
AN INFORMAL PAPER ON LARGE-SCALE DYNAMIC SYSTEMS

Professor Y. C. Ho

Harvard University, Cambridge, Massachusetts

First, let us examine the title of this symposium. What is meant by "large scale" and
"dynamic"? Figure 1 shows a system is large -when it requires more than one decision maker to
control it. Almost all interesting and difficult problems of a large-scale system are introduced by the
fact that there is more than one controller involved; the reasons for having more than one decision
maker or controller involved are several: the institutional bodies (e.g., local or regional government)
often wish to retain their decision-making power against, say, the federal government; we have a
natural aversion to dictatorship, which is another way of being centrally controlled; bureaucratic
inertia often prevents us from controlling problems effectively in a centralized manner. These
institutional constraints are quite familiar to anyone involved in politics, but they also occur
naturally in any large organization. Communication difficulties arise; for example, because of the
time required to transmit data from one place to another, by the time the central source receives
the data it may be too late for effective control. An example-would be a vehicle on Mars remotely
controlled from Earth. A few seconds are required to transmit data from one place to another. The
cost of transmission may make it no longer worthwhile to transmit all data to a centralized source.
Finally, the computation time required to process the data at a centralized source may be too great.
We have in mind particularly on-line control where the computation must be done quickly.

Figure 2 illustrates a decentralized control versus decomposition in computation. When we talk
about decentralized control of large-scale dynamic systems we often have in mind on-line, real-time
control (such as control of a power distribution network). There, you are talking about the time
required to process the data is on the order of seconds and the response time of the systems is, at
best, in minutes. On the other hand, many large-scale planning problems or decision-making prob-
lems can be done effectively off-line (such as planning of economic allocations or preliminary
planning of a water resources system). For such problems, the computation time available is in
hours or days and the response time of such a system may be in terms of days or years; therefore
the control problems and planning problem are vastly different. Control problems are probably
repetitive and day to day while planning problems are most often only one shot affairs. The system
is planned and built and it lasts 20 to 50 years or maybe 20 or 50 months.

In planning, there are decomposition techniques for the computation, the best-known tech-
nique is the so-called "decomposition technique in large-scale mathematical programming." How-
ever, this is not really the thing of interest to us here. I am concerned only with decentralized
control. First, there are some questions about the real usefulness of these decomposition techniques
in mathematical programming. Consider a very large-scale planning problem that requires 10 hours
of computer time, using the standard LP programming. With the decomposition technique, let's say
you may be able to solve the problem in 1 hour. The difference between 10 hours and 1 hour of
computation is really not that significant. Experience with these decomposition techniques often
shows that, in terms of through-put, they offer little improvement because a special program must
be written for each decomposition. A different planning problem requires its own special program.
The process of collecting the data and processing it may take more than 10 hours. As a result, my
experience with these decomposition techniques has shown that they are not used very often simply
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because they are not economical. On the other hand, on-line, real time control is entirely different.
It is not a question of whether you should use centralized or decentralized control; the institutional
and communication constraints mentioned previously simply force you to use decentralized con-
trol.

Figure 3 defines what is meant by "dynamics" in a problem. Of course, most of you know
intuitively what is meant by dynamics, but here I want to consider decomposition, particularly in
terms of the problem it generates with decentralized control. A dynamic decision problem requires
one to choose different decisions at different instances in time, based on different information
available at the time. Often this is how a problem statement would appear in the language of game
theory and decision theory. This is called extensive form formulation. It is the form we normally
see when we first try to formulate the problem. On the other hand, for theoretical purposes, a
control problem may be stated another way, namely, choose a strategy among all admissible
strategies. What is a strategy? A strategy is a formula that tells you what decision you should make
under all possible circumstances at all possible times. Mathematically, this means a map from the
product space of the information available and time to the space of choices available. Once you
have chosen a strategy, you have really indicated how you will behave under all possible circum-
stances. In principle, once a strategy is fixed you can always evaluate the cost of performance of a
control system. And if you define the class of all possible strategies you are willing to consider, then
you have essentially defined all possible performances with respect to each individual strategy. This
then becomes an extremely simple-minded optimization problem, namely, pick the strategy that
gives you the best performance — the normal form of formulation because, theoretically, it is a very
clean statement of the problem and because the problems of dynamics and information have been
suppressed in terms of a properly defined class of admissible strategies. For example, in the familiar
language of control theory, suppose you want to use open-loop control only, that is, without any
feedback information. Then, in normal form, we simply say the class of admissible strategy is the
class of maps that are constant, that is, independent of information received in any given time.
When we must- choose a strategy among the class of constant strategies, it is the equivalent state-
ment to open-loop control in extensive formulation.

Normal form formulation has many theoretical advantages, but it does not tell you how to
solve the problem. In many instances, when there is more than one decision maker involved,
particularly with game theory, you want to focus your attention on certain aspects of the problem
peculiar to the fact that you are playing a game, without having to worry about a detailed solution,
the dynamics, and the information. Often certain aspects of a control problem can be discussed in
terms of normal form without detailed information (aspects of this problem are discussed later).
Such concepts are not only applicable to purely static algebraic problems, but they apply equally in
dynamic systems provided you realize we are working in the normal form. On the other hand,
certain aspects of the dynamic information must be treated in the extensive form manner to show
the problem areas.

Having thus defined the scope of the problem in terms of large-scale dynamic systems, let me
first hasten to say that we know very little about decentralized control dynamics systems. Figure 4
is a very rough attempt to classify the different types of studies on decentralized control of
dynamic systems in terms of whether the technique is deterministic or stochastic (they can also be
classified according to what aim they have). For control problems, four types of questions can be
asked. First a structural question — what is the right kind of model for the system? Once this is
understood, how do you optimize the control? As often happens, you may not be able to solve this;

50



then you ask for something less, namely, can I do something to the system to make it stable?
Finally, you may simply ask the basic question: "Is it feasible to do something about the system?"

In terms of decentralized control in the deterministic phase of the diagram, the first block
covers questions such as foundation and philosophy of hierarchial control, organization, how to
distribute the payoff among different decision makers, etc. Under optimization, we have mentioned
large-scale mathematical programming already, economic problems such as optimal resource alloca-
tion by one supervisor among different departments, the vector payoff question when decision
makers have different payoffs, and the Pareto optimality (sometime fashionably called Paretian
analysis). It is just a different way of saying "How do you reconcile or trade off different objectives
such as more guns or more butter?" Under stability, a whole class of problems come under the
name of adjustment process. These are really interconnected dynamic systems, with one controller
for each dynamic system. They all make adjustments to improve their performance and each
adjustment would affect other systems. When a controller adjusts to improve his position, will this
lead to a stable process that is good for everyone or will there be cut-throat competition? Finally,
under feasibility, you have questions such as decentralized controllability — is it possible to control
systems from one state to another in a decentralized manner?

On the stochastic side, the basic emphasis is essentially for questions dealing with the structure
of information. We want to understand basically what is meant by information in a many-person
decision problem. What do we mean by information structural properties and so forth? In stochastic
optimization, specifically, terms such as team theory (another way of saying decentralized decision
theory) and the question of value of information, and such appear.

So far as I know, no work has been done on the stochastic stability of decentralized systems or
the feasibility question in stochastic models. Most of the discussion that follows concerns the
structure of optimization for the stochastic phenomenon. My colleague and former co-worker,
Dr. K. C. Chu, will discuss in another paper the role of team theory in decentralized control. I
would like to discuss briefly the adjustment processes and decentralized stability or feasibility. This
work, which appeared recently in the Russian literature, is, I think, quite interesting. Particularly,
the adjustment process relates also to the work Professor Siljak discusses later.

The main part of this paper concerns the problem of information in general, and many-person
decision problems, which, of course, includes that of decentralized control. There are really only
two kinds of decision variables. First are the decisions made by human beings, u l t . . . ,u n during
different times at different places by different decision makers. Another set of variables is nature's
decisions, £i,...£m, often taken to be uncertain. These are noise in the measurement systems,
disturbances in the control systems, or the flip of the coin, anything considered uncertain but given
the probability of distribution. Every event under the sun is a function of human decisions as well
as nature; these are the only fundamental variables in the problem. In dynamic systems, state
variables are really secondary because the state of the system at a given time is a result of all past
decisions made by the controller as well as the noise or disturbance that has occurred. Therefore,
human and nature's decision variables are considered fundamental. Since every event is a function
of these variables, the information available to a decision maker must also be a function of these
two sets of variables. The particular function that relates u and £ is called the information structure
of the problem and these two sets of variables and definitions are shown in figure 5(a). Figure 5(b)
defines what we mean by strategy. As mentioned before briefly, strategy is a mapping from infor-
mation to decision, whether by adaptive control, stochastic control, or whatever. This is really the
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most general definition of a control law — a prediction of behavior on the basis of information
available at a particular time. Since information is defined as a function of u and £, this definition of
strategy further relates information to u or defines the implicit equation «/ = 7/(f?/[",£]). If we
specify the exact information structure (specify who knows what), furthermore specify what the
strategies are (what each decision maker will do under all possible circumstances, i.e., all possible
information patterns), and specify nature's decision for the given probability density £ then the
equation labeled (*) in figure 5(b) defines a set of equations that, when they have a solution, gives the
actual decisions the human decision makers will make. The model represented by (*) can be
extended to give even more general situations in game theory.

Some possible questions and problems associated with this set of equations are shown in
figure 6. First, since the set of equations labeled (*) is implicit, the problem arises whether a
solution exists. In fact, does (*) have a unique solution for a given information structure and for
each possible and admissible strategy set P? If there were not unique solutions, then we are in
somewhat of a funny situation. If you tell what everybody knows and how everybody will behave
based on what he knows, the outcome is undetermined because there is more than one possible
solution. Given these two specifications 7 and 77 (who knows what and how does every decision
maker behave under all circumstances), there should be only one unique outcome. If the equation
set has a unique solution, a problem will be well posed. Note that this type of question does not
arise in the usual decision theory framework where dynamics does not occur (such a problem is
called static or simple). In such cases, the information variable is always a function of what nature
decides or uncertainty £, and does not depend on what other decision makers have done. For such a
case, TJ is only a function of the nature's decision and uniqueness is trivial. If nature has acted
according to some probability distribution, one's behavior is completely determined and unique.
For a dynamic problem, what is known may depend on what other people have done in the past, so
the information is not only a function of noise and disturbance but also of other people's controlled
actions — therein the unique problem arises. An obvious question arises: what is a good information
structure? This then involves the design of information systems. Whether one measurement system
or one set of observations is better than another or whether you should observe one sample, three
samples, and four samples, since each measurement is presumably with cost, this question of design
of information system arises and the value of information or "who should know what."

A third question is the all familiar one, namely, what is a good control law? This is the usual
optimization problem except here we are interested in the solution in a decentralized setting.
Finally, since both the information structure and the control law are to be designed, which
information structure will make the optimization problem easy to solve. (See Dr. Chu's paper for a
discussion on this.)

Certain explicit results in team theory are related to this question. Figure 6 shows a particular
fundamental difficulty in dynamic problems involving information structure just described. From
earlier definitions, nature's decision is represented by the vector variable £, the basic variable in the
problem, and a probability density function or distribution is introduced. But Zj and u^ are not the
random variables for a given information structure unless the strategy is fixed. Consider a two-stage
decision problem. The initial state is £1; control u1 is applied additively to yield an intermediate
state x. Apply another control w2 additively to intermediate state x to the terminal state y. A
decision maker at time 1 knows the information z,, which is simply a perfect measurement of an
initial state. The second decision maker knows z2 at some time later, which is simply a noisy
measurement of the intermediate state x or £j + ul + £2. Nature's decisions are random choices of
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the initial state and random noise £2 • Note that z2 is not a random variable at this point until the
strategy of w, is defined. The strategy of ut is a function of z,, in this case £j. Once 7] is defined,
MI becomes a random variable because it is a function of another well-defined basic random variable
in the problem. If u, becomes a random variable, then z2 also becomes a random variable because it
is now a function of £, ,£2 only. Furthermore, w2 becomes a random variable with solution-
dependent distributions. The distribution of u2 depends on the particular 7j and 72 — the solutions
we wish to obtain. Until the solution is known, 7, and 72 cannot be defined as random variables.
But, until these 7 terms can be defined as random variables, we cannot begin the solution process;
this is the difficulty in such general information problems (fig. 8).

Assume that £, ,£2 are random variables with very nice properties, for example, Gaussian. But
this does not guarantee that z2 is a nice random variable unless some additional restrictive assump-
tions are made about the control law 7j. Since yt can be arbitrary, then z2 will be a rather arbitrary
function of £, ,£2 (fig. 8), which certainly would not generally be Gaussian so the nice property
was lost. Also, for a payoff function convex in «, ,w2 in the problem, nothing can be said about the
expected value of this convex function in u, ,«2. It is not known in fact, whether it is convex in yv,
a fact.important in proving any kind of optimality property. This can be seen fairly easily. The
expected value of a convex function in u^ ,u2 is basically a function of 7j ,72. In other words, once
7! ,72 are fixed with the information structure (as defined earlier), the payoff is a function only of
these control laws. But the control law 72 is a function of z2 which, in turn, is a function of 7,.
Therefore, the dependence of the payoff function / on 7t is rather intricate and depends on ji
explicitly (where «, is replaced by 7^, but it also depends on 7, through 72. Since 72 again is
generally arbitrary, for functions originally convex in ul, there is no guarantee that it will be convex
in 72 unless restrictions are placed on 72 (such as linear or otherwise monotonic properties). Again,
since yt ,72 are, in fact, the answer we are looking for and they are assumed arbitrary in the
beginning, there is no prior reason to assume they should be linear and so forth. As a result, the
simplest problem of this type (as shown in fig. 7) cannot be solved. This point was first brought
out in Witsenhausen's paper (ref. 7), which could be regarded as the starting point of all this
research. So, in general, we must impose additional restrictions on the 77 information structure to
avoid these difficulties and this is what 1 meant by the question raised earlier, that is, what kind of
information structure would lead to easy solutions? (See references.)

The value of information should be discussed briefly. The value of information is simply the
difference between the best performance with and without information. The difference, presumably
(if it is possible to measure it in dollars), is the most one would be willing to pay for the informa-
tion; this should be the basis for comparing different information system designs. This definition
has several problem areas: in problems with multiple payoff, the definition of "best" requires more
careful specification. Those familiar with game theory realize there are many different kinds of
optimal solutions. One has to determine what is meant by best. Also, from the decision-theoretic
viewpoint, one compares the expected value of the information, that is, the £[VI] (fig. 9). Is this
the only basis for comparison? and what is meant by more informative? This problem may appear
to be fairly simple, but actually the more you look into it the more complicated it becomes. There
is no uniform agreement on this definition of more informative. The expected value of information
is often used as a basis for comparing whether one information system is more informative than
another. Finally, perhaps a more disturbing question in the case of multiple decision making is that
more information does not always lead to better payoffs, which is kind of counter intuitive when
we are so used to thinking in terms of one player. The obvious answer is that if you get more
information you can always ignore it and do what you did before without the information so you
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could not possibly be worse off or get less payoff. The problem is that when more than one person
is involved, sometimes you cannot ignore the information. This new information cannot be ignored
because other people may not believe that you will ignore it and you cannot do what you did
before because the other player, knowing that you have certain information, will alter his strategy.
Once his strategy is altered, you can no longer dare to use your old strategy. Your strategy must be
altered in the optimal manner, but his optimal payoff for the new information structure may, in
fact, be worse that before. I have presented several examples (see reference list) to show that
information may not always lead to a better payoff, and the question of the value of information is
by no means settled.

I mentioned earlier some work in the Russian literature on decentralized control. In the last
few years, they have been very interested in this line of research. Many controllers or decision
makers or planners are involved in the problem, each controller having limited information. Imagine
an indicator function that depends on what everybody else is doing. This function would indicate
that if all values remain the same the control is moved either up or down or left or right, then you
are moving away from the goal. A natural reaction at this point would be to change the parameters
Uj according to the indicator function, that is, make the rate of change of u^ proportional to the
indicator function or, more qualitatively, make the sign of the rate of change in u^ proportional to
that of the indicator function. The value of the indicator function dj must be nonzero when u^ is
not at the equilibrium goal. This situation is illustrated in figure 10 where all indicator functions
equal zero at equilibrium, that is, where each goal is satisfied. Would such a single-minded adjust-
ment process evolve in such a way that each goal would be satisfied. Perhaps the simplest example
would be when the indicator function is a linear function of w: 5^ of u is simply in the product of u
with qj. These combined terms yield vector equation u= Qu. For the time rate of change of ||wi|2

we have the quadratic form <u'(Q + Q'')u> Clearly, if this matrix Q + Q' is negative definite, then
\ \ u \ \ 2 in the limit goes to zero because of the well-known Liapunov theorem. The system would
then be stable, for then u = 0 and the indicator function Qu is zero also. Equivalently, Q + Q' is
negative definite if certain sufficient conditions are satisfied. The simplest condition is that the
diagonal element of Q be larger than the sum of the absolute value of its row or its column
(conditions 2 and 3), usually known as the Gersgorin circle theorem. When there is diagonal domi-
nance, Q < 0.

The three conditions can be put into a different form. Instead of differential changes in u and
6 consider finite changes Awz- and A5£-, for which conditions 1, 2, and 3 imply conditions I, II, and
III in figure 11. Conditions I, II, and III are, in fact, conditions of stability for those adjustments
when the indicator functions are not differentiable and nonlinear. Often conditions I, II, and III are
much more applicable than condition (i), (ii), and (iii). The reference list offers a whole set of
examples drawing from electric circuits, resource allocation, game theory, etc., which are formu-
lated to show the generality of conditions I, II, and III.

Figure 12 poses the question of feasibility of adjustment control. Let us define x^ as the
amount of the zth commodity in an economy. The production of each commodity requires input
from other commodities, for example, producing machine parts requires input of steel, fuel, labor, etc.
We shall define a matrix A with elements a.-,-, the amounts of ith commodity needed to produce one
unit of the /th commodity. Then the net amount of ith commodity produced is defined as y^ which
is simply the gross amount x^ minus the amount needed to produce other commodities ^<x^x.-. In

matrix form, y — (I-A)* is the well-known Leontiff input/output economy. Now the question you
may raise at this point is whether the economy is productive, that is, is y < 0 for some x > 0? This
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question is of interest in terms of decentralized control because if this is possible (i.e., if every
positive y^ has a corresponding;^-), then decentralized control is not impossible. Whenever a positive
yi is required that can be accomplished by a positive A^-. (So if production units only have to worry
locally about its product and its quotas that you don't need some sort of coordinating structure.)
This condition for productive economy has specific answers for certain conditions on the matrix A,
which affects the possibility of decentralized control. This is a simple example of the feasibility of
adjustment, which can be generalized in many ways. Furthermore, .v and y need not be interpreted
as productions. For example, the component vector y\ of y is quality of education and y2 is the
cost of education for vector x; x, is payment to the teacher and x2 is the load the teachers take on.
Does there exist a combination teacher pay and teacher load that will simultaneously increase the
quality of education as well as lower the cost or at least maintain the cost? This question depends
on the matrix A and can be generalized if y relates nonlinearly to x (see reference list).

Although this paper has been a rather rambling and somewhat disorganized survey of the
subject of decentralized, large-scale dynamic systems, I think the field of large-scale systems control
is very important. However, the results are very scattered at this point and certainly we are unable
to claim a very unified picture of the whole field. I apologize for not being able to present a more
coherent talk or discussion on this matter as a whole, but I hope the rest of the conference will try
to make up for this. Thank you very much.
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A SYSTEM IS "LARGE" WHEN IT REQUIRES MORE'THAN ONE DECISION MAKER TO CONTROL IT.

I) INSTITUTIONAL CONSTRAINTS:

• LOCAL OR REGIONAL AUTONOMY VS. CENTRALIZED CONTROL

• AVERSION TO DICTATORSHIP

• BUREAUCRATIC INERTIA AGENT CENTRALIZED CONTROL

II) COMMUNICATION DIFFICULTIES:
i

• TIME REQUIRED FOR TRANSMISSION (EARTH - MARS)

• COST OF TRANSMISSION

• COST OF CENTRALIZED PROCESSING IN AVAILABLE TIME (ON-LINE CONTROL)

Figure 1.— Large scale dynamic systems.

ON-LINE, REAL TIME CONTROL

t
SECONDS OF COMPUTATION TIME

MINUTES OF RESPONSE TIME

VS.

OFF-LINE PLANNING AND DECISION MAKING

t
HOURS OR DAYS OF COMPUTATION TIME

MONTHS OR YEARS OF RESPONSE TIME

CONTROL PROBLEMS ARE REPETITIVE FROM DAY TO DAY

VS.

PLANNINGS ARE ONE-SHOT PROBLEMS

(DECOMPOSITION TECHNIQUE IN LARGE MATH PROGRAM-
MING OFTEN DOES NOT YIELD IMPROVEMENT IN "THROUGH-
PUT" COMPARED TO STANDARD LP PACKAGES.)

Figure 2.— Decentralized control vs. decomposition in computation.
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Choosing many decisions at different instants of time based on different information available

EXTENSIVE form formulation (usual statement of a problem)

Choosing a strategy (which is a recipe: information x time choice) among all admissible strategies.
NORMAL form formulation has the advantage (theoretically) of suppressing the detail difficulties

involving dynamics and information in the word "admissible" class of strategies. Relationship between
performance vs. strategy choices are clear cut and can be analyzed without being able to solve the
problem.

Main-stream game theory approach.

Figure 3.- DYNAMICS in a problem.

Structural

Optimization

Stability

Feasibility

Deterministic

Hierarchy,

organizational,

payoff distribution, etc.

Large-scale multipayoff,

resource allocation,

vector payoff,

Paretian analysis

Adjustment

processes

Decentralized

controllability, etc.

Stochastic

Information:

structure

and

properties

Team theory

value of information

?

?

Figure 4.— Decentralized control of dynamic systems.

57



1. DECISION VARIABLES

. . . ,u

^m

Human decisions taken at different times
by different decision makers

Nature's decision — noise, disturbance,
coin flips, etc.

Every event under the sun is a function of u and %
(e.g., "state" variable in dynamic systems are secondary
variables defined in terms of u and £).

2. INFORMATION VARIABLES

Information available to UZj = 7J- (£, u) -

Information structure of the problem

(a) Design variables and information variables.

3. STRATEGIES

ZJ) = 7j (»?j [?,u])
(*)

For given information structure rjj (i.e., WHO KNOWS
WHAT), given strategies 7j (i.e., what each decision
maker should do under all possible situations), and given
probability density on £, p(£) (i.e., nature's strategy),
then (*) defines an implicit set of equations for Uj,
i = 1, . . . ,n which are the ACTUAL decisions taken.

This model can be extended to cover even more general
situations in game theory. (See references)

(b) Strategies.

Figure 5.- General problem of many person decision making.

58



1. Does (*) have a unique solution for given 77 and every
admissible 7? Is the problem well posed?

2. What is a "good" 17?

Design of information system. Who should know
what?

3. What is a "good" 7?

Usual optimization question in decentralized
setting.

4. What choice of-17 will make good 7 easy to solve?

Figure 6.- Questions and problems for Uj — 7 /-Oj /-[£,w]).

(nature's decision) is the basic random variable with p(£)

= f?j(£.u) and uj = 7 j ( f? j t£.u] are not random variables
for a given TJ unless 7 is fixed.

Example:
intermediate

state

x = u, + • initial state

y = u2 + x

final state
\

controls at t=1,2

^ knows z, = £, -

u2 knows z2 = x +

measurements at t=1,2

u2 is a random variable only when 7, is fixed.

z2 is a random variable only when yt is fixed.

information and decisions are random variables with
solution-dependent distributions!

Figure 7.— Difficulties in dynamic information problems.
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Even if IJ! and £2 are random variables with nice
properties (e.g., Gaussian), z2 is not "nice" since
7 1 can be arbitrary. Also, a convex
L(U! ,U2)-K» E|L(U! ,U2)| is convex in 7, .

E{l_(u,,u2)f =J(7,,72>

not convex in 7! unless 72 is linear or otherwise
possesses nice properties.

"Must impose additional restrictions on 77, the information
structure, to avoid these difficulties!"

All information is centralized. See references for other
examples.

Figure 8.- General information problems.

The "best" you can do with the information

— the "best" you can do without the information

= VI
V

Basis for comparing information system design.

• In problems with multipayoff, definition of
the "best" requires more careful specification.

• Is e[VI] the only basis for comparison?
Definition of "more informative?"

• Does more information always lead to
better payoffs?

Figure 9.— Value of Information.
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i "

I indicI indicator function

or sgn(Uj) = sgn(6j [u l f . .

5j(Uj,u- = fixed, j =£ i

• ' nj

6j(u) =0 i = 1,....n goal satisfaction

suppose 6j(u) = <qj,u>

then u = Q..

and :r-|u||2 =<u, (Q+Q')u>
dt

lu||2 ^ 0 if

(i) Q+Q'<0

<' •> °kk<Z I QIC j

' diagonal dominance

Figure 10.— Stability of goal-oriented adjustment processes.

2 A 5 ( u ) A u < 0 (I)

lA6k(u) Auk<0 (II)

where ^u — max AU

SA5 i{u)sgn(Au j)<0 (III)

(I), (II), and (III) are conditions for stability

of Uj = 6j(u) or sgn Uj = sgn(5j[u] ). These

conditions are more general or more practically

applicable.

Figure 11.—Finite changes vs. differential changes.
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Ex. = levels of production of ith commodity

or

a-- = amount of ith commodity needed to produce
one unit of jth commodity

X aijxj' total amount of ith commodity needed

n
j = X| - 2J ajjxj' net production of ith commodity

y = (I - A)x, the Leonliff in/out model

Question: Does an x>0 exist for every y > 0? If so, decen-
tralized control is possible — each unit has to increase.its own
production level.

Figure 12.— Feasibility of adjustment or control.
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