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A Abstract

The uses of radar observations of planets and very-long-baseline
radio interferomeﬁricvobservationsvof extragalactic objects to test theories of
gravitation are described in detail with special emphasis on sources
of error. The accuracy achievable in these tests with data already
obtained, can be summarized iq terms of
standard notation as follows:

Retardation of signal propagation

(radar) : o (13X ~ 0.04
Deflection of radio waves (inter- 1+

ferometry): G(—il) ~ 0.03
Advance of planetary perihelia 242y=8

(radar): - o (<5125 = 0.04
Gravitational quadrupole moment of j -5

sun (radar): v ‘ o(JZ) = 1,5 x 10
Time variation of gravitational _ & -10 -1

~constant (radar): 0(5) o= 10 yr

The,analysés completed to date have vielded no significant disagree-
ment with the predictions of general relativity. If radar
and radio observations are pursued in the manners herein proposed, the

uncertainties in these experiments could be reliably reduced to
+
o (1)

A

0.003 (radar)

l+Y 0.003 (radio interferometry)

1A

o {——

o(Zi%llﬁ) < 0.01 (radar) -

[ 2

O(J2 )'ﬁ 3 x 10-6 (radar)
B @ .

& ‘ - _
b& the early 1980's. In addition, a significant radar test could be
made in this time period of the Principle of Equivaléhce, in regard
to the relative contributions of gravitational binding energy to

inertial and gravitational masses. Combination of radar and space-

craft ranging data would yield improvéments in almost all of these tests.



Foreward

' * We are concerned in this report with the evaluation
of the state of the art in testing theories of gravitation
using two radio-astronomy methods: radar time-delay measure-
ments and very-long-baseline interferometry (VLBI) ray-deflection
measurements. For convenience, we have therefore divided the
report into two parts. 1In Part I we discuss the radar
method, but give relatively littlé émphasis to a description
of the basic measurement technique since it is already well
documented in the literature. Ib Pavt II, by contrast, we
déscribe in some detail the VLBI technique as applied to testing
theories of gravitation, since this method is newer and con-
éequently less well known than the radar method. = In both

parts of the report, we conclude with a consideration of
possible improvements in the accuracy of the relevant tests of

gravitation.



Part I

Radar Tests of Relativity

I. Introduction

Radar tests of the theory of general relativity, or, more
generally, of theories of gravitation have been in progress
for more than a decade and several useful results have already
been obtained. Reviews of this work, containinq references
to the original publications, can be found in several

articles (Shapiro, 1972 and 1973).

Interplanetary radar measurements which form the basis
of these tests primarily concern the round-trip time delays
and the Doppler shifts of the echoes. The time delays have
fractional uncertainties far less than those for the Doppler
shifts and are the principal measurements underlying the
te§ts of theories of grayitation. Relativistic effects, on
geﬁeral grounds, can be éxpected to appear when the fractional
uncertainties in the delay measurements dip below - (v2/e?)
. 10_8, with v a typical orbital velocity for a planet,
~ or below about 1077 for ray paths that nearly graze the solar limb.
Radar system sensitivity has been increasing, on avérage, by

about 5.5 db/yr since 1946 and, at present, fractional delay-

measurement uncertainties for some favorable planetary con-



figurations are as low as 2 parts in 1010. On the horizon is

the upgraded Arecibo radar facility which, after it begins
routine operation in mid 1975, should extend such ac-

curacies to most configurations of the inner planets as well

as increasing the accuracies for certain configurations. The limitations
in these latter circumstances will be set by considerations
other than the basic radar system sensitiVity.

The above statements indicate the general feasibility of
performing precision tests of theories of gravitation with
radar measurements. However, one must be cautious: In ad-
dition to information about relativistic effects on the signal
propagation and on the motion of the observed body and the
6bserving platform , there exist other nonrelativistic in-
fluences on the delays. These can be either of a random, un-
predictable nature or of a type that has' a signature highly
correlated with the sought-for relativistic effects. 1In
both cases, the net result is to degfade thé accuracy of the.
tests of gravitation theories and, therefore, such éﬁhér in-
fluences will be considered "corrupting" for the purposes of
this report, | |

We divide the remainder of this part into three’main
éécﬁions. In the first, we discuss the various radar tests
Ehat appear feasible and include approximate magnitudes of the
relativistic effects involved. In the second, we consider in
a rather encyciupedic fashion, effects that might corrupt the
tests and the means for the elimination or reduction of their

adverse influences. The final section is devoted to a brief
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summary of the present status of the relativity tests and an
indication of the possible improvements that could be anti-

cipated in the next decade.

Ii.. Relqg;vistic Effects on Radar Measurements

We discuss relativistic effects primarily, but not ex-
clusively, in the context of the Schwarzschild solution. With
one exception, we consider the relativistic effects of the
sun to stem from a non-rotating, spherically-symmetric mass
distribution. The relativistic effects stemming from the non-
zero masses of the planets can be ignored. This last con-
clusion follows from the formal solution to the post-Newtonian
(weak field) equations for the,;olar system, derived many times
by many authors over the past half ceﬁtury (see, for examples,
Tausner, 1966 and Weinberg, 1972).

Our direct concern is with the relativistic effects caused
by the sun on the propagation of radio waves and on the motions
of the inner planets, Mercury through Mars. The orbits and
masses of the oﬁter planets may be assumed known in that the
uncertainties in these quantities, determined separately from
the direct observations of the outer planets, cause uncertain-
ties in our interpretation of the inner-planep observations
that with few exceptions'(see Section iII) are too small to af-

fect the relativity tests presently of interest.

1. Parameterization of the Schwarzschild Metric

Eddington (1960), and later Robertson (1962), sought

s
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to generelize fhe space-time metric that represents the
(exterior) Schwarzsehild solution for the sun partly to
formaiize comparisons with experimental results. They chose
a particular parameterization which is analogous to the .
parameterized multipole expansion ofteh used fer an unknown
cﬁarée distribution. For the Schwarzschild solution ex-
pfessed in so-called isotropic coordinates, the Eddington-

Robertson form of the metric is

r . r
as? = (120 + 28327 + ...1c%a?
o 2, .2, .2
-[1+2y(;—)» + ...) [dx“+dy“+dz”], (2.1)

where ds represents the element of arclength in the
fegr-dimensional spaceftime; dx, dy, ana dz are the 4dif-
ferentials of the space coordinates; dt is the differential
of time; ¢ is the spneed of light; and o, 8, and Yy are the para-
meters.*

A more complete, and very elegant, parameterization
' of metric theories of gravitation in the post—Newtenian
approximation has been developed over the past few years by
. Nordtvedt, Thorne, and Will ({see Will, 1973 for a thorough

discussion). However, the parameterization given in Equation (2.1)

*:
In view of the excellent agreement of planetary orbits with

Newtonian theory, for example, one can conclude without further
ado that a is equal to unity. '

’ .
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will, for the most part, be adeguate for our purposes.
since the parameters Y and 8 in this parameterization
affect both signal propagation and rlanetary motions, we

will discuss each effect in turn.- -

9. Retardation of Signal Pxopagation
The Eddington-Robertson met;ic, as does the Schwarz-
child solution itself, predicts a retardation of, or delay
in, signal propagation When rays pass near a massive body.
Iﬁ particular, as was first shown a decade ago (Shapiro, 1964),

the "excess" delay, ATy, is predicted to obey:

2(.1+Y)ro ‘ re+r +R

At_= n (—=—=) (2.2)
r c re+rp R

where r = (GM@/CZ) ~ 1.5 km is the gravitational radius

of the sun; G the gravitational constant; M@ the sun's mass;

¢ the speed of light: r, the heliocentric distance of the

"earth; rp the heliocentric distance of the target planet; and

R the earth-planet distance. The maximum predicted effect (with

y=1) is approximately 250 usec for a signal path that grazes
the solar limb. But, as intimated above, the "observable"
effect is, in effect, reduced by other nonrelativistic in-

fluences on the round-trip time delays.
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Note that the expression (2.2), accurate to first order
in Lyr is independernit of B. A dependence of the time delay
on B enters to this order only through the relativistic ef-
fects on planetary orbits. The direct effects of solar gravity

on the time delays are sensitive only to y (Shapiro, 1966).

.3. Deflection of Signals

Interferometric radar observations of a planet can
be employed to measure the predicted gravitational de-

flection, n, of the radar signals by the sun (Shapiro, 1967):
(1+y)r

n:——

O

- tan(%), ; , (2.3)
e :

where 8 is the planet-sun-earth angle. Because of the finite
planet-earth separation, the maximum deflection of 1.75 arcsec
(vy=1l) is not‘attainéd. _Thus, for Venus the target planet and
with the signals grazing the limb of the sun, n = 0.73 arcsec
(y=1). This experiment has never been performed because higher
accuracy appears to be obtainable from the corresponding radio
interferometric obsefvations of cosmic radio sources, as dis-
cussed in Part II of this report.

4. Advance of Planetary Perihelia

As has been kncwn since the inception of the theory
o?er a half-century ago, general relativity and its Ed-
dington-Robeitson generalization predict a secular advance of
planetary perihelia, given by

2+27—B) 6rr,
p

3

Aw = rad/rev, S (2.4)

where p is the semilatus rectum of the orbit. Clearly the
advance is sensitive to both ¥y and B with the sensitivity to

Y being twofold greater. The effect of this "excess" ad-
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vance on the measurement of time delays is bounded, very
crudely, for radar observations of Mercury by

AT gy < 2ealw = 160 ﬂsec/yr (2.5)
where e is the eccentricity and a the semimajor axis &I
Mercury's orbit. The value for Aw is given by Equation (2.4)
but scaled to the total advance per year, about 0.4 arcsec;
both vy and B were set to unity in accord with the predictions
of general relativity. The factor of two in Equation (2.5)
accounts for the round-trip aspect of the delays.

There are other, short-period relativistic terms in fhe
description of planetary orbital motions. These, for
Mercury, have amplitudes of up to about 40 Usec. But their
"observability" is doubtless much diminished by correlations
with the orbital elements, or initial conditions, of planetary
motion which perforce must alsoc be estimated from the same

time-delay data since no other data are of sufficient accuracy.
A similar comment applies to the relativistic deviations pre-

dicted from Kepler's third law for a suite of planetary orbits.

As far as we are aware, no careful study has yet been carried

out to isolate, in an operational manner, the contributions each

of these orbital effects could make to the determinations of
Y and B, and, in particular, to their separation from the
dynamical effects of the solar gravitational quadrupole momenﬁ
(see‘Section ITI.iii.1l). 1In all covariance studies so far
carried out all such effects are lumped together.

5. Possible Time Variation of the Gravitational Constant

According to both Newtonian precepts and Einstein's

theory of general relativity (and its Eddington-Robertson

‘¢eneralization), the constant of gravitation is indeed a
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universal constant. On the basis of other theories of gravi-
tation, such as the Brans-Dicke scalar-tensor theory

(§ee, for discussions, Weinberg, 1972 and Misner, Thorne,

and Wheeler, 1973), the constant of gravitation should be
weakening slowly with time as the universe expands. This
weakening would be observable through measurements that
depended on atomic constants. In other words, on the basis
of such theorieg, a "gravitational" clock would appear to slow
down as measured by an atomic clock. . In particular, if the
mean motion, n, of a planet were measured with an atomic
clock, it would be predicted to decrease in a secular fashion

according to the formula
n_,G :
K" 2 'G_ ’ . . - ] (2-6)

where a dot indicates differentiation with respect to time.
This effect would be the more noticeable the larger the
ﬁean motion. Thus, of the planets, Mercury is the most
@seful gravitational clock for the detection of any such
ﬁime variation of G. The moon, although it has approximately
‘é threefold higher mean motion than Mercury, suffers from
being too close to the earth with the éonsequénce'that tidal
interactions are strong and difficult to separate from the
effects of any possible change in G. |

A change in G causes a change in the earth-planet time
-delay,_due to a change, AL, in the mean longitude of the

planet, bounded by (Shapiro ét al., 1971a):



-16-

G2

< =

since
T, 1 .2 & 2

AL.=(})'n1':dt=§-nT=n-éT. (2.8)
Here T is the interval over which the delay observations
have extended. For Mercury, with (G/G) = 1 x 10710 per
year, we obtain

At & 2 Lsec

& u (2.9)

with T in years. Thus Ats = 25 usec after 5 years.

Note that there have been attempts to estimate G/G from
studies of lunar motion, notwithstanding the difficult problems
posed by tidal interactions (se<e, fof example, Slade 19715.

In the most recent attempt, Van Flandern (1975) élaims to have
detected a significant change: (C'-;/G).'= (47.5t2.7) x 1011 per

~ year, based partly on an analysis of 18 years of lunar occul-
tation data which allow him to estimate the accelérationin mean
: 1éngitude ~ shown in Equation (2.8). However,

for the moon, in 18 years, the change in AL would be only

about 0.4 arcsec for this value of (G/G).
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Again we must emphasize that the whole effect here is
by no means "observable". First, we note that a parabola,
sﬁch as given by Equation (2.9), can be fit by a straight
line with the deviation nowhere exceeding one eighth of the
tQtal "growth” of the parabola. Thus,Aunless measurement
efrors were under, say, 3 usec, Qe would have difficulty,
based on' only 5 years of earth-Mercury time-delay observa-
tions, in distinguishing a change in G of 1 part in 10lo
pér year from a modification in our estihate of Mercury's
méan motion. [Recall that the slope of the best-fit straight
lihe to the parabola of Equation (2.9) would be interpreted,
iﬁ this oversimplified analysis, as a correction to the
estimate of Mercury's mean motion.] Second, we mention
that the actual estimate of G would involve a simultaneous
soiution for all relevant parameters with the consequence that
the "observable" effect would actually be reduced by an amount
even larger than the’factor of eight reduction entailed by the
effective "masking" of a parabola that can be accomplished

. by a straight line.

SRy
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The above arguments apply as well
to the interpretation of changes in the moon's mean longitude
that might be due to a variation in the gravitational con-
stant (see Section IV. 4). 1In view of these and other
aspects of the analysis, we consider that Van Flandern has
underestimated the uncertainty of his resul% which, in our
opinion, is not significantly different from zero

Finally, we remark that in certain theories of gravi-
tation, spatial variations of the gravitational constant
are predicted. It does not appear feasible to use inter-
planetary radar measurements to detect or to set useful
bounds on such possible variations. However, a detailed
analysisrof this problem has not been carried out.

6. Possible Violation of the‘Principle of Equivalence:

A comerstone of Einstein's theory of general
elat1v1ty is the Principle of Equlvalence. In ité so-called
weak form, this principle states that the ratio of the
g;avitational to the inertial mass of a body is independent
of its composition and size. This principle has been tested

in the laboratory with ever-increasing accuracy over the past
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three ceﬁturies, starting with Newton's demonstration which
established the validity of the principle to about 1 part in
103. The most accurate test was carried out by Braginski and Panov
(1971) who concluded that the principle held to at least a

few parts in 1012. Although these laboratory tests demonstrate,
for example, that the binding energy of the electrons in

atoms and of the nucleons in the nucleus contribute equally

to inertial and gravitational masses, these tests fail utter-

ly to shed light on whether the gravitational binding energy

contribuFes equally to inertial and gravitational masses:

For a laboratory-sized object, the gravitational binding
energy constitutes no more than about 1 part in 1023 of the

total mass, far below the sensitivity of the laboratory tests.
'Since this fractional contribution varies approximately as the
square of the body's dimension, one needs planetary-sized
bodies to perform a meaningful test for the gravitational

binding energy. Let us define the ratio of the gravitational

to inertial mass such that

zl ‘Qz

-1=4a, | (2.10)
n , |

where A, by assumption, aecounts for any possible deviation

from the Principle of Equivalence due to an unequal contribu-
tion of the gravitational binding energy to MG and MI. For
the sun, then, we'd expect A to be bounded by 0 (10™°) and,
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for Jupiter and the earth, by about 0(10™%) and 0(107°), res-
pectively.

A two-body orbiting system is not useful for a test
of‘the principle of equivalence -since the implied violation
of Kepler's third law, which relates the period and semi-
major a#is of such a system, is unobservable due to the
laék of an independent determination of the relevant masses.
HoWever, three or more mutually orbiting bodies do provide
a possible test.

Renewed interest in such a test was kindled by Nordt-
vedt (1968) who showed that this weak Principle of Equi-
véience was violated for massive bodies in the Brans-Dicke
théory, a consequence not previously recognized. More speci-
fically, Nordtvedt showed that a violation would introduce
a variation in the radial separation of two of the bodies
(say, the earth and the moon) of a three-body system (say,
the earth-moon-sun system) proportional to: ‘

RTINS S H e

We omit the exact definitions of the parameters ATY
;ﬁ, and Lyr as they are not germane to our discussion; see

Will (1973) for a detailed description. We remark here

only that, for general relativity, the terms
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on the right side of Equation (2.11) sum to zero whereas
this sum does not vanish under the Brans-Dicke theory.

Considerable attention has been given to the possible
detection of a nonzero value for A from analysis of lunar
laser observations, the relevant three-body system being
the earth, the moon, and the sun. In the radar context,
we have examined the possibility for detection of é
violation with respect to the four-body system: earth-Mars-=
Jdpiter-sun. In particular, we have considered using earth-Mars
time-delay observations; a very detailed, but still incompleté,
study of this possibility wasmade at M.I.T. by Sherman (1973).
Similar Qbservations of Venus, especially, and of Mercury will also be
very efficacious in strengthening this test.

For a violation of the weak principle of Equivalence of
the order of the ratio of the gravitational self energy to the total
energy of a body, it can be shown that the effect on the earth-Mars time-
delay measurements, for example, would be of the order of 10 usec (Sherman,
1973). But masking will reduce its observability. We note that the effect
6f a nonzero A will be in large part periodic, with periods approximately
those of the earth and target planet.

7. Gravitational "Redshift"

The gravitational "redshift", the effect of the local gravita—
tional potential on the apparent frequency of a light wave which causes a
sxmtnﬂ.lﬁm:gmmxauxlat1jm mxxtoaxmearzedﬂﬂﬁfhaiWMQQOb&nvaion

anth <k£51xx.sxm\mmmabkato<hxectnea&nemaﬁgn1lmmmpkﬂEUny

" radar experiments. However, the concomltant predlcted ef-

fect on clock rates is susceptible of detection. Because
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of the eccentricity of the earth's orbit, an atomic clock

on earth, relative to that of a distant observer, is pre-
dicted to undergo yearly variations of amplitude about

1.5 msec. This effect, relative to the situation in its
aﬁsence, causes the time-delay measurements to be referred

to a differentiepoch. If the reference epoch is in error,
however, the calculated delay -- in thé absence of any other
errors or inexact parameter values -- would disagfee with

the observed delay by the product of the epoch error and the
time rate of change of the delay. For interplanetary ob-
sgrvations, the delay rate can be as high as 2(v/c) = 200 usec/sec.
Hence an.epoch error of 1.5 msec would manifest itself in delay
residuals of maximum magnitude of about 0.3 psec. Such an ef-
fect is too small to be reliably detected with useful accuracy at
‘present, especially when maéking is considered, and so will

not bé discussed further in this report.

8. Lense~Thirring Effect

Lense and Thirring (1918) predicted on the basis of
the then new theory of general relativity that a rotating
mass tended to rotate a "nearby" inertial frame in the same
“direction. Incorporation of the sun's rotation, therefore,
pﬁoduces a modification of the Schwarzschild solution which
hés consequences for both the propagation of radio signals
aﬁd the orbits of planets. 1In addition, the spin axis of
tﬁese orbiting bodies would undergo. additional precession

due to the Lense-Thirring effect. None of these consequences
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of the theory of general relativity, or its generalization, has
so far been observed.

A program undertaken at Stanford University, with NASA
sponsorship, has for over a decade been concerned Qith the
development of a superconducting gyroscope to orbit the earth
to detect the so-called "geodesic precession” and the much smaller Iense-
Thirring precession which, in the terrestrial context, amounts to enly some
hundredths ef an arcsecond per year (see Misner,‘Thorne, and‘Wheeler, 1973,
and references cited therein). Any actual measurements are still some years
in the future. |

A preliminary study was under&aken at M.I.T. (Miller, 1971) to ascertain
the possible observability of the Lense~-Thirring effect on iﬁterplanetary time-
delay measurements. The results, as expected, were not encouraging. The effect
on the earth-Mercury time~-delays, due to the effect on the orbit of Mercury,
ie of the order of 1 nsec per orbital revolution. Worse, the
lack of precise knowledge of the sun's angular momentum vec-
tbr makes the effect even more difficult to detect. We
therefore end discussion of this effect for the purposes of

this report.
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III. Effects Corrupting Relativity Tests

Here we discuss the various effects on the radar time-
delay measurements that, for the purpese of testing theories
of gravitation, may be considered as cor;upting influences,
or as "noise". In contrast to the discussion of relativistic
effects, we treat these corrupting effects in approximately
the reverse order of their magnitude, reserving the most
serious -- planetary topography -- for last.

1. Earth Rotation

Since all observations are made from the earth's

surface, the motion about the center of mass influences the
time-delay obsetvations. The earth's deviations from solid-
bady rotation with a constant angular velocity abéﬁt a fixed
aiis in inertial space are conventionally described by the
p;ecession, nutation, polar motion, variations in UT.1l, and
selid—body tides of the earth. These deviations are currently
kﬁown with sufficient accuracy that, for purposes of analyzing
aidecade of interplanetary radar measurements, the uncertainty
ié the position of a point oh the earth's surface with res-
peet to an inertial frame is of the order of 5 meters or

‘approximately 0.03 usec in equivalent two-way light time.
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Such an uncertainty is of no consequence for the interpretation .
of existing radar data and will pose no severe problem for the
interpretation of data to be obtained in the future. However,
with the development of very-long-baseline interferometry
(VLBI), the uncertainty in the changes in the earth's position
with respect to an inertiél frame formed by distant extragalac-
tic radio sources will be reduced cver the next few years to
the decimeter level (~° 0.002 usec in equivalent light time) and
so will be an utterly negligible source of corruption for radar
tests of relativity.

2. Site Locations

In addition to the determination of the earth's
orientation in inertial space, one must glso determine the'
location of the radar site on the earth. For some of the
delay measurements already made, as well as for most of the
future measurements, conventional geodetic surveys do not
provide sufficient accuracy. Of course, one can add the site
coordinates to the parameter list, as we have in fact done;
and estimate these along with the other solar-system parameters
of interest; the correlations with the.estimates'of the para-
meters describing the relativistic effects are very low.

If for no other reason than as an independent check, how-

ever, it is desirable to determine the site locations



-26-

by other means. The VLBI technique provides such a means;
moreover, through its use, the radar sites can be located
wiéh respect to the same inertial frame in which the earth's
orientation is described. We have already conducted a series
of;VLBI experiments between Goldstone and Haystack (Shapiro
et,al., 1974) which serves to establish their relative loca-
tion to within 1 m*. We have also submltted a proposal to do
a Similar, but for technlcal reasons somewhat less accurate,
VLBI experiment between Haystack and Arecibo. The results will allow the
relative locations of all three sites to be determined to within a few meters
which should provide a powerful check on the estimates of the site locations
made from an analysis of the radar data from these three sites.

We should also note that through VLBI the orientation

of the planetary system itself can be determined with respect

to the same inertial frame used to specify the earth's

*Erdm VLBI observations of extragalactic sources, the baseline
oé the interferometer is determined, with respect to the
iﬁertial frame formed by these soufces, to within a parallel
disélacement. Lack of parallax leads to this freedom in

" the specification.
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orientation (Counselman et al., 1972)*. The method proposed to
accomplish thié determination involves differential measurements
of extragalactic radio sources and transmitters aboard space-
draftbthat are either flying by, orbiting, or landed on anothe¥
planet. By observing simultanecusly, or near simultaneousiy,
with a very-lbng-baseline interferometer, both the signals from
the spacecraft and those from an extraéalactic radio source,
when the latter is nearly in the same direction from the earth
as the planet, high accuracy can be obtained. Recently our VLBI
group (see Part II) has used this technique to determine the
angular separation between two extragalactic radio sources with
an uncertainty of only about 0Y001; the same accuracy could be
achievable in the determination of the orientation of the planets
wiéh respect to such extragalactic sources. The main problem is
the lack of suitablé opportunities.

3. Propagation Medium

The medium through which the radar signals pass ob-
viously affects the values of the measured time delays.

For purposes of discussion, we separate the medium into

*Because of the rather weak dynamical coupling between the
ea;th's spin angular momentum vector and the angular momentum
vecter of the planetary system, the determination of the |
orientation of one of these vectors with respect to a given
frame doesn't of itself determine the orientation of the

other with respect to that frame.
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three parts: the earth's atmosphere and ionosphere, the
target planet's atmosphere and ionosphere, and the
interplanetary plasma and solar corona.

i. Atmosphere and Ionosphere of the Earth

The neutral atmosphere nas an electrical path
1ength of slightly under 3 meters in the zenith direction;
this length increases as the secant of the zenith angle (co-
secant of the elevation angle). The lowest elevation
angles usually employed in interplanetary radar experiments
are about 6° for which the two-way effect on delay is
about 0.2 usec. Models for the neutral atmosphere in current
use are accurate to about 10% in their ability to predict the
electrical path length at microwave frequencies. (This rather
' large uncerﬁainty is due primarily to the difficulty in model-
ling the very variable contribution of the atmospheric water
vapor.) Thus, the uncertainty in the theoretical calculation
of the contribution of the neutral atmosphere to the values of
thektime-delay measurements is never greater than 0.02 usec.
Moreover, for the Arecibo fadar facility, the elevation angle
can never drop below about 70°, implying a limit on our
uncertainty in the atmosphere's contribution of under 0.002 usec
which will not be of any consequence.

The effect of the earth's ionosphere is, of course, fre-

quency dependent. For the radar frequency -of 7840 MHz used
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at the Haystack Observatory, the effect on the time-delay
values has always been negligible compared to the measure-
ment accuracy. At the 2388 MHz radar frequency used at the
Goldstone Tracking Station, the contribution of the ionosphere
to thé time delay during the day is of the same order as the
contribution of the neutral atmosphere for high elevation
: angles, the ionospheric contribution, however, increases far
less rapidly as the elevation drops below about 30°. Thus,
the maximum contribution of the ionosphere to the delays
measured at Goldstone is about 0.06 usec and is small
compared to their current delay measuremeﬁt accuracy.

At Arecibo, the currently used radar frequency is
430 MHz for which the maximum contribution of the ionosphere
toithe delay measurements is about 0.6 usec (recall the 70°
lower limit on elevation angles). This contribution can not
at present be modelled with an uncertainty any smaller than
about 30%, leaving the unmodelled part of the ionosphere con-
‘tribution to the delay at about 0.2 usec for the daytime
observations of Mercury and Venus. This uncertainty is
almost as large as that accompanying the most accurate
meésurements currently being made in observations of these
two planets at the Arecibo Observatory. For the past obser-

vations of Mars near opposition, the signal passed through the
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night-time.ionosphere for which the ionospheric effect on
délay is tenfold smaller, yielding a maximum uncertainty in
thé ionosphere contribution of about 0.02 usec which is neg-
ligible.

By the end of this year, before the next opposition of
Mars, the upgrading of the Arecibo radar will be completed;
subsequent planetary observations will be made at a radar
frequency of 2380 MHz with a consequent 30-fold reduction in
the influehce of the ionosphere.

ii. Atmosphere and Ionosphere of the Target
Planet

Of the inner planets, only Venus has a
significant neutral atmosphere from the point of view of af-
fecting radar time-delay measurements. For observations of the
delay to the subradar point*, only normal incidence is
involved. Still, the incremental two-way delay introduced by

Venus' neutral atmosphere is nearly 2 usec, virtually

*
The subradar point on a planet's surface is at the
intersection there of the line drawn from the radar site to

the planet;s center of mass.
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independent of the radar frequency*. Despite its relative
enormity, this effect is not as devastating as it

seems. Our only concern, in regard to relativity tests,

is with the spatial or temporal changes in the atmospheric
delay. The predominant contrigueions to the delay come

ﬁrom the lower few scale heights and, primarily because of the
very large inertia of the lower atmosphere, temporal and
spatial variations are expected to be no larger than a few
percent. Indicative of the validity of this expectation is the
finding from earth-based radio interferometry (Sinclair

et al., 1972) that the variation of the = 750°K surface
temperature over the disc of Venus is under 15°K. Variations
in the contribution of the atmosphere to the radar time-

delay measurements that are caused directly by the topographic
variations with respect to an equipotential surface can be
"lumped” in with the topography effects (see Section III. 6)
and need cause no additional concerns. It is possible, in

prinéiple, to separate the atmospheric from the strictly

*
The absorption of the radar signal in Venus' atmosphere

is, however, a strong function of frequency, increasing
approximately as the Square, Thus the two-way attenuation
fof observations of the subradar point is about 7 db at X-band, but vir-
tuéliy negligible at the S-band frequencies used at Goldstone and soon

‘to be used at Arecibo.
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topographic effecés on delay as discussed by Shapiro et al.
(1973), but the implementation of the technique proposed in
that article is not needed for relativity-test purposes..

We note also that any error in médelling the
(constant) delay introduced by Venus' atmosphere is of no
concern; it is absorbed in the estimate from the radar data
of the mean radius of Venus. Should an independent, and
more accurate, estimate of the mean radius become availabie,
as well as a better model for the atmospheric delay, then
the comparison of that radius, as modified by the effect of the atmosphere,
with the "radar" radius will allow another check to be made -
on the validity of the statistical filtering of the radar
data. |

Ionospheres on Venus and Mars have been measured using
the radio-occultation technique (see, for example, Howard
eﬁ’al., 1974, and Kliore et al.,1972), but the integrated
electron density in the zenith direction is, in each case,
substantially smaller than that for the earth and poses
n6 problem for the interpretation of either past or pro-
posed radar observations of these planets.

jii. Interplanetary Plasma and Solar Corona

The sun emits, at high speed; .
charged particles that form the solar wind. This plasma,
constituted primarily of electrons and protons, may for

. purposes of discussion be diyided into two regimes: the
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interplanetary plasma and the "inner" solar corona; the
demarcation line is arbitrary but we place it here at
'abbut four or five solar radii since in general only
signals passing outside that limit can yield useful inter-
pianetary time-delay measurements. For signals that approach
to about this distance from the sun, it becomes very dif-
ficult to obtain accurate delay measurements at S-band radio -
ffequencies because the turbulence of the corona severelyi
restricts the coherence time of the radar signal. For such
distances, even at X-band frequencies the turbulence ef-
fécts on the signals begin to éffect the delay measurements
aéversely. At | the 430 MHz radio fre-
guency currently used by the Arecibo radar facility, useful
measurements can not be made if the signal passés within
about ten solar radii from the sun's center.

The above statements relate to average conditions of
tﬁe solar wind; But the hallmark of the solar wind is

its variability and, moreover, the unpredictability of

tbis variability. It will be possible at times to make
uéeful delay measurements at S-band for signals that approach
within 4 radii of the sun; at other times, delay measurements
will be thwarted for closest approach distances of 12 solar

radii. Some examples of the enormous variqbility of the
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turbulence of the solar wind are given in Part II of this
report. Indicatidns of the corresponding variability of
the'mean of the integrated electron density along paths
passing near the sun are given in Figure 1 which is based

on observations of the occultations of the Crab pulsar by

the'sun_in 1973 (Weisberg et al., 1975; see also Counselman and Rankin, 1972).

Thus, for radar tests of relativity, one is restricted
to signal paths that pass no closer to the sun than about
four to five solar radii -- unless new radar facilities
arb built which utilize substantiélly hiéher radio frequencies.
Bu& what about the interplanetary plasma beyond? How does
iﬂ affect the radar tests of relativity? Clearly the
éﬁfect is greatest for the time-delay test (Section II. 2)
which depends on £he signal path passing close to the sun.
To obtain a quantitative estimate of the corruption of
this test due to the interplanetary plasma we can utilize
aﬂ approximate relation for the charéed particle density,
N(r), as a function of the distance, r, from the center of

the sun:

5 Ry 2 3
N(r) = 5 x 10 (EQ) el/cm”; r 2 SR, (3.1)

)

where R@ is the radius of the sun. This formula yields the
ajerage values for the charged-particle density near
lm% but gives values somewhat too high near the earth's

orbit (r = 200 R@). The effect, ATél, on an interplanetary

IR e
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time-delay measurement of such a plasma is given by (Shapiro,

1964):

14 R

X X
e 9;%§l2__ (52) [tan™ (2 +tan™t (§B)] sec, (3.2)

At
where f is the radar frequency iﬁ Hertz, d is the distance
of closest apbroach of the signal to the sun's center, and
Xe and Xp are the distances to the earth and target planet,
respectively, from the point on the signal path closest
to the sun. [When the earth and target planet are both on
the same side of the sun, for example, near inferior con-
junction or opposition, Equation (3.2) must be modified
éo indicate that the absolute value of the difference of
the two axctangenés must be evaluated.] For Xe, xp >> d,

we obtain near superior conjunction

_ 0.9x10M*
pl f2

R
AT c{%)n sec, B (3.3)

showing that the plasma effect on time delay falls inversely
with the impact parameter'and with the square of.the radar
fréquency. Since the predicted relativistic effect of

solar gravity on signal delay, AT, given in Equation (2.2 ),
falls off logarithmically with 4 and is independent of
fréquency, the possibility for an accurate test clearly

exists. For example, at the 7840 MHz frequency used
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at Haystack, AT 12 0.9 usec for 4 = 5R®, which is about

P
0.5% of the corresponding predicted general relativistic
effect of about 170 u sec. The signal-to-noise ratios
achievable with the Haystack radar are, unfortunately, in-
sufficient to take advantage of these favorable cenditions.
At é—band frequencies, Arpl doesn't even drop below 3%

of ATr (with vy = 1) until 4 = 20 R@ for which distance

AT ~ 3 psec and At = 115 psec. This "cross-over" point

pl
is illustrated in Figure 2 for the S-band radar frequency
of 2380 MHz to be used by the upgraded Arecibo facility and
with Venus the target planet.

Because of the use of S-band at Arecibo, nowhere
near the full advantage of the available signal-to-noise
rétio can be taken in the performance of the time-delay,
6r signal-retardation, test of general relativity. For
the other relativity tests which depend only on the orbital
motion of the inner planets the situation is much ameliorated
but the effects are still not negligible. For example, at
éhe elongation of Mercury, Equation (3.2) shows that for
f = 2380 MHz, Ar?l <. 0.3 usec, whereas
‘at inferior conjunction Arpl<~ 0.1 usec. For
Venus, the corresponding elongation and inferior conjunction
numbers are slightly under 0.15 usec and 0.04 usec, res--
pectively. For Mars at opposition, the most favorable case,
we obtain ATpl ~ 0.03 usec. Thg above results are summarized

"in Table 1.
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Table 1. Average time delay, in usec, expected from inter-
. planetary plasma for 2380-MHz radar observations

at different orbital configurations.

Planet Elongation Inf. Conjunction

Mercury 0.3 0.1

Venus 0.15 0.04

Opposition
Mars 0.03
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These éstimates of the effects on delay of the
interplanetary plasma between elongations and inferior con-
jﬁnctions or oppositions are apt to Se, on average, nearly
a factor of two too large since Equation (3.1) yields a
value.for N of nearly 11 el/cm3 at 1 a.u.,‘whereas:the
average value is perhaps only about 5 to 7 el/cm3. Fur-
thermore, using the plasma data obtained from the Pioneers
and other relevant instruments, we should be able to model
the plasma'effects on delay with an uncertainty perhaps as
low as 50%.

- The above discussion demonstrates that the analysis.and
idterpretation of radar data obtained in the past, with the
e#ception of some Arecibo observations, have not been serious-
ly compromised by the interplanetary plasma. Arecibo and,
pérhaps, Goldstone observations to be ﬁade in the future
may be seriously affected. The most elegant way to virtually
eliminate this corrupting effect is to make radar observa-
tions simultaneously, or nearly simultaneously, at two
ffequencies. At Goldstone there is now the capability
tq make observations at both S~-band and at X-band. At the
m&ch more powerful Arecibo radar facility, only an S-band
capability is currently planned. However, should the re-
surfaced antenna at Arecibo be sufficiently well adjusted
to be usable efficiently at X-band frequencies, an X-band

radar system could be installed there too.
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Delays measured simultaneously at two radar frequencies
can be‘combined‘to yield a delay observable freed from
‘plasma effects. The standard deviation, G(Tf), of this
combined observable is related to the standard deviations
o(ri), i=1, 2, of the delays measured at the individual
frequencies fi by:
rfgcz(rz) 102 (x

)
1’.1/2
o(tg) = { + }

. (3.4)

?

For fl ~ 2 GHz and‘f2 8 GHz, Equation (3.4) vyields

R

o(tg) = 1.07 ol1,), i (3.5)

for o(rl) = 0(12); Thus the "penalty" paid in freeing
- the delay measurements from plasma effects is only about
7% for a dual, S- and X-band system.

For the purposes of the relativity tests, with X-band
aVailable, the S-band capability is not required except
near superior conjunction where its effectiveness will
cease only when the turbulence in the corona causes the
delay measurement accuracy to decrease significantly. From
elongation through inferior conjunation, even for Mercury,
the maximum effect of the interplanetary plasma at X-band

will be ATpl = 0.02 pusec which is nearly negligible.



-42-

4. Gravitational Perturbations

The gravitational perturbations to the target
planet and to the observing platform come from many
sources: the galaxy, neighboring stars, the sun, the planets,
asteroids, comets, and satellités. We treat each of these
briéfly.in the order mentioned.
i. Galaxy
The galaxy introduces a gradieht in the gravi-
tational field so that the bodies in the solar system will
thereby experience differential accelerations. For the pur-
poses of an order-of-magnitude estimate we may consider the
gntire masé of the galaxy to be concentrated at its center.
The magnitude of the_differential acceleration, ag, of a planet :elative to
the sun caused by the galactic mass will thus be given ap-
proximately by
GM

a =z-3—ga : (3.6)

r
g

where G is the constant of gravitation, M_ the mgés of the

g

galaxy, r_ the distance from the galactic center to the

g
sun, and A the distance between the planet and the sun.

Usin§ the approximate values (see, for example, Allen, 1963)
Mg é 10L1MG_= 2 X 1044 gm azd rg
3

obtain for Mars (A = 2 x 10 cm), the outermost planet of

=~ 9 kpe = 3 x 1&2 cm, we

interest, the value

| ag = 2 x 10717 cm/sec2 , : (3.7)

8

since G = 6.7 x 10 ° in cgs units. Since the most im-

portant, "in-plane" effect of this perturbing acceleration
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will tend to average out over an orbital period, we can

obtain a crude approximation to the magnitude of the effoct

byAusing the familiar formula s =(l/25at2 with t being

one-quarter (= 1.5 x 107 sec) of Mars' orbital period; we

obtain

g% 2 % 1073 cm, (3.8)

wHich is utterly negligible. The gradient in the gravi-

tational field due to neighboring galaxies is obviously far,
far smaller.

ii. Neighboring Stars

Apart from the overall effect of the
gaiaxy, one should, for completeness, estimate separately
the influence of stars in the solar neighborhood. .Using
by rgs and w1th

Equation (3.6) with M_ replaced by Mg and r

g g
M, = M® and r_ = 1 pc = 3 x 1018 cm, we obtain for Mars:
ag *2 x 10_16 cm/secz; Sy 2 X 10_2 cni, (3.9)

ggain completely negligible. Thus, to this extraordinary
dégree, the solar system can be treated as a closed
dynamical syétem.
iii. Sun

Here we are concerned with the gravi-
tational effects of the sun on the motions of the planets,
apart from the direct Newtonian and relativistic influences
of an equivalent point mass. : Three such effects

are of potential significance: the mass distribution within
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the sun, changes in the mass of the sun, and tidal bulges
in the sun. We discuss each in turn.

iii. 1. Mass Distribution

The nonspherically symmetric

part of the mass distribution of the sun has been the sub-
ject of considerable controversy over the past seven years.

Dicke and Goldenberg (1967) claim to have observed a
visual oblateness of the sun and interpreted it, using
Von Zeipel's theorem (see, for example, Clayton, 19638), to imply that
the coefficient of the second harmonic of the sun's gravitational field
had a value about two orders of magnitude larger than would
bé expected were the sun to be .rotating uniformly with depth
at the angular velocity observed at the surface. In par-

“ticular, Dicke (1974) concludes that

J. = (2.4 %0.3) x 107°

2 (3.10)
where Jo o is the coefficient of the second-degree zonal harmonic in the usual
spherical harmonic representation of the gravitational potential:

| v(r,8,¢) = - G—Di—@- {1 - J, @(I—;@-)ZPZ(COS 8) + ...}, (3.11)
where R@ is the equatorial radius of the sun; r, 6, and

¢ are the radius, colatitude, and longitude of the

(external) field point; amiP2 is the second-degree

Legendre polynomial. [See, for example, Dwight (1949) for the normalization
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used.] We have estimated the value for J2 expected on
®

the basis of uniform rotation and find

- ’7 -
JZQ =1 x 10 *, (3.12)

with the uncertainty, even given uniform rotation, being
perhaps as large as a factor of two.

Dicke's interpretation of the Princeton solar-
obiateness measurements have been criticized by many.
With the proper interpretation of the Princeton data
in doubt, it is clear that other experiments are
required. Older data, obtained with a heliometer over
anil-year period by Schur and Ambronn at the turn
of the century, indicated the absence of any visual
obiateness of the sun with an uncertainty severél—
fdld below the magnitude of the effect reported by Dicke

. and Goldenberg. But Dicke has raised the possibi}ity that
systematic errors accompanying the use of the heliometers
may have signifiéantly affected this apparently null

result. More recently, however, Hill et al.
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(1974) using a technique very different from that employed
at Princeton to define the solar limb, have also reported essentially
a null result, supporting the earlier conclusions of Schur
and Ambronn.

Regardless of the final outcome of the controversy
surrounding the direct measurements of the visual 6blate-

ness of the sun, it is only the gravitational oblateness

which is of concern for the radar tests of relativity.

Since the gravitational oblateness characterized by J2 o

cén in any event only be inferred from the visual oblate-
ness in a theory-dependent (and somewhat controversial) man-
ner, we would like to be able to determine Jé@ directly

from its dynamical effects. The perturbations of the
pianetary motions due to J2@ are unfortunately smaller than
those due to y and B (see Section II). Even with J2@ as
large as 2.5 X 10_5, the perturbations of Mercury's orbit are
only about 10% of those due to Yy and 8. With interplanetary
time-delay measufements, the effects of J2@ can be separated
from the relativistic onés due to the differences in

(1) the dependence on orbital radius of the secular advance
of.the perihelion (the J2@ effect falls off faster by one
power of the inverse radius); (2) the short-period pertur-

bations of the orbits; and (3) the relations between or-
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bital radius and period for a suite of planets. The rela-
tive efficacy of these differences in effecting a separation
has never been studied with care. In particular, the
‘relative importance for these differences of the "masking"
effects of the orbital elements, which must be estimated simul-
téneously with J2@, Y, and B, has never been evaluated. But
even after the relative efficacies have been determined, and
a suitable strategy of observations adopted, and even if J2@
is of the order that one would predict from uniform rotation,
the necessity for the precise determination of J2@ from its
dynamical effects will likely remain the most important limitation
so far mentioned on the accuracy achievable in the radar
tests of relativity that involve planetary-ﬁotions directly.
The third and higher-order harmonics of the sun's
' gravitational poténtial are'obviously of no concern for the
study of planetary motibns. In addition to the overwhelming
likelihood, based on theoretical considerations, that the
coefficients will be much smaller‘than J2®,their effects fall
off with increasingly higher powers of the ratio of the
sun's radius to the planet's orbital radius. Thus, even
were J3@ of the same order as J2@' the effect on Mercury's

orbit would be almost two orders of magnitude smaller.

iii. 2. Mass Changes

The second effect of the sun,

mentioned at the start of this subsection, concerns its
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change pf mass. The main mechanisms for mass loss are
electromagnetic rediation and the solar wind; the effects
of neutrlno radiation are negligible by comparison. Mass
accretion takes place through direct impact of (pertqrbed)
orbiting bodies and through the'decay of the orbits of dust
pafticles under the influence of the Poynting-Robertson ef-
fect (see, for example, Robertson, 1937). The losses can
be evaluated more accurately than the gains. For electro-

magnetic radiation, we have

|
G

—arr? 22 » -ax101?

13

gm/sec

Q
‘1.

radiation ®

-14

[

-6 x 10 M@/yr, (3.13)

where gy = 1.5 x 1013 cm is the radius of the earth's

6 ergs/cmz—sec is the

10

orbit; I, = 2.0 cal/cmz—min ~ 1.4 x 10

flux from the sun at 1 a.u.; and ¢ = 3 X 10 cm/sec is the
speed of light. We assume, of course, that the radiation
ie spherically symmetric. We make the same assumption,

with substantially less reliability, for the particle flux

in order to get a global estimate:

2 12 ,
-4rrnmv = -2 x 10 gm/sec

7,2

particles

i’

-3 x 10__14M®/yr, | (3.14)
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where n = 10 cm-3 is the (over) estimated average proton number

density at 1 a.u.; m = 1.67 x 10'-24

gm is the mass of a
pfoton; and v = 400 km/sec is the (over) estimated average
velocity of the solar wind at 1 a.u. Particles other than
protons make a much smaller contribution to the mass loss;
their omission from dM@/dt is far less serious than the

‘ uncertainty in the estimate of the proton mass loss.

The mass accretion is difficult to estimate reliably.

Conceivably, but very unlikely, it might even exceed

10713 M yr ! and lead to a net mass gain for the sun.

However current estimates (Marsden, 1974)

15 1

indicate a value for dM@/dt of about 10

influx M@yr
or smaller. For purposes of discussion let us assume that
the change in mass of the sun, whatever its sign, doesn't

-13 M@yr_l. Such a bound implies that the uncer-

exceed 10
tainty in the mass changes of the sun will not influence

any of the radar tests of relativity for many years to come.
The most prbnouﬁced effect of these mass changes will be a
slow, outward spiralling of the planetary orbits which would
Affect most importantly'the detection of any possible change
iﬁ‘the gravitational constant. But e&en for radar time-
delay measurements spanning two decades, the sun's mass
changes, if within the limits specified, would introduce

a maximum change in a delay measurement of under 0.4 usec.

For the near term, therefore, solar mass changes will not



limit thé accuracy to which one can discern any possible
change in the gravitational constant.
o iii. 3. Tides
Tides are raised in the sun by
the planets. Such tidal bulges affect the planetary orbits,
inipérticular the semimajor axis, the eccentricity, and the
inélination*. However, the magnitude of these effects is
negligible because bf its dependence on both the square of
thé (small) planetary mass and the inverse sixth power of
the ratio of the planet's distance to the sun's radius. This
tidal effect on planetary orbits is also inversely propor-
tional td the relevant "Q" of the sun. But even for Q = 10,
likely a gross underestimate, and for Mercury, the most
strongly affected planet, we find that the major effect, on
Mercury's semimajor axis, is smaller than that due to the
sun's mass loss and so may be neglected for the foreseeable
future in regard to radar tests of relativity.
iv. Planets

The plénets affect the ;adar time-
de@ay measurerents because of the perturbations they cause
in‘the orbits of the earth and ﬁarget planet. These effects,
of coursé, depend on the massés and orbits of the perturb-

ing planets. We discuss the orbits first. A third effect,

* ) ~ .
Because the planets are all beyond the radius of synchronous

. rotation with the sun, the orbits will tend to spiral out; they

will also tend to circularicze.



due to the spin-ofbit coupling, will be discussed last.

iv. 1. Orbits

For the inner planets, where direct

radar measurements exist for each, it is necessary to es-=
timate simultaneously with the relevant parameters for the
relativity tests the six orbital elements for each inner
planet. These estimates must be based on the available radar and
optical data concerning these bodies. It is desirable, but not mandatory, to
include simultaneously in the analysis the optical data for the outer
planets and the parameters describing their orbits (and masses).
This expansion of the data and parameter sets in the solution
ie not now mandatory because the outer planets are of interest
to the relativityltests under discussion only insofar as
they perturb the orbits of the inner planets. But an error
in an element of the orbit of an outer planet has only a
second-order effect on the determination of the orbit of an
inner planet. Nonetheless, the fractional uncertainties
accompanying the radar time-delay observations of the inner
pianets are becoming so much smaller than those for the op-
tical observations of the outer planets that, for example,
tEhe initial longictude of Jupiter in its orbit will soon: be
able to be estimated with higher accuracy from radar ob-
servetions of Mars than from the existing optical observations of

Jupiter. At this;xﬁnt'HKEVEak<xnmﬂing‘beﬂmxxxthe‘humm
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-and outer planets Wwill become sufficiently important to
require a simultaneous solution in order to obtain an
accuracy for the relativity tests commensurate with the
inherent accuracy of the radar data.

Before this "crossover" point is reached, however, it may be possible,
with the upgraded Arecibo radar facility to
observe the Galilean satellites of Jupiter directly and
possibly, also, Saturn's largest satellite, Titan. From
the analysis of these direct radar measurements of the
satellites of Jupiter and Saturn the orbits of the latter
two will be determined far more precisely than would be
possible from the inner-planet radar data. On the other
hand,»the inner-planet radar time~delay data, because of the
much shorter diétances involved and the inverse fburth
power dependence of the echo smxmgdlonxﬁstﬂme,wiU.nmahlof
far higher accuracy than the corresponding data from the
outer solar system and so the latter data would add little
to the determination of the orbit of the earth —- the common
observing platform. This last statement also leads to the
éonclusion that, with no appreciable loss of accuracy, the
inner-planet data can bé analyzed separately from those of

the outer planets for radar tests of relativity.

iv. 2. Masses
Several comments are required in

regard to planetary masses. For the inner planets, radio-

VAR o m R



tracking‘data from spacecraft near planetary encounters

have yielded the masses for Venus, the earth, and Mars with
‘uncertainties at the level of several parts per million

(for a summary,‘see Ash, Shapiro,and Smith, 1971). Pre-
liminary analysis of the Mariner 10 data (Howard et al.,
1974) give an uncertainty for Mercury's mass of about

1 part in 104. The radar time-delay data also contain in-
formation on these masses due to the perturbations induced
by these planets in one another's‘ orbits. Since these planets do
not make close approachés, the spacecraft data are intrin-
sically more poWerful for the estimation of planetary masses
and all but eliminate the need to estimate them from the
radar data. However, inclusion of the mass parameters in
the analysis of the radar déta for the relativity tests
provides an important check on the existence of’unsuspected
svstematic errors. Anyvdisagreements between the "radar"
and "spacecraft" values for the masses, large comparea to the
accompanying standard deviations, would imply the presence
of such errors.

The outer planet masses are best determined from mutual
perturbations among these planets, with two exceptions: .
Jupiter and Pluto. The mass of Jupiter (plus‘its satellites)
is at present determined most accurately from analysis of

asteroids whose mean motions are commensurable with Jupiter's.
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The Ploneer 10 flyby of Jupiter provmdes the next most
accurate value. For pluto, despite some claims to the
contfary (see, for example, Seidelmann et al. al.,]B?l),

have shown that its mass can not be determined rellably
from its perturbations of the orbits of the other outer
planets; Pluto's mass is simply too small and the optical
observations of the outer planets are too crude to allow a
determination (see Ash, Shapiro, and Smith, 1971). By the
same token, Pluto is not massive enough to affect the radar
tests of relativity.

As for the inner planets, however, the estimation of the
masses of the outer planets from the inner-planet time-delay
d;ta provides a useful check. And, in fact, the formal ac-
curacy achieved iﬁ such estimates of the masses of Jupiter and
Sa{:urn are only several-fold poorer ‘than for the best now avail-
able.

iv. 3. Spin-Orbit Coupling

The spin-orbit resonance of Mercury
(see, for example, Colombo and Shapiro, 1966; Goldreich and
: Beale, 1966; Counselman, 1968) is potentially of direct signi—
ficance for radar tests of relativity. This resonance is

responsible‘fof a slight additional advance, Awso’ of Mercury's

perihelion given by

217 B -A ‘
Awso T )(ﬁé) cos28 ‘rad/rev, (3.15)
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where A< B< C are Mercury's principal moments of
inertia; a, e, and 'Rs: are Mercury's orbital semi-major axis, ec-
centricity, and radius, respectively; and 60 is the angle between Mer-

cury's axis of minimum moment of inertia and orbit major axis at perihelion.
Since the value of (B-A)/C is unknown for Mercury, the pre-

cise magnitude of this effect can not be determined.
However, based on analogy with the moon and on the likely
' extent to which Mercury could remain out of hydrostatic
eéuilibriuh over the relevant time interval, we conclude
that (B-A)/C <2 x 10-4. This bound on the fractional
difference in the principal moments of inertia implies a peri-
hélion advance of no greater than 0Y003 per century. However, in order to
improve the corresponding test of general relativity to the
point where the uncertainty is a part in 104 or less, it
will be important to have an independent estimate of (B-A)/C
of uncertainty under 2 x 10_4. Further anaiysis of the
Mariner 10 radio tracking data obtained near Mercury encounters
may yield a determination of sufficient accuracy; the cor-
responding data from an orbiter certainly will.
v. - Asteroids

The asteroids, or minor planets,

pbse the same generic problems as the major planets. But

because of their large number, their location in the solar

system, and their small masses, the detailed problems posed
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are quité distinct. A ccnsiderable effort has been expended
under our direction (see Friedman, 1970, and Sherman, 1973)
‘to develop the most feasible approach to include the aster-
oids in the data analysis. One cannot simply follow the
"ideal" procedure and include all the asteroids in a grand
and glorious N-body integration of the motion of the solar
system bodies, with the associated orbital elements and masses
added to the parameter set: N is just too large and, in
fact, is not even known (except as a lower bound). As a
reasonab}e compromise with practicality, we have chosen the
apparently twelve most massive:asteroids (see Allen, 1963,
and also Matson, 1971,

regarding the proper place 9f Bamberga) , and we have taken
their orbits as given by the separate reductions of the
optical observations of these objects. Thus, in our in-
tegration of the planetary orbits, we include the effects

of these asteroids on the planets, but ignore any possible
corrections to the asteroid orbits that are implied by the

" (new) planetary orbits. This procedure is of more than suf-
ficient accuracy for our purposes; the same arguments ad-

duced for the major planets apply here, but a fortiori, since

the proximity of the asteroids to the inner planets is,
except possibly for a "pathological" case of near encounter,

more than offset by the far smalletr masses of the asteroids.
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The masses of these dozen asteroids are set in accord with
othér determinations, based mostly on asteroid-asteroid
perturbations, or estimates, based on measured diameters and
an assumed density of 3 gm/cm3. We also have the capa-
bility to add any subset of these masses to the list of
parameéers to be estimated in a given weighted-least-
squares analysis of the data. The current limit of twelve
could easily be raised to the order of thirty were such a
change warranted.

What of the myriad of other asteroids? How can their
effects be incorporated? We have chosen to replace the
fémainder of the asteroids by a circular mass ring whose
radius, mass, inclination to the ecliptic, and longitude of the node
can be either fixed or estimated as desired in any given analysis.
The effects of the statistical fluctuations of the true
asteroid distribution about this average ring must be
evaluated in order to ascertain the usefulness of the ring
model. (For a preliminary analysis, see Sherman, 1973.)

Finally, we comment on the magnitude of the asteroidal
pérturbations on the orbits of the inner planets. The
largest asteroid, Ceres, has a mass of approximately
6 x 10 10 M@ (Schubart, 1974), which may represent about

a third* of the total mass of the asteroid belt. We can

* ) . B . .
- This is the fraction 1nﬂaz€d-fnun Allen (1963), but it

may be very unreliabie.
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make a crude estimate of the maximum effect its perturbations
will have on inner-planet time-delay data, by evaluating

«the two-way light-time equivalent, ATCeres’ of the distance
that Mars would be perturbed during a quarter of its or-
bital period if the acceleration due to Ceres acted in a
constant direction with a magnitude corresponding to the
distance of closest approach of the two objects (see Sub-

<

section II1I.4.i). We find: A . 0.7 ysec. A more

TCeres
accurate, but still imprecise, bound obtained by comparison
of two numerical integrations of Mars’ orbit, one including
and one 6mitting the effect of Ceres, yields a compatible
bound.* These numerical values.indicate that the fractional
error in the estimate of an asteroidal mass need be no less than
' anut 0.1, except for the caée of Ceres, in order to insure
that, with the expected capability of the Arecibo radar,:
system, no significant corruption of the radar tests of
relativity will result. It is also clear that, for the same pur-
poses, the gravitational effects of comets can be ignored. The corres-
ponding effects of interplanetary "dust" have not been estimated expli-
citly but are presumably negligible.
vi. satellites

The corrupting effects of satel-

lites are most easily discussed by separating them into three classes:

R Y T

the moon, Phobos antheimos,‘and the satellites of the outer planets.'

fThis technique exaggerates the effect because of the drift in
'the planet's longitude due to the difference in-total mass in the
two calculations; this drift would largely disappear in an
"operational" comparison. ‘
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vi. 1. The Moon
The moon affects interplanetary

time-delay measurements primarily by causing the earth t6
revolve about the earth-moon barycentér. However, any in-
accuracies in our knowledge of the geocentric orbit of the
moon are reduced by a factor of 81 -- the earth-moon mass
ratio -- in their effect on our calculation of the bary-
centric motion of the earth. Because of this neérly two
order of magnitude reduction factor, only the lack of suf-
ficient precision in knowledge of the earth-moon mass ratio
and, to a lesser extent, in the moon's initial mean anomaly
ﬁés been of any concern | in the'analysis of the inter-
pianetary radar déta. Thus these two parameters are in-
cluded in the set to be estimated.

In the future, laser observations to the retroreflectors
on the moon -- currently being made with errors of the order
of only a few nanoseconds -- will yieldenlorbittiat
more than meets the accuracy requirements for the calculation
of the earth's barycentric motion in the

halysis of the radar data. The perturbations induced by
the moon in the orbits of the other inner planets can, of
course, be calculated with far higher accuracy than w1ll

be required by the interplanetary time-delay data.

vi. 2. Phobos and Deimos
Aside from our moon, Phobos and

Deimos are the only known satellites of the inner planets.
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These two satellites of Mars will, of course, cause Mars to
rotate about the corresponding barycenter. The orbital

gadius of Phobos is only about’40% of that of Deimos, but

fhe former's approximately five times larger volume (Dux-

bury, 1974) makes it, under the assumption of equal

density, the greater contributor to the

.émplitude of Mars' barycentric motion. Assuming the density

to be 3 gm/cm3, we find that the amplitude of Mars' barycentric

motion will be

M
~ 2 _P o
ATb - Mg1ap ~ 0.002 usec 7 (3.16)
. A - 19 : '
where Mp = 3T abc p = 1.8x10 gm is Phobos' mass;
My 2x10%% 01026 0 io Mars' mass; a_ ~ 9x103 km
J % 3098700 °° g ~ P 8p

is the semimajor axis of Phobos orbit (Allen, 1963); and

a =~ 13.5 km, b =~ 11.5 km, ¢ = 9.5 km are the principal

axes of Phobos (Duxbury, 1974) , with p its mean dénsity.
Thus, for radar tests of relativity, Mars' barycentric motion
is irrelevant.

We might also remark'that any as yet undetected satel-
liies of either Mercury or Venus woulé be too sﬁall to be
relevant. For the likely limit on their size, such
satellites could not be far enough from their parent planet
to produce a noticeable effect, because orbits of fhat

size would be unstable against solar perturbations.
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vi. 3. Satellites of Outer Planets

The outer planets affect
.thé presently contemplated radar tests of relativity only
by their perturbations on the inner planets. To bound the
corresponding effects of the sateliites of the outer
plénets, we need only consider Callisto's effect on Mars'
ofbit. Because Callisto is in close orbit about Jupiter,
the former's effect on Mars would be essentially quadrupolar.
We can approximate the instantaneous acceleration exerted

by Callisto on Mars by the simple, easily derived expression:
2

r .
a, = 3GM, g-G ~ 10713 cm/secz, (3.17)
T-M |
026 11

where M, = 1 gm is Callisto's mass and ry_ o = 2 x 10 cm

its mean distance from Jupiter (Allen, 1963), and where

13

3.7 a,u. = 5.5 x 190 cm is the distance of closest

Ty-m ~
approach of Jupiter and Mars. Considering Mars' orbital
period, we find that the maximum effect on an earth-

Mars time-delay measurement would be:

P -
ac(jégz = 7x-10" % usec, - (3.18)

T ,ﬁ‘l
C C

wﬁere Pd.denotes Mars' orbital period. Again we conclude
that the problem caused by satellites is negligible. But
in any event, we could calculate their effects to high accuracy so
there is really no problem.

5. Non—-Cravitational Perturbations

We consider now the direct effects of
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nongravitational accelerations on the orbits of the inner
planets. These come primarily from three sources: electro-
magnetic radiation, the solar wind, and particulate matter.
The third category covers impacts on the planet of inter-
planetary dust, cometary material, and asteroids. We es-
timate the effects of each in this section.

i. Electromagnetic Radiation

The acceleration of a planet due to
electromagnetic radiation (sunlight pressure)
is proportional to the aree—tOrmass ratio of the planet and
decreases -inversely with the square of the distance to the
sun. Of the planets of direct interest to us, Mercury is the
most severely influenced by this perturbation and will be used to place
an upper bound on it. We first consider the radial component of the pres-
sure which produces an acceleration on Mercury equivalent

to a slight decrease, AM@, in the mass of the sun.

We may bound this equivalent decrease by

®
10

I
AM@ < 2G l(%)g (69) r2 <1.8 x 1029 gm, (3.19)

cm2/gm is the area-=to-mass

where (A/M)y = 5.6 x 10~
-f
5

ratio for Mercury¥*; (Io/c) =~ 4.65 x 10 dynes/cm2 is the

* .
By area, of course, we mean the projected area.



i
i+

B

-63-

13 .
cm 1s

pressure of sunlight at 1 a.u., and gy = 1.5 x 10
1 a.u., the semimajor axis of the earth's orbit. The
factor of two on the right side of Equation @.19) re-
fiects the overestimate (upper bound) based on conditions
of "flat-plate" reflection. The magnitude of the effect on
time-delay measurements from earth to Mercury of this

effective decrease in the solar mass, a radial acceleration,

can be bounded by

2 -4
T Ayt L 5 x 1077 ¢ yusec, (3.20)

13

where rg =~ 0,6 x 10 cm is the semimajor axis of Mercury's

orbit; Py = 0.24 years is Mercury's orbital period; and

Q
t is expressed in years. (Note that the factor of two in-.
troduced by round-trip delay is cancelled by a factor of

one half introduced by the relation between the

¢

sensitivity of the rate of change of longitude displacement

to the effective change in solar mass.) For radar observa-
tions spanning several decades, this sunlight-pressure
perturbatioh can be ignored.

There is the possibility that the reflection properties

of Mercury, for example, could be sufficiently "skewed" for the

reflected radiation to cause the average acceleration vector to

have a substantial fractional component in the tangéntial
direction that is parallel to Mercury's direction of motion.
(All surface 1ongitudes‘on Mercury do not»réceive équal amounts of solar il-
lumination, either in magnitude or direction, because of the spin-orbit

resonance and the orbital eccentricity. Thus, even if the surface reflected

- isotropically, longitude variations of albedo could'result in a nonzero-

average tangential radiation.)
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Displacements due to such accelerations grow, of course,
quadratically with time. Thus a bound similar to that
given by Equation (3.20) can easily be derived for the tan-

gential acceleration:

Arst = g M E_ 2 . 1.1 x 1072 F £2 usec , (3.21)
r _

where F is the fraction representing the ratio of the mag;
nitude of the tangential acceleration due to sunlight pres-
sure to that of the total due to sunlight pressure. The
time, t, is again given in years. For F of the order of
0.01, which is much higher than crude estimates would. indi-
cate, a set of radar observations spanning more than a decade
might begin to be noticeably affected by such a tangential
acceleration.

A related source of a tangential  acceleration is the
infrared radiation from a planet with a temperature dis-
tribution asymmetric with respect to the sun-planet line.
We can place a crude upper bound on this acceleration with
the following easily-defived formula:

a. << 30T3AT

A, -14 ., 2 R
ir S (H) = 3.4 x 10 cm/sec”, (3.22)

where o = 5.67 xlo-5 ergs/cmz—deg K4-sec is the Stefan-
Boltzmann constant, T = 600°K is an upper limit on the

average surface temperature on Mercury, AT = 50°K is an
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upper limit on the average difference in temperature between
the "leading" and "trailing" hemispheres of Mercury; and,

10 cmz/gm is the area-

as stated above, (A/M)§ * 5.6 x 10~
to-mass ratio for Mercury. In this approximaﬁion, Mercury
is being treated somewhat like two flat plates whose normals
ére in the direction of orbital motion and whose areas are

equal to the projected area of Mercury.

The maximum effect on the earth-Mercury time-delays of

this "infrared" acceleration is given by:
<1 2 2

a,_t° =-0.001t™ usec , 7 (3.23)

AT,
ir c ir

where t is measured in years. If this upper bound actually
represented the effect, we can see‘that the interpretation
of a span of data more than a deéade in extent would begin
to be seriuvusly affected by this infrared radiation. Thus,
a more careful bound on this effect should be developed
before too long a span of data is analyzed.

Finally, we note that thé Poynting-Robertson effect
(Robertson, 1937), mentioned earlier, also introduces a
tangential acceleration but smaller in magnitude by a factor
of‘about v/c relative to the radial acceleration due to

sunlight pressure. Thus, .
v .
a <'2(---%')('1-,*-) (EQ)(fg)Z = 5 x 10”7 cm/sec2 (3.24)
pre = “'c M ? c ' 'r - 3.

where v§ is the orbital velocity of Mercury and (re/rg) is



-66-

the ratio of the earth's orbital semi-major axis to Mer-

cury's. This acceleration’is clearly negligible compared

to the upper bound calculated above for the infrared radiation. The or-

bital effects of the cosmic background black-body radiation are also negligible.

ii., Solar Wwind

To obtain approximate
values for the effects of the solar wind on planeﬁary orbits,
we follow the same procedures as used in Subsection 4. iii.2,
If we assume that the solar wind 1mp1ng1ng on a planet's
surface is completely absorbed (we can ignore the effects of
the resultant increase in mass of the planet), then we can

approximate the radial acceleration due to the wind by

A 2, -17 ’
a. = (F/i)?_‘(nmv by = 610 cm/sec?, (3.25)

wﬁere (nmvz)§ represents the radial momentum transfer to

the planet per unit area per unit time; and where, indi-
vidually, n = 70‘particles/cm3 is the density of protons

in, and v = 300 km/sec therspeed of, the solar wind at
Mercury's orbit with m = 1.67 x 10 -24 gm being the mass of a
proton. To the extent that (nmvr) might be constant over
MercurY's orbit, the effect of a,,. on the orbit would be of
short period only. 1In this ease, we can place an upper bound
on the consequent effect on time delays by using the

s = % at2“ method with t one quarter of Mercury's orbital

period. We find AT < lo_susec, which is completely neg-

ligible. To the extent that nmv® varies inversely with the
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square of Mercury's distance from the sun we have a bound
similar to that given by Equation (5.2), except that the

wind's effect is smaller by a factor

(anZ)é
a . -
wr <2 x 1074, . (3.26)
a I r
ST 2(9) (2
C r

where values for the various quantities were given above.

For completeness we also point out that, due to aber-
ration, the solar wind causes a tangential acceleration

as well, given approximately by:

v
3. 17 2
U v, a,r ° 1.5 x 10 cm/sec”, (3.27)

where v§ ~ 50 km/sec is Mercury's orbital velocity and
v, 300 km/sec is the velocity of the solar wind at Mercury's
orbit. Comparison with Equation (3.24) shows that a. is about
a factor of three smaller than the correspénding acceleration
due to the (negligible) Poynting-Robertson effect.

Although no explicit bounds have been calculated, it is probably
quite safe to conclude that the effects of the magnetic field and of the
particles in the solar wind on the planetary magnetospheres (where théy

exist) introduce no discernible effects on the orbits of any of the inner

planets. Similarly, we conclude that the effects of cosmic rays are negligible.

iii., Particulate Matter

It is difficult to estimate
reliably the momentum transfer and mass changes that accrue

from collisions between planets and interplanetary dust,



comets, and asteroids. According to Marsden (1974),

the influx of such mdterial on the earth at present probably

averages no more than about 5 x lOlz‘gm/yr. The consequent

fractional mass change in the earth of 10-15 yr-l will have

negligible‘import for tests of relativity as can be seen

from analogy with the discussion in Subsection 4.iii.2.
momentum transfer to the earth is undoubtedly a minuscule
fraction of the total of the magnitudes of the momenta of
.the individual particles. However, even if the net transfer
were equal'to this total, the effect on the earth's orbit
would be small. Taking 20 km/sec as the maximum relative

velocity, Vo and assuming all these velocities to be parallel

to the earth's orbital velocity, we obtain a gross upper bound

on the tangential acceleration due to particulate matter of

v. M
a . <-E® .5y 107

2
cm/sec
pt M$

’

(3.28)

where MQ x 1.7 x 105 gm/sec is an upper bound on the rate
of mass gain by the earth és estimated above. Comparisonv
with the previous subsection shows that even if this upper
bpund were the actual tangential acceleration, the latter
would have negligible effects on the relativity tests. We
may also reasonably conciude that the influx of particulate
matter on the other inner planets can élso be neélected.
Only Mars is likely to have a substantially higher influx
than the earth, but not by a faétor large enough to render

invalid the above conclusion.

Any, perforce infrequent, collisions betﬁeen inner planets
and large objects (2 10 km in diameter and 1.5 x 1018 g in

mass) could be modelled as impulses in the analysis.
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6. Planetary Topography

Perhaps the most vexatious problem hindering
the maximﬁm utilization of radar data for testing general
relativity is that caused by the large topographic |
variations over the surfaces of the target planets. Mars,
the worst offender, introduces variations in the time
delays of up to about * 50 usec. Fortunately, these topo-
graphic variations over the surface are constant in time,
at least on scales of current interest for radar tests of
relativity. Still, we can not simply conclude that, once
determined, topography is of no further concern as a cor-
rupting effect. The effective time delay measured by a
radar system is not only influenced by the coding of the
waveform (see, for example, Pettengill, 1971),
but also by the radar scattering law obeyed by the surface.
.This scattering 1aw, in general, depends on the frequency
of the impinging radio‘waves, on their polarization, and on
the angle of incidence. A generalized mapping of the
relevant part of’the surface of each target planet to the
resolution possible with the signal-to-noise ratio available
is an enormous, but by no means impossible, task.

In the remainder of this subsection, we shall discuss
the various radar methods of measurehent whieh can yield
iﬁformation on the topography as well as the methods so far
developed for ana1y21ng these data to seoarate the (unwanted)
planetary topographic information from the (wanted) planetary
orbltal 1nformat10n.

i. Methods of Measurement

There are a number of different methods

that have been utilized to glean topographic information

L MRS RTT L  R  E
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from radar echoes. We will summarize very briefly three
that relate, ;espectively, to topography at the subradar
point, along the so—calléd Doppler equator, and over the
visible hemisphere. The first two are being used routinely
in planetary observations. The third has so far only been
applied successfully to the moon since the signal-to-noise
ratio requirements have been heretofofe too severe for
planétary applicationX*

i. 1. Topography at the
Subradar Point

Consider a radar that
transmits a sequence of short pulses of radio energy, or
a phase-coded continuous-wave signal (see, for example,
Evans and Hagfors, 1968). towards a planet. To determine
the time delay of the reflection from the subradar point
of these signals, a number of different techniques have been
employed. We shall describe only one: The (decoded) echo
power, as a two-dimensional function of time delay and
Doppler shift, is cross-correlated with a parameterized model-
df the expected function. As presently implemented, for
" example at the Haystack Observatory, the parameter set in-
cludes one each for the time delay and Doppler shift corres-
ponding to reflections from the subradar point, and others
to describe ﬁhe average, and assumed uniform, scattering law of the surface
at the subradar point and in the surrounding regions that contribute ap-

reciably to the echo. The values

*A variant of this method has recently been applied with success in a radar
experiment with Venus the target (R.M. Goldstein, 1975). Two antennas of
the Goldstone Tracking Station were used to form the needed interferometer
(see &ﬂxmctlon 6.i.3).
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of the parémeters which maximize the cross-correlation
function are good approximations to tiie maximum likelihood
eétimates. The estimate for the timé delay to the sub-

radar point, of course, céntains, additively, the effects

of the topography there. Each observation, however, gives

a delay averaged relative to that portion of the surface that
passed through the subradar point during the observation.

" Thus, the "footprint" on the target planet's surface for a
delay observation depends on the duration of the observation
as well as on the effective pulse length and frequency
resolution of the radar systém. The minimum useful duration
of the observation is limited primarily by signal-to-noise
considerations; usually sufficient integration time is employed
to insure that the interpretation , or analysis, of the measure-
mént will not be limited by such a COnéideration. For Mars,
the integration time employed is usually far less than for
Mercury and Venus because the rotation rate of Mars is so
mﬁch more rapid*. To develop this comparison quantitatively,
‘consider the approximate resolution on the surface afforded
by a pulse length (or code-element length for continuous-
wave signals) of AT and a frequency resolution of Af for

a radar system operating at a radio frequency f. Simple

* ;

of course, if sufficiently accurate knowledge of relative
topography were available in a region, the integration could
be extended over a loriger period of time with no consequent

sacrifice in the interpretation.‘

o o T e O



-72-

geometrical arguments show that

AS = 2(2cRpAT)1/2 : (3.29)
and
. _ CAf
AL = St (3.30)

. where AS represents the diameter of the spot, centered at the
subradar point, that is "illuminated" simultaneously, or
"encompassed", by the pulse of length AT; and AL represents
the length, measured along the Doppler equator*, of the

arc whose points impart a Doppler shift to the echo that lies

between *Af/2 of the Doppler shift for the subradar point.

*The Doppler equator passes through the planet's center of
méss and is normal to the axis that results from the pro-
jéction of the "apparent" angular velocity vector onto the
piane normal to the earth-planet line. The "apparent"”
angular velocity vector is the angular velocity vector of
the planet as viewed from the radar site and containé con-
tributions from the relative orbital motions of the planet

and site as well as from the planet's sidereal rotation.
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The quantitites Rp and wp represent, respectively, the
.radius of the planet and the magnitude of the projection of
the apparent angular velocity vector along the Doppler

axis. From the relation

AL = w_R_t
woRy ‘ (3.31)

wé can estimate the limit on integration time, t, necessary
to prevent the surface resolution inherent in the values of
At and Af from being "smeared". |

Thus, for At = 1 usec, £ = 2380 MHz, and Af 2 0.1 Hz,
which would be available initially for the upgraded Arecibo
fécility, we obtain the surface resolutions and integration-—
_time limitations shown in Table 2 for each of the inner
ﬁlanets. Scaling to other values for the radar resolutions
follows from Equations (3.29) and (3.30). Aside from the con-
Sideration of integration time, the equations show that the
better the time resolution the smallér the area of the
surface whose average topography affects the delay measure-
ﬁent. The "vicious cycle" nature of this fact will be ex-
plored in Subsection 6. ii. |

i. 2. Topography Along the
‘Doppler Equator

Through use of a procedure
for data analysis different from the one deSCribed above;

information on the relative topography along the Doppler
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Table 2

Surface Resolution and Integration-
Time Limitations for Future Arecibo
Radar Observations of the Inner Planets*

Planet Surface Resolution Integration Time Limit
. to Avoid "Smearing"
(km) (hours)
Mercury 77 7.1
Venus 120 16.3
Mars 90 0.1

*Calculatidn based on an effective pulse length, At, of

1l ysec and a frequency resolution, Af, which matches the
"Doppler" surface resolution, AL, to the "delay" surface
resolution AS [see text, Equations (3.29) and (3.30)].



equator can be obtained from the radar signals reflected
from the planet. The basic idea can be outlined as fol-
lows: The echoes, after suitable coherent integration,

are segregated by frequency, or Doppler shift. Echoes with
a given Doppler shift can easily be shown (see, for example,
Evans éndeagfors, 1968) to have been reflected from a
"strip" along the planet's surface that lies in a plane
parallel to the one containing both the vector from the

radar site to the planet's center and the planet's apparent

~angular velocity vector. The distance of the strip from

the Doppler axis (which, in projection, contains the sub-
radar point) is proportional to the relative Doppler éhift

of the strip and the subradar point. Having isolated the
power by frequency, we may then examine it as a function of
delay. The consequent curve will exhibit a steep rise from
the noise level at the delay corresponding to the region near
the Doppler equator, followed by a moderately slow decline

in écho power for greater delays. 1In the idealization of

a hoise—free spherical-target situation, the first echo re-
ceived at a given Dopplet shift will be from the point on
the Doppler equator that imparts this‘particulaf Doppler shift.
Reflections from other points on the Doppler strip will
arrive later since they lie at greater distances from the

radar site. If the point under discussion on the actual
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Doppler equator lies above or below the model spherical
surface the echo will begin to arrive earlier or later. (A
more accurate estimate of this time can in general be ob-
tained by cross correlation of the echo for the Doppler strip
with a suitably parameterized médel profile based 6n the
average scattering law for the planet.) By a comparison,
then, of the time of arrival of the first echo from a parti-
cular Doppler strip with the corresponding time of arrival

of the first echo from the Doppler shift corresponding to

the subradar point, we can deduce the relative topography of
the two points, after correction for the spherical effect.

Iﬁ this manner, from a single observation, we can deduce the
relative topography along an arc of the Doppler equator.

The useful length of the arc, in general symmetrically

placed with respect to the subradar point, will depend on

the available signal-ho-noise ratio. The scattering laws

for the inner planets show, for example, that the echo power
from the limb of each planet is lower than that from the sub-
radar point by from 30 to 40 db*. Current observations have

typically yielded useful topography for arcs of up to *10°.

*
We exclude here observations of Venus at X-band for which
the decline of echo power is more precipitous due to the

added effects of the atmospheric absorption.
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The results ogtained with this approach are subject to
disﬁortion from several different sources: (1) An error in
the assumed Doppler shift to the subradar point will cauée
a misidentification of the relation between Doppler shift
and surface points along the Doppler equator with the con-
sequence that the profile of topography will have an overall
slope relative to the profile that should have been obtained;
(2) The presence of anomalously high topography near, but
not on, the Dbppler equator or, conversely, the presence of
an anomalously deep depression‘on the Doppler equator will
cause the first echo for that Doppler shift to be associated
with a point off the Doppler equator rather than on it as
assumed in the inferpretation; (3) The presence near Or on
the Doppler equator of a surface reéion with unusual back-
scattering properties could lead to false
identifications of the first echo as described above; and
(4) Depending on the radar parameters, "aliasing" in delay
and frequency can be present and may cause echoes from dif-
ferent regions of the planet to be "lumped in" with the
echoes from the strip under consideration. This fourth
difficulty can be surmounted to a great extent by proper
choice of radar parameters, although the size and rotation
raie of the planet may impose certain limitations (seé,

for example, Shapiro et al., 1972 a,and Evans and Hagfors, 1968).
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. The other potentially distortive effects can be guarded
against by careful comparison of the results from a number
of observations carried out with slightly different orienta-
tions of the Doppler equator relative to the planet's
surface and with different positions of the sﬁbradar point.
Cbmparison between observations at neighboring subradar
innts can be done for Mars on the same day, because of its
) répid rotation, as well as on different days. But for
Mercury and Venus whose rotation periods are comparable to
the orbital periods, one relies on observations on adjacent
or nearlyvadjacent days. Because, at a given site, obser-
Qations can extend over only a relatively small fraction of
the day some surface regions on these two planets will pass
through the respective subradar points when observations
are impossible. Therefore "overlap" will be incomplete;
nevertheless sufficient overlap exists, even in the worst
case, to insure reliability. With the upgraded Arecibo
facility, the useful arclengths along the Doppler equator
will be severalféld greater and will yield more overlap.
The comparison of the results for topography

for points along the Dopéler equator,‘determined from one
observation, with the results for the same points, obtained
as they passed through the subradar point, provides an im-
portant check since many of the sources of systematic errors
are different for the two methods. (0Of course, these checkg
are limited to those sets of surface points that, at dif-

ferent times, lie both at the subradar point and at other
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positions along a Doppler equator.)

i. 3. Topography Over the Visible Hemisphere

Finally, we present a brief des-
cription of a third technique to determine topography from
radar observations. It is more sophisticated than either
of the two described above, but has so far been applied use-
fully only to observations of the moon (Shapiro et al., 1972a;
Zisk, 1972). Called delay-Doppler interferometry, this method,
at least in principle, allows the topography over a large
area of the visible hemisphere to be determined in one
observation, and the topography over the whole sphere
to be determined in a series of observations. The method
is based on the simultaneou§ determination of each of three
coordinates of a reflecting region on the surface. One
coordinate is provided by the echo delay and a second by
the Doppler shift; ‘These two coordinates combine to
1Qca1ize the echo to a "stick" which represents the inter-
section of the délay contour, which is a plane normal
to the radar site-planet vector, and the Doppler-
shift contour, which is a plane parallel to that formed by
the radar site-planet vector and the planet;s apparent
angular velocity vector. The third coordinate is provided
by interferometry. With a second antenna connected inter-
ferometrically to the first, and reéceiving the same echo

as the first antenna, one can determine the fringe phase for
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the reflecting region isolated by the delay-Doppler co-
ordinates. If the baseline between the two antennas, when
projected onto the plane normal to the radar site - planét
vector, is parallel to the delay-Doppler stick then maximum
resolution is obtained along the stick. Quantitatively, this

resolution is:

(3.32)

where R is the earth-planet distance, A is the wavelength

of the radio signals, Bp is thé projection of the baseline

qlong the aelay—Doppler stick, and A¢ is the uncertainty

in the estimate of the fringe phase. For observations of

Venus near inferior conjunction with the upgraded Arecibo

radar facility and its planned outrigger antenna, we would
12

have as typical values: R = 0.3 a.u. <5 x 10 cm;

A <15 cm; Bp ~ 20 km = 2 x 106 cm; and, perhaps, Ad- < 0.005 radian.*

R

Thus, AH 300 m which is too crude to be very useful for

the high accuracy required in the radar tests of relativity.

*Note that the usual 2nn fringe phase ambiguity, Where n

is an unknown integér, is not a factor in these monochromatic
obserVations“because the a priori uncertainty in the topography
is considerably smaller than the corresponding interval be-

tween ambiguities.
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If, however, the Arecibo and Haystack radars were used to
form the interferometer and if, further, the Arecibo radar
were instrumented to tranémit and receive at an X-band
frequency (A = 3 cm), then the resolution along the Doppler
stick afforded by the fringe-phase measurement might  be
reducible from about 3C0 m  to the order of 10 m which would
" pe useful for the relativity tests. Of course, with this
much highef resolution the ambiguity problem* is no longer
completely ignorable, although it is still not serious.

The effect of fluctuations in Venus' atmosphere on the
phase of the interferometric signals should not be serious
(Shapiro et al.., 19723) because the paths from any resolution
cell on the surface to the two radar receivers on earth
could never be separated by more than ébout 10_4 radians
and probably by one or so orders of magnitude less. Be-
cause of the near coincidence of these paths in the atmos-
phere of Venus, its influence on the phasesdelays to the
two receivers should cancel almost completely when the signals

are Cross correlated to obtain the fringe-phase observable.

*
See footnote on p. 80.
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The effects of the earth's atmosphere could be more
serious; however, near cancellation can be achieved by
use of specially chosen surface resolution cells as phase
calibration points (Counselman et al., 1972; Shapiro

et al., 1972a).

Before concluding this discussion of the delay=Doppler-
interferometry method of topography determination, we com-
ment briefly on the interpretation of the three coordinates
measurable by radar: The delay coordinate can be inter-
preted directly in terms of a spatial coordinate; it is es-
sentiallf the distance to the reflection point (for a more
ﬁrecise description, see Shapirb et al., 1972a). The inter-
pretation of the Doppler coordinate in terms of a spatial one
‘"depends not only on the fredhencies of the transmitted and
received signals, but also on the (precalculated) radar site-
Qlanet vector and apparent angular velocity vector. The
interpretation of the fringe-phase coordinate, as described
above, in terms of a spatial coordinate will depend not
only on the interpretations of the delay and Doppler coordinates
‘but as well on the baseline vector that connects the inter-
ferometer elements and, to a lesser extent, on the (geccentric) angular
velbcity of the baseline vector. Thus only for the delay measurement is
the interpretation in terms of a spatial cooﬁdinate,reasonably direct and
free from the need for knowledge of other quantities.

ii. Methods of Analysis

We shall now discuss the

various approaches that have been either used or proposed
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to try to eliminate or at least to reduce the effects of topo-
graphy on the results of the radar tests of relativity. We
base the discussion on only the two types of delay data dis-
cussed above: time-delay measurements to the subradar point
and time-delay measurements corresponding to a particular
Doppler‘shift different from that of the subradar point*.

The appropriate generalization of method to include data of

*Note that this second type was considered in the earlier dis-
cussion only insofar as it yielded topographic information
relative to thatvfrom the subradar point. However, the second
éype of delay, like the first type, can also be considered as
an "absolute" observable and we adopt this viewpoint here.
There remains an important difference between the two types:
Data of the first type can; in effect, stand alone with thé
exception noted below; data of the second type require the
auxiliary Doppler information so that the coordinates on the
sprface to which the measurement refers can be determined.
Aside from the consequences, discussed previously, of a mis-
identified Doppler shift, which affects only the second t&pe
of delay data, both types are affected by errors in the know-
ledge of the planet's rotation vector. At present this un-
certainty is no problem; with improved accuracy in the surface
resolution of the delay data, it could conceivably become a
.probleﬁ for Venus. In this eventuality the Venus radar data
themselves could be used to improve the estimate of the

rotation vector.
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the third type, not yet available from planetary observations,
should be obvious from context.

- The simplest approach is to ignore topography and to analyze
all of the delay data based on the model of spherical planets,
the assumption being that the topographic¢ effects will tend
to average out and will not seriously affect the relativity
. test results. 1In earlier times, when the uncertainty in
individual measurements of delay was comparable to the
variation in delay imparted by topography, this approach
was adequate. Computer experiments have shown that with the
more accurate data alrezady available, the correlations of
the topography with the parameters that characterize the
relativity tests'are high enough to have a large degrading
influence on these tests.

The secbnd approach involves the use of a parameterized
model of the topography. One can, for example, use a
spherical harmonic expansion over the whole sphere or use
a two-dimensionai Fourier series representation confined
to the equatorial belt on the planet that contains all pos-
sible subradar points. We have tried both of these para-
meterizations and have found the la*“ter, augmented by
"flattening" parameters, to be the more useful because of
the restricted coverage of the surface afforded by the sub-
radar points. Nonetheless, such models have a serious

practical defect: only the relatively low frequency com-
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ponents of the global topography can be modelled in this
manner because of the rapid increase in the number of
‘parameters with increased resolution. Thus, to achieve
a 10° x 10° resolution on the surface with the model we
need, in our Fourier series approach, about 120 parameters.
Of course, for all three target planets combined, the
number of topography parameters will be about 360. (This
number can be comfortably handled in our present analysis
program; the matrix icversion for the weighted-least-
squares gnalysis for the total of over 400 parameters
needed for the.description of ﬁhe orbits, etc., as well as
of the topography, requires only a few minutes of computer
time.) 3Such a low resolutiQn, however, can not possibly ac-
count, ‘or example, for the myriad small craters which are
very noticeable even with delays measured at presently achieva-
ble accuracies. To compensate for this deficiency in the
parameterization, the errors associated with the delays in
the analysis can be raised to a level comparable‘to the mag-
nitude of the unmodelledftopographic variations. Full ad-
vantage will then not be taken of the inherent measurement
accuracy. It appears that the radar tests 6f relativity
afe therefore limited by these unmbdeiled "high-frequency"
térms in the topographic variations and so other techniques
tb compensate for this defect are row being applied. We

shall describe two such techniques below.
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Consider first two delay measurements to a given planet
made at widely separated times but with the same radar
parameters and with respect to the same subradar point. From
these two observables, two different observables can be
formed: the difference observable and the sum observable.
Thebformer, of course, is simply the difference between the
original two observables with the latter having a corresponding
interpretation. The point of this transformation is that
the difference observable is independent of topographical
effects since they enter precisely the same way in each of
the two original observables. ‘The difference observable could
be used in.the analysis with its full weight, considering
only the measurement error contributions to its uncertainty.
No allowance in the weighting need be made for the high-
frequency components of topography being unmodelled.

If every delay measurement had a "mate" in the sense just
described, the topography problem would be solved in a satis-
factory manner. The difficulty is that no delay measurement
has a precise mate and only relatively few have ﬁear mates.
In this situation, several types of options are open:

(1) Ignore all observations that do not have a mate, where
"mate" is now less precisely construed to mean an observation
made with respect to a subradar point that falls within a
certain specified angular separation of the subradar point

of . the companion observation. For these "mated" observations,
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‘or "closureh points,.analyze only the difference ob-
servables and ignore any topographical variations that may
exist between the two subradar points associated with the
original observations that were used to form the difference
observable; (2) Introduce the concept of a (possibly
variable) correlation length for topography on each planet.
In particular, one can continue to use a parameterized
'mddel for the topography, but consider all delay measure-
ments to a given target planet to be correlated. The cor-
relation coefficient for each such pair of delay’measurements
can be related to the angular separation of the correspond-
ing subradar points and to either a fixed or variable cor-
relation length.

Both of the options described above are being inves-
tigated. The main difficulty is the lack of a sufficiently
lérge number of near mates or closure points. The basic
‘géometry of radar site and planet, to say nothing of the
difficulties in scheduling observations, severely limits
tﬁe possibilities. For Mars the geometric cause is the
dﬁift in latitude of the subradar point; when observations
are confined to short periods around oppositions, decades

are required for all points to have near mates*. For

*With the upgraded Arecibo radar facility, observations of
uéeful accuracy will be obtainable nearly to superior
cbnjunction, But because of the'limitations on the angular
mbtion of the.feed,.observations are ohly possible when Mars

is at positive declinations.



-88~

Mercury and Venus, slow planetary rotation and the diurnal
motion of the earth, as well as the slow drift in latitude

of the subradar point make it difficult to obtain closure
points. Furthermore, the nearly eight-year periodicity in

the relative orbital motions of the earth and Venus, and

the nearly thirteen-year periodicity in the corresponding
motions of the earth and Mercury, tend to introducé "aliasing"
effects in the determinétion of the planetary orbits from

the closure points.

We must also emphasize the difficulty caused by in-
creased méasurement accuracy. Such improvements almost
inevitably are accompanied by iﬁcreased surface resolution
which perforce makes more difficult the obtaining of closure
points. This vicious cycle éspect of increased measure-
ment accuracy is partially offset by the ability to measure
delays, in one observatidn, to a fairly dense set of
points along the (instantaneous) Doppler equator. One
might have questioned the usefulness of this technique: Why
ndt simply make determinations only at the subradar boint
where the signal-to-noise ratio is highest? The answer is

clear: Use of this "Poppler-equator" technique greatly enhances the
number of closure points that can bé obtained.



It is, of course, not necessary that the topography be

determined solely from ground-based observations.

3

Altimeters

aboérd spacecraft, such as the Pioneer Venus Orbiter, can be
used to obtain high-accuracy and high-resolution topographic
information. These data and the radar data, where overlap
exists, would serve to verify the accuracy of both techniques.
Finally, to place matters in perspective, we remark thaﬁ,
at present, the radar measurement residuals attributable te
topography, after the removal of the low-frequency terms by
use of the two-dimensional Fourier series, range from akout

1 to 3 psec rms for the inner planets.

IV. Current Status and Prospects for Radar Tests of Relativity

In this final section of Part I, we give a brief sum-
mary of the current status of the radar tests of general

relativity and of the prospects for improvement.
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1. Retardation of Signal Propagation

From late in 1966 through the summer of 1971
attempts were made using the Haystack Observatory's
X-band (A = 3.8 cm) radar system to detect the diréct ef-
fect of solar gravity on interplanetary time delay measure-
ments. The periods near the superior conjunctions of Mer-

. cury and Venus were especially useful for this purpose.
Bécause of .dwindling support for the radar system, its
effectiveness slowly decreased with time. The combined
analysis of these radar data yielded, through the parameter-

ization given in Equation (2.2), a result:
~=+) = 1.00 + 0.04, , (4.1)

where the uncertainty quoted represents our best judgment
as to the true standard error of the determination ana is
§everalfold higher than the formal standafd error based on
setting the rms of the postfit residuals to unity. The
last published result from this series of experiments,
[(1+y)/2] = 1.01 * 0.05 (Shapiro et _al,, 1971b),

was baced on fewer radar data but is not substantially
different from Equation (4.1). The main differences in the
data sets were the additional time-delay data obtained

near the superior conjunction‘of Venus in August and Septem-
ber 1971 and the extra data obtained near the precgding

and following inferior conjunctions which allowed improvements
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in the detérminatioﬁ of the topography*.

In Figure3 are shown a. sample of the postfit residuals for a
typical solution involving the inner-planet radar time-
delay data and the several hundred parameters needed to des-
cribe the orbits, masses, and topography of these planets
as well as various other solar—system constants. The re-
siduals are displayed relative to the "excess" delay given
in Equation (2.2). Such a display is useful in that it
shows at a glance the relative sizes of the residuals and
the relativistic effect, but it is also somewhat mis-
leading in that the "masking" effects due to the correlations
of the estimate of ¥y with those of the other parameters is
suppressed. One furtherfpoint must be made in connection
with the figure and the solution on which it is based: The
eirors assumed for the measurements had a minimum value of
3‘usec, despite the fact that many of the time-delay obser-

vations, especially near the last two inferior conjunctions

* .

“Because of the apparent resonance between Venus' spin and
the relative orbits of the earth and Venus, the same longi-
tudes, although, in general, different latitudes, are ob-

served at inferior and superior conjunctions.
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to the excess delays predicted by general
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of Venus, had measurement uncertainties as low as a few
tenths of a microsecond. The purpose of this ad hoc
adjustment was to compensate partially for the failure to
model the high-frequency components of the topography
(see Sgction III. 6)* Ccomplementing this radar-alone result,
the Mariner 9 ranging data, when combined with the radar
data yielded a preliminary value for [(1+Y)/2] with only a 2% un—
certainty. The analysis of these Mariner 9.data is being carried out col-
laboratively between JPL and MIT; however, certain small discrepancies
still remain to be resolved before a value can be given confidently
and the result submitted for publication.

In the future, at least an order of magnitude improve-=
ment in the radar;alone result for this experiment should
be obtainable through simultaneous,'or near simultaneous,

g- and X-band observations of Mercury or Venus near

*This particular so;ution did not take advantage of the
correlations in the topography for near closure .points,
but this neglect has no appreciable effect on either
the estimate of y or its uncertainty: Too few closure
p01nts exist at present from the radar observations of

" Mercury and Venus.
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superior conjunctions, using the newer, more sensitive
radar systems. The upgraded Arecibo facility, however, will
initially be equipped only at s-band; for this system the
solar corona will probably limit the improvement obtain-
able to a factor of four or so, yielding about a 2% under-
tainty in y. If the improved antenna surface at Arecibé
provides sufficient efficiency at X-band, then the desired
two-freguency experiment could be conducted at Arecibo. Even
if a high-power X-band transmitter were not available there,
it would be possible to utilize the Haystack radar system
for transmission of the X-band éignals and Arecibo for
reception, assuming, of course, that the latter can be
equipped with a suitable receiver. Another possibility
‘wéuld be to use the 210-foot-diameter Goldstone radar which
is nowlequipped with an X-band system to complement
its S-band one. Given the ability to carry out dual- frequency
measurements at Goldstone alone, or coordinated measurements at Arecibo
(s-band) and Goldstone (X~band) , the main limitation on the accuracy
of this experiment will probably be set by the unmodelled parts of
the topography on the target pianets. Repetition would improve the accuracy
but only slowly. Nevertheless,
there appears to us little reason to doubt that the‘uncer—
tainty in y can be driven substantially below 1% through
these radar measurements, at least aown to 0.6%.

In fact, the radar versions of this important experiment ¢

might outperform the spacecraft versions over the next

W -
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few years. éeveral circumstances could lead to this

result: First, présently planned spacecraft involve

ranging on two frequencies at most only on the downlink from
the spacecraft to the ground receiver; the uplink is ‘
limited to S-band. Thus, depending on the spectra of the
temporal and spatial variations of the coronal electron
densities, it may not be possible to correct adequately for
the coronal effects on the uplink part of the delay measure-
ment. Second, hongravitational forces or, in the case of
orbiters, unmodelled parts of the planet's gravity field,
could limit the interpretation of the earth-spacecraft

delay measurements and, hence, the accuracy of the estimate
6f y*. It is simply not possible on the basis of present
knowledge to predict reliably whether the passive or active
version of the "excess" delay experiment will yield the

higher accuracy in the next few years.

*

Landers could eliminate this problem, but the only ones
currently planned -- for Viking -- have only an S-band
capability and ranging to them will be severely limited

by other constraints on the mission.
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2. MAdvances of Planetary Perihelia

The accurate determination of the advancesin
planetery perihelia attributable to relativistic effects
is made difficult by the lack of an accurate,.independent
determination of the‘solar gravitational quadrupole moment
as discussed in Section III.4.iii.

To the extent that the parameter J,, that éharacterizes
the solar quadrupole moment can be neglected in its in-
fluence on planetary orbits, we can obtain a very precise
measure of the relativistic contributions to the perihelion
advances. As shown by Shapiro et al. (1972b), the radar

data through 1971 implied

242vy-8 _ - :
[=F = 1.00, £0.02 _ (4.2)

for the coefficient of the secular advance as given in
Equation (2.3). The accuracy of this result relied pri-
marily on the ra@ar observations of Mercury. Estimates of
'a'separate parameter for the secular advance of each of
the inner planets showed that onrly for Mercury was the
uncertainty under 0.1.

With the larger set of inner-planet radar data now
available, we have estimated the relativistic parameters

simultaneously with ng and the other relevant parameters

described in the previous subsection. The preliminary
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results indicate that

(Eiz%:ﬁ) = 0.98 +0.04 (4.3)

and

e -5
J,,= (0.5 % 1.5) x 107°. (4.4) .

However, because of the unusually strong correlation
(= 0.99 ) between these parameters, the results are very
susceptible to significant distortion by systematic errors.
The exposure of the effects on these results of any such
systematic errors present in either the data or‘the
theoretical model, especially of the topograpﬁy, requires @
painstaking series of sensitivity studies. 1In particular,
. the parameter estimates and the postfit residuals must be
obtained for reasonably wide variations in error weightings,
in models of the topo%raphy, etc. The results given in
Equations (4.3) and (4.4) are based on a set of such studies
that we regard as only partially complete; therefore no
firm reliance cén yet be placed on the numbers given; they
are truly preliminary.

We expect to obtain substantial improvements in these
résults not only from the continued collection of radar
data which perforce extend the time base, but, perhaps,
more importantly, also from the development of a much larger
sét of near-closure points. The methodpof determination
of ﬁopography along an arc of the Doppler equaﬁor with each

observation,.described in Section III. 6, has proven very

z



fruitful due to the increase in radar system sensitivity
recently achieved at both Arecibo and at Goldstone*. Ex-
.amples of the topography of Venus determined by thié method at
Arecibo and at Haystack are shown in Figures 4 and 5.
(Campbell et al., 1975). Similar results for Mercury
obtained at Goldstone have been published by Goldstein and
zohar (1974); however, these Goldstone delineatiohs of the
topography were adjusted so that the values for each
day have a zero mean and a zero net slope. In this form they
cannot be used to the same full advantage for the purposes
of the raéar tests of relativity as can the Arecibo and Haystack results.
More complete coverage, with "6verlap"of the arcs from dif-
ferent days of observatiori, as obtained at Arecibo and Haystack, will
' enéble the Goldétone data -- both past and future -- to be
of full use.

The relatively favorable 1973 opposition of Mars pro4'
vi@ed an extended opportunity at Arecibo, Goldstone, and Haystack
toéobtain detailed and dense topographic coverage of that planet. In Figure 6
we present a small segment of a topographic contour which
illustrates that the terrain over certain parts of the

surface can be extraordinarily flat.: Such ﬁérté“are, of

*The improvement referred to here for Arecibo relates pri-

marily to a new feed obtained 2 years ago which yielded an

increase in radar sensitivity of about 7 db. At Goldstone,
A'the improvement was due to the installation of a 400 kw

k ttansmitter on the 210-foot-diameter (DSSl4) antenna.
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course, highly suitable for the relativity tests since the
correlation between near closure points can be reliably
determined and the most effective use thereby made of the
data for orbit analysis.r Parts of the surface characterized

by smooth, gentle undulations are almost as useful.

We must also call attention to tﬂe order of magnitude
difference in the uncertainties in Figure 6 as compared to
those in Figures 4 and 5. Because of the high sighal—
tofnoise ratios achievable with the Mars oSservations, the
uncertainties in many of the time-delay measurements were
- at, and sometimes below, the 0.2 usec level. With
use of tﬁevupgraded Arecibo radar system, such accuracies
will be achievable in time-dela& measurements over major
fractions of the geocentric orbits of Mercury, Venus, ahd
'Mars, and not simply in the’immediate vicinities of‘close
approaéhés. The limitation on the interpretation of the
data for tests of relativity may then be set by the inter-
planetary plasma unless X-band or dual-frequency observations are made

(see Section III. 3. iii).

In gathering new data, attention must of course be
directed towards securing as many "mates" as possible to form
closure points with past data. In this manner the
value of past data for tests of relativity can be increased
commensurate with the’intfinsiclmeasurement accuracy

achieved. Such attention was devoted in the 1973 Mars
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observations and, as a result, many near closure pairs
and rriplets were formed with observations from the 1971
Mars oppcsition. Errors for each element of a
pair in many cases were below 0.3 usec. Although these
data have not yet been fully analyzed one can safely con-
clude that the useful accuracy of these pairs for orbit
determination will be at least at the 0.5 usec level. This
conclusion stands in marked contrast to the ESRO (1974)
statement that the distance from the earth to the center
of mass of a target planet could not be»obtained by radar
ranging to even 1 km which is equivalent to an uncertainty
greater than 6 usec in round-trip time delay -- a limit more

than tenfold poorer than thm:gbmm.dxwe.

To focus the above discussion on closure points and
topography in their likely implications for improvement in
‘the radar determinations of,Jzoandsthe relativistic ccn-
tributions to perlhella advances, we draw the following
conclusion: 1If a vigorous program for radar observatlons
Qf the inner pPlanets is sustained at Arecibo over the next
lustrum, the uncertainties in the determinations ofJé<5and
the combination (2+2y-g) -- without the application of any a priori

. constraints based on other estimates -~ should be reliably bounded by

-6
O(JZQ’) ;< 3‘ x 10 (4.5)
2+2y-8 -2 ‘ ,

Sufflclent redundancy should be avallable in the coverage
of that part of the surface spanned by the subradar points

- on each planet that topography need notfbe the limiting
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factor in aceuracy. The interplanetary medium Qould probably
set the limit. With aual-frequency or X-band obseivations

beihg available routinely, the limitation would be set by
the capabilities of the timing system and of the effective pﬁlse
lengths planned for use initially with the upgraded Arecibo radar. Im-
provements in these aspects, which are not yet constrained

by the state-of-the-art, wbuld then complete the circle by
once again placing the accuracy limit on topography.

We have ignored the possible cohtributions of Goldstone
in the above discussion primarily because of its lack of
availability for sustained observations, due to the demands
for spacecraft tracking. Although it is true that the sen-
sitivity of the Goldstone radar system will be about an
order of magnitude'or so lower than Arecibo's, one has a
long @ay to go before system sen51t1v1ty will place the
primary limit on the accuracy of most of these tests of
relativity. Therefore even limited observations at Gold-
stene could be very useful, especially if occasionally co-

~ orainated with Arecibo's to providervaluable independent
checks on possible timing errors; etc.* It is rarely,
if ever, a good policy to rely solely on one instrument for
an%important experiment. |
f ,Finaliy, we emphasize that the bounds presented in
Eqﬁations (4.5) and (4.6) are felt to be realistic but

not particularly conservative. Although covariance analyses

The}hysuxk,dxerwﬂxny'usno2kmgarsqmoﬁxﬁ ﬂnrnﬁhrcisenn&uxs
cf-ﬂuephummszxﬁ>s)cauxx.axmrumm9'u>suﬂlcmxms
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performed by us indicate that substantially better ac-
curacies can be achieved, we know from experience that un-
accounted for systematic errors invariably degrade the
results.

3. Variation of the Gravitational Constant

The analysis primarily of five years of
earth-Mercury radar observations yielded an upper bound
(Shapiro et al., 1971a) on the possible time variation of

the gravitational constant of
é
G

Data accumulated over the past three years, combined with

< ax10710 2 W)

the earlier data, have been undergoing analyses similar to
thbse described above in éonnectich;with:the perihelia
advances. In fact many of the sensitivify studies are |
identical as they serve both purposes; in others for é,’
for example, the parameters y and 8 are set to unlty or to
the Dicke (1974) values 0.89 and 1. 00, respectlvely. Pre-
liminary results from these recent, but as yet incomplete,

sensitivity analyses yield

g < 10 yr‘*;‘> “ | ”: (4§8)

Again we must point out that this bound is subject to the
Same caveats as were mentioned in connection with
Equations (4.55 and (4.6). The result on the signal

retardation; given in Equation (4.1), iS;largely exempt
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from these difficulties for two reasons: (1) the time-
delay effect has a unique, logarithmic signature; and
(2) the accuracy is limited mostly by the errors in the
‘meesﬁrementS‘made‘near superior conjunction where the effect
is a maximum and the signal-to-noise ratio a minimum.
To return to the discussion of Equation (4.8), we
note that the fourfold improvement in this bound compared
to Equation (4.7) is due to several factors: (1) the
increased time span of the data; (2) the improved accuracy
of the measurements; (3) the incorporation of a model for
the:low-frequency‘components of the topography; and (4) the
accurate, independent determination of the:mass oﬁ Mercury.
Until recently, the estimate of the mass of Mercufy was
. dependent on the radar data.and was fairly well correlated
(coefficient = 0.5) with the estimate of & (Shapiro et al.,
1971a). The Meriner 10 flyby of Mercury provided a more
accurate, independent determination (Howard et al., 1974):

M%I = 6,023,600 + 600, e ©(4.9)

where Mé is the mass of Mercury in units of the sun's mass.
| This result for Mercury's mass is in embarrassingly good

agreement with our prior publications of determinations
-1

based on analysis of radar data [viz. Mg = 6,022,000 *+ 53,000
(Ash et al., 1967); M%l = 6,025,000 + 15,000 (Ash et al.,

1971); and M;l = 6,022, 900 * 900 (Shapiro and Reasenberg,

1973)] and shows that our earlier result, as distinct from
: ‘its uncertainty, was not adversely affected by the need to

estimate M¥ simultaneously with G.




As for the future, improvements in the estimate of
G depend on the same factors addressed in the previous
subsection. The same assumptions that yielded the bounds

given in Equations (4.5) and (4.6) also imply
& 11 -
a(g <2 x 10 1oyt (4.10)

as a‘reliable bound that could be achieved by the early

198Q's.

4. Principle of Equivélence

There has not yet been any radar test of the Prin-
ciple of Equivalence in regard to the relative contribution
of the gravitational binding energy of solar-system bodies to
their respective inertial and gravitational masses. With’ |
present technology, the only other possible test of this
contribution is from lasef ranging to the retroreflectors
-on the moon, as mentioned in' Section III;6. Radar‘appears
to offer a significant test through the measﬁrements of time
delays of signals propagating between the earth and the other
inner planets. In this test eéch of the inner planets acts
like a small particle moving within the Jupiter-sun system,
and, therefore, the measurements must extend in time over 2
‘number of orbitalk periods of the relevant inner planets to obtain B
an accurate résult. By the early 1980's .Vthe relativek

contribution of the gravitatidnal binding energy should be
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determined to within a few peréent if a vigorous program of
radar measurements 1is pursued throughout the intervéning years.
significantly higher accuracy, comparable to that attainable
from lunar laser ranging, will be achievable if ranging data
for spacecraft in planetary orbits are alsd obtained. The
best opportunities will be afforded by the Viking Mission to
Mars and the Pioneer Venus Oorbiter. Ranging data for the
spacecraft involved in these missions could not only be of
higher quallty in their own right, but would provide unique
opportunltles to calibrate the radar measurements to theee
planets in terms of equlvalent center-of—mass to center-of-
mass delays. Independent checks of this type are very important
"and, in fact, enhance the vélue of both the spacecraft and the
radar ranging data. |

To summarize, it is our judgment that the continuation
of interplanetary radar measurements on a regular basis,
especially if carried out with the equipment improvements
suggested above for the Arecibo facility, will yield sub-
stantial improvements -- from a factor of four to'a.factor
of at least 10 -- in each of the gravitation tests discussed.in
this section. In each case, except for the signal retar-
dation and Pr1nc1ple of Equlvalence tests, the ground-based
results depend vitally on observations of Mercury and there-

fore will outperform any likely to result from spacecraft at
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least through the end of this decade. The combination of
fhe spacecraftkﬁnd the radar data, of course, offers the
highest potential.

Further in the future one might anticipate accuracies
sufficient to measure the next‘hiqher-order relativistic ef-
fects, but these might well require laser surveying of

the golar system.




; ' . ~110-

V. Refererices

Allen, C. W. 1963, Astrophy51cal Quantities (Athlone Press,
London).

Ash, M. E., W. B. Smith, and I. I. Shapi;o 1971, Science 174, 551.

Ash, M. E., W. B. Smith, and I. I. Shapiro 1967, Astron. J.
72, 338.

Braginski, V. B. and V. I. Panov 1971, Zurn. Eksp. Teor. Fiz,
61, 875. ,

Campbell, D. B. et al. (5 authors) 1975, in preparation.

Clayton, D. D. 1968, Principles of Stellar Evolution and Nucleo-
synthesis (McGraw-Hill, New York).

Colombo, G. and I. I. Shapiro 1965@ Ap. J. 145, 29e6.

‘Counselm‘n, C. C. 1968, Ph.D. Thesis, Massachusetts Institute

of Technology.

Counselman, C. C., H. F. Hinteregger, and I. I. Shapiro 1972,

Science 178, 607.

' Counselman, C. C. and J. M. Rankin 1972, Ap. J. 175, 843.

Dicke, R. H. 1974, Science 184, 419.
Dicke, R. H. and H. M. Goldenberg 1967, Phys. Rev. Lett. 18, 313.
Duxbury, T. C. 1974, Icarus 23, 290.

DWight, H. B. 1949, Tables of Integrals and Other Mathematical
Data (Macmillan, New York).

Eddington, A. S. 1960, The Mathematical Theory of Relativity,
(Cambridge Unlver51ty Press, Cambridge), p. 105.

ESRO 1974, report on "Sorel" Mission.

Evans, J. V. and T. Hagfors 1968, Radar Astronomy (McGraw-Hill,
New York).

Friedman, L. D. 1970, Ph.D. Thesis, Massachusetts Institute of

Technology.

Goldreich, P. and S. J. Peale 1966, Astron. J. 71, 425.




-111-

Goldstein, R. M., and S. Zohar 1974, Astron. J. 79, 85.
Goldstein, R. M. 1975, private communication.

Hill,'H. A. et al. (7 authors) 1974, Phyé. Rev. Lett. 33, 1457,
Howard, H. T; et al. (20 authtrs) 1974, Science 183, 1297.
Howard, H. T. et al. (21 authors) 1974, Science 185, 179.
Kliore, A. J. et al. (5 authors) 1972, Science 175, 313.

Lense, J. and H., Thirring 1918, Phys. Zeitschr. 19, 156.
Matsden, B. G. 1974, private communication.

Matson, D. 1971, Ph.D. Thesis, California Institute of Technology.

Miller, L. H. 1971, B. Sc. Thesis, Massachusetts Institute of
Technology. :

Misner, C. W., K. S. Thorne, and J. A. Wheeler 1973, Gravitation
(W. H. Freeman, San Francisco).

Nordtvedt, K. 1968, Phys. Rev. 170, 1168.

pPettengill, G. H. 1970, in Radar Handbook, ed. M. Skolnick (McGraw-iill, New York

Robertson, H. P. 1937, Mon. Not. Roy. Astron. Soc. 27, 423.

Robertson, H. P. 1962, in Space Age Astronomy, eds. A. J. Deutsch
and W. B. Klemperer (Academic Press, New York), p. 228.

Schubart, J. 1974, Astron. & Astrophys. 39, 147.

Seidelmann, P. K., W. J. Klepczynski, R. L. Duncembe, and E. S.
Jackson 1971, Astron. J. lg, 488.

Shapiro, I. I. 1964, Phys. Rev. Lett. 13, 789.
Shapiro, I. I. 1966, Phys. Rev. 145, 1005.
Shapiro, I. I. 1967, Science 157, 806.

Shapiro, I. I. et al. (5 authors) 1971a, Phys. Rev. Lett.'zg,
27. ’

Shapiro, I. I. et al. (8 authors) 1971b, Phys. Rev. Lett. 26,
1132. : ~

Shapiro, I. I. 1972, Gen.' Rel. Grav. J. 3, 135.

Shapiro, I. I. et al. (5 authors) 1972a; Science 178, 939.



DR e L EE I

-112-

Shapiro, I. I. et al..(6 authors) 1972b, Phys. Rewv. Lett. 28,
1597.

Shapiro, I. I. and R. D. Reasenberg 1973, in Jet Propulsion -
Laboratory Technical Report, No. 32-1550, 4, 453.

Shapiro, I. I. 1973, Ann. N.Y. Acad. Sci. 224, 31.
Shapird, I. I. et al. (5 authors) 1974, Science 179, 473.
Shapiro, I. I. et al. (11 authors) 1974, Science 186, 920.

Sherman, G. N. 1973, Ph.D. Thesis, Massachusetts Institute of
Technology.

Sinclair, A.C.E., J. P. Basart, D. Buhl, and W. A. Gale 1972,
Ap. J. 175, 555. ) _

Slade, M. A. 1971, Ph.D. Thesis, Massachusetts Institute of
Technology.

Tausner, M. J. 1966, Lincoln Laboratory Technical Report,
) No. 425.

Van Flandern, T. C. 1975, Bull. Amer. Phys. Soc. Series Ii, 20,
: 543. )

‘Weinberg, S. 1972, Gravitation and Cosmology (John Wiley and
Sons, New York).

Weisberg, J. M., J. M. Rankin, R. R. Payhe, and C. C. Counselman,
to be submitted to Ap. J. '

Will, C. M. 1973, in Experimental Gravitation, ed. B. Bertotti
(Academic Press, New York), p. 1.

Zisk, S. H. 1972, Science 178, 977.



v -113-

Part II

Radio-Interferometric Measurement of the Solar Gravitational

Deflectiopmof Radio Waves

I. Introduction

. . A resurgence of interest in the measurement of the
gravitational deflection of'light'raysrby the sun has fol-
lowed the realization (Shapiro,1967) that radio interferometry could
~be gainfully employed. for the ‘purpose (Seielstad et al.,1970;
Muhleman et al.,1970; Sramek,197l; H1l11l,1971; Sraﬁek,1972;
Piley,1973; Weiler et al.,1974). Here we describe in some
detail the method of very~long-baseline interferometry (VLBI)
that we have recently used to obtain a very:aCCurate result

for the aeflection experiment {Counselman et al., 1974). The
previously published results wﬁich all involved short-baseline,
or, more precisely, connected-element, interferometry were of
"lower accuracy;* an extended discussion of these short-baseline-
interferometry techniques was giyen by Sramek (1973).

In our experiment, carried out in the fal; of 1972

at;a radio frequency of 8105 MHz (A = 3.7 cm), we utilized

the 120-ft and the 60—ft—diameter antennas of the Haystack

Observatory in Tyngsboro, Massachusetts (the "Haystack"

and the "Westford" antennas), and two 85- ft—dlameter an-

tennas of the National Radio Astronomy Observatory (NRAO) in Green

Bank, West Virginia, some 845 km to the southwest. Hay-

stack and one NRAO antenna formed a long-baseline inter-

ferometer, and both these antennas.were directed at the

compact extragalactic radio source 3€279. Westford and

Recently a "long" short—basellne experiment was performed
which yielded somewhat higher accuracy (Fomalont and
Sramek, 1975).
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the other NRAO antenna formed another long-baseline inter-
ferometer and were directed at a similar source, 3C273B.;
located about 10° to the northwest of 3C279. On 8 October,
30279‘was occulted by the sun. By observing 3C273B simul-
taneously we were able to make relative measurements between
" the two sources, to prevent the introduction of errors by
the separate frequency standards employed at Haystack and
NRAO to govern the heterodyning and recording of £he
§i§nals at the two sites. (The two antenna-receiver systems
at a given site both utilized the same frequency standard.)
Removal of effects of the diffcfenceskbetween the frequency
étandards was accomplished b? taking as the basic observable
the difference between the interferometric fringe phases
determined for 3C279 and 3C273B. The use of this difference
observable also served to reduce the effects of the neutral
‘atmosphere and ionosphere.

The use of this difference fringe-phase , or DFP obser-
vable also reducés the sensitivity to the gravitational
Qeflection. The amount of the reduction is shown in Figure 7
%s a function of time. The gravitational deflection can
be detected only by determining the change in the apparent

relative positions of the two sources during the period
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surrounding the oécultation on 8 October. Both the right-
ascénsion and the declination differences between the

sources are changed by the gravitational deflection.

waever, because 3C273B and 3C279 botﬁ lie near the celestial .
eQdator, the DFP observable is sensitive mainly to their
right-ascension difference. If, for the purpose of explanation,

we neglect the solar corona, the ionosphere, the atmosphere, aber-
r?tion, and numerous other small effects, we may express

the DFP, A¢, approximately.-as a function of the right-

ascension difference, Aa, between the sources as

Ap = E%E «Ao+cos H + A¢o (modulo 27) | (1.1)

in which B is the length of the equgtorial projection of the
long baseline vector , A is the wavelength, and H is the hour
angle at the midpoint of the baselinequ a point midway between the
sources. The quantity A¢o is a constant which depends
dn’the baseline and the aeclinations of the sources but

which, most importantly, includes the unknown constant

difference between the phases of the independent local oscil- |

lators of the receiving stations. Because A¢o is normally
dnknown, it is necessary to observe A¢ continuously through
a range of hour angle H during which cos H varies signi-

ficantly, preferably near the times of rise (H = -Gh) or

d

oo
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set (H = +6h), in order to determine Aa.* If the change

of Ad between the time of rise (or set) and transit can be
measured with an uncertaiﬁty of o¢, it follows that the un-
certainty of the estimate of Ao is approximately

: - A
pa © 278 7¢°

(1.2)
The determination of the DFP during each day of ob-

servation without the introduction of any 27 ambiguities,

aside from any contained in the constant, A¢o term in

Eq. Unl),is a crucial requirement of the experiment. That

is, the constant A¢o must be the same for all measurements
throughout,a day's observations. Because the DFP is in-

trinsically an ambiguous observable, no large gaps in its
determination as a function of time can be tolerated. 1In

particular, for a gap to be "acceptable", .one must be

able to connect the measurements of DFP before and after thei

gap without the introduction of any 27 ambiguity. During
observations when the ray path to 3C279 passes within a

few degrees of the sun, a gap of only a few seconds may be

#Atmospheric phase delay increases abruptly near the times
of rising and setting. In order to separate Ao from atmos-
pheric parameters, the observation interval must be extended
a few hours from rise or set. Note that a determination

of Aa may be made from observations entirely before transit,

and another, nearly independent, determination may be made
after transit on the same day.
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unacceptable, because the solar corona introduces rapid and
unpredictable variations in the fringe phase. On the other i

‘hand, when the separation of sun and source is 10° or

more, even a gap of 30 min may be successfully bridged, as ;
demonstrated below. i
One might wonder why the time-derivative of the dif-
ferenced fringe phase, the so-called differenced fringe rate,
or DFR, is not used as the basic observable since it is in-
tr1nsxca11y unambiguous. A simple calculation shows that
the ratio of the errors in the determination of the relative
right ascensiOns, Aa, for the ;wo sources via the two methods

is given by

cAa(DFP) : .

&, (DFRY ~ or , | . (1.3)

whére Q = 2n/day is the rotational angular velocity of
the earth and T is the integration time used to determine
a value for the DFR. 1If this time is very short relative
to a day, the accuracy achievable with the DFR observable
méyfbe orders of magnitude less than with the DFP, all

other aspects of the experiment being equal.

II. Observations

- The maln characterlstlcs of the antenna-receiver

systems used in our experlment are descrlbed in Table 3.
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Table 3

' Characteristics of Four-Antenna .Interferometer

Radio Location Effective System  Observed
telescope aperture tempera- source

' 2 ture

(m™)
(K)
Haystack? Tyngsboro, Mass. 480 80 3C279
Westford*  Westford, Mass. 120 250 3C273B
85-2+ Green Bank, West 240 240** 3C273B
Virginia :
85-3+ . Green Bank, West 240 - 240%** 3¢279
, Virginia

* - .
Operated by the Haystack Observatory..

poerated by the ‘National Radio Astronomy Observatory (NRAO).

**
Single side band.
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Local-oscillator signals for both systems at a given end

of the long baseline were derived from the same frequency
standard. At the Massachusetts end, the 5 Mﬁz signal from
a hydrogen—-maser frequency standard located at Haystack

Qas multiplied to approximately 130 MHz and the resulting
power split, one portion being sent to Westford over a

caﬁle whose electrical length was continuously servo-
controlled. Although the remainder of the frequency—multi—
plication chain at Westford was independent of that at Hay=
stack, this additional multiplication-should not have intro-
duced a significant difference between the phases of the
local .oscillators of the two”antennas. At Green Bank, the
signal frdm the hydrogen-maser frequeney standard was car-
ried to the two antennaskby puried cables. The detailed
setup at Green Bank was essentially jdentical with the usual
one employed when these two antennas form‘a short-baseline
interferometer, for which the phase—stability requirements
-are far more stringent than for our experiment. The sig-

nals received from each source were converted from microwave

to low frequencies, then clipped (only the sign was preserved),

eempled, and recorded digitally at a rate of 720 kb/sec on
ﬁagnetic tape using the NRAO Mark I system (Bare et _al.
i967). Oon each tape alternate records, of duration 0.2 sec,:
&ere used for a given source, so that the recorded signals -

from the two sources were interleaved. Four tape recorders

R
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were used at each site, in order to obtain uninterrupted
‘récording: two on line at any given time with one record-
ing and one rewinding, and two spares. These latter were
needed often, because the mean-time-between-failures of
a recorder was only a few hours. Maintain-
ing uninterrupted recordings for nine hours of obéervation
each day, with each separate tape holding only three minutes
of data, required unusual devotion of the operating person-
nel. All told, about 5000 magnetic tapes were utilized,
contain{ng a total of about 3600 kilometers of tape and
about 7 x lO11 bits cf data.

These data were all processed at the Haystack Obser-

: Vatory with a special-purpdée digital correlator connected
to the Observatory's CDC 3300 computer. The combination
allowed a tape pair to be processed in about four minutes,
the output being the fringe amplitude and phase for each
0.2-sec record; the output was then averaged coherently over
longer intervals. Although a variety of different averaging
infervals was used in the course of the analysis, the
Lypical procedure was to form l10-sec averages and, from
these, the DFP observable. A simple computer program was
used to connebt the sequencé 6f values of the DFP without the

introduction of spurious 2m changes. However, because of
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the subtlety of the process, we examined every single

phase connection graphically to insure its validity; in
every doubtful case, we re-examined the connection with
successively smaller averaging intervals for the DFP until
either the reliability of the connection could be assured
or the statistical uncertainty in the determination of the
fringe phase became too high to allow a reliable connection.
This latter stage was reached for an averaging interval of

about 1 sec. In such cases we assumed the connectlon to be

broken and we introduced a new unknown constant [See Eq. (1. l)]

atfthe appropriate epoch into the tneoretlcal model for the
DFP observable. Figure 8 shows the behavior of the fringe
phase for 3C279 for a short span of time on 4 October.

This sample of data illustrates the obstacles to re-

liable phase connection introduced by data gaps and the
solar corona. |

It is worth noting that the amount of turnulence in
the solar corona in the relevant range of spatial scales
(i,e., those not large compared to the Haystack-NRAO baseline) was
eiceedingly time-variable; for example,
the DFP was very smooth for the first few hours of ob-
servation on 3 October and then, within less than 5 minutes,

the DFP became impossible to follow with l-second averaging.
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Figure 8. Residual fringe phase as a
function of time from observations of

3C279 on 4 Oct 1972. These data have

been averaged, or smoothed, over 10-

second intervals. With this averaging

time, the rms scatter of the phase due

to the receiver noise and the bandwidth-
integration-time product is approximately 20°.
The much larger phase fluctuations seen here

are due pr}'marily to ﬂ.xe solar corona.
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Such severe cbronal'fluctuations‘caused us to‘eliminate
as worthless some segments cf the data. 1In addition,>
éegments within which the phase connection was reliable,
but which were shorter than about an hour, added no
useful sensitivity to the determination of the relative
position of the sources and were not utilized.

After completion of this phase-connection and editing
process, the DFP data were smoothed by straight-line fit~
ting over 3-minute intervals corresponding to the duration
of the original tape recordings to obtain one datum every
3 minutes (except, of course, where the original data had
coptained gaps). - All of the resulting data, from 23 énd
25 September, 1, 2, 3, 4, 10, 11, 13, 18, 19, and

20 October 1972, were combined in the final analysis.

III. Analysis
In this analysis we assumed that the appargﬁt solar

gravitational deflection of the position of a source was

given, in radians, by (Shapiro, 1967)

GM@ :
(2 + 2v) 3 ' ! : ; (3.1)
cPp
where Y is the unknown parameter to be estimated

(general relativity predicts the value y = 1); G is the
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gravitational constant; %:Dis the mass of the sun; c is
the speed of light; and

p = 2r tan (6/2), ' (3.2)

where r is the distance from the observer to the center
of mass of the sun and & is the angle subtended at the ob-

- server, between the source and the center of the sun. The
valne of y-and the undeflected position of 3C279 relative

to that of 3C273B were estimated simultaneously with a large
set of other unknown parameters by means of iterative least-
squareé adjustment. Theée ﬁnknowns included the A¢O cbn-
stants. [Eq. (1.1)] and atmospheric-model parameters, as dis-
cussed below.

Thevundeflected right ascension and declination of
3C273B were fixed at the values given by Rogers et al.
(1973), and the components of the Haystack—Green Bank base-.
line vector were fixed at the values determined by Hinter-
egger ét al.(1972); with the small offsets between the
NRAO antennas and between the Héystack and Westford an-
tennas having been determined from a comsinaﬁion of conventional geodetic

,sﬂfveys and relevant short-baseline-interferometer observa-
tions. The rotations of the baseline vectors with respect
to the inertial frame of the sources were calculated using

standard formulas for precession and nutation (Her Majesty's
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Nautical Almanac Office and the United States Naval
Observatory, 1961), tbe instantaneous coordinates of the
pole and UT.l interpolated between the iO—day smoothed
values published by the Bureau International de 1'Heure,

and formulas for the displacements due to solid-earth tides

based on Table 3a in Melchior (1966). The
effect of the earth's neutral atmosphere on the observable
was calculéted from the model of Chao (1968). A

separate value of the parameter representing the zenith at-
mospheric delay for each end of the long baseline on each
day of observation (except, as discussed below, on

Octobér 4, 10, and 11), was included aé an unknown in the
simultaneous least-squares aﬂxmioﬁ. The relatively small
effect of the daytime ionosphere on our observable was
calculated from a simple model in which the electron denéity

varied as the cosine of the local mean solar time, and in

which the integrated electron content along a vertical

17 2

path at noon was taken to be 5 x 10 el m “. We also model-

led the average solar cdrona, assuming its density to

vary as the inverse square of the radius from the sun,

3

with 5,000 el cm ~ at 10 r _.

©

The sensitivity of our gravitational-deflection result

to the fixed value assumed for each of the parameters des-

et i ::._“E!ﬁlz L

:
b
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cribing the baseline-vector components, the undeflected
position of 3C273, polar motion and the variation of UT.1,
soiid—earth tides, the ionosphere, the neutral atmosphere,
and the solar corona was investigated by repeating the
simultaneous solution for y, the position of 3C279, and

ail of the other unknown parameters with deliberate changes
méde to the values of these fixed parameters. We also

examined the effects of possible 2w phase-connection errors,

and of omitting certain days' observations from the solution.

IV. Result and Estimate of Uncertainty

Our best estimate of Yy based on all the usable ob-

. servations, was 0.976. The- formal standard error was

d.009, based on the root-mean-square value of 100° of the
Qostfit DFP residuals and on the assumption that the ob-
éervations, 3 minutes apart, had statistically independent
‘errors. These residuals are plottedbin Figure 9. It is
éiéar that the errors are correlated over times significant-
iy longer than 3 minutes. The perhaps more accurate as-
sumption that every 10th point, with_30-minute spacing, was

independent would have led to a formal error greater by

‘a factor of V10, or approximately 0.03. But no estimate of -

the uncertainty which is derived entirely from the proper-

ties of postfit residuals can be trusted: the most sig-

SN J——
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Figure 9. . Postfit residuals (cbserved minus computed values) for the difference fringe phase. A change of 2w
in the difference fringe phase corresponds to an apparent change in relative source direction of about 10 mil-
liarcsec, as indicated. On 29 September, the ray path to 3C273B. passed within about 20 solar radii of the sun
and at 9 hr UT on 8 October, 3C279 was occulted by the sun with the apparent separation increasing by about

4 solar radii per day. Coronal turbulence caused the omissions of data on parts of 3, 4, 10, and 11 October;
the gaps on 18, 19, and 20 October reflect missing recordings.
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nificant, long-term trends of the measurement errof as a
function of time may have been absorbed in the model-
fitting process in such a way that they contributed to the
errors of the estimated parameters, but were not revealed
in the residuals. Furthermore, errors in the assumed
values of fixed parameters, such as the interferometer
baseline-vector components, might seriously affect the
sblution but have no perceptible effect on the residuals.
In order to evaluate the uncertainties due io both kinds
of error, we performed two kinds of computer experiments
with the DFP data. | -

To estimate the uncertainty due to:random, but slowly-
' v%rying errors of measurement, we took the DFP data from
each day separately, for six days (23 September, and 1, 2,
18, 19, and 20 October) when the sun was relatively faf
from both radio sources, and we made independent solutions
for the right-ascension difference between the sources,
keeplng both declinations fixed and setting Yy equal to 1.
The rms scatter of the results of these six solutions about
their mean ?alue was 0°00025, whereas the formal standard
errors (assuming statistical‘independence for 3-minute
épacing of the data) averaged only 0500007. Thus, the

results of this computer experiment confirm that the
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ofiginally-obtained value of the formal standard error for
vy should be multiplied by a factor of between 3 and 4, in
order to réflect the correlation of DFP measurement errors
over times greater than the basic 3-minute smoothing inter-
val. "

In order to determine the contribution to the uncer-

- téinty of our estimate of Y due to errors in the values
assumed for the parameters which were fixed in our
sélution, we repeated the original solution a number of
times, each time changing the value of one of these para-
mét,ers by no less, and often by grossly more, than our estimate of
its true uncertainty. The results of these sensitivity tests are
summarized in Table 4. A few of the entries in this table
require explanation, aékfollows,

The x and y coordinates of the pole, and the difference
between Universal Time (UT.1l) and Atomic Time (TAI, A.l, or.
UTC) are interpolated in our analysis program from values
‘+tabluated at 10-day intervals, with one tabular argument
corresponding to UTC 1972 October 9.0. In the tabulation
of each of these three gquantities we made two types of
dﬁange: (i) to the October 9.0 entry alone, and (ii) to
thek0ctober 9.0 and all following entries equally. Thus

we considered changes which were nearly symmetrical, and
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Table 4. -Magnitudes of changes in the estimate of ¥ produced
by changes in the values assumed for fixed parameters

i i

Parameter A (parameter) | Ay |
Both Green Bank antennas 10 m 0.00002
geocentric radius 10 m 0.00005
longitude
One Green Bank antenna
‘radius 1m 0.00002
longitude l1m 0.00003
3C273B
. right ascension " 0.0001
'declination 1" 0.00005
polar motion (see text) 1m 0.005
variation of UT.l (see text) 2 ms O.Cl
Earth tide amplitude at Haystack 100 % O.bO?
Ionosphere electron density 100% 0.003
‘'Solar corona mean electron density 100% 0.016
Haystack atmosphere zenith delay
October 4 0.2 ns 0.01
October 10 0.2 ns 0.006
October 11 0.2 ns 0.003
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also nearly antisymmetrical with respect to the time of the
occultation of 3C279. In Table4 we list the worst—case‘k
results, those showing the greatest effect on the estimate
of y. It should be noted that the eétimate of Yy is sensi-
tivé to time-variations of the errors in the pole coordinates
and UT.1, but not significantly to constant errors in these
quantities (errors which are equivalent to constant errors.
in the baseline-vector components or the source coordinateé).
Atmospheric-delay parameters were fixed in our solution
only for October 4, 10, and ll‘-- the only days when uncer-
tainties ih the phase-connection, caused by strong solar-
coronal fluctuatlons, prevented us from obtaining the un-
broken record of the DFP over the w1de range of source ele-
vation angles which is necessary 1nforder reliably to dis-
tinguish atmospheric effects from source-position effects
on the DFP. On the remaining days of our experiment, the
phase connection was sufficiently continuous that- the atmos—
ﬁheric parameters were able to be estimated’simuitaneously'
from the DFP data. The mean values of the Haystack and the
éreen Bank zenith atmospheric delay parameters obtained for
éhese othe: dayé were used to fix the corresponding para-

meter values on October 4, 10, and 1ll. What errors might
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have been introduced by fixing these parameters at mean

values? Our interferometric observable is sensitive pri-

marily to the difference petween the Haystack and the Green

Bank atmospherlc delay parameters. (Although both were

normally estlmated, the formal correlation between them on

a given day was always approkimately 0.99.) The rms scatter

of the differences between the Haystack and the Green Bank

values obtained on all the days other than October 4, 10,

and 11 was 0.19 ns. This value provides an upper bound to

the actual variation from day to day., because it includés

the effects of errors in the estimates of the daily values.

Therefore it seems conservative, in Table 4, to allow for

changes of 0.2 ns in the atmospheric-delay parameters of

October 4, 10, and 11.

1f each of the fixed parameters listed in the first

column of Table 4 is regarded as having a 1-0 uncertainty

equal to the corresponding entry in the second column,

then the uncertainty in the estimate of y due to the com-

bination of these causes alone is given by the root-sum-

of—squares of the third-column entries, or 0.024.
qonservatlvely, we consider the effects of errors

éarameters to be independent of those measurement

which account for the scatter of the postfit DFP

If,
in these
errors

residuals

B
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and of our six trial right-ascension solutions, we obtain
a combined uncertainty of [(0.024)2 + (0.035)21%/2 = 0.042.
. Finally, we consider the possibility that, despite our
élaborate precautions, one Or more errors were commiftEd
in the phase-connection process, so that a spurious 27
change was inserted into the DFP data. For several reasons,
the only days on which phase-connection errorscxmid‘be con-
sidered seriously are October 4 and 10, the daYs
closest to occultation. By deliberately in-
serting single 27 "errors" into the data at,varioﬁs times,
we found that we could not alter the estimate of y by as
much as 0.01 except for‘Octobér 4 and 10. We also found
ﬁhat the deletion of any‘single day's observations from the
' data set produced less tﬁanla l—perCent change in the es-
timate of vy, and avhegligible change in tﬁe formal standard
error, except for October 4, 10, andb(in this test) the
ilth. An accidental 27 error on any day other than these
fhree would also be rather conspicuous in the post-fit
‘residuals.
A 27 error deliberately introduced on October 10 pro-
duced a maximum change in vy, of 0.011, if the time of the

h UTC. On October 4 the time of

insertion was near 20
maximum sensitivity to a 2m error was also near 20h UTC, when
a single 27 error changed the estimate of Yy by 0.09. For

guch an error one hour earlier or later, the sensitivity

' was halved, and, as expected, the sensitivity approached
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zero as the error-insertion time approached the beginning or end
of the observation span. If one assumes that exactly one 27

. error of either sign occurred on October 4 (on the ground that
two or more errors of the same sign would be too conspicuous to
gé undgtected), with the time of occurrence randomly distributed
with uniform probability density between the beginning and end
of observations, the standard deviation of the resulﬁing error
in the estimate of y is 0.05.

If the observations from October 4 ére deleted entirely,
the éolution for y increases by 0;069; deleting the observations
. from October 10 alone changes the’solution by an approximately

. equal and opposite amount, -0.061; deletion of the October 1l
déta changes the result by +0.049. The formal standard érrors
for these solutions, after multiplication by the square root
-of ten to allow for correlations of measurement errors over
30-minute intervals, were all about 0.05. If none of these
days -- the only oneé for which phase connection might con-
ceivably be questionable -- are included in the fit{’the solu-5
tion vy = 1.031 is obtained, greater by 0.055 than our all-
inclusive result, but within one standard deviation of it. We
conclude from these tests that coronal phase fluctuations on
ﬂhe days nearest occultation, acting both directly and in-
directly through possibly-induced phase-misconnections,
.‘éontribute no more than 0.04 to the 1l-¢ uncertainty of the
combined solution for Y. Combining all the sources

of error listed in Table 4, as if independent,
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with the coronal-fluctuation uncertainty leads to*

y = 0.98%0.06, (4.1)

or, equivalently

22y = 0.99:0.03. (4.2)
v. Future Experiments

Within the next few years, improved equipmeht and
techniques will enable us to pérform more accurate radio-
interferometric measurements of the solar gravitational
deflection than we were able to do in 1972. Based on the

discussion in Section IV, we list in Table 5 all of

the error sources which, in our 1972 experiment, we believe
contributed moie than 0.001 to the uncertainty in the
estimate of y. In this section, we discuss, in turn, the
most promising method of reducing the uncertainty contri-

buted by each of these sources.

The results here are rounded to only two significant
figures in view of the uncertainty which affects the
second decimal place.
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Table 5. Principal sources of uncertainty in the 1972
VLBI determination of y.

) Estimated
Source ‘ Contribution to
Uncertainty in y

folar motioﬁ, UT.l, solid-earth tides 0.013
Atmosphere . 0.012
Ionosphere 0.003
Mean solar corona . 0.016
Inhomogeneity of solar corona, including 0.04

possible "27m" phase-connection errors

.Scatter of postfit residuals (after al- 0.035
lowance for correlations between errors)

Root-sum-of-squafes of above 0.06
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Polar motion, variations of UT.1l, and solid-earth tides
all affect the motion of the interferometer baseline vector.
Their effects could be determined independently, and the
uncertainty which they introduce in the determination of
Y reduced to negligible levels, if at least three radio
sources were observed in addition to the one occulted by the
sun. (Our 1972 experiment invoived the observation of only
one other source, 3C273B, byiwhich the effects. of local-
oscillator iﬁstabilitiesAwere eliminated.) The additional,
baseline—calibrating, sources could be observed at night,
before the near-sun sources had risen, or after they had
set.

Short=term atmospheric-delay fluctuétions would not
increase significantly if the length of the interferometer
basellne were 1ncreased up to approximately 4000 km, for
example by u51ng the Haystack Observatory and the Owens
'Valley Radio Observatory (OVRO). But the effect of these
fluctuations in terms of equivalent source-position error
would decrease in inverse proportion,to thekbaseline length
Much beyond the 4000-km length, fdrU’l{-:.l increases would vield diminish-
;ng returns due to the decreased mutual visibility. Assuming that the at-
mospheric fluctuations were responsible for most of the scatter of the DFP

residuals in 1972, except on the days nearest occultation,

N
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-we might expect a similar experiment performed with the Hay-

stack-OVRO interferometer to yield a result for Y with un-

certainty, due to atmospheric effects alone, of about 0.007.

Effects of atmospheric refraction could be reduced, for

any baseline length, if additional sources which bracketed

the position of the source occulted by the sun could also be

observed nearly simultaneously. It is also possible that
~ the atmospheric deiay could be calibrated independently by
passive radiometric ﬁeasurements at infrared or microwave
wavelengths (Schaper et al, 1970).

The ionoéphere and the solar corona both affect our ob-
servable by amounts which, in terms of equivalent delay,
are inversely proportional to the square of the observing

frequency. The most straightforward way to reduce their

effects is to observe at a higher frequency. ‘Several an-
tennas are available* which are suitable for VLBI

observations at 15 GHz, about twice the presently-used

frequency. Connected pairs of antennas, which would enable

“ the present four-antenna technique to be employed, are not

yet equipped to operate at such high frequencies. However,

difference observations could also be made by switching the

B A T S R

pointing of a single long-baseline interferometer rapidly back

and forth'beﬁween the different sources if coronal phase fluc-

tuations were sufficiently reduced by virtue of the higher

- operating frequency to enable phase-connection between the in-

termittent observations of each source, or if unambiguous

* : ~ ! ' e
These include antennas at the Haystack Observatory, the NRAO at

Green Bank, the NASA Deep Space Network in Goldstone, Cali-

fornia, and a number of others.
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g£ggg—delay observations were made (see below). Doubling
.thg observing frequency would reduce the ionospheric con-
tfibﬁtion to the uncertainty in the estimate of y to less
tban 0.001, and the uncertainty due to the mean* solar-
corona to about 0.004, all other aspects of the experiment
remaining the same. | '

- The equivalent souice—position error associated with
a 27 phase conhection error would decrease inversely if the
béseline length were increased. Unfortunately, the proba-
bility of making 27 errors in the phase-connection of observa-
tions near the sun would increase substantially, because the
reduced correlation of coronal density fluctuations between the
"ray paths from the source to the two more widely separated
antennas would result in greater, and more rapid, fringe

phase fluctuations. An attempt to cope with these fluctuations

-

* ,

We distinguish here the mean effect from that due to the
1nhomogene1ty of the corona, which causes short-term fluc-
tuations in the fringe phase.

S AR



* -141-

simply by increasing the receiving-system bandwidth or reducing

the system noise temperature in order to shggtén the necessary
coherent-integration time might be fruitless, for two reasons.
First, these imprévements alone would do nothing to eliminate
interruptions of the observations due to

équipment and operator malfunctions, occasional defects in
magnetic tépes, etc. Rapid phase-fluctuations during such
interruptions would cause phase-connection errorS‘regardless
of the bandwidth or system temperature of the interferometer.
Second, even if all interruptions could be eliminated, and
the phase fluctuaﬁions followed correctly, the fluctuations
themselves might contribute approximately thg same uncer-
tainty in the determination of y for a long baseline as‘for a
short baseline becaﬁsé the size of coronal fluctuations may
be approximately proportional to the baseline length (Knight, 1973),véll
else remaining thé same. We conclude that the use of a baseline
much longer than that of Haystack-Green Bank might not be

very advantégeous unless either the observing frequency were also
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ﬁ#measai,to reduce thé phase fluctuations due to the corona,
or two observing frequencies were used to allow these fluc-
tuations to be eliminated. Even with the observing
frequency kept near the present 8-GHz value,
however, a marginal improvement might be gained by not ob-
serving‘so close to the sun; The size of the coronal fluc-
tuations decreases approximately as the inverse square of the
solar elongation, whereas the gravitational deflection de-
creases only as the inverse first power of the elohgation.
Perhaps the simplest means to surmount the problems
of phase connection is to make use of group delay
méasurements in any future experiment..
If the Unce:tainty in the determination of the group delay
could be made less than the recipfocal of the (center) ob-
serving frequency, then the group-delay measurement could be
used to resolve the "27" ambiguity in the associated fringe-
pﬁase measurement, in all observations far from the sun.
The utilization of this "bootstrap" procedure woﬁld enable
tﬁe full accuracy which is inherent in the use of the con-
nécted—phase observable to be achieved with only inter-
mittent observation of a source when it-is not within a few
degrees of the sun. When the source is close to the sun, contin-
uéus observations’Which enabled the fringe phase to be fol-
16wed unambiguously by itself, and which at the same time
ihcluded accurate group-delay measurements, would be’parf
ticularly useful because the corona introduces equél— -

magnitude but opposite-sign fluctuations into the group and



-143-

phase delays. Thus, accurate group—deléy and phase-delay data
. can be combined to eliminate the effect of plasma (ionosphere as well as
sblar corona) on the observations. This important éossibility, if
realized, would make it unnecessary to go to much higher
frequencies than the presently-used 8 GHz in order to achiéve
a major improvement in the accuracy of the experiment.
To measure the group delay at 8GHz with the requisite ac-
curacy, error no greater than about 10 psec, will require
substantial, but achievable, iﬁpfovements in our instrumenta-
tion. Assuming nd improvement in receiving-system tem-
peratures (~100°K) or in tptai spanned bandwidth of re-
ceiver front ends (now ~ 500 MHz), we can calculate the
recorded-bandwidth-integrafion-time product necessary to
reduce the group-delay uncértainty to 10 psec for}qbser—
vations of a source with a correlatéd‘flux density of
3 Janskys. We find, for an interferometer composed of one
¥20-ft and one 85-ft -diameter antenna, that the signal~-

to-noise ratio imposes an uncertainty, o in the deter-

q)l

mination of the fringe phase of approximately
gy = SOO-N-l/Z radians, R , - (5.1)

Where N is the number of bits recorded at each site and

crosscorrelated for each phase measurement. (In our 1972

5

experiment, in which we recorded 7.2 x 10> bits per second,
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this formula predicts c¢ ~ 0.6 radians for a l-second in-

tegration, in good agreement with our experience.)

If we consider that the group delay will be determined from

the fringe-phase difference between two bands 200 MHz

apart, then the requirement of Opg = 10 psec leads to a 4

T
requirément of 0¢ % 0.009 radians for each band, or

N = 3 x 109 bits for each band. With our present recording
system it would take over 2 hours to perform this
measurement -- longer than we would desire. How-

ever, an improved recording system, called the Mark IIi,
is now under development at the Haystack Observatory and

8 bits per

‘pPromises to-allow data recording rates in excess of 10
§econd. Use of this system would enable the necessary
group-delay measurement to be performed in less‘than 1 2
minute -- 3 very reasonable time. We note that the co- ‘
herent integration of the signals in each band could be carried
out for much shorter intervals, such that solar-

cbronal fluctuations do not destroy phase cbherénce, and

the between-bands phase diffefen¢es from the many short in-

tegrations could then be averaged for 1 minute or more in

order to obtain the group delay. For example, with the

Mark III system, in 0.03 second we could record 1.5 x 106

bits for each of two 25 MHz-wide bands, obtaining a measure-
ment of the fringe phase in each band with 0¢ ~ 0.4 radian,

or of the between-bands phase difference with an uncertainty

of 0.57 radian. The incoherent average of the 2000



=145~ -

independent measurements obtained in 1 minute would yield

an uncertainty of 0.57/(2000)1/2

~ 0.013 radians for the
phase difference, equivalent to 10 picoseconds in group
delay, as required. | A

| We are not able to say, at present, exactly what
configuration future experiments will have, because we
cannot predict with certainty, for example, when antenna-
receiver systems suitable for VLBI at 15 GHz and with
éhase—stable connections between adjacent pairs ofjan—
tennas, or much lower-noise or wider-bandwidth X-band front
.ends, or 10—8-bit-p¢r—second recorders will become available.
Thé time scales for all of these improvements depend more on
'the availability of funding, than | on the electronic state .
of the art. However, it seems very reasonable to expect that, |
within 5 years,,a combination of such improvements will
enable a VLBI determination of the solar gravitational

‘deflection of radio waves to be made with an uncertainty

sy <o.003.

2
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