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FOREWORD

This report was prepared by the Boeing Aerospace Company, a division of The
Boeing Company, Seattle, Washington, for the Lewis Research Center of the
National Aeronautics and Space Administration. The physical and mechanical
properties of six candidate rocket nozzle materials are presented in accord-
ance with the Task | requirements of Contract NAS3-17838, "Thrust Chamber
Life Prediction.'" This program was under the cognizance of Gary R. Halford

and R. J. Quentmeyer of the Lewls Research Center.

The literature search and documentation of the physical and mechanical
properties was conducted by John J. Esposito and Ronald F. Zabora of the
Structural Methods and Allowables organization. The technical leader was W. H.

Armstrong, reporting to the Program Manager, J. S. Andrews.
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SUMMARY.

Physical and mechanical properties of six candidate high performance rocket
nozzle materlals are documented in this report. Material properties used

in Tife prediction studies were established for Amzirc, NARloy Z, OFHC copper,
electroformed copper, fine silver, and electroformed nickel. Typical room
temperature properties and typical propertlies at temperatures from 27.6K

(-410°F) to 810.9K (1000°F) were determined for these materials.

A literature search was conducted and the data from the reference sources
collected. The avallable data !s from test programs, supplier literature,
data compilations, materials handbooks and materials studies. The quantity
of data available for the determination of the desired properties was very
limited for these six materials. Due to this lack of data only typical
properties were established for all the materlals. The use of typical pro-
perties in the life analysis studies minimizes bias In the analytical results
due to varying uncertainties in the Input properties. To confidently
establish minimum deslign properties, more test data, tighter material spec-

ification requirements and additional material service experience is required.

The typical mechanical properties and physical properties were established
from the data base collected from the references, using suitable analysis
procedures and engineering judgment to come up with the most representative

properties for each of the materials.
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1.0 INTRODUCTION

The advent of the Space Shuttle has brought a new era in the design and
fabrication of rocket nozzles. The requirement of high-performance coupled
with weight and volume limitations, has necessitated the design of rocket
nozzles to operate at chamber pressures In excess of 3000 psia. This has
elevated the throat heat flux from 20 Btu/inz-sec for present day high per-
formance rocket nozzles to the range of 80-100 Btu/inz-sec for the Space
Shuttle main engine. A further requirement for future high performance
rocket nozzles Is reusability. For example, the nozzle may have the require-
ment that it be capable of operating for 300 major thermal cycles for a

total duration of 10 hours.

The combination of high performance and reusability has created major design
problems. One of the critical aspects of the nozzle design is the fatigue
life analysis. This has become a major design problem since a portion of

the nozzle, particularly the throat section, is subjected to cyclic plastic

strain due to the high temperature differential between the hot inner wall e
and the relatively cool outer shell during the englne start-stop transients

as well as during steady state operation. This has a major impact on nozzle

life and creates the need to accurately predict when an engine may fail.

An essential part of any life analysls program is the availability of the

appropriate physical and mechanical properties, which are needed as functions

of temperature, for the materials used In fabrication of high performance

rockets. Section 2 defines those physical and mechanical properties nec-

essary In predicting the rocket nozzle 1ife.

TR



2.0 MATERIALS PROPERTIES

Typical mechanical and physical properties data are presented in this

sectfon for six candidate high performance rocket nozzle materlals. Room

temperature properties are given in tabular form for all materials. The

properties at temperature are presented in Figures 1 through 41.



2.1: *AMZIRC

General Information

Amazirc is a copper base alloy containing a nominal 0.15 percent zirconium. This zirconium-
copper alloy combines high electrical and thermal conductivity with good strength retention at
high temperatures. The alloy is readily cold worked in the solution-annealed condition. The

strength of the material increases with the amount of cold working without sacrificing ductility
or conductivity. After cold working, the material should be aged for 1 hour at 700°F to 800°F

to obtain the improved strength and conductivity.

*American Metal Climax, Inc. — Tradename for a zirconium-copper alloy

Room Temperature Properties

Material Amzirc
COndi;ioinr Annéaled Quarter Hard Half Hard
Mechanical Properties
Tensile Ultimate, MN/m? (ksi) 241 (35) 338 (49) 344 (50
Tensile Yield, MN/m? (ksi) 46 (6.7) 206  (43) | 317  (46)
0.2% Offset
Elongation, % 40 20 26
Reduction of Area, % 88 51 81
Modulus of Etasticity, GN/m2 (108psi) 115 (16.7) 15 (16.7) | 118 (16.7)
Poisson’s Ratio .34 .34 .34
Physical Properties
Density, kg/mS3 { Ib/in3) 8885 (.321)
Specific Heat, J kg™ 'K~1 (cal/g/K) 385 (.092)
Thermal Conductivity, W m~! k-1 390
Coefficient of Thermat Expansion,
294K 10 533K, 107 8[m/m] k! 17.2
70°F t0 500°F , 1078(in/in/oF) (9.5)
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Figure 1 Density vs Temperature for Amzirc
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2.2 NARloy-2*

General Information

d

NARIloy-Z is a copper base alloy containing a nominal 3-percent silver and .5 percent zirconium.
The silver-zirconium-copper alloy combines high electrical and thermal conductivity with mod-
erate strength retention at high temperatures. The alloy is strengthened by heat treatment and
is normally used in the solution annealed and aged condition. -

* Rockwell International’ Inc. - Tradename for a silver-zirconium-copper alloy

Room Temperature Properties
Material NARloy Z
Condition Solution Treated and Aged
Mechanical Properties
Tensile Ultimate, MN/m? (ksi) 314 (45.6)
Tensile Yield, MN/m? (ksi) 192 (27.9)
0.2% Offset
Elongation, % 31
Reduction of Area, % 54
Modulus of Elasticity, GN/m2(108psi) 127 (18.5)
Poisson’s Ratio 34
Physical Properties
Density, kg/m® { 1b/in3) 9134 (.330)
Specific Heat, J kg™ 'K~ " (cal/g/K) 373 (.089)
Thermal Conductivity, W m-1 K" 295
Coefficient of Thermal Expansion,
29410 533K , 10"°[m/m] K~! 17.2
709F 1o 500°F, 10~8(in/in/°F) (9.5)
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2.3 *OFHC Copper

General Information

OFHC copper an oxygen free grade of essentially pure copper.

The material has very high electrical and thermat conductivity
combined with a high melting point.

The material is readily hot or cold worked and the strength of

the material increases with the amount of working. In the annealed
condition the material has a relatively low strength.

At cryogenic temperatures the material exhibits high ductility.

*American Metal Climax, Inc. — Tradename for an Oxygen- Free
High-Conductivity copper.

Room Temperature Properties

Material OFHC Copper
Condition Annealed Quarter Hard Half Hard
Mechanical properties
Tensile Uhtimate, MN/m? (ksi) 202 (32) 330 (48) 344 (50)
e ' Tensile Yield, MN/m? (ksi) 53 (7.7) 310 (45) 317 (46)
0.2% Offset

Elongation, % 45 20 25
Reduction of Area, % 80 65 80
Modulus of Elasticity, GN/mz(pu' 106) 114 (16.6) 114 (16.6) 114 (16.6)
Poisson’s Ratio .33 .33 .33

Physical Properties

Density, kg/m3 (1b/in3) 8913 (.322)
Specific Heat, J l'(g'”("I {cal/g/K) 385 (.092)
Thermat Conductivity, Wm"'K'1 390
Coefficient of Thermal Expansion,
294K to 533K . 1078 (m/m] k! 17.2
70°F10 500°F  , 1076 (in/in/°F) (9.5)
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2.4 Electroformed Copper
General Information

Electroformed copper is essentially pure copper obtained from an electro-chemical process.

The technique involves the deposition of copper ions from a sulfate electrolyte onto a mandrel,
The copper deposits may be bonded to or sandwiched between other deposits to provide integral
heat sinks. The material can be joined to other materials using the same methods that would be
employed for wrought copper. The electroformed copper has very high electrical and thermal
conductivity, relatively low strengths, and is non-magnetic.

Room Temperature Properties

Material: Electroformed Copper

Condition: As Formed

Mechanical Properties
Tensil Ultimate, MN/m? (ksi) 227 (330
Tensile Yield, MN/m2 (ksi) 107 (15.8)
0.2% offset
Elongation, % 20
Reduction of Area, % 83
Modulus of Elasticity, GN/m2 (105 psi) 114 (16.6)
Poisson’s Ratio .33

Physical Properties -

Density, kg/m3 (Ib/in.3) 8913  (.322)
Specific Heat, Jkg™! K7 (cal/g/K) 385 (092)
Thermal Conductivity, W m™! k! -390
Coefficient of Thermal Expansion,
294K to 533K, 10 [mym] K1 17.2
70°F 10 500°F, 10°6 (in./in./oF) (9.5)

25




DENSITY, Kg/m3 (1b/in.3)

LINEAR THERMAL EXPANSION, %

9134 EF COPPER

8857 \
.320

8580
310
8304
.300
1 i 1 I 1 1 i { i | ] 1
33.1 2554 533.1 810.9
(-400) {0) (500) (1000}
TEMPERATURE, K (°F) '
Figure 28 Density vs Temperature for Electroformed Copper
1.0 / 3
0.8 EF COPPER i
0.6
04
0.2+
0
L~
-0.2+1
-0.4
1 1 1 i 1 ] i i | 1 L
33.1 2554 533.1 810.9
- {-400) {0) (500) {1000)

TEMPERATURE K (°F)

Figure 29 Thermal Linear Expansion vs. Temperature for Electroformed Copper
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Figure 30 - Specific Heat vs. Temperature for Electroformed Copper
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2.5 Fine Silver

General Information

Fine silver, often called commercial fine silver, has a maximum of 0.10 percent total impurities.
Fine silver has the highest electrical and thermal conductivity of all metals and only gold is more
ductile and malleable. The metal has rather low strength even after severe cold work and it
cannot be hardened by any thermal treatment. Silver can be readily hot or cold worked and is
relatively difficult to machine, particularly in the annealed condition. The material can be
annealed at low temperatures. Therefor, if the maximum hardening effect of cold work is
desired, care must be taken to avoid an appreciable rise in temperature due to working the
material too rapidly.

Room Temperature Properties

Material Fine Silver
Condition As Drawn
Mechanical Properties
Tensile Ultimate, MN/m? (ksi) 280 (42)
Tensile Yield, MN/m? (ksi) 283 (41)
0.2% Offset :
Elongation, % 5
Reduction of Area, % 85
Modulus of Elasticity, GN/m2(106psi) 71 (10.3)
Poisson’s Ratio .37
Physical Properties
Density, kg/mS (Ib/in3) 10,480 (.379)
Specific Heat, J kg~ 1K~ (cal/g/K) 237 (.0566)
Thermal Conductivity, Wm~ 1K~ 400
Coefficient of Thermal Expan_s'éon, 1
294K to 533K ., 107%[m/m] K 195
70°F to S00°F 10-8(in/in/°F) (10.3)
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2.6 Electroformed Nickel

General Information

Electroformed nickel is obtained from an electro-chemical process involving the deposition of
nickel ions from an electrolyte onto a mandrel. A sulfamate bath is used to obtain nickel
deposites with low internal stresses. The nickel deposits can be bonded to or sandwiched
between other material deposits to provide integral heat sinks in an almost unlimited range

of regular and irregular configurations. The electroformed nickel is easily joined to other
metals by welding, brazing, or soldering with the use of common materials and methods.
Mechanical properties of electroformed nickel can be varied over a wide range by the methods
of deposition and by the composition of the plating bath. The metallurgical structure is
characterized by high-purity, needle-like crystals aligned perpendicular to the mandrel.

Room Temperature Properties

Material : Electroformed Nickel {Sulfamate)
Condition: As Formed
Mechanical Properties:
Tensile Ultimate, MN/m2 (ksi) 551  (80)
Tensile Yield, MN/m2 (ksi) 344  (50)
0.2% offset
Elongation, % 20
Reduction of Area, %
Moduilus of Elasticity, GN/mZ2 (105 psi) 193 (28)
Poisson’s Ratio 34
Physical Properties
Density, kg/m3 (Ib/in.3) 8913 {.322)
Specific Heat, J kg'! K (cal/g/K) 444 (.106)
Thermal Conductivity, W m 1! 20
Coefficient of Thermal Expansion,
294K to 533K, 10 [m-m] k! 12.2
70°F to 500°F, 10°8 (in./in./OF) (6.8)
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