15° interference effects at 8 = 90° look much the
; saﬁe as for the numerical integration scheme., The magnitude of
the Ct change are approximately equal, but the region itself is
shifted by 15°, extending from 6 = 90° to 115°, At 6 = 180° a
sttong interaction region is observed which reflects the interference
% ‘ o 'on%CDio For A8 = 7° the area of interference extends from about
| 70? of azimuth and extends to 97° so that it is somewhat broader
thén the numerical integration result. The maximum Cy change is

. ”00993’ siightly larger than the numerical result. The region with

' _Aeg§~3° extends from 6 = 72° to 96°, not nearly as wide as the

it it e

/5‘ ‘ ~ re%ult by lifting surface theory. Further, the maximum changé in

CT is only 0.135, much less than the direct integration.

Comparison of the Cy with the measured steady state values
(ﬁigure (35) through (37)) are not particularly encouraging since

the‘analysis_seems to ovirpredict by a factor of th,::ﬁecéuée‘Of
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this poor correlation a classical propeller analysis utilizing the

Prandtl tip loss factor was applied to the cited propeller config-

~uration and compares quite favorably with the lifting surface

aéalysis. On this basis it is felt that the experimental data is
sériously lacking. The fact that a nonjstandard airfoil section
w&s used make estimations of the airfoill characteristics difficult
at best; however data was synthesized for the section following

guidelines of Reference (9). In the numerical analysis thickness

effects were accounted for in both the 1lift curve slope and minumum

,diag coefficient. However stall effects were not included, either
ih terms of a limiting Clmax or a drag rise. It shall be shown

sﬁbsequently that the inboard sections fo this propeller could be

~ stalled so a definite effect would be felt if these were included

'ﬁut probably not a 50% thrust decrease. Because of the non-standard

section, camber could not be estimated and so was assumed to be

zero.

Figures (38) through (40) show the power characteristics of

ﬁhe~pr0peller configuration. The induced power by numerical

integration and the total power by equation (52) are compared with
»éhe'momentum value of induced power, the total power of Reference

'(9) and total power predicted by classical theory. It can be seen

:;lmmediately that good correlation exists between the measured result

‘bf’Reference (9) and equation (52). Unfortunately, the measured
,ﬁalue does not correspond to reasonable estimates. For example,

Tfﬁé measured Cp = 0.032 corresponds to the momentum Cp1 based on the .

-

,'meas‘u:ed'c.r = 0,117 with nothing left over for profile vlo'sses.-j :
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This coupled with the large discrepancy between the measured value
and the results of classical analysis further reduce the confidence
in thé experimental data.

The induced powers determined by the vortex lattice technique
co‘pare favorably with the total power result of classical analysis.
It;is readily seen that the Cpj is over-predicted when compared to
thé momentum theory value although increasing this value by 15Z to
écéﬁﬁht for the vortex wake (16) gives Cp; = 0.0835 and better
'Qorreiation. o

| Figure (38) shows the results for A8 = 15°. Both Cpi and Cp
by:equation (52) show relatively weak interference effects at 90°
an& much stronger effects at 180° {change in Cpy = 0.046). Again,
thé interference regions are about the same size but the effects
are different. The resul;s for 48 = 7° are shown in Figure (39).
Hefe,the strong interference region exists in Cpj at the first
interaction (700.3 ) 5,980) and is preceeded by a decrease associated =
with‘a slower progression into the starting vortex of the preceding
'blgdeu ‘The maximum change in Cp; = 0.096. At 180° the interference

© the results

18 not discernible. Finally, in Figure (40) for Af = 3
ér; essentially the same as the 7% case except the blade entrance
inﬁovthe starting vortex is much more pronounced. The chanééiin Géi‘

s 0m21; larger than either of thﬁ/gfher cases.,

The effect of azimuth step size on the bound circulation

‘ di;tiibution is given in Figure (41). The azimuth station*is f = 90QF

" in"a strong interference region. Two chordwise vortices are con-

sidered. Théyfirstibduhd.vortéx has a very :egula:"shape with a
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maximum at y/R = 0.5 for all three azimuth steps (& 6 = 3°, 70,
13°). Small distortions appear inboard due to the inboard dis-
tﬁrﬁions of the vortex wake. The second bound vortex shows rel-
ifively violent oscillations radially, at least for A 0 = 7%, 30-
fhese oscillations can occur from two possible primary causes.
dne.is the possibility of a vortex element coming too close to a
control point and having its influence weighted too strongly.
Another is the relative closeness of the last chordwise control
point to both the last (in this case, second) bound vortex and the
dhed vortex nearest the t;ailing edge which reflects the time rate
of change of bound circulation. Analysis of the numerical results
indicates that indeed the fluctuations in this bound vbrtex are of
ﬁhe same order as the spanwise variations in shed vorticity. Hence
ihe time dependent change in total chordwise loading is felt pre-
dominantly in the loading nearest the trailing edge. The strength
6£ ﬁhed vorticity in turn, is determined by the inflow at the
éontrol points and can be measurably affected by the relative posi-
tion of wake element and control points. A 6 = 3° shows the most

radial oscillations ultimately indicating more wake segmenfs in the

| vicinity of the blade.

The effect of azimuth step size on the radial distribution

of blade angle of attack is shown in Figure (42). At 6 = 30°,

bléde'section angle of attack is relatively insensitive to the
ti@e écep size. However, the angle for maximum lift coefficient
foé a NACA0012 airfoil is superimposed in order to show the possible

stall region, out to approximately 40% span. At g = 90°, the

blgdedwakekelenent interferenze is dominant and no real comparison
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B can be made. The same trend as in the @ = 30° case can be observed,
buf the fluctuations around this mean are dependent ultimately on
the nearness of one or more wake segments to a local point.

Figure (43) shows the thrust and power distribution through
the interference region at o = 900. The violent fluctuations in-

i dicate extremely strong interactions between wake segments and load

points. The thrust and power distribution of Reference (9) are
2 shéwn‘for comparison and, interestingly, the thrust distributions
for A 0 = 15° compares qualtitatively favorably with a peak at

i

i about 707 radius.

The relative accuracy of the vortex lattice technique from
the runs examined has been diffiCUIt.to assess. The wake patterns
fot A6=15°and A 6= 7o become unstable after ¢ = 165° with wake
elements taking large excursions from the region of influence.

Once they move away, the lengths involved become so large‘that they
cannot return either by interactions with other vortices or by
logalized induction effects. The excursions become great enough

i ‘ that the one-step Euler integration scheme fpr the wake displace-

ments is invalid as is the second order Taylor series for the

loﬁally induced velocity. As a result the assessment of the method

»haé been based on the performance predicted within the first 180°

ofiazimuth travel. Some conclusions as to average performance have
been based on the more or less steady case generated before the

f#rsﬁ interference. In fact careful evaluvation of the shed vorticity
iﬁ this region between theAsﬁart of the motion and the first blade-

starting vortex interaction leads to a ;gntat;ve favoxable‘con- 2
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clusion regarding the induced power. Since the propeller blades

are reacting to an unsteady flow field shed vorticity is being
ptoduced and thus contributes to the induced drag and pow2r. Be-
fore the interference takes place the shed vorticity decreases as
the blade motion progresses from start and the induced drag tends

to decrease as well. This result is best seen in the & 8 = 3° case
but is also observed in simpler configurations yet to be discussed.
After the interference takes place the effects of thé more or less
disordered vortex segments are predomihant and conclusions regarding
average performance are nearly impossible to obtain.

The wake configurations corresponding to A 6= 150, 70, 3o for

an interaction core radius h, = 10-6 ft. are shown in Figures (44)
through (46), respectively. Blade rotation is counter clockwise.
For A 8 = 150, large excursions in the tip vortex filament are
observed at the end of the second time step (9 = 300). The dis-
tortions in the tip filament worsen as thevmotion progresses al-
though the motion ie a spiral type. Beyond 6 ; 90° the distortions
increase until complete breakdown at 6 = 180° occurs. Beyond

é = 90° inboard wake distortions-increase due to wake-wake inter-
ference between the blade wake being observed and the starting
vortex from the preceeding blade, and blade-wake interference be-
tweén the observed wake and the nékt following blade. As noted
éreviously, once a point is driven out of the flow field by an

interaction it never returns. It is too far away to be measurably

affected by interactions and the ensuing element lengths are too

‘great'fot thé,second order Taylor series expansion to the local




82

geometry to be valid. Because of applying conservation of total

vorticity the circulations decrease further decreasing the locally

induced velocity of the filament on itself, but it also decreases

the velocity induced by the filament on the majority of fhe blade .

! : and 'wake elements. The performance of the propeller is then most

dependent on those vortex segments of length approximately RA® which

;' j remain in the vicinity of the prOpeiler.

: ‘The wake generated by A 0 = 7o azimuth steps is presented in
Figcre (45). The motion over the first 90° of travel is much the
same as the A @ = 15° case but the spiral distortion in the tip

- vortex are not as evident. On the other hand the formation of the
stérting vortex is much more pronounced. At 6= 90o effects of
wake-wake and blade-wake interference can be observed. The tip
filament begins relatively large excursions and finally reaches an
unstable situation at @ = 175°. At this @ there are indications
of a strong wake-wake interference just behind the blade - trailing
edge.

What appeared to be the most reasonable wake was generated
by the smallest time increment ae = 3° and shown in Figure (46)

This starting vortex appears to start to form better than A8 = 15
| f, - and the tip vortex begins as spiral motion. Like the other cases
‘the wake remains relatively undisturbed through neari& thé first

200 of travel. Distortions in the starting vortex are noticeable
-_‘;c @ = 50° and become more pronounced at 75° to 78° due to blade-
wake interference. At 8= 81° the tip filament starts a definite

G;E _ ' spifal motion and 0= 84°nsees_the inboard filaments beginning the

B e ¢ o e s e e A IR TR ahtmpm M st e e T
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same motion. The distortions in this region tend to intehsify as
time progresses but»not‘necessar;Ly toward divergence so it may be
that beyond 0 = 120° the wake would remain stable although a chance
encounter between two filaments is all that is necessary to promote
1nstability. |

‘An observation of all three of the wakes isbﬁhat the spiral
‘motion of the tip filament (and any others) describes the basic flow
pattern at sudden start as observed by Taylor.

From the preceding results the Breékdown of the analysis is
obViously tied to the interaction between vortex elements and this is,
dn turn, governed by the core radius and the azimuth increment (ﬁiﬁe
step) employed. To assess the effect of cor; radius on the wgke;

10 £

computations were performed, Figure (47), for a core radius of 10 t.

and a‘pfoportional‘core, h. ~ length of the element; Figure (48). For

-10 6 ft., but when

he = 10 ft., the pattern is much the same as for 10
the instability i; obserVed at 0 = 180° it is much more violent. The:
proportional core, however, while yielding felatively large excursions
showed no tendeﬁty'to promote instability in 315° of travel. It may

 be the proportional core, in which the?radius is proportiohal to the
filament length, thét warrants' further consideration.

| Azimuth increments smaller than A8 = 3° were not considered.
fhe vast amount of cdmputation time required to obtain this much
information, 20000 sec. per run, seriously resiricts the usefulness

of the present formulation even for research work. In order to

‘reduce computation time, it became necessary to consider simpler




e

84

configurations and return to A 9 = 150 increments.

The first case considered was a one-bladed configuration,
coré radius = 10’6 ft., with the spanwise loading modelled by 5
trailing vortices and the chordwise loading modglled by a single
vbound vortex, the Wéissinger model. Rubbert's rules for the tips
(34) have been observed. A blade travel of 375° could be obtained
in 100 sec. of computation tiﬁé; Three runs were made tq assess
the effect of even spaced and cosine law spaced elements, spanwise;
and the effect of including blade twist in satisfying the boundary
con&ition. The latter is accouﬁted fér by determining Ay according

to equation (8), and this in turn, accounts for the spanwise de-

.flection of:the flow due to twist. The results are summarized in

Figure (49). Using the case of even spacing and no twist as a
basé, inclﬁsion of twist effects in the boundary condition in-
creases.£he predicted thrust very slightly, approximately 2%.
Cosine spacing over-predicts frqm 7% to 8%. The predictions are
quite close up to the point of interaction in which case even
spacing and cosine'spacing are quite dissiﬁilar due to the different
length vortex segments involved.

Inclusion of blade twist also incrggseé CPi by approximately
4.5%, slightly larger than a 3% increase that can be estimated
from sim%le momentum theory for a 2% increase in CT% Hoﬁever
this iﬁplies a slightly larger poWer’at a given thfﬁst‘and,veven
1f;on1y a few percent change.is involved, sincé accuracy within
the last 10% of performance is‘desired‘this could be an important

consideration.
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An observation of this single bladed configuration is 1ts'
behavior as a low aspect ratio wing. Even though the blade is
AR = 5, the propeller thrust response to the impulsive start is
moré similar to thg previously reported results for the AR = 3 wing.
That is, following‘the impulsive start the propelier drops quickly '
to the steady state CT much theksame as the AR = 3 wing Cp, responds.
There is very little recovery to a higher value as in the case of
high AR wings (see Figure (13) for the infinite aspect ratio
wing).

Figures (50) and (51) show the effect of spanwise vortex
spacing on the spanwise thrust distribution and section angle of
atéack distribution respectively.v Both distributions are quite
regular at 0 = 0° and 6 = 180° with major differences occuring at
8 = 360°, within the first interférenée region. An area of large
negative thrﬁst occurs near midspan for cosine spacing; a region
of small negative thrust is inboard’for regular spacing. Large
negative angles occur inboard for regular spacing; cosine spacing
yields all'pdsiﬁive angles.

At © - 0°,‘the7CT distribution is symmetrical about the
mid—span while the cosine spacing has a ﬁdximum value at approx-
imate;y 62.5% radihs; Atfé = 180°, haxiﬁum is at 62.5% span for
even spacing while, for cosine spacing, the maximum has moved ﬁo _
85% radiuéQ |

in a fﬁrthef attempt to assess the value‘ofvconsidering’ B

simplified geometry in the interest of savings in computation -
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time, a one blade and two blade configuration were run for 1000 seconds.
The performance results are summarized in Figure (52) and (53). Both
propellers used 5 spanwise even spaced vortices and a single bound
vortex to model the 1oaaingn~vAzimuth steps of A8 = 15° were used. The

analysis of Appendix B yieldgd a core radius of 10
The single bladed propeller turned through 960° of travel while the two
bladed configuration rotated 8?000 In both cases these simpler
configurations reinforce the observations made for the four bladed case.
A small aspect ratio wing type response in Ct and Cpj are observed up

to the first intersection (6 2 360° for the single bladed and 6 = 180°
for the two bladed). The single bladed propeller also shows a gradual
decline in Cpj toward the momentum theory value prior to the first
intersection. The average values obtained are nominally 25% and 507%

the four bladed, excepting interference effects, indicating that
relatively simple configurations can be used to assess average
performance.

v The major interference areas are quite well defined. The single
bladed propeller has definite spikes at 8 = 3600, 720° in thrust é;d
induced power. The maximum change in CT is 0.035 at 6 = 360° and

0.0128 at 6 = 720°. The change.in Cpi is 0.048 at 6 = 360° and 0.0246
at 6;#.7200.’ Withiﬂ the fifst two revolutions the average performance
is relati&el& smooth, but beyond 6 = 720° it appears the presence of
discrete vortéi segments provides severe interference conditions. |

The two bladed propeller, Figure (53), shows essentially the ‘
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same chafacteristics. Major interference regions occur twice as
frequently, 6 = 180°, 360°, 540° andv720°.‘ The maximum change in
Cp and Cpy are more intense (ACp = 0.110, ACpy = 0.087 @ 6 = 360°).
Also, the fluctuations between interference regions do not die out as
. rapidly. -
The:wake of the two bladed configuration is shown in Figure (54).
é o It consists of five trailing vortices, a time step corresponding to
| 26 = 15° in azimuth and he = 10-3 ft. The motion persists through
525o of aiimuth béfore an instability occurs. Excursions in the
spiral motion are quite large, probably too large for realistic flow
geometries. It can be noted also that very little distortion of the
trailing vorticity until acted upon by a blade or wake interference
is obserQed (at © = 150° to 1800, for example). This is due diﬁfctly

to the relatively large increment in time prescribed by A6 = 15°.

By way of comparison, the wake distortions for the finite wing were

carried out for VAt/c = 0.1. For the propeller, VAt/c ~ (Vph8/uwc) =

1.2, over 10 times the value for the wing. As a result, the time of
the motion is much too great‘to allow a proper starting motion to
fo:m and the vortex segments established are too long for the Taylor
sefies expansion on the local induced velocity to be valid. To
reduce VAt/c to OulAfor the propeller in order to promote reasonable
locglly‘indqged effects requires a A6 of approximately 1.50, or

- | appiéximatel& one half of the‘éﬁallest value considered. . This haé

‘the undesirable effect of increasing_computétion time. .

P S S NPT ST SR T I e e bt




88

The large excursions and eventual instability are due primarily
to cumulative effects. The results of Appendix B generally restrict
the motion properly, but cannot account for summation effects
when one point comes under fhé strong influence of several vortex
segments. To counteraét‘this effecp, some limit has to be put on
the displacément due to cumulqtiie velocities or the limit on
displacement dve to one velocity‘incremenx must be strongly re-
duced, perhaps to a size on the order:cf boundary layer thickness.
A positive note can be observed in this crude wake, however, and
that is the apparent tendency to generate the Taylor "doughnut"
(13) during the fmpulsive start.

The feéulﬁs of the analysis indicate crude geometries can be
utilized to predict average performance, but the corresponding
wekes are generally unstable and unrealistic. To verify this
completely requires a solution to be run for several revolutions
to give the motion time to reach a steady Staﬁe. In order to
obtain good wake geometries requires very Small azimuth steps
(timé‘steps) as well as a relati?eiy large number of spanwise
segments in 6rder to keep the vortex segmehts relati&ely small
and allow the wake flow time to deyelbp. This leads to unreal-
istically large computation times for the present method. However,
thelpresent formulation is quite inefficient from a computation

[ B _
standﬁbint. On each panel the wake induced velocities must be
compuﬁed fonr times, once at the control point to determine the
bound circulation, and then at three load points on the horseshoe

vortex bounding the panel.
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The eiisting computations perfbrm the four integrations over the
wake utilizing the Biot-Savart Law. A method has been feceﬁtlyr
conéeived to reduce the time required for the wake integrations by
only computing the Biot-Savart Law once for a given panel and ﬁake
geometry. Because the relative panel geometry is fixed; i.e,, the
distances between a control point and the three load points at the
vortex midpoints is fixed. The velocity increments at one point, say
the control point; can be computed for a wake segment and modified by
factors containing the relative banel geometry. The method was
conceived éfter the agéuisition of the previous data and as yet is
unproven. If feasible, however, it could reduce computation time by
as much as 50% to 75%. A two-dimensional discussion of the method is
given in Appendix C. The three-dimensionai counterpart will be more

complex but no more difficult to apply.




Chapter V

Summary and Conclusions

The foregoing analysis applies vortex lattice techniques to the
problem of a lifting surface starting impulsively from rest. The
1ifting surface can be an infinite wing, a finite aspect ratio wing or a
propeller in static operation. The wake generated can be flat and
constrained to the plane of the lifting surface motion or free to deform
under: its own induced velocity field. The impulsive stért condition
allows the wake to»Be known at every instant of time and eliminates the
need for an assumed initial shape. The wake deforms under the influence
of mutual interaction between filaments and the velocity each filament
induces on itself. Application of lifting surface techniques permits an
exact solution for the chordwise and spanwise loading‘to pe determined.
Even though difficulties in correlaﬁing the analysis for the statically
thrusting propeller with limited éxperimental results for the propeller
exist, it is believed the present analysis is basically sound since it
does compare well with classical methods for the propeller as well as
for the finite wing.

Prior to investigating the lifting surface technique, some time was
spent in observing tﬁe velocity field of the elementary stréight line
vortex segment in hopes that some a priori assumptions regarding the
wake and ﬁ&e nﬁﬁbeﬁ of elements needed to describe it could be made.
These were generally unSuccessﬁulzbécause the orientation of the free
wake elements had to be cémputed gnd this is the mos£ timg consuming -

aspect of the problem. However, one interesting result was obtained



D
g

B S B e L ST

91

regaiding the magnitude of the induced velocity. The velocity on the
bisector of a straight line vortex segment is essentially two-dimensional
for h/€ < 0.1 and varies as 1/r. For h/ﬂAg 1.0, the magnitude varies as
1/x2, Thus, with a vortex filament oflprescribed geometry which‘ié to be
numerically broken up 1hto finite length segments, the ﬁagnitude of the
induced velocity éalculated from the Biot-Savart Law can be simplified

so that a saving in computation time is obtained.

To evaluate the present analysié,;the simplified geometries

corresponding to a flat, rectangular wing starting impulsively from rest

were considered first. These wiﬁgs were allowed to generate flat,

 linearized wakes and deforming, self-convecting wakes, withfand without

the localized self-induction velocity. In genéral it was found that the
wing Cp, an& CDi could be predicted quite well provided the velocities at
the bound vortex midpoints were used. Further, the wing Cj, and Cp; are
relatively‘uhaffected by wake roll-up.

The problem of determining the wake roll-up characteristics,
notably rate asvwell as fihal geometry, was also considered. It is well
known that final geometry can be satisfactorily obtained by the usual

analyses employing Trefftz plane aerodynamics, but the roll-up rates by

.,this approach are much too slow. The results of the numeriéal aﬁalysis

indicate that the accurate prediction of the wake roll-up geometry and

. rate can be obtained providéd thatythe details of the motion at the

instant of start and vortex filament self-induced velocities are
considered. 'With the inclusion of self-induced velocities proportional
to the local curvature, calculations show that the wake roll-up‘behind a

1lifting wing is initiated after only 0.5 chords of travel. This is
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primarily due to spanwise induced velocities which are of the same order
of'magnitude as the‘downwash so that the filaments lie on a spiral
trajectory. Without these self-induced velocities, the downwash is an
ordér of magnitude greater than the spanwise flow so that a two-
dimensional character of the motion is maintained and there is about
three chord lengths of wing travel before any roll-up is noticed. This
is more in line with Trefftz plane results.

After the basic validity of the analysis, including the wake roll-
up model, was established for the finite wing, a four-bladed propeller
configuratibn was run for compariszun with experimental results. It was
found that the theoretical results for the propeller configuration did
not cdrrelate‘well with the experimental results. 1In én effort to
obtain further comparisons, a classical Prandtl analysis was performed
and calculations based on momentum theory were made. In general,
reasohable comparisons in thrust’prediction can be obtained between the
present analysis and the Prandtl analysis while the actual measurements
of Reference (9) were considerably lower. Theh, using an average Cp of
the value predicted by either the present analysis or the Prandtl
~analysis, a momentum Cpj was calculated. It was found that the present
ahalysis compares favorably with this Cpy value as’well a$ with the
total Cﬁ of the Préndtl analysis. However; all of these calculated
values are much higher than the measﬁred Cp of Reference (9), indicating
that possibly the measured Cp is too low;"The error observed in ﬁhese
reéults was muéﬁ greater thah anticipated, pafticularly siﬁcé thek

finite wing results were so encoutaging.




93

Further error in the analysis could be dne to poor synthesis of the
ailrfoil section dati. Although care was taken and the guidelines of
Reference (9) were followed, the airfoil section was non-standard and
difficult to describe. Poor estimates of the drag characteristics
could explain, in*part, discrepancies in the power calculations among
analyses with reasonable thrust comparisons.

Error might also be due to the relatively short wakes generated,
Even though extremely long computational run times (20,000 sec.) were
performed, cnly about two revolutions of wake could be generated at
besr;fand it is quite conceivable that this is not enough-ro predict
the steady state performance. It was noted that the average Cr and Cpy
respond to the impulsive start much like a low aspect ratio wing. That
is, following the impulsive start the performance drops very quickly to
what appears to be the steady state value. It is possible that steady
state has not been attained and more revolutions are necessary. This
would lead to an increased’inflow which, by decreasing blade angle.of
attack, could lead to decreased thrust prediction. Regions of inboard
stall would be determined by this inflow, and performance would be
measurably affected by the extent of these regions.

Finally, there is an error due to the vortex wakes deposited by
the propeller blades. The time steps considered were much too 1arge to
predlct accurate wakes (except perhaps for the AB 3° cese).v As a
result, all the wakes of the four—bladed connguration except rg = 3°
became unstable, this 1nstab111ty was enhanced by interaction core radii
that were too small. ' The resulting wake geometries then contained

extremelyblong straight line vortex segments which, once formed by a
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streng interaction induced velocity acting over a relatively large time
step, could produce completely erroneous velocities at the blades. To
make matters worse these segments might never return to a reasonable
geometry as time progresses since they might never péss through enough
interactions to counteract the effect of one strong one. It should be
noted that wake instabilities noted in the analysis are believed to be
only numerical with no physical counterpart.

Evéﬁ though the comparison of theoretical and experimental results
leavés much to be desired,»some parametric results were successfully
obtained. Small time steps (1.5° to 3° in azimuth) are required for
accurate wake prediction. This is necessary to determine an accurate
vortex filament radius of curvature for calculating the locally induced
effeﬁts, This. is also avreguirement to 6btain reasonable vortex induced
curved paths for the wake points from the one-step Euler integration
scheme which can only provide stfaighc line translation of a point.

The sensitivity to time step of blade airloads due to passage
through a vqrtex is significant. The smallest time step; A6 = 30, shows
a much greaﬁer fluctuation in both Cp and Cpj, as well as a much larger
azimuthal extent of interference? than does the A6 = 15° case. The
accuracy of blade-wakezihtgractions not only depeﬁds on small time
steps,: but also on interaction core radii large ;ﬁéugh to limit the
movement of a wake point to a reasonable value.

fhéiusion of bladébtwiSt<in satisfying the boundary‘conditién
increased the computed average Ct by approximately'two'percente .This
is a relatively small effect, but since interest in sﬁatic performance

prediction is generally,within the last 10 percent, this is sighificant.
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Variations in spanwise spacing were examined by comparing the
results of an evenly spaced configuration with a cosine spacing. Cosine
spacing tends to predict average Cp's approximately seven percent to
eight percent higher than even spacing. Corresponding wake interference
regions exhibit completely dissimilar characteristics. This indicates
that the freedom of choice in spacing one has in modeling the spanwise
loading for a finite wing with a flat wake does not carry over to the
propeller or into regions of aerodynamic interference.

In order to reduce computation time, propeller geometries utilizing
coarser spanwise spacings were considered. The results indicate that
for computing average performance as few as four or five spénwise panels
could be coﬁsidered. .

Time dependent changes in chordwise loadings are felt predominantly
in loadings nearest the trailing edge. This is significant in the
higher harmonics of aeroelastic torsional modes and noise.

The conclusion of this work must admit that the accuraéy»of the
present analysis when applied to the statically thrusting propeller
has not been satisfactorily demonstrated since correlation with thé
selected experimental results was poor. Even though the basic
formulation is believed sound from comparison with other analyses and
finite wing results, final correlation will have to await better
experimental results, more accurate airfoil section characteristics,
relief from the numerical inaccuracies associated with the aerodynamic
interference region and larger computational runs to numerically
establisﬁ the wake. This procedure, like other vortex lattice

techniques, uses an inordinate amcunt of computer time due to the
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repeated calculations of the Biot-Savart Law in the wake. Unfortunately,
no wake simplification or approximations are apparent because of the

importance of the nonlinear flow of the induced velocity field. This is

further aggravated by the small time step requirement to compute inter-

ference aerodynamics of the problem accurately. This seriously restricts
the usefulness of the analysis, at present even as a reseérch EOOJ.'
However, vortex lattice techniques are those which most readily apply to
nonlinear aerodynamic problems so that further attempts at reducing the
computation time of‘this analysis, as well as accepting'ldng time
computer runs, are perhaps justified, at least in research problems.

In spite of the inconclusiveness of the primary resuits of this
analysis, several positive reSg%;s have been obtainéd.' Perhaps the
most significant of these is the modeling of the wake roll-up with the
localized iqguction concept while considering thevthree-dimensional
flow about a lifting surface starting from rest. Inclusion of blade
twist in satisfying the flow tangency boundary condition has been shown
to give a small but significant increasé in thrust. It has‘been shown
that relative freedom of choice in selecting the spanwise spacing for
the‘vortex lattiée does not apply to propellers or any problem in which
aerodynamic interference is important. It has been shown that'average‘

performance can be obtained; if necessary, by cqﬁéidering coarse spanwise

spacings. A cursory investigation into the chordwise loadings shows that

-time dependent changes are felt nearest the trailing ‘edge.




Chapter VI

Recommended Further Research

In spite of the generally favorable trénds established from
a;plying vortex lattice techniques to the statically thrusting
propeller, the primary objective of obtaining the high degree of
aécuracy necessary to correlate theory and experiment has not been
accomplished. However, the major problem areas in the aerodynamic
modeling have been identified and the foregoing aftalysis represents
a tool to investigate these;areas. Thus to extend the present
analysis further into the modeling of propelle; performance continuing
investigations are strongly urged. | A |

Effortslto redﬁce computation timelhust con?inue. Attempts to
more accuratel& predict the potenﬁial‘inflow iead to small time

increments corresponding to anfazimuth step size, A6 < 1;59, fully

one—half the smallest value considered and at least one tenth a

value at present practical. This limit has been established by
éstimateS'necessary to promote good wake roll-up characteristics.
Attempts in the present analysis to reduce computer central processor

time (and core storage) with special data handling techniques have

been generally unfruitful. As a start in this direction, the method

of Appendix C can be extended to three-dimensions and applied.

Reductions in computation time would also permit more accurate

representations of the wake. The numerical integration scheme

. considered in £he'present analysis is a simple one-step Euler scheme, .
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shown to be less accurate (54) than either a RungeQKutta method or
a one-step predictor-corrector technique. The inherent inaccuracy‘
of the method lies in the fact that points can only translate under
the influence of a vortex induced velocity whereas the true path is
circular. Unfortunately this method is the most economic from the
point of view‘of‘computation time and core storage, although to get
a sufficiently close approximation to the circular path reouires
very small time increments.

Another, perhaps more subtle, error associated with the wake
modeling and which points'toward smaller timeAsteps as a solution
is the representation‘of the vortex elements in the wake by straight
line segments.‘ Fiéure (55) shows the effect of curvature on the
velocity induced along the bisector of the vortex filament. The
two models consist of joining two points by l)~a straight line
segment of 1ength, 1, and 2) a circular arc, radius of curvature, R.
"e" is a point on the bisector and "zZ" is the maximum distance
from the. straight line segment to the circular arc (the camber"
of the arc). For the case shown the circular arc is a semi-circle
and Z = R. It can be seen that the velocity induced by the two

configuratious are sﬁnilar,only beyond approximately one segment

length on the concave side‘and one half segment length on the convex

side. As the filaments are approached from either side the 1nduced ‘
velocities quickly become dissimilar and betwe@n the two filaments
the velocities have opposite sign. Hence any point falling within
this region will be convected totally incorrectly. As the "camber

of the arc decreases (radius of curvature increases) this region of
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;naccuracy decreases. Assuming the two endpoints to be forned‘by
ghe consecutive motion in time of a liftiung element, the inaccuracy
can be made to vaqish only in the limit as the time step vanishes.
Numerically, this points to extremely small time steps.

Core radius criteria for consistent reasonable predictions
@f blade-wake and wake-wake interference conditions should be
éstablished. The present analysis has shown that to correctly
model the vortex wake and eliminate the singularity in the Biot-
Sayart Law two vortex core radii can exist. One governs the local
in&uctiOn effect and the other determines the interference or
inéerhction effects. Criteria for firmly establishing the former
caﬁ probably be determined from the original references (46, 47,
48, 49). VThe latter will probkably require more gfiort; the various
methods considered have been mentioned in Appendix B of this
reéort. Johnson and Scully (55) indicate core radii ranging from
oné'tenth chord to 20% radius are necessary. A reasonable and
consistent method for estimating these core radii should be
available.

An alternate method to equation (52) for viscous co;reétion
is;ﬂeeded. The present approach, while corresponding to classical
prgpeller theory, is numerically inefficient since it is valid |
on;y for steady state. A method such as that of Reference (29)
‘is simpler to apply, numerically more efficient and is probably
easiet to extend into the unsteady regime.

Valid experimental results for comparison are needed.

This includes blade load data as well as average preformance.
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Perhaps rotor data could be used, at least initially.

EvLong time runs, at least on the simpléACOnfigurétions, should
be made to establish steady state wake configurations. Comparisons
could then be made with existing flow visualization results to

determine the accuracy and stability of the model.
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Appendix A

Determihation of the Numerical Expressions for Force and Indueed

Power on a Lifting Surface Element

‘Classical subsonic¢ aerodynamic theory assumes the disturbance
motien produced in a fluid by the passage of a lifting surface to be
an irrotational motion. The fluid is assumed to be incompressible and
inviscid. At a point, x, on the lifting surface the pressure

difference across the surface at the instant of time, t, is determined

to be
Ap (l‘_a t)

—— = V(0 V(&) + 5 [80G.D)] AL

from the unsteady Berneulli equation. Ap is the pressure differenee
across the Lifting surfece, Y is the net distributed vorticity on the
lifting surface and 34¢/3t ie the time rate of change of the potential
difference across‘the lifting surface, all at the point, x, of the
lifting surface at the instant of time, t. The force exerted on an
element of the lifting surface area, dS‘.is thus |

d_F_(ﬁ, t)

= A4p
. ; o e (x,t) n(x)ds

- A2
= V(x,t) x v(x,t) ds +-a—ag [A¢(x,t)] n(x) dS'
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The power, dP; required to sustain this force is just

aF(x,t) : m

ary ) B ‘ '.
_9- = (!,tt) = YR(E_’t) 2

= Yp(x,t) * [V(x,t)x v(z,t) 48] + Vg ° [2Lag(xt) n(x) as]

wﬁere VR is the resultant velocity of the point on the lifting

surface relative to the fluid. On a finite segment of the lifting

surface, Aj;, the force and poier are given by
B | SN
— () = sr [V(x,t) x ¥vix,t) aS + .53. [a4(x,t) n (x) as]
S P A ‘
i i1
Pilct) 3
= ss YR(xt) ° [¥(x,t) x v(x,t)dS + x5 [8(x,t)]
| f Ay |

n(x) as'] | A

Now, YdS' = 'Idl by Stokes theorem so that the quasi-static terms

become
o ¥a®) x (888 = s ¥(x,t) x Dx,t)al a5
A SR

ff V(x.t) © [¥(x,t) x Y(x,t)as') = Yplxst) * [¥(x,t)

R . x NMxtlal] R 1
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?here 1;, is the length of the vortex elements on A;;. If 84y

contains a rectangular horseshoe vortex configuration with three

arms,
£ ¥(x,t) x Mz,0)al =2 [V x T),] AT
i =1 i1
11
: A L3
J 1,-R(-"-"';) ) l!(!.’t) x I(x.t)dl] = z_. !Rm ‘ [!m x -I:-l)n] i
1 ' ' n=1
11 A8

vhere V , Y'Rm are determined at the midpoints of the finite length
segments (l'm)il which lie ou S,,.
The unsteady contributions can be approximated by assuming

8y, to be gmall. Then '

e

f .~ oA
sy a(xi -,,% 8¢ (x,t)d8 = n —5 Sy | Ay
Ar

)

15 Yylast) " m (m) 8 (x,t008 2y 29-31: 551

'Ail

R —3¢ il A0

vwhere n 3A¢/3t, VR da¢/3t are average values over S,;. Since
‘ n

3605/ ot is constant over the area bounded by the horseshoe vortex

‘segment and the area S,. ‘is taken to be flat plate segment of

i1

‘the lifting surface so that its spatial orientation is defined
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sar sy

saTmI L e

P

; by the unit normal at the control point, !Eil’ located on the seg-
ﬁ ment
S 8¢ 34 |
- B 5¢ " M%qn) 3 } (xoqys ©) AL
¢ _ ol¢
Ven =57 = VAo (Zein® ¥ % (Zeazs ®) A12

vhere n (x il) is the unit normal at the control point, x X.i1s
vhere the boundary condition is satisfied numericelly on Sil and
Ven (Ecil’ t) is the normal component of the resultant velocity
of Ail relative to the fluid, i. e., the component of the resultant
velocity in the direction of the unsteady force.

Utilizing equations (A7), (A8), (A9) and (A10) the unsteady

force and power associated with the segment of lifting surface,
Ail’ can be determined from

3
W 3 v, x ()] ( 98¢
x (Rplyy * 8lxeny) =57 (xeg0 ©) 8y
P - mel ’
= a3
P (%)
11
=L !?h C (L) ] v (x,, ¢) 2 at (xcn t) S5y
[ m=] il

Al
n(x X.41) is the unit normal at x_,, on S;1 and the average unsteady
pressure 9A¢/3t on S, is obtained from equation (31). V. t
i1 ) , Ra(Zy;y0 ¢
is determined from




Van (Ze1ar ) =Yg (Zeqp0 ¥) ° m (xyy;)




Appendix B

Determination of Vortex Core Size for Numerical Modelling of

. Interaction Phenomena

Because the Biot-Savart law yields infinite velocitics as a
vortex filament is approached, the numerical application of this
law can lead to unrealistically large velocities”andx@iaplacemmhts
if the point at which the velocity is to be computed approaches
too close to the inducing segment. Typical procedures in main-
tﬁining a realistic velocity field have been to assign a core
radius to the filament segment at which the velocity is a maximum
and within this core either no velocity exists or a simple solid
body rotation is assumed. The proper selection of this core radius
is an important consideration and in the past has been selected,
variously, on continuity considerations, a physically plausible
maximum induced velocity, and experience in terms of what works for
the Job at hand. x

Selecting the radius based on a maximum allowable induced
félocity is largely a question of experience. Sadler (29) has
QSed this approach and has found this can lead to erroneous
;veragesu A further drawback would seem to be in certain aero-
eﬁastic and acoustic applications in which the high harmonics
iight be important’and vouldbbe nb&iq&bly‘ﬁfrecfed hj such a velo-
city cutoff. ' | |

Another method of estimating the core radius which has not yet

 been tried is to limit the displacement allowved any point under




the induced field of a single segment. Such a limit could be any
reasonable physical dimension of the system, say a wing span, propeller

2 , redius, chord, etc. Suppose the maximum interaction displacement is
' Tmax+ Then

- I‘max © Vimax At Bl

L where Vj ., = max. allowable induced velocity

At = Time step of the motion.

Close to the filament Vyp.. = r/2 mh, and, for propellers,

At = AYp/w where w is the propeller rotational speed and Ay the azimuth

travel in the time step, At. Therefore

= L. Ay ‘
h, = 21 V. w B2
max

If Tpax ~ R, the propeller radius, -

: o
fe ™ V360 B3

|
where, for an estimate, I' could be taken as the maximum I' on the
propeller blade. Going a step further
6C
= Y L& = I
r= 7 €6 v cC

in hover. Thus the core radius can be estimated from

: ‘ : C o
Co : - , o hg c( ) I%ﬁ e B4
‘ _ R , Ll 2 :
. ‘As an example, suppose a propeller generates aT =50 ft. /sec. at a

1 = 600 £t./sec. Then, for Ay = 159, he = 0.00347 £t. and Aw - 3° »

gives h, = 0. 00069 ft.. both on the order of .001 ft,
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- For a finite wing, a corresponding dimension to limit the
interaction displacement is the semi-span, b/2.
o | . rat
Hence he = 5 ‘ B5
Then At = c/v
T r '
he = —% TVAR B6
v ()
c
.oegy ‘
so that o h, = TAR | ~-- B7

gives a reasonable estimate. It can be noticed here that the desired
core radius is proportional to the induced angle of attack.

Finally, it should be restated that other suitable physic#l
dimgnéions could be used. Based on results‘of the present analysis
a distance as small as the trailing edge boundary layer thickness

might be required.

:
:




Appendix C

A Method to Determine Wake Induced Velocities at a Bound Vortex

Load Point Knowing the Velocitiés at’'the 'Control Point on the

Same Panel.

The major criticism of the vortex lattice model developed in
thg main body of this text is the inordinate amount of computer
time required to perform the numerical integration over the wake
to}generate the wake induced velocities first at the control
poﬁnts in order to satisfy the boundary condition and then at the
loéd points (bound vortex midpoints) to obtain the load distri-
buéion. A method has been recently conceived to eliminate one of
these integrations by utilizing the fact that the relative geometry
between load points and control points on a panel is fixed. This
means that each contribution to the velocity field at one set of
points due to a given vortex eiement need ohly‘be modified by a
COétectianfactor to yield the velocities at another set of points;
the correction factor is a functiqn only of the relative geometryfw
bétwéen the sets of points. The idea can be cleariy illnsttated
in thé two dimensional case.

Assume a flat plate airfoil has started impulsively from rest.

The flat plate is assumed to be modelled by a single bound vortex

at c/4 and a point of flow tangency at 3c/4. A deforming wake of

shed vorticity exists behind the airfoil at any instant of time

“ﬁith the elements of shed vorticity having strength determined by

' tﬁe'airfbil—wake configuration at the instant of shedding. The
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étrength of wake vorticity is thus expressable as a function of the
wake coordinate, s. Referring to Sketch 1, the x~ and z~- induced
velocity components at the control point and the bound vortex due
to the wake can be easily determined.

Sketch 1

y{(s)ds sin 92

f ISSst h(s) s - 8 h(® '2 r(ép c2

ix Zﬂrz(s)
o anz (s)

1 ' 1
where S is the numerical approximation to S and ?éai)gr(si)/As
o

‘It follows that

s orfey 1o or s |
'-—I-L') I'( 1 Si =£.AVx 1 i‘ ’ C3
2nry (S ) r, (si) r, (si)

Vhére Avcx i the x- velocity increment at the control point due
to the concentrated wake vortex P(si).located'at X(si), h(si).

Similarly the z- component can‘bé obtained as

1 y(s)d 0 1
v = ()._ifff__lpfxgszdsxa z xi rC1) :
¢z o anl(s) (L) 2 : C‘

° gﬂrl (s) ,z,gl (31)’
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' c
v = } Y(s)ds cos 0, i } Y(s)ds (x+y) Y : (§+xi) P(Si) c5
iz o 2 : 2
"F2(s) ° anz (si) © anzz(si)
Then
1X r 2( ) 1l 2( )
I 8 r (s,
Vig™ = ke B -2;——3%~(1+E") -pav 11 (1+5-)
iz o 2 2 x4 e ez 2 2
2‘"['1 (si) tz (si) rz (si) b

c6
where AVcz is the z- velocity increment at the control point.
Since rp2(si)/ry2(si) = 1 + (c/2r1)2 - 2(c/2r)) cos(n - 0,) the
induced velocity at the load point due to a wake vortex can be
exéressed in terms of the velocity induced at the control point by
th@t vortex and the relative geometry (c/2) between the control
point and the load point. It is easy to see the same type correc-
tiéns apply if the flat plate is a segment of a two-dimensional
aiéfoil except that c/2 is now a fraction of the segment chord.
Further such procedures should be applicable to the three-dimen~
sional case and finite length vortex filaments. From a computa-
tional standpoint, the major time consumption is involved with the.
calculation of the AV . » AV, by the Biot-Sévart Law. In the
voitex geometry of the present method there are three load pointé
aséociated with each countrol point so that each wake is integrated
ac#oss four times to obtain a compatible set of c¢irculations and
lo;ds for a given geometry. The application of this correction
factor procedure requires‘that this integration be done only'

once. and should result‘in a considerable time saving.
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Figure 1.
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Bound Vortex and Control Point Geometry on One Spanwise
Panel Divided into "Num-1" Chordwise Panels and "Num"
Unknown Vortices.
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Figure 2.
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Propeller and Wing Coordinate Systems.

X,¥,Z -~ Inertial Reference -

AP

X,¥,2 ~ Rotating qurdinate
: System

y = r, the propeller radial coordinate



Figure 3. Geometry of a Straight-Line Vortex Segment.

v, | AC and BC




Leading
Edge

Figure 4.

i=1

O

£=2{

_Influence Coeffi

Index Convention for Blade Bound Vortices and Control Points

Rectilinear Vortex Configuration to Determine

cients of Bound Vortices

Shed Vortices. Dropped
into Wake at End of

p=2(num-1)

 Each Time Step ~ = = 7

Edge

j=1 p = (num-1)+1 j=1
i k= 1l 5=2 =jk+ 1 NOP um(NOPAN-1)
= 2T :
l num+2 k=3
- |> ‘ [4 \ =1 £=NOPAN1 j=num
A k=NOPAN+1
o % ropax? j=Nun-1
o R | Wi
Stacking =num~1 o j=num
" (Reference) = k=NOPAN+1
 Axis
j=nu i=num-1 i numNOPAN
k=1 . £=20 ’

Vortex Configuration to Determine
Apq Influence Coefficients of
Unknown Shed Vortices at Trailing

VZA}




1 TN

R L P T R S T N L R SR T T R TR e R R

125

Figure 5. -~ Geometry of Unit Normal at a Control Point.
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Figure 6. Details of Geometry and Circulation on a Trapezoidal Segment of the Lifting Surface.
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Figure 7.

127

Flow and Force Geometry at Blade Radial Station.
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Figure 8. Comparison of Two Computation Systems
for Vortex Lattice Computatioms.
i Flat Plate Wing AR = 3 a = 0.1 rad.
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Figure 9. Effect of Orientation on Velocity Induced by a
Straight Line Vortex Segment - h/£ Constant.

T
}
',

0.5 (cosa + g:qg@!

v(ZfR) -
I‘741rR :

90

o ~ Degrees

R e S W T e e e e T e T e e e e e e e S S S e e = s S




(cosa + cos?}/(h/()

130

Figure 10. Effect of Orientation on Velocity Induced
by a Straight Line Vortex Segment.
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Figure 11. Correlation of Actual Vortex Segment Induced Velocity
with Induced Velocity Based on Projected Length.
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Figure 12.  Variation of Velocity Induced at a Point
by a Straight Line-Vortex Segment. -
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Figure 13. Cp Growth Versus Wake Length Following an-fimpulsive‘ Start. -
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Figure 14. Effect of Time on Chordwise Pressure Distribution.
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Figure 15.- Effect-of Number of Spanwise Panels on Cp.
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Figure 16Effect of Number of Spanwise Panels on CL.
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Figure 17. Effect of the Chordwise Distribution of
; Vorticity on Lift and Induced Drag.
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Figure 18. Effect of Number of Spanwise Panels on Induced Drag.
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Figure 19. Effect of Wake Type and Boundary Condition Type on C,.
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Figure 21. Downstream Profile of the Trailing Vortices for a Semi-Span.
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Figure 22. Wing Lift and Induced Drag Coefficients
vs. Distance of Wing Travel from Rest.
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Figure 23. Comparison of Wake Convection Velocities - Z Component.
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Figure 24. Comparison of Wake Convection Velocities - Y Component.
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Figure 25.

Localized Induction Effects of Reference (49)
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Figure 26. Comparison of Wake Convection Velocities - Y Component.
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Figure 27. Self Induced Velocity by an Hyperbolic Spiral Vortex Filament.
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Figure 28B. Formation of Vortex Wake Behind a Rectangular Wing,
Classic Wake, Proportional Core.
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Figure 29B. Formation of Vortex Wake Behind a Rectangular Wing,

Classic Wake, Fixed Core, h, = 1076 ft.
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Figure 30B. Formation of Vortex Wake Behind a Rectangular Wing,
: Localized Induction Effect, Proportional Core.
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Figure 31B.
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Formation of Vortex Wake Behind a Rectangular Wing,

Localized Induction Effect, Fixed Core, h, = 10-6 ft.
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Figure 32A. Formation of Vor WakeBhid Re gl Wig
Localized Induc :l Effect, Fixed Core, h,
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Figure 32B. Formation of Vortex Wake Behind a Rectangular Wing
Localized Induction Effect, Fixed Core, h. = 10-10 f¢
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Figure 33. Effect of Wake Rollup on Finite Wing Performance.
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Figure 34.

Effect of Wake Rollup on Finite Wing Performance.
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Figure 35. Comparison Between Direct Numerical Integration
and Equation 52 for Thrust Determination.
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Figure 36. Comparison Between Direct Numerical Integration

and Equation 52 for Thrust Determination.
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Figure 37.

Comparison Between Direct Numerical Integration

and Equation 52 for Thrust Determination.
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Figure 38. Comparison Between Direct Numerical Integration B
and Equation 52 for Power Determination.
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Figuré 39. Comparison Between Direct Numerical Integration
and Equation 52 for Power Determination.
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Figure 40.

Comparison Between Numerical Integration
and Equation 52 for Power Determination.
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Figure 41.

Effect of Azimuth Step Size on Bound Circulation.

Canadair Propeller

B=4  RPM=1910

R=3ft. NOPAN=16  NUM=3
0=90° 1, =0°

--Core Radius=10-6ft.

\\\\1jt~ﬁdund Vortex

2nd Bound Vortex

oo

G tooia D T e

0.5 ~ y/R

R PP I I

991

e

i 'ah\}‘LJ)_«xxm‘mT e



40

20

g

© o.v de

-20
32

o Vv deg.

16

167

Figure 42, Effect of Azimuth Step Size on Spanwise
Distribution of Blade Angle of Attack.
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Figure 43. Comparison of Azimuth Step Size on Thrust
and Induced Power Distributions.
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Figure 44. Propeller Vortex Wake Generation, A6 = 15°, h, = 1076 ft.

Canadair Propeller, Reference (9)
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Figure 45. Propeller Vortex Wake Generatiom, A6 = 7°, h, = 1076 ft.

~ Canadair Propeller, Reference (9)
B =4, 16 Panels, One Blade Wake Shown
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FPigure 46. Propeller Vortex Wake Gemeration, A0 = 3°, h, = 1076 fe.
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Figure 47. Propeller Vortex Wake Generation, A6 = 15°, h. = 10 '° f¢.
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§ ? Figure 48. Prbpeller Vortex Wake Generation A6 = 15°,
| ; Proportional Core.

& Canadair Propeller, Reference (9)
' B =4, 16 Panels, One Blade Wake Shown

—%% e - 150

90°

[- -]
[}

6 = 105°

0 = 135°

-
-

21

i

&

&

0 = 165°




174

Figure 48. (cont.) Propeller Vortex Wake Generation, A6 = 15°,
Proportional Core.
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~ Figure 49. Etfggg;_i,ﬁngQLSQ,Spacing and Blade Twist on Thrust Coefficient..
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Effect of Spanwise Vortex Spacing

on Spanwise Thrust Distribution.
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¥ { Figure 51. Effect of Spanwise Vortex Spacing on
T : Effective Angle of Attack Distribution.
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Figure 52. Time History of Performance of a Single Blade
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Figure 53. Time History of Performance of a Two Bladed
Propeller Starting Impulsively from Rest.
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Figure 54. Propeller Vortex Wake Generation, A6 = 15°, h, = 103 fe.

Canadair Propeller, Reference (9)
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Figure 54. (cont.) Propeller Vortex Wake Generation, A8 = 15°,
he = 1073 ft.

Canadair Propeller, Reference (9)
B = 2, 4 Panels, One Blade Wake Shown
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Figure 55. Effect of Curvature on Vortex Induced Velocity,
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