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CONCEPTUAL DESIGN STUDY 
OF ADVANCED ACOUSTIC-COMPOSITE NACELLES 

Kenneth E. Nordstrom, Alan H. Marsh and Donald F. Sargisson* 
Douglas Aircraft Company 

1.0 SUMMARY 

This report presents the results of a program for the "Conceptual Design 

Study of Advanced Acoustic-Composite Nacelles. 	 This program had as its 

objectives (1) the evaluation of advanced nacelle concepts which provided 

lower fuel consumption and reduced community noise levels through new or 

unique installation arrangements, (2) the assessment of the effects of 

applying advanced acoustic composite materials to the nacelle concepts which 

were developed, and (3) the delineation of the technology development 

program needed to implement application of these advanced nacelle concepts. 

The concepts included integration of nacelle acoustic treatment and 

structure, advanced acoustic duct linings, and a long-duct nacelle with an 

internal forced mixer. The assessment included estimates of the potential 

weight and production costs of individual components compared to equivalent 

metal structures and an estimate of the potential payoffs based on airplane 

direct operating costs. Each of the nacelle concepts, with the effects 

of applying composites included, was evaluated from the standpoints of 

community noise levels and installed performance compared to a current 

production nacelle. The potential payoffs were shown in terms of reduction 

in airplane direct operating cost (DOC), and community noise levels and in 

terms of airplane fuel savings. The technology development required 

to realize the potential weight, cost, noise and fuel saving benefits was 

then identified. 

Two separate and distinct time periods were considered for this investiga-

tion. The first assumed nominally a 1980 time frame for certification of a. 

new version of a current wide body transport (WBT) which could incorporate 

an advanced acoustic composite nacelle. The second assumed nominally a 1985 

time frame (or later) for certification of an advanced technology transport (ATT) 

*General Electric Company, Evendale, Ohio 
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which would be an all new airplane, including appropriate application of 

advanced acoustic composites to the nacelle. For the WBT, most of composite 

nacelle component designs were based on replacement of existing components 

and entailed a minimum amount of redesign. For the AU, all new designs 

were evolved which could take better advantage of the characteristics and 

properties of advanced composites. The levels of technology employed assumed 

that those concepts which had already attained some proof-of-concept through 

existing or recent research programs, or for which technology was nearly 

in-hand, would be available for the WBT airplane. For the AU airplane, 

it was assumed that more-advanced concepts as well as some material improve-

ments would be available. 

This program developed composite component designs for a number of applicable 

nacelle parts. The cost and weight of each detail part was determined and 

its effect on the total nacelle weight and cost to the aircraft manufacturer 

was ascertained. The benefits of nacelle composites and/or the new nacelle 

concepts were determined by calculating the effects of nacelle weight, cost 

and performance changes on the base aircraft characteristics. From these 

changes it was-possible to assess noise levels and fuel consumption, the 

prime parameters of interest, as a function of nacelle weight and cost. 

The nacelle cost analysis was accomplished through standard business and 

aircraft pricing plans. The input to this analysis consisted of shop and 

tooling costs. Development costs were addressed separately. For the DOG 

analyses, payload, range and takeoff gross weight were held constant and 

fuel consumption and airplane empty weight were changed as required to reflect 

the effects of the new nacelles. Direct operating costs were calculated using 

the 1967 AlA formula modified by Douglas to reflect more realistic airplane 

economics. 

The results of these investigations indicated that advanced acoustic composites 

offer significant potential weight and cost savings and will result in 

reduced fuel consumption and noise when applied to nacelles. Specifically, 

the study results showed that a long-duct, mixed-flow nacelle incorporating 

advanced composites would reduce the cruise specific fuel consumption (SFC) 

3.4% and airplane empty weight 657 kg (1449 lb) on a typical wide body 

transport. If evaluated as a direct change on an existing airplane, i.e., 
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not taking credit for airframe re-sizing as is done on a new or derivative 

aircraft, the composite long duct nacelle reduced the fuel burned on a 9890 km 

(5340 n mi) mission by 4.75%. The reduction was due to the combination of 

improved cruise SFC and the lower cruise thrust required as a result of the 

reduced weight of fuel and airplane empty weight. If applied to new or 

derivative aircraft, the benefits from this advanced nacelle technology 

would be expected to be larger due to airplane sizing effects. 

Concurrent with the fuel consumption reduction, the 90 EPNdB noise contour 

was reduced 35% and the takeoff noise was reduced 4 EPNdB. 

For the public to benefit from the potential fuel saving offered by the 

composite, long-duct, mixed-flow nacelle, an integrated technology develop-

ment program is recommended,. starting with base technology development for 

specific nacelle requirements, followed by experimental flight demonstrations 

and concluding with an in-service evaluation. 

The experimental flight demonstration is required to substantiate that the 

combination of the relatively small, individual performance benefits from 

the long duct nacelle drag improvements, internal mixer propulsive efficiency 

improvements and advanced composite weight reductions will, in fact, 

result In the relatively large overall benefit identified in this study. 

Independent programs are not likely to make the total benefits visible. 

The flight demonstration is also necessary to substantiate the predicted 

in-flight noise reduction. 

Commercial airline service evaluation is required to substantiate the 

durability and maintainability of weight- and cost-effective advanced 

composite nacelle components. Composites are not likely to have broad 

acceptance In nacelles without such a service evaluation because of the 

severe environment that the nacelle represents and the fact that other 

programs currently in progress on advanced composites do not encompass 

the nacelle requirements. In addition, resistance to incorporation of 

composites in nacelles will exist until their durability and maintainability 

are sufficiently demonstrated to assure that reduced cost of ownership will 

result from their use.
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The recommended program offers a high probability of achieving real fuel 

savings, noise reduction and improved airline economics. Since the use of 

advanced acoustic-composites could be applied to newly produced versions 

of current wide body transports, it is estimated that the early and wide-

spread use of this technology could result in fuel savings exceeding $1 

billion. This observation can be easily appreciated when it is recognized 

that a newly produced transport can be expected to have an operational life 

of at least 15 years. Also, the current wide body transports and their 

derivatives are expected to provide the bulk of the commercial airline service 

in the 1980s.

2.0. INTRODUCTION 

Historically, significant advances in air transportation have developed 

from improvements in the propulsion system, in basic structural materials, 

and in basic aerodynamics. Examples of past propulsion-system improvements 

include the replacement of piston engines by turbojet engines, turbojet 

engines by low-bypass-ratio turbofan engines, and most recently, the 

replacement of low-bypass-ratio turbofans by modern high-bypass-ratio 

turbofans. Early material improvements included the replacement of wood-

frame and fabric structures by stressed-skin metallic structures. Aero-

dynamic advancements, particularly for increasing flight speeds, have 

resulted from the pioneering efforts of Whitcomb and others at NASA Langley, 

especially in the development of the supercritical airfoil. Presently, no 

all new advanced propulsion concepts appear to promise the large step 

improvements that have occurred In the past, although the present national 

concern for energy conservation has resulted in a resurgence of interest 

in turboprops. While advanced technology turboprops warrant re-investigation, 

the probability of their introduction into major commercial operations in 

the 1980s is remote. This conclusion is clear from the fact that it has 

taken 17 years for the development of the present commercial airline 

transportation system using turbofan engines after the technology was in 

hand. In January 1975, there were more than 2400 jet-powered transports 

comprising most of the U.S. airline fleet. A major replacement or wide-

spread use of new aircraft is required for any new development to have a 

large impact.
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In the aerodynamics area, the supercritical wing technology can be expected 

to be used in the next new transport. However, as pointed out in 

References 1 through 3, other additional advances are also required to 

make a new transport economically practical and hence possible. 

More recently, the replacement of metal by advanced composite structures 

has been identified in a number of studies and experimental programs as a 

potentially significant advance. 

The purpose of the investigation described in this report was to determine 

the payoffs from the application of advanced technology, including advanced 

composite materials, to the nacelles of high-bypass-ratio turbofan engines. 

This investigation encompassed the areas of aerodynamics, propulsion 

system integration, acoustics, structures and materials with the aim of 

identifying the potential gains in performance and potential reductions 

in fuel consumption and community noise levels. The use of advanced 

composite materials was found to be a key ingredient in making practical 

the advanced nacelle configurations which are expected to provide significant 

improvements in airplane performance with reductions in fuel consumption 

and community noise levels. 

The airplanes included in this conceptual study were a current wide-bodied 

transport (WBT) and an advanced technology transport (All) configured to 

meet mission and aerodynamic characteristic requirements specified by NASA. 

During the course of the study, it became apparent that major benefits 

could accrue on new production or derivatives of current WBT aircraft. 

Since the timing for an ATT is at best doubtful, the activities applicable 

to WBT received considerably more emphasis than those applicable to the 

ATT. 

All current WBT engine installations use short fanducts. These short 

duct installations were selected by the airframe manufacturers based on 

trade studies which evaluated performance, weight, noise and cost. Several 

factors justified a re-assessment of the installation configuration. 
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The development of a worldwide fuel shortage has increased the cost of 

fuel over the cost at the time of the production short-duct nacelle 

design. Costs are expected to rise even further due to inflation, 

increasing oil value as reserves diminish, and, for domestic use, a 

decreasing percentage of price-controlled "old" fuel. In the meantime, 

development of high tensile strength and high modulus fibers has resulted 

in the ability to. reduce airplane component weights about 40% when these 

fibers are stabilized in a resin matrix. Reference 4 summarizes how this 

advanced composite material technology has advanced to where practical usage 

is now possible. Concurrently, material prices, particularly for graphite, 

have decreased due to increased commercial production, especially for golf 

clubs and skis. Recent programs at Douglas and at other companies have 

also identified that sacrificing a part of the potential weight savings to 

simplify fabrication can reduce manufacturing costs. 

This advanced acoustic composite nacelle study thus provided the opportunity 

to exercise the use of advanced composites, as Dr. Lovelace points out in 

Reference 4, ". . . across the interfaces of materials, structures, 

Aerodynamics, and others." Prior to this study for NASA, Douglas and 

General Electric had evaluated use of a metal long-duct, mixed-flow nacelle. 

The reduction in fuel consumption achieved by the mixed flow nacelle was 

counterbalanced by the increase in weight and attendant operating costs, 

and it was concluded that an airplane economic improvement did not result. 

Consequently, the metal long duct mixed flow configuration did not look 

attractive at that time. 

With the introduction of composites in the NASA study, and additional 

design refinements, the prospects for improved airplane performance changed 

considerably because the use of advanced composites showed promise in 

several areas relative to metal: 

(1) Reduced weight 

(2) Reduced manufacturing costs from simpler constructions 

(3) Reduced initial development costs from simpler tooling 

(4) Integration of acoustic treatment with the nacelle structure.



Recent advances in structural material systems that provided the incentive 

for this study included development and use of fibers of graphite and Kevlar. 

These light-weight, high-strength fibers are used with resin systems to 

produce structural components with higher strength-to-weight ratios than 

metal. Different choices of constructions were selected to fit the 

particular requirements of various components. 

Advanced composite material systems have been, or are undergoing technology 

development and testing for various airplane components including flaps 

and rudders. For the McDonnell Douglas F-15 airplanes, the U.S. Air Force 

has sponsored development of a complete wing made from advanced-composite 

structures by the McDonnell Aircraft Company in St. Louis, Missouri. 

Application of advanced-composite structures to transport nacelle components 

represents unique engineering challenges because of the environmental 

conditions (high acoustic loading, high temperatures, high vibration levels, 

and exposure to various fluids and solvents); because of the use of 

acoustically absorptive structures having porous surfaces exposed to the 

airflow in the inlet and exhaust ducts, and because of the requirements 

for routine access to, and maintenance of, various engine-mounted systems, 

and normal removal and replacement of nacelle components. 

In addition to performance improvement, fuel savings, weight reduction and 

nacelle component cost reduction possibilities, reduction of airport-

community noise is also of national concern. The studies therefore 

emphasized fuel consumption reduction and also noise reduction. 

Previous studies of methods to reduce community noise levels, especially 

at locations below or to the side of the takeoff flight path where the noise 

levels are controlled by jet noise, inevitably resulted in performance and 

cost penalties for existing aircraft designs. Consideration of long-duct 

installations provides the possibility of reducing jet noise. This low 

frequency noise is not as readily absorbed by the atmosphere as is the 

higher frequency turbomachinery noise and reduction of jet noise by use of 

a mixed flow nozzle would be of great benefit at long distances from 

aircraft, where most of the poeple who are annoyed by aircraft noise reside. 
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The specific objectives of this study were then to: 

1. Identify engine installation conceptual designs that reduce fuel 

consumption and reduce noise levels through the use of advanced 

technology; 

2. Determine the research and technology requirements needed to be able 

to achieve the fuel savings and noise reductions; and 

3. Recommend an overall technology development plan with emphasis on 

maximizing fuel savings. 

The balance of this report is divided into nine main sections. Section 3 

describes the tasks that were performed and Section 4 presents the study 

groundrules, a definition of the reference WBT and AlT airplanes, and a 

description of the methods used to assess changes in flyover noise, air-

plane performance, manufacturing costs, and airplane economics. Sections 

5 and 6 describe the nacelle configurations that were developed for the 

WBT and AlT airplanes while Sections 7 and 8 present the results of the 

evaluation of the various nacelle configurations. Sections 9 and 10 

discuss the recommended research and technology programs needed to 

implement application of advanced acoustic-composite structures to the 

nacelles of future WBT and AlT airplanes. Section 11 presents some 

concluding remarks.

SYMBOLS 

Ai Area based on inlet lip diameter, m2 (ft2) 

A0 Free stream capture area, m2 (ft2) 

Amax
Maximum nacelle area, m2 (ft2) 

A8 Core nozzle exit area, 'm2 (ft2) 

A28 Fan nozzle exit area, m2 (ft2) 

AL Aluminum (Figure 28) 

ALT Alternate (Figure 8) 

AlA Air Transport Association 

AlT Advanced Technology Transport 

BLK Block (Figure 8)
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SYMBOLS (Continued) 

BSC Borsic (Figure 28) 

CD Nacelle pressure drag coefficient 

Dp Pressure drag, N (lb) 

Deq Diameter based on mixing plane total area, m (ft) 

DOC DirectOperating Cost (Figure 8)$/ASkm ($/ASNI4) 

EPNL Effective Perceived Noise Level, EPNdB 

FN Net Thrust, N (1 b) 

F Partially mixed thrust, N (lb) 

Fu Unmixed thrust, N (lb) 

Fm Fully mixed thrust, N (lb) 

FLT Flight (Figure 8) 

HMG High Modulus Graphite (Figure 28) 

HTG High Tensile Strength Graphite (Figure 28) 

IOC Indirect Operating Cost (Figure 8)$/ASkm ($/ASNM) 

K4 Mixing Effectiveness (Figure 25) percent 

L Nacelle length or mixing chamber length, m (ft) 

( L/ D )eq Nacelle equivalent length to diameter ratio 

LRC Long Range Cruise (Figure 8) 

M Mach number 

MCR Mach number at cruise (Figure 6) 

MDOF Multiple Degree of Freedom 

MLGW Maximum Landing Gross Weight, kg (lb) 

MTOGW Maximum Takeoff Gross Weight, kg (lb) 

N/1 t2 Corrected fan speed, RPM 

NPN Non-Propulsive Noise 

OEW Operating Empty Weight, kg (lb)	 (also OWE) 

P Static pressure or mixer perimeter, N/rn 2 (lb/in 2 ) or m (ft) 

PT Total Pressure, N/rn2 (lb/in2) 

PNLT Tone-Corrected Perceived Noise Level, PNdB 

q0 Free stream dynamic pressure, N/rn 2 (lb/in2) 

RES Reserve (Figure 8) 

SDOF Single Degree of Freedom
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SYMBOLS (Continued) 

SFC Specific Fuel Consumption, kg/hr/U (lb/hr/lb) 

TTC Core stream total temperature, °K (°R) 

TTF Fan stream total temperature, °K (°R) 

10GW Takeoff Gross Weight, kg (lb) 

V Airspeed, (Figures 8 & 9) rn/sec (Knots) 

V/O Fiber Volume Fraction, (Figure 28) percent 

WBT Wide Body Transport 

Wv'/óam Corrected engine mass flow, kg/sec (lb/sec) 

Bypass Ratio 

aF Flap Deflection Angle, Degrees 

0 Temperature Ratio 

iS Pressure Ratio

3.0 STUDY DESCRIPTION 

The study was conducted during the time period of July 1974 through June 

1975. The overall system analyses were conducted by Douglas Aircraft with 

major contributions to propulsion system performance and noise analyses 

and research and technology ground test program costs for the WBT from General 

Electric. General Electric conducted most of the All propulsion system 

conceptual design studies. Six basic tasks were conducted following the 

schedule shown on Figure 1. 

TASK I - The initial task was composed of conceptual design studies to 

identify promising advanced technology configurations. Cost versus benefit 

analyses were conducted to identify beneficial technology requirements. 

The first task was completed with . recommendations for the configuration(s) 

upon which to conduct preliminary design and recommendations for limited 

tests. 

TASK II - The second task was to conduct preliminary design of configuration(s) 

that showed promise.

10 



FIGURE 1.

A 
JUNE 1974	 REVIEW 

NOV 1974 

PROGRAM TASKS AND SCHEDULE

REVIEW	 REPORT 
APR 1975 JULY 1975 

TASK I. CONCEPTUAL DESIGN STUDIES 
ON WBT AND ATT 

TASK II. PRELIMINARY DESIGN OF WBT 
INSTALLATION 

TASK IV. LIMITED TESTS 

TASK V. IDENTIFY TECHNOLOGY 
REQUIREMENTS FOR WBT 

TASK VI. IDENTIFY TECHNOLOGY 
REQUIREMENTS FOR AlT 

TASK VII. RECOMMENDED OVERALL 
RESEARCH AND TECHNOLOGY 
PROGRAM

TASK III - After TASK I, the possible benefit to major U.S. airlines of 

significant fuel savings by technology advancement for WBT. installations 

resulted in concentration of activities on WBT aircraft and preliminary 

design on the AlT nacelle was terminated. Increased emphasis was placed 

on TASK II, V and VII in lieu of TASK III. 

TASK IV - Limited tests were conducted in specific areas where an improved 

understanding was necessary in order to plan a technology development 

program. The specific areas identified were fire resistance of composites 

using a polymeric matrix and acceptable techniques for perforating resin-

impregnated graphite surfaces. 

TASK V - The technology developments required to achieve the potential 

benefits on WBT aircraft were assessed. An overall program was identified 

and recommended to the NASA. 

TASK VI - This task identified and recommended areas for further research 

and technology on All propulsion systems. 

TASK VII - Research and technology plans for the program recommended in 

TASK V were developed. These plans included schedules and rough order of 

magnitude costs.
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4.0 STUDY APPROACH 

The basic approach followed for this study consisted of:	 1) definition 

of the study baseline WBT and AU aircraft and engines; 2) conceptual 

design studies of alternate WBT and All engine installation arrangements 

utilizing advanced technology concepts; 3) development of advanced acoustic 

composite WBT and All nacelle component designs to a level of detail sufficient 

for weight and cost estimating; 4) evaluation of installation performance, 

noise and weight characteristics; 5) assessment of costs and benefits; 

6) selection of configurations for preliminary design and program planning 

activities; 7) definition of research and technology needs; 8) evaluation 

of alternative technology development approaches, and 9) recommendation 

of an overall technology program plan. 

4.1	 Study Ground Rules 

The basic study ground rules were to identify relatively near-term 

technologies for the WBT portion of the study and more-advanced technolo-

gies for the ATT. Specific ground rules were emphasis on low-cost design 

concepts for the composite constructions rather than absolute minimum 

weight; minimum fuel consumption rather than minimum noise; and realistic 

flight requirements for both the nacelle concepts and the composite structural 

designs. Consistent with the study timing, only currently available 

fibers and resin, systems were evaluated for the wide body transport while 

more-advanced fibers and resins were evaluated for the All. The purpose 

of the ground rules was to identify technologies that might be actually 

utilized in future-production commercial transports. Technology utiliza-

tion requires that judgment be used in the conceptual designs so that a 

proper balance will exist between benefits to the airframe and engine 

manufacturer, the airline operators, and the general public. Airlines 

will resist use of a quieter installation if it results in excessive 

deterioration of economic performance. Even reduction of fuel consumption 

will not be attractive if the higher initial cost of new advanced-technology 

hardware is excessive. The real challenge is formulation of a research 

12



and technology program that will result in fuel savings in actual practice 

by properly balancing between fuel saving, weight, cost, and noise reduc-

tion benefits.

4.2 Baseline WBT and AU Airplanes 

4.2.1 WBT Baseline - The study baseline WBT characteristics are shown in 

Figure 2. The airplane is a trijet carrying 270 passengers in mixed class. 

The design range for the airplane is 10,000 km (5,400 n mi). The choice of 

a trijet presented the opportunity to address tne unique aircraft-

system problems associated with both wing- and tail-engine installations. 

In addition, because the CF6-50 engine series also powers other current two-

and four-engine wide-bodied airplanes, the benefits of reductions in fuel 

consumption and community noise will be available for several current wide-

bodied jet transports. 

The payload range curve for the study baseline WBT is shown in Figure 3. 

The flight profile uses a step climb, consistent with normal navigation 

restrictions. The shaded area shows where a major portion of longer range 

flights are flown. These 5185 km (2800 n mi) to 7223 (3900 n mi) flights 

are representative of average in-service stage lengths and were the basis 

for the fuel savings analyses. 

The CF6-50 engine characteristics and cycle parameters are shown in 

Figure 4. The engine is a high bypass ratio turbofan with a takeoff thrust 

of 222.5 kN (50,000 lb). 

The engine powers the DC-10-30, the A-300, and the 747-300 airline airplanes 

and with the Military designation F103, it powers the Air Force Airborne 

Command Post version of the 747. It is expected to power stretched versions 

of the DC-10 with an additional possible application being a 4-engine cargo 

derivative of the DC-b. Continued new production is expected through 1980. 
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4.63(182.46) 

r 
1.:i7(46.06) 

2.19. 1J- _ 
(86.4)	 ,' TTrFr FAN-.—  
DIA

1.51 
(59.52) 

tJ.LULfl1

Bypass Ratio	 .	 418 

Takeoff Thrust	 222.5 kM (50,000 lb) 

Engine Weight	 .	 3829 kg (8440 lb) 

Cruise SFC at M = 0.85 	 0.6765 

at 10,668 m (35,000 ft) 
NOTE: "Dimensions in Meters (Inches)" 

FIGURE 4.	 STUDY WBT BASELINE ENGINE CHARACTERISTICS 

4.2.2 AlT Baseline - The All is a smaller and shorter range airplane than 

the WBT, carrying 200 passengers. The ATT baseline airplane characteristics 

are shown in Figure 5. These characteristics were developed to meet NASA 

specifications. 

The payload/range curve for the All is shown in Figure 6. The design range 

was specified as 5556 km (3000 n mi) with a design payload of 18,598 kg (41,000 

lb) at a design cruise Mach number of 0.90. The AlT engine and cycle 

parameters are shown in Figure 7. The AlT study engine, designated AlT 

No. 4, was derived from the results of previous All propulsion-system 

studies conducted by G.E. and reported in reference 5. The AlT No. 4 engine 

is rated at 133.5 kN (30,000 lb) static takeoff thrust and makes extensive 

use of composite technology for all components to which the properties of 

advanced composite materials can be properly applied. The ATT No. 4 engine 

also incorporates the concept of an integrated engine/nacelle combination to 

provide an aerodynamically and structurally more efficient installed propulsion 

system.
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(82.50) 1.80  
DIA (70.70)  

DIA 
I	 I	 !---

S'-DRAIN MAST 

-1	 ----	
\.	 DRAIN TANK 

-

	

	 LUBE AND SCAVENGE PUMP

INTEGRAL COMPOSITE FRAME 

Bypass Ratio	 7.52 

Takeoff Thrust	 133.5 kN (30,000 lb) 

Engine Weight	 1930 kg (4195 lb) 

Cruise SFC at M = 0.85	 0.638 
at 10,668 m (35,000 ft) 

NOTE:	 "Dimensions in Meters (Inches)" 

FIGURE 7.	 STUDY ATT BASELINE ENGINE CHARACTERISTICS 

4.3 Method for Analyzing Results 

4.3.1 Performance - The internal and external performance of each of the 

study configurations was estimated by making detailed evaluations of engine 

installation component losses. An existing computer cycle deck was used 

to obtain the engine thermodynamic data for calculating nozzle performance. 

Internal performance was estimated by General Electric and independently 

checked by Douglas. Nozzle performance was calculated using the fan and 

primary engine flow conditions, i.e., pressures, temperatures and air flow 

rates with the nacelle geometry being evalauted to calculate pressure drops 

and flow mixing. External drag changes estimated were for differences in 

skin friction. 

Airplane performance and fuel consumption were calculated using an existing 

Douglas computer program that accurately simulates flight performance. 

Changes in weight and specific fuel consumption were accounted for as inputs 

19



to the basic program. The effect of various changes was determined by 

comparing airplane performance with the modified weights and SFC's to the 

base airplane performance for identical missions and flight profiles. 

Sample printouts from the performance computer program are shown in Figures 

8 and 9. Figure 8 shows a printout for the base airplane flying a 9893 km 

(5342 n mi) mission with a three step cruise profile at 9449, 10668 and 

11887 m (31,000, 35,000 and 39,000 ft). Figure 9 shows a similar printout 

for the base airplane flying the same mission with the long-duct nacelle. 

4.3.2 Weights - Weight estimates for the WBT study nacelle configurations 

were made from drawings of appropriate nacelle composite components 

developed in this study. These are dimensioned scale drawings that include 

specification of the advanced composite constructions. Reference 6 was the 

basic source of design data used for graphite/epoxy. These data were - 

supplemented by design allowable strength data from Douglas tests. Strength 

data for Kevlar were from Reference 7. The basis for use of composite 

materials for application to areas subject to impact exposure was from 

Reference 8. 

For the AlT nacelle, General Electric provided estimates of the major engine 

and nacelle component weights and costs for use in the All direct operating 

cost (DOC) analyses. 

4.3.3 Noise - Changes in aircraft noise were determined by logarithmically 

adding the noise produced by the engine noise component contributions with 

the non-propulsive sources of noise (boundary layer, wakes, etc.). For the 

WBT aircraft, the component noise levels for the current acoustical 

treatment in the nacelles were estimated on the basis of an analytical method 

developed from static engine noise data and verified by comparisons with the 

results of actual flyover noise measurements at takeoff and approach power 

settings.
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Table 1 lists values of engine and airplane parameters used in determining 

the noise of the baseline WBT airplane. The parameters are for the maximum 

takeoff and landing gross weights. The approach conditions included both 

the maximum 50-degree flap deflection and the normal 35-degree flap 

deflection. These two flap settings were included in the evaluation of the 

nacelle treatment for the WBT because the maximum flap deflection is required 

as part of the federal aircraft noise-certification requirements while the 

35-degree flap setting is the approach flap setting most widely used in 

service. In addition, the relative strengths of the fan noise from the 

inlet and fan discharge ducts and the turbine noise are quite different 

at the 2820-rpm fan speed required for a maximum-flap landing and the 2463-

rpm fan speed required for a normal-flap landing. Thus, it was considered 

worthwhile to evaluate the changes in approach noise at the two flap 

settings for the WBT. The AlT engine and airplane parameters for noise 

calculations are shown on Table 2. For the AlT, the approach noise evalua-

tions were conducted only for the maximum-flap condition. 

The basic AlT engine installation was a long-duct mixed-flow design with 

an internal mixer nozzle for the primary flow. The component noise levels, 

for the baseline installation with no acoustical treatment, were estimated 

by General Electric from previous component noise data correlations for 

static engines. The static estimates were then projected to the specified 

flight conditions (see Table 2), accounting for doppler frequency shifts 

and the effect of forward motion on turbomachinery and jet noise. 

The effects of modifying the engine nacelles to incorporate composite 

acoustical treatment (plus, in the case of WBT, of changing from a 

separate-flow to a mixed-flow nacelle) were estimated on the basis of the 

results of previous tests and analyses for each affected component noise 

source. While the available test results obviously could not have been 

for the identical linings proposed in this study, since these advanced 

linings have not yet been developed, the linings for which data were 

available were considered representative of the proposed advanced linings, 

at least with regard to the acoustical characteristics. Thus, there was 

a relatively high level of confidence in the noise reduction estimates, 
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t	 * 
TABLE 1. - WBT AIRCRAFT AND ENGINE PARAMETERS FOR MTOGW AND MLGW 

PARAMETER# PARAMETER VALUES FOR 

TAKEOFF APPROACH APPROACH 
MAX FLAPS ALT. FLAPS 

Net Thrust per Engine, Fn/5 am' percent 100 40 30 

Referred Fan Speed, N 1 /1i, rpm 3748 2820 2463 

Relative Fan Blade Tip Mach No., Mt, rel 1.46 1.05 0.91 

Fan Pressure Ratio, FPR 1.68 1.32 1.24 

Average Inlet Mach No. at Fan, Mi,., 0.59 0.37 0.32 

Referred Inlet Airflow, Wa//Sam	 kg/s 704 489 432 

Bypass Ratio, BPR 4.16 5.07 5.34 

Tailpipe Pressure, P 
t7' 

N/rn2 170,537 121,491 115,079 

Tailpipe Temperature, Tt7, °K 833 695 664 

Primary Jet Velocity, V. 	 m/s 500 275 230 

Fan Jet Velocity, V f	 m/s 331 240 214 

Mixed-Flow Jet Velocity V, V, rn/sec 360 245 215 

Airspeed, Va	 m/s 102 83 86 

Aircraft Mach No., Ma 0.30 0.24 0.25 

Flap Deflection Angle, deg 10 50 35 

Aircraft Flight Path Angle, deg 6 -3 -3 

Fuselage Angle of Attack, deg 12 6 7 

Heightbove Ground,m 331 113 113

t 38 fan blades, fan exit area 1.49 sq m, primary exit area 0.55 sq m. 

# For operations from a sea-level runway, no wind, surface air temperature 25°C (77°F), 
surface relative humidity 70 percent, slats extended, engine bleeds off during takeoff 
and on during approach, no thrust reduction during climbout. 

* Weights for a payload for a 100-percent load factor (270 passengers) and bags, no 
lounges, and upper-galley configuration, and appropriate international fuel reserves. 
Total payload of 24,950 kg (55,000 lb). 

V Applies to long-duct mixed-flow nacel les. only. 

Height below flight path for FAR 36 measuring points. 
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TABLE 2. - ATT AIRCRAFT AND ENGINE  PARAMETERS FOR MTOGW AND MLGW 

PARAMETER'

PARAMETER VALUES FOR 

TAKEOFF
MAX FLAPS 

Net Thrust per Engine, Fn/ó am' percent 100 36 

Referred Fan Speed, H.1 /15, rpm .4822 3305 

Relative Fan Blade Tip Mach No., Mt,	 rel
1.48 1.01 

Fan Pressure Ratio, FPR 1.60 1.21 

Average Inlet Mach No. at Fan, M in 0.59 0.40 

Referred Inlet Airflow, Wa)//6am	 kg/s 417 282 

Bypass Ratio, BPR	 . 7.52 9.63 

Tailpipe Pressure, P t7lN/rn2 155,273 122,544 

Tailpipe Temperature, 
1t7'	

°K	 . 428 364 

Mixed-Flow Jet Velocity, V, m/s 337 204 

Airspeed, 
V 	

m/s 87 74 

Aircraft Mach No., Ma 0.25 0.21 

Flap Deflection Angle, deg 25 50 

Aircraft Flight Path Angle, deg 7 -3 

Fuselage Angle of Attack, deg 10 10 

Height Above Ground, m -	 549 113

t 30 fan blades, mixed-flow exit area 1.34 sq rn. 

# For operations from a sea-level runway, no wind, surface air temperature 25°C (770F), 
surface relative humidity 70 percent, slats extended, engine bleeds off during 
takeoff and on during approach, no thrust reduction during climbout. 

* Weights for a payload for a 100-percent load factor (200 passengers) and bags, no 
lounges, and upper-galley configuration, and appropriate domestic fuel reserves. 
Total payload of 18,598 kg (41,000 lb). 

Height below flight path for FAR 36 measuring points. 
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both for the WBT with its modifications to the current nacelle treatment 

and for the ATT where treated surfaces replaced hardwall surfaces. 

Two different criteria were used to obtain numerical ratings of the noise-

reduction benefits. These criteria were (a) changes in effective perceived 

noise level (EPNL) at the takeoff and approach locations of Part 36 of the 

Federal Aviation Regulations (FAR 36) for aircraft noise certification, 

and (b) changes in the area enclosed by the 90-EPNdB contour for operations 

at maximum takeoff and at maximum landing gross weights (MTOGW and MLGW). 

Changes in the FAR 36 noise levels were chosen because certified noise 

levels are widely used to compare the noise of different aircraft. Changes 

in the area enclosed by the 90-EPUdB contour were chosen because these 

changes should be representative of changes in the total community noise 

exposure for the majority of people exposed to takeoff and approach noise. 

Changes in FAR 36 sideline noise levels were not included since the takeoffs 

were assumed to follow the procedures currently used by all wide-body 

transports, wherein thrust reduction is not used during the climbout. 

Thus, changes in noise at the takeoff point should be nearly the same in 

the maximum EPNL on the 465 m (0.25 n mi) sideline and separate calcula-

tions of changes in sideline noise levels were not necessary. 

For the WBT airplane, changes in noise levels at the FAR Part 36 locations 

and conditions were determined relative to the EPNLs certified by the FAA 

as a result of the aircraft noise-certification-demonstration tests for 

the baseline airplane. The certification tests, and other flyover noise 

tests conducted during the flight-development program, provided information, 

for various engine power settings, on the variation of noise with distance 

between the airplane and the location of an observer on the ground. These 

noise/distance power-setting curves, when coupled with takeoff and approach 

flight profiles were used for calculating equal-noise-level contours 

around an airport. 

4.3.4 Manufacturing Cost - Drawings of the advanced composite components 

were prepared in accordance with a format developed in a previous study 

contract (Ref. 9). This format dictated that certain minimum information 
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appear on the drawing, but not to the level of detail normally required 

of full production drawings. The use of this format allowed the composite 

component drawings to be used for both weight and manufacturing cost 

estimating. 

A manufacturing cost estimating drawing was prepared by engineering using 

inputs from manufacturing, planning and process as well as the technical 

requirements of the specific component in question, and a weight estimate 

was completed. The drawing was then Input to a cost analysis information 

flow system, described in detail in Section 7.4. This flow system, 

shown in Figure 10, involved an iterative process in which the various 

disciplines participate in each of the steps. The Douglas manufacturing 

research and development group assessed the drawing from the standpoint 

of probable production environment and facilities required. The planning 

and tooling groups developed the operational sequences required to fabricate 

and assemble the part which in turn defined specific tooling needs and 

established quality-control procedures. 

The planning efforts also included initiation of a bid work sheet (sample 

shown in Figure 11) for each component to document the manufacturing 

operations in sequence. This work sheet enabled the manufacturing group 

to estimate labor manhours for setup, fabrication and assembly at each 

step. Final manhour data were processed by the cost analysis group and 

combined with material and purchased parts costs, and with appropriate 

shop allocation factors and learning curves. 

The final result of these cost analyses was an estimate of the total cost 

to produce the component in question based on predetermined assumptions 

for length of production run, number of manufacturing releases, number 

of components per release, and production rate. Estimates were also made 

for comparable conventional metal baseline components. 

The cost information derived by this approach is typical of trade studies 

made during an actual hardware design phase and is more realistic than 

a parametric analysis. The estimates reflected the cost, in a production 

environment, of the various processes used to produce the components and 
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the mix of materials which will be used. This latter point was particularly 

important in considering the cost of advanced composite components, which 

can vary widely on a per pound basis among the various forms (tape, broad-

goods, chopped fiber castings, integrally woven, etc.). 

4.3.5 Operating Economics - The results of the performance and weight 

analyses were combined with the manufacturing cost estimates to provide 

inputs to airplane direct operating cost (DOC)analyses, for each of the 

WBT nacelle configurations and the single AlT configuration. The, outputs 

from the various analyses included changes in block fuel usage, revised 

airplane empty weights and revised airframe costs, all of which make up 

part of the 1967 AlA DOC formula. This formula, as modified and updated 

by Douglas, and modeled by a Douglas Advanced Design computer program was 

used for this study. The output of the DOC study of the WBT configurations 

included comparative DOC's at various aircraft mission ranges as well as 

comparisions of DOC distribution by element for a range of fuel prices. 

Sensitivity studies were also conducted as part of the DOG analysis, using 

the existing DOC computer program, for the WBT nacelle configurations. 

These sensitivity studies investigated the impact on DOG of changes in 

fuel consumption, airframe maintenance and airplane price over appropriate 

ranges determined from other areas of the study. For example, the largest 

fuel consumption change considered likely to result from this study was 

about 4%; therefore, DOG sensitivity to +4% changes in fuel consumption 

was investigated.

5.0	 WI3T NACELLE CONFIGURATIONS 

As noted previously, the primary objective of-the WBT studies was to 

establish engine installation conceptual designs which offered the potential 

for fuel savings and noise reduction and then to assess those concepts for 

their impact on other parameters such as weight, cost and airplane 

performance. With those objectives in mind, the results of a previous 

Douglas and General Electric study were used as the starting point of this 

contract. That previous study showed that a thermal mixing long duct nacelle 

offered attractive fuel savings, if the weight increase relative to the 

30



current short duct nacelle could be minimized. Also, to ensure that the 

study included adequate technical breadth, both lower noise and lower 

SFC versions of the reference airplane short duct nacelle were also investi-

gated.

5.1	 WBT Acoustical Studies 

5.1.1 Requirements for Lower Community Noise Levels - For any given level 

of noise, the number of people annoyed by the sound of the selected reference 

WBT airplane (and indeed for any current jet transport) is probably greater 

for most takeoff operations than for most landing operations because the 

area enclosed by the takeoff noise contour is substantially larger than the 

area enclosed by the landing noise contour, especially for maximum weight 

operations. Thus, the WBT study gave the highest priority to reduction in 

takeoff noise and second priorityto reduction in landing noise. 

5.1.2 Baseline WBT Component Noise Levels - In order to visualize the 

needs for component noise reduction, Figure 12 shows predicted values for 

the peak levels of tone-corrected perceived noise level (PNLT) for the five 

principal sources of engine noise and for the combined sources of non-

propulsive noise (UPN). The PNLT values in Figure 12 were calculated for 

1110GW and MLGW operations using the conditions of Table 1 for the Part 36 

locations of 6.48 km (3.5 n mi) from brake release for takeoff and 1.85 km 

0.0 n ml) from threshold for landing. The columns on the right in Figure 
12 show the certified EPNLs for the takeoff and approach locations. The 

Part 36 Appendix C noise level requirements for takeoff and approach at 

the 256,284 kg (565,000 lb) fITOGW are indicated by the arrows labeled 

FAR 36. The takeoff noise levels are for a full-thrust climbout. The 

baseline WBT meets the Part 36 requirements. 

At the takeoff point, Figure 12 shows that the total perceived noisiness 

of the flyover noise signal is clearly dominated by the jet noise which is 

generated downstream of the nozzle exit. Other engine noise sources 

generated within the engine (turbomachinery noise from the inlet, fan-

exhaust, and turbine-exhaust ducts, and low-frequency core-engine noise 
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from the primary exhaust nozzle) do not contribute significantly to the 

perceived noisiness of the jet-noise source. Nonpropulsive noise is 

insignificant at the takeoff power setting. 

At approach with maximum flaps, Figure 12 indicates that fan noise from 

the inlet and fan-exhaust ducts is most important, with high-frequency 

turbine noise being the next-most-important source. The level of core 

noise is below the level of the jet and NPN noise sources. As a consequence, 

there was no need to consider incorporating any acoustical treatment to reduce 

low-frequency core noise since the level of jet and nonpropulsive noise 

would not be changed by any nacelle modifications considered in this 

study. 

With the normal flap deflection, Figure 12 indicates that while the turbo-

machinery noise sources are still dominant, the relative level of the 

NPN source is higher than for the maximum flap conditions because of the 

higher airspeed associated with flying down the 3-degree glideslope at the 

same weight but with less drag, see Table 1. Note that for the normal flap 

condition, the noise from the turbine stages is dominant; fan-exhaust is 

second; and inlet noise is third in importance. 

With the current Part 36 requirements and the component levels shown in 

Figure 12, any improvements to the acoustically absorptive linings in the 

nacelle would logically be designed to achieve the most reduction in landing 

noise for maximum flap deflections. Thus, in order of importance, modifi-

cations to the acoustical treatment now installed in the nacelles of the 

baseline WBT concentrated on reduction of (1) inlet noise, (2) fan-discharge 

noise, and (3) turbine noise. However, future certification requirements 

might be modified to permit demonstration of compliance using normal flaps, 

Reference 10. These new requirements could dictate a different emphasis, 

namely (1) turbine noise, (2) fan-discharge noise, and (3) inlet noise. 

For the purpose of this study, the.maximum-flap conditions generated the 

design requirements for the acoustical treatment. The noise during takeoff 

would not be affected by changes in the duct linings.



5.1.3 Acoustical Features of Baseline Nacelles - In order to evaluate the 

noise-level changes resulting from incorporation of advanced acoustic-

composite duct linings, it is necessary to have an understanding of the 

current acoustical treatment. Figure 13 shows the current nacelle treat-

ment for the wing-engine installation. The tail-engine installation has 

the same treatment in the fan- and turbine-discharge ducts, but different 

inlet treatment in the long inlet duct. Nacelle lining changes considered 

for this study, therefore, considered the treatment in the fan- and turbine-

discharge ducts for both wing and tail engines, but only inlet lining 

changes for the wing engines. The tail-engine inlet treatment was not 

changed because it was considered part of the airplane structure rather than 

an engine-nacelle component. 

From Figure 13, it can be seen that the inner barrel of the inlet duct 

uses perforated aluminum sheet and aluminum honeycomb for most of the 

inlet duct treatment. This lining design is termed single-degree-of-

freedom (SDOF). There is a 0.13-rn (5-inch)-long segment of double-

diamond (multiple-degree-of-freedom of MDOF) lining [item 2 in Figure 13 

(b)] just forward of the fan rotor. These MOOF linings are a bonded 

fiberglass laminate construction. The fan-exhaust ducts use a combination 

of SOOF linings on the aft part of the inner wall and MDOF linings on the 

forward part of-the inner wall and along the outer wall. The turbine-

discharge ducts use SOOF high-temperature metal linings on the centerbody 

and nozzle wall with perforated steel face sheets and corrugated steel 

backing structure. 

The baseline WBT nacelles have ratios of effective treatment length to 

effective duct passage height (L/H) of 1.0 for the inlet duct (using the 

duct radius as the measure of duct height), 2.8 for the fan-discharge 

ducts, and 1.4 for the turbine-discharge ducts. 

5.1.4 Noise Reduction Concepts - Various short- and long-duct nacelles 

were considered in the study as candidates for incorporating advanced 

acoustic-composite duct linings. The short-duct nacelles incorporated 

advanced duct linings to reduce turbomachinery noise. The long-duct 

nacelles incorporated advanced duct linings and an internal mixer. Only 
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the long-duct mixed-flow nacelle offered the possibility of reducing jet 

noise during takeoff; the separate-flow short-duct nacelles were not 

expected to cause any change in the jet noise level from the baseline 

short-duct nacelle. 

All the advanced acoustic-composite duct linings for the inlet and fan-

discharge ducts would be designed to integrate their acoustical design 

requirements with the structural and environmental design requirements. 

This integrated approach was adopted to maximize the efficiency of the 

installations and minimize the penalties. 

5.1.4.1 Jet Noise - Over the past 20-year period a. very large number of 

model-scale and full-scale static tests have been conducted to study 

a variety of jet-noise-suppression devices for turbojet and turbofan 

engines. Several designs have been flight tested, often with disappointing 

results, i.e., less noise reduction and more performance loss than 

predicted on the basis of the static tests. For turbofan engines, 

investigators in recent years have been studying a variety of mixer designs 

for the primary nozzle in long-duct mixed-flow arrangements. These 

mixers have included free mixers (round nozzles) as well as forced mixers 

of the type envisioned for nacelle configuration II. 

The results of static model-scale tests have been inconclusive and no 

reproducible trends have been deduced. Based on the results of past 

experience with turbojets and low-bypass-ratio turbofans, it is clear 

that the effects of forward motion must be realistically simulated in order 

to provide a reasonable probability of reliably estimating the in-flight 

jet noise suppression. 

For the long-duct nacelle, it is expected that the differences in the flow 

fields around the baseline short-duct nacelle and the mixed-flow long-

duct nacelle will change the noise-generation process such that the long-

duct will produce noticeably less jet noise at takeoff power than the 

short-duct nacelle. Figure 14 shows the results of the analyses that 

support this belief. The plot in Figure 14 shows the difference between 

perceived noise levels projected to a 305-rn level-flight flyover from 
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static measurements and actual flight data. The bottom dashed-line is 

drawn through data points for a separate-flow nozzle system on an airplane 

powered by high-bypass-ratio turbofans. The upper solid line is an 

average trend line obtained from several simulated and actual static-to-

flight comparisons from model-scale and full-scale tests for round conical 

nozzles. The vertical distance between the two curves is a measure of the 

flight (relative-velocity) effect on the jet noise produced by a mixed-

flow long-duct nacelle compared with the jet noise produced by the exhaust 

from a separate-flow short-duct nacelle. 	 - 

Note that the difference between the two curves in Figure 14 is on the 

order of 5 to 6 PUB in the aft quandrant at angles between 120 and 150 

degrees. For the internal forced-mixer nozzle on nacelle configuration II, 

it was not certain what degree of mixing will be achieved between the fan 

and primary streams. The full 5 to 6 PNdB was therefore termed a "potential 

relative-velocity benefit" in Figure 14. In assessing the actual noise-

reduction capability for nacelle configuration II, it was considered prudent 

to assume that the mixing would not be complete and that less than the full 

noise-reduction potential could be realized. 

5.1.4.2 Inlet Noise - For inlet-radiated fan noise, the best choice 

for an advanced duct lining appeared to be a lining that would have the 

acoustical characteristics of compressed open-cell polyurethane foam, but 

without the weight or environmental problems that currently prevent use of 

this type of product in engine nacelles. Phased treatment [step changes 

in lining acoustical impedance in the axial or circumferential directions] 

was also considered but the available experimental evidence indicated that 

a bulk absorber such as compressed open-cell polyurethane foam would achieve 

greater noise reduction than a phased, or multisection, treatment. 

Figure 15 shows the results of scale-model fan rig and full-scale CF6 

tests . conducted by GE that corroborate the advantage of a bulk absorber 

lining over an SDOF lining of the type currently used in the WBT inlet. 

At the 2820-rpm fan speed used for the maximum-flap landing, the bulk 

absorber provided about 2 PNdB additional noise reduction for the same 
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L/H value of 1.0 as for the inlet on the baseline WBT. Larger benefits 

were observed at lower fan speeds. 

5.1.4.3 Fan Discharge Noise - For noise radiated from the fan-discharge 

ducts, there were several candidate noise-reduction concepts. The first 

was straightening of the fan outlet guide vanes. As can be seen from 

Figure 13 (a), the root of the fan OGVs is closer to the fan blades than 

the tip. Straightening these fan OGVs to increase the blade-to-vane 

root distance (preserving the blade-to-vane tip distance) was estimated 

to be worth 1 PUB of noise reduction at approach and takeoff power 

settings. Thus, straightened fan OGVs were considered as part of the 

nacelle modification for each candidate nacelle. 

For the short-duct study, nacelles, all treated surfaces in the fan-

discharge ducts used a broadband type of lining design (probably similar 

in concept to the current double-diamond MOOF design), but made from 

advanced fibers such as graphite or the DuPont Keviar organic fiber. It 

was estimated that an additional 2.8 sq m (30 sq ft) of treated area 

could be provided on the outer wall of the fan duct to increase the L/H 

value from 2.8 to 3.3 for the same aerodynamic flow paths. The porous 

core structures for these broadband linings could use an integrally woven 

or a locked-core, construction method as explained in more detail in 

Section 5.8. Two of the three study short ducts had only these advanced 

linings and the additional treated area on the outer duct wall. The third 

short-duct study nacelle (IC) considered the impact on fan noise of 

installing a 0.61-m (24-inch) -long acoustically treated circumferential 

splitter in the fan-discharge ducts giving an L/H of 4.8 compared to the 

no-splitter value of 3.3 for configurations IA and LB. 

For the study long duct, the effective L/H value in the fan exhaust duct 

was 10.0 with treatment tuned to have maximum fan noise attenuation at the 

2820-rpm condition and with the straightened fan OGVs. With this much 

treatment area potentially available, the most-appropriate lining design 

was a simple perforated face sheet, made from advanced fibers, bonded to 

a composite, but impervious, honeycomb core, with 'appropriate provisions 

for drainage. Because of the high 1evels of inlet 'and turbine noise,



the additional noise reduction that would be obtained from the more-expensive 

and heavier MDOF linings was not needed and the SDOF linings were adequate. 

The basic acoustic design philosophy was to not overly suppress the noise 

from any one source so that the resulting nacelle design would have an 

overall acoustical balance in the amount of nacelle treatment selected. 

5.1.4.4 Turbine Noise - For turbine noise reduction, essentially all 

of the nozzle wall was treated, and additional treatment was installed on 

the wall of the centerbody. Moreover, the current corrugated-core design, 

Figure 13 (b-3), was changed to a honeycomb-core design to gain additional 

treated area since the corrugations block almost half the holes in the 

perforated face sheet. With the aerodynamic lines of the current turbine-

discharge duct and with retention of the turbine thrust reversers, the 

effective turbine L/H value for configuration IA and IC was increased to 

1.8 from 1.4 for the baseline WBT. For configuration 113 without the 

turbine thrust reversers but with the shortened primary nozzle, the 

effective turbine L/H value was also 1.8. 

The mixer nozzle for the long-duct nacelle, described in Section 5.5, 

was designed without acoustic treatment to reduce turbine noise because 

of the weight, cost, and performance penalties associated with an 

acoustically treated mixer nozzle. Turbine treatment was incorporated 

only on the wall of the centerbody and the wall of the mixed-flow nozzle 

downstream of the exit plane of the mixer nozzle. The effective L/H 

value for the perforated-steel/honeycomb turbine treatment on the center-

body and outer nozzle wall was estimated to be 1.8. 

Because of the importance of turbine noise in the total landing-noise 

signature, it would be advantageous to conduct additional studies in the 

next phase of the program to evaluate installation of additional turbine 

treatment. Further, the effect of the lobed mixer-nozzle on turbine noise 

generation within the common-flow nozzle was unknown and needs to be 

determined by flight testing. These additional studies would use the 

results of the mixer-nozzle configuration studies as the basis for developing 

practical turbine-treatment duct-lining designs. Judging from the 

conclusions that are now available, it would be impractical to consider 
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treating the walls of the lobes of the mixer nozzle or installing treated 

circumferential or radial splitters within the lobes. The only practical 

configuration appears to be one that incorporates an acoustically treated 

"spool piece" (two concentric cylinders) between the turbine-discharge 

flange and the entrance to the mixer nozzle. 

5.2 WBT Study Short Duct Nacelles 

As shown in Figure 16, four basic short duct, separate flow nacelles were 

evaluated. Configuration 1 was the baseline nacelle as installed in 

current production airplanes. Configuration IA reflected the incorporation 

of composites within the baseline aerodynamic contours to reduce weight. 

Configuration lB represented an improvement to the performance and 

reliability of the basic separate-flow system by a shortening of the 

core nozzle and deletion of the core reverser. Configuration lC was 

identical to 1A except for the addition of acoustic splitters in the fan 

duct. All of the short duct nacelles have identical nose cowl aerodynamic 

parameters and most of the flow path lines and aerodynamic contours are 

also the same. 

The baseline, Configuration 1, is shown in detail in Figure 17. The major 

nacelle components are identified and, as can be seen, the existing 

nacelle incorporates substantial areas of acoustic treatment, although 

only portions are of current technology composite construction. The nose 

cowl has a bonded aluminum honeycomb inner barrel for the acoustic treat-

ment with about 6.41 sq rn (69 sq ft) of effective area. The inner and 

outer walls of the fan discharge duct also incorporate acoustic treatment, 

some of it non-structural fiberglass composite. The inner flow path is 

bonded aluminum honeycomb for the most part and the outer flow path 

contains a number of bolt-in panels made of fiberglass and using the GE 

double-diamond concept. The acoustic treatment in the primary exhaust 

nozzld uses a stainless steel perforated face over a corrugated core with 

a total effective area of about 1.95 sq m (21 sq ft). In total, there 

is about 23.2 sq m (250 sq ft) of acoustic treatment in each CF6-50 wing 

engine.
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The addition of advanced composites to the basic nacelle is shown in 

Configuration lA (Figure 18). The inner and outer barrels of the nose 

cowl were constructed of advanced composites. In addition, the fan cowl 

access doors, which in Configuration 1 were of bonded aluminum honeycomb, 

were changed to an advanced composite construction. The inner wall of the 

reverser also incorporated advanced composites as did the outer wall 

components and a portion of the internal structure of the reverser itself. 

The aft core cowl reflected the use of advanced composites with high-

temperature-capability resins and fibers. All of the acoustic treatment 

in the turjine area would be revised but would remain metal, since this 

is a high temperature area out of the realm of application for advanced 

composites. It was estimated that with the incorporation of advanced 

composites as shown in Configuration lA, approximately 488 kg (1077 lb) 

of weight could be saved per airplane. No inherent aerodynamic improvement 

was anticipated so there was no effect on fuel consumption except that 

which was attributable to the reduced weight. 

Figure 19 shows nacelle configuration 18, which represented the best 

performance short-duct installation considered practical. It was basically 

the same as Configuration 1A except that the aerodynamic flow paths aft 

of the fan nozzle exit were revised and shortened and resulted in somewhat 

steeper boattail angles. It was also expected that the deletion of the 

turbine thrust reverser would permit the application of some additional, 

improved turbine acoustical treatment, all of which would be metallic. 

Considerable weight savings were realized by deleting the turbine reverser 

and the weight reduction for Configuration lB was estimated to be 959 kg 

(2118 lb) per airplane. In combination with the aerodynamic improvements, 

an installed fuel consumption improvement of about 1.74% could be realized. 

Figure 20 shows the separate flow configuration in which Configuration lA 

had an acoustically-treated splitter added downstream of the fan to reduce 

fan discharge noise. This design provided more surface area of acoustically 

treated components and also increased the ratio of effective treatment 

length to effective passage height for better noise absorption. However, 

installation weight was increased and the net benefit of the weight savings 
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from advanced composites was 281 kg (621 lb) instead of 488 kg (1077 lb). 

Since SFC suffered due to higher fan duct pressure drop and higher scrub-

bing drag over the splitters, the result was essentially no net aircraft 

fuel consumption improvement with configuration 1C. 

5.3 WBT Study Long Duct Nacelle 

Referring again to Figure 16, an additional nacelle was studied. This 

was a long duct configuration which took advantage of the inherent 

performance improvement available from the addition of a thermal mixer to 

the basic CF6-50C engine cycle. Configuration II, as shown in Figure 21, 

represented the aerodynamically ideal configuration from the standpoint of 

obtaining the best performance benefits from the long-duct, mixed-flow 

system. It had large fan discharge passages to keep the duct Mach numbers 

down in order to minimize pressure losses and the generation of flow 

noise over the treated surfaces. The forward portion was essentially the 

same as all the short duct configurations, with the inlet and fan cowl 

doors identical to those on the short duct configurations. A major change 

was made in the reverser area of the fan where a new reverser concept 

was incorporated to reduce pressure losses below those of the existing fan 

reverser and employing advanced composites to reduce weight. The long-duct 

mixed-flow concept is particularly suited to being configured without a 

turbine reverser because the over-expansion of the exhaust from the turbine 

nozzle that occurs when the fan flow is prevented by the fan reverser from 

entering the mixing zone, effectively spoils the core engine thrust. 

The long-duct configuration offered a large increase in the area available 

for installation of acoustical treatment to reduce fan discharge noise. 

As a result of this large treated area, fan discharge noise did not 

dominate the flyover noise levels of the WBT with long-duct nacelles. 

However, possible changes to the turbine acoustic treatment for this 

configuration and the overall effect of the mixer on turbine noise are 

areas of uncertainty at this point. Therefore, for the long-duct configura-

tion, inlet and turbine noise were approximately balanced for the approach 

condition. For the takeoff condition, jet noise was dominant, although the 

thermal mixer was estimated to be able to reduce the level of jet noise. 
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Configuration II also offered fuel consumption improvement of approximately 

4% due to the combination of the thermal mixer and the improved overall 

aerodynamics as illustrated in Figure 22, and the effects of the estimated 

657 kg (1449 lb) per airplane weight reduction. The contribution of the 

forced thermal mixer is about 2-1/2% of the 4-1/4% total improvement. 

The mixer is described in detail in Section 5.5. The improved external 

aerodynamic performance of the long-duct resulted in part from elimination 

of the supersonic scrubbing drag at cruise, as shown in Figure 22. A more 

detailed analysis of internal and external performance is described in 

detail in Section 7.1. 

The weight of the long-duct was determined from the estimates of the 

composite component weights. The individual nacelle components are described 

in Section 5.8 and detailed weight breakdowns for each component accompany 

the individual descriptions. Weight tabulations for the long-duct nacelle 

and each of the short-duct nacelles are given in Section 7.2. 

5.4 Bulk Absorber Inlet Acoustic Treatment 

As described in Sections 5.2 and 5.3, all WBT nacelles studied used identical 

aerodynamic parameters for the inlet. Much aerodynamic development work had 

been completed for this inlet configuration so inlet improvement efforts 

were limited to studies of better acoustic treatment concepts. 

Both model scale and full scale CF6 inlets have been tested that incorporated 

what is generically called a "bulk" absorber. For these tests a reticulated 

matrix polyurethane foam was compressed to about one third of its free 

standing height for a total absorbent layer thickness of approximately one 

inch. The acoustical results from full scale testing confirmed the model 

test results which showed that the bulk absorber acoustic lining had 

distinctive advantages, because of its broader bandwidth of noise reduction. 

5.5	 Mixer Nozzle 

As discussed in Section 5.3, the long-duct nacelle represented an attempt 

to take advantage of the theoretical propulsive efficiency improvement 
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that results from a mixed-flow exhaust system (Ref. 11). For the CF6-50C 

engine cycle, that improvement has been found in other studies to be on the 

order of 2.51/0 in gross thrust. However, in any practical application, the 

mixing process becomes less than ideal because mixing effectiveness (K4, 

pressure losses, weight effects and installation drags must be accounted 

for. General Electric scale model tests and analytical studies have shown, 

however, that the goal of a 2.5% gross thrust improvement is practical for 

the CF6-50 cycle. 

5.5.1 Mixer Aerodynamic Design - The mixer aerodynamic design that 

evolved during this study involved essentially the consideration of three 

interrelated items. First, the total mixing plane area was dependent on 

nacelle geometric constraints and on achieving acceptable mixing plane 

Mach numbers and static pressure balances. Second, the geometry of the 

mixer at the mixing plane (number of lobes, lobe angles, etc.) controls the 

percentage mixing effectiveness. This may be seen by typical geometry/ 

mixing effectiveness correlations, such as those shown in Figure 23. 

Third, the contour of the mixer wall, the axial length of the mixer and the 

volume of the mixing chamber and the mixer Mach numbers and boundary layer 

separation distributions all play a part in the system design. Since all 

three of the above items were Interrelated, the mixer design process was 

iterative. 

The CF6-50 mixer design was based primarily on scaling of a successful 

GE scale model mixer. Mixer wall contour and length were designed to be 

geometrically similar to the scale model rather than being based strictly 

on analytical considerations of boundary layer separation characteristics. 

Since the intent was to conceive a low risk design to demonstrate the value 

of a mixer on the C 6-50, the mixer must be considered non-optimum in 

comparison with purely analytical considerations. 

Figure 24 shows mixer geometry nomenclature. Various combinations of the 

parameters shown were used to compare mixer designs and to correlate mixer 

geometry with performance. Figure 25 shows the correlation of mixing 

effectiveness (K4) with interface area function as suggested by Frost 
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(Ref. 12). For the CF6-50 mixer, the design objective for mixing 

effectiveness was 65% or better. 

5.5.2 Selected Mixer Configuration - The mixer configuration that 

evolved from this study is shown in Figure 26. Acoustic treatment 

was incorporated on the centerbody only. A chem-milled pattern was 

used on the stainless steel lobe sidewalls to reduce local wall thick-

ness for weight reduction. The mixer would be supported from the 

plug at the bottom of each lobe by hinged links. Total weight of the 

mixer and centerbody was estimated to be 133 kg (293 lb). This mixer 

design was the shortest, lowest weight configuration investigated in 

this study which had a high probability of giving a 65% mixing 

effectiveness based on both Frost and model data. The chute angles 

chosen were consistent with the goal of a low risk design. 

The effect of varying lobe number while holding all other geometric 

parameters (seen in side-view) constant was shown in Figure 23. 

Increasing lobe number increased PL/Deq2. This then increased 

theoretical mixing effectiveness, but had an adverse effect on weight 

and surface area. In Figure 27 these effects have been converted to 

SFC changes relative to a 17-lobe design. In keeping with the goal 

of obtaining a low risk design it was decided not to decrease the 

number of lobes from 17 since Frost's data showed this to have an 

adverse effect. Increasing the number of lobes presented mechanical, 

aerodynamic and weight problems and might not be beneficial in terms of 

improved SFC. A mixer with 17 lobes was therefore chosen for the 

long-duct nacelle.

5.6 WBT Candidate Composite Materials 

The basic composite materials considered for the WBT were limited to 

those readily available and requiring little or no additional material 

development. The types of fibers and resins that were considered 

are shown in Figure 28 and Table 3 and consist primarily of graphite, 

DuPont Keviar and fiberglass or hybrid combinations of these, and 
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either epoxy or polyimide resin systems. Limitation of the WBT studies 

to just these materials was based on the desire to minimize material 

development risks consistent with a potential certification schedule, 

in the early 1980s.

Density - gm/cm3 

17 

xl 

I I I I I I $1
I Keviar 49/Polymer	 0.60 v/ o, 

EHPG/Polymer   0.60 v/o 

I
	

.I	 1
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I	 ___ 

2.10
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FIGURE 28. COMPARISON OF ADVANCED MATERIALS 

ABSOLUTE STRENGTH AND MODULUS 
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TABLE 3. - WIDE-BODY TRANSPORT ADVANCED MATERIALS 

MATERIAL
	

USEFUL MAXIMUM TEMPERATURE 

RESINS: 

EPDXY	 LOW-COST MATRIX
	

450°K (350°F) FOR 1000 HOURS 
422°K (300°F) FOR 50,000 HOURS 

POLYIMIDE ACCEPTABLE COST MATRIX FOR 	 533°K (500°F) FOR 20,000 HOURS 
SLIGHTLY ELEVATED TEMPERATURES 	 477°K (400°F) FOR UNLIMITED LIFE 
THICKNESS LIMITED TO 1/2-IN. DUE 
TO OUTGASSING 

FIBERS: 

GLASS	 LOW-COST AND GOOD STRENGTH 
TO WEIGHT 

GRAPHITE	 HIGH STRENGTH AND STIFFNESS 
TO WEIGHT - LOW IMPACT 

KEVLAR 49 HIGH TENSILE STRENGTH. NOT 
RECOMMENDED FOR COMPRESSION. 
HIGH IMPACT STRENGTH

700°K (800°F) FOR 1,000 HOURS 
589°K (600°F) FOR 50,000 HOURS 

589°K (600°F) FOR 50,000 HOURS 

477°K (400°F) FOR 1,000 HOURS 
422°K (300°F) FOR 50,000 HOURS 

Hybrid combinations of existing materials, especially graphite and Kevlar, 

received special emphasis because of the potential of these types of 

material combinations to offer better than the average of each material's 

characteristics, and thus the potential for further weight and cost 

reduction. For example, based on data from Reference 8, in an application 

requiring the impact energy absorbing characteristics of Keviar 49, 

while simultaneously requiring the compressive ultimate strengths of 

graphite, a hybrid of 25% Kevlar and 75% graphite provided a good 

combination of material properties (see Table 4).. Since Keviar is also 

less costly and lighter than graphite, the hybrid material provided the 

potential for lower cost and lighter-weight products. 

61



TABLE 4. CHARACTERISTICS OF HYBRID UNIDIRECTIONAL COMPOSITES 

ULTIMATE 
TENSILE 
STRENGTH 

KN/m2 (lb/in2)

ULTIMATE 
COMPRESSION	 IMPACT 
STRENGTH	 STRENGTH 

kN/m'	 (lb/in2 )	 Joule (ft-lb) 

GRAPHITE/EPDXY 

KEVLAR/EPDXY 

HYBRID/EPDXY 
(75% GRAPHITE 
25% KEVLAR) 

% INCREASE OF HYBRID 
RELATIVE TO GRAPHITE

124,100 (180,000) 

137,900 (200,000) 

127,500 (185,000 

+2.7

	

124,100 (180,000)	 37.7 (27.8) 

	

27,580 ( 40,000)	 123.9 (91.4) 

	

99,975 (145,000) 	 74.2 (54.7) 

-20%	 +96% 

5.7 WBT Constructions 

A wide variety of potential construction arrangements were investigated 

in some detail in the WBT studies, and to a lesser extent, in the AU 

activities. These investigations involved five basic types of sandwich or 

laminate constructions, as shown in Figure 29, each with its own advantages 

and disadvantages and each most applicable to a given area of the nacelle 

or given nacelle function. In some cases, the construction was more 

amenable to certain materials than others. For instance, requirements 

such as fire containment dictated a sandwich type of construction and 

required protection of graphite from erosion and the retention of sufficient 

strength to carry pressure loads with some of the resin burned out. It 

should be emphasized that this study was not merely a parametric study of 

middle-of-the-panel designs but rather, a study of semi-detailed designs 

of a total part, including end fittings, closeouts, cutouts, etc. The 

decision on construction type and material application was based on the 

requirements of the particular part.
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BONDED MDOF ACOUSTIC SANDWICH 
GENERAL ELECTRIC DOUBLE DIAMOND	 HONEYCOMB SANDWICH 

LOCKED CORE PANELS	 INTEGRALLY WOVEN PANELS


SKIN AND STRINGER LAMINATES 

FIGURE 29.	 TYPICAL CONSTRUCTION ARRANGEMENTS EVALUATED 

5.8 Composite Structure Designs - WBT 

As noted earlier, the basic WBT nacelle concepts were formulated with the 

goal of maximizing commonality of parts to fullest extent. In that regard, 

the same nose cowl aerodynamic contours were used for all five nacelles, so 

that only one basic composite nose cowl design had to be generated. The 

same was true of the fan cowl door, although left and right hand parts are 

required. For the long duct nacelles, the aft fan ducts and core cowl doors 

used the same parts for the left and right hand sides. As a result only 

five basic drawings were required; one for the nose cowl; and one each for 

the fan cowl door, aft fan ducts, inner core cowl and fan reverser. To 

ensure complete coverage of all major nacelle components, one additional 

drawing of a metal final nozzle was developed. The all metal internal 

mixer design was evolved during this study from a concept that had been 

developed by GE as part of other related activities prior to the start of 

this contracted effort.
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5.7.1 Composite WBT Hose Cowl - As shown in Figure 30, two basic composite 

nose cowls were designed in this study which differ only in the inner 

barrel arrangement. Configuration A, shown on sheet 2 in Section E-E, 

represented the more extensive use of composites, featuring a graphite 

attach ring with steel inserts co-cured with the multiple-degree-of-freedom 

acoustic inner barrel. The three-segment outer barrel consisted of seven 

plies of Kevlar 49 in a Style 285 weave and co-cured, 22-ply graphite 

stiffeners. This configuration was evolved from a strength/stiffness trade 

study summarized in Figure 31. The acoustic inner barrel structure on 

Configuration A was basically a hybrid graphite and Kevlar truss web design 

with a porous face of four or five plies of open-weave material containing 

75% Thornel 300 graphite and 25% Keviar 49 per ply impregnated by a controlled-

flow polyimide resin. The core was comprised of two plies of the same 

material that could be either laid-up over mandrels and co-cured or fabricated 

by either the integral weaving or lock core techniques, depending on the 

outcome of more specific cost trade studies made at the time of final 

design. The back face was five plies of T-300 graphite/polyirnide. The 

entire inner barrel would be made up of three segments which would be 

subsequently bonded or mechanically attached together to form the complete 

part. A hi-silica glass cloth, glass honeycomb fire barrier was employed 

in that area of the nose cowl inner barrel which projects into the nacelle 

fire zone. While there is some analytical and empirical basis for showing 

this type of fire shield design, it by no means represents a firm final design 

and a significant amount of technology development work in the area of fire 

burnthrough resistance remains to be done before a certifiable design is 

developed for these advanced acoustic-composite structures. 

The co-cured graphite flange would be comprised of 28 to 72 plies oriented 

as required to distribute the high loads carried through this important 

joint. Steel inserts were used for the attach bolt holes and a rub-strip 

was employed at the interface with the attach flange on the engine. 

The existing metal double-wall anti-ice inlet lip was retained in both 

nose cowl Configurations A and B, as shown in Sections A-A and E-E of 

Figure 30. To prevent exposure of the composites to possibly damaging 

high temperature air, a collector bulkhead was added and anti-ice discharge 

64



INNER FACE SKIN P4(CURED HOLES (WID/RUT T/ONAL GRAPHITE 7.rZ/XEVLAR eJ2 HRSR/C 
	 A 5 PLY (9O 43 O- 4S 5O) .00T3 i.'/AY .0(3 (LI/N

0R7 LOWER PANEL ONLY ADD I LAYER OF KEYLAR 49 /70 FA8RIC .005 .048 CU.rn' FOR WALIC ON PROTECT/ON	
ni'	 1 () DOT, SIDL( .	 FABRICtzr 

-	 5PLY (50-410.459IC) .Oo5.3i...'/FçY .OSTCV/5 fl7 90	 J 
SEP TUM SKIN PRECURED HOLES VA/S/RUT TIONAL GRAPHITE FABRIC 	

FILL FItS CT 44(4 WIT/I 0 /I4AB/ITE F/4(4(\	

IX	 . 044 

.080

1 All o• 

y W,/4(5(6

	

WARP W (E4 ADO AFT) DOE4q . OOS
If 	 0112"ER $KINS P0,j o,e,q 

	

.090 r/TA,,I/UM DO/IDLER CO CURED 80/vDIr5.I	 . 

QLLI/11/N1)M HONEYCOMB 	 LID DE 
1.230 DEEP 

EP -
DOUBLER 4 PLY ( ± 45;	 UT) 1/HID/R T/OWAL GR,9P/'/TE .	 FA8R/c_	

37517/IN ( -	 SCALE TIP 'op ow qSVIoj .P7PFECE.9 C443ZIC(I700 CELL JOEL .003 4.2 POUND.3	 CLOSURE PREC URED 114/ID/EEC TIONQI GRAPHITE RAKE/C /E PIT (14ç)	 I	 P/C O4E/NTAT,oN 00 3r/FFEWEQ ORcAFoo 7K/COOT, CORROSION RESISTANT TREATED

	

90497 0/4 REP.	 .00fl/l//R7 .OdT ell /,V. 
2.00	 I L	 .J 97.1(0 p, 

PANEL SKIN 2 PL Y (0* 9d UN/DIRECTIONAL 64P91rE PA8R 	
9z.'z 

.0053 IN/FIr .055 C71i/I. 

CLOSURE DOUR/ER4 PLY (OE4so) GRAPHITE FA8RIC	 ALUMINUM ATTACH A/NO WITH STEEL Et/BETRIP 	 .121 ALUMINUMSAuCE 
.0053 m,/Ay .0$f*LLIIN	 CI'? 3 P/ACeS - 

3EC7-101V I) SCALE 

FOR CO/IF/GIIRAT/OPI 5 ONLY

DOIJBLED WALL RNTI-/C/O'L DUCT 
ciirn, p, i-n n,,n.a, (ReF I91-0Il1)

ryp 3.947/AL £OC.Q/lQAf$ 

	

VIEW	 13 -13 SCOOP 
(OR COP/PIG ORATION

GENERAL NOTES 
I. LOFT LINES IDE/IT/CAL TO EXIST/NO DCIO-30 INLET 
2. LAYER TH/(/(A/E55 AND 4'7.QTE#I.Q7 NOTD ONBODY OFORA WING 
3. C OWFIOLIR,QTION /9 AND .8ARE /OEN/7CRL SKCEPT AS NOTED. 

4 UAJIDI4C Tie//AL GRAPH/rE/S TReES/EL joc 

1 AN I9DNE51HE FILSI OF El? 3$) (NYSOL (OAR) WILL BE OSEO 
8ETWEE1V SKINS AND CORE .07 P00/ND PER SOFT 

0. PEE PR(0 RESIN FOR KEL/LAR .9S/D GRAPHITE WILL BC /VARAV(O 52/8. 
INNER BARREL PANEL ASSEMBLIES WILL USE A POLYIMIO( ROE/Al 
CONDENSATION 771'S OR HR 800 (ADo/i-/ON) HUGHES. 

7. REGARD/NV NI/MISER OF FASTENERS, SAM/IA5 EXIST/NO NDSE'(OWI. 
£X(cEPT OUTER- SKIN STIFFENER.$ ARE COC I/RED TV SKIN. 

FIGURE 30. MANUFACTURING COST 
ESTIMATING DRAWING — COMPOSITE 
NOSE COWL CONCEPTUAL DESIGN 

SHEET 1 OF 2 

INNER BARREL SPLICE IDENTICAL TV 
EXIST/NO INLET (ALU,.'7/)VuP1 TEE) 
3P4CS REF IISLOO.73 	

VIEW LOOKING FORWARD 
SCALE 

PLY DIRE C T/O,V CODE

65



814CR To BACK 4PLY(545) GRAPH/TI 752 /Pfl't.R 25% .41/0/ES 
.0053/N/kr .001 16 CV lai 

r- ""I RIG/I SILICA GLASS FABRIC 

/	
HRH-307-0.30 .30/ocR 60435 o,yycooq 

II	 rSTEEL FITTING 2/N WIDE AIRED 

/ 	
BONDED TO FLANGE 

I /	 I	 i-STEEL RUB STRIP 

72 P41(330) AODI6 pLr(±4.)GRApN,TE .0oo3 lw//BY .053'16Col 
28 PlY (I33 43,.B04) GRAPH/TI 

28 PLY (0k) . s• IN) GRAPHITE zc71RAvL.R0 zsZ /oR10 FABRIC .0053 IN/Ay .05.3 INCUBI 
PLY (0; i4SBc) GRAPH/TI 75'Z1ATYLARZSZ HYBRID P.9881K 

I. UWN /35.556 

\ 4PLY UNIDIRECT/ORAL GRAPHITE FABRIC - 0000821/I 4PLYGR.Rpy,T( 	
(o;.9o;) .0053 Ill//By .055CU/y

4j  go,
.0053 Corn5 .050 TITALI/U19 DOUBLER	 INTEGRAL WOVEN OR SEWED PANEL .75 DEEP 

/IEVLA/I FACE SKINS 200 GLASO 10/155 
EVERY OTHER WEB ANDIWSIOT FE SkIN TONE R040 (1052 RAIL HO) 

BULK 9850R819 (TR/ArEDKEAR MRTTQA ROPE) .0020/CU/N 
TWO UPPER PANELS ONLY 

SECTION	 SCALE 4 
FOR CONFIGURATION A ONLY 

MON/F/ED A/LI/20/N/13I7 A CID-iCING P114,1 (AOL 0/43 RN)	 CLOSURE 4PL V (o5 4s 0) 0MPH/re PASO/C 
IN/Ply OSS'CO/,I 003 TITNNIUM 00,8/ER COCURED WITN/*55.Y I/O/RI 	

,_. j PO/YUR(T0A55C314T/NSIDEO,RA, 
f

2 DOUBLERS 4021 (05,3901 GRAPO/Te p358/C .005.3 IT/AL5 .055 °C0/P. 

EZTAI 

VIEW	 SCALE 
FOR (00/FI6 ORATION A ONLY 
TYPICAL FLANGE SPLICE

7',ye.,? 4/CR OZASS FORPIPI 140411 P4t170T0'ON 
DOUBLER 2 PLy (03E) GARPNITE P1484/C 
TEE C/BV('04 541) coo SIDE GRAP#/11F14841/C 
.0033 IN/PLy .051 'COIN 

MOO/PIED E./RST/14G Tl0IRTIU3I2 8014114040 143/0203 REF 

FIGURE 30. MANUFACTURING COST ESTIMATING 
DRAWING — COMPOSITE NOSE COWL CONCEPTUAL 
DESIGN

I°YAL/R/IINNA SPLICE COOT	 1	 £0ISC/TL 11DM/lI/I/O EAPRU.SIIN 
040 TITAN/RI/I 80/1(0/3140

 NO I/DIE .OSIE3P84y AS 10016

.040T1TPNIuMA/C/lI6 EXIT DoCr 	 J 
SECTION Am  SCALE 

FOR CONFIGLIRATION AANDBEXCEPT 
INNER 81414552 CONSTRUCTION FOR 0NLY 

SHEET 2 OF 2 

66



5-.-
so'

C') 
o	 >)V) W 

00 S-4-)  
ID tio V) -I 

r-.o.-	 x >-
I-	 • >LflO X.	 I-

• owccc.. 
C) — C\J Lu

csJ 
(N

0 0 c',	 - 
I-

W .. rr 
O R D 

0 CD 

CI)
ca. 

Om LL 
w CC 0 
0 

I I Es 
U 

cc Lt) 
r-CJ

Ec o 
—D 
Co Lo 

-S 

5-- Es 
U •i-

C) 
I 00 Lo 

-J 

(N

0 
C-

Lu 

c 
E -i- I-
U .	 > 

cc S- 4) C,I.O MDV) 

,- .>Lflr 
C) w cc . 

0- C4 U)

C,) 
Lii 

CL >< 

(N 
CJ 0) 

:1I

U ..-

-0 00 L 

-s

C 
0 
U., 

S.-

0 
6 
0 
L) 

4) 

-C 

w 

I-

5-

0 

5--

U)

U) 

0 '-I 
I-

LL-. 

C) 
L) 

U) 

C) 
Lu 

LL-
Lu 

I-I 
I-
U) 
-J 
Lu 

Lu 

C) 

C) 
L) 

Lu
U) 
C) 

Lu

V) 
CD C) 
C-

C) 
C-) 

C) 

C) 
-4 
I-

Lu 

I-
C') 

Lu 

-4 

4) 

.c0
LA 

.	 . — . I 
0)> ('4 N- 

U) 

— 
s

-. 
cc

5--
co cc 

•1 C) 
- C) C) • C) 

4-) r-- C) 0
0 

•1
0) LA N- cc 

cc '.o C) 
o C) C) I-

-.-•- C) C) C) 

-' C) C) C) 

CM 00 
C C) 

0 

C) 
I I 
I I 

('4 ('4 
C' 

N-- 
cc 

('3
C

. 
Lu— C) 

C) 
-S

LA 
0 

E '.0 
U

I-

5--
_ 
0• C') 

('3 LA C 
C 

5-	 •r
O - 

0 C) -5-
Lu

N- I-
co co 

6 I-
,-.	 U .

5--
6 

C-..' 
c.

 
to S- C 

o
cc 6 4..3 5-. .W 

5- V)4-
> -r-

S- 4-3 
•1 øC) 0) 
1+ r-

> LLJ •r 

C_) < C.D U 
- -

tz 
X f14 ca

Ali 



would be ducted overboard through a standoff, low-drag mast. The anti-

ice supply air was routed to the leading edge section through a double-wall 

duct. 

Configuration B differed from A primarily in the design of the acoustic 

inner barrel. The linings were considered to consist of perforated hybrid 

graphite/Keviar facesheets bonded to aluminum honeycomb core. The face-

sheets would be either precured with perforated holes or co-cured with 

perforations or possibly co-cured and mechanically perforated after curing. 

The attach flange was also different, incorporating a continuous aluminum 

ring with steel shear fitting inserts. This flange arrangement would 

enhance electric current transfer in the event of a lightning strike on 

the inlet. 

Configuration A was estimated to weigh 222 kg (491 lb) and B was estimated 

at 230 kg (507 lb). A tabulation of the weight breakdown for both 

configurations is shown in Table 5 along with the baseline metal design. 

TABLE 5. - NOSE COWL WEIGHT BREAKDOWN 

CONFIG. A 

47.6 (105) 

32.2 (71) 

79.7 (176) 

1.4 (3) 

23.6 (52) 

17.7 (39) 

1.8 (4) 

1.4 (3) 

17.2 (38)

222.4 kg (491 lb)

BASELINE 

58.9 (130) 

51.2 (113) 

79.7 (176) 

5.0 (11) 

23.6 (52) 

17.7 (39)

35.3	 (78) 

271.3 kg (599 lb)

CONFIG. B 

52.1 (115) 

32.2 (71) 

79.7 (176) 

1.4 (3) 

23.6 (52) 

17.7 (39) 

1.8 (4) 

1.4 (3) 

19.9 (44)

220.7 kg (507 lb) 

INNER BARREL 

OUTER BARREL 

NOSE LIP 

FIRE SHIELD 

BULKHEAD, AFT 

BULKHEAD, FORWARD 

ANTI-ICE EXHAUST DUCT 

SHROUD 

ENGINE ATTACH

TOTAL
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Aside from the structural loads indicated in Figures 31 and 32, special 

design considerations included accommodation for handling and maintenance-

related abuse to the skin panels of the lower inner barrel segment by 

providing an extra ply of Keviar. The aluminum bonded honeycomb panels 

used in current inlets accommodate this abuse with a face sheet gauge 

thicker at the bottom than on the sides and top [.081cm (.032 in) thick vs 

.064 cm (.025 in)]. Another consideration was the use of unbalanced 

skin laminates shown in Configuration B of Figure 30, where five-ply skins 

provide a "balanced" panel using the center of the panel as the neutral 

plane. The result was a saving of three plies per skin and a significant 

weight and cost saving. This concept essentially indicated a co-cured 

fabrication process, since precured skins could be expected to be too badly 

warped to permit practicable fitup. 

5.8.2 Fan Cowl Door - The fan cowl door shown in Figure 33 is basically 

a sandwich construction consisting of a two-ply outer skin of Keviar 49, 

Style 285, a core of 49.65 kg/m 3 (3.1 lb/ft 3 ) aluminum honeycomb with a 

0.476 cm (3/16th in) cell size, and an inner face of four plies of 1300 

graphite and one ply of high-silica glass cloth. The entire panel was 

envisioned as a co-cured sandwich using fire-retardant epoxy resin system. 

An aluminum door frame and latches and hinges identical. to those used 

in the existing bonded aluminum honeycomb door were employed, both 

providing an adequate electric current path in the event of a lightning 

strike. The application of composite hinge and latch fittings represented 

an area of technology that was beyond the scope of this study. Since this 

door encloses the accessory area of the nacelle it must also function as 

a fire barrier. This requirement meant that the door be capable of with-

standing a 15-minute exposure to a l367°K (2000°F) flame without failure or 

penetration by the flame. The general requirements of nacelle fire 

protection and some of the tests that were conducted to ascertain the 

capability of advanced composites with non-metallic matrices to function as 

fire barriers are discussed in Section 5.11. As can be seen from the 

figure, the fan cowl door contains a large number of small servicing access 

doors and cooling inlet and exit cutouts. It also contains a pressure 

relief door which is set to relieve at a differential pressure of 
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approximately 13,790 N/ni2 (2 psi). The primary design load condition for the 

fan cowl door was a differential pressure of 41,369 N/rn2 (6 psi) in the 

event of a burst pneumatic duct. 

Application of Kevlar 49 Style 285 fabric for the outer face was based 

on providing good impact characteristics required for this surface of 

the nacelle which is. subject to damage when routine maintenance functions 

are performed. Two plies of this thick fabric were used to provide 

protection for the honeycomb core. 

The total weight of a pair of composite fan cowl doors . was estimated at 

99 kg (218 Tb). The weight breakdown given in Table 6 shows that a weight 

savings of approximately 36 kg (80 pounds) per nacelle, [109 kg (240 lb) 

per airplane for the 3-engine WBT] would be realized. The tail installa-

tion fan cowl doors differed slightly in external shape from the wing 

engine doors but otherwise were identical. 

TABLE 6. - FAN COWL DOOR WEIGHT BREAKDOWN 

COMPOSITE BASELINE 

DOOR PANEL 25.14 (55.50) 40.43 (89.25) 

CLOSURES AND DOUBLERS 3.51 (7.75) 7.00 (15.45) 

ACCESS DOORS 2.42 (5.35) 2.08 (4.60) 

LANDINGS	 . 2.27 (5.00) 2.22 (4.90) 

SHIMS .45 (1.00) .45 (1.00) 

OUTLETS 3.85 (8.50) 3.85 (8.50) 

HINGES, LATCHES, ETC. 4.17 (9.20) 4.17 (9.20) 

FIRESHIELD 3.94 (8.70) 3.67 (8.10) 

ATTACHMENTS & HOLD OPEN RODS 3.62 (8.00) 3.62 (8.00) 

49.38 kg (109.00 lb) 67.60 kg (149.00 lb)

73 



5.8.3 Composite Fan Reverser - Figure 34 shows a composite fan reverser 

concept that was developed during this study. The figure depicts an 

exploded view of the various major pieces and assemblies that make up the 

fan reverser assembly. In addition, two representative cross sections are 

shown to indicate the construction in two or three key areas of the reverser. 

This reverser assembly would consist primarily of honeycomb construction 

for the flow passage walls where acoustic treatment is required. The 

design concept includes hybrids of graphite, Keviar, aluminum honeycomb 

core, and some application of high-silica glass on glass honeycomb core 

where fire protection is required. 

In many cases, such as for example the blocker door, these advanced 

composites replace bonded fiberglass components used in current WBTs. 

The fan exhaust passage surfaces comprising the core cowl were envisioned 

as composite structures with integral acoustic treatment utilizing a 

honeycomb construction. As shown in Section A-A the high-silica glass cloth 

and glass honeycomb were used in areas where fireproofing is a requirement. 

The high temperature environment made the use of polyimide matrix appropriate 

for these parts. For the outer walls of the annular passage where the 

thermal environment is moderate, an epoxy matrix was suitable. 

The fan reverser concept is the same bifurcated arrangement used in the 

current all-metal reversers. The weight breakdown of the reverser is 

shown in Table 7. The total weight was estimated to be 649 kg (1433 lb). 

It was estimated that an additional 63 kg (140 lb) could be saved by 

eliminating the bifurcations in favor of circular, hoop-tension duct 

systems.
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TABLE 7. - FAN THRUST REVERSER WEIGHT BREAKDOWN 

NACELLE II 

56.63 (125) 

13.59 (30) 

147.23 (325) 

303.51 (670) 

42.13 (93) 

13.59 (30)

576.67 kg (1273 lb)

NACELLE IA & lb 

71.12 (157) 

17.21 (38) 

160.82 (355) 

339.75 (750) 

44.39 (98) 

15.86 (35)

649.15 kg	 (1433 lb) 

CONTROLS AND ACTUATION 

INTERLOCK AND CONTROL KIT 

TRANSLATING COWL 

BIFURCATIONS (FIXED COWL) 

DEFLECTOR ASSEMBLY 

FORWARD LATCH

TOTAL

5.8.4 Core Cowl Door - Figure 35 shows the concept for the core cowl door 

for the long-duct mixed-flow nacelle. The door was of sandwich construc-

tion incorporating integral acoustic treatment on the outer flow path. 

The outer face skin was made from a hybrid of 75% graphite, and 25% Keviar. 

The aluminum honeycomb core had a density of 67.27 kg/m3 (4.2 lb/ft3) 

and 0.95 cm (3/8-inch) cell size. The inner face skin would consist of 

four plies of uni-directional graphite fabric with a polyimide matrix. The 

assembly was backed with a standoff titanium heat shield to enable it to 

withstand the heat radiated from the engine case. A piano-hinge attachment 

and multiple latches were utilized to avoid concentration of loads in the 

composites. The thermal environment would dictate the use of a polyimide 

matrix resin system. Use of a polyimide resin would require additional 

fabrication process development for the face skins to insure that the cure 

temperatures for the selected polyimide would be compatible with the 

aluminum honeycomb core. 

A pair of these doors was used in each nacelle and the weight of each 

pair was estimated at 62.52 kg (138 lb), as shown in the weight break-

down in Table 8.
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TABLE 8. - CORE COWL WEIGHT BREAKDOWN 

HYBRID SKIN PANELS 4.12 (9.10) 

GRAPHITE SKIN PANELS 6.00 (13.25) 

ALUMINUM HONEYCOMB CORE 4.26 (9.40) 

ADHESIVE 5.07 (11.20) 

TITANIUM 15.90 (35.10) 

STRESSKIN 11.55 (25.50) 

TEFLON 1.06 (2.35) 

ALUMINUM 9.76 (21.55) 

STEEL 2.83 (6.25) 

RIVETS, NUTS AND BOLTS 1.95 (4.30) 

TOTAL 62.51 kg (138.00 lb) per nacelle

5.8.5 Aft Fan Duct - The concept of the composite aft fan duct is shown 

in Figure 36. This component is quite similar to the core cowl door, 

featuring honeycomb construction with hybrid skins of graphite and Keviar 

and with aluminum [67.27 kg/m 3 (4.2 lb/ft3 )] core. However, since it is 

not exposed to high temperatures, an epoxy resin system was used in a 

co-cured fabrication process. Chopped fiberglass and graphite castings 

would be used to transfer loads from the latches to the sandwich panel. 

Total weight of this pair of ducts was estimated at 86.5 kg (191 lb) per 

nacelle. 

The inner face skin (the one requiring acoustic porosity) would consist 

of four plies of hybrid 75%/25% graphite/Keviar. The outer skin (the one 

exposed to the free stream around the nacelle) would also be fabricated of 

the same four plies of hybrid 75% graphite, 25% Kevlar material. In 

addition, this surface would be overlaid with one layer of Keviar 120 

style fabric to provide resistance to impact damage. The weight break-

down for this component, which was estimated at 86.5 kg (191 lb) per 

pair (nacelle), is given in Table 9.
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TABLE 9. - AFT FAN DUCT WEIGHT BREAKDOWN 

HYBRID SKIN PANELS 25.49 (56.26) 

KEVLAR SKIN 2.30 (5.08) 

GRAPHITE DOUBLERS .79 (1.74) 

ALUMINUM HONEYCOMB CORE 21.65 (47.80) 

ADHESIVE 10.42 (23.00) 

ALUMINUM 20.94 (46.23) 

STEEL 2.33 (5.15) 

GRAPHITE CASTING .87 (1.92) 

SEALS .58 (1.28) 

RIVETS, NUTS AND BOLTS 1.15 (2.54) 

TOTAL 86.52 kg (191.00 lb) per nacelle

5.8.6 Mixed Nozzle - The high temperature of the turbine exhaust ruled 

out application of composites for the mixed nozzle. Figure 37 shows 

a design concept for this part utilizing diffusion bonded titanium sand-

wich construction. The inner flow path incorporated acoustical treatment 

with linings designed to reduce turbine noise. Solid surfaces were used 

for the free-stream flow surfaces. In the event that diffusion bonded 

titanium proved unsuitable for the anticipated exhaust gas heating effects, 

stainless steel could be substituted at a modest weight increase. The 

estimated weight of the diffusion bonded titanium nozzle was 32 kg (71 lb). 

A comparable stainless steel part was estimated to weigh 49 kg (108 lb). 

The weight breakdown is given in Table 10. 
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TABLE 10. - MIXED NOZZLE WEIGHT BREAKDOWN 

TITANIUM PANELS 17.26 (38.1) 

TITANIUM JOINT CHANNELS .50 (1.1) 

TITANIUM LEADING EDGE CLOSURE 1.49 (3.3) 

TITANIUM FLANGE 1.86 (4.1) 

TITANIUM NOZZLE TRAILING EDGE 4.44 (9.8) 

TITANIUM UPPER FLANGES 4.76 (10.5) 

TEFLON STRIP .18 (0.4) 

RIVETS, NUTS AND BOLTS 1.68 (3.7 

TOTAL 32.16 kg (71.0 lb)	 per nacelle

5.9	 Special Requirements of the Tail Engine Installation 

Among the many considerations that were accounted for in this study 

were the special requirements of the center engine position in the tail of 

the aircraft. In this installation the short nose cowl typical of wing 

engine installations shown in Figure 30, is replaced by a long inlet that is 

integral with the vertical stabilizer. Considerations that were taken into 

account in designing for the tail position, shown in Figure 38, included: 

the necessity for carefully tailoring aerodynamic flow paths to minimize 

interference drag between the tail engine nacelle, the aft fuselage and 

the vertical and horizontal stabilizers; accommodating the relative motion 

between the engine and the vertical stabilizer structure; and latching 

arrangements for the fan cowl access doors that differ from those on the 

wing engine. Also, the unique provisions made for maintenance and servicing 

access to the tail engine were accounted for. 

5.10	 Overall Design Constraints 

A number of constraints were placed on this study in order to limit the 

scope of the program. Among these constraints were avoidance of any 

significant increases in total installation weight to prevent the 

possibility of wing flutter or the exceeding of pylon strength margins. 
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Another influence or constraint on the design was the limitation on wing 

engine Inlet length. Because of the study baseline WBT forward cargo and 

baggage door locations, any substantial increase in inlet length would 

create a severe restriction in the loading envelope. In addition, a 

substantially longer inlet would represent a potential pylon flutter 

problem during the emergency descent flight condition due to the increased 

external flow area. A study of the noise reduction that might be realized 

by increasing the inlet length 1.02 m (40 inches) indicated that a 1 to 2 

dB decrease in noise could be expected for a 90 kg (200 lb) per wing inlet 

increase. The application of bulk absorber materials within the current 

inlet space envelope limits appeared to offer approximately the same noise 

reduction at a lower weight penalty. 

5.11	 Fire Prevention and Containment Requirements 

A key consideration In the design of an engine installation for a commer-

cial transport aircraft is the prevention, containment and extinguishing 

of nacelle fires. The installation must provide for preventing fires from 

occurring and must provide for preventing fires spreading from one nacelle 

zone to another or from the nacelle into the airframe. With conventional 

metal construction used in current commercial transport aircraft nacelles, 

titanium or steel is used to provide the containment required. Figure 39 

shows the nacelle fire zones. 

In considering advanced composite materials for nacelle construction 

applications the fire containment requirements must be carefully considered. 

With metal structure, the weight and cost penalties related to fire contain-

ment are fairly minimal; however, if the advanced composites must be 

overlaid with metal to provide fire containment, the weight penalties 

may be significant.
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The problem of fire containment was specifically investigated in the present 

study for the fan cowl door design. For the CF6 engine installation this 

door encloses the accessory zone where many of the ignition sources and a 

variety of flammable liquids are located. It has been recognized for some 

time that high silica glass is an excellent insulation material both 

electrically and thermally, though it has limited strength. The basic 

design of the composite fan cowl door was a honeycomb construction with a 

graphite skin on the interior side (the one that would be exposed to fire). 

Graphite has excellent strength characteristics at elevated temperatures 

but is destroyed by an oxidizing flame. The concept shown in Figure 33 

has four plies of graphite to meet the strength requirements of this door 

with an overlay of high-silica glass to prevent oxidation of the graphite. 

The certification requirement established by the FAA to demonstrate fire 

resistance is exposing the part to a l367°K (2000°F) flame for 15 minutes. 

For fire barriers the requirement is that no burnthrough occur. To test 

the concept developed for the fan cowl door, a one-foot square, one-inch 

thick sample panel was built up. An oxygen acetylene torch was used to 

provide the flame, adjsuted for a 1367°K (2000°F) temperature at the face 

of the specimen. The test setup is shown in Figure 40. 

Figure 41 shows the sample panel one minute after the start of the test. 

The epoxy resin system on the exposed face caught fire and continued to 

burn as long as the flame was applied or until all the epoxy resin in the 

area of the flame had burned out. An equilibrium condition was reached 

between 5 and 10 minutes after the start. Figure 42 shows the test article 

under stabilized conditions. Figure 43 shows the flame side and Figure 44 

shows the back side of the test specimen at the conclusion of the test. 

The white center portion on the flame side (Figure 43) is the bare 

unimpregnated high silica glass. There were no discontinuities, tears or 

breaks at any point in the area of the flame impingement. As can be seen 

on the back side of the panel, Figure 44, the Kevlar skins that would form 

the flow side, or outside part of the fan cowl door, were not penetrated. 

Throughout the duration of the test, the back side of the test panel was 

never more than just warm to the touch. The wrinkling that occurred in 

the specimen took place primarily during the cooldown after the test. 

It was felt that this test adequately demonstrated the feasibility of 
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meeting, with additional technology development, the fire barrier require-

ments of the fan cowl door. The tests also demonstrated that under some 

conditions, one ply of a high-silica glass would protect underlyiiiq strata 

of graphite from erosion. 

Each design case, however, has its own problems and must be treated 

separately. Under conditions of any adverse pressure differential across 

a panel which is perforated or porous on one side, the simple test method 

described above would not be adequate to demonstrate fire resistance. 

The nose cowl inner barrel is one example of a case in which the pressure 

gradient between the porous side and the impermeable side of the duct 

linings require a more-sophisticated design. Figure 30 illustrated two 

potential approaches to the design of a practical duct lining. Further 

analysis and experimentation will be required to develop the technology 

necessary to produce acceptable designs at minimum weight and cost. For 

example, methods of protecting graphite, other than with high-silica 

glass, may be preferable under some design conditions. There are also 

a number of other materials available that could be used in place of the 

high-silica glass.

5.12	 Sonic Fatigue Considerations 

As shown in Figure 45, the nacelle presents a significant challenge to 

materials from the standpoint of acoustically-induced fatigue. These sonic-

fatigue loads are much higher than those encountered anywhere else on the 

airplane. Sufficient information Is available (Ref. 13 and 14) to assure 

that advanced composites will have sonic fatigue resistance at least 

equivalent to the metal parts in current use. Analytical and experimental 

programs are underway to determine the analytical techniques needed to 

evaluate various types of advanced constructions using composite materials. 

5.13	 Strength Considerations 

Figure 45 also identifies some of the significant strength considerations 

that were applied in developing the concept for load-carrying, thin-wall 

composite structures featuring integral acoustic treatment. This integral 
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concept is , a key to meeting the weight-reduction goal that is vital to 

the viability of the long-duct, mixed-flow nacelle. 

	

5.14	 Environmental Considerations 

Another important consideration involved in developing design concepts and 

selecting materials for the nacelle is the operating environment. Figure 

46 indicates some of the design considerations that apply to nacelle 

components. Contamination from dirt, dust and other materials found in 

and around airports along with ice accretions, rain and wide ranges in 

temperature must be accounted for. These considerations are important in 

the selection of materials for a given application. For instance, the 

acoustical treatment in the nose cowl required porous or perforated sheets. 

Provision must be made to drain water or other fluids that pass through the 

porous face, to prevent failure of the panel as a result of freezing and 

to minimize potential corrosion problems. Also, many of the nacelle 

components, such as the core cowl doors, are subjected to relatively high 

temperatures during normal operation. 

	

5.15	 Fabrication Considerations 

An important element of the process of developing advanced composite designs 

is understanding the parts fabrication processes. Unlike the process of 

designing metal parts, a unique feature of advanced composite component 

design is that the designer must simultaneously design the material and the 

end part. Among the many factors that must be considered are: designing 

to accommodate the bonding together of pre-cured details vs co-curing the 

components of a complete part after assembly; how to provide the porosity 

when acoustic treatment is required; how to handle edge closures, fittings, 

doublers, and mechanical attachments; and whether to use unidirectional 

three-inch or twelve-inch-wide tape or the wider broadgoods which sacrifice 

some of the strength/weight ratio potential of composites in favor of 

speeding up the part lay-up process. 

Providing porosity for the duct linings in the inlet and exhaust passages 

in the nacelle is of special concern. Currently the perforated surfaces 
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used in bonded aluminum honeycomb require prepunched and stretch-formed 

face sheets. This method requires multiple fabrication steps and fairly 

close tolerance fitup between the face sheets and the core material, 

i.e., manufacturing procedures that entail high labor costs. Pre-curing 

of composite perforated face sheets dictates that balanced or fully symmetri-

cal laminates be used to avoid warpage. Balanced laminates in turn sacri-

fice some of the potential weight savings due to the number of extra 

plies required. 

Integrally woven acoustic core appears to offer a good solution to the 

cost and weight problem described in the previous paragraph, especially 

in the nose cowl. However, the integrally woven method is not free of 

draw-backs. For instance, producing a cured acoustic X- or truss-core 

requires installation and removal of a large number of mandrels needed to 

maintain the shape of core elements during the cure process. This use of 

mandrels dictates making provisions for adding closures and fittings after 

removal of the mandrels following the first cure cycle. Holding the 

number of cure cycles to a minimum is necessary to minimize the cost of 

advanced composite components. 

Use of a spiked mandrel has been shown by GE to be cost effective for 

producing perforated composite parts currently used in the CF6 fan discharge 

ducts. The process is applicable to productiOn-line procedures at that 

time, but only for fiberglass and has not been shown to be cost effective 

for either Keviar or graphite, especially for large double contoured 

components such as would be found in the WBT nacelles. 

Another promising concept for cost and weight reduction is the adhesive 

application process wherein a laminating type adhesive is used in place 

of laminating resins to eliminate the need for laminating resins and 

thus eliminate the need for separate adheseive films to save weight and cut 

down on the number of steps involved in laying-up the part. This process 

has been demonstrated with a certain degree of success by other companies 

with 3560K(1800F) cure temperatures, but additional technology development 

work is required to achieve acceptable flatwise tensile and climbing-

drum peel strengths at higher cure temperatures. In experimental composite 
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specimen programs, GE has found that good fillets could not be reliably 

achieved due to resin flow during the 394°K (250°F) cure cycle that was 

required. For a part such as the WBT fan cowl door, the weight savings 

from elimination of the adhesive film would be on the order of 11 kg (25 lb) 

[22 kg (48 lb) per nacelle]. Since the door weighs only about 50 kg (110 

lb), this represents a weight reduction of about 20%. However, for the fan 

cowl •door shown in Figure 33, standard adhesive films were used on both 

sides of the core, providing a conservative, low-risk design approach. 

6.0 ATT NACELLE CONFIGURATION 

6.1	 Study All Nacelle 

Previous NASA sponsored studies of the Advanced Technology Transport (ATT) 

made it possible to forecast some of the improvements possible for the 

propulsion systems in the next generation of transport aircraft. Among 

the improvements foreseen were: an integrated engine nacelle, hybrid 

inlet systems addressing both aerodynamic and acoustic requirements, improved 

thrust reverser systems which are lighter and more reliable, and the wider 

application of composite structure concepts in the low and medium tempera-

ture areas of the nacelle. Development of resin systems suitable for more 

elevated temperature applications than are currently achievable will be 

required to implement this concept. In addition, advanced engine-driven 

airplane-accessory concepts and arrangements and lower cost approaches 

to quick engine change units will be needed to reduce the cost of owner-

ship of future transport aircraft. 

The concept of the integrated engine/nacelle is one that offers a signifi-

cant improvement in propulsion system technology. The key feature is the 

use of the engine fan frame for external as well, as the internal aerodynamic 

flow path surfaces. Advanced composites were most applicable to this concept 

to reduce both the cost and the weight of the engine/nacelle package. 

The integrated nacelle concept is also attractive because it minimizes the 

nacelle cross sectional area, and because it would have thrust reverser 

systems with higher effectivenesses than those in service today at weight 
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penalties below the 25% of the basic engine weight typical of current 

high bypass ratio fan engine installations. The concept for the AlT 

nacelle used for this effort is shown in Figure 47. The nacelle incorporated 

a variable geometry hybrid inlet with a two-position throat for takeoff 

noise attenuation and acoustic treatment for suppressing landing approach 

noise. The fan frame was envisioned as a composite structure. Also 

shown is an advanced concept for a fan thrust reverser and an unconventional 

accessory arrangement with all the engine and aircraft accessories located 

atop the engine and on the pylon beam. The nacelle concept had a mixed 

flow system consistent with GE's Advanced Transport Study engines, all 

of which utilized this cycle. Stacked acoustic treatment designed to 

attenuate both the low and high frequency noise generated in the core and 

turbine sections would be built into the centerbody, within the internal 

mixer. The quick engine change (QEC) concept envisioned for the AlT 

nacelle is shown in Figure 48. 

The advanced composite fan frame constituted the basic structural component 

of both the engine and the nacelle. This concept was developed by GE, 

and is shown in Figure 49. The construction method for this component 

integrated wheel-and spoke-like structures with shear panels forming the 

flow passage surfaces. The structure would be reinforced in the rim and 

hub areas as needed to accommodate load concentrations. This design 

provided a light weight structure, capable of carrying high loads, that 

would be relatively easy to fabricate. This concept has been explored 

in depth by General Electric, and was a prime feature of the QCSEE engines 

and nacelles which GE is developing under contract to the NASA-Lewis. 

In addition to. the on-going work on composite static structures, GE is 

heavily involved in advanced composite programs for rotating engine parts. 

All-composite fan blades and other rotating components are under active 

development. 

The hybrid inlet selected for the ATT nacelle signifies an inlet combining 

both active and passive sound attenuation features. The active component 

was the variable geometry feature used to raise the throat Mach number to 

provide a high level of attenuation to the fan forward-radiated noise at 
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FIGURE 49.	 TYPICAL COMPOSITE FAN FRAME TRIMETRIC 

takeoff power settings. The passive component was the duct lining treat-

ment that would also serve to absorb forward-radiated fan noise at 

approach power settings. The inlet was designed to operate in two 

positions - one for takeoff and one for cruise. The takeoff position would 

produce a throat Mach number of 0.79 at the takeoff air flow condition. 

The inlet design characteristics are summarized in Table 11. 

Based on the results of previous tests on an inlet with similar design 

characteristics, the inlet for the AlT nacelle would also be expected to 

have excellent aerodynamic performance at the Mach 0.9 cruise condition 

required for this study. 

Figure 50 shows an advanced technology thrust reverser concept in which 

the entire reverser is contained within the outer wall of the fan duct. 

Among the advantages of this concept is that it enables the inner and 

outer cowls to be structurally and mechanically separated allowing significant 

weight reductions in both components and providing a clean low-loss fan 

flow passage.
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A tabulation of the AlT nacelle weight breakdown is given in Table 12. It 

can be seen that a significant improvement in installed thrust/weight ratio 

was offered with this design concept. 

TABLE 12. AlT NACELLE WEIGHT BREAKDOWN 


ENGINE WEIGHT 

ITEM WEIGHT -	 kg	 (1b) 

LOW PRESSURE SYSTEM 1143 (2520) 

HIGH PRESSURE SYSTEM 472 (1040) 

SUMPS, BEARINGS, DRIVES 288 (635) 
AND ACCESSORIES  

ENGINE TOTAL 1903 (4195) 

NACELLE WEIGHT 

hEll WEIGHT - kg	 (ib) 

INLET 207 (456) 

FAN REVERSER/COWL 446 (980) 

CORE COWL 38 (83) 

EBU 179 (395) 

•IIXER AND BULLET 88 (195) 

FINAL NOZZLE 44 (98) 

NACELLE TOTAL 1001 (2207) 

INSTALLATION WEIGHT 

ITEM WEIGHT - kg (lb) 

ENGINE TOTAL 

NACELLE TOTAL

1903 

1001

(4195) 

(2207) 

INSTALLATION TOTAL 2904 (6402) 

THRUST-TO-WEIGHT RATIO 

ITEM RATIO 

ARE ENGINE 

IINSTALLATION

7.15 

4.69
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6.2 AU Candidate Composite Materials 

The materials that were considered as part of the All studies are summarized 

in Table 13. As can be seen, higher temperature resins and fibers were 

included. It should also be noted that many of these materials were in the 

very early stages of development, and, for that reason, were not considered 

for the wide-body studies in this particular contracted effort. Many of the 

same basic construction techniques that were looked at as part of the WBT 

studies were also applicable for most of the ATT activities. The only 

radical departure for the AlT was the construction technique employed for 

the composite fan frame assembly. Since most of the composite components 

that made up the All nacelle represented adaptations of designs developed 

under related study contracts at GE (Reference 15) additional specific 

detailed designs for this particular study were not developed. Instead 

weights were estimated, along with costs, for the various components that 

made up the AlT nacelle. These were based on the relationship of the MT 

No. 4 engine thrust rating to other advanced engines on nacelle studies 

that have been reported through NASA and other government agencies. 

6.3 Baseline AU Component Noise Levels 

Hardwall (no acoustic treatment) component noise levels were provided by 

GE based on prediction methods for turbofan engine noise sources developed 

and refined over a period of years. These methods used measurements of the 

component noise sources from various full-scale engines and model-scale 

fan rigs. These prediction methods yielded spectra and directivity for 

far field noise levels from the various noise components (turbomachinery, 

core and jet noise) for a static engine. The static noise estimates were 

then projected to the desired flight conditions of Table 2, empirically 

accounting for the doppler shift in the spectra at each angle and the 

effect of forward motion on the amplitude of jet noise and on fan-inlet 

noise.
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TABLE 13. - AlT STUDY COMPOSITE MATERIALS 

USEFUL MAXIMUM TEMPERATURE MATERIAL	 USE 

RESINS: 

EPDXY	 LOW COST MATRIX 

POLYIMIDE (P.1.)	 ACCEPTABLE COST MATRIX 
FOR SLIGHTLY ELEVATED 
TEMPS. 

POLYMI DAZO-

	

	 POTENTIALLY ACCEPTABLE 
QUINAZOLINE (PIQ) COST MATRIX FOR HIGH 

TEMPERATURES 

FIBERS:

GLASS LOW COST MATRIX 

GRAPHITE HIGH STRENGTH AND 
STIFFNESS TO WEIGHT 

KEVLAR 49 HIGH TENSILE STRENGTH 

QUARTZ HIGH TENSILE AND 
COMPRESSIVE STRENGTH 

ALUM-30RSIC PRELIM. DATA INDICATES 
SILICA (ABS) HIGH TENSILE STRENGTH 

(DENSITY SLIGHTLY HIGHER 
THAN GLASS)

422°K (300°F) FOR 50,000 HOURS 

533°K (500°F) FOR 20,000 HOURS 

506°K (450°F) FOR 400 HOURS 
LABORATORY EXPERIMENTAL DATA. 

589°K (600°F) FOR 50,000 HOURS 

589°K (600°F) FOR 50,000 HOURS 

422°K (300°F) FOR 50,000 HOURS 

922°K (1200°F) LONG TERM LIFE 
UNKNOWN 

922°K (1200°F) LONG TERM LIFE 
UNKNOWN 

For the AlT, this procedure was the only feasible method since no actual 

flyover noise data were available, as in the case of the baseline WBT, to 

verify the prediction method. Based on previous experience, this rnethod'had 

been proven capable of generating reasonable predictions and was therefore 

expected to be suitable for estimating the baseline AlT noise levels. 

Figure 51 shows the peak PNLT and EPNL values calculated for the current 

FAR 36 takeoff and approach locations. The higher thrust-to-weight ratio 

for the AlT results in significantly greater height at the 6.48 km (3.5 n ml) 

takeoff point for this aircraft than for the baseline WBT. Thus, even 

without any acoustical duct linings, the baseline ATT design would meet the 

current FAR 36 takeoff noise requirements because of its height at the 

measurement location and because of the use of long-duct mixed-flow nacelles 

with a higher bypass ratio and a lower jet velocity than for the CF6-50C 

engines on the baseline WBT.
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At approach power settings, the level of non-propulsive noise was relatively 

low because of the low landing speed (compared to the landing speed of the 

WBT). The level of the fan-exhaust noise from the basic engine would be 

reduced by the incorporation of large spacing (about two fan rotor chords) 

between the fan and the straight (unswept) fan OGVs. The perceived annoy-

ance of the turbine noise would be minimized by using a large number of 

turbine rotor blades so that at the approach power setting the fundamental 

turbine-blade-passage frequency would be in the 1/3-octave band centered at 

6 kHz.	 Turbine blade loading at the approach power setting would be 

selected to reduce the strength of the turbine noise source. With all of 

these features, the baseline untreated ATT engine would meet the current 

FAR 36 noise requirements at approach as well as takeoff. 

At the takeoff power setting, the most-important noise sources were the 

turbomachinery noise from the fan exhaust and inlet ducts. At approach, 

the fan-exhaust, inlet and turbine noise would need suppression to achieve 

significantly lower noise goals than current Part 36 requirements. The 

NPI'I level was estimated to be only 8 EP1dB below the EPNL of the baseline 

AlT and thus a noise reduction of only 3 to 4 EPIIdB at approach was the most 

that could be expected from the addition of absorptive duct linings, unless 

the NPN level could also be reduced by application of some advanced 

technology. For the purposes of this study, no reduction in MPU was 

assumed.

6.4 ATT Noise Reduction Concepts 

Concepts considered for reducing fan and turbine noise are shown in 

Figure 52. The inlet duct had two special features. The variable-

geometry inlet would be designed to produce a throat Mach number of 0.79 

at takeoff airflow rates should yield large reduction in forward-radiated 

noise. The bulk absorber lining shown on the walls of the inlet inner 

barrel would reduce the forward-radiated noise at approach. 

The long fan-discharge duct incorporated phased (stepped) duct linings on 

the inner and outer duct walls. The cross-duct dimensions were kept 

relatively large so that the airflow Mach number would be as low as 
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feasible to minimize flow-noise generation over the linings and to 

maximize sound absorption. The phased treatment would be made from 

advanced light-weight composite materials integrated into the structure 

of the duct walls. 

Turbine noise treatment would be installed on the exhaust centerbody and 

on the wall of the mixed-flow nozzle downstream of the exit plane of the 

mizer nozzle. The centerbody treatment is labeled "stacked turbine - 

core treatment" to indicate a concept for simultaneously reducing both the 

8 kHz turbine noise and the low-frequency (typically 250 to 500 Hz) 

core noise, should core noise suppression be necessary. in the future. 

7.0 EVALUATION OF WBT NACELLE CONFIGURATIONS 


7.1	 Aerodynamic Performance Analysis 

7.1.1	 Introduction - Estimates were made of the internal and external 

performance changes for each of the nacelle configurations. 

The results shown in Table 14 were obtained by applying pressure loss/SFC 

and drag/SFC functions to installed engine cycle data. Figures 53 and 54 

show duct pressure losses and installation drags which have been accounted 

for. 

7.1.2	 External Performance - External nacelle pressure drag was estimated 

by a Douglas-developed (LID)eq method. Figure 55 shows the CD	 versus
7r
 P 

(L/ D )eq curve that was used. This curve is based on GE correlations of 

wind tunnel test data on TF39 and TF34 nacelles. The current CF6, short 

core cowl, and long duct nacelles of the present study have been spotted 

on the curve. 

External nacelle friction drag was based on constant Prandtl-Schlichting 

skin friction coefficient corrected for compressibility, supervelocity, and 

roughness. Estimated values of cruise pressure and friction drag are 

summarized in Figure 56. The pylon aero loss shown in Table 14 was also 

estimated by a Douglas-developed method. 
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TABLE 14.	 ESTIMATED CRUISE i.SFC (%) RELATIVE TO CURRENT CF6-50 

Conditions: Fn = 40 kN(9000 lb); Mach = 0.85; Altitude = 10668 m (35,000 ft) 

ONFIGURATIONS  

lB IC II 1	 IA 

EXTERNAL  

Skin Friction Ref. 0 0 0 +1.36 

Pressure Drag Ref. 0 +0.11 0 -0.17 

Interference Ref. 0 0 0 0 

Base Ref. 0 0 0 0 

Reverser Discontinuity Ref. 0 0 0 0 

Pylon Aero Ref. 0 -0.20 0 -0.20 

TOTAL Ref. 0 -0.09 0 +0.99 

INTERNAL 

Core Cowl Scrubbing Ref. 0 -0.214 0 -1.600 

Pylon Scrubbing Ref. 0 +0.004 0 -0.322 

Plug Scrubbing Ref. 0 -0.097 0 -0.097 

Core Duct Pressure Loss Ref. 0 -0.124 0 -0.035 

Core Lip Base Drag Ref. 0 0 0 - 

Core Divergent Section Loss Ref. 0 -0.046 0 - 

Fan Duct Pressure Loss Ref. 0 0 +0.33 +0.23 

Mixing Ref. 0 0 0 -2.64 

TOTAL Ref. 0 -0.477 +0.33 -4.41 

INSTALLATION WEIGHT CHANGE Ref. -0.596 -1.173 -0.344 -0.802 

TOTAL -0.60 -1.74 -0.014 -4.22
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-	 Dtotai = 2332 N 
(524 lbf) 

= 1000 N Dpressure	
(225 lbf) 

D  = 1282 N - 
friction	

(288 lbf)

P= 2282 N 
 -	 0total	

(513 lbf) 

Configurations I, IA, and IC

Configuration lB 

0pressure = 926 
N

(208 lbf)  

0friction = 1886 
N

(424 lbf)

= 2812 N 
lDtota1	 (632 lbf) 

Configuration II 

FIGURE 56.	 COMPARISON OF ESTIMATED NACELLE DRAG AT MACH 0.85 AND 10668 m 
(35,000 feet) 
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7.1.3	 Internal Performance - Fan and core duct-pressure losses used to 

compile Table 14 are summarized in Table 15. For configurations other 

than the baseline, the losses represent estimates based on the nacelle 

conceptual designs described in Section 5.2 and 5.3. That is, the short 

core nozzle geometry, mixed flow reverser hardware, mixer sidewall machining 

or treatment, etc. were not defined in manufacturing detail. The long-

duct losses shown are representative of the fan duct/mixer for nacelle 

Configuration II. In general, duct friction losses were estimated 

incrementally along the duct using local Prandtl-Schlichting friction 

coefficient; acoustic treatment loss was taken as 138% of smooth friction 

loss, and losses due to discontinuities were based on modification of 

current CF6-50 values and the methods of Reference 16 and 17. 

A mixing effectiveness of 65% was used in performance calculations on 

configuration II. Figure 57 shows the close geometric flow-line 

similarity between the selected mixer and a typical scale model. 

FIGURE 57.	 MIXER FLOW LINE COMPARISON 
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TABLE 15.	 ESTIMATED INTERNAL DUCT LOSSES 

Conditions:	 Fn = 40 kN (9000 lb) 

Mach = 0.85 

Altitude = 10668 m (35,000 ft) 

•

FAN DUCT LOSS  

APT/PT, 

CONFIGURATION  
I IA lB IC 1I 

Fan Frame Struts & OGV's 

Reverser 

Steps and Gaps 

Fan Frame Diffusion 

Boost Bleed Exit Doors 

Duct Friction 

Acoustic Treatment 

Splitter

.175 

.050 

.125 

.025 

.040 

.942 

.111 

0

- .205 

.050 

.171 

.025 

.040 

.874 

.387 

o .330 

Total Fan Duct Loss
	

1.468	 1.468	 1.468	 1.798	 1.752 

('flD flirT I nc 

Turbine Frame 

Reverser

.126 

.159

.126 

0

.126 

.159

.126 

0 

Steps and Gaps ** ** .044 ** .174 

Duct Friction .970 .744 .970 .624 

Acoustic Treatment of Chem-Mill .084 .115 .084 .298 

Mixer Supports
10

0 0 .030

Total Core Duct Loss	 1.339	 1.339	 1.029	 1.339	 1.252 

* Does not include friction loss in the area from mixing plane to exit. 
This loss is accounted for in the mixing effectiveness. 

** Included with reverser.
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Based on data from tests on this scale model, the interface area function 

(Figure 25) for the selected mixer indicates a mixing effectiveness higher 

than 65%. The 65% used in this study lies within Frost's data scatter 

and is therefore considered somewhat conservative. 

7.2	 Weight Reduction Potential 

Weight estimates were made for the various nacelle concepts studied. The 

weights were based on the drawings developed during the study and are 

listed by component in Table 16. As indicated by the tabulation, 

configuration 113 (separate flow exhaust with a short turbine exhaust duct 

and no turbine reverser) offered the greatest weight reduction. This 

concept was estimated to reduce the . weight of the three nacelles on the 

WBT by 959 kg (2118 lb). Configuration II was estimated to reduce the 

weight of the three nacelles by 656 kg (1449 lb), the second-best weight 

reduction for the four concepts developed in the study. 

As shown in Table 16, the composite core cowl doors for Configurations IA, 

IB, and IC weighed 72 kg (160 lb) while the comparable part for Configuration 

II weighed only 63 kg (138 lb). This was due to the difference in size for 

those two core cowl door designs, with the door for Configuration II 

being significantly smaller in diameter and only slightly longer. 

An additional weight estimate was made in order to determine the contribu-

tion of advanced composites to the overall appeal of the long-duct, mixed-

flow nacelle. This estimate was of an all-metal long-duct nacelle and the 

results of this analysis indicated that such a configuration would result 

in a 537 kg (1185 lb) per airplane weight penalty relative to the base-

line, or 1193 kg (2634 lb) penalty relative to the composite long-duct. 

A breakdown of the weights for that configuration is also shown in 

Table 16.

7.3	 Noise Reductions 

Evaluation of potential reductions in noise at the Part 36 locations and 

in the area around an airport began with estimates of the suppression of 

component noise. Suppression values for the effect of improved or 
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additional treatment were determined from data correlations developed 

from the results of previous model-scale and full-scale static tests as 

well as flight tests of high-bypass-ratio fan engine installations. All 

study nacelle configurations were assumed to have straightened fan OGVs 

and consequently all were credited with l-PNdB less noise from the fan-

discharge ducts at the approach and takeoff power settings compared with 

the fan discharge noise from the baseline WBT.short-duct nacelle. Noise 

reductions for the bulk absorber lining in the inlet duct were predicted 

from the test results given in Figure 15. 

Figure 58 shows the changes in inlet, fan-discharge, and turbine noise 

due to the bulk-absorber inlet treatment and the improved/additional 

treatment in the fan- and turbine-discharge ducts. At the takeoff power 

setting, Figure 58(a), the reductions in turbomachinery noise yielded 

only l-EPNdB reduction in airplane noise because of the controlling 

influence of the unchanged jet noise. The l-EPIldB reduction was estimated 

to be achieved by a shortening of the duration of the perceived noisiness 

of the total signal due to the lower level of turbomachinery noise as the 

airplane approached the microphone. 

For the maximum-flap appraoch case, Figure 58(b), the changes in turbo-

machinery noise for Configuration IA resulted in a 2-EPNdB reduction in 

airplane noise. To have achieved more noise reduction would have required, 

first, more inlet treatment (by lengthening the inlet or by adding acoustic-

ally treated splitters), and, second, the provision for more treatment in 

the fan- and turbine-discharge ducts. 

For the normal-flap approach case, Figure 58 .(c), the added or improved 

treatment did not give any reduction in airplane noise because of the high 

levels of turbine and non-propulsive noise. Some additional turbine noise 

reduction could have been achieved if more turbine acoustical treatment 

had been incorporated. The level of non-propulsive and core noise, 

however, would limit the airplane noise reduction at this flap setting 

no matter how much acoustical treatment was incorporated. 
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Noise reductions for nacelle Configurations lB and IC were the same as 

those estimated for Configuration IA. Configuration IC had more fan noise 

suppression than Configurations IA and lB but the same reduction in 

airplane noise because of the dominance of inlet noise for the 50-degree-

flap case on the one hand and turbine and non-propulsive noise for the 

35-degree-flap case on the other hand. At the takeoff condition, all short-

duct nacelles had the same jet noise and therefore the same total air-

plane noise. 

Component noise reductions for the long-duct mixed-flow Configuration II 

are shown in Figure 59. The changes in inlet noise were identical to 

those achieved by the short duct nacelles (Figure 58) because the same 

inlet was used. 

For the takeoff power condition, the lower velocity of the jet exhaust, 

coupled with the difference in the flow fields around the jet for the 

separate-flow and mixed-flow nacelles (the so-called relative-velocity 

effect during climbout), was estimated to be able to produce 3-PNdB 

lower jet noise at the same engine fan speed and distance. As shown in 

Figure 59(a), the 3-PNdB jet noise reduction yielded 4-EPNd[3 suppression 

of airplane noise after accounting for an improvement in duration due to 

the reduction in fan noise. With the l-PNdB credit for the straightened 

OGVs, the extensive treatment in the fan-discharge ducts was estimated 

to yield 8-PNdB reduction in fan noise at this takeoff power setting. 

At approach, the treatment in the long fan-discharge ducts did not yield 

large airplane noise reductions because of the relatively high levels of 

inlet and turbine noise. The limited amount of turbine noise treatment 

included in the design for nacelle Configuration II was estimated to 

reduce turbine noise by 1 PNdB at the 50-degree-flap condition with an 

accompanying reduction of 3 EPNdB in airplane noise, Figure 59(b). 

For the normal-flap case, the 3-PNdB reduction in inlet noise and the 

7-PNdB reduction in fan-discharge noise were offset by the lack of 

suppression in turbine noise and the relatively high level of non-

propulsive noise. The result was no change in airplane noise, Figure 59(c), 
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compared to the total airplane noise at this flap setting for the base-

line airplane with short-duct nacelles. 

These acoustical evaluations for the three study short-duct nacelles and 

the study long-duct nacelle are summarized in Figure 60. Noise reductions 

are for the IITOGW and MLGW conditions at the Part 36 locations. Approach 

noise reduction were those associated with 50-degree flaps. 

Changes in the area enclosed by the 90-EPNdB contour are shown in Figure 

61. These contours were calculated using the conditions of Table 1 and a 

corresponding straight-out takeoff flight path and straight-in 3-degree 

approach glideslope. The runway is shown schematically in the center and 

was assumed to be 3.66-km (12,000ft) long. The calculated values of the 

total enclosed areas and changes in area are indicated. For Configuration 

IA, the area reduction was about 4 percent. For Configuration II, the 

area reduction was a little more than 36 percent. Some additional reduc-

tion in enclosed area could be achieved by additional suppression of inlet 

and turbine nosie at approach. Significant further reductions in enclosed 

area, however, would require larger suppression of jet noise during 

takeoff.

7.4 Manufacturing Cost Analysis 

There is ample evidence that while traditional cost estimating techniques 

are good indicators of past experience and historical performance, these 

techniques do not provide adequate bench marks for cost projections or 

assessment of the impact of application of advanced technology materials. 

To adequately reflect these anomalies and account for the cascading 

beneficial effects of improvements offered with new design, material, and 

manufacturing concepts, assessments of specific applications were made 

rather than projecting generic applications in an across-the-board manner 

and then factoring from the conventional to the new concept. This 

discussion is not intended to discredit existing techniques; but, rather to 

provide visibility into what was considered a more appropriate approach. 
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The hardware acquisition costs for each candidate concept were derived 

using a comparative industrial engineering approach rather than traditional 

parametric costing for the reasons stated above. This is a standard 

methodology employed by Douglas for new concepts and specifically designated 

aircraft areas. It was used in order to be able to relate the costs to 

the specific detailed design, fabrication, and subassembly and component 

processing concepts. 

The Douglas cost analysis group and its support functions conducted a 

detailed analysis of the manufacturing cost estimating drawings. The 

format of these drawings provided sufficient information for estimators 

and planners to accomplish their tasks in a manner comparable to a 

production situation. With this type of format, drawings were released 

into the cost analysis information flow system depicted in Figure 10. 

Built into this system was a constant feedback approach wherein reviews 

and decisions were iterated among the various organization functions 

that contributed detailed information to the estimating process. In this 

particular study only the fan cowl door and the nose cowl and their 

respective conventional metal baselines were cycled through this procedure 

or system. In each case the composite designs were compared to the 

conventional metal designs that are part of the existing aircraft nacelles. 

The purpose of the process and the format of the drawings was to: 

• Identify manufacturing steps unique to the alternative design 

approaches 

• Develop a preliminary manufacturing plan 

• Identify tools, equipment and facilities 

• Identify, define and apply appropriate material and labor standards 

and allocations 

• Identify direct labor rates, burden and other factors to establish 

costs
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Cost was considered in this study as a critical system parameter and a key 

measure in assessing the potential of the design concepts. Therefore, 

visibility, consistency and realism were principal attributes of the 

costing approach in order to properly and equitably discriminate among the 

candidates and compare to the conventional baseline. A description of this 

methodology follows: 

A. Ground Rules and Assumptions 

1. Establish a practical set of ground rules and assumptions as a 

primary set of guidelines (see Table 17) 

B. General Information 

1. Determine total quantity of parts to be manufactured 

2. Determine number of releases 

3. Determine number of assemblies per release 

C. Determine Material Costs 

1. Determine materials types, form, weight and other quantity 

descriptors 

2. Assign material utilization factors to arrive at the material 

purchase quantity versus design weight (see Table 18) 

3. Apply material cost factors to quantity requirements 

D. Direct Production Labor Elements 

1. Develop operational sequence planning documentation - Advanced 

Bid Worksheets (See sample in Figure 11) 

a. Identify fabrication of detailed parts or component manufacturing 

b. Identify assembly of detailed parts to provide end item or 

component of end item 

2. Determine types and quantities of tools as well as design and 

fabrication labor, and tooling material costs - jigs, dies, fixtures, 

etc.
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TABLE 17.	 COST ANALYSIS GROUND RULES AND ASSUMPTIONS 

s Costs developed in constant 1974 dollars 

• Final cost outputs compared to a baseline configuration 

• Production quantity of 300 aircraft systems 

• Total of 15 releases for life of program 

s Total of 20 shipsets per release 

• Tooling established for a production rate of 5 shipsets per month 

• Labor rates Include direct labor, overhead and GM 

• Single manufacturer assumed 

• Production facilities and airline repair facilities assumed 

available (except for tooling) 

• Standard hours conform to Douglas Industrial Engineering standard 

rate guide 

• Direct operating cost based on updated 1967 AlA "Standard Method 

of Estimating Comparative Direct Operating Costs of Turbine 

Powered Transport Airplanes" 

• Airline operating economics limited to DOC computations - study 

constraint based on funding and time 
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3. Develop base standard hours for operational sequence to include 

set-up time and run time at unit 1100. 

4. Convert base standard hours to estimated actual hours which 

provide the amount of hours necessary to manufacture the item 

including all tangible and intangible operations (clean-up, 

performance, shop services, personal allowances, etc.) 

5. Project estimated actual hours to quantity requirements through 

progress curve application (fabrication curve, assembly curve or 

a combined curve). 

6. Convert manufacturing estimated actual hours to direct labor 

dollars. 

7. Determine manufacturing and tooling inspection hours as a function 

of the sum of fabrication/assembly and tooling hours. 

8. Determine fabrication and assembly and tooling planning release 

hours. 

9. Convert inspection and planning hours to direct labor dollars. 

10. Sum all production labor elements. 

With the approach described in the foregoing, the estimate for each 

element of the manufacturing discipline (labor, tooling, planning, inspec-

tion, etc.) was developed on its own merits from an industrial engineering 

standpoint. 

The manufacturing cost estimating procedure described in the preceding 

section was applied to the fan cowl door and nose cowl concepts developed 

in this study. A summary of the manufacturing costs of the composite fan 

cowl door relative to the metal baseline is given in Figure 62. As shown, 

the composite design provides a significant reduction in labor costs which 

is only partially offset by the increased material costs. Breakdowns of 

the labor and material costs relative to the metal baseline are summarized 

in Figures 63 and 64. Figure 63 shows that the composite fan cowl door 
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Cost of Advanced Composite Fan Cowl 
Door Relative to Baseline Metal Design 
(Per Door) 

Labor	 - $6710 
Material	 + $2763 
Total	 I	 - $3947 

FIGURE 62.	 FAN COWL DOOR RELATIVE COST SUMMARY 

Cost of Advanced Composite Fan Cowl 
Door Relative to Baseline Metal Design  
(Per Door) 

Recurring 
Manufacturing - $5077 
Planning - $ 424 
Tooling - $ 355 
Inspection - $ 433 

Total Non-Recurring - $ 421 

Total - $6710 

FIGURE 63.	 FAN COWL DOOR RELATIVE LABOR COSTS 

Cost of Advanced 
Door Relative to 
(Per Door)

Composite Fan Cod 
Baseline Metal Design 

Aluminum - $135 

Titanium - $ 218 

Adhesive - $	 6 

Steel - $	 36 

Honeycomb Core - $	 10 

Keviar -49 + $ 370 

Graphite + $2794 
Fiberglass And/Or Other + $	 44 

Total Recurring Material + $2803 

Total Non-Recurring Material -.$ 40 

Total + $2763

FIGURE 64.	 FAN COWL DOOR RELATIVE MATERIAL COSTS 

132 



is less labor intensive in all areas of production than the metal counter-

part. Figure 64 shows that the increased material costs arise primarily 

from the cost of graphite, which for this study was $177/kg ($77.50/ib), 

as previously shown in Table 18. The sensitivity of the cost of the 

composite fan cowl door to the cost of graphite is shown in Figure 65. 

This figure indicates that the composite door was less expensive than the 

metal baseline at all graphite costs below $412/kg ($187/lb). Since 

$177/kg ($77.50/ib) represented an accurate current cost of graphite based 

on inputs from a number of suppliers, the confidence level was high that 

the composite fan cowl door could be produced at a lower cost than the 

metal baseline.

Minimum Cost of 
Metal Desian 

Cost of  
 composite 

Design Graphite Must 
Cost $412/kg I 
(187/lb) for 
Door Costs to 

-k be Equal	 ____ I 
-

Current Cost I 
of Graphite 
$171/kg ($77.50/lb)

O 40 80 120 160 200 240 280 320 360 400 440 

Cost of Graphite - Dollars/Kilogram 

0	 0	 40	 60	 80	 100 120	 140 160 180 260 

1.0 

LA

0.8 
I-
0 
0

0.6 
1

0 
L)

0.4 
LL

Cost of Graphite - Dollars/Pound 

FIGURE 65.	 EFFECT OF COST OF GRAPHITE ON FAN COWL DOOR TOTAL COST 
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Figure 66 presents a summary of the manufacturing costs of the composite 

nose cowl (Figure 30, Configuration A) relative to the metal baseline. As 

in the case of the fan cowl door, the labor costs were substantially reduced; 

however, the material cost increases for the composite nose cowl nearly 

offset the labor cost reduction, resulting in a minimal total cost 

reduction. The breakdowns of the relative labor and material costs for 

the nose cowl are shown in Figures 67 and 68. Figure 67 indicates that 

labor costs for the composite nose cowl are lower In all areas except 

inspection. This increase in inspection requirements resulted primarily 

from the design of the acoustic inner barrel and the attach flange 

configuration. The material costs shown in Figure 68 are seen to be 

dominated by graphite, with the Keviar costs also making a sizeable 

contribution. 

As a result of the amount of effort required to obtain the cost estimates 

for the fan cowl door and nose cowl and because of the limited total scope 

of this study, the manufacturing costs of the remaining nacelle components 

were estimated by a simpler technique based on the weight breakdown for 

each part. Each remaining component was evaluated from the standpoint of 

its design and manufacturing complexity relative to the composite fan cowl 

door and nose cowl. The former represented the simplest composite part 

in the nacelle while the latter represented one of the most complex 

composite parts. A complexity factor was established for each of the 

remaining components relative to the fan cowl door and the nose cowl and 

that factor was used to modify the relationship of labor to material 

costs determined for the fan cowl door and nose cowl. In this way, the 

labor costs for the remaining nacelle components were established and the 

estimated total costs were determined by summing the material and labor 

cost estimates. It is recognized that the use of this technique represented 

a potential compromise in the accuracy of the results of the overall cost 

analysis. However, this compromise was considered minimal since all the 

components in question were similar in design concept and material choice 

to the fan cowl door and nose cowl. Also, the use of a complexity factor 

in this case was only to relate one composite design to another rather 

than to relate a composite design to a metal design. 

134



Cost of Advanced Composite Nose Cowl 
Relative to Baseline Metal Design  
(Per_Nose _Cowl) 

Labor - $6383 Each 

Material + $5403 Each 

Total - $ 980 Each 

FIGURE 66. NOSE COWL RELATIVE COST SUMMARY 

Cost of Advanced Composite Nose Cowl 
Relative to Baseline Metal Design 
(Per _Nose _Cowl) 

Recurring 
Manufacturing. - $3960 

Planning - $ 257 

Tooling - $1083 

Inspection + $ 403 

Total Non-Recurring - $1487 

Total - $6383 

FIGURE 67.	 NOSE COWL RELATIVE LABOR COST SUMMARY 

Cost of Advanced Composite Nose Cowl 
Relative to Baseline Metal Design 
(Per Nose Cowl) 

Aluminum - $1127 

Titanium - $ 320 

Adhesive - $ 387. 

Steel 0 

Honeycomb Core - $ 217 

Keviar 49 + $2023 . 
Graphite + $5476 

Fiberglass And/Or Other + $	 96 

Total Recurring Material .	 + $5546 

Total Non-Recurring Material - $143 

Total + $5403

FIGURE 68., NOSE COWL RELATIVE MATERIAL COST SUMMARY 
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An example of how this procedure was applied is described below. The fan 

cowl door weight was 49 kg (109 lb)/door and the costs were 44% labor and 

56% material. The nose cowl weight was 223 kg (491 lb), and the costs were 

split 69% labor and 31% material. For the aft fan duct (Figure 36), the 

weight was 86.5 kg (191 lb) per nacelle or 43.3 kg (95.5 lb) per duct half. 

Its complexity was roughly comparable to the fan cowl door, but acoustic 

treatment was required for the inner face. From the weight breakdown 

shown in Table 9, the material costs were estimated and a complexity factor 

was used to adjust the relationship of labor and material costs as 

appropriate. The labor costs were then determined and added to the material 

cost to get the total. For the metal final nozzle, the internal mixer, 

and the turbine nozzle/reverser, costs were obtained from GE or other 

suppliers of these types of metal nacelle components. 

A tabulation of the relative costs of each of the major nacelle components, 

as they apply to each of the nacelle configurations, is given in Table 19. 

The costs shown in the Table are all relative to the total cost of 

nacelle Configuration I. 

7.5	 Airplane Operational Economic Analysis 

For this study, direct operating cost (DOC) was used as the measure of 

the impact of advanced composite nacelles on airplane operating economics. 

The Douglas advanced design computer model of the 1967 (modified) AlA DOC 

formula was used for this study. Table 20 summarizes the major cost 

elements that make up the DOC analysis. A breakdown of the constants and 

variables that go Into those major cost elements is given in Table 21. 

The total nacelle costs that were used to construct Table 19, were also 

used as inputs to vary the airframe cost for the DOC study. The weight 

differences from Table 16 were used to vary the airplane empty weights and 

the outputs of the computer program described in Section 4.3.1 were used 

to vary the block fuel and block time values. DOCs were calculated for 

each of the five nacelle configurations at mission ranges of 3704, 7223 

and 9890 kilometers. The price of fuel was varied from $.035/liter 

($0.13/gallon) up to $0.175/liter ($0.65/gallon). 

136



Ln 

LLJ 

cm 

LLJ 

LU 

I-

LJ 
-J 

I-

,-

C"J 
c 
.— 0

c)
0 

Cl

('.1 

0

•
< 

•
co 
0

0 N. 
N. 

• • • • • x • 

L) 
•

(\J 
C)

•

qdl 
0 

.

N. 
Lt) 

•

() 
0 

•

• 
< 

• 
rr

ci 

C\J 
•

• 

• cc 
• 

C\j • cQ • 
c 
I—

 c

•
0 

• •
0 

•

c
• 

, z

cc 
0 

•
• N. 

• 

' 
•

c, 

•

mt 
CD 

•

I!) 
- 
• 
•

0 
•

• 
< 

•

O 
c.'J 
C .J 

•

• 
< 

• 
=

cc 
• 

U) M • O • O 
'0 cc cc ci . 0 

___
•

0 
•

4cr
•

0 
•

• 
=

C'J 
•

• 
z — 

a, 
11 

5-
a, 
> 
U 

.I-
4J C 

5- I-

•'- S..

3 
0 

C.)

4J 
0

a, 
N

0 

,-

C 
o .- 

o 
(_,

3 
0 

c.

a, 
(fl 
S.. 
0) 
> 
0)

0) 
S.. 
0 

C.) 
5-

0 

C 
( 

U.. 

1.

N 
0 

U 
C 

•

-
C 
to 
I-

-J 

C 
I—

a, 
(fl C C

' 
C

w 
4-'

.o 
L.

w 
)C 

o 5 
U. U.

C
CD

137 



TABLE 20. DIRECT OPERATING COST ELEMENTS 

• Crew 

• Insurance 

• Airframe Maintenance 

• Labor 

• Material

• Depreciation 

• Fuel 

• Engine Maintenance 

• Labor 

• Material 

TABLE 21. DIRECT OPERATING COST CONSTANTS AND VARIABLES 

Crew	 ........... 10GW, Crew Complement, Block Time 

Insurance	 ......... Annual Rate, Aircraft Price, Utilization, 
Block Time 

Depreciation	 ....... Residual Value, Spares Factor, Deprecia-
tion Period, Utilization, Block Time, 
Aircraft Price 

Airframe 

(Labor)	 ......... Empty Weight Less Engines, Ground Maneuver 
Time, Block Time 

(Materials)	 ....... Aircraft Price Less En gines, Ground 
Maneuver Time, Block Time 

Engine Maintenance 

(Labor)	 ......... SLS Thrust/Enaine, Number Engines, Block 
Time, Ground Maneuver Time 

(Materials)	 ....... Price Per Engine, Number Engines, Block 
Time, Ground Maneuver Time 

Fuel	 ........... Fuel Price Per Gallon, Block Fuel
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Figures 69, 70 and 71 show the relative DOGs for each of the configurations 

at the three mission ranges and at three fuel prices. In each case, the 

DOC of the baseline configuration is unity and the other configurations are 

shown relative to the baseline. In all cases, the DOC of the Configuration 

II long duct nacelle is at least 2% lower (better) than the baseline. 

Figure 72 shows the distribution of DOC elements at the three study 

mission ranges for nacelle Configuration II and two fuel prices. Of 

significance in these figures is the contribution of fuel cost to total 

DOC, roughly 35% at $0.07/liter ($0.26/gallon) and increasing of 50 to 

55% at $0.14/liter ($0.52/gallon). The primary source of reduced DOG for 

Configuration II, as shown in Figures 69 through 71, was from the reduced 

fuel consumption for that configuration. For example, at the 9890 km 

(5340 n ml) range, fuel price made up 38.7 percent of DOC at $0.07/liter 

($0.26/gallon) for the baseline but dropped to 37.6 percent for Configuration 

II. 

Table 22 presents a summary of the contribution of fuel cost to total DOG 

at the three mission ranges for fuel prices from $0.035/liter to $0.175/ 

liter for the baseline, and Table 23 presents a similar summary for 

Configuration II. 

Figure 73 shows the sensitivity of DOC to changes in fuel consumption, 

maintenance factor, and airplane price. These three variables represent 

the only major areas in which the composite nacelle was expected to have a 

significant cost impact and the ranges of those variables are the greatest 

that could be expected to accrue from changes to the nacelle involving 

advanced composites. 

As shown in Figure 73, DOC exhibits the greatest senstivity to changes 

in fuel consumption over the range expected to result from the long-

duct nacelle and the least sensitivity to changes in airframe price, 

the area where the advanced composite nacelle was expected to have the 

lowest relative effect.
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TABLE 22. 

FUEL CONTRIBUTION TO DIRECT OPERATING COST FOR GIVEN RANGES 


PJID FUEL PRICES FOR BASELINE NACELLE CONFIGURATION 

FUEL 
PRICE

FUEL CONTRIBUTION TO DIRECT OPERATING COST - PERCENT 

3704 km 7223 km 9890 km 
$/liter	 ( '$/gal) (2000 nrni) (3900 nmi) (5340 nmi) 

.03	 (.13) 20.7 22.5 24.0 

.07	 (.26) 34.3 36.7 38.7 

.10	 (.39) 43.9 46.5 48.6 

.14	 (.52) 51.0 53.7 55.8 

.17	 (.65) 56.6 59.2 61.2 

TABLE 23. 

FUEL CONTRIBUTION TO DIRECT OPERATING COST FOR GIVEN RANGES 


AND FUEL PRICES FOR NACELLE CONFIGURATION II 

FUEL 
PRICE

FUEL CONTRIBUTION TO DIRECT OPERATING COST - PERCENT 

3704 km 7223 km 9890 km 

$/liter	 ($/gal) (2000 nmi) (3900 nmi) (5340 nmi) 

.03	 (.13)

-

20.1 21.9 23.1 

.07	 (26) 33.4 35.9 37.6 

.10	 (.39) 42.9 45.6 47.4 

. 14	 (.52) 50.1 52.8 54.6 

.17	 (.65) 55.6 58.3 60.1
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7.6	 Fuel Savings Analysis 

The airplane performance computer program described in Section 4.3.1 was 

used to conduct the fuel savings analysis. The internal and external 

aerodynamic performance analyses described in Section 7.3 provided the 

inputs for varying the cruise fuel consumption of the basic airplane. 

The results of the weight estimates were used to vary the airplane empty 

weight for the various configurations. The baseline airplane was flown at 

the base empty weight and cruise specific fuel consumption over the mission 

ranges of interest and at a variety of cruise profiles. A fixed payload of 

25,107 kg (55,350 lb) was used for all missions. The most fuel efficient 

profile for each of the three mission ranges was selected and the remaining 

study nacelle configurations were flown at the same profiles. For example, 

at 7223 km (3900 n mi), the most fuel-efficient fligh profile for the 

baseline airplane at which the full payload could be carried was an 

initial cruise altitude of 10058 m (33,000 ft) with a step climb to 11278 m 

(37,000 ft). Therefore, the other configurations used this same profile. 

The result of this analysis was the tabulation in Table 24, of block 

fuel usage for each configuration at the three mission ranges. Since 

Configuration II offered the greatest block fuel reductions for each of the 

three ranges, the remainder of the fuel savings analysis concentrated on 

that configuration. 

Tabulated values of block fuel usage for Configuration II were used to 

construct the curve of Figure 74. This curve shows the reduction in block 

fuel for Configuration II, relative to the baseline, as a function of 

mission range. To determine the total annual fuel savings for one wide 

body trijet, the assumed annual utilization, which for this study was 3800 

hours, was divided by the block time for a specific mission range. For 

example, the block time for the 7223-km (3900-n mi) mission was 8.65 hours, 

or 439 theoretical 7223-km (3900-n mi) trips per year. Multiplying the 

number of trips (blocks) by the fuel savings per trip yields the total 

annual fuel savings per wide body trijet. Repeating the procedure for 

the 3704 and 9890 km (2000 and 5340 n mi) missions yielded the curve in 

Figure 75, using a fuel density of 0.779 kg/liter (6.5 lb/gallon). 
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Since this study looked at the costs and benefits of advanced composite 

nacelles on newly-produced wide-body transports, no retrofit was considered 

for airplanes already in service. Newly produced aircraft can be reasonably 

expected to have useful lives of at least 15 years. Therefore, the fuel 

savings that could be expected over the life of a newly produced wide body 

with a composite long-duct nacelle would be, conservatively, 15 times the 

annual fuel savings. A sample calculation for block, annual, aircraft 

life and representative fleet size fuel savings is shown in Figure 76. 

During the years 1973 and 1974 9 a total of 238 wide body transport aircraft 

were delivered for an average of 119 aircraft/year. If the technology 

identified is delayed in reaching production acceptance by one year, and 

the 119 aircraft/year production rate continues, the $200M figure calculated 

in Figure 76 represents the average resulting loss in potential fuel 

consumption savings per year. 

Since the cost of jet fuel can be expected to rise well above $0.07! 

liter ($0.26/gallon), as indicated in Table 25, the $200M fuel savings 

value is considered conservative and could easily reach or exceed $400M, 

per year of delay of introduction of this technology into commercial service. 

8.0 EVALUATION OF All NACELLE CONFIGURATION 

8.1	 AlT Nacelle Weight 

For the ATT nacelle, an analysis was made to determine the contributions 

of the integrated nacelle concept and the application of advanced composites 

to the total nacelle weight. This analysis was conducted by comparing the 

ATT bare engine and installed thrust-to-weight ratios to the equivalent 

CF6-50 values as shown below. 

A. Basic AlT #4 engine thrust/weight = 133.5 kN (30,000 lb)/1900 kg (4195 lb'.! - 

= 7.15 

B. Installed AlT #4 thrust/weight	 = 133.5 kN (30,000 lb)/2904 kg (6420 lb) 

= 4.69 
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For an aircraft mission of 7223 kilometers (3900 nautical miles), the 

study WBT baseline aircraft has the following characteristics: 

Operating empty weight	 -kg (lb)	 118,585 (261,431) 

Takeoff gross weight -kg (lb) 220,358 (485,799) 

Landing gross weight -kg (lb) 155,680 (343,209) 

Cruise fuel consumption Base 

Total fuel burned -kg (lb) 65,278 (1439911) 

Fuel reserves -kg (lb) 11,988 (26,429) 

Total fuel carried -kg (lb) 77,112 (169,999) 

Block time -hours 8.65 

Change to the airplane for the same mission with the Configuration II 

nacelle include: 

Operating empty weight 	 -kg (lb)	 117,928 (259,983) 

Takeoff gross weight	 -kg (lb)	 216,350 (476,962) 

Landing gross weight	 -kg (lb)	 154,565 (340,752) 

Cruise specific fuel consumption 	 -3.42% 

The computer printout for this mission with the modified nacelles showed 

the following: 

Fuel burned	 -kg (lb) 62,384 (137,531) 

Reservefuel	 -kg (lb) 11,531 (25,420) 

Total fuel carried 	 -kg (lb) 73,760 (162,610) 

The block fuel (fuel burned) change for this mission is therefore: 

65,278 kg (143,911 lb) 
- 62,384 kg (137 9 531 lb) 

2,894 kg (6,380 lb)

FIGURE 76.	 SAMPLE FUEL SAVINGS CALCULATION 
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The annual fuel savings for this same mission can be determined as follows: 

Annual utilization
	

3800 hours 

Block time
	

8.65 hours 

The theoretical number of flights of this length that could be made is 

therefore: 

3800	 8.65 = 439 

For this number of fli ghts, the annual fuel savinas becomes: 

439 flights x 2894 kg (6380 lb)/flt = 1,270,466 kg (2,800,820 ib), or 

1,630,937 liters (430,895 gallons) 

The corresponding values for 3704 km (2000 nmi) and 9890 km (5340 nmi) are 

shown below: 

3704 km	 Block fuel savings: 

Total annual flights: 

Total annual savings: 

9890 km	 Block fuel savings: 

Total annual flights: 

Total annual savings:

32,299 - 31,012 = 

3800 4.64	 = 

1.287 x 819	 = 
0.779 'kci/llter 

94,785 - 90,289 = 

3800	 11.65	 = 

4496 x 326	 - 
0.779 kg/liter	 -

1,287 kci 

819 

1,353,085 liters 

4496 kg 

326 

1,881,509 liters 

Fifteen year fuel savings using 7223 km as the average mission would therefore 

be:

1,630,937 liters (430,895 gallons)/year x 15 years = 

24,464,055 liters (6,463,425 gallons) 

The total fuel savings for one year's production of wide body aircraft at 
the 1973-1974 average rate, for the total 15 year expected lives of those 

aircraft would be: 

119 aircraft x 24,464,055 liters (6,463,425 gallons) = 

2,911,222,545 liters (769,147,575 gallons) 

At a fuel, cost of $0.07/liter ($0.26/gallon), this potential savings becomes: 

2,911,222,545 liters x $0.07/liter (769,147,575 gallons x $0.26/gallon) 

= $199,971,876 for one year's production of wide body aircraft over 

the total lifetime of those aircraft. 

FIGURE 76. SAMPLE FUEL SAVIN(S CALCULATION (CONCLUDED) 
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C. CF6-50C bare engine thrust/weight = 222.5 kN (50,000 lb)/3823 kg (8440 lb) 

= 5.924 

D. Configuration II composite nacelle 
thrust weight	 = 222.5 kN/3823 kg + 1212kg 

= 4.498 

E. Configuration II metal nacelle 
thrust weight	 =222.5 kN/3823 kg + 1619 kg 

= 4.162 

If the ATT #4 engine and nacelle did not employ the integrated design 

concept, but did utilize advanced composites, a thrust/weight ratio of 

4.498 (from item 0 above) could be expected. The resulting nacelle 

weight would then be as follows: 

133.5 kN/4.498 = 3022 kg - 1900 kg (engine) 

= 1121 kg nacelle only 

The AlT no. 4 integrated nacelle weight was shown in Table 12 to be 1000 kg. 

The weight savings from the integrated design concept, therefore, was 1121 kg 

minus 1000 kg, or 121 kg (267 lb) total. 

The AlT nacelle without composites and without the integrated design 

concept could be expected to have a thrust/weight ratio similar to the 

CF6-50C in a metal long duct nacelle, or 4.162 (Item E). The weight of the 

ATT nacelle in that case would be as follows: 

133.5 kN/4.162 = 3265 kg - 1900 kg (engine 

1365 kg - 1000 kg = 365 kg (805 lb) 

Therefore, the composite, integrated nacelle design concept for the ATT 

no. 4 engine installation is worth 365 kg (805 lb) compared to a conventional 

installation design using conventional metallic hardware. In addition, 

substitution of a fixed geometry inlet for the variable geometry inlet used 

in this study would increase the 365 kg value by 50 kg. 
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8.2	 Noise Reductions 

Evaluation of the acoustical treatment Installed in the long-duct mixed-

flow nacelle around the GE All no. 4 engines followed the methodology of 

the WBT nacelle evaluations. Figure 77 shows the reductions in the 

component noise levels that were estimated relative to the levels for 

the hardwall nacelle. 

At takeoff, Figure 77(a), the high-throat-Mach-number inlet and long 

treated fan-discharge duct combined to achieve a 6-EPNdB reduction in 

airplane noise at the 6.48-km (3.5 n mi) point. At approach, Figure 77(b), 

the bulk-absorber inlet linings, and the advanced fan-discharge and turbine 

treatments combined to reduce the airplane noise by 5 EPNdB to a level of 

95 EPNdB, or only 3 EPNdB above the estimated level of non-propulsive 

noise. 

The estimated 12-PNdB reduction in inlet noise at the takeoff power setting 

was based on test results provided by GE and shown in Figure 78 for an 

All-type single-stage fan. The results were calculated in terms of the 

peak perceived noise level on a 152.4-rn (500 ft) sideline as a function of 

average throat Mach number. At the design throat Mach number of 0.79 

during climbout, the projected noise reduction for the hybrid inlet was 

12 PNdB or much more than could be obtained solely from acoustical treatment 

on the wall of the inlet duct. The high attenuation valves achieved 

justified the selection of the variable-geometry inlet. 

Comparisons of 90-EPNdB contours are shown in Figure 79. For reference, 

the All contour is compared to that produced by a current 2-engine WBT 

airplane. There was almost a 60-percent reduction in enclosed area 

relative to the contour area for the current 2-engine WBI airplane. 

For this specific aircraft design, these low community noise levels 

would represent a tremendous improvement in the state of the art. 
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8.3 AlT Nacelle Manufacturing Cost 

A detailed manufacturing cost analysis of the All nacelle was not conducted 

as part of this contracted effort for a number of reasons. In the first 

plce, the study of reference 15 looked in great detail at the manufacturing 

costs associated with a similar design concept. Second, the development 

of a "baseline" metal design was not considered within the scope of this 

study and the lack of a suitable baseline did not permit comparisons to 

be made to establish the benefits of advanced composites for the selected 

nacelle. Third, it was felt that the results of the manufacturing cost 

analyses conducted for the WBT portion of the study would entail less 

uncertainty and could be considered representative for future All work. 

Finally, at the mid-term oral review, when it became evident that there 

was significant potential payoff to the WBTs from the application of advanced 

composites in nacelles, it was mutually agreed between NASA and Douglas 

to de-emphasize the AlT portion of the study and concentrate on the WBT 

activities. It should be noted, however, that the technology employed 

in the AlT nacelle design is similar to that being pursued on the NASA-

Lewis QCSEE program. The hardware development involved in the QCSEE 

program should provide a substantial basis for cost projections of these 

more-advanced composite nacelles. 

8.4 AlT Airline Operating Economics 

As was the case for the WBT, DOC was used as the measure of airline 

operating economic impact of the AlT nacelle. However, since the AlT 

nacelle and airplane were single-point designs, no comparative DOG analyses 

were made. The analyses that were conducted used the Douglas Advanced 

Design computer DOG program and appropriate inputs on airframe costs from 

a Douglas parametric prediction method. This method yielded price levels 

of advanced airframe designs by taking into account such factors as 

empty weight, technology level, engine type and estimated cost, and 

expected time frame for introduction into service. Costs of the AlT no. 4 

engines were obtained from GE. The DOG analyses were made for mission 

ranges of 926 and 5556 km (500 and 3000 n ml) for the basic design. 

Sensitivity of DOG to changes in nacelle weight (+25 1/0) and nacelle cost (+25%) 
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were also conducted for the two ranges. Figure 80 shows the distribution 

of DOC by element at 926 and 5556 km for fuel prices of $0.07 and $0.14/liter 

($0.26 and $0.52/gallon). The sensitivity of DOG to nacelle weight and cost 

changes is shown in Figure 81 for 926 km (500 n mi) and Figure 82 for 5556 km 

(3000 n mi).

9.0 WBT RESEARCH AND TECHNOLOGY RECOMMENDATIONS 

These studies conducted for the NASA showed that the long-duct mixed-flow 

nacelle, fabricated with advanced composites, would reduce fuel consumption 

through performance improvement and weight reduction technology. The noise 

reduction possibilities can allow quieter aircraft, or more fuel efficient 

derivative aircraft without increasing noise. 

The cost-benefit analysis evaluation of nacelle design concepts showed that 

significant reductions in fuel consumption and noise were possible because 

the weight advantage of advanced composites made a long-duct mixed-flow 

nacelle with the attendant additional/improved acoustical treatment a 

practical consideration. The benefits were identified by conducting multi-

disciplinary studies in consonance with the needs expressed in Reference 4 

where Dr. Alan Lovelace pointed out that future use of composites demands 

integration of several technologies. The conceptual design studies reported 

herein showed that cost effective acoustical-treatment and propulsive-

efficiency improvements could be achieved through the synergistic effects of 

integrating propulsion, acoustic, aerodynamic, structure and manufacturing 

technologies. 

Specifically, the studies showed that fuel consumption, noise, weight and 

cost could be reduced by designing the engine nacelle around advanced com-

posites. The long-duct mixed-flow concept showed the most promise for improved 

SFC and noise reduction; however, application of advanced composites also 

improved the performance of short-duct designs for the baseline WBT. Both 

the weight savings, and the expected manufacturing cost reductions will be of 

major importance to applications of this advanced technology. Without the 

weight and cost advantages offered by the application of advanced composites, 

the adoption of a long-duct nacelle would increase both the selling price 
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and empty weight of the airplane, both of which are detrimental to acceptance 

of the technology. 

The final tasks addressed In this study were (1) identification of areas 

where technology development was required before acoustic-composite materials 

could be applied to the eventual manufacture of nacelles on future newly 

produced derivatives of current WBT airplanes and (2) recommendation of the 

research and development programs needed before acoustic-composite nacelles 

could be used in airline operations. In addition, descriptions are given for 

the full scale testing needed to demonstrate that the predicted performance 

improvements and noise reduction are realized and that composite structural 

durability and maintainability suitable for airline service is achieved. 

Actual public benefits require instilling prior confidence in the aviation 

community before the technology benefits would be accepted for commercial 

aircraft. 

The recommended objectives for a follow-on technology program in line with 

fuel conservation national priorities and other social and economic needs 

are shown in Figure 83. 

FIGURE 83. ADVANCED ACOUSTIC COMPOSITE NACELLE 
PROGRAM OBJECTIVES 

• Maximum Benefits from Advanced Nacelle Composites through Integration 
of the Technologies 

• Technology Advancements in Order of Priority: 

• Fuel Savings . . . . . . . . . . . . . National Priority 

• Weight Reduction l 

• Noise Reduction . . . . . . . .. . . . Social and Economic Needs 

• Cost Reduction 

The program recommendations are made for a minimum program that establishes 

limited technology goals and an expanded program that encompasses convincing 

technology demonstrations.
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9.1	 Basic Areas for Technology Development and Demonstration 

Realizing the maximum benefits from the new technology identified in this 

study requires technology development in the five major areas shown in 

Table 26. In the area of performance, it must be demonstrated that the 

long-duct nacelle will produce lower installed drag and that improved pro-

pulsive efficiency will result from mixing the fan and turbine exhaust 

streams.

TABLE 26.	 NEW TECHNOLOGY REQUIREMENTS 

Installed Performance 

o Reduce Drag with Long Duct Nacelle 

o Improve Propulsive Efficiency with Mixer Nozzle 

Noise 

o Reduce Jet Noise during Takeoff with Mixer Nozzle 

o Improve Inlet Noise Suppression during Approach with Bulk Absorber 

o Improve Fan and Turbine Noise Suppression during Approach with 
Increased Treated Area and Improved Treatment 

Fabrication 

o Reduce Weight Using Advanced Composites 

o Reduce Component Fabrication Costs by Simplified Construction 

Fire Resistance 

o Burnthrough Resistance for All Applicable Nacelle Components 

Durability and Maintainability 

o Maintain or Reduce Current Maintenance Costs by Durable Constructions 

In the area of noise, flyover noise tests must be conducted to determine 

whether the noise reductions that have been estimated analytically for the 

long-duct mixed-flow nacelle will occur in practice. The principal objec-

tive is demonstration of the reduction in jet noise at takeoff power during 

climbout, although demonstrations are also required of the reductions in 

turbo-machinery noise during the landing approach. These tests would be 
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structured to determine the effectiveness of a bulk absorber in reducing 

inlet noise, the effect of turbine treatment on high-frequency turbine 

noise, and the effect of the internal mixer, and mixed-flow exhaust system, 

on the generation and propagation of turbine noise and noise generated 

in the wake behind the exhaust nozzle. 

In thearea of fabrication, full-size acoustic-composite nacelle components 

must be designed and built to validate that the reductions in weight and 

costs that were estimated can be realized with composite materials. 

Fire burnthrough resistance technology for the advanced composite materials 

is needed. The initial flame exposure tests conducted as part of Task IV of 

this study, and described in Section 5.11, provided encouraging results. The 

FAA fire burnthrough resistance requirement of 15 minute exposure to a 1367°K 

(2000°F) flame was met by static composite specimens bonded with polymer 

resins. Further, more-comprehensive technology development is required to 

ensure that composite parts subjected to pressure loads and in an aerodynamic 

flow-field, can be satisfactorily developed to pass the same requirements. 

Since nacelle structural components are expected to endure the life of the 

airframe (50,000 or more hours), durable and maintainable composites are 

necessary. In-service evaluations are required to show .that maintenance 

costs associated with the use of advanced-composite nacelles will be equal 

to or lower than those of the metal nacelles currently in airline service. 

Without such substantiation, excessive financial risk is involved in use of 

advanced composites. 

A summary of the technology needs and verifications required to provide 

confidence in the technology is given in Table 27. Full-scale tests are 

considered essential for final substantiation of new technology. 

9.2	 Choice of Airplane for Technology Demonstrations 

An advanced medium-range transport is generally forecast to be the next 

airplane configuration to be developed. The timing of its introduction into 

airline service is not expected before the end of this decade, and it is 

commonly expected that some versions will be powered by one of the new 
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"ten-ton" engines, such as the CFM International CFM56 (or P&WA JT100). 

These engines are in the 90 to 135 kN (20,000 to 30,000 lb) thrust range 

class and have bypass ratios of 5 to 6. Additional performance benefits 

related to the use of a supercritical airfoil for the wing, toleration of 

reduced static stability through the use of active control systems, composite 

structures, and advanced acoustic-composite nacelles may provide the impact 

on selling price and DOC needed to offset inflationary pressures on construc-

tion and operating costs. Meanwhile, the most likely application of technology 

advancements will be for the improvement of current wide-body transports,. 

Reference 2. Replacements for these aircraft are not forecast before 1985, 

and during this interim period, the introduction of growth or advanced 

versions of these airplanes is expected. Thus, as summarized in Table 28, it 

is logical to develop and demonstrate technology advancements using a WBT 

as the basis. Having done this, the technology would be available and timely 

for application to the all-new, advanced medium-range transport. The fabrica-

tion of the large parts needed for the WBT airplane is expected to present 

more of a challenge than will be the case with the new medium transport. 

Thermal expansion problems compound with size. Thus, if the technologywere 

developed for smaller size engines, it might not directly apply to the WE3T. 

TABLE 28. - TECHNOLOGY UTILIZATION IN 1980s 

APPLICATION	 PROBABILITY OF USE	 COMMENTS 

RETROFIT	 VERY LOW	 o REQUIRES SCRAPPING GOOD HARDWARE 

o TIME IS REQUIRED TO PHASE IN WHILE 
USEFUL AIRFRAME LIFE IS DECREASING 

NEWLY PRODUCED NARROW 	 LOW	 PRODUCTION PHASE OUT EXPECTED 
BODY TRANSPORTS 

NEWLY PRODUCED CURRENT
	

MEDIUM	 PROBABILITY WOULD BE HIGH IF CURRENT 
WIDE BODY TRANSPORT
	

CONFIGURATIONS PRODUCED RATHER THAN 
DERIVATIVES 

NEWLY PRODUCED DERIVATIVES	 VERY HIGH 
OF CURRENT WIDE BODY 
TRANSPORTS 

NEW ADVANCED MEDIUM RANGE 	 VERY HIGH 
(NARROW BODY) REPLACEMENT

PROBABLE CONFIGURATION OF NEWLY 
PRODUCED WBT TRANSPORTS 

REQUIRES USE OF ADVANCED TECHNOLOGIES 
TO BE ECONOMICALLY VIABLE 
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9.3	 Choice of Engine for. Technology Demonstrations 

All the successful transports produced so far have undergone growth in 

range and/or payload during their production life, and thus have created 

a requirement for more takeoff thrust. With turbofan engines, the thrust 

growth has been obtained by increasing turbine inlet temperature and decreasing 

bypass ratio. The effect of these changes has been reflected in increases in 

airport community noise levels, especially jet noise during takeoff. 

Future versions of current WBT aircraft will likely be powered by engines 

having even more thrust than the most-powerful engine available today (hence 

trending toward increased noise during takeoff) and will likely land at 

weights exceeding the heaviest currently certified (hence trending toward 

increased noise during landing). If the takeoff and landing noise reductions 

predicted for the long-duct mixed-floW nacelle can be demonstrated on a 

growth version of the WBT engine, it will provide confidence that growth 

versions of WBT aircraft can be developed that generate no more, and 

possibly less, noise during takeoff and landing than do the current WbT 

airplanes. Thus, application of these technology advancements promises 

that the air transportation system can offer both quieter and more efficient 

service by further reducing airport community noise levels and the energy 

expended per seat-mile flown. 

9.4 Fundamental Objectives of Full-Scale Program 

The flight test program must be structured to demonstrate the actual noise 

reduction attributable, to using mixed-flow nacelles on a wide body transport 

aircraft and whether this nacelle configuration will actually lower the cost 

of ownership. In addition, the tests must permit identification and quantifi-

cation of the performance difference between the long-duct mixed-flow nacelle 

and the separate-flow nacelle currently used. 

9.5	 Flyover Noise Tests 

The research and technology plan recommended for the long-duct, mixed-

flow, advanced acoustic-composite nacelle includes a flight test to measure 
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takeoff and approach noise. The experience of researchers in the govern-

ment and the aircraft industry over the last 20 years confirms the need 

for flyover noise testing to verify engineering estimates of the acoustical 

effects of various engine and nacelle design concepts. 

The need for flight demonstrations to measure the effects of jet noise 

suppressors has long been accepted. A timely confirmation of this need 

is found in References 18 and 19 which deal with noise from both lobed and 

circular exhaust nozzles. For the long-duct, mixed-flow nacelle, jet noise 

suppression will be achieved by changing the relative velocities and the 

jet mixing. A key element in the test program will be the demonstration 

of the predicted jet noise reduction during actual takeoffs. 

With regard to advancing the state-of-the-art of acoustical technology, 

substantiation of the estimated changes in turbine and inlet noise ranks 

next in importance to validation of the jet noise reduction. High-

frequency turbine noise must propagate through the turbulent flow within 

the exhaust nozzle and then out through the turbulent exhaust jet to reach 

observers in the far field. Forward motion modifies these flow fields 

and may even affect the turbine noise signal. Propagation through the 

velocity and temperature gradients in the turbulent shear layer at the 

jet boundary is modified by the effect of forward motion. Reference 20 

discusses these phenomena in detail. 

In addition to a better understanding of the effect of forward motion on 

turbine noise, there exists a need to understand how the mixer nozzle on 

the turbine exhaust will effect the propagation of turbine noise out 

through the mixed fan/turbine exhaust stream and how the nozzle and the 

acoustic linings on the walls of the exhaust passage interact to suppress 

turbine noise. Reference 18 describes the results of recent tests with 

lined and unlined exhaust nozzles and showed that significantly different 

results were obtained from the flight tests than from static tests, thus 

bearing out the need for in-flight measurements of turbine noise to 

validate the estimates of the reduction of this important noise source. 

The minimum cost program provides for flight test evaluation of the changes 

in jet and turbine noise, but not evaluation of the inlet noise change. An 
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alternate program structured around utilizing new long-duct nacelles at all 

three engine positions would make feasible the measurement of inlet noise 

reduction. Such a program would also provide information on the effects of 

forward motion on inlet noise and supplement the data base contained in 

Reference 21 through 24. Flight tests are considered-mandatory to evaluate the 

estimated changes in inlet noise because of differences between static and 

flight conditions in the arodynamic characteristics of the inlet flow field as 

well as the intensity and distribution of turbulence interacting with the 

pressure field of the rotor. Techniques to correctly simulate these flight 

effects have not been developed. 

9.6 Recommended Research and Technology Program 

The program plan shown in Figure 84 was developed to satisfy the research 

and technology requirements described above at the least total cost. The 

program is aimed at demonstrating composite nacelle durability through a 

long-term in-service evaluation designed to fit into airline operations without 

imposing restrictions or limitations on the operator.. The program spans six 

years and is made up of four major phases. The first phase is comprised of 

analysis, design, and laboratory testing and lasts approximately 18 months. 

The second phase is devoted to a full-scale ground test and this lasts 

approximately 14 months. Phase 3 is a flight-test period of approximately 

8 months. Phase 4 is the in-service evaluation, spanning a period of approxi-

mately 3-1/2 years. 

In the first phase, strength allowables would be determined for the composite 

material components through physical-property testing. The FAA would 

participate so that the ground work for subsequent certification would be 

completed and documented in this phase.. Prior to the service-evaluation 

phase, inspection and repair procedures for the composites would be developed. 

This work would be coordinated with the participating airlines. . Fire-

resistance technology would be explored through both analytical and experi-

mental techniques so that it could be integrated into the detailed design 

for the long-duct, mixed-flow, advanced-composite nacelle for the wide-

body-transport engine.
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Acoustical analyses would be addressed to defining the duct-lining design 

requirements and the acoustic loads on nacelle components. The effort would 

include determination of the acoustic design requirements for the treatment 

in the inlet, turbine exhaust, and fan discharge ducts. Consistent with the 

integrated systems approach, the acoustical design analyses would consider 

the impact of aerodynamic, environmental, and structural requirements in 

order to realize the largest reduction in noise consistent with performance, 

efficiency, and cost considerations. 

Candidate duct lining designs would be tested in ,a duct-transmission-loss 

test facility. The appropriate ratio of treatment length to passage height, 

duct Mach number, and sound source modal distribution would be simulated. 

The results of these tests would, be used to design the linings for ground 

static tests of the full-size long-duct nacelle. In addition, technology 

development activities would be pursued to establish a mechanically acceptable 

bulk absorber for the inlet inner barrel. These activities would be 

concentrated on the materials aspects and would include full-scale ground 

acoustical evaluations and full-scale ground and in-flight mechanical 

integrity testing. Since the bulk absorber was intended to be used with nose 

cowl configuration A (Figure 30), it would be possible to delete the bulk 

absorber feature from the nose cowls that would be fabricated for the in-

service evaluation phase if development experience indicated that use of the 

bulk absorber in commercial airline service represented an area of risk. 

Estimates of the acoustic loads imposed on the inlet and fan-duct will be 

made to identify the design requirements. Sonic-fatigue tests of candidate 

lining designs would be conducted to verify the adequacy of strength margins 

and to assist in establishing the fatigue life of the advanced acoustic-

composite linings for the flight-test and service-evaluation phases. 

The full-scale ground test program would encompass nacelle configuration 

development and thrust reverser effectiveness testing to demonstrate the 

effect of allowing the primary flow to expand into the final nozzle when the 

fan flow is blocked and diverted outward and forward through the reversing 

cascades. In addition, data would be obtained on mixer nozzle performance 

parameters as well as temperature and pressure distributions in all nacelle 
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zones. The durability of composite components as well as the suitability 

of the system for flight would also be demonstrated. 

The nacelle configuration envisioned for the full-scale ground test is 

shown in Figure 85. Components expected to be common to the in-service 

evaluation short-duct nacelle are so indicated. 

Figure 86 shows the overall plan and allocation of hardware for flight 

tests. For the minimum-cost program, parts intended for the in-service 

evaluation of composites for nacelles would be installed in a wing-engine 

position. The long-duct nacelle used for the ground tests would be 

installed in the tail-engine position. This installation would yield data 

on jet and turbine noise reduction, internal flow characteristics, and 

nacelle environmental conditions. 

The in-service evaluation phase would measure the effects on the composites 

of exposure to thermal cycling from operation of the inlet ice protection 

system and from the mixing process in the fan discharge duct where the 

temperature can be as high as 395°K (2500F). The effects of long-term 

exposure of composites to high-noise and vibration levels would also be 

evaluated. This phasewould measure the capacity of the composites to stand 

up to the use and abuse attendant to engine servicing and maintenance actions 

by airline personnel, as well as to the exposure to all forms of weather 

and solvents such as water, turbine fuel, lubricating oil, hydraulic fluid, 

de-icing fluid, airplane cleaning agents, paint strippers, etc. 

To estimate the funding requirements for the program, a detailed schedule 

was prepared for the major elements of the four phases of the recommended 

program. This schedule is shown in Figure 87. Cost estimates for each of 

these elements were based on past experience with similar programs. 

Estimates for the annual and cumulative program costs are shown in Figure 88. 

The peak cost occurs in the second year where costs of fabrication and 

testing associated with the full-scale ground tests would be incurred. 

The cumulative costs peak in the fourth year. The costs incurred in the 

fifth and sixth years are low because the tasks are limited to evaluating 

the condition of thevarious acoustic-composite nacelle components at the 

conclusion of the service test periods, documenting the findings, drawing 
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conclusions and making recommendations for future use of the data 

derived.

9.7 Alternate Expanded Program 

An alternate experimental 

program of Section 9.6 to 

and tail engine positions 

those on fuel consumption 

components of airplane dr, 

estimates.

flight test prOgram would expand the minimum 

include installing long-duct nacelles in the wing 

to identify the performance effects including 

and flyover noise. Figure 89 identifies certain 

g that require testing to substantiate analytic 

Figure 90 shows some of the acoustic technology benefits that could be 

expected from this program. 

The effect of the bulk absorber linings on inlet noise attenuation would 

be the principal additional area of acoustic technology that would be 

explored in the flight-test phase of the program. This area is crucial 

because of the importance of capability of the lining to function as a load 

carrying member as well as a noise absorber. Inlet noise reduction is 

crucial from another point of view because, as indicated in Figure 59, 

noise radiated from the inlet controls the total perceived noisiness during 

the landing approach. The effect of forward motion on inlet noise would also 

be investigated. The flight test phase would provide a unique opportunity 

to obtain information, on a wide-bodied transport powered by high bypass 

ratio engines, needed to improve methods used to predict engine and airplane 

component noise levels. The other technology items noted in Figure 90 

(jet noise suppression, turbine noise suppression, and the effect of the mixer 

nozzle on the generation and propagation of turbine and fan noise) are not 

dependent on proceeding with the alternate expanded program and hence would 

be addressed in the recommended minimum-cost tail-engine program. 

Figure 91 shows the schedule for the major items peculiar to the alternate 

expanded program. All of the work indicated for the minimum-cost program, 

except for the flight tests, would be included in the alternate expanded 

program. The flight testing in the expanded program addresses testing that 
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can only be accomplished if all three nacelles are modified, e.g., inlet 

noise-suppression tests. The start of the in-service evaluation phase would 

not be delayed significantly in the expanded program because certain of the 

tasks would be done in parallel to ensure that appropriate nacelle components 

would be available for installation on 'commercial transports in the third 

year of the program. 

The funding requirements for the alternative expanded program are shown 

in Figure 92. The largest funding demands occur in the second and third 

years. This reflects the costs of design, fabrication, and installation of 

the long-duct nacelles (Phase VI in Figure 101) and the flight testing 

(Phases VII and VIII in Figure 101). The costs of the total program 

(combination of the minimum tail-engine program and the expanded three-

engine program) are shown in Figure 93. The largest cost is incurred in the 

second year of the program and is estimated to be $12.5M. The third year 

cost is estimated at almost $8M. The program cumulative cost is estimated 

to be slightly over $26M. 

10.0 AlT RESEARCH AND TECHNOLOGY RECOMMENDATIONS 

AlT propulsion system studies should be continued by NASA to assure the 

development of a data base that will be ready when needed. The technology 

fallout from cooperative efforts on the part of NASA and the military 

services should be applied to such development efforts as composite fan blades 

and composite engine frames. An engine-nacelle integration study should be 

conducted by a team representing airplane and engine manufacturers to address 

ways of reducing fuel consumption and cost of ownership. The cost of 

ownership study is needed to determine the relationships between the costs 

of integrating the engine and nacelle and the cost of airline spare parts. 

There are three acoustical technology areas related to the ATT integrated-

nacelle concept where additional research effort is needed to develop the 

potential benefits. These areas are: (1) the hybrid inlet, (2) the 

combination high frequency/low frequency linings in the turbine-discharge 

duct, and (3) phased or bulk absorber linings in the fan-discharge ducts. 

Other areas that could yield potentially good payoffs include hot-section 

bulk absorbers and advanced attenuation schemes for mixed flow nozzles. 
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The discussion of the ATT noise-reduction concepts indicated significant 

acoustical benefit, for an engine of . the AlT type, from a variable-geometry 

inlet producing a high throat Mach number during climbout to reduce inlet 

noise under the takeoff flight path. Reduction of inlet noise at approach 

power would be obtained from the use of advanced bulk-absorber linings 

similar to those considered for the WBT airplanes. Combining these two noise-

reduction concepts in a full-scale inlet and demonstrating its performance 

is needed to provide data to compare with predicted acoustical performance. 

Advanced lining concepts for the turbine and fan-discharge ducts need to 

be developed and tested. The effort should include duct-transmission-loss 

tests (using heated air for the turbine-noise/core-noise linings) to 

provide data needed to select candidate lining designs. Full-scale tests 

should then be conducted with a long-duct, mixed-flow nacelle fitted to a 

high-bypass-ratio turbofan similar to the proposed AlT engine. Special 

test hardware is needed to enable the reductions in fan noise, turbine 

noise, and low-frequency core noise to be distinguished and identified. 

11.0 CONCLUSIONS AND RECOMMENDATIONS


11.1	 Conclusions 

The studies for the wide body transport, showed major fuel and nacelle 

construction cost savings were possible from the application of advanced 

composites in engine nacelle design. The fuel savings could exceed $1 

billion over a five-year period. Concurrently, the area enclosed by the 

90 EPNdB noise contour could be reduced by more than 35 percent. Although 

the greatest fuel savings were related to the long-duct, mixed-flow nacelle 

configuration, the application of advanced composites to the short-duct 

nacelle configuration also offered significant improvements. 

Technology fallouts could be applied in developing new military and airline 

transports and in improving the current generation of wide body transports. 

Application of this technology is very much dependent on successfully 

demonstrating the durability of advanced composites in the operators' 

environment as well as confirming the performance advantages. 
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Commercial service experience is necessary to demonstrate that advanced 

composites in nacelle structures are suitably durable. This experience 

cannot be provided by any ongoing NASA or Air Force programs because military 

aircraft utilization rates are typically only 400 to 900 hours per year as 

opposed to the 3000 to 4000 hours per year typical of airlines utilization 

would drag out the service demonstration to the extent that the fuel savings 

and noise alleviating benefits could not be realized before 1985, at the 

earliest. Thus, the durability demonstrations must be performed on commer-

cial transports to yield data as soon as possible to permit timely applica- 

tion of the technology toward meeting the nation's energy conservation 

requirement. 

The ATT studies showed that acoustical benefits similar to those projected for 

WBT airplanes could also be realized by the development of advanced acoustic-

composite nacelles. With a high-Mach-number hybrid inlet, composite nacelle 

treatment, and a mixed-flow long-duct nacelle, there was a 60-percent reduction 

in the area enclosed by the 90-EPNdB contour relative to the contour area for 

a current 2-engine WBT airplane. 

11.2	 Recommendations 

It is recommended that a follow-on to this advanced-composite nacelle study 

should be conducted. This follow-on program would include flight testing 

directed toward implementing the application of the technology identified. 

Newly produced versions of current wide body transports as well as new 

transport aircraft powered by high-bypass-ratio turbofan engines would 

benefit from the follow-on program. It is further recommended that an 

airframe company be the prime contractor for this phase of the program since 

expertise in integrating the nacelle/pylon/wing structure and aerodynamics 

is the key to realizing all of the benefits and since it is necessary that 

the trades between cost, weight, performance, and noise be accurately 

assessed. In addition, because FAA certification prior to installation of 

the nacelle design is required as a condition of certificating the airlines 

it is used on, the airframe company's expertise in handling this matter 

will be both appropriate and proper. Therefore, it is strongly recommended 
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that the demonstration of the advanced composite nacelle be implemented as 

soon as possible to avoid losing the substantial fuel savings that are 

predicted. The 1973-1974 wide-body-transport production was 119 aircraft, 

and each of these aircraft has a useful life of at least 15 years. Thus 

a delay of just one year in the introduction of this technology could result 

in not realizing fuel savings of over $200 million based on the current 

$0.07 to $0.08/liter ($0.26 to $0.30/gallon) cost of aviation turbine 

engine fuel. The maximum benefit of this new technology to the public and 

the air transportation industry will be obtained by NASA sponsorship of the 

recommended follow-on program at the earliest possible tine. NASA should 

also consider the many areas and facets of the outlined programs which could 

provide for NASA in-house endeavors, including the substantial use of NASA 

manpower and facilities.
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