General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Erratato
Rice University ICSA Report \#275-02..-014
by
R. J. P. de Figueiredo
entitled
"Optimal Linear and Nonlinear Feature
Extraction Based on the Minimizationof the Increased Risk of Misclassification"(June, 1974)

Errata

(a) Equation (16) should read

$$
\begin{gathered}
\Omega_{i}(A)=\left\{y \in E^{m}(A): P_{i} f_{Y}\left(y \mid H^{i}, A\right)>\right. \\
\left.P_{j} f_{Y}\left(y \mid H^{j}, A\right)\right\}
\end{gathered}
$$

(b) Equation (54) should read

$$
\begin{aligned}
&\left.\begin{array}{c}
r_{1}^{i j} \\
r_{2}^{i j}
\end{array}\right\}=\left(R^{i}-R^{j}\right)\left\{R^{i} \bar{y}^{j}-R^{j} \bar{y}^{i} \pm\right. \\
& \pm\left[R ^ { i } R ^ { j } \left(\left(\bar{y}^{i}-\bar{y}^{j}\right)^{2}+\right.\right. \\
&\left.\left.+\left(R^{i}-R^{j}\right) \log \left(\frac{R^{j}}{R^{i}} \frac{P_{j}^{2}}{P^{2}}\right)\right]^{\frac{1}{2}}\right\} \\
& \text { if } R^{i} \neq R^{j}
\end{aligned}
$$

or

$$
\begin{aligned}
& \text { if } R^{i}=R^{j}
\end{aligned}
$$

(c) Equation (55) should read

$$
\begin{aligned}
P_{i} f_{Y}\left(y \mid H^{i}, A\right) & =P_{i}{ }^{f}{ }_{Y}\left(y \mid H^{j}, A\right) \\
i & =1, \ldots, M, \quad j \neq i
\end{aligned}
$$

Optimal Linear and Nonlinear Feature Extraction
 Based on the Minimization
 of the Increased Risk
 of
 Misclassification
 by
 Rui J.P. de Figueiredo
 Dept. of Electrical Engineering and Dept. of Mathematical Sciences
 Rice University

Abstract

We consider the problem of determining an optimal not necessarily linear transformation A from a real n-dimensional measure space E^{n}, in which the raw data to be classified into $M(M \geq 2)$ pattern classes appear, to a "feature space" E^{m} of a prescribed dimension $m<n$ in which classification is made. The Bayes risk in the transformed space E^{m}, called the "increased risk of misclassification", depends on A and hence will be denoted by $Q_{m}(A)$. We assume that A belongs to a given class X of transformations from $E^{n} \rightarrow E^{m}$, each member of X being a prescribed function of a vector parameter $a=\left(a_{1}, \ldots \ldots, a_{k}\right)$ characterizing the member. So, given an appropriate class X, we select the optimal \hat{A} by minimizing $Q_{m}(A)$ over all $A_{e} X$. Necessary and sufficient conditions for the existence of such an \hat{A} are given, and an iterative algorithm for the determination of \hat{A} is presented. Finally the results obtained are partimuarized for the case in which the statistics of the data are Gaussian.

> Institute for Computer Services \& Applications
> Rice University
> Houston, Texas 77001

June, 1974
Research supported in part under NASA contract NAS-9-12776

OPTDMAL LINEAR AND MONLIKTAR TEATURE EXTRACTION
BASED ON THE MINIMIZATION OF THE INCREASED risk of misclassification*

Rui J. P, de Figueiredow*
Department of Electrical Engineering end
Department of Mathematical Sciences

Rice University, Houston, Texas 77001

Abstract

We consider the problem of determining an optimal not necessarily linear transformation from a real n dimensional measure space E^{n}, in which the raw data to be classified into $M(M \geq 2)$ pattern classes appear, to a "feature space" $\mathbf{E}^{\text {m }}$ of a prescribed dimension m $<n$, in which classification is to be made. The Bayes risk in the transformed space $E^{(m}$, called the "increased risk of misclassification", depends on A and hence will be denoted by $Q_{m}(A)$. We assume that A belongs to a given class X of transformations from $E^{n} \rightarrow E^{m}$, each member of x being a prescribed function of a vector parameter a = (a_{1}, \ldots, a_{k}) characterizing the member. For example, if X is the class of linear transformations, then members of x are constant $m \times n$ matrices, the components of the vector parameter a characterizing a given metrix A consisting of the mn elements of that matrix. So, given an appropriate class X, we select the optimal \hat{A} by minimizing $Q_{m}(A)$ over all $A \in X$. Necessary and sufficient conditions for the existence of such an \hat{A} are given, and an iterative algorithm for the determination of \hat{A} is presented. Finally, the results obtained are particularized for the case in which the statistics of the data are Gaussian.

1. Introduction

Suppose that a data vector $x=\operatorname{col}\left(x_{1}, \ldots, x_{n}\right)$, belonging to the real n-dimensional Euclidian space E^{n}, is to be classified as pertaining to one of the M pattern classes $\mathrm{H}^{\mathrm{H}}, \ldots, \mathrm{H}^{\mathrm{M}}$. Then x may be considered to be a realization of a random vector $X=\operatorname{col}\left(X_{1}, \ldots, X_{n}\right)$. We will assume that $X_{i}, i=1, \ldots, n$, are continuous random variables possessing well defined probability density functions.

For $j=1, \ldots, M$, let P_{j} denote the prior probability for the pattern class H^{j}, and $f_{X}\left(. / H^{j}\right)$ the probability density function*** for X conditioned on the class H^{j} (called the likelihood function for the class H ${ }^{\text {f }}$). Note that, endowed with these probabilities and likelihood functions, $E^{\text {n }}$ becomes a measure space.

We will assume that $P_{j}, j=1, \ldots, M$, are known and $f_{x}\left(. / H^{\mathrm{j}}\right), \mathrm{j}=1, \ldots, \mathrm{M}$, can be learned from available training sets. The functions $f_{X}\left(. / H^{j}\right)$, together with their first and second partial derivatives with respect to the components of x, will be assumed to be continuous and integrable on E^{n}.

Given an integer m, such that $1 \leq m<n$, let A be a function belonging to given class x of functions from $E^{\text {n }}$ to $E^{m}(A)$. Here the m-dimensional Euclidian space E^{m} is phown to be a function of A because the measure on $\mathrm{E}^{\prime 2}$ (introduced by the prior probabilities and

[^0]the likelihood functions in E^{m}) is dependent on the trans formation A.

In order to formulate the optimal feature extraction problem, we need to be given one more entity, namely a criterion functional, whose value corresponciing to a given A will be denoted by

$$
\begin{equation*}
Q\left(A ; P_{1}, \ldots, P_{M} ; f_{X}\left(. / H^{1}\right), \ldots, f_{X}\left(. / H^{M}\right)\right) \tag{1a}
\end{equation*}
$$

which, when the other arguments are clear from the context, will be written simply as

$$
\begin{equation*}
Q(A) . \tag{lb}
\end{equation*}
$$

Then the optimal feature extraction problem may be stated precisely as follows:

Problem 1: Given P_{j} and $f_{X}\left(. / H^{j}\right), j=1, \ldots, M$, class X, and a criterion functional Q, all defined as above, find \hat{A} which minimizes* $Q(A)$ over all $A \in X$.

In the existing literature (see for example (1) through [6] and the references therein), solutions to Problem 1 have been obtained assuming Gaussian statistics, using classes of linear transformations, and based on criterion functionals Q that are probabilistic distances, such as the divergence, the Bhattacharyia distance, and the Matusita distance. In general, such distances lead to solutions that are at best subopimal, that is, these solutions minimize a bound on the risk of misclassification rather than the risk of misclassification itself.
in what follows, we propr :o solve Problem 1 by choosing the Bayes risk of $\mathrm{f}_{\mathrm{scl}}$ ssification, and in particular the probability c ssclassification, as the criterion functional to be maimized. While the proposed solution may require more computational effort than the solutions based on probabilistic distances mentioned above, it (the proposed solution) is believed to be of great value for the following two reasons: (1) the feature extraction computation is a "design computation" which is performed off-1ine and only once and hence the greater computational effort which may be required does not constitute a besic limitation; and (2) the proposed solution would give the maximum possible accuracy in classification achievable in a space of a prescribed dimension m.

2. Feature Extraction Based on the Minimization of the Increased Risk of Misclassification; Problem Formulation

If A is a transformation which sends $x \in E^{n}$ to $y \in E^{m}$ we may write $y=\operatorname{col}\left(y_{1}, \ldots, y_{m}\right)=A(x)=\operatorname{col}\left(A_{1}(x), \ldots, A_{m}(x)\right)$.

For convenience, we will use the notation

$$
\begin{equation*}
\tilde{x}=\operatorname{col}\left(x_{1}, \ldots, x_{m}\right), \tag{3}
\end{equation*}
$$

[^1]\[

$$
\begin{equation*}
\tilde{x}=\operatorname{col}\left(x_{m+1}, \ldots, x_{n}\right), \tag{4}
\end{equation*}
$$

\]

and thus express

$A(x)=A(\tilde{x}, x)$,

$$
\begin{equation*}
A_{1}(x)=A_{1}(\tilde{x}, x), i=1, \ldots, w . \tag{5}
\end{equation*}
$$

Let us introduce the Jacobian determinent

From now on we will assume that the class x consists of (not necessarily linear) transformations A from E^{n} to $E^{\text {ur }}$ such that:
(a) The (pure and mixed) second partial derivatives of $A(x)$ with respect to the components of x are continuous;
(b) Except possibly on subsets of E^{n} where all the likelihood functions vanish, the mapping under (2) of \tilde{x} to y is one-to-one for every \tilde{x}; and in particular, $J_{A}(x) \neq 0$ everywhere, except possibly on the above subsets of E^{n}.

Under conditions (a) and (b) above, we may, in the region of interest, express the variables x_{1}, \ldots, x_{m} in terms of y_{1}, \ldots, y_{m}, and x_{m+1}, \ldots, x_{n} by invarting (2). Specifically, there is a unique trancformation B: $\mathbf{E}^{\mathbf{n}} \rightarrow \mathrm{E}^{\mathrm{m}}$ such that

$$
\begin{equation*}
\tilde{x}=B(y, \widetilde{x}) \tag{8}
\end{equation*}
$$

for all \tilde{x}, \tilde{x}, and y satisfying (2) in the region of interest. According to a wellknown procedure ${ }^{8}$, the likelihood functions in $E^{m}(A)$ would then ie given by

Kemark 1: At the expense of complicating our presentation but otherwise adding no difficulty to our formulation, we could have enlarged the class X of transformations defined above by means of the two weakening conditions: (I) Allow the class x to include all transformations A for which the vector x consists of any combination of m variables from the set $\left(x_{1}, \ldots, x_{n}\right)$ (rather than only the first mariables from this set) provided conditions (a) and (b), with appropriate amnendments in notation, are satisfied. (II) Weaken condition (b) so that for a given \widetilde{x} and y the equation $A(\tilde{x}, \tilde{x})=y$ is permifted, to have a finite number of mul; iple roots, say $\tilde{x}^{(1)}$ \#B $^{(1)}(y, \tilde{x}), \ldots, \tilde{x}^{(k)} \equiv_{B}(k)(y, \tilde{x})$. In a standard way, the integrand in (9) would be replaced by

$$
\begin{equation*}
\left.\sum_{\ell=1}^{k} \frac{1}{\left|J_{A}\left(B^{(\ell)}(y, \tilde{x}), \tilde{x}\right)\right|} f_{X^{(B}}{ }^{(\ell)}(y, \tilde{x}), \approx \tilde{x} / H^{j}\right) \tag{10}
\end{equation*}
$$

For $1, j=1, \ldots, M$, let the nonnegative number fic represent the cost of classifying a data vector ss arising from H^{1} when actually it originated frow ${ }^{2} j$. Again for simplicity in presentation and without loss of generality, we will assume that there is no cost involved in making a correct decision, i,e, that $c_{i i}=0, i=1, \ldots, M$.

It is a vell known end easily proved fact that, dye to the reduction in dimensionality in going from \mathbf{E}^{m} to $\mathbf{E}^{\mathbf{m}}(\mathrm{A})$, the Bayes risk of misclassification in $E^{m}(A)$, denoted by $Q_{m}(A)$, is grester than that in E^{n}. For this reason, $Q_{p}(A)$ will be called the increased risk of misclassification and is expressed by
$Q_{m}(A)=\sum_{i=1}^{M} \hat{N}_{i}(A) \ell_{i}(y, A) d y$,
where
$\ell_{i}(y, A)=\sum_{\substack{j=1 \\ M}}^{M} c_{i j} P_{j} f_{Y}\left(y / H^{j}, A\right), i=1, \ldots, M$,
and $\Omega_{i}(A), i=1, \ldots, M$, are decision regions in $E^{m}(A)$, that is, if $y \in \Omega_{1}(A)$ one says that it arose from \mathbb{H}^{i}.

Elementary decision theory also tells us that (for a given A) the choice of $?_{i}(A), i=1, \ldots, M$, which minimizes $Q_{m}(A)$ is given by

$$
\begin{gather*}
\Omega_{i}(A)=\left(y \in E^{m}(A): \ell_{1}(y, A)<\ell_{j}(y, A), j \neq i\right), \\
i=1, \ldots, M \tag{13}
\end{gather*}
$$

and, in the particular case in which the cost constants are

$$
\begin{equation*}
c_{i j}=1-\delta_{i j}, i, j=1, \ldots, M, \tag{14}
\end{equation*}
$$

where $\delta_{i j}=$ Kronecker delta, (11) becomes the probability of misclassification, (12) and (13) then reducing respectively to

$$
\begin{equation*}
\ell_{i}(y, A)=\sum_{\substack{j=1 \\ j \neq i}}^{M} P_{j} f_{i}\left(y / H^{j}, A\right), \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& \text { and } \begin{aligned}
\Omega_{i}(A)=\left(y \in E^{m}(A): P_{i} f_{Y}\left(y / H^{j}, A\right)>\right. & \left.P_{j} f_{Y}\left(y / H^{j}, A\right), j \neq i\right) . \\
i & =1 \ldots, M .
\end{aligned}
\end{align*}
$$

We are thus able to refornulate Problem 1 as follows:

Problem 2: Given P_{j} and $f_{X}\left(. / H^{j}\right), j=1, \ldots, M$, the class X of functions from $E^{r_{i}}$ to $E^{m}(i)$ satisfying conditions (a) and (b) above, and the criterion functional Q_{m} defined by (11), find $\hat{A} \in x$ which minimizes $Q_{m}(A)$ over all $A \in X$.

In order to simpli, ... ${ }^{\prime}$ analysis, we will introduce two addity snal cc, \ldots, (c) and (d) to be stated below.
(c) Every transforn A belonging to x is expressible as $A(x)=\varphi(x, a)$, where $a=\operatorname{col}\left(a_{1}, \ldots, a_{k}\right)$, belonging to a compact subset X of E^{k}, is a real parameter vector and φ is a ffxed function from E^{n+k} to E^{m}; in other words, each mewber of X is obtained by assigning a different value to the parameter vector a in the argument of the known function $\varphi(x, \cdot)$. We will assume that φ has continuous second partial derivatives with respect to the components of x and a; and that* $f_{Y}\left(y / H^{j}, a\right), \partial f_{Y}\left(y / H^{j}, a\right) / \partial a{ }_{P}$, and $\lambda^{2} f\left(y / H^{j}, a\right) / \partial a{ }_{P}{ }^{\lambda a} a$, $p, q=1, \ldots, k$, are continuous and integrable in the product spaces spanned respectively by the variables y, y and a_{p}, and y, a_{p} and a_{j}.

Remark 2: The abrve condition is not too restrictive. For example, the class of all linear transformations from E^{n} to $E^{\mathbf{t}}$, whose representation consists of i
"in view of the conjition just assumed we will irom now on replace capital A by small a in the notation appearing in (9) through (16), e.g. $f_{Y}\left(y / H^{j}, a\right)$ instead of ${ }_{f_{Y}}\left(y / H^{j}, A\right)$, except when A denotes a matrix.

- X n real constant matrices of bounded norm satisfies (c). In fact, the number k of parameters in this case is simply the total number m $x n$ of entries in any suci matrix.

(End of Remark)

If is a function of y and a let its gradients with respect to these vectors be defined in the usual
$\nabla_{y} t(y, a)=\operatorname{col}\left(\frac{\partial}{\partial y_{1}} \psi(y, a), \ldots, \frac{\partial}{\partial y_{m}} \psi(y, a)\right)$,
$\nabla_{a} \psi(y, a)=\cos \left(\frac{\partial}{\partial a_{1}} \psi(y, a), \ldots, \frac{\partial}{\lambda a_{k}} \downarrow(y, a)\right)$.
Denote by $\beta_{i j}(a)$ the boundary between $\Omega_{i}(a)$ and $\Omega_{j}(a)$, that ls $B_{i j}(a)=\left(y \in E^{m}(a): i_{i}(y, a)=\ell_{j}(y, a)\right.$,

$$
\begin{equation*}
\left.\ell_{1}(y, a) \leq \ell_{p}(y, a), p \notin i, j\right) \tag{18}
\end{equation*}
$$

and $i a \leq 1 Q(a)$ the union of $B_{i j}(a), i=1, \ldots, M, j \neq 1$.
Ia order to avoid singular points in the description of $B(a)$, we require that
(d) For every nonzero $a \in \mathcal{K}$, and $i=1, \ldots, M, j \neq 1$,
$\nabla_{y}\left(\ell_{i}(y, a)-\ell_{j}(y, a)\right) \nleftarrow \underline{0}, y \in B_{i j}$.

From now on, we will consider, instead of Problem 2,:

Problem 3: Same as Problem 2 with the additional restrictions (c) and (d).

3. Necessary and Sufficient Conditions for an Optiaal Transformation

Consider the Hessian matrix*
$\left.H_{a} Q_{\text {in }}^{\prime}{ }^{\prime} a\right)=\nabla_{a} \nabla_{a}^{T} Q_{\text {in }}(a)$.
We first assert that under the above conditions, $\nabla_{a} Q_{m}$ and $H_{a} Q_{T}$ can be evaluated by appropriately carrying out tie differentiation operations under the integral iigr.

Lemo:? 1. Under the conditions stated,
$\nabla_{a} Q_{m}(a)=\sum_{i=1}^{M} \sum_{\Omega_{i}(a)} d y\left(\nabla_{a} \ell_{i}(y, a)\right)$.
Rryg. Define the function $\ell: E^{k+m} \rightarrow E^{1}$ by
$4, f y, a)=\ell_{1}(y, a), y \in \Omega_{i}(a)$ or

$$
\begin{align*}
& y \in \mathbb{R}_{1 j}(a), \\
& i=1, \ldots, M, j \neq 1 \tag{22}
\end{align*}
$$

Flom our conditions, l is continuous on $E^{k+r i s}$ and, for any given a and $\Omega_{1}(a)$ the first and second partials of ℓ wte respect to the components of a are continuous on $\Omega_{i}(e)$ eac spproach continuous linits as y tends to the bounde y of $\Omega_{i}(a)$. On the boundary, the partials have a simple discontinuity, Since $B(a)$ is of Lebesgue measure zer; in $E^{\text {mi }}(a)$ we may write
$Q_{m}(a)=\sum_{i=1}^{M} \int_{\Omega_{1}(a)} \ell_{1}(y, a) d y=\int_{E^{m}}^{\ell(y, s) d y}$,
where we have frarposely dropped the argument of $E^{m}(a)$
since it is immaterial in this calculation.
For say given integer $q, 1 \leq q \leq k$, let
*Henceforth t'e superscript T on a symbol will denote its transpose.
$g(a)=\int_{E^{u s}} d y \frac{\partial\left(y, a_{1}, \ldots, a_{q-1}, a_{q}, n^{n}\left(1, \ldots, a_{k}\right)\right.}{\partial s_{q}}$.
Since for every $a_{1}, \ldots, a_{q-1}, a_{q+1}, \ldots, a_{k}$, the integrand in (24) is integrabie in the product space spanned by the variableg ${ }^{3}$ g and y, it follows, invoking Fubini's theorem in a standard way (with a qo an arbitrary real constant and \tilde{a}_{q} a variable of $q 0$ integration) that
$\sum_{a_{q 0}}^{a_{q}} \tilde{a}_{q} g\left(a_{1}, \ldots, a_{q-1}, z_{q}, a_{q+1}, \ldots, a_{k}\right)$
$=\int_{a_{q}}^{a} q_{q} \tilde{a}_{q} \int_{\mathbf{E}^{m}} d y \frac{\partial \ell\left(y, a_{1}, \ldots, a_{q-1}, \tilde{a}_{q}, a_{q+1}, \ldots, a_{k}\right)}{\partial \tilde{a}_{q}}$
$\approx_{E^{\text {m }}}$ dy $_{\sum_{q} a_{q} \tilde{d a}_{q} \frac{\partial\left(y, a_{1}, \ldots, a_{q-1}, \tilde{a}_{q}, a_{q+1}, \ldots, a_{k}\right)}{\partial \tilde{a}_{q}}}$
$\mathrm{m}_{\mathrm{E}^{\mathrm{m}}}^{\prime} \mathrm{dy}\left[\ell(\mathrm{y}, a)-\ell\left(\mathrm{y}, a_{1}, \ldots, a_{q-1}, a_{q 0}, a_{q+1}, \ldots, a_{\mathrm{k}}\right)\right]$
$=Q_{m}(a)-Q_{m}\left(a_{1}, \ldots, a_{q-1}, a_{q \circ}, a_{q+1}, \ldots, a_{k}\right)$.
But from the leftmost and rightmont members of the equalities (25), we conclude that Q_{m} is the antiderivative (with respect to $a_{,}$) of g or

$$
\begin{equation*}
g(a)=\frac{\partial Q_{m}(a,}{\partial a_{q}} \tag{26}
\end{equation*}
$$

(24) and (26) for $q=1, \ldots, k$, then establish the validity of (21).
Q.E.D.

Lemma 2. Under the conditions stated,
$H_{a} Q_{m}(a)=\sum_{i=1}^{M} \tilde{\Omega}_{i}(a) d y\left(\nabla_{a} \nabla_{a}^{T} \ell_{i}(y, a)\right)-$
$\sum_{i=1}^{M-1} \sum_{j, i+i}^{M} S_{i j}(a)$ ds $\nabla_{a}\left(\ell_{i}(y, a)-\ell_{j}(y, a)\right) \nabla_{a}^{T}\left(\ell_{i}(y, a)-\ell_{j}(y, a)\right.$,
where the second set of integrals consists of surface i.ategrals on the subsets of $B(a)$ corresponding to the boundaries of not more than two regions. Thus S_{if} (a) is that subset of $Q_{i j}$ (a) which is the common boundary between $\Omega_{i}(a)$ and $\Omega_{j}(a)$ only.

Proof. As in the previous proof, we will carry out the integrations over the entire $\mathbb{E}^{\text {m }}$. However our presentation will be simplified using indicator functions for the regions $\Omega_{1}(a)$.

$$
\text { In fact let the function } u . E^{1} \rightarrow E^{1} \text { be defined by }
$$

$$
u(\xi)=\left\{\begin{array}{l}
1, \quad \xi>0 \\
0, \quad \xi \leq 0 \tag{28}
\end{array}\right.
$$

Then, (21) may be rewritten es
$\left.\nabla_{a}^{T} Q_{m}(a)=\sum_{i=1}^{M}{\underset{E}{ }}_{m}^{m} d y\left(\left(\prod_{\substack{j=1 \\ j \neq 1}}^{M} u(\ell, j, a)-\ell_{i}(y, a)\right)\right) V_{a}^{T} \ell_{i}(a, y)\right)$.
Now, provided we are willing to edmit distribution functions, we may transfer further differentietion operations to within the integrial sign; that is

$$
\begin{align*}
& \nabla_{a} \nabla_{a}^{T} Q(a)=\sum_{i=1}^{M} \int_{E^{m}} d y\left(\sum_{\substack{j=1 \\
j \neq i}}^{M}\left[\delta\left(\ell_{j}(y, a)-\ell_{i}(y, a)\right)\right]\right. \\
& \quad\left[\nabla_{a}\left(\ell_{j}(y, a)-\ell_{i}(y, a)\right) \mid \prod_{\substack{r=1 \\
r \neq i}}^{M} u\left(\ell_{r}(y, a)-\ell_{i}(y, a)\right)\right] \\
& \quad\left[\nabla_{a}^{T} \ell_{i}(y, a)\right] \\
& \left.\quad+\prod_{\substack{j=1 \\
j=1}}^{M} u\left(\ell_{j}(y, a)-\ell_{i}(y, a)\right) \nabla_{a} \nabla_{a}^{T} \ell_{i}(y, a)\right) \tag{30}
\end{align*}
$$

where $6(\cdot)$ denotes the delta function.
The last product term in (30) clearly leads to
the first integral in (27).
Consider the remaining set of terms, all in square brackets, in (30). The first (delta function) term in square brackes reduces the integration of the set of terms under consideration to a surface integral on $\theta_{i j}$ (a). If $y \in B_{i j}$ (a) is on the boundary of more than two decision regions, say $\Omega_{i}(a), \Omega_{j}(a)$, and $\Omega_{p}(a)$,
the product term in the third set of square brackets vanishes because $u\left(\ell_{p}(y, a)-\ell_{1}(y, a)\right)=0$ there. Thus points on $\mathrm{B}_{i j}(a)$ common to boundaries of more $t^{\text {tr }}-\mathrm{n}$ two decision regions make no contribution to the surface integrals under discussion. If y is on the boundary common to $\lambda_{i}(a)$ and $\Pi_{j}(a)$ only, then the product term in the third set of square brackets is unity there. Thus integration on such points of $B_{i j}(a)$ leads to
$\stackrel{V}{S}_{i j}(a){ }^{d s} \nabla_{a}\left(\ell_{j}(y, a)-\ell_{i}(y, a)\right) \nabla_{a}^{T_{i}}(y, a)$.
A similar calculation with the values of i and J interchanged leads to a surface integral of the form
${\stackrel{\sim}{S_{i j}}}(a) \quad$ ds $\nabla_{a}\left(\ell_{i}(y, a)-\ell_{j}(y, a)\right) \nabla_{a}^{T} \ell_{j}(y, a)$.
Thus the total contribution to the surface integral made by B_{ij} (a) is
$\rangle_{i j}(a)$ ds $\nabla_{a}\left(\ell_{j}(y, a)-\ell_{i}(y, a) \nabla_{a}^{T}\left(\ell_{i}(y, a)-\ell_{j}(y, a)\right)\right.$,
which establishes the validity of the second (double summation)term in (27).
Q.E.D.

Remark 3: Before proceeding any further, it should be pointed out that since ∇Q is contirnous for almost all a and y, it fgllows from the Lebesgue dominated convergence theorem that $\nabla_{n} Q_{\mathrm{m}}$ is continuous for all a .

In order to describe the set \mathcal{K}, let us now assume that we are given a function θ of the variable a, with values in E^{q}, where $q \leq k$, satisfying:
(e) 9 has continuous second partials and is such that $\|\theta(a)\| \rightarrow \infty$ as $\|a\| \rightarrow \infty$.

Following convention, we say that $\hat{a} \in E^{k}$ is a regular point of θ if $\nabla_{a} \theta^{T}(\hat{a})$ is of rank q. We set
$X=$ (a : $\theta(a)=c=$ given constant vector). (34) Necessary and sufficient conditions for the existence of an optimal are formulated in terms of the following two theorems.

Theorem 1. Let conditions (a) through (e) hold and \mathscr{F} be efined as in (34). Then: (i) Problem 3 always has a solition; and (ii) if â is such a solution and â is a regular point of θ, then there is a $\hat{\lambda} \in E^{q}$ such
that

$$
\begin{equation*}
\sum_{i=1}^{M} \hat{n}_{i}(\hat{a}) \quad \text { dy }\left(\nabla_{a} \ell_{i}(y, \hat{i})\right)+\sum_{s=1}^{q} \hat{\lambda}_{s} \nabla_{a} \theta_{s}(\hat{i})=\underline{0} \tag{35}
\end{equation*}
$$

Proof. X described by (34) is clearly compact in \mathbf{E}^{k}. Since Q_{m} is continuouq on K, part (i) follows from Weierstrass's Theorem ${ }^{\text {P }}$. Part (ii) follow, from Lemma 1 and weliknown optimization theory results ${ }^{11}$. Q.E ${ }_{2}$.

Theorem 2. Let the conditions as well as and $\hat{\lambda}$ be as described in the preceding theorem, a is a local minimum of Q_{m} on X if there is an $\epsilon>0$ such that

$$
\begin{equation*}
b^{T} v^{T}\left[H_{a} Q_{m}(\hat{a})+\sum_{s=1}^{q} \hat{X}_{s} \nabla_{a} \nabla_{a}^{T} \theta_{s}(\hat{a})\right] v b \geq \epsilon\|b\|^{2} \tag{36}
\end{equation*}
$$

for $a l l b \in E^{k=q}$, where $H_{a} Q_{m}(a)$ is as in (27), V is a $\mathrm{k} \times(\mathrm{k}=\mathrm{q})$ matrix whose columns span the null space of the matrix $(\nabla \theta(\hat{a}))^{T}$.

Prool. Immediate from Lemma 2 and wellknown results ${ }^{11}$ from optimization theory.
Q.E.D.

Remark 4: The following is also clear from wellknown facts from optimization theory. Let $\}$ denote the subset of of ($1, \ldots, q$) such that θ is nonlinear if and only if $i \in \xi$ (δ may be empty). By enlarging if necessary \mathcal{K}, extend it to the set K_{1} by replacing in (34) the equality sign by \leq for those θ_{i} with $\left.i \in\right\}$. If $\theta_{i}, i \in S$, are convex (and hence K_{1} is convex) and Q_{T} is convex on K_{1}, then â satisfying Theorem 2 is a point of global minimum of Q_{m} on K.

Next we ${ }^{m}$ focus our attention on the following important special case.

4. Linear Feature Extraction of Gaussian Features

Let us in fact particularize the results just described to the case in which the statistics of the pattern classes are Gaussian and the class X of transformations from E^{n} to $E^{\prime \prime \prime}$ is linear. Specifically, we let x be a compact subset of the real Inite-
dimensional inner product space m of real $m \times n$ matrices with the inner product between any two elements A and B of n defined by

$$
\begin{equation*}
\langle A, B\rangle=\operatorname{tr}\left(A B^{T}\right)=\sum_{i=1}^{M} \sum_{j=1}^{M} A_{i j} B_{i j}, \tag{37}
\end{equation*}
$$

where the abbreviation $t r$ stands for trace.
It is a simple matter to show that (37) is a valid inner product in 7 .

If g is a real-valued function of a matrix-valued variable A belonging io m, such that at some value of A, say A, g is difierentiable with respect to the elements of A, one can chow from the abstract definition of the gradient ${ }^{12}$, that the gradient of g with respect to A, evaluated at \tilde{A}, is simply the aember $\nabla_{A} g(\tilde{A})$ of m whose ijth element' is

$$
\begin{equation*}
\left({ }_{A} g(\widetilde{A})\right)_{i j}=\frac{\partial g(\widetilde{A})}{\partial A_{i j}} \tag{38}
\end{equation*}
$$

Formulas for matrix gradients of various types of real-valued functions of matrices have been derived in reference [13]. Recently, Decell and Quirein ${ }^{6}$ have used such formulas to express gradients $1-4$ of the divergence and Bhattacharyya distance in an easily computable form.

In what follows, we apply the resuln of Thecorem 1 to the Gausgian case by first computing $\nabla_{\mathrm{f}}^{\mathrm{f}}(\mathrm{y} / \mathrm{H}, \widetilde{\mathrm{A}})$, at a given $\tilde{A} \in \%$. However, in applying the fesults of Theorem 2, since the Hessian $H_{A} f_{Y}\left(y / H^{,}, A\right)$ is a inear operator that cannot be represented in matrix form without destroying the matrix structure of the element of π (on which it is acting, we obtain instead the
$\operatorname{matrix} H_{A} f_{y}\left(y / H^{j}, \widetilde{A}\right) B$, for arbitrary B_{A} and hence, by integration, $H_{A} Q_{\infty}(\tilde{A}) B$. Note chat $H_{A} Q_{(A) B}$ is all that is needed in cornnection with (36), Dhere the vector Vb now corresponds to the matrix $\mathrm{B} \in \%_{\text {i }}$. $H_{A} f_{\gamma}(y / H, \widetilde{A}) B$ is the Gateau differential ${ }^{12}$ $\left.{ }^{6} \nabla^{\nabla} A^{1}\left\{y \gamma_{H}\right], A ; B\right)$ of $\nabla^{f} f_{X}\left(y / H^{\prime}\right.$,) at \widetilde{A} along B and if Aafily computable foon the formula:

$$
\begin{align*}
& { }_{A}^{6}{ }^{\nabla} A^{f} Y\left(y / H^{j}, \tilde{A} ; B\right)= \\
& \lim _{t=0} \frac{1}{t}\left[\nabla_{A} f_{Y}\left(y / H^{j}, \tilde{A}+t B\right)-\nabla_{A} f_{Y}\left(y / H^{j}, \tilde{A}\right)\right]= \tag{39}\\
& \left\{\frac{\partial}{\partial t} \nabla_{A} f_{Y}\left(y / H^{j}, \tilde{A}+t B\right)\right]_{t=0}, \quad t \in E^{1} . \tag{40}
\end{align*}
$$

Returning now to our original problem, under the normality hypothesis the probability density functions conditioned on pattern classes, in the transformed space $\mathbb{E}^{m}(A)$ are

$$
\begin{gather*}
f_{Y}\left(y / H^{j}, A\right)=(2 \pi)^{-\frac{m}{2}}\left|R^{j}\right|^{-\frac{1}{2}} \exp \left(-\frac{1}{2}\left(y-\bar{y}^{j}\right)^{T}\left(R^{j}\right)^{-1}\left(y-\bar{y}^{j}\right)\right), \\
j=1, \ldots, M \tag{41}
\end{gather*}
$$

where A is a $m \times n$ matrix (belonging, to x), $\left|R^{j}\right|$ denotes the determinant of R^{j}, and \bar{y}^{j} and R^{j} are the mean and covariance pertaining to H^{j} in $E^{m}(A)$. The latter two entities are related to the given mean \bar{x}^{j} and covariance ${ }^{\boldsymbol{*}}$ $\widetilde{\mathbf{R}}^{j}$ associated with H^{j} in the original space E^{n} by

$$
\begin{align*}
& \dot{y}^{j}=A \tilde{x}^{-j} \tag{42}\\
& R^{j}=A \widetilde{R}^{j} A^{T} \tag{43}
\end{align*}
$$

We will require:
Lemme 3. For $f_{Y}\left(y / H^{j}, A\right), j=1, \ldots, M$, as in (41),
$\nabla_{A} f_{Y}\left(y / H^{j}, A\right)=$
${ }^{f} Y\left(y / H^{j}, A\right)\left[\left(\left(R^{j}\right)^{-1}\left(y-\bar{y}^{-j}\right)\left(y-\bar{y}^{j}\right)^{T}-I\right)\left(R^{j}\right)^{-1} A \widetilde{R}^{j}+\left(R^{j}\right)^{-1}\left(y-\bar{y}^{-j}\right)\left(x^{-j}\right)^{T}\right]$.
Proof. From (41) we obtain
$\nabla_{A} f_{Y}\left(y / H^{j}, A\right)$
$=\left((2 \pi)^{-\frac{m}{2}} \exp \left(-\frac{1}{2}\left(y-\bar{y}^{j}\right)^{T}\left(R^{j}\right)^{-1}\left(y-\dot{y}^{j}\right)\right]\right)\left(\left[\nabla_{A}\left|A \tilde{R}^{j} A^{T}\right|^{-\frac{1}{2}}\right)\right.$
$\left.\left.-\frac{1}{2}\left|R^{j}\right|^{-\frac{1}{2}}{ }^{\nabla_{A}}\left(\left(y-A x^{-j}\right)^{T}\left(A \widetilde{R}^{j} A^{T}\right)^{-1}\left(y-A x^{-j}\right)\right)\right]\right)$.
The term in the first set of square brackets gives

$$
\begin{align*}
\nabla_{A}\left|A \widetilde{R}_{A}^{j}\right|^{-\frac{1}{2}} & =-\frac{1}{2}\left|R^{j}\right|^{-\frac{3}{2}} \nabla_{A}\left|R^{j}\right| \\
& =-\frac{1}{2}\left|R^{j}\right|^{-\frac{3}{2}}\left|R^{j}\right| \operatorname{tr}\left[\left(R^{j}\right)^{-1} \nabla_{A}\left(A \widetilde{R} A^{T}\right)\right] \\
& =-\left|R^{j}\right|^{-\frac{1}{2}}\left(R^{j}\right)^{-1} A \widetilde{R}^{j}, \tag{46}
\end{align*}
$$

where here, as in what follows, we use the fact that $\widetilde{\mathbf{R}} j_{\text {is symetric; while the term in the second set of }}$ square brackets leads to
$\nabla_{A}\left(\left(y-A x^{-j}\right)^{T}\left(A \widetilde{R}^{J} A^{T}\right)^{-1}\left(y-A \bar{x}^{-j}\right)\right)$
$=\left[\nabla_{A}\left(y-A x^{-j}\right)^{T}\right]\left(R^{J}\right)^{-1}\left(y-y^{-j}\right)$

* We assume \tilde{R}^{j} nonsingular and $\tilde{R}^{j} \notin \tilde{R}^{p}, j=1, \ldots, M, p \neq j$, the particularization to the special cases when these conditions do not hold being clear.
$+\left(y-\dot{y}^{-j}\right)^{T}\left(R^{j}\right)^{-1}\left[\nabla_{A}\left(A \tilde{R}^{j} A^{T}\right)\right]\left(R^{j}\right)^{-1}\left(y-\bar{y}^{-j}\right)$
$+\left(y-y^{-j}\right)^{T}\left(R^{j}\right)^{-1}\left[A_{A}^{\prime \prime}\left(y-A x^{-j}\right)\right]$
$=-2\left(R^{j}\right)^{-1}\left(y-\bar{y}^{j}\right)\left(\bar{x}^{-j}\right)^{T}$
- $2\left(R^{J}\right)^{-1}\left(y-\bar{y}^{j}\right)\left(y-\bar{y}^{j}\right)^{T}\left(R^{j}\right)^{-1} A \tilde{R}^{j}$.

Substituting (46) and (47) in (45), (44) is established.
Q.E.D.

There is a number of ways one may impose constraints to guarantee compactness of X. One is to require that

$$
\frac{i}{2}\|A\|^{2}=\frac{i}{2} \operatorname{tr}\left(A A^{T}\right)=v, A \in \eta, \gamma=\text { const. (48a) }
$$

Another is to allow only those $A \in M$ consisting of orthonormal row vectors by requiring that

$$
\begin{equation*}
A A^{T}=1, \quad A \in \eta_{0} . \tag{48b}
\end{equation*}
$$

For simplicity in presentation, we will assume

$$
X=(A \in 2 ;: A \text { satisfies (48a) }) \text {. }
$$

(48c)
An additional inportant consideration concerning restrictions on the set X is spelt out in Remark 7, at the end of this section.

By virtue of the above Leuma, Theorem 1 clearly reduces to:

Theorcm 3. Suppose that in Problem 3 the pattern classes $\ldots,-\ldots, M$, are Gaussian with means and covariances \bar{x}^{j} and $\left.\dot{\tilde{R}}\right)^{M}, j=1, \ldots, M$, and x is as in (48 c) Then the problem always has a solution. At any such solution \hat{A} it is necessary that the following matrix equation be satisfied

$$
\begin{align*}
& \sum_{i=1}^{M} \sum_{j=1}^{M} c_{i j} j_{j}\left(I\left(\hat{R}^{j}\right)^{-1} \hat{D}^{i j}-I\right)\left(\hat{R}^{j}\right)^{-1} \tilde{A} \widetilde{R}^{j} \\
&\left.+\left(\hat{R}^{j}\right)^{-1} \hat{d}^{i j}\left(\bar{x}^{j}\right)^{T}\right)+\hat{X} \hat{A}=\underline{0}
\end{align*}
$$

where I is the identity matrix, $\hat{\lambda}$ is a Lagrange multiplier (to te calculated using (48a),

$$
\begin{align*}
& D^{i j}=\ddots_{\Omega_{i}(A)}\left(y-\bar{y}^{j}\right)\left(y-\bar{y}^{j}\right)^{T} f_{Y}\left(y / H^{j}, A\right) d y \tag{50}\\
& d^{i j}=\ddots_{\Omega_{i}(A)}\left(y-\bar{y}^{j}\right) f_{Y}\left(y / H^{j}, A\right) d y \tag{51}
\end{align*}
$$

and the circumflex on a symbol denotes that the corresponding quantity is to be calculated using \hat{A}.

Remark 5. The iterative algorithm outlined in the following section requires the left side of (49) to be computed at every iteration using the estimate of \hat{A} obtained in the preceding iteretion. At first sight, the need for the evaluation of the multiple integrals in (50) and (51) at each iteration might appear as a serious drawback of this procedure. However, this difficulty can be avoided if we notice that $D^{i j}$, and $d^{i j}$ are in fact proportiozal to the coyariance and mean of the random variable $\left(Y^{j}-\bar{y}^{j}\right)$ (where Y^{j} has the density $\left.f_{Y}\left(. / H^{j}, A\right)\right)$ when restricted to the decision region $\Omega_{i}(A)$. Thus if training sets for the various pattern classes are available, the integrals in question may be replaced by sample averages over appropriate subsets of training sets. Specifically, suppose thet, for $i=1, \ldots, M$, pertaining to H we have the training set
T^{j} in $E^{\text {m }}(A)$ consisting of the samples $y^{j 1}$.
$A x^{j 1}, \ldots, y^{j N_{j}}=A x^{j N_{j}}$, where $x^{j l}, \ldots, x^{j N_{j}}$ are the given training samples in E^{n}. Then we have for estimates of $D^{i j}$ and $\mathrm{d}^{1 j}$
$D^{i j}=\frac{1}{N^{j}} \sum_{y^{j q}} \in \lambda_{i}(A)\left(y^{j q}-z^{-j}\right)\left(y^{j q}-\bar{y}^{j}\right)^{T}$,
$d^{i j}=\frac{1}{N} \sum_{y^{j q}} \in I_{i}(A)\left(y^{j q}-y^{-j}\right)$

Remark 6. In the particular case in which mol,
$Y=\sum_{j=1}^{\text {m }} A_{1 j} X_{j}$ being a scalar random variable, (50) and (51) become single (rather than multiple) integrals and can therefore be easily computed without one having to go through the route described in the preceding remark. Let us assume that the risk is the probability of misclassification and hence (14) holds, then the decision boundaries are real numbers which are chosen, according to (16), from among the roots
$\left.\begin{array}{l}r_{1}^{i j} \\ r_{2}^{i j}\end{array}\right\}=\left(R^{i}-R^{j}\right)^{-1}\left(R^{i-j}-R^{j} y^{-i}\right.$

$$
\left.\pm\left[R^{i} R^{j}\left(\left(\bar{y}^{i}+\bar{y}^{j}\right)^{2}+\left(R^{i}-R^{j}\right) \log \left(\left(\frac{R^{j}}{R^{i}}\right)^{\frac{1}{2}} \frac{P_{j}^{2}}{P_{i}^{2}}\right)\right)\right]^{\frac{1}{2}}\right),
$$

$$
\begin{equation*}
i=1, \ldots, M, j \neq i, \tag{54}
\end{equation*}
$$

of the equations
$f_{Y}\left(y / H^{i}, A\right)=f_{Y}\left(y / H^{j}, A\right), i=1, \ldots, M, j \neq i$,
these densities being described by (41). Suppose that the ith decision region consists of an interval $\alpha_{1}^{i}<y<\alpha_{2}^{i}$. Then a trivial calculation resulting
from the substitution of (41) in (50) and (51) leads to

$$
\begin{align*}
D^{i j} & =R^{j}\left((2 \pi)^{-\frac{1}{2}}\left[\beta_{1}^{i j} \exp \left(-\frac{1}{2}\left(\beta_{1}^{i j}\right)^{2}\right)-\beta_{2}^{i} \exp \left(-\frac{1}{2}\left(\beta_{2}^{i j}\right)^{2}\right)\right]\right. \\
& \left.+\operatorname{Erf}\left(0,1 ; \beta_{2}^{i j}\right)-\operatorname{Erf}\left(0,1 ; \beta_{1}^{i j}\right)\right) \tag{56}
\end{align*}
$$

$d^{i j}=\left(\frac{R^{j}}{2 \pi}\right)^{\frac{1}{2}}\left[\exp \left(-\frac{1}{2}\left(B_{1}^{i j}\right)^{2}\right)-\exp \left(-\frac{1}{2}\left(B_{2}^{i j}\right)^{2}\right)\right]$,
where
$\beta_{1}^{i j}=\left(R^{j}\right)^{-\frac{1}{2}}\left(\alpha_{1}^{i}-\bar{y}^{j}\right), \beta_{2}^{i j} \cdot\left(R^{j}\right)^{-\frac{1}{2}}\left(\alpha_{2}^{i}-\bar{y}^{\prime}\right)$.

(End of Remark)

To verify the conditions of Theorem 2 under the Gaussian hypothesis, we first calculate (omitting the derivation) the term appearing under the first summation in (27):

$$
L_{i}(A, B)=
$$

$$
\begin{align*}
& \stackrel{S}{i}^{(A)} \text { dy }{ }_{A}{ }_{A}^{\nabla} A_{i}^{T} l_{i}(y, A ; B)= \\
& \sum_{j=1}^{M}=1=1 j{ }_{j}{ }_{j} \\
& -2\left(R^{j}\right)^{-1}\left(B \tilde{R}^{j} A^{T}+A \widetilde{R}^{j} B^{T}\right)\left(R^{j}\right)^{-1} D^{i j}\left(R^{j}\right)^{-1} A \widetilde{R}^{j} \\
& +\left(R^{j}\right)^{-1} D^{i j}\left(R^{j}\right)^{-1} B \tilde{R}^{j} \\
& -\left(R^{j}\right)^{-1}\left(B \vec{x}^{-j}\left(d^{i j}\right)^{T}+\left(d^{j J}\right) \bar{x}^{j} B^{T}\right)\left(R^{j}\right)^{-1} A \widetilde{R}^{j} \\
& -\left(R^{j}\right)^{-1}\left(B \tilde{R}^{j} A^{T}+A\left(\tilde{R}^{j}\right)^{T} B^{T}\right)\left(R^{j}\right)^{-1} d^{i j}\left(\tilde{x}^{-j}\right)^{T} \\
& -\left(R^{j}\right)^{-1} B\left(\tilde{R}^{j}+{ }^{-j}\left(\tilde{x}^{j}\right)^{T}\right) \\
& +\left(R^{j}\right)^{-1}\left(B \widetilde{R}^{j} A^{T}+A \widetilde{R}^{j} B^{T}\right)\left(R^{j}\right)^{-1} A \widetilde{R}^{j} \\
& -\operatorname{tr}\left(\left(R^{j}\right)^{-1} A \widetilde{R}^{j} B^{T}\right]\left[\left(\left(R^{j}\right)^{-1} D^{i j}-I\right)\left(R^{j}\right)^{-1} A \widetilde{R}^{j}+\left(R^{j}\right)^{-1} d^{i j}\left(\bar{x}^{-j}\right)^{T}\right] \\
& +G^{i!}(B)\left(R^{j}\right)^{-1} A \widetilde{R}^{j} \\
& -\varphi^{i j}(B)\left(R^{j}\right)^{-1} A \widetilde{R}^{j} \\
& +h^{i j}(B)\left(\bar{x}^{j}\right)^{T} \\
& +F^{i j}(B)\left(R^{j}\right)^{-1} A \widetilde{R}^{j} \\
& -\left(d^{i j}\right)^{T}\left(R^{j}\right)^{-1} B \bar{x}^{-j}\left(R^{j}\right)^{-1} A \widetilde{R}^{j} \\
& \left.+v^{i j}(B)\left(\dot{x}^{-j}\right)^{T}\right) \text {, } \tag{60}
\end{align*}
$$

where

$$
\begin{equation*}
\varphi^{i j}(B)=\tilde{\Omega}_{1}(A) \text { dy } f_{Y}\left(: / H^{j}, A\right)\left(y-\bar{y}^{j}\right)^{T}\left(R^{j}\right)^{-1} A \widetilde{R}^{j} B^{T}\left(y-\bar{y}^{j}\right) \tag{61}
\end{equation*}
$$

$$
\begin{align*}
& h^{i j}(B)=\overbrace{\Omega_{i}(A)}^{0} \text { dy } f_{Y}\left(y / H^{j}, A\right)\left(y-\bar{y}^{j}\right)^{T}\left(R^{j}\right)^{-1} . \\
& A \widetilde{R}^{J}{ }^{T}\left(y-\dot{y}^{j}\right)\left(R^{J}\right)^{-1}\left(y-\dot{y}^{j}\right) \tag{62}\\
& v^{i f}(B)=\overbrace{\cap_{i}(A)}{ }^{\text {dy }} f_{Y}\left(y / H_{j}, A\right)\left(y-\bar{y}^{-j}\right)^{T}\left(R^{j}\right)^{-1} B x^{-j}\left(R^{j}\right)^{-1}\left(y-\bar{y}^{j}\right) \tag{63}
\end{align*}
$$

$$
\begin{align*}
& F^{i j}(B)==_{\Omega_{i}}^{\wedge}(A){ }^{d y}{ }_{Y}\left(y / H^{j}, A\right)\left(y-y^{-j}\right)^{T}\left(R^{j}\right)^{-1} B_{x}^{-j} . \\
& \left(R^{j}\right)^{-1}\left(y-\bar{y}^{-j}\right)\left(y-\bar{y}^{-j}\right)^{T} \tag{64}\\
& G^{i j}(B)={ }_{\Omega_{i}}^{\rho}(A){ }^{\text {dy }} f_{Y}\left(y / H^{j}, A\right)\left(y-\bar{y}^{-j}\right)^{T}\left(R^{j}\right)^{-1} A \tilde{R}^{j} B^{T}\left(y-y^{-j}\right) . \\
& \left(R^{j}\right)^{-1}\left(y-\bar{y}^{-j}\right)\left(y-\bar{y}^{-j}\right)^{T} . \tag{65}
\end{align*}
$$

Since all the above integrals are expectations, they may be computed from the training samples in the same way as (52) and (53).

The surface integral terms in (27) are calculated in a similar fashion. In the special case in which the risk is the probability of misclassification, these terms (taking into account the minus sign that precedes the double summation) reduce to

$$
\begin{equation*}
\sum_{i=1}^{M-1} \sum_{j=i+1}^{M} N^{i j}(A) \tag{66}
\end{equation*}
$$

where

$$
\begin{align*}
N^{1 j}(A)= & \overbrace{S_{i j}(A)} d s\left(\left[\nabla_{A} f_{Y}\left(y / H^{1}, A\right)-\nabla_{A} f_{Y}\left(y / H^{j}, A\right)\right] .\right. \\
& {\left[\nabla_{A} f_{Y}\left(y / H^{1}, A\right)=\nabla_{A} f_{Y}\left(y / H^{j}, A\right)\right]^{T}, } \tag{67}
\end{align*}
$$

where for $\nabla \quad{ }^{f}{ }_{Y}\left(y / H^{1}, A\right), i=1, \ldots, M$, we have to use the expression given by the right side of (44). Then quantities similar to those in (61) to (65) result which again can be computed from the training samples. Theorem 4. If \hat{A} satisfies the conditions of Theorem 3 then satisfaction of (36) is equivalint to the requirement that

$$
\begin{gather*}
\operatorname{tr}\left(\left\{\sum_{i=1}^{M-1}\left(L_{i}(\AA, B)+\sum_{j=i+1}^{M} N^{i j}(\AA) B\right)+L_{M}(\AA, B)\right.\right. \\
\left.+\hat{\lambda} B \mid B^{T}\right) \geq \operatorname{ctr}\left(B B^{T}\right) \tag{68}
\end{gather*}
$$

for every $B \in \%_{\text {i }}$ such that the transpose of the $0^{\text {th }}$ row of B lies in the null space of the $p^{\text {th }}$ column of $\mathrm{X}^{\mathrm{T}}, \mathrm{p}=1, \ldots, \mathrm{~m}$.

Remark 7: Let ξ denote a set containing m difstinct elements from $(1, \ldots, n)$ and denote by A the $j E \hbar$ column of A. For some given ξ, we may wish to restrict the class X so that for every $A \in \pi$ belonging to X, the columns $A, j \in \xi$ constitute a submatrix of rank m. Since $Q 18$ inveriant with respect to non-singular coordinate Pransformations in the transform (feature) space, we may, in the case under consideration, set $(A, j \in \xi)$ equal to a permutation P of the columns of the unit $m \times m$ ilagonal matrix, leaving the $m(n-m)$ elements in the remaining columns free for the optimization procedure. We would optimize these elements by requiring that the corresponding elements in the matrix equation (49) satisfy (49) (with the remaining elements of \AA set equal to the elements of P).

The above remark is particularly useful in the verification of the sufficient conditions. For, suppose that to begin with we let all elements of A vary (since we didn't know at the outset which columns of \AA had rank m) and thereby determined \mathcal{A} by means of an iterative procedure based on (49). Assume that then we find that the first in columns of \AA constitute a non-singular matrix \AA_{1}. Thus let $\hat{\AA}=\left(\AA_{1}, \AA_{2}\right)$. We may then replace \AA oy ($1, \AA_{1}-\AA_{2}$) and restfict the verification of the sufficiancy conditions with repect to a smaller subset of matrices B than othe zwise required (since the only relevan: columns of \AA are the last $n-m$ columns).

5. Computa ional Algorithm

Various iterative methods such as the Newton and gradient methods and their numerous modifications are available for the computation of the optimal feature extraction transformation. We will limit our discussion to the case of inear feature extraction of Gausian features, our remarks extending trivially to the general non-Gaussian nonlinear case treated in Section 3.

The values A and λ of the estimates of the op'val matrix \hat{A} and Lagrahge multiplier $\hat{\lambda}$ at the pth eeration are given, according to (49) and (48c) by

$$
\begin{gathered}
A_{p}=A_{p-1}-K_{p} \sum_{i=1}^{M} \sum_{j=1}^{M} c_{i j}{ }_{j=1}^{P}\left(1\left(R_{p-1}^{j}\right)^{-1} D_{p-1}^{1 j}-1\right) . \\
\cdot\left(R_{p-1}^{J}\right)^{-1} A_{r} 1_{1}^{\left.\left.R_{p-1}^{j}+R_{p-1}^{j} d_{p-1}^{1 j}\left(\bar{x}^{-j}\right)^{T}\right)+\lambda_{p-1} A_{p-1}\right),} \\
p=1, \ldots
\end{gathered}
$$

$\lambda_{p}=\lambda_{p-1}-p_{p}\left(\frac{1}{2} \operatorname{cr}\left(A_{p-1} A_{p-1}^{T}\right)-\gamma\right)$,

$$
\begin{equation*}
p=1, \ldots, \tag{69b}
\end{equation*}
$$

where all the aynitols subscripted with $p-1$ are to be computed with the values A_{p-1} and λ_{p-1} obtained at ($p-1)^{\text {th }}$ iteration, K_{p} and ρ_{p}^{p-1} are variable matrix and scalar goins determihed according to the iterative method selected, the iaitial estimates A_{0} and λ_{0} are set at convenient values, and $D_{p-1}^{1 j}$ and $\int_{p^{-1}}^{1 j}$ are obtained by (56) and (57) if the dimension of the feature space is one, and by (52) and (53) othervise.
Note that a convenient way of vriting (52) and (53) is
$D^{i j}=\frac{1}{N^{j}} \sum_{q=1}^{N^{j}}\left(y^{i q}-\bar{y}^{j}\right)\left(y^{j q}-\bar{y}^{j}\right)^{T} \Lambda_{1}\left(y^{j q}\right)$,
$d^{j j}=\frac{1}{N^{j}} \sum_{q=1}^{N^{j}}\left(y^{j q}-y^{-j}\right) \Lambda_{1}\left(y^{j q}\right)$,
where

We have used the Davidon-Fletcher-Powel1 ${ }^{11}$ (D-F-P) method in implementing ($69 a, b$) on the IBM 370/155 computer of the Rice University Institute for Computer Services and Applications (ICSA). The D-F-P procedure requires function evaluations in additiou to gradient evaluations. Evaluation of $Q_{m}(A)$ at the p th iteration may be carried out by the following estimate justified in the same way as (52) and (53):
$Q_{m}\left(A_{p}\right)=\sum_{i=1}^{M} \sum_{j=1}^{M} \frac{1}{N^{j}} \sum_{q=1}^{N^{j}} \Lambda_{i}\left(y^{j q}\right)$,
If one knows beforehand that certain features are significant, they may be retained thus reducing the number of paraneters of the matrix A to be determined according to Remark 7.

6. Conclusion

General classes of nonlinear anc linear transformations A for the reduction of the dimensionality of the classification (feature) space so that, for a prescribed dimension m of this space, the incresse of the misclassification risk is minimized, have been investigated. Necessary conditions that must satisfied by the optimal \hat{A} have been presented and sufficient conditions for a local minimum have been indicated. Even though the sufficiency conditions are very complicated, the necessary conditions lend themselves to the formulation of iterative algorithms for the determination of the optimal transformation. In the proposed approach, the multiple integrals which appear at each step of the Iteration are replaced by certain sample averages over training secs, a procedure which permits the carrying out of the required computations with ressonable amount of effort even for values of mot too :ow.

Testing of the proposed method on remotely sensed data provided by the Johnson Space Center Earth Observations Division is in progress at Rice University ICSA computer focilities, and the numerical results obtained will be discussed in a separate paper.

References

[1] Tou, J. T. and Heydorn, R. P., "Sone Approaches to Optimum Feature Extraction", in Compucere and Information Sciences-II, edited by J. Tou, Academic Press, New York, 1967.
[2] Kailath, T., "The Divergence and Bhattacharyye Distance Measures in Signal Selection", IEEE Trens. on Communcation Theory, vol. 15, pp. 52-60, 1967.
[3] Henderson, T, L. and Lainiotis, D., "Application of State Variable Techniques to Feature Extraction", Proc, 1968 Asiloaar Conf, on Circuits and Syotemp, 1968.
[4] Caprihan, A. and de Figueiredo, R, J, ?., "On the Extraction of Pattern Features from Continuous Measurements", IEEE Trans, on Systems Science and Cybernetics, vol. SSC-6, pp. 110-115, 1970.
[5] Meisel, W. S., Computer-Oriented Approaches to Pattern Recosnition, Academic Press, N. Y., chapter IX, 1972.
[6] Decell, H. P., Jr, and Quirein, J. A., "An Itera tive Approach to the Feature Selection Problem", Proceedings of the Purdue University Conference on Machine Processing of Remotely Sensed Data, pp. 3B1-3B12, Ostober 1973.
[7] Apostol, T. M., Mathematical Analysis, AddisonWiley, Reading, Mass., Pp. 193 and 271, 1957.
[8] Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, Pp. 201 and 235, 1965.
[9] Natanson, I. P., Theory of Functions of a Real Variable (Translated from the Russian by L. F. Boron) , F, Ungar Publ. Co., New York, vol. II, P. 86,1960 , vol. I, P. 161,1961 ,
[10] Royden, H. L., Real Variables, MacMillian, New York, p. 140, 1963.
[11] Fiacco, A. V, and McCormick, G. P., Nonlinear Programming: Sequential Unconstreined Minimization Techniques, J. Wiley, New York, Chapter 2, 1968.
[12] Tapia, R. A., "The Differentiation and Integration of Nonlinear Operators", in Nonlinear Functional Analysis and Applications, edited by L. Rall, Academic Press, New York, pp. 45-99, 1971.
[13] Athans, M, and Schweppe, F. C., "Gradient Matrices and Matrix Calculations", MIT Lincoln Lab Tech Note 1965-53, Lexington, Mass., 1965.
[14] Fletcher, R, and Powell, J., "A Repidly Converging Descent Method for Minimization", British Computer J., vol. 6, Pp. 163-168, 1963.

[^0]: *Supported in part by the NASA Contract NAS-9-12776 the U.S. Army Contract No. DA-31-124-ARO-D-462, and the NSF Grant GK-36375.
 **Part of this work was performed while the author held a viaiting research professorship at the Mathematics Research Center of the University of Wisconsin at Madison, in the academic year 1972-1973.
 ***We will denote the function by $f_{X}\left(. / H^{j}\right)$ and its value at x by $f_{X}\left(x / H^{\mathrm{J}}\right)$.

[^1]: *If the criterion functional involves a probabilistic distance measure to be maximized (rather than minimized), such as the divergence or the Bhattacharyia distance, we define Q to be the negative of such a distance, and minimize Q.

