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ABSTRACT

This document presents results of conceptual design studies
of commerciai rotary wing transport aircraft for the 1985
time period. Two aircraft configurations - a tandem helicopter
and a tilt rotor have been designed for a 200 nautical mile
short haul mission with an upper limit of 100 passengers. 1In
addition to the baseline aircraft two further designs of each
configuration are included to assess the impact of external

noise design criteria on the aircraft size, weight and cost.
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FOREWORD

This report was prepared by The Boeing Vertol Company for the
National Aeronautics and Space Administration, Ames Research
Center, under NASA Contract NAS2-8048.

The report contains the results of conceptual design studies
of large helicopter and tilt rotor aircraft for the commer-
cial short haul market in 1985.

Mr. D. Giulianetti and Mr. K. H. Edenborough (NASA Ames)

were technical monitors for this work.

The Boeing Vertol Program Manager was J. P. Magee, and Project

Engineer was R. D. Clark.
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SUMMARY

The increasing demand for fast short haul transportation,

the increasing congestion at major airports,and the rising
cost of fossil fuels are all factors to be considered in
assessing the various forms of air transportation to be used
in the next decade.

The study reported herein provides preliminary design data
for two rotary wing aircraft for the short haul market in the
mid 1980's. These aircraft are designed to have vertical
takeoff and landing capability to allow operation away from
the restrictions of existing airports and traffic patterns,
thus relieving congestion.

The two configurations studied were a tandem rotor helicopter
and a tilt rotor aircraft. Each configuration was designed
to carry 100 passengers and luggage over a 200 nautical mile
range.

The design point tandem helicopter has a takeoff design gross
weight of 30,470 Kg(67,175 pounds). The tilt rotor aircraft
takeoff design gross weight is 33,905 Kg (74,749 pounds).
These weights are reflected in the aircraft "fly-away" or
initial costs and result in the helicopter initial cost of
$4.17 million and the tilt rotor initial cost of $5.15 million.
However, the tilt rotor shows advantages which result from its

high cruise speed capability.
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The tilt .rotor design cruise speed is 349 knots at 14,000 feet

altitude. The tandem helicopter design cruise speed is 165
knots at 5,000 feet altitude. This marked difference in cruise
speed produces faster block times and trip times for tie
operator and short haul traveller, and combined with lower

fuel requirements, resuits in lower direct operating costs

for the tilt rotor aircraft.

At 230 statute miles the tilt rotor has a direct operating

cost of 2.19¢ per seat mile (1974 dollars) compared with the
tandem helicopter at 3.21¢ per seat mile.

The design point tilt rotor has a lcwer fuel consumption than
the tandem rotor helicopter and can operate up to 47.5 passenger
miles per gallon at 100% load factor compared with the
helicopter at 28.8 passenger miles per gallon,

External noise is an important consideration if short haul

VTOL aircraft are to operate close to areas of high population
density. The 500 foot side line noise levei for the design
point helicopter at takeoff is 92.3 PNdB compared with the
design point tilt rotor at 98.2 PNdB.

This noise difference is negated when the operational environ-
ment is studied. 2 35 PNdB noise level is observed over a larger
total area (.58 sg. mi.) for the helicopter than for the tilt

rotor (.24 sq. mi.) when both takeoff and landing is considered.

The effect of imposing nxternal nois< constraints on the

designs has been _nvestigated by sizing both configurations
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to be 5 PNAB more noisy and 5 PNAB less noisy than the base-

line configuration designs.

For the tandem rotor heliccpter, decreasing the 500' sideline
noise level at takeoff by 5 PNAB increased the aircraft gross
weight to 33,669 Kg (74,227 pounds), increased the aircraft
initial cost to $4.76 million and the direct operating cost
at 230 statute miles to 3.34¢ per seat mile.

If the external noise level at takeoff is allowed to increase
by 5 PNAB the aircraft gross weight reduces to 29,866 Kg
(65,843 pounds), and the aircraft initial cost reduces to
$3.98 million. The direct operating cost at 230 statute miles
did not decrease, but increased to 3.5¢ per seat mile.

For the tilt rotor configuration a reduction in external noise
of 5 PNdB requires an increase in takeoff design gross weight
to 36,143 Kg (79,682 pounds) and a resulting increase in
initial cost to $5.6 million. The direct operating cost
increases to 2.36¢ per seat mile.

A 5 PNdB increase in external noise reduces the tilt rotor
takeoff weight to 33,210 Kg (73,217 pounds) and the initial
cost to $5.03 million. The direct operating cost of the )
aircraft is slightly higher than the baseline tilt rotor at
2.20¢ per seat mile.

The helicopter is thus the slower, more expensive in terms of
direct operating cost, less expensive in terms of initial cost

and less noisy of the two aircraft at 500 feet sideline although

e e -

it effects a larger area than the tilt rotor.
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The tilt rotor is faster, cheaper in terms of direct

operating cost, more expensive in terms of initial cost and
more noisy on takeoff at 500 feet sideliine distance. Its
perceived noise contours encompass a smaller area than the
helicopter case.

Details of the designs are presented in this document. The
report also includes an evaluation of the technical risk
associated with large rotary wing circraft and component
development programs are proposed which minimize such risks.
In the case of the tilt rotor this comporen~- devaelopment
activity includes a flight test program. This is envisioned
as an intermediate gross weight vehicle program which would use
existing airframe components {e.g., CH-47 fuselage), but would
embody full size dynamic components and composite material rotors. A test
program of progressively more severe operating coaditions and
increasing gross weight will permit system development to
commercially acceptable levels of payload. An additional
attraction of this approach is that the intermediate sized aircraft
of initially low disc loading, comes close to being a proto-
type of a vehicle which would be suitable for a number of
military missions (LTTAS, etc.). Thus, this test bed vehicle
would have a range of utilization spanning both miiitary and
civil activities. The following table is a summary of the

aircraft designs used in this study.
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JE A O T R

SPEARERRRLA e

BASELINE +5 PNdB -5 PNdB BASELINE +5 PNdB -5 PNdB
TANDEM TANDEM TANDEM VTOL TILT  VTOL TILT VTOL TILT
HELICOPTER HELICOPTER HELICOPTER  ROTOR ROTOR __ ROTOR
GROSS WEIGHT - 30,470 29,866 33,669 33,905 33,211 36,143
Kg (LBS) (67,175) (65,843) (74,227) (73,217) (73,217)  (99,682)
EMPTY WEIGHT - 18,226 17,305 21,107 22,710 22,116 24,820
Kg (LBS) (40,181) (38,152) (46,533) (50,068) (48,757) (54,718)
CRUISE SPEED - KTS TAS 165 141 181 349 340 355
CRUISE ALTITUDE - 1,524 1,524 1,524 4,267 4,267 4,267
m (FT) (5,000) (5,000) (5,000) (14,000) 14,000) (14,000)
BLOCK TIME - HRS 1.337 1.53 1.24 742 .76 .73
DOC - ¢/SEAT MILE 3.21 3.50 3.34 2.19 2.2 2.36
500' SIDELINE PERCEIVED 92.3 97.2 87.1 98.2 103.2 93.4
{0ISE - PNdB
95 PNdB AREA - TAKE- 0.18 0.49 .03 0.23 0.49 0.08
OFF - Sq Km (Sq. (.07) {(.19) (.01) (.09) (.19) }.03)
Miles)
§5 PNdB AREA - LANDING 1.39 2.28 .76 .39 .75 .18
Sq Km (Sg. Miles) (.535) (.88) (.295) (.15) (.29) (.07)
BLOCK FUEL - Kg(LBS) 2,310 2,536 2,541 1,431 1,403 1,618
(5,093) (5,590) (5,603) (3,157) (3,094) (3,567)
ROTOR DIA. - m (FT) 21(68.9) 20.8(68.2) 22.1(72.5) 37.16(56.3) 17.0(55.7) 17.74(58.2) }
DISC LOADING - 43.94 43.94 43.94 73.2 73.2 73.2
Kg/mé (LBS/FT2) (9.0) (9.0) (9.0) (15) (15) (15)
WING LOADING - Kg/ cese emeee eeeas 488(100) 488(100) 488(100)
m2(LBS/FT2)
HOVER TIPSPEED - 221(725) 247(810) 195(640) 236(775) 279(915)  195(640)
m/s (ft/s)
CRUISE TIPSPEED 221(725) 247(810) 195(640) 165(543) 195(641)  137(448)
m/s {ft/sec) 6 6 6 6
INS.POWER-Watts(HP) 10.79x106( 10.27x106 12.88X10 12.36X10%  11.98x10° 14.52x10
(14,472) (13,770) (17,277) (16,480) (16,072) (19,476
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It is concluded that no insurmountable technology barrier is
identified which is associated with size in either the tandem
helicopter or tilt rotor configurations. The amount of design
and develcpment work required to bring a tandem helicopter
into service will be smaller than those associated with a
tilt rotor since substantial helicopter development at

these gross weights has already been accomplished.
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1.0 INTRODUCTION

.. This report documents the results of conceptual engineering
design studies of two VTOL transport configurations for the
1985 time frame. These studies were performed by the Boeing
Vertol Company fcr NASA-Ames Research Center, under NASA
Contract NAS2-8048.

The studies required the definition of a tandem rotor heli-

O e L

copter and a tilt rotor aircraft for a short naul commercial
transport mission. The aircraft have been sized for 100
: passengers, the maximum number of passengers permitted by the

study groundrules, and a 200 nautical mile design mission.

The objectives in performing these studies were twofold. The
first objective was to provide design data for the two rotary
wing ccenfigurations. The data is required as input information
for a larger VTOL transportation systems study to be performed
by NASA. The second objective was to identify the size and
performance of rotary wing commercial transport aircraft in the
short haul environment at a time when increasing fuel costs,
environmental issues, and the efficient use of existing and

new terminal facilities becomes increasingly important in the
selection of future vehicles. As the reliability levels of
rotorcraft rise and vibration decreases through continued
research, the rotary wing machine can offer a flexible,

viable alternative to other forms of short haul transportation.

i
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Details of the design point aircraft defined by this study

(a tandem rotor helicopter and a tilt rotor) are discussed in
Section 2.0 of this volume.

In addition, derivative aircraft have been designed to
varying levels of external noise. For each configuration two
additional aircraft were .lefined having noise characteristics
+5 PNdB in relation to the basic design point aircraft. These
aircraft are described in Section 3.0 of this report.
Comparisons of the two configurations and of the effects of
noise criteria are drawn in Section 4.0.

The broader and less easily quantified topics which fall
under the general heading of risk are discussed in Section 5.
This includes such issues as the technical risks associated
with component size and economic visability. These naturally
tend to conflict. Technical risk must be assumed to increase.,
the further one proceeds beyond the level of past experience,
while the probability of good economic performance improves
up to the sizes which have been considered. In Section 5 it
has been concluded that the technical and engineering risks
associated with the 100 passenger size helicopter and tilt
rotor are acceptable, provided that a decision to build is
accompanied by an orderly and comprehensive program of
component test and development.

Throughout the study it has been assumed that levels of
comfort and reliability, at least as yood as current jet

transports, will be required to gain passenger and operator

e
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acceptance. This will require special efforts to ensure the

fullest use of vibration reducing equipment, and in the case
of the tilt rotor, the application of advanced active control

system techniques in order to attain acceptable ride qualities

characteristics.
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2.0 DESIGN POINT AIRCRAFT

This section describes the two baseline design point aircraft
- a tandem rotor helicopter and a tilt rotor aircraft. These
vehicles have been selected and refined from initial vehicle
trend studies. Each configuration carries one hundred (100)
passengers and has a 200 nautical mile design mission. The
design selections are based on minimum operating cost and

are constrained by the NASA design guidelines (see Section 4,
Volume II.)

For each configuration the design layout, weights data,
vehicle performance, stability and control, noise and cost
data are presented. The comprehensive background technology
data which support the summary information presented in

this section are contained in Volume II.

A design identification numbering system has been adopted to
allow ease of discussion in comparing designs - for example,
TH~100 (92.3) and TR-100 {98.2). The initial letters indicate
the configuration: TH - tandem helicopter; TR - tilt rotor.
The -100 number indicates 100 passenger designs and the number
in parentheses (92.3) is the PNdB value at 500 feet side line
in hover to distinguish between the vehicles designed to
various noise criteria as discussed in Section 3.0.

2.1 DESIGN POINT TANDEM ROTOR HELICOPTER - TH-100 (92.3)

The tandem rotor helicopter configuration was selected over
other pure helicopter types for this study because of the

inherently lower risk of large helicopter development for
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this type. The primary risks in the development of these

aircraft are related to rotor size, transmission and rotor
gearbox torque capability as discussed in Section 5.0. The
individual components are generally smaller and more within
the manufacturing state-of-the-art in a tandem design than
for a single rotor machine. Other advantages of the

tandem coiifiguration include ease of handling large CG excur-
sions and the ability to locate the engines away from the
passenger cabin. This latter capability keeps engine noise,
fumes and carbon deposition away from passenger areas. In
addition, Boeing experience with tandem rotor helicopters
ranging in size from 5,000 pounds to 120,000 pounds gross
weight provides a high degree of confidence in prediction and
design techniques.

2.1.1 Design TH-100 (92.3) - Configuration and Layout

The tandem rotor design point aircraft is shown in Figure 2.1.
The major aircraft dimensions and pertinent data are shown in
Table 2.1 and a threeview is shown in Figure 2.2,

This vehicle weighs 30,470 Kg (67,175 pounds) design takeoff
gross weight and has an installed shaft horsepower of

3.597 X 10® Watts (14,472 HP) at sea level standard day. The
two 68.9 foot rotors are four-bladed articulated rotors with
a solidity ratio of 0.099. The selection of rotor solidity
has been made to provide freedom from stall flutter loads
over the entire maneuver envelope. The rotor overlap has

been held to zero to eliminate rotor "bang" due to one rotor

B bt - — -
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cutting the trailed vortices of the other and also to

eliminate the possibility of blade collision in the event of

a desynchronization failure.

Both rotor shafts are swept foiward (7-degrees forward rotor
and 4-degrees aft rotor). This minimizes the floor angle range
during hover and cruise flight, and also minimizes rotor loads.
The oylon heights are arranged to provide a gap to stagger
ratio of 0.173. This clearance is required to keep noise,
rotor loads and induced power losses at a minimum.

The aircraft has three engines located aft, one on each side
of the rear rotor pylon and the third buried in the pylon
itself, similar to the XCH-62 (HLH). The intake for the third
engine is shown in Figure 2.2, in the leading edge of the

rear rotor pylon. The rationale for selecting a three-engine
configuration is given in Volume II.

The transmission layout is a three gearbox arrangement where
three engines drive into a combiner gearbox located aft and
above the passenger cabin. The combiner box is designed

for easy removal through the baggage hold ceiling.

Power is transmitted to the aft rotor by shafting in the rear
pylon which drives the aft rotor transmission, and to the for-
ward rotor by shafting along a fuselage tunnel to the forward
rotor transmission located forward of the passenger cabin. The
APU (Auxiliary Power Unit) is located in the aft fuselage

compartment in c:ose proximity to t'.: engines.

10



. e

No-,]

D210-10858~1
This arrangement has been selected for minimum complexity,

cost, weight and performance losses as well as to minimize

the effects of engine and transmission noise and vibratior in
the passenger cabin.

The fuel tanks are located under the rear cabin floor as shown
in Figure 2.2. These tanks are "crashworthy" tank3 similar

to those built and tested by the Boeing Vertol Company for
CH-46/47 applications (Volume II). The design philosophy

is to provide adequate tank strength to ensure that no rupture
will occur in the event of a 95th percentile crash. The
system is designed for pressure refueling (300 gpm) with
crossfeed valving, a fuel pump in each tank, and with fuel
pump valves and lines routed away from the landing gear. The
dual bleed conditioning system is located in the aft fuselage
compartment adjacent to the APU and engine bays.

The landing gear is a tricycle layout providing excellent
ground handling characteristics. The dual wheel gears are
retractable into the fuselage for minimum drag and the

system is designed for 500 feet per minute rate of sink on
landing. The arrangement provides an overturning arngle of
27-degrees and adequate fuselage clearance for flared

1 .nding.

Cabin layout and passenger accommodation details are shown in
Figures 2.2 and 2.3. The aircraft cabin has two main entrances
located on the port side of the aircraft. The aft entrance

is equipped with ar air stair in accordance with the study

11
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guidelines. The rear entrance is the rnormal entrance and the

exit is located adjacent to the stowed baggage compartment

in the rear of the aircraft.

A third entrance is located on the starboard side of the cabin
forward adjacent to the service facilities and serves the dual
role as a service entrance, and an emergency exit.

A further Type I exit is located aft directly opposite the main
entrance and again serves a dual rele in that it can be used

to load baggage by ground crew and also provides an emergency
exit. This additional access provides the operatcr with
flexibility in baggage handling procedures.

In addition to these, two additional Type II emergency exits
are located amidships, one to each side. The location of these
exits cuauses the pitch between the ninth and tenth rows of
seats to be increased to 45-inches to allow a 20-inch wide
access to the exit.

Six Type IV exits are provided in the cabin roof to be used

in the event of an aircraft being turned over on one side.

The passenger cabin has seats for 100 passengers with an

overall seat width of 2l-inches and a seat pitch of

34-inches.

Each passenger has underseat stowage space (9-inches X l6-inches
X 23~-incnes) and overhead rack stowage with lockable doors.

Air vents, individual lights and a folding table are provided
for each passenger in accordance with normal commercial air-
craft practice.

13
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The cabin has dual 19-inch aisles and the main cabin lights

are located over the aisles. i
Two coatracks are provided - one forward and one aft with
provisions for 80 passengers.

Two lavatories are located in the forward end of the cakin.
In the center of the torward cabin is the beverage storage
and service counter space which also incorporates ticketing
facilities.

There are two cabin attendant seats. One is located forward
against the forward passenger cabin bulkhead and close to the
forward exits. The second is z2ft against the baagage hold
bulkhead and close to the rear Type I exits.

The aircraft avionics and navigational gear compartment is on
the port side of the aircraft just forward of the cockpit/cabin
bulkhead. The cockpit space provides adequate accommodation
for a flight crew of two with excellent visibility. A third
"observer" seat is provided adjacent to the avionics compart-
ment at the rear of the cockpit. This location provides the
observer good forward vision, visibility over the flight crew
stations and also access to the avionics/nav-aids compartment
if required. The cockpit is provided with two crew emergency
exits - one on each side of the cockpit.

2.1.2 Tandem Helicopter Design Point Weights

The design gross weight of the tandem rotor design point
heliccpter is 30,469 Kg (67,175 pounds). The aircraft empty

weight is 18,221.8 Kg (40,179 pounds). Table 2.2 gives the

14 .
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weight breakdown in terms of structural components and

aircraft systems. The weight of each component or system has

been computed using the HESCOMP sizing program (Reference 1 )

which uses statistical and semi-empirical weight trend

equations based on known aircraft weights.

The sizing pro-

cedure is an iterative procedure in which the aircraft weight

is varied until the mission fuel required is equal to the

allocated fuel weight.

Weights of all structural components have been reduced by

25% from the trend curve data in keeping with the guideline

directive on the use of composite materials.

Several standard item weights were also specified as shown

in Table 2,3.

TABLE 2.3. WEIGHTS SPECIFIEC BY STUDY GUIDELINES.

ITEM

WEIGHT

WHEELS, TIRES, AND BRAKES

COMPANY OPTIMUM

INSTRUMENTS (Flight and Navigation)

ELECTRICAL (Excluding Generating
Equipment)

ELECTRONICS (Communication, Flight,
and Navigation)

AUXILIARY POWER UNIT INSTALLATION

1200 Pounds

SEATS AND BELTS

PASSENGER: DOUBLE
TRIPLE

CREW SEATS: CABIN CREW

16
16

16

Lbs/Passenger
Lbs/Passenger

Lbs/Crew Member

16

FLIGHT CREW 40 Lbs/Crew Member
LAVATORY 300 Lbs/Unit -
“BEVERAGE ONLY 200 Lbs Total
“AIR STAIR - 300 Lbs
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The 544.2 Kg (1,200 pounds) allocated for auxiliary power

unit, instruments, electrical and electronics has been assumed
to be an uninstalled weight and an additional 440.8 Kg (9,721
pounds; has been included to account for installation.

The engine weights are based on a projected specific weight
of .15 pounds per shaft horsepower which is expected to be
available for application to a 1985 commercial aircraft.

The control system is a fly-by-wire system and the weight
estirate for the controls is based upon recent Boeing exper-
ience with fly-by-wire controls on the Model 347 helicopter.
The rotor gearboxes are designed for maximum engine power

and torque under sea level standard day conditions.

The landing gear is designed for a 500 foot per minute rate
of descent and is 4% of weight empty.

Passenger and crew accommodations are based on Boeing 737
aircraft data since it will be necessary to provide passenger
comfort to at least this standard by 1985.

The overall aircraft is sized for a maneuver load factor of
3.5 and an ultimate load factor of 5.25 as recommended in
FAR Part 29.

The aircraft center of gravity and inertias for both design
gross weight and weight empty are shown in Table 2.4. The
aircraft CG envelope is shown in Figure 2.4. There is no

need to restrict seating arrangements.

17
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WEIGHT EMPTY

GROSS WE1GHT

WEIGHT

CENTER OF GRAVITY*
FUSELAGE STATION
WATER LINE

MOMENT OF INERTIA

I (ROLL)
XX

I (PITCH)
Yy

IZZ (YAW)

18,224.8 Kg
(40,179 LBS)

15.25 M (600.4 IN.)

3.59 M (141.5 IN.)

89,392.5 Kg M2
(10,143.5 Slug Ft2)

1,513,958.3 Kg M2
(1,116,826.9 Slug
Ft2)

1,462,026.2 Kg M2

(1,078,523.9 Slug
Ft2)

30,469.9 Kg
(67,175 LBS)

14.53 M (572.0 IN.)

2.83 M (111.5 IN.)

96,121 Kg M2
(10,907 Slug Ft2)

1,627,912 Kg M2
(1,200,889 Slug
Ft2)

1,572,081 Kg M2

(1,159,703 Slug
Ft2)

*FUSELAGE STATION 0 IS AT NOSE OF BODY, CENTERLINE OF FORWARD
ROTOR 5.0 METERS ABOVE WATER LINE.

TABLE 2.4.

WEIGHT, CENTER OF GRAVITY AND MOMENT OF

INERTIA - DESIGN POINT HELICOPTER.

18
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In order to provide ready comparison of this aircraft design

weight with other designs with different fixed weights, the
aircraft growth data are shown in Figure 2.5. This curve
allows an aircraft weight to be obtained for a variation in a
fixed weight item and allows reasonable comparison cof weight
with other designs based on different fixed equipment, etc.
assumptions.

Detailed justification of the component and subsystem weights
is provided in Volume II.

2.1.3 Vehicle Performance

Mission Performance

The design point tandem helicopter has been sized to fly the
mission shown in Table 2.5 and Figure 2.6, with a range of
200 nautical miles.

A performance sunmary of the design point aircraft flying
this mission is shown in Tables 2.6 and 2.7. The aircraft
initial weight is 67,175 pounds. The aircraft is taxied with
the engine at the ground idle engine rating, for a one minute
period and 12.3 pounds of fuel is used. An additional 107
pounds of fuel is required to execute the takeoff, initial
air maneuver and acceleration to climb speed. The aircraft
then climbs to 5,000 feet altitude at a rate of climb of
approximately 1,800 feet per minute.

The climb segment is accomplished in 2.76 minutes and requires
190.4 pounds of fuel and a distance of 4.26 nautical miles

is covered.

19
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UNRESTRICTED
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CENTER OF GRAVITY ENVELCPE.
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(&)
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FIGURE 2.5. BASELINE HELICOPTER WEIGHT GROWTH AT

CONSTANT PERFORMANCE AND STRENGTH.
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TIME DISTANCE

SEGMENT VTOL VTOL REMARKS
Taxi Out 1 min, 0
Takeoff, Transition
& Conversion to
Conventional Flight 0.5 min. 0
Alr Maneuvcr
{Origin) 0.5 min. o

Acceleration to

Climb Speed As Calculated
climb As Calculated At cptimum Climb Spd
Cruise AS Calculated At Constant Integral

1000 ft. Altitudes(No
Enroute Altitude Crar,

Descent to
2000 ft.

As Calculated

5000 £pm maximum
rate of Descent

Air Maneuver at

2000 ft. (destination] 1.5 min. 0
Decelerating Approach
and Conversion to As Calculated 0 ;ogo f?”nﬂiiiﬂzm
Powered Lift Flight s Calcula ate o
2000 ft. to 1000 ft.
Transition and 1000 fpm maximum Rate]
landing from 1000 ft. of Descent Down to
to Touchdown As Calculated 0 15 ft.
600 fpm Maximum Rate
of Descent Below 35ft]
Taxi In 1 min. 0

TABLE 2.5

V/STOL MISSION PROFILE DEFINITION.
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D210-10858-1
The cruise segment of the mission is done at 5,000 feet

altitude. At the start of the cruise segment of the mission
the aircraft weight is 66,865 pounds and the airspeed is
165.6 knots (TAS). After cruising for 1.154 hours the
aircraft has travelled a total of 137 nauticsl miles and
the aircraft weight has reduced to 62,234 pounds, and the
cruise speed has increased to 170 knots (TAS). The fuel

for the cruise segment is 4670.4 p. ands.

The descent segment to 2,000 feet altitude completes the
range to 200 nautical miles at rate of descent of 2,460 feet
per minute (within the specified maximum of 5,000 .zet per
minute (Table 2.5).

The air maneuver at 2,000 feet altitude has been computed as
a loiter for 1.5 minutes and requires 64.9 pounds of fuel.
This is followed by the final descent to 1,000 feet altitude
on a spiral descent flight path at 1,000 feet per minute
rate of descent.

Descent from 1,000 feet and landing takes 1.5 minutes and is
followed by a taxi segment at ground idle engine rating for
one minute.

This completes the 200 nautical mile mission with a block
time of 1.337 hours and a fuel burn-off of 5,092.5 pounds
and a final aircraft weight of 62,082 pounds.

The reserve fuel is calculated for a range increment of 50
nautical miles at 29% best ra.ge speed and a loiter for 29

minutes. The reserve fuel required is 1,914 peunds giving
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a total fuel load of 7,006.8. pounds.

Hover Performance

The hover performance of the design point tandem rotor heli-
copter is shown in Figures 2.7 and 2.8.

Data given for both all engines operating (AEO) and one engine
inoperative (OEI) as well as in and out of ground effect (IGE,
OGE) is included.

The design point aircraft is sized to a 9(0-degrees F sea level
condition OEI. This point is shown on Figure 2.7 at a hover
weight of 67,175 pounds. The OEI data assumes a force-to-
weight ratio (F/W) of 1.03.

The requirement to size the transmission to maximum sea level
shaft horsepower provides OEI performance which is power
limited. In the all engines operating case the torque linmit
is set such that both power and tcrque limit coincide at
59-degrees F ambient temperature.

Maintaining a one engine out requirement and operating at
standard day out of ground effect, the aircraft can take off
at a gross weight of 74,700 pounds, ar increase of 7,525
pounds. This would not be allowable as extra payload since
the FAA takeoff gross welght certification would limit the
aircraft to 67,175 pounds. The higher weight would isolate
the design load factor capability. This extra lift represents
increased force-to-weight capability (F/W = 1.16) at sea

level standard.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92,3 PNdB

ALL ENGINES OPERATING
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FIGURE 2,7. EFFECT OF AMBIENT TEMPERATURE ON SEA

LEVEL TAKEOFF WEIGHT
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

ONE ENGINE INOPERATIVE
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With all engines operating out of ground effect, the aircraft

lift capability provides an allowable force-to-weight ratio
of 1.47 at 59-degrees F; at 90-degrees F this reduces to
1.31.

Data are provid-:d for hover in ground effect. This demon-
strates increased static lift capability better than the cer-
tified value. Again this increased capability can only be
considered as an additional force-to-weight capability on
takeofif or as a ground cushion in a landing flare.

The effect of altitude on hover performance is shown in
Figure 2.9 for all engines operating. The fully loaded

(100 passengers) aircraft could hover up to an altitude of
11,500 feet on a standard day and 8,000 feet for an ambient
of standard plus 3l-degrees F. The operating altitude is
significantly less than this.

The altitude performance with one engine inoperative is

shown in Figure 2.10. The design point aircraft is shown

at sea level 90-degrees. For a standard " 'v the OEI altitude
capability increases to 4,500 feet.

Hover Download

An important issue in the prediction of hover performance and
in the sizing of the design point aircraft installed power

is the estimation of the download on the ajrcraft fuselage
due to the downwash from the rotors. This effect has been
computed using a semi-empirical technique described in

Section 3.1, Volume II.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

DGW = 67,175 LBS/30,470 Kg
MIDWT = 59,175 LBS/26,841 Kg
OWE = 42,168 LBS/19,127 Kg

ALTITUDE = EEA LEVEL
STANDARD DAY
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FIGURE 2.11. CRUISE PERFORMANCE - POWER REQUIRED/AVAILABLE,
STANDARD DAY.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

DGW = 67,175 LBS/30,470 Kg
MIDWT = 53,175 LBS/26,840 Kg
OWE = 42,168 LBS/19,127 Kg

ALTITUDE = 5000 FEET (1524 m)
STANDARD DAY
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FIGURE 2.12.
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CRUISE PERFORMANCE - POWER REQUIRED/AVAILABLE,
STANDARD DAY.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

STANDARD DAY NORMAL RATED POWER
AEO & OEI CRUISE RPM

"

DGW = 67,175 LBS/30,470 Kg
42,168 LBS/19,127 Kg

OWE

69 5 207 x103
x10

15 4

L=
e
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04 0-
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AIRSPILED -~ KNOTS
L

FIGURE 2.13. LEVEL FLIGHT CRUISE SPEED ENVELOPE.
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The download on the aircraft at the design hover condition

is 8.6% of the rotor thrust and this lift loss has been
included in the sizing and performance calculations.

Performance at Forward Speed

The design point tandem helicopter power required and power
available data are shown in Figures 2.11 and 2.12 for both
sea level and 5,000 feet (design cruise) altitudes for
standard day conditions. Power required data are given for
three different aircraft weights ranging from operating
weight empty to design gross weight.

At zero airspeed for both altitudes the aircraft power required
is less than NRP (normal rated power).

The intersections of the power required and available lineg
indicate the maximum cruise speed performance capability.

The design gross weight aircraft can fly at 168 knots at

sea level all engines operating. This speed increases to

182 knots at operating weight empty. With one engine inoper-
ative a maximum speed of 156 knots can be achieved at design
gross weight at sea level.

At 5,000 feet altitude the NRP cruise speed is 165 knots

at design gross weight and 185 knots at weight empty.' These
speeds decrease to 145 knots and 169 knots respectively with
one engine inoperative.

The speed performance capability as a function of altitude

is shown in Figure 2.13.
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Rate of Climb

Rate of climb capability is shown as a function of altitude
and gross weight in Figure 2.14. The two conditions of both
all engines operating and one engine inoperative are shown.
At design gross weight the aircraft achieves a maximum rate
of climb of 3,650 feet per minute all engines operating at
sea level. At design cruise altitude (5,000 feet) a climb
rate of 2,910 feet per minute can be maintained.

With one engine incperative a rate of climb of 1,670 feet
per minute can be maintained dropping to 1,200 feet per
minute at design cruise altitude.

At minimum weight or operating weight empty the rate of
climb capability increased to 6,900 feet per minute at sea
level with all engines operating and 3,900 feet per minute
with one engine inoperative. The engine power setting used
for all climb calculations is a MIL rating.

Specific Range

The fuel consumption of the aircraft in cruise at both sea
level and 5,000 feet altitudes, all engines operating, is
given in Figure 2.15 for the range of aircraft weights. At
design gross weight the aircraft achieves a maximum specific
range of 0.0425 nautical miles per pound fuel at 140 knots at
sea level. This improves to .044 nautical miles per pound

at 500 feet.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

CLIMB CAPABILITY TAKEOFF RPM
STANDARD DAY MIL POWER

AEO & OEI

DGW = 67,175 LBS/30,47V Kg
OWE :=

42,168 LBS/19,127 Kg

x10
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RATE OF CLIMB - m/s
FIGURE 2.14 . BASELINE HELiCOPTER DESIGN POINT AIRCRAFT-

CLIMB CAPABILITY.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

DGW = 57,175 LBS/30.470 Kg
MIDWT = 59,175 LBS/26,841 Kg
OWE = 42,168 LBS/19,120 Kg

ALL ENGINES OPERATING
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At the NRP cruise speeds the specific ri—~ge is lower - 0.04

nautical miles per pound at design gross weigh: sea level

and 0.041 at 5,000 feet.

With one engine inoperative (Figure 2.16) the specific range
of the aircraft increases due to the increasec power setti:..g
of the remaining two engines. On a standard day at sea level
a specific range of 0.048 nautical miles per pound of fuel can
be achieved at design gross weiglt at 131 knots, At 5,000
feet altitude the maximum specific reige is slightly higher

at 0.0485 nautical miles per pound of fu=l at design gross
weight.

Payload Range

The payload range performance was a4 specified criterior for
the design point aircraft, and is shown in Figure 2.17. The
design range is 209 nautical miles with a full load of 100
passe.gers. Reserve fuel as defined in the mission profile
is still available at 200 nautical miles. The basic 200
nautical mile nmission fuel limit defines the range of lighter
weights such that with no passengers on board the range
increases to 241 nautical niles.

An extended range version of the design point aircraft has
been considered by the addition cof extra fuel tanks and .e-
moving two passcngers to allow for the tank weigat increase.
This aircraft would carry 98 passengers 200 nautical miles
or could be used for 72 p/:sengers up to 400 nautical mile

range. The basic aircraft paylnad-ranye capability increases
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o» BEASELINE AIRCRAFT PERFORMANCE

TANDLM HELICOPTER/100 PASSENGER/92.3 PNdB

DGW = 67,175 LBS/30,470 K
MIDWT=59,175 LBS/26,841 ..
OWE = 42,168 LBS/19,120 K

ONE ENGINE INOPERATIVE
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with one engine inoperative since the remaining engines

are now operating at a higher percentage of power available
which improves the engine SFC. Assuming cruise OEI the fully

increases to 250 nautical miles and 325

r
[¢]
v
)
)J

rautical miles with no passenger load.
Drag
The minimum drag of the design point aircraft is shown in

Table 2.8 in terms of equivalent drag area (F,). The major

contributions are from the fuse“age (10.019 th), and the
2
rotor hubs (20.2 Ft ). The total aircraft F, is 38.51 square

feet giving a gross weight to F, ratio of

GW = 1,765 Lbs/Ft?

Fe

A description of the drag methodology and justification for
this drag estimate is given in Volume II.

2.1.4 Flying Qualities - Design Point Tandem Helicopter

Aircraft Trim

Trim data for the baseline tandem helicopter have been computed
for a wide variation of aircraft weight and CG. The lightest
weight considered is the operating weight empty 43,000 pounds
at a 586 inch CG location. Two CG locations have been taken
for a mid range aircraft weight of 57,500 pounds (FWD 556
inches and AFT 610 inches) and at design gross weight (67,175
pounds) a CG range from 560 inches (FWD) to 590 inches (AFT)
has been used. The CG locations are given by the fuselage

reference station locations.
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D210-10858-
TANDEM HELICOPTER DRAG SUMMARY
ITEM DRAG AREA fe - Ft
FUSELAGE 10.0193
FORWARD PYLON 2.8842
AFT PYLON 3.0609
NACELLES 1.4618
MISCELLANEOQOUS
OIL COOLER MOMENTUM LOSS .3000
AIR CONDITIONING .5000
TRIM .0900
SUB TOTAL 18.3162
ROTOR HUBS 20.2
TOTAL DRAG AREA 38.5162
Ef;_g = $115 = 1,744 LBS/FT°

TABLE 2.8. TANDEM HELICOPTER - BASELINE AIRC AFT
DRAG SUMMARY.
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The aircraft attitudes and control deflections over the

entire speed range are shown in Figures 2.19 and 2.20.

Data in the airspeed range from zero to 60 knots have been
computed at the takeoff ambient conditions of sea level
90-degrees F. From 100 knots to maximum airspeed, the cruise
altitude of 5,000 feet at 4l1-degrees F (standard) is assumed.
The 60 knot to 100 knot airspeed range is an altitude transi-
tion.

The flight control kinematics and cumulative limit data are
given in Table 2.9. These control ranges are based upon
analysis of the HLH aircraft flight controls. The large
ccllective range is selected to provide autorotative capa-
bility at light gross weight at 90% RPM and to absorb full
transmission power at light gross weight for a power climb.
Differential collective pitch, lateral and pedal ranges have

been selected in accordance with MIL 8501Aa

For all gross weights and CG positions the variation of fuse-
lage incidence c¢vei the range of airspeeds is small as a
result of the large cyclic trim range available. The effect
of gross weight and CG position on attitude is also small
which is an inherent advantage of the tandem rotor helicopter
from a passenger comfort standpoint. The aft rotor cyclic is
scheduled with gross weight to minimize aft rotor flapping

excursions and reduce a tendency to aeromechanical resonance.
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In order to meet the angle of attack stability criteria,

26.5 degrees, delta three have been introduced to the forward
rotor. The effect of delta three on rudder pedal to trim is
to essentially zero the pedal travel over the airspeed

range.

The trim cyclic stick travels are modest compared with avaii-
able control. For the SAS-ON cases a simple augmentation
system is used on longitudinal and lateral stick. No SAS is
applied to collective. The SAS system gains and limits are
given in Table 2.10. With SAS-ON, the lateral stick excur-
sions are essentially zero and a positive longitudinal stick
gradient resultc.

The DASH system provides strong attitude and airspeed hold for
unintentional disturbances and provides quickening in pitch
fer pilot command disturbances.

Control Power in Level Flight

The control powers available are shown in Figures 2.21, 2.22
and 2.23 for the range of gross weights and CG positions.
Pitch control power is a minimum of 0.7 rads/sec square in
hover SAS OFF and exceeds the minimum control powers defined
in the guidelines at all airspeeds, gross weights and CG
locations. With SAS ON, the pitch control power increases.
The roll control power available is shown in Figure 2.22 and
again is much higher than minimum guideline requirements. In
this instance three aircraft weights are shown. CG location

has almost no effect on roll control power.
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Yaw control power is shown in Figure 2.23 and aga‘n exceeds
the guideline requirements, however, at the light weight the
yaw control for the unaugmented aircraft is marginal at 40
knots, The yaw SAS provides quickening with a gain of 1.5

¥ inches per inch out to 40 knots limited by +1.25 inches
actuator stroke. This quickening is washed out from 40 to 80
knots. With SAS ON the yaw control improves as showr in
Figure 2.23.

control Powers in Sideslip

For a tandem rntor helicopter, the collective and lonjitudinal
stick pesitions in sideslip are not significantly different
from trimmed level flight data. Hence, longitudinal contrc.
power available in sideslip is substantially unchanged from
the level flight values in Figure 2.21,

Yaw control margins in sideslip, both basic and augmented,

are substantial, but roll control has low margins and may be
critical. The lowest roll control margins occur at 57,500
pounds with lateral CG offset. Since roll control sensitivity
is also lowest for this gross weight, roll and cumulative
roll/yaw control/power margins are checked for this weight
with lateral CG offset, for both basic and augmented control
systems (Figure 2.24).

Roll control augmentation consists solely of the speed-
scheduled stick offset, while yaw contrel ugmentation con-
sists of quickening at hover, and sideslip stability at 80

knots and V maximum.
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In computing the roll and yaw control power associated with
the available control margins, it is assumed that control
sensitivity does not vary significantly with sideslip, and
hence the level flight control derivatives are used.
Although yaw control margins are not substantially reduced
with respect to level flight values, the low control power
available in yaw, particularly at low gross weight, as shown
in Figure 2.23, indicates that yaw control power should be
checked in sideslip at light weight.

The resultant yaw control power data, Figure 2.25, shows
adequate margins in yaw. The inflection points in the data
are due to cumulative lateral cyclic limits being encountered
in the control system.

Response to Control Inputs

Typical time histor:es of respcnses to pitch, roll and yaw
control input are shown in Figure 2.26 for design gruss
weight, aft CG at hover. The one second requirement for both
basic and augmented aircraft is met.

The attitudes attained in one second for all other grcss
weights and airspeeds are summarized in Figures 2.27, 2.28
and 2.29. The requirements are met in all cases. Only 2
augmented aircraft data are shown here, the unaugmented data
being much higher. The unaugmented aircraft is more lively
than the augmented aircraft due to the absence of artificial

damping.
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Rotor and Control System LAGS

Based on Boeing Vertol experience with the 347 ailrcraft,
control system lag (pilot to swashplate) is estimated =:0 be
about 0.1 second for conventional control system. This is
conservative for a flyv-by-wire system, where only actuator
lags are significant. The rotor lag is 0.055 ceconds.
These system characteristics meet tlie requirements defined
in the study guidelines.

Aircraft Stability

The stability characteristics of the basic (unaugmented)
vehicle are presented in Fiqure 2.30. These ch.racteristics
can be augmented to any desired level, to provice optimum
flying qualities.
The levels of stability shown provide mildly stable character-
istics in the basic vehicle, which can therefore be flown
safely (pilot rating of 5 or better) after complete failure
of the sugmentation system. These mildly positive stability
levels provide a vehicle which
(a) is readily augmented to any desired level,
(b) has no inherent instabilities to complicate
AFCS design,
(c) has no inherent strong stability to be overcome
by the ccntrol system in maneuvers, and
(d) has inherent minimum gust response (attitude
wise).

The longitudinal static stability exceeds the M, >0 criterion
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in cruise for all airspeeds above 120 knots at aft CG.

This is achieved by 26.5 degree stabilizing delta tFr.e 1;
the forward rotor. The mild instability indicated at lower
airspeeds will present no difficulty, since the dvnamic

stability criterion (quw

- Ma>0) is met at all airspeeds.
This parameter represents the stability of the aircraft in a
maneuver, and the criterion corresponds to positive maneuver
margin on a fixed wing aircraft.

The directional static stability exceeds the NB>0 criterion

at all airspeeds and gross weights.

The augmented values of M, range from 2.60 to 6.30, which is

well off the graph. Similarly, for dynamic stability

( - MG), the augmented ranges is from 3.50 to 10.50.

M2y
Augmented values of Ny range from 0.30 to 1.0 as shown.

The lateral stick and directional pedal position gradients
(Figures 2.31 and 2.32) are positive in sideslip for side-
winds up to 25 knots and beyond. The gradients shown are
for symmetrical lateral CG position. The effects of lateral
CG offset are indicated by the open symbols (basic aircraft)
and dark symbols (augmented aircraft). Roll attitudes are
acceptable.

Lateral stick margins for the unaugmented aircraft with
lateral CG offset can be as low as 0.7 inches (9%) in a

high speed sideslip, but augmentation increases this margin

to 1.6 inches (.7%). With no lateral CG offset, the
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augmented lateral stick margin is 2.2 inches (28%) or better.

The pedal gradient of the basic aircraft in sideslip is low,
but artificial stability improves this to an acceptable
value.

Dynamic Stability Criterion

Compliance with dynamic stability criteria is shown in Figure
2.33. The range of desirable damping versus frequency defined
in the guidelines pertain to hover and low speed. An additional
requirement from AGARD 577 is shown shaded for Level 1 at

high speed. The stability contours shown cover the speed
range from hover to V maximum, progressing in the direction

of the arrows. The intermediate points pertain to 80 knots.
The unaugmented aircraft meets the Level 2 requirement at all
airspeeds. The augmented aircraft falls within the Level 1
window at low speeds, and meets the Level 1 requirement cf
AGARD 577 at high speed.

Descending Flare Requirements

The tabulated data pertain to the unaugmented aircraft. The
control positions, therefore, represent rotor control used
in the specified maneuver. At all airspeeds, the control
inputs regiired are well within rotor capabilities, as

shown in the following table.

68

>



- ———

_— -

D210-10858~-1

"ALITTIAVY.LS OIWUYNAQ TUYNIANLIONOT

"EETC TANOIA

ods/avd Nm xONINOTIA TVINIVN AIIWYANN

0°¢ 0°¢

0°1

_ , -
SOAONMONSNS AN AN ANSANANN

s, . l———— =
%vvvvrvv%u -~
E\\ U
(Q3ads HOIH) Pt N
L —TX
T TIATL N LAVEDYIV QIILNIWONY
N AIONIA STOSWAS XMJ¥d
N
T
ONTJWYd N LdY SLI'LY W
WIAILA0 N LAY 005‘LS @
do anvd W aIw 000‘E% O
N 950 MO
/ -_— apedd o
AN AN N\ . ——

CTRNRNNNA

XONINOTI A
WOWILIO JO aNvd

!

kg

0

R L

0as/1 Nm9 z ‘HILIWVEVA ONIJIWVA



gy

D210-14858--1

GW = 67,175 LBS

MAXIMUM ZEP? 25 KNOT

2000 Ft/Min R/S RANGE | __SIDEWIRD | _SIDEWIND

0.15g Decceleration | AVAILABLE | MIN. | MAX. | MIN. | MAX.
COLLECTIVE 0 to 9.0 0.76 | 4.22 | 0.72] 3.86
DCP +5.50 -5.87] 0.72 | 0.48} 1.05
Lateral Stick +4.00 0.24] 0.27 | 0.72}| o0.85
Fudder Pedal +2.50 0.19| 0.27 | ¢.11| o0.20
POWER REQUIRED 0 to 9500 [ -1570| 4960 |-1500| 4330

The negative horsepower required at 80 and 100 knots indica:e

rotor overspeed conditions of 6% and 9% excess RPM respectively

for zero horsepower.

Gust Sensitivity

The tandem helicopter aircraft is naturally insensitive to
gusts. Computations based on a 10 feet pe second gust of
varying length were performed. The worst cases are as :;hown
1n Pigure 2.34. Variations in gross weight do not signifi-
cantly change the gust sensitivity. The aircraft meets the
specified criteria at all conditions at 10,000 feet altitude
and at all except the forward CG case at high speed at 5,000
feet.

It is doubtful whether action should be taken to make this
point fall within the criteria line, however, collective
feedback could be used to correct this small deficiercy

for little more than the weight of the sensors and signal
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DZ10-10858-1
conditioning electronics (i.e., less than 50 pounds).

Hover Gust Control

The control ranges available after trim in hover at both zero
wind and 25 knot sidewind are given in Table 2,11 for three
gross weights. The percent of the available control required
to counteract a 15 feet per second gust upset are shown for
gust upsets in any direction. In no case is more than 20%

of the remaining control required to counteract the gust.

2.1.5 Tandem Helicopter - Design Point Noise

The design criteria for external noise is that the 500-foct
sideline noise level in hover at 100 feet altitude is to be
between 90 and 100 PNdB. The design point tandem helicopter
is relatively quiet with a 500-foot sideline perceived noise
level of 92.3 PNdB.

The noise criterion was stated in terms of perceived noise
.evel (PNdB) to provide some means of comparison with aircraft
designed to similar criterion in other studies. It was
recognized, however, that the validity of PNdB as a community
acceptance indicator may not be valid since the noise signature
ithe distribution of absolute sound pressure level as a
function of frequency) is markedly different for large
helicopters than for jet engined aircraft.

For this reason the absolute sound pressure levels as a
function of octave banil frequency are also provided in Figure
2.35 for the noise producing components as well as the overall

aircraft noise. The overall aircraft SPL is set for most
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of the frequency range by the rotor to broadband noise,

though at the very low frequencies the rotor rotational noise
becomes dominant. Thus the PNdB value is set pr:-iarily by
rotor noise.

Unless special noise suppression ieasures are adopted, the
engine inlet noise becomes dominant in the 4 KHz to 8 XHz
octave bands. The engine inlet is, therefore, assumed to be
treated for noise reduction by installing acoustic absorption
linings. The :nle%t absorption lining has been tuned to two
bands with center of frequencies 4 KHz and ¢ KHz. This
matched the engine signature to that of the rotor such that
the rotor signature sets the PNL value. The octave bard inlet
noise attenuation resulting from this treatment is shown in
Figure 2,36.

A perceived noise level "footprint" for a typical takeoff is
shown in Figure 2.37 for line of constant PNdB. This plot
indicates that the worst noise levels occur along the flight-
path of the aircraft with a perceived noise level of 1i0C

PNdB out to 1200 feet from the point of origin. Tne takeoff
altitude profile and the perceived noise levels at various
distances along the flight path are shown in Figure 2.38.

The takeoff profile assumes a vertical lift-off and acceleration
to climb speed with a climb to altitude at approximately 2500
feet per minute.

The perceived noise level time histories show that at 200

feet a maximum of 112 PNdB is observed 7.5 seconds after
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takeoff. Another factor to be considered in assessing
community acceptance is the duration of high noise lievels. Ir
this case for example the verceived noise exceeds 110 PNdB for
only four seconds at 200 feet. (At each location along the
flight path the noise level increases until the aircraft passes
overhead and then decreases again).

The PNL contours for a typical landing profile are shown in
Figure 2.39. The contours are elongated by comparison with the
takeoff case. This is a result of the low rate of sink used in
the landing profile.

This rate of sink is the maximum permitted by the guidelines
shown in Table 2.5.

To maintain these sink rates, high power levels are reguired
which, in combination with full tipspeed, results ir cne
contours shown.

These contours could be reduced through use of noise abatement
approach techniques available to the low disc loading V/STOL
configurations. These techniques involve vertical flight at
altitudes below 1000 feet with all transitions to or from forward
flight accomplished ahove this altitude. The perceived noise
levels along the flight path and the landing profile are shown
in Fiqure 2.40.

2.1.6 Tandem Helicopter Design Point Costs

The initial or flyaway costs of the design point tandem heli-
copter have been computed using both $90/pound and $110/pound
for the airframe cost. These nrices are shown in Table 2.12.
The initial cos: is $4.166 million at $90/pound and
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TH-100(92.3)

Airframe Cost $9
Airframe $2,
Dynanic System 1,
Engines
Avionics
Total $4,

D210-10858-1

Flyaway Costs

0.00/Lb

199,510
063,040
654,265
250,000

166,815

$110.00/Lb

$2,
1,

$4,

688,290
063,040
654,265
250,000

655,295

Direct Operating Ccsts
Dollars/Seat Mile

Block Distance = 230 St. Miles

Utilization (Hrs/Yr) 2500 3500
Airframe Cost ($/Lb) S0 110 90 110
Flying Operations
Flight Crew .0081 .0081 .0081 . 0081
'nel and 0il .004¢ .0045 .0045 .0045
Hull Insurance .0019 .0022 .0014 .0015
Total Flying Operations .0145 .0148 .0140 .0141
Direct Maintenance
Airframe - Labor .0013 .0013 .0013 .0013
-~ Material .0010 .0012 .0010 .0012
Engines -~ Labhor .0007 .0007 .0007 .0007
- Material .0009 .a00e .0009 .0009
Dynamic System - Labor .0011 .0011 .0011 .0017
- Material .0017 .0017 .0017 .J017
Total Direct Maintenance .0067 .0069 .00¢€7 .nosge
Maintenance Burden .0047 .0047 L0047 .0047
Total Maintenance .0114 0116 .0114 .0116
Depreciation .00:1 .0105 .0067 .0075
Total Direct Costs .02353 .0369 .0321 .0332

TABLE 2.12. DESIGN POINT TANDEM HELICOPTER - INITIAL AND
DZRECT OPERATING COSTS.
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$4.66 million at $110/pound. The airframe contribution is
$2.199 million and $2.688 million at the respective rates;
the rest of the initial cost being dynamic system, engines
and avionics cost.
The direct operating costs are shown in Table 2.12 for two
assumed aircraft utilizations of 2,500 hours per year and
3,500 hours per year.
At an airframe cost of $90/pound the direct operating cost is
3.53¢ per seat mile for 2,500 hours utilization. This cost
breaks down to be 1.45¢ per seat mile for flying operations,
0.67¢ per seat mile maintenance and 2 depreciation of 0.94¢
per seat mile.
Increasing the airframe cost to 3110/pound increases the
DOC to 3.69¢ per seat mile. Most of the increase is increase
in depreciation costs and the rest is insurance and maintenance
material.
If the aircraft utilization is 3,500 hours per year the DOC
decreases to 3.21¢ per seat mile and 3.32¢ per seat mile for
airframe costs of $90/pound and $110/pound respectively.
The largest contribution to the direct operating cost is the
decrease in depreciation costs per seat mile.
An extended range version of the design point tandem helicopter
has also been considered with fuel tanks increased to give 400
nautical mile range. With the same takeoff gross weight the
extended range version could carry 98 passengers over the

design (20C NM) mission). The aircraft initial cost increases
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a little due to the additional tankage and the range of

DOC's increase to 3.27¢ per seat mile to 3.76¢ per seat

mile as shown in Table 2.13.

Direct operating costs per seat mil: and seat kilometer as

a function of block distance are shown in Figure 2.41 for
the specified combinations of aircraft utilization and air-
frame costs. Figure 2.41 also illustrates the impact of
extending the design range of the TH-100 (92.3) to 46J
statute miles. The increase in costs at the design point
range (230 statute miles) is the result of the loss of 2
available seats due to the increas2d weight empty for +ihe
installation of larger fuel tarks. Although not shown in
Figure 2.41, it should be noted that the larger fuel tanks
will result in a small increase (less than i%) in seat mile
costs at ranges less than 230 statute miles due to increases
in airframe maintenance and degreciation costs. In the
extended range version of the TH-100 (92.3) seat mile costs
show a continuing increase beyond 230 statute miles because
of the loss of available seats due to additional fuel require-

ments at the longer block distances.
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TH-100(92.3)

EXTENDED RANGE VERSION

Airframe Cost $9
Airframe $2,
Dynanic System 1,
Engines
2vionics
Total $4,

Flyaway Costs

0.00/Lb

231,910
063,040
654,255
250,000

199,215

$110.00/Lb

$2,727,89C
1,063,049
654,25°%
250,000

$4,695,19¢

Direct Operating Costs

Dollars/Scat Mile

Block Distance = 230 St. Miles
Utilization (Hrs/Yr) 2500 3500
Airframe Cost ($/Lb) 90 110 90 110
Flying Operations
Flight Crew .0082 .0082 .0082 .0082
Fuel and 0il .0046 .0046 .0046 .0046
Hull Insurance .0020 .0022 .0014 .0016
Total Flying Operations .0148 .0150 .0142 .0144
D 'v2ct Maintenance
Airframe - Labor .0013 .0013 .0013 .0013
~ Material .0010 .0012 .0010 .0012
Engines =~ Labor .0007 .0007 .0007 .0007
- Material .0010 .0010 .0010 .0010
Dynamic System ~ Labor .0011 .0011 .0011 .0011
- Material .0017 .0017 L0017 L0017
Total Direct Maintenance .0068 ,0070 .0068 .0070
Maintenance Burden .0048 0043 .0048 .0048
Total Maintenance L0116 .0118 .0116 .0118
Depreciation .0097 .0108 .0069 .0077
Total Direct Costs .0361 .0376 .0327 .0339

TABLE 2.13.

VERSION}

TANDEM HELICOPTER - DESIGN POINT (EXTENDED RANGE
INITIAL AND DIRECT OPERATING COSTE.
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D210-10858-1
2.2 DESIGN POINT TILT ROTOR AIRCRAFT TR-100 .98.2)

The tilt rotor aircraft is essentially a conventional propellei
aircraft in its cruise configuration except that its two wing
tip mounted prop/rotors are larger than conventional propellers.
The prop/rotors tilt to provide vertical 1lift in hover and
transition to cruise flight. This concept has inhereat
qualities which make an attractive compromise Letween the V1IOL
flexibility of the helicopter and the cruise performance of a
conventional aircraft. The low disc loading rotors procvide
good hover lift performance and agile handling qualities in low
speed flight. 1In cruise the prop/rotor propulsive efficiency
is high,which coupled with the high lift/drag ratios typical

of wing borne aircraft, prc ides an efficient cruising vehicle.

2.2.1 Design TR-100 (98.2) - Configuration and Layout

The design point tilt rotor aircraft is shown in Figure 2.42
and a three view of the vehicle is given in Figure 2.43.

Table 2.14 provides a list of the major aircraft dimensions
and characteristics.

This aircraft has a takeoff gross weight of 74,749 pound:.

The rotors are three-bladed and are of hingeless fiberglass
construction. The rotor diameter is 56.3 feet anu the
solidity ratio is 0.089. 1In hover and low speed flight, cyclic
pitch control is applied to the rotor to provide control power
and trim. These rotors are highly twisted (34 degrees) by
comparison with helicopter blades to provide for efficient

operation at high advance ratio as well as in hover. The
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S s gy

S.I. UNITS U. S. UNITS

WEIGHTS

DESIGN GROSS WEIGHT 33,905 Kg 74,749 Lbs

WEIGHT EMPTY 22,710 Kg 50,068 Lbs

FUEL WEIGHT 2,111.9 Kg 4,656 Lbs
NUMBER OF PASSENGERS 100 100
ROTORS

DISC LOADING 73.26 Kg/m2 15 Lbs/Ft?

DIAMETER 17.16 m 56.3 Feet

SOLIDITY 0.089 0.089

BLADE NUMBER 3 3

TWIST 36 Degs 36 Degs

TIP SPEED HOVER/CRUISE

POWER
NO. OF ENGINES
RATED POWER/ENGINE

FUSELACE
LENGTH
WIDTH (MAX)
CABIN LENGTH

WING
AREA
SPAN
TAPER RATIO
CHORD
ASPECT RATIO
AIRFOIL t/c

HORIZONTAL TAIL
AREA
SPAN
TAIL VOLUME RATIO
ASPECT RATIC

VERTIZAL TAIL

AREPR
SPAN

TA1L VOLUME RATIO
ASPECT RATIO

PE.RFORMANCE
NRP CRUISE SPEED
CRUISE ALTITUDE
BLOCK TIME

NOISE

SIDELINE NOISE - 500 FEET/HOVER

TABLE 2.14. DESIGN POINT TILT ROTOR TABLE OF

23.622/165.506 m/s

4
3.091 X 105 watts

28.19 m
4.511 m
17.602 m

69.44 m?
22.28 m
1.0
3,109 m
7.14
0.21

18.75 m?

10.668 m
1.47
5.16

¢ .
W
[,
r-
23

179.54 m/s
4267 m
.742 Hours

98.2 PNdB

775/543 Ft/Sec

4
4145 HP

92.5 Feet
14.8 Feet
57.75 Feet

Feet?
Feet

Feet

204 Feet?
35.0 Feet
1.47
5.16

221 Feet?
17.6 Feet

.159
1.32

349 KTAS
14,000 Feet
0.742 Hours

bt s 4

net

98.2 PNdB

CHARACTERISTICS.
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The rotors and forward rotor transmission tilt; however, the

engines mounted outboard of the tilt package, remain stationary.
This arrangement dces not require the engines to be requalified
for vertical operation and also reduces the inertia of the

tilt package.

The aircraft has four engines, two on each wing tip. The
rotors and engines are connected by means of a cross-shaft
which provides for torque transmission across the aircraft in
event of e¢rgine failure.

The loca*ion of the engines outboard of the tilt package
provides easy access to the engine bays for maintenance or
engine removal.

The span of the aircraft is 82 feet. The wind is straight

and untapered with a NACA 634221 section with a wing setting

angle of 2 degrees relative to the fuselage. The wing aspect
ratio is 7.14.

The wing flaps are full span 30% chord plain flaperons and
are used as both flaps and ailerons. The leading edge is
provided with an umbrella flap which opens for hover and low
speed "helicopter" flight to alleviate the rotor download

on the wing. This device is also used to ensure that the
transition from separated to attached flow over the wing lower
surface occurs simultaneously on both wings.

The empennage is a T tail configuration to reduce the impact
of rotor downwash on the horizontal stabilizer in transition

flight. The horizontal tail volume ratio is 1.47 and the
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vertical tail volume ratio is 0.159,.

The landing gear is a tricycle configuration to provide good
ground handling characteristics and is retractab.e into the
lower fuselage. The undercarriage provides an overturning
angle of 27 degrees.

Cabin layout and passenger accommodation details are shown in
Figures 2.43 and 2.44. The aircraft cabin has two main
entrances located on the port side of the aircraft. The aft
entrance is equipped with an air stair in accordance with
NASA guidelines. The rear entrance is the normal entrance/

exit.

A third Type I entrance is located on the starboard side of
the forward cabin.

Two Type II exits are provided mid-cabin immediately aft of
the baggage/toilet facilities.

A further Type II exit is located aft directly opposite the
main entrance.

The passenger cabin has seats for 100 passengers with an
overall seat width of 21 inches and a seat pitch of 34
inches.

Each pasgenger has under-seat stowage space (9 inches X 16
inches X 23 inches) and overhead rack stowage with lockable
doors. Airvents, individual lights and a folding table are
provided for each passenger in line with normal commercial

aircraft practice.

The cabin has dual 19 inch aisles and the m&in cabin lights

93
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are located over the aisles.
Two coat racks are provided - one forward and one aft with
provisions for 80 passengers.
TwoAlavatories are provided in the center of the cabhin in
line with the baggage stowage area. The location cf the
baggage and toilet facilities in this areas is to keep
passenger seats away from the prop/rotor tip path plane in
cruise to minimize noise and vibration. External baggage
loading doors are provided to give ground crew access if
desired.
The beverage storage and service facilities are located aft.
This unit is located adjacent to the service door/emergency
exit which is larger than the minimum required Type II exit.

Ticketing facilities are located in the same seivice unit.

The cabin attendants' seats are located - one forward against
the forward passenger cabin bulkhead and ciose to the forward
exits, and the second, aft against rear bulkhead and close to
the rear exits.

The aircraft avionics and navigational gear compartment is on
the port side of the aircraft just forward nf th2 cockpit/
cabin bulkhead. The cockpit space provides adequate accommo-
dation for a flight crew of two with excellent visibility. A
third “"observer" seat is provided adjacent to the avionics bay
at the rear of the cockpit. This location provides the
observer good forward vision, visibility »ver the flight crew

stations, and alsc access to the avicnics/non-aids bay ir
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required. The cockpit is provided with two crew emergency
exits - one on each side of the cockpit.

2.2.2 Tilt Rotor Design Point Aircraft - Weight

The design point tilt rotor aircraft design gross weight is
33,905 Kg (74,749 pounds). The weight breakdown in terms of

the structural \nd system categories is shown in Table 2.15.

In the aircraft sizing procedure, weight trend curves developed

at Boeing were used to establish the component and system
weights as functions of configuration, size, flight envelope,
etc. The fixed useful load, fixed equipment and payload is
added and the mission fuel required computed. The aircraft
size is iterated until the mission fuel required equals the
fuel weight available.
The component and system weights are verified in Volume IT by
comparison with trend line cdata.
The calculation of aircraft weight is based upon several
guidelines. The guidelines for the study and their impact
on weight estimation are discussed in Volume II.
The major guideline requirements are summarized below:
1, The maximum takeoff weight and maximum landing
weight shall be the same.
2. Passenger weight shall be 180 pounds (160 pounds
passenygyer and 20 pounds of non-revenue baggage).

3. No revenue cargo is assumed.
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BUEING VEKIUL LUMFANY WEIGHT SUMMARY - PRELIMINARY DESIGN
v D219-10858-1] _
i
[KILOGRAMS § POUNDS i
P 1960.9 4323 . - .
Re-om 12379.5 | 5246 | ST .
TAL 636.8 1404 1 o — ]
SURFACES _636.8 1 1404 | . . - ]
RO-OR
TE 3853.2 | 8495 | ]
B AS'T L e ]
SECONDARY L _ e e ]
| ALIGHTING GEAR GROUP 1356,2 2990 _ B
ENGINE SECTION 1.430.0__y 948 _+ e o ]
PEOPCLSION GRQUP 477“51'78 r_—10476~ B ____: - ]
ENGINE INST'L _1.1184.3 1 2611 | ~ L U
EXHAUST SYSTEM * ——— — e ]
COOLING L B R S o ]
CONTROLS * L o — e
STARTING * __ ]
PROPELLER INST'L *367.4 *810 e
LUBR CATING * . L ~ L ,vj
FUEL 99.3 219 | _ _
ORIVE 3100.8 6836 | B )
Fo!GHT ONTROLS 1835.2 4046 ‘ﬁ o L - o]
Aux. POWER PLANT 288.5 636 . L ) :
INSTRUMENTS 191.9 423 o % -
HYDR. & PLEUMATIC 308.4 680 o OF% PAGE ]
ELE T"R'CAL GROUP 378.3 834 | R\ AQEqur . R
A,10N'CS GROUP 293.9 648 e A
ARMAMENT GROUP ~ I S — e e -
SURN. & EQUIP. GROUP 3273.6 7217 _ S ]
ACCOM. FCR PERSON. N SR -
MISC. EQUIPMENT ) L R . - -
FURN:SHINGS 1 | _ - ~ ]
EMERG. EQUIPMENT = o o _ _
AIR CONDITIONING 612.3 V_jjso» 1 — e ]
ANTISICING GROUP | 25_410 j _.5.604. J - -
LOAD AND HANDLING GP. .- AF—v———~——--w i _ S S - e : — ’—ﬁ
N T R —_— o
~ - - — - e - —
WEIGHT EMPTY 22804.7 50276
CREW | 299.4 660 ]
TRAPPEDLIOMDS ng_g_ | 115 1 o _ ~ N
ENGINE OIL 059.9 | 132 | _ . }
3 ACCOMMODATIONS | 68 0 I I = o .
v [IMERGENCY BQUIPMENT | 23.6 | _ 52 L —_— _
SSENGER ACCOMMO. 415.5 L R S
IPASSENGERS (100) 8164.6 18000 - — .
FUEL 2017.6 4448 - o 4
GROSS WEIGHT 33905.4 74749 [ | |

TABLE 2.15 DESIGN POINT TILT ROTOR WEIGHT SUMMARY.
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4. Accommodation a. = =quipment shall be provided
for a flight crew of two and for one cabin
attendant per 50 passengers. In addition,
some provision shall be made on the flight
deck for an occasional flight observer. Each
crewman plus gear weighs 190 pounds, and each
cabin attendant plus gear weighs 140 pounds.

5. The aircraft sh.ll be equipped with an APU to
meet the needs of starting, ground air condi-
tioning and heeting.

6. The aircraft designs are to be kased on a 1985
operational time period. The Contractor shall
assume the airframe structural weight will be
reduced by 25% by the use of composite materials.

It is to be assumed that by 1985, a system to permit all
weather operation will have been established and that the
V/STOL short haul transport system will use it.

Standard Weight Items

The weights of specified standard items shall be as provided
in Table 2.16.

Fly-By-Wire Control Systems

Fly-by-wire control systems are permitted. Control configured
vehicles (CCV), such as a tailless tilt rotor configuration
are not permitted.

Gearboxes

The rotor gearboxes shall be designed for the maximum rated
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engine power and torque under sea level ctandard day

conditions.

Engines

Rubberized versions of existing engine designs are permitted,
as appropriate for cormercial service in 1985. The engine
specific weight shall be 0.15 pounds per shaft horsepower.
The guideline weight of (544.2 Kg) 1,200 pounds for instru-
mentation, electrical, electronics and auxiliary power unit
installation has been assumed to be the uninstalled weight
and an additional weight of 440.8 Kg (972 pcunds) has been

added to reflect installation.

ITEM WEIGHT

HEELS, TIRES, AND BRAKES COMPANY OPTIMUM

ELECTRICAL (EXCLUDING GENERATING EQUIPMENT)
ELECTRONICS (COMMUNICATION, FLIGHT, AND 1200 LBS

INSTRUMENTS (FLIGHT AND NAVIGATION)

NAVIGATION)
UXILIARY POWER UNIT INSTALLATION

SEATS AND BELTS

PASSENGER: DOUBLE 16 LB/PASSENGER
TRIPLE 16 LB/PASSENGER

CREW SEATS: CABIN CREW 16 LB/CREW MEMBER
FLIGHT CREW 40 LB/CREW MEMBER

LAVATORY 300 LB/UNIT

BEVERAGE ONLY 200 LB TOTAL

AIR STAIR 400 LB

TABLE 2.16. TILT ROTOR WEIGHTS GUIDELINES.
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The cockpit and passenger cabin accommodation weights have

been based upon the Boeing 737 aircraft since it was considered »
that passenger comfort of at least current commercial quality
would be required.

The landing gear was sized to take a rate of sink of 500 feet
per minute and represents 4% of the gross weight.

The fly-~by-+ire control system weights are based upon recent
Boeing experience with fly-by-wire controls in the 347 heli-
copter.

The aircraft structure has been sized to a maneuver load

tactor of 2.5 and an ultimate load factor of 3.75 as recommended
in FAR Part 25.

The aircraft center of gravity lccations and moments of

inertia are given in Table 2.17 for both hover and cruise flight
at the extremes of the weight envelope, i.e., weight empty i
and design gross weight.

The excursions of center of gravity travel are shown for both
hover and cruise flight in Figure 2.45. The center of aravity
envelope for this aircraft assumes that window seats are filled
first, followed by aisle seats.

The aircraft weight resulting from this study is governed to

a large extent by the selection of fixed equipment and fixed
useful load weights as well as payload. In order tc facilitate
reasonable comparison with aircraft designed in other studies
using different weightt, growth factor data are given in

Figure 2.46. This plot provides the change in aircraft gross

100
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WEIGHT EMPTY

GROSS WEIGHT

WEIGHT
CENTER OF GRAVITY*
HORIZONTAL FLIGHT
FUSELAGE STATIOK
WATER LINE
VERTICAL FLIGHT
FUSELAGE STATION
WATER LINE
MOMENT OF INERTIA

HORIZONTAL FLIGHT
Ixx (ROLL)

I (PITCH)
Yy

I (YAW)
2z

VERTICAL FLIGHT
I (L.OLL)
XX

I (PITCH)
PP

I (YAW)
22

22,804.7 Kg
(50,276 LBS)

12.72 M (500.8 IN.)
3.56 M (140.4 IN.)

13.08 M (515.0 1IN.)
3.96 M (156.1 IN.)

1,199,928 Kg M2
(885,1702Slug Ft?)
519,241 Kg M2

(383,037 Slug Ft?)
1,398,099 Kg M?

1,261,339 Kg M2
(930,473 Slug Ft?)

562,151 Kg M2
(415,622 Slug Ft?)
1,512,572 Kg M2
(1,115,805 Slug Ft?)

33,905.4 Kg
(74,749 LBS)

12.77 M (502.8 IN.)
3.26 M (128.5 IN.)

13.12 M (516.5 IN.)
3.53 M (139.0 IN.)

1,290,245 Kg M2
(951,796 Slug Ft2)
558,324 Kg M2

(411,868 Slug Ft?)
1,503,382 Kg M2

1,356,279 Kg M2
(1,000,509 Slug Ft?)

604,464 Kg M?
(446,905 Slug Ft?)
1,626,422 Kg M2
(1,199,790 Slug Ft?)

*FUSELAGE STATION O IS NOSE OF BODY, CENTERLINE OF ROTOR IN
HORIZONTAL FLIGHT IS 4.6 METERS ABOVE WATER LINE O.

TABLE 2,17 . WEIGHT, CENTER OF GRAVITY AND MOMENT OF
INERTIA - DESIGN POINT TILT ROTOR.
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FIGURE 2.46 . TILT ROTOR WEIGHT GROWIH AT CONSTANT
PERFORMANCE AND STRENGTH.
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weight for increasing or decreasing fixed weight items.

2.2.3 Design Point Tilt Rotor - Vehicle Performance

The design point tilt rotor aircraft has been sized to the
mission defined in Table 2.5. This aircraft carries 100
passengers over a short haul range of 371 Kilometers

(200 nautical miles).

A summary of the mission performance is given in Tables 2.18
and 2.19.

The initial phases of the mission including taxi, takeoff,
initial air maneuver and conversion to cruise flight require
193.1 pounds of fuel. The aircraft then climbs to 14,000
feet at an initial rate of climb of 4,227 feet per minute
and a final rate of climb of 2,265. At the end of the climb
segment the aircraft has burned 600.7 pounds of fuel and

has travelled 12.45 nautical miles down range.

The cruise segment is done at 14,000 feet at an initial
aircraft weight of 74,148 pounds and a true airspeed of 349

Krnots. At the end of the cruise segment the aircraft fuel

used is 2,799.8 pounds and the distance traveiled has increased

to 171.82 nautical miles. The aircraft speed at the end of
cruise is 351 Knots TAS.

The descent to 2,000 feet altitude is initially at 4,073

feet per minute rate of descent falling to 2,027 feet per
minute at 2,000 feet altitude. The fuel "sed at the end of
descent amounts to 2,938.4 pounds for a range of 200 nautical

miles.
104
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The final air maneuver or loiter for 1.5 minutes increases

the fuel used to 3,003.9 pounds. The descent to 1,000 feet
altitude is done at an average rate of descent of 2,092 feet
per minute followed by the descent from 1,000 feet conversion
and landing. At touchdown the aircraft has used 3,143.5 pounds
of fuel and after a final taxi segment completes the mission
for 3,157.4 pcunds of fuel.

Table 2.18 also shows the computation of reserve fuel which

is 1,511 pounds for a total fuel load of 4,668.64 pounds.

The mission block time is 0.747 hours.

Hover Performance

The hover performance of the aircraft is shown in Figures 2.47
and .2.48 in terms of the gross weight lifting capability of
the aircraft as a function of ambient temperature.

Data are shown for "all engines operating" (AEO) and also

"one engine inoperative" (OEI) both in and out of ground
effect (IGE,OGE). The power level shown for the all engines
operating case is the normal design takeoff power setting. For
the one engine inoperative data a 9% power increase per 2ngine
has been allowed.

Allowance has been made in the computations for force/weight
ratios of F/W = 1.05 (AEO) and F/W = 1.03 OEI in accordance
with guideline requirements.

The aircraft sizing condition was the OEI case at 90-degrees

F sea level. This point is shown on Figure 2.47 giving a
design condition lift capability of 74,749 pounds of out

ground effect.

107



-y

i 7 PRl

D210-10858~1
BASELINE AIRCRAFT PERFORMANCE

TILT ROTOR/100 PASSENGER/98,2 PNdB

ONE_ENGINE INOPERATIVE

12|’ 16f x103
xlOG F/W=1,03
é 1 ~
B
g = 14k
VO 10F
" o
‘;,‘ )
S o1}
2
g °f
10+
100 x103
sy 100}
x10
@ 90 N
t 404 f
) =
6 |5
B E 80 | %z
§ 351 @ DES. PT.
|8
O 70
30 56 70 9¢ 110
AMBIENT TEMPERATURE -~ DEGREES F
P V—— 4 ek e———— aad
0 15 30 45

FIGURE 2.47 EFFECT OF AMBIENT TEMPERATUKE ON SEA LEVEL -
HOVER PERFORMANCE, ONE ENGINE INOPERATIVE.

AMBIENT TEMPERATURE - DEGREES C

io8

mw‘mﬁw@ ISP



A

TR ——

TOTAL POWER - WATTS

Kg

GROSS WEIGHT -

D210-10858-1

SASELINE AIRCRAFT PERFORMANCE

TILT ROTOR/100 PASSENGER/98.2 PNAB

ALL ENGINES OPERATING
F/W= 1,05

X 106 TORQUE LIMIT

12

10

45

40

35

FIGURE 2.48

164 % 10% -_\

TOp
—QUE LIMrq

100)x 103
3
2ep
10RQUE LIMIT
90 - -
e

P
L3

s
N

TOTAL SHP

(=]

30

GROSS WEIGHT - LBS +

[ 70 ) | | J
30 50 70 90 110
AMBIENT TEMPERATURE - DEGREES F
0 15 30 45
AMBIENT TEMPERATURE - DEGREES C

HOVER PERFORMANCE, ALL ENGINES OPERATING.

109

EFFECT OF AMBIENT TEMPERATURE ON SEA LEVEL -



i

D210-10858~-1

With all engines operating the main drive train sets the
tcrque limit, and is shown to be adequate for sea level,
standard day, all engines operating with a force-to-weight
ratio of 1.05. The torque limit for the main transmission

was set by cruise at normal rated power at 14,000 feet.

The additional 1lift capability at temperatures below the
aircraft sizing condition is not normally used since the OEI

requirement sets the FAA gross weight certification.

The IGE data shown reflect the undercarriage just clear of
the ground condiiion and at the OEI condition 90-degrees F
ground effect provides an additional 10,450 pounds of 1lift.
This extra lift capability will not be used operationally

as payload; however it provides a useful cushion for deceler-
ation or flare of the aircraft on landing, and an additional
initial force-to-weight capability on lift-off (F/W initial

= 1.36 all engines operating IGE at design gross weight).

The lift performance of the aircraft at altitude is shown in
Figure 2.49.

At design gross weight (74,749 pounds) the aircraft can hover
(OGE) at 3,600 feet altitude, all engines operating at an
ambient temperature of standard plus 3l-degrees F and on a

standard day can maintain hover at 7,600 feet fully loaded.
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BASELINE ATRCRAFT PERFORMANCE

TILT ROTOR/100 PASSENGER/98.2 PNdB

STANDARD DAY AND STANDARD DAY PLUS 31°F (+17.2°C)
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FIGURE 2.49. EFFECT OF ALTITUDE ON HOVER GROSS WEIGHT
CAPABILITY
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Witl. zero payload the maximum hover altitudes increase to

14,200 feet (standard day plus 31 degrees) and to 17,000 feet
standard day.

The one engine inoperative (OEI) case is shown in Figure 2.50.
The design pcint sizing condition is at sea level 90 and is
again shown at 74,749 pounds. At standard day conditions,

the fully loaded aircraft can maintain hover OEI at 4,000
feet altitude OGE.

Transition Perfcrmanca

Performance in transition depends on how nacelle angle is
scheduled with speed. This is in turn a function of contr_1l
system details. A detailed design of the transition control
scheduling has not been attempted in this conceptual study.
However, the power required to fly the transition trim schedule
shown in Figure 2.71 has been computed and is shown in Figure
2.51., Throughout transition the power required is much less
than the power available at NRP.

Cruise Performance

In cruise flight the nacelles are fully down and the rotors are
operating as propellers. The rotor RPM is decreased to 70%

of the hover RPM.

Data on power required and normal rated power (NRP) available
in cruise are shown for three aircraft weights at 5,000 feet
and 14,000 feet altitude in Figures 2.52 and 2.53. At 5,000
feet altitude the aircraft is transmission limited to 3z4

Knots at design gross weight, all engines operating and to
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332 Knots at operating weight empty.

The one engine inoperative power available allows a cruise
speed of 310 Knots at design gross weight and 320 Knots at
operating weight empty.

With all engines cperating at 14,000 feet and design gross
weight, the aircraft transmission limit and NRP occur simul-
taneously limiting the airspeed to 350 Knots. This condition
was used to size the main rotor transmission.At operating
weight empty this speed can be increased to 360 Knots.

The one engine inoperative case is power limited and a true
airspeed of 306 Knots can be maintained at design gross
weight. This speed increases to 325 Knots at operating weight
empty.

The intersections of the power required - power available data
define the velocity capability of the aircraft at various
altitudes. This data is shown in Figure 2.54.

The aircraft maximum speed at design gross weight is 35C Knots
at 14,000 feet. Below this altitude the aircraft is transmissicn
limit=d and above 14,000 fecet it is power limited. At minimum
flying weight - operating weight empty - the maximum airspeed
is 3€¢0 Knots at 14,400 feet altitude.

The one engine inoperative case is not transmission limited
and results in a maximum low altitude speed of 310 Knots at
4,000 feet.

The speed capability of the aircraft is greater than the 250

Knots EAS restriction at less than 10,000 feetv, and the
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BASELINE AIRCRAFT PERFORMANCE

TILT ROTOR/100 PASSENGER/98.2 PNdB

STANDARLC DAY

CRUISE RPM
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& ONE ENGINE INOPERATIVE
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FIGURE 2,54. LEVEL FLIGHT CRUISE SPEED ENVELOPE.
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vehicle would be constrained operationally to the 250 Knot

EAS boundary shown in Figure 2.54.

Rate of Climb

The design point tilt rotor aircraft climb capability in

the cruise flight mode is shown for both the design gross
weight and operating weight empty as a function of altitude
in Figure 2.55. Two sets of data are shown for both all
engines operating and one engine inoperative.

At design gross weight (AEO) the aircraft can climb at 4,600
feet per minute at sea level and at normal cruise altitude
14,000 feet can maintain a rate of climb of 3,109 feet per
minute.

In the one engine inoperative case the aircraft can maintain
adequate climb rates in its normal operating range of
altitudes (3,000 feet per minute at sea level and 1,350 feet
per minute at 14,000 feet altitude) at design gross weight.
At lighter weight (e.g., OWE) the climb rates increase and
in some cases require a fuselage angle in excess of 20 degrees.
This is shown for the OWE data in Figure 2.55 and reflects a
probable normal operational maximum rate of climb.

Specific Range

Specific range data in the cruise flight configuration are
shown in Figures 2.56 and 2.57. The AEO case at both 5,000
feet and 14,000 feet altitudes is yiveu in Figure 2.56. At
the design cruise speed of 348 Knots at 14,000 feet and design

gross weight the aircraft achieves 0.0725 nautical miles per
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SPECIFIC RANGE - Km/Kg

L21C-10858-1

BASELINE AIRCRAFT PERFORMANCE
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BASELINE AIRCRAFT PERFORMANCE

TILT ROTOR/100 PASSENGER/98.2 PNdB

DGV = 74,749 LBS/33,905 Kg
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ONE_ENGINE INOPERATIVE

m
=]
~N
-
2 1o ALTITUDE = 5,000 FT/1524 m
.40} 4 ~ STANDARD DAY
=
&)
.35 E
.08
Q
30| 2 o\
()
Q
€3]
25| &.0
ALTITUDE = 14,000 FT/4267 m
:50) 1, STANDARD DAY
m I
[
S45)
. 40 ) +10
<3}
2
L3510 % i
S'L&
308 o
[ ]
Q
D]
.25] & .06
— e e e — e "_;‘_' - e = = = l ‘ = -
100 200 300

: AIRSPEED - KNOTS

FIGURE 2.57. CRUISE PERFORMANCE - SPECIFIC RANGE -
STANDARD DAY - CRUISE RPM - OEI.

122

PP



pound of fuel. The best

D210-10858-1
range cruise speed at this altitude

and weight is 249 knots giving a specific range of 0.092

nautical miles per pound

of 268 knots.

of fuel and a 99% best range speed

The effect of weight is shown by comparing the three sets of

dara for weights between

operating weight empty (OWE) and

design gross weight (DGW). The maximum specific range

achieved at OWE (14,000 feet) is 0.1155 nautical milee per

pound of fuel at a best range speed of 224 knots and the 99%

best range speed ie 239 knots.

Flying at lower altitude (5,000 feet) reduces the specific

range capability of the aircraft {(Figure 2.56).

For example,at the transmission limit speed (DGW} of 322

knots and 5,000 feet altitude the speciiic range is 0.066

nautical miles per pound of fuel and the maximum specific

ranges achieved are 0.0815 and 0.0965 nautical miles per

pound of fuel at DGW and OWE respectively.

With one engine inoperative or one engine shut down the range

performance of the aircra 't improves slightly, Figure 2.57.

This is due to the higher power setting required on the

operating engines which provides a lower specific fuel con-

sumption. At the ncimal
14,000 feet altitude and
and the maximum specific
nautical miles per pound

at 14,000 feet altitude.

rated power limit speed of 306 knots at
DGW the specifi~ range is C.086
rarge achieved are 0.093 and 0.1225

5f fuel at DGW and OWE respectivel-
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The same data are provided (OEI) at 5,000 feet altitude in

Figure 2.57 and 3gain show a reduction in specific range
performance compared with 14,000 feet altitude.

Range Performance

The payload range data for the cdesign mission profile and
reserves with all engires operating is shown in Figure 2.58.
With a takeoff gross weight of 74,749 pounds and 100 passengers
the aircraft has a design range of 200 nautical miles as
shown. The design mission fuel limit defines the range at
zero payload as 234 nautical miles.

The range of the aircraft can be extended by the addition of
extra wing tanks. If the fuel load is increased to 7150
pounds and accounting for additional tank weignt of 180 pounds
the range of the aircraft becomes 400 nautical miles with
payload of 85 passengers and baggage.

Witl de_.ign mission fuel and tanks the range performance of
the aircraft (OEI) has been computed, Figure 2.59.

This data shows an increased range to 250 nautical miles with
a full passenger load due to the improved specific range and
SFC's which result from operating the remaining three engines
at a higher fraction of available power.

Drag

The tilt rotor drag is shown in terms of evuivalent flatplate

area (Fy) in Table 2.21. The method evaluates the drag of

each major aircraft component and sums the components to give

the,vehicle Fg.
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.. TILT ROTOR DRAG SUMMARY
A\ ¥ 4
ITEM DRAG ARE:L fo - FT?
FUSELAGE 10.3914
WING 7.3627
VERTICAL TAIL ‘ 2.2474
HORIZONTAL TAIL | 2.5998
ROTOR NACELLE 1.2946
ENGINE NACELLE 2.6573
MISCELLANEOUS
OIL COOLER MOMENTUM LOSS .3750
AIR CONDITIONING .5000
TRIM .0640
TOTAL DRAG AREA 27.4922

TABLE 2.20. TILT ROTOR BASELINE AIRCRAFT DRAG SUMMARY.
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The design point tilt rotor has an equivalent drag area of

2

27.492 feet® or a gross weight/Fe ratio of 12,885 Kg/m‘

(2,750 pounds per feet?).

~rop/Rotor Performance

The definition of the aerodynamic design of a prop/rotor for

a tilt rotor aircraft is a compromise between the requirenents

for good hover and cruise performance. Design trade studies

have been performed to optimize the rotor design parameters

and are reported in Volume II.

The static and cruise performance of the selected design is

shown in Figures 2.60 and 2.61. 1In hover a maximum figure

of merit of 77% is achieved at a rotor thrust coefficient of

0.010. For 1g hover the rotor design thrust coefficient is
0.0106. The cruise performance is shown as a rotor map

in Figure 2.61 giving Cp and Cp for lines of constant advance

ratio.

2.2.4 Design Point Tilt Rotor - Flying Qualities

Hover

The hover trim data at design gross weight is shown in Figure
2.62. Data are given for three CG locations from 45% MAC in
hover which is equivalent to 42% MAC in cruise to 25% MAC
which is equivalent to 13.8% MAC in cruise. The CG shift
between hover and cruise is due to nacelle tilt.

For nacelles at 90 degrees (hover) the aircraft fuselage
attitude is 0.6 degrees at the aft CG and requires 0.9

degrees cyclic to trim. At the forward CG the fuselage
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trims l.9-degrees riose down and requires 2.4-degrees cyclic
to trim,

Hover trim is possible with nacelle angles greater and less
than 90-degrees, however, the fuselage attitude excursions
increase. The cyclic required for hover trim is relatively
insensitive to fuselage attitude, but is strongly dependent
on CG location since this defines the moment arm for the
weight.

Control Power In lLcver

The aircraft control power in hover is shown in Figures

2.63, 2.64 and 2.65. Pitch control is obtained by the appli-
cation of cyclic pitch. The resulting hub moment and in-plane
force times the distance from the hub to the CG gives a pitch
moment which is used for pitch trim and control. The
sensitivity of pitc