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Errata

(a) Equation (16) should read

0i (A) _ { Y EEm (A ) : P i fY ( y I H i , A ) >

p  f  ( y I Iii  A ) )

(U) Equation (54) should read

ij
rl 	 _

(R 1 - R J )	 it i yJ _	 R' 	 f
ij

r2

+ E R 1 R J 	 ( y l - y J ) 2 +

	

j	 2

+ (R1 - RJ) log ^ }ti PJ

	

}Z	 2
P

i

if R1 4 RJ

or

r 1J =	 r 1J =	
1
2 ( y l + yJ)

1	 2

if R1 = Ri

(c) Equation (55) should read

P i f 	 ( y I H1 , A ) =	 Pi fY ( y I HJ , A),

i= 1,...,M, jai.

Ii
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OPTIMAL LINEAR AND NONLIVIA R FEATURE EXTRACTION
BASED ON THE MINIMIZATION OF THE INCREASED

RISK OF rISCW°SIFICATION*

Rut J. P. de Figuefra•fo**
Department of Electrical Engineering

sod
Department of Mathematical Sciences
Rice University, Houston, Texas 77001

We consider the problem of determining an optimal
not necessarily linear transformation A from a real n-
dimensional measure space E n , in which the raw data to
be classified into M (M Z 2) pattern classes appear, to
• "feature space" Em of • prescribed dimension m n,
in which classification is to be made. The Dayes risk
in the transformed space E m , called the "increased risk
of misclassification", Jepends on A and hence will be
denoted by Qm(A). We assume that A belongs to a given

class X of transform tions from E n— Em , each member of

X being a prescribed function of a vector parameter
•	 (al,.,,,ak) characterizing the member. For example,

if Y is the class of linear transformations, then mem-
ber@ of X are constant m x n matrices, the components
of the vector parameter a characterizing a given matrix
A consisting of the mn elements of that matrix. So

given an appropriate class x, we select the optimal A
by minimizing Qm(A) over all AE_k, Necessary and suffici-

ent conditions for the existence of such an A are given,
and an iterative algorithm for the determination of A is

presented. Finally, the results obtained are particu-

larized for the case in which the statistics of the
data are Gaussian.

1.	 Introduction

Suppose that a data vector x - col(xl,,,,,xn),

belonging to the real n-dimensional Euclidian space En,

is to be classified as pertaining to one of the M pat-

tern classes H ,...,HM . Then x may be considered to be

a realization of a random vector X - col(Xl,...,Xn),

We will assume that X i , i-l,...,n,are continuous random

variables possessing well defined probability density
functions.

For J-1,...,M, let P J denote the prior probability

for the pattern class H J , and fX (./H J ) the probability
density function*** for X conditioned on the class HJ
(called the likelihood function for the class H ).
Note that, endowed with these probabilities and likeli-

hood functions, E n becomes s measure space.
We will assume that PJ , J-1,,..,M, are known and

fX (./HJ ), J^l,...,N, can be learned from available
training sets. The functions fx(,/H J ), together with
their first and second partial derivatives with respect

to the components of x, will be assumed to be continuous

and integrable on En.

Given an integer m, such that 1 < m < n, let A he
a function belonging to a given class X of functions
from E n to E rs(A). Here the m-dimensional Euclidian
space Em is mown to be a function of A because L'ie
measure on "'a (introduced by the prior probabilities and

Supported in part by the NASA Contract HAS-9-12776,
the U.S. Army Contract No, DA-31-124-ARO-D-462, and

the NSF Grant GK-36375.

**Part of t'..ls work was performed while the author held
a visiting research professorship at the Mathematics

Research Center of the University of Wisconsin at

Madison, in the academic year 1972-1973,

***We will denote the function by fX (./H J ) and its

value at x by fX(x/HJ).

the likelihood functions in E m ) is dependent on the
transformation A.

In order to formulate the optimal feature extrac-
tion problem, we need to be given one more entity,
namely a criterion functional, whose value corresponc-

ing to a given A will be denoted by

Q(A ; P 1 , ... ,PM ; fX(./HI),....fX(./HH)),	 (la)

which, when the other arguments are clear from the con-

text, wtil be written simply as

	

Q(A) .	 (lb)

Then the optimal feature extraction problem may he

stated precisely as follows:

Problem 1: Given P J and fX (./HJ ), J-1,...,M, a

class X, and a criterion functional Q, all defined as

above, find A which minimizes* Q(A) over all A E k .

In the existing literature (see for example (1)
through (6] and the references therein), solutions to
Problem 1 have been obtained assuming Gaussian statis-
tics, using classes of linear transformations, and
based on criterion functionals Q that are probabilistic
distances, such as the divergence, the Bhattacharyia
distance, and the Matusita distance. In general, such

distances lead to solutions that are at best subop.imsl,

that is, these solutions minimize a bound on the risk
of misclassification rather than the risk of misclassi-
fication itself.

.n what follows, we propr	 `o solve Problem 1 by
choosing the Bayes risk of r s. • +,esification, and in

particular the probability r 	 ..Leclassi.fication, as the

criterion functional to be m.nimized. *'hilt the pro-
posed solution may require more computational effort
than the solutions based on probabilistic distances
mentioned above, it (the proposed solution) is believed

to be of Frost value for the following two reasons:
(1) the feature extraction computation is a "design
computation" which is performed off-line and only once
and hence the greater computational effort which may

be req..ired does not constitute a basic limitation;
and (2) the proposed solution would give the maximum

possible accuracy in classification achievable in a
space of a prescribed dimension m.

2. Feature Extraction Based on the Mini-

m,_zatio ,. of the Increased Risk of
Misclassification: Problem Formulation

If A is a transformaLion which sends x F E n to
y E Em we may write

y - col(yl....,ym) - A(x) - col(AI(x),....Am(x)). 	 (2)

For convenience, we will use the notation

	

x - col(x l ,	 .xm).	 (3)

*If the criterion functional involves a probabilistic
distance measure to be maximized (rather than mini-

mized), such as the divergence or the Bhattacharyia

distance, we defini. Q to be the negative of such a
distance, and minimize Q.

A111W10 H00(i ao
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and thus express

	

A(a)	 A(ii. x),	 (S)

A i (x) - A i G. x), 1 - l ..	 . m .	 (6)

Let us introduce the Jacobion determina^n̂t

	

aA I ( x ,^	 aAI(x,x y)

ax
1	 axm

JA W IE JA(x, x) -

m	 m(x,x)
rlx 1	 AX m

From now on we will assume that the class y con-
sists of (rlptneceasartl -, linear) transformations A

from En to E such chat:
(a) The (pure and mixed) second partial deriva-

tives of A(x) with respect to the components of x are

continuous;

(b) Except possibly on subsets of E n where all the
likelihood functions vanish, the mapping under (2) of

z to y is one-to-one for every x; and in particular,

JA (x)00everywhere, except possibly on the above sub-
sets of En.

Under conditions (a) apd (b) above, we may, in the

region of interest, express the variables xl,...,rm

in terms of y l ,,..,ym , and xm+1,,..,xn by inverting
(2). Specifically, there is a unique tronrformatio.i
B: En - Em such that

x - B (Y, ,. )	 (B)

for all x, x, and y satisfying (2) in the region of

interest. According to a wellknown proced,,re 8 , the
likelihood functions fn E m (A) would then oe given by

	

m	 m	 a	 i (B(V,x),x%Hj)
f,f ( y / H A)- J dxn„ d"n-1 ...

' d.-,i	 "
X

(9)

kemsrk l: At the expense of cxnplicating our pre-

sentation but otherwise adding no difficulty to our
iormuiation, we could have enlarged the class X of
transformations defined above by means of the two weaken-

ing conditions: (I) Allow the class X to include all
transformations A for which the vector x consists of
any combination of m variables from the act (xl,._.,xn)

(rather than only the first m variables fr,xe this set)

provided conditions (a) and (b), with appropriate am-
o4 nd,ments in notatiou, are satisfied. (II) Weaken con-
ditioon (b) so that for a given x and y the equation
A(x,x) - y is perk}^ted Lo have a finitenymber of mul-

,iple roots say x	 -B 1 (Y,	
,x k -8( 

In a standard way, the integrand in (y) would be re-

placed by
k

E	 l	 ^ f (B(^)(Y,x),x/Hj).	 (ln)

	

1 IJA ( B ('t y	 X

(End of Remark)

For i,j	 1,....M, let the nonnegativr number
represent the s pat of classifying a data ;;ectux +t
arising from H L when actually it originated from hi.
Again for simplicity in presentation and without loss

of generality, we will assume that there is no cost
involved in making a correct decision, t,e, that

c if - 0, 1 - 1,...,M .

It to a well known and easily proved fact that,
dxe to the reduction in d(menslunrlity in going from

E to E (A), the Bayes risk of misclassification in

Em (A), denuted by QM (A), is grr<sttt than that in En.

For thin reason,	 (A) will be called the LjcSasaej

r1.k of miscla sif7cat	 and is expressed by

M

Q.(A)F	 Zi(y.A) dy.
1 ' 1 ^1 1(A)

and	 (A),i-1,...,M, are decision regions in Em(A),

that Is, if y E Cl I (A) one says that it arose from 'fl
Elementary decision theory also tells us that

(for a given A) the choice of 	 fA),i•1,...,M, which

minimizes Qm(A) is given by

Q 1 ( A ) • !Y C Em (A):t I (y,A) a LI(Y,A)JOil,

t • 1,,, , M,	 (13)

and, In the particular case to which the cost constants

are
c ij	 1	 6ij,1,j•1,...,M,	 (14)

where 6 1j	 Kronecker delta, ( 11) becomes the ptoha-

bility o[ misclassittcati n, (12) and (13) then re-

ducing respectively to

M

It ( y ,A ) - 
j 
L 
1 

P j fy(Y/ HJ ,A ),	 (15)

jfi
and

1 (A )- ( yE Em (A ): P i f Y (y/H j ,A): Pj f Y (y/H j ,A) . j f t ).

I - 1.,..,M	 ,	 (16)

t:e are thus able to refor.nulate Problem 1 as
follows:

Problem	 Given F  an•1 fX(. /Nj),j-1,...,M,	 the

class - of functions from E" to Em (i,) satisfying con-
ditions (a) and (b) above, and the criterion functional
Qm defined by (11), find A E Y which minimizes Qm(A)
over all A F X•

In order to simpli:. • 	analysis, we will intro-
duce two addio anal cc	 (c) and (d) to be stated

below.

(c) Every transfo rn	 A belonging, to X is ex-
pressible as A(x)-cp(x,a), .sere a-col(e l , ... ,a k ),be ton -

ging to a compact subset k of E k	 is areal parameter
vector and 9 is a ftxed function from E n+k to F.m ; in
other words, each mei,iber of	 is obtained by assigning

a different value to the parameter vector a in the ar-

gument of the known function :(x,•). We will assume
that 9 has continuous second partial derivatives with
respect to the components of x and a; and that*

fy ( y /H i " ), afy ( y /H j ,a)/?a
P
, and ?2f(y/H),a)/^s P > q,,

p,q-1,...,k, are continuous and integrable in the

product spaces spanned respectively by the variables
y, y and a 

P
, and y, a and a
 P	 1

Remark 2: The above condition is not too restric-
tive. For example the class of all linear transforms-
O ons from En to E16 , yhese representation consists ni

V77 view of the condition just ass,,med we will tram t%ow
on replace capital A by small a in the notation appear-

ing in (9) through (16), e.g. f y (y/H J ,a) instead of

fy(y/Hj ,A), except when A denotes a matrix.

ORIGINAL PAUL .

2	 OF POOR (QUALITY

0 1)

where
M

(7)	 41(y,A)	 jLl c lj P j I Y ( y /Hj ,A).i-1,...,M,	 (12)

Jot



X n real constant matrices of bounded norm
sattmflem (c). In fact, the number k of parameter• In

We case to simply the total number at x n of entries
in any suci matrix.

(End of Remark)

If $ is a function of y and a let its gr•dtants

with respect to these vectors be defined In the usual

way:

Dy*(Y. a ) - col(-L *(Y.a),...,	 /(Y.a)).	 (17a)

	

1	 m

oal'(Y.a) . col(	 +(Y.")....,	 i(Y.a)).	 (17b)
Am L
	 k

Denote by iti) (a) the boundary between Q i (a) and Clj(a),

that La

Mt) (a) - (Y E Em(a):.i(Y,a)	 j(Y.a).

1 1 (Y. a ) s t p () , • ) . p 0 1.)l.	 (19)

and Coll m(a) the union of ®i)(a),i-1,,.,,M,j ♦1,

It order to avoid singular points in the descrip-

tion of 43(a), we require that

(d) For every nonzero sElr and f-1,,,.,M, j0i,

Vy (t i (Y. a )-t 3 (Y. a ) ) 0 0, y E Q il .	 (19)

From now on, we will consider, instead of Problem

2,:
Yr blem :Same as Problem 2 with the additional

restrictions (c) and (d),

3. j+]eceeaary and Sufflcient Conditions

for an Optimal Tr,nsformation

Confider the Hessian matrix*

H• Qm 'a) . Va c'a qM (a)	 (20)

We first assert that under the above conditions,

Va Qm and Ha Qr can be evaluated by appropriately

carrying out t.e differentiation operations under the

integral rigr, ,

Leu.-^ 1. Under the conditions stated,

M

°a Q,( a ) - tEI '

	

	 )Y(Vat,(Y,a)).	 (21)

t(a

. Define the function t:E k4o— E 1 by

	

. {, i ( y . a ) , Y E C. 1 (a)	 or

yEMij(a) ,

i - 1,.,.,M,j 0 1.	 (22)

ftum our conditions, C to continuous on E ke' and,
for any g1vun a and 0 1 (a) the first and second pa^tints

of f, witR respect t^ the components of a are continuous

onni (!3 •,%i ipproach continuous limits as y tend@ to

the bounda,l of Q i (a), On the boundary, the partials

have a simplt discontinuity. Since 9(a) is of Lebesgue
measure sera to Em (a) we may write

M

Q'(a) - 1 1 
I,)	

t(Y.a) dY - , Em t (Y, a ) dy ,	 (23)(a) 

t

where we have 4,-a	 m
rposely dropped the argument of E (e)

mince it s ime<acerial in this calculation,

For any given integer q, I , q < k , let

*Henceforth V.e superscript T on a symbol will

denote its transFose,

s	 ORIUMAL PAGE IS

OF PWR QUA1-Y

R(a) -
	

dy b
f (Y .aI... a a-t	 k)

E	

'aa'<t#1 ....a	
(24)

Em

dy
v

Since for every al,...,eq.1,•g41, ,,a k, the in-
trgrand in (24) is integrable to the product space,

opanneJ by the variablV 
9  

and 1 • , it follows, in-
voking Fubini's theurem in a standard way (with a

an arbitrary real constant and i t a variable of qo

integration) that

a

q daa q g(al,	 'aq-1'11q's<lil'•. ,a k)

qo

- 
•qd^	 dy

At (y 	 ,aq-l.aq,ag+1.	 ,a k)

„aqo q E'n	 atlq

a 	 A^ (3'.6 1 .	 .ate I'a ,a^ I ,.. ,ak)
dy	 da --	

q	
—

a	 q	 .,
• Em	

qo	

4

dyj1_ (Y. 8 )- C(y'al....,"q-I'Sgo,aq+t....,ak)^
Em

- V a ) - Qm(al,....sq-1'ago'act+l'...,ad . 	 (15)

But from the leftmost and rightmo;<t members of the

aqualities (25), we conclude tnat Qm is the antiderlva-
tive (with respect to a ,,) of g or

6 Ve,
g(s) -	 ]B	 (26)

..	 q

(24) and (26) for q-1,...,k, then establish the vvl1-

dity of (21).	 Q.E.D.

Jma:a ^2. Under the conditions stated,

M
II Qm (a) - E	 dy(V pT 

t (Y's)) -a	
i- 1 C11(a)	

a • 1

M-1 M

-F	 E	 do Va(tt(Y.$)-t (Y.a))%'a(Ci(Y,a)-tj(Y.a),
i-1 ).i^1 Si)(a)

(27)

where the second set of integrals consists of surface

i.tegrals on the subsets of B(s) corresponding to the
boundaries of not more than two regions. Thus S, (a)

is that subsea of M jj (a) which is the ;ommon boun^ary

between Pi I. 	 and 0j (a) only.

Proof. As in the previous proot, we will carry out

the integrations over the entire E m . However our pre-

aeitat4on will he simplified using indicator functions

for the regions 0 ) )(0.
In fact let the funrt'on u.E l 	1— E be defined by

1,	 r -- 0 .

U(C) - (	 (28)

0,	 S<0

Then, (21) ma y to rewritten as
M	 M

c;Qm (a) . ia	 dyl (	 u ( ?- (Y. & )- ? (Y. a )) V ? ( a ,Y) ) .
J -1
	 (29)jfi

Now, provided we are willing to admit distribution

functions, we may transfer further differentiation

operations to within the Integral sign; that is



M	 M
^Q(a)

leiLA	
EdYf	 l f 6 ( l i (Y.$)-t l (Y.a))l

Em
	

iii

M
(ra(ti(y.$)-tl(Y.$))h r^lu(^r(Y.$)-tl(Y.$))I.

r0i
rte)

('^^ ti (Y. $ ) I

♦ ^' u(t)(Y.$)-tl(Y.a))V 17T t i (Y. $ )),	 (30)
)•1

)•i

where 6(•) denotes the delta function.

The last product term in (30) clearly leads to

the first integral in (27),

Consider the remaining set of terms, all in square
brackets, in (30). The first (delta function) term in

square brackee reduces the integration of the set of

terms under consideration to a surface integral on
mii (a), If y E ® li (a) is on the boundary of more than

two decision regions, say . . 1 (a), :'i (a). and .""P (a),
the product term in the third set of square brackets

vanishes because u(1 p (y s) -t l( y a)) - 0 there. Thus
points on 011J ( a) comtaon to boundaries of more 0--ii two

decision regions make no contribution to the surface
integrals under discussion	 If y is on the boundary
common to ^l l (a) and :ii (a) only, then the product term

in the third set of square brackets is unity there.

Thus integration on such points of (%,(s) leads to

S	
s "a(ti(Y,a) - 't 	 (31)

1i 
tad

A similar calculation with the values of i and )
interchanged leads to a surface integral of the form

do	 ( t (Y,a)-t)(Y.$))^"ti(Y,a)	 (32)
"S 

ti (a)	 a i

Thus the total contribution to the surface integral
made by Mij (a) is

ads Ja(
ti( Y.a)'tI(Y.a)^.(ti(Y.e)-t)(Y,a)),	 (33)

ii ( )

which establishes the validity of the second (double

	

summation)term in (.1), 	 Q.E.D.

Remark 3: Before proceeding any further, it should
be pointed out that since V Q i q continuousfor almost

all a and y, it IV lows from The Lebesgue dominated con-
vergence theorem that V.% is continuous for all a.

In order to describe the set k, let us now assume
thatwe are given a function 0 of the variable a, with
values in E q , where q < k, satisfying:

(e) G has continuous second partials and la such
that ^10(a)jj - y as Ifall

Following convenfton, we say that i E E k is a regu-
lar point of 0 if `1a0 (a) is of rank (I.

We set
k - fa . 0(a) - c - given constant vector). (34)

Necessary and sufficient conditions for the exist-
ence of an optimal i are formulated in terms of the

following two theorems.

Theorem 1. Let conditions (a) through (e) hold
and V be efined as in (34). Then: (i) Problem 3 always
has a so L Lion; and (11) if i is such a solution and i

is a regular point of 0 , then there is a A E E q such

that

M	 q

E -	 dy (''a i(Y.1)) i E ^ a Va 0a (i) - 0. (35)
L • 1 :i

i 
(i)	 a . l

F.vot. k described by (34) is clearly compact in Ek.
Since 

Qm 
is continuou= tlon fl', part (i) follows from

Welerstrass's Theorem . Part (it) tollowt l from Lemma 1
and weliknown optimization theory results	 Q.ElD.

Theorem 2. Let the conditions as well as i and X
be as described in the preceding theorem. i is a local
minimum of ,) on X if there is an c > 0 such that

T 
VT

b	 (H nt,(i) ♦ 	 L + s vaVI 0 g (a)1 V b	 cflbl12 (36)
s•l

for all b E E k-q , where H Qm (a) is as in (27), V is a
kx(k-q) matrix yhuse columns span the null space of the

matrix (V 0(i))
Proof. Immediate from Lemma 2 and wellknown results

ll

from optimization theory. 	 Q.E.D.
Remark 4: The following Is also clear from wellknown

facts from optimization theory. Let f denote the subset of
of (1, ...,q, such that 0ii is nonlinear it and only if
I E t ( S may be empty). ey enlarging if necessary t;,
extend it to the bet k by replacing In (34) the equality

sign by	 for those 0il	

d	 i

with i E t. It 0 1 , I E S, are

convex (and hence k1 is convex) an (	 s convex on ki,
then i satisfying Theorem 2 is a puin^ of global
minimuni of 

Qm 
on )C.

Next we focus our attention on the following impor-
tant special case..

4. Linear Feature Extraction of Gaussian Features

Let us in fact particularize the results Just de-
scribed to the case in which the statistics of the
pattern classes are Gaussian and the class r , of trans-
formations fr.am L n to F.' is linear. Specifically, we
let k be a compact subset of the real :inite-

dimensional inner product space 7,'1 of real mxn matrices
with the inner product hetween any two elements A and

B of M detined by
T	 M M

(A,B`	 r(AB )	
iLl i)1 

A li B i) .	 (37)

where the abbreviation tr stands for trace.

It is a simple tatter to show that (37) is a

valid inner product in 71(,
If g is a teal-valued function of a matrix-valued

variable A belonging :o '7, such that at some value of
A, say 7C, g is difterentiable with respect to the ele-

ments of A, on^y can chow from tl.e abst -act defini'ion
of the gradienC 2, that the gradien! of g with respect
to A, evalupted at r, is simply tht .member V g(A) of
IT whose ij-d clement is	 A

( VA K(A) ) li - 
^(=/	 ( 3B)aA 

li

Formulas for matrix gradients of various tvpes of
real-valued functions of matrices have been ^erived in
reference (13). Recently, oecell andQuirein have
used sucl. formulas to express gradfents l-4 0[ the
divergence and Bhattacharyya distance in an easily

computable form.
In what follows, we apply the resul.. • of Theorem 1

to the Ga,ussian case by first computing Vfyy(y/HJ,A),
at a given A E'.,. However, in applyin¢ ^hO 2esults of

Theorem 2, since the Hessian H A f
yy (y/H ,A) is a linear

operator that cannot be represented in matrix form wi-
thout destroying the matrix structure of the element

of r( on which it is acting, we obtain instead the
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matrixH f (y/H J ,A)B, for arbitrary B. and nonce, by
integrattox,H ^(A)B. Note chat HA (A)B is all that

is needed in ^iollnection with (J6 here the vector
Vb now corm spponds to the matrix B E

HA fy (y/H7 ,A)S is the Ga:sau differential l2

b a t (y7H),A,B) of VA f(y/H ] ,.) at A along B and
Li 4s ily computable f§cA the formula:

6AVAfY(Y/HJj:B)

Lim 1 ( VA f Y ( y /H J ,Z + tB) - VA f Y (Y/H J ,A)j	 (39)
t-0

(	 VA f Y (Y/H J ,A' + tB) jt•0	 t E E l	 (40)

Returning now to our original problem, ender the

normality hypothesis the probability density functions
conditioned on pattern classes, in the transformed
space E m (A) are

T	 .1

fY (Y/H J ,A) • (2") 2 IR J 1 2 exp(-2 (y-yJ)T(RJ)-1(y-YJ)j,

J • 1,...,M,	 (41)

where A is a m *n matrix (belonging to N), 101 denotes
the determinant of R J , and y  and R ) are the mean and
covariance pertaining to Hi in Em (A). The latter two
entities are related to the given mean x ) and covariance
^) associated with HJ in the original space E n by

y J 	 A x J	 (42)

R  . A _0 AT 	 (43)

We will require;

Lemma 3. Fot fY(y/HJ,A),J•1,..,,M, as in (41),

VAfY(Y/HJ,A)

+(V-Y))TfRJ)-1(VA(AA)AT)I(RJ)-1(Y'Y^)

+(y-yJ)T(R^)-1('^(y-AxJ)j

. - 2(RJ)-l(y'YJ)(-J)T

2(Rj)'1(Y-YJ)(y-yJ)T(RJ)-L AR J 	(47)

Substituting (46) and (47) in (45), (44) 1s established.

Q.E.D.
There is a number of ways one may impose constraints

to guarantee compi,ctness of ti. one is to require that

11 All 2 • 7 tr (AA T ) 	 A E Vt ,Y. ccnot.(48a)

Another 1s to allow only those A E . consiiting of

orthonormal row vectors by requiring that

A AT• 1, A E	 (48b)

For simplicity in presentation, we will assume

k a (A E '. : A satisfies (48a)).	 (48c)

An additioncl important consideration concerning

restrictions on the set	 is spelt out in Remark 7,

at the end of this section.

By virtue of the above Lemma, Theorem l clearly

reduces to:

Tl.eorrm .J. Suppose that in Problem 3 the pattern

,Ids ata ,•.) • 1,... M, are Gaussian with means and

-.;.ariances x ) ands; • 1,...,M, and X is as in (48c)
Then the problem always has a solution. At any such

solution A it is necess,iry that the following matrix
equation be satisfied

M	
F c P (f(R J ) -1 Dij -11(R J ) -1

 Af71
i• l J•1 iJ J

Jai

+(RJ)- ldiJ(xJ)T) + 71A . 0	 (49)

where I is the identity matrix, k is •i Lagrange multi-

plier (to he calculated using (48a),

D1J	
n	 (Y-YJ)(Y-YJ)T I Y (Y/ HJ , A ) dy,	 (50)^ni(A)

diJ ' . 
.	

(Y'YJ) f ( Y /HJ , A ) dy	 (S1)6 
1 (A)	

Y

fY(Y/HJA)I((RJ)1(Y-YJ)(Y'YJ)T.1)(RJ)IAWJ+(RJ)1(Y"YJ)(xJ)Tj.
(44)

Proof. From (41) we obtain

VAfY(Y/HT,A)

_ m 1

Uri)7exP(- (Y " Y J ) T ( RJ ) lb"Y J ) ^)((eA^AiTJATI 7 j
1

21PJI- 
(V A ((y-Ax J ) T (ARJ AT ) -1 (y-Ax J ))I).	 (45)

The term in the first set of square brackets gives
1	 _ 3

°p J AJJAT 1 2 • - I IRJ ^ 	 2 VAIRJI

- I

2 
IR J I	 2 jRJjtr((RJ) 1 VA(AIbT)1

-I

jR J I 2 (R J ) -I AR J ,	 (46)

where here, as in what follows, we use the fact that

V is symmetric; while the term in the second set of
square brackets leads to

VA((y-AxJ)T(ARJAT)-1(y-AxJ))

.(VA(y-AxJ)Tj(RJ)-1(Y-YJ)

and the circumflex oo a symbcl denotes that the cor-

resfonding quantity is to be calculated using A.

Remark j. The iterative algorithm outlined In the

following section requires the left side of (49) tq be
computed at every iteration using the estimate of A
obtained in the preceding iteration. At first sight,

the need fir the evaluation of the multiple integrals

in (50) and (51) at each iteration might appear as i

serious drawback of this procedure. However, this dif-
ficulty can be avoided if we notice that D 1J and diJ
are in fact proportio.al to the covariance and mean of
the random variable(Y^-y J )(where Yj has the density
fY(./HJ,A)) when restricted to the decision region

Q (A). Thus if training sets for the various pattern

classes are available, the integrals in question may be

replaced by sample averages over _1ppropriate subsets of
training sets. Specifically, suppose that, for
i• 1,...,M pertaining to H we have the training set

We assume R nonsingular and RJ f Rp , J .1M, p0J
the particularization to the special cases when these
conditions do not hold being clear.

ORIGWAT., PAGE I:
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T 3 to E m (A) constatin of the samples j i.
A x Jl , ,.. Y jNJ - A x 1N J, where x )1 ,.• „ x JIIJ are the
given training samples in En, Than we have for esti-

mates of D i) and di)

D i J 	 1	
£	 (YJv-YJ)(YJq'YJ)T,	 (S:i

NJ	 Y Jq E :.1(A)

d iJ -	 1	 (YJq'YJ)	 (53)
N	 y J q F .li(A)

emark 0. In the particular case in which m-1,

Y - J1 A 1J X J being a scalar random variable, (50) and

(51) become single (rather than multiple) integrals and
can therefore be easily computed without one having to

go through the route described in the preceding remark.

Let us assume that the risk is the probability of mis-
classification and hence (14) holds, then the decision
boundaries are real numbers which arc chosen, according

to (16), from among the roots

iJ

rl	 - 
(Ri-RJ)-I(RiyJ-RJyi

t1
r 1	) 1

	 P2

±(R i R J C(Y i+y J ) 2+(R i RJ)log((R1)2 P )^) )^

i

i-1,...,M, Jii	 (54)

of the equations

fY(Y/Hi,A)-fY(Y/HJ,A),i-1,...,M,JOi,	 (55)

these densities being described by (41). Suppose that
the a' decision region consists of an interval

of	 y e a2 , Then a trivial calculation resulting

from the substitution of (41) In (50) and (51) leads to

1	
1

1)	 R J I(2^)
T
(^i J ex p ( - z(9^ J ) 2 )-BZJxp (- z( d2J)^)I

+ Erf(0,1;Ei2 J 	ij) - Erf(0,1;6	 (56)

1

d iJ .(Zry) 2 (exp( 2( b1J ) 2)-exp( j eZ J )2 )).	 (S7)

where	 1	 1 2
S

Erf ( O , I ; s ) - (2n)2 .1.
-	

e	 ds,	 (5g)
0

I	 l
9 iJ -( R J ) 2 (a i - y j	 I 	 RJ 2

),C•()	
(a1 

- Y • ).	 (59)
1	 1	 2	 2

(End of Remark)

To verify the conditions of Theorem 2 under the

Gaussian hypothesis, we first calculate (omitting the
derivation) the term appearing under the first sunsnation

in (27);

I,i (A, B ) -

dy 6A`^"Ci(Y.A.8)

(A)

J.1 ciJ P
) I

J,Oi

-2( RJ) -I(BRrAr+ARJRT)(RJ)-lniJ(R))
-IAirJ

+(RJ) 
IDtj(RJ) -IBRJ

-(R J ) -I (Bx j (d iJ ) T
+(d iJ)xIBT)(RJ)

-IARJ

-( RJ)- 1(BRJAT+A(RJ)TBT)(RJ)-IdiJ(%J)T

-(RJ)-
1B(R

J+xJ(xJ)T)

+(RJ)-I(BRJAT+AA'
JBT)(RJ)-IARJ

-tr((R J ) 'IARJ BT If((R J ) IDiJ-I)(Rj)-IARJ+(RJ)-idiJ(%J)T1

+C L!(B)(kJ)-LARJ

- W iJ (B)( R J ) IARJ

+hiJ(B)(xJ)f

+FiJ(B)(RJ)-IARJ

-(dij)T(RJ) 
1BxJ(RJ) 

IARJ

+viJ (B)( x J ) T ) ,	 (60)

where

r; lJ ( B)-.	dy fY(:/HJ,A)(Y-yJ)T(RJ)'IARJBT(Y-YJ)
W i ( A )	 (61)

h iJ (B)-
y,
 dy fY(Y/HJ,A)(Y-YJ)T(RJ)-1

A0BT (Y-Y J )(R J ) -1 (Y-Y
1

)	 (62)

v iJ (B)	 dy fY (Y/H J,A)(Y-YJ)T(RJ)-Itlx'J(R)) L(Y-YJ)
ni(A)

(63)

FiJ(B ) .r dy fY (Y/ HJ ,M Y'YJ)T(RJ)-L 1 .
^i(A)

(RJ) 1 (Y - Y J )(Y-Y J ) T	 (64)

Gi) (B)-„	 dy fY(v/HJ.A)(Y-YJ)T(RJ)-IA.RJBT(Y'YJ)
12i(A)

(RJ) -l(Y-YJ)(Y-YJ)T	 (65)

Since all the above integrals are expectations,

they may be computed from the training samples in the
Seine way AS (52) and (53).

The surface integral terns in (27) are calculated

in a similar fashion. In the special case in which the
risk ih the probability of misclassificatiun, these
teens (taking into eccoul,t the minus sign that precedes
the double summation) reduce to

	

M-1	 M

	

E	 E N iJ (A),	 (66)
i-1 J-1+l

where
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N1J(A)
5iJ(A) do( I

VA f Y (Y /H1 . A ) - VAfY(Y/H).A)I•

I VA f Y (Y/ HI , A ) - VA IY (Y/ HJ , A M T .	 (67)

where for V fY (y/H i .A). i s 1,...,M, we have to use
the expression given by the right side of (44). Then

quantities similar to those in (61) to (65) result
which again can be computed from the training samples.
Theorem 4. If 2 satisfies the conditions of Theorem 3,
then satisfaction of (36) is equival nt to the require-
ment that

M-1	 M
tr (( L ( L I (A,B) +	 l N 1J (A)B ) + LM(A,B)

i-1	 J-i+1

+aB1 BT ) > ,tg 89)	 (68)

for every B E 7, such that the transpose f the t^h
row of B lies in the null space of the pg5 column of

p- I t ... , M.

Remark 7: Let 4 denote a set containing m^stinct.

elements from , 1,...,nj and denote by A	 the	 ..o-

lumn of A. For some gi ven k , we may w14A to restrict
the class r so that for every A E 7, belonging to X, the

columns	

i

	

A	 J E ; constitute a submatrlx of rank m.

Since t ii nvariant with respect to nun-singular c,uor-
dinate transformations in the transform • .' (feature)

space, we may, in the case under constue ,.ation, set

(A : J E % ) equal to a permutation P or the col.mms

o ► J the unit m - m iist,onal matrix, leaving the 8(n-m)
alements in the remaining columns free for the optimi-
zation procedure. We would optimize Lhese elements by

requiring that the corresponding elements in the matrix

equation (49) satisfy (49) (with the remaining elements

of A set equal to the elements of P).
Me above remark is particularly useful In the veri-

fication of the sufficient conditions. For; suppose
that to begin with i.a let all elements of A vary (since
we didn't know at the outsetwhich columns of A had
rank m) and thereby determin ed A by means of an iterative

procedure based on (49). Assume that then we find c M t
the first .n columns of A constitute a non-singular matrix

A. Thu let w	 ( A	 A 2 ). We mey then replace A oy
d, A to ? ) end resth ct [he verification of the suffi-
ci•snce cotdition$ v:th repect to a smaller subset of

matitcea B than otherwise required ( since the only

relevant column% of A are the last n - m columns).

5. com ate tonal Algorithm

Various iterative methods such as the Newton and
gradient methods and their numerous modifications are
available for the computation of tht -)ptimal feature
extraction tranefo-mstion. We will limit our discus-

sion to the case of linear feature extraction of
Gaussian feat,.res, our remarks extending trivially to
the general non-Gaussian nonlinear case treated in

Section 3.
The values A and k of the estimates of the op-

'-%al matrix A And Lagran
p
 ge multiplier > at the pLh

.eration are given, according to ('.9) and (48c) by

M	 MJ	 1

Ap	

1J

	

A p-1 -Kp) i -1 J^I c tJ p J (((R
p-t )

	°p-1-I)

jot

(R J 	 ) lA	
-XJ+R J 	

d tJ 
(
%J)T

p-1	 L p-1	 p-1 p-1	 +ip-lAp :)•	
(69s)

	

p - I .	 ,

t p x p-1 -upl 
2 tr(Ap-IATp-1)-YI,

	

p-1,...,	 (O b)

where all the a)n ,tiols subscripted with p-1 are to be
computed with the values A

y-1	 p-1
and a	 obtained at

(p-1)1-b iteration, YVV And p are variable matrix sno

scalar g.lns determined according to the iterative
method selected, the initial estimates A. and lt o arc

Let at convenient values, and Di) and JIJ are ob-
p-1	 p-1

tained by (56) And (57) if the dimension n of the tex-
ture space 1a one, and by (52) and (53) otherwise,
Note that A convenient way of writing (5;) and (53) is

DI). --L £J ( Y lq - -J )(Y Jq -Y ) ) TA (Y Jq ).	 (70)
N J q•1	 i

NJ
d iJ . -	 f.(y)q-y))A (Y )q ).	 (71)

q l

where

1 1 (Y )	
J•1 

u (t i (Y.A ) -It I ( y . A ))	 (72)

Jii

We have used the Dovidon-Fletcher-Powell ll (D-F-P)
methud in implementing (69a,b) on the I1iM 370/155

computer of the Rice University Institute for Computer
Services and Applications (ICSA), The D - F-P procedure
requires fraction evaluations in additfou to gradient
evaluations. Evaluation of Qm (A) at the p<h iteration

may be carried out by the following estimate Justified

in the same way as (52) and (53):

M	 M	 1	 NJ

Qn,(Ap)	
1Fl J•1 NJ q^ l A ( YJq ) .	 (73)

Jot

if one knows beforehand that cer a in features are

significant, they may be retained rhus reducing the
number of parameters of the matrix A to be determined

ac(ording, to Roark 7.

6, Conclusion

General classe„ of nonlinear ant l-near transfor-
mations A for the reduction of the dimensionality of

the classification (feature) space so that, for a pre-
scribed dimension m of this s pace, the increase of the
misclabelifcation risk is minimised, have been investi-
gated. Necessary conditions that must satisfied b) the

optimal A have been presented and sufficient conditions

for a local minimum have been indicated. Even though
the sufficiency conditions ate very complicated, the
necessary conditions lend themselves to the foreulatton
of iterative algorithms for the determination of the

optimal transformation. In the proposed approach, the
multiple integrals which appear at each step of the

Iteration are replaced by certain sample averages over

training sets, a procedure which permits the carrying
out of the required computations with reasonable

amount of effort even for values of m not too :ow.

Testing of the proposed method on remotely sensed
data provided by the Johnson Space Center Earth Obser-
vations Division is in progres p at Rice University
ICSA computer fr. r tlities, ar.d the n.aeeri_al results
obtained will be discussed in a separate paper.
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