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PREFACE

One of the great rewards enjoyed by persons who spend their
lives in scientific research work is the unpredicitability of
what they are doing. It is an exciting world and one I enjoy
immensely. However, not all of the surprises are the kind one
likes to boast about. Principal Investigators have to admit to
less productive years as well as proudly present their successes.

On this program, in the meteorological study area, we have had
one of those years. While good work has been done Ly several
persons, it is as yet too incomplete to include in this report.

We expect to present these efforts in next year's report.

I am happy to present three papers by Dr. Aniruddha Das
and his principal advisor, Professor T. C. Huang. Publication
of these papers concludes Dr. Das' development of a generalized
flexible satellite attitude control model and the application
of that model to some relatively simple analyses. We anticipate
that llas' model will be used by government agencies and by
industry in more complex applications.

I am especially grateful to Professoxr Huang for his assistance
and support. We sincerely appreciate the patience and support of
the many dedicated persons in the National Aeronautics and Space
Administration with whom we have worked during the past year.

Verner E. Suomi
Principal Investigator
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STABILITY OF STOCHASTIC SATELLITES

T. C. Huang and Aniruddha Das

ABSTRACT

The effects of random environmental torques and noises in the moments of
inertia of spinning and three-axes stabilized satellites are compared analyti-
cally and by analog simulations. Four analytical methods are used to compute
the mean values and variances of the satellite response. Among the analytical
methods, it is shown that the Fokker~Planck formulation yields predictions
which most coincide with the simulation results. The variances of the responses
have been shown to have an initial period of growth. This growth rate falls
off with time and the variances reach and stay at an equilibrium value. The
growth rate is also shown to be an increasing function of the inertia noises
and the nominal spin rate.

NOMENCLATURE

Ai’ i=1-4 = Arbitrary constants; Eq. (74).

as, i=1-27 = Coefficients defined by Egs. (10-18) and Eqs. (19-27).

c = Arbitrary constant; Eq. (74).

Dl’ D2 = Arbitrary constants; Eq. (74). ]
E,{F} = Vector forcing function; Egqs. (9L, 92). i
f*,f*Qﬂ,tlé,T) = Conditional joint probability density function of w(t)

given the values of w(1).
_g,{fi}; i =1,2,3 = Arbitrary random forcing functions; Eqs. (1),(19)-(21),

£,{£,} 1 = 1,2,3 = Mean values of £,{f}.

Gl’GZ’G3 = Components of “200' M020’ HllO’ respectively; Eqs. (74),
(74a), (74b) and (74c).

11,12,13 = Stochastic moments of inertia of the satellite; Eq. (1).

Tl,fé;fs = Mean values of Il’ 12 and 13, respectively.

J = Functional defined by Eq. (95).

K - = Polynomial function of p; Eq. (70).

L,L(Bl,ﬂé,eaia,t) = Derivative characteristic function with parameters 8y

8, and 6, for the random variables w, for a given w(t);

2 3 4
Eq. (7).
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Hu; 1, = 1-6
Hklm

Ni’ 1= 1-7
Nyyi 1,3 = 1-6
3

T

rij; 1, = 1-4
sij; 1, = 1-4
T

t

tij; 1,j = 1-4
3’{“1}; i=1-6
!,{vi}; i=1-6

oy i=1-8

uij; j = 0-6

B,, 1 = 1-3

1’

Bij’ j =0,1,2,3,..

8(¢)

§,,1i=1~3

i!

White noises associated with A'f

Matrix differential operator; Eq. (79).

Covariance matrix of u; Eq. (5).

Statistical moments of w(t) for a given v(0); Eq. (30).
Paraneters related %o Nij by Eq. (108).

Covariance matrix o7 v; Eq. (94).

Eigenvalue of various equations.

A measure of the noise levels; Eq. (122),

Coefficients defined by Eqs. (74e) - (74g).
Coefficients defined by Eqs. (74e) -~ (74g).

Period of time in which the most-likelihood estimates
of w are required.

Time.

Coefficients defined by Eqs. (74e) - (74g).
Random vector; Eq. (4).

Random vector; Eq. (93).

Coefficients of the characteristic polynomial for pj;
Eq. (41).

Components of @ Eqs. (46), (58) etc,
Lagrangian multipliers; Eq. (95).
Components of Bi; Eq. (109).

Dirac's delta function.

3 Ea. (2).

Largest absolute value of N, for all i and j; Eq. (108a).

13
Sample space white noises assoclated with Ii; Eq. (75).
Time dependent white noises asscciated with Ii; Eq. (75).
Parameters of L; Eq. (7).

Total forcing functions defined by Egqs. (10) - (12) and
Eqs. (19) - (21).

Mezn values of Afi.



A'fi, i=1-3 = Total forcing functions defined by Eq. (1).

VE, 1=1-3 = Mean values of A'fy.

Al,kz = Parameters defined by Eqs. (71), (72).

Ws i=1-3 = Total white noises associated with Ii; Eq. (2).

L = Parameter defined by Eq. (74d).

p = Parameter defined by Eq. (74d).

Prim = Statistical coefficients defined by Eqs. (6), (8).
Oi, i= 1-3 = Standard deviations of w3 Egqs. (115), (116).

Q = Nominal spin rate of the satellite.

g*,{ng} = Nominal angular velocity vector of the satellite,
g,{mi} = Angular velocity vector of the satellite; Eq, (1).
.é,{ﬁi} = Realized angular velocity vector corresponding to w.
mij’ j = 1-34 = Components  of w3 Eq. (%),

OPERATORS

E{ } = Statistical expectation.

O = Mean value,

{ ]T = Transpose.

) R

INTRODUCTION

This study compares the effects of stochastic geometry and random environ-
mental torques on the pointing accuracy of spinning and three-axes stabilized
satellites. A comparison of pointing accuracies requires a comparison of the
rates of error growth over and above any criterion for the asymptotic stability
of the satellites. For this reason, this study is oriented towards the deter-
mination of the statistical properties of the gatellites' responses. The
questions of stability have been answered indirectly by the computed responses.

The reason for considering the environmental torques on- the satellites
as random 1s self-evident, The geometries of the satellites are considered
stochastic in order to have a phenomenological model of the motions of the
satellites’ flexible structural eleéments. If a satellite were absolutely rig-
id , its inertia properties would have been constant for all time and measured
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to a near certainty. Because real satellites contain many flexible and moving
parts, their moments of inertia can be assumed to be stochastic variables with
certain associated noise.

To be more specific, the rigid body Euler's equations

. _ -2t
Ilwl + (13 12)«)2(.\)3 A fl

. _ - 3!
Iby + (I1 13)wlw3 A'E, 1)

. _ N
13m3 + (I2 Il)mlu»2 A f3

governing the motion of satellites will now be analyzed. In the above equation,
Il, 12, 13 are the stochastic principal moments :of inertia of the satellite. N

The vectors w = [ml,mz,w3]T and \'f = [_A'fl,l'fz,l'f3]T are the angular velocity

vector and the environmental torque vector of the satellite, respectively, along §
the principal axes of inertia. And A' is a parameter. The vector A'f and, }
congsequently, the vector W are random variables. f

H

Equation (1) is an example of an intrinsically nonlinear system of equa-
' tions with random coefficients. The difficulty of obtaining an explicit solu-
. tion to Eq. (1) can be appreciated when we realize that the stochastic version
i of even a simple scalar linear equation is actually nonlinear due to the de-
pendence of the solution on the random coefficients. (See Refs. 1, 2.) The
situation has been made even more complex by the presence of several contradic-
tory methods for solving stochastic equations [l]. A widely used method of
solving stochastic equations 1s the Fokker-Planck approach. 1In this, the equa-
tions are assumed to define a Markoff process and the transition probability
densities of the responses are computed directly as a function of time. S$ev-
eral interesting equations have been solved by this method in Refs. [3-7].

Another useful method, using perturbation techniques for solving stochas-
: tic equations, was discussed in Refs. [8,9]. This is ome of the "honest" meth- i
i ods in which response is solved analytically in terms of small random param-
: eters. The stochastic properties of the response are obtained from the analy-
tic solution as secondary results.

! A third promising method of solution can be obtained by extending the line
of logic shown in Ref., [10]. This method determines the most likelihood estimates
of the response by maximizing the joint probability density of all the stochas-
tic variables of the system. This is essentially a formulation of the Kalman
filter for the case of deterministic coefficients and random forcing functions.
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PEENCL

’ Lastly, there is the obvious method of initially assuming the system of

i equations to be deterministic and then attributing the proper stochastic prop- 5
erties to the deterministic solutions. It 15, of course, true that this method -
is rigorous only 1if the random parameters are constants in time. The stochastic
properties of the eigenvalues and eigenvectors of such systems have been comput-
ed in Refs. {11,12]. This method is worth investigating for slowly varying
parameters with random step increments.




The response vector, w(t), of a rigid satellite governed by Eq. (1)
will be analyzed using the above mentioned techniques. The analytical responses
are then compared with results of an analog computer simulation. This allows
verification of the relative merits of the analytic methods.

THE FOKKER-PLANCK APPROACH

This method of obtaining the response characteristics of stochastic equa-
tions is based on the analysis shown in Refs. [1,13], The application of this
method on Eq. (1) proceeds as follows:

Let the random variables Hps Hos Hgs 61, 62 and 63 be defined by the equa-
tions

Iizfi."ui s 1=1,2,3

)

MNE S =ATE 46, 5 1=1,2,3

The bar on top of a symbol indicates mean values. Hence,

=8, =0;1=1,2,3 €))

Let the stochastic vector u be defined as

T

T < qt 1 ]

u [ul,uz.u3,>- fl')‘ fz,l f3] (4)

It is assumed that ui and 61’ i = 1-3, are white noise disturbances, such that
the matrix elements, Mij’ i,j = 1-6, are defined by

E{uiuj} = uijs(t) (5)

In Eq. (5) and in the following, (t) is the Dirac’s delta function and the
operator E{.} denotes statistical expectation.

Let pk£m(wl,m2,m3,t) be the statistical coefficients of various orders
where w, are the realizations of the responses Wy s for 1 = 1-3, at any point

. tal
“in the time and sample spaces. Let it also be defined that £*[w,t]w(0),0]
is the joint cgnditional probability density of the response vector, w, given
the values of w(0) at t = 0. Thus,

im 1 = " ° “ ok, 24, N .m ~
Prgm = Ats0 BE -i _i -i‘(ml-ml) (wy-wy) " (wg=ws) f*(g,t+At[g,t)dmldw2dQ3.

Although Eq. (6) is used to define the coefficients pklm’ these are usual=
1y calculated from the derivative characteristic function )

L(°1»92»93|é:=) .

Thig, in turn, is defined by

(6)
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Lim 1

3
atsg ac [Elexpli £ @

148, ,6,,0,]5,t) =
1°°2'% o1 3

{w

j (E4bE)-u ()] l@,t} - 11

where 1 = /-1 .

Comparing Eqs. (6) and (7), an alternative definition of Pyim €8P be
obtained as

-(k+2.+n) [3 kHiim L

m
80 80 663 91 - 62 = 03 =0 (8)

Prom =

Let it be assumed that

vy (e+ae) = v, (8) = @, (t) At ()

3

The values of Prgm 3F€ DOV easily calculated from Eqs. (7,8,9). For example,

3L Lim 1 3 3 -
P100 = "*36 1o, = 0™ 71 ars0 2¢ o, [E{expl1 " e:l"’jAt”i"-’t}'1 -0
6, =0 i
2 ,= 0
8, =0 -0
Lim
ST P10g " ars0 36 [EL918E]R,EN)
. Lim 1 . n
°T P00 * At20 Bt [E{(x i) ey = @y Tptuguplogug}tl
S ST IOUPR. . Yo, ,13
8620 B¢ Y I 1 3 2 H3TH Mgk,

Expanding the right hand side and neglecting the cubic and higher order terms
in u,,
3

P -1—[{——13—1—24»1 T}ww ——yi+x ] (10)
100 T 1 1 £
1 1 1
Proceeding similarly, it is easily seen that
P --}—[{12 "3, - T, )0 -h + )] 1)
010 Y T 3 T
I 2 L
H .
.1 23"13 I R T
Poo1 I [{———=+ I, Ip}uu, 1 + A £3] (12)




4(L,-T )
_1 _ A ) 242
P200 = 72 [My - M), + M, T (4, 4~M, 5) Jojuy
1
b ~ = .
{Tl (IymIM,, = 2(My, My, ) Juyug + W] (13)
<13 1,) , '
P110 = 11 (M) + Myy = Mgy = My, +—5—= (3 My;)
I.,-1,) I.,-1,) T,-1)
3 %1 . ' 3 2 B 371 =
o2 (M)37M,) + (My5-H,,) + M,y5-Myp)
I, 1, 1,
- ——————(13‘12)(13-11) M. 3o, 0,05 + {H -M E—ll M
IT 1230y, 4" TT 14
112 1
T.-1.) (1,-1,)
Gy s T )
" T, Mypdugig + (Myg = Mys + 1 Y5
d,-L)
+ ——’3‘—' M S}m H45] 14)
2
1 (13 2)
Plo1 " T, LMy = yy ~ My, + My + ;45
(1.-T,) (T,-1,) (I,-1,)
175 3 2 - it 27 .
T Mgy ) T (M) T (M337My,)
1 3 3
I,-1 )(I T,) (I -1,)
372 1 S Y i
"“—"“—I z 13 Yogigny + My, - My, =M,
~ 13 1
I,-1,) (@I
1 2 ~ ~ 3 2
-5 Mg, Y iy + Mg — Mye + - L
3 1
(13-12)

+ —== H36}m2m3 + Ml (15)

e
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8
; 2 G-I a2a 2
Pa20 * 2 My - 25 + 4, - I (Ty1y) (M54, ) Jad
I
R i = = .
+ {2(1435- 15) -"f (13-11)M25}w1m3 + Hssl (16)
2 .
(I,-1,)
w2l _ _ - 31 E
Pory " T3 [y — My - My + M, 4 I My,-M,5)
2'3 2
I,-1,) I,-1,) 1,-T. )
5 3 1, _ 2
+ I, (My3~My5) + i, C1y3-Myg) + — 3 My M y)
_ G AT T VG e L
TT 23101 Uply + Mg - My = —= 26
2’3 2
I 1)
d,-T) Q1)
-3 1 M36}m1m3 + {Mls Myo + —= 5 Mo
1 2
3
G, T .
+ 5 My }yB, + M) an
1 _ 4 == e aya2a2
Poo2 * 32 (M) - 24, + My i (Tym1)) M50ty ) by
3
4 JE———
+ { .1_3 (IZ—II)M36 - 2(2426- 16)}w o, + n66] (18)

All of the first and second order expressions of Prim AT listed in Eqs. (10~
18) above. The third and higher order Pram 3F€ usually small and can be neglect-

ed. Suitably defining the set of constants a,, j = 1-27, Eqs. (10-18) can be
rewritten as

100 ™ 316’263 + —Afl - a, (19)
Po10 = 53&1633 + if_z -a, s (20)
Pooi = 85&1&2 + if_3 - ag (21)
P00 ™ a7303 + 2gbyB; + ag 22)

boieteg g

AT




P110 ™ 210% 2“’3 +ay,0yy + 8,08, +a), @3

8020, + a. 0.0
Pro1 ™ 2124¥1%2%3 T 35t

222 " e

Po20 = 218%143 * 81q¥a *
a2a A oA

Pory = 8218850y + 85,83

o a2a2 -
Pooz = 32591z * 8p6u 0y *+

hl\

> + 3,60y + a5, (24)
a5 (25)
2 + a, 4l g + a5, (26)

2, @2n

Because the values of Prim * corresponding to the system given by Eq. (1)
are at hand, the Fokker-Planck equation involving the density f*[l_o_,tl Q(O),O]

for that system can now be set up.

*
TS (pyktm

This equation for the density is [1]

k+2+m

k+24m>0  k!2!m!

Substituting Eqs. (19-27) in Eq. (
derivatives, Eq. (28) reduces to

+-;—[a m2m2+a

25%1%2 T Bp6Y1Y

a2

22en

,\k 2 P T - (28)
33, 3,300y

28) and neglecting all third and higher order-

2 2
2%ex £202 32e%
+ ag] Y +3 la)gliyiy + aj0ydy + 2,015
Wy am2

2
3 f* A A
2 ¥ agl =5 ! + Lay gy 2“’3 8719143

3

£*

~ A2n
312“2‘”3*'313]_3'{5;5{5;"' {a G0, +a

14914905 + 850y + 3, WUy

2

1 ot [a,, 8% B, + 8, B0, +a,,] S
87 amlam3 2191 2 3 8729199 237173 24 3&328&3
" a2 ” A a2 ~ ~oa =z Ifk
+ [a10w1m3 + 312m3 + ay i, 6, + a)ely = 80,0y - Afl + a2] 3&-;
” n?. ~ AZA ~ AA e af*
+ [a10m2w3 + a,,0g ;+ 8y, W18, + 8yq0; = agWyliy = Afz + 34] T )

. ala ~
+ la) wpiy + 2550,

+ [a 2+a

.2
1093 ¥ 334%;

. A2a ~ o oA
+iay dyig + ay,0) = aghyu, = Mg+ ag] %y

af*

—

~ A, + 4

a\l]f* ‘ (29)

sz
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The values of the density function can be obtained by solving this for-
midable linear second order partial differential equation. But little useful
information is obtained from the density function. The truly useful statisti-
cal parameters are the mean values, variances, covariances, and other higher
order moments of the satellite response. These parameters form a family, Hkl m?
which 1is defined by

W= _Z _Z _Z 875y (B, £ |5(0) 0146, d,dd, (30)
and hence
d';"kﬂ. ® ®
B . o reyeyGye™ 2 ab dbydb, (31)

-0 w00 =D

where @ is the nominal value of the spin rate. Substituting the expression
*
for 'g{— from Eq. (29) into Eq. (31) and integrating, it is seen that

Migo = 31g10 * aMpyy - 3y + A (32)
HOlO = a39H100 + a3H101 = a, + Afz (33)
M001 - a5M110 - 8 + )\fa (34)

100 + asﬁMOIO + 2a

< 333

— " ~ " " N
200 = 2(Afy-apM 130 * 373224020 +agMy tag  (35)

2 . . .
Mo = @0+ 3E, - a0 o0 + (ay @E —a ) o + & a0 + 81001

~

311%01 + 2300 * 215M011 + 213 (36)

Mgy = (MgmagMgq + 8, My, + (F-a))Myg) + 8y M)y,

i + (alm-am)ﬁOll + a5 37N
Hogo = 819500 + 2GE,ma My 0 + BISQZQZOD + 20,084,

+ ayghyg + sy (38)
Mgy = myg® 00 + GEpagiy o + GEymaptgg, + 8y M,

+ (823+a3n)ﬁ101 +ay, (39)

’:‘ooé = 2GE-aMyg) + My + 2 , , (40)

‘In deriving Eqs. (32-40), all third and higher order moments have been neglect-
‘ed. Solving these nine first order ordinary differential equations, the mean
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values, the variances, and the covariances of the satellite response are ob-
tained completely.

THE FOKKER-PLANCK RESPONSE

At this point, it will be interesting to analyze the response predicted
by Eqs. (32~40). These predictions will later be compared with an analog simu-
lation of Eq. (1).

.Let it be assumed that, at t = 0, all second order mgments (k+i4m = 2)
and HUOl are equal to zero. In this stage, the satellite will behave as it

does in the deterministic situation, that is, it will begin_to precess with
a rate proportional to Q. Then, as the values of H001 and M002 grow with time,

the precessing rate and the nutation angle will also grow, Finally, the satellite
topples down. This phenomenon occurs physically and in simulations. Thus, Egs.
(32-40) predict that the satellite response is greatly sensitive to the values

of ag, (ifs—ae), a5e and a59. Because 2593 8949 and ay are non-negative, these

equations predict that an uncontrolled satellite governed by Eq. (1) is inher~
ently unstable in the presence of random erxrors. The same conclusion can be
drawn by applying the stability criteria of Refs. [14,15] to Eq. (1). The
error growth rate of the satellite response can be minimized by minimizing the
values of a5y ags 8y, and A£3. This can be done if Xfé = 0,'1'1 ='Ié and the
matrix Hij is a diagonal matrix.

The relative rates of error growth of spinning and non-spinning satellites
will now be examined from the characteristics of the eigenvalues of Eqs. (32~
40). It can be shown that the eigenvalues of these equations satisfy a ninth
degree algebraic equation of the form

9 8 7 6 5 4 3 2 -
p + agp + a,p + agP + acp + a,p + agp + %,P + P 0 (41)
where gy i = 1-8, are appropriate constants.

It is obvious that to have bounded growth rates, ay for all i must be non-
negative. It can be shown that

2 (T,-1,)
2 Q 3™
= =3 Q" = « - [Ml3+M23-M -M , + M, ~M. )

. -
8 10 33 ~ Mo T 137%11
L1, L

(I,-1,) I,-1,) a,-1,)
34 ) 7h
g MgMyy) T My y) e (M M)
1 2 2
(131D A5-T)

(42)

Because usual satellite geometries .are such that
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13 > Max [11,12]

Eq. (42) says that ag £ 0 if, and only if any of the following conditions exist:

Q=0 (43)
max[M;5,M)51 < min [M)) M) ), M,),M55) (44

In particular, ag > 01if H1243 0 and
Mg =My =0 (45)

since min [Mll,uzz,u33]_3 0.

Equation (45) states that one of the conditions for a bounded error growth
rate 1s satisfied if the inertia noises in Il and 12 are independent of the

noise in 13. But this condition usually is not satisfied because

I,=1,+1I, and is - Ti + Té and hence
By =ity

and, therefore,

Mg= My +H,

My =My + My,

Thus, at this point it appears that Eq. (43) provides the only suitable con-
straint and that this constraint is available only to three-axes stabilized
satellites.

Now, let the conditions required to make a, non-negative be considered.

It can be ghown that a, is of the form 7
ay = Ggg + 6719 +<u7292 + a74ﬂ4 R (46)
where
970 = = [agy815 *+ 353216 + 81575 ] “n
ap = - 2agays + "3“‘16] N 48
dgg = - 65133 (49)
%74 T~ "“7"‘18 : (50)

Another reasonable assumption we can make now is that the inertia noises, U,
are independent of the forcing funcitons, Afi. Assuming this,
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a) T8, T8 =ag=a),; a8, "8y, "a=0 (51

819 = 8y ™ 353 856 = 0 (52)

Using Eqs. (51,52), the criterion for non-negative ay becomes either Eq. (43) or
2
agp F a0 >0 : (53)

Equation (53) can be expanded to obtain

2
6aja5 + aja,.0" < 0
or
M, ,-M M
1
Tr Er - @A) + S,
1L 4 2
2 463—?2)
* g My3 = Byg +Myy ~—F— (M3 M,,))TM, -~ M),
172 1
4,1
My - I, My5-M 01 <0 (54)

Assuming the satellite geometry to be given by

1-— o —
3 I3 I1 = 12 (55)

By =Ky +u, (56)

and that Mij are small compared to Ii’ Eq. (54) can be further simplified to
read ’

2
20) - M, (3M,,-2M, )0 > 0 1))

Equation (57) is almost certainly satisfied for all real satellites and hence,

18 almost certainly positive. - Equation (57) also states the obvious fact
t 1at , in the presence of inertia noise, a high spin rate tends to make the sat~-
ellite unstable, i

The expressions for ag will now be considered. It can be shown that L
is given by

2 3 4 6
dg = e 4+ de1 + uezﬂ + a63n, + u64n + “66“ : (58)

where
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Bgo = = [8)3)5853 + 3158 68,5F (A -ay)(aza;5tagayy)
+ (Afz-—a“) (ala22+85812) + (;\53'36) (a3a16—a1823)}
+ 2a,

61 = = [233g355 + 8,3,53;9 + 2353)923) 5 + 2a,3y,39, + 4ay3,3(M 5mag)]

%2 = 310%16%23

1210%23 ¥ 23310%16]

= 2[a
a,, = 2{a a,a —aza —aza ]
64 173710 377 1718

%6 = 371%10%18

It has already been mentioned that, if (7\{3-&6) is non-zero, then even the de-

terministic response is unbounded. Hence, to make any useful comparison, it

must be assumed that Of3-a6) is either zero or hay been made so by appropriate

controllers. Assuming this and the satisfaction of Egqs, (51,52), e becomes

. 6 2 2 4
™ 343,43,00° + 2[alaaam - aja; - alalB]ﬂ . (59)

Hence, for non-zero values of Q, small Mij’ and with the geometry given by

Egs. (55,56), the condition for non-negative values of 0g can be obtained as

4t +omm0% >0 (60)

122
The above relation 1s satisfied almost certainly for all real satellites.

A similar treatment for the coefficient dg yields the inequality

TZ
=4 2 1 SE A2 =T (2
Il - 2H11M229 - 36(24 [O‘fl) - (Afz) ](M23-H13) 20 (61)

which 1s also satisfied.

Carrying on with this procedure, it can be gshown that the coefficients
Byr Qg5 G and ay are all well behaved and positive definite. Thus, the

only critical coefficient is age This is approximately given by

2 92 . :
ag ™ -alon - —T—Z- (Hn-b-uzz) . (62)
1 .
where Hll and H22 are the variances of the inertia rioigse along 11 and 12,

crteae ayyeeng e T
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respectively.

To give a clearer picture of the error growth phenomenon, we will analyze
the response of a three-axes stabilized satellite.

Let it be assumed that initially

Q=0 (63) i
ag =0 (64)
My -8, =0 (65)

]
i
#

and Eqs. (51,52) are satisfied. 1In this case, all coupling in Eqs. (32-40)
are lost and the responses grow linearly with time, according to the relations

oor = 0 ‘
Mygo = [Mf; - a,le
o = i
Mo10 = (M, - a,]e L
- + 2.2 :
Ny, = OF, - a,1%t (66)

- s 2.2

’ 20 = [y - 3,1t
Moo2 = ©

The growth rate of the responses 1s greatly changed if Eq. (65) is not used, a )
though Eqs. (63,64) and Eqs. (51,52) are used. In this case, the following 4
four equations remain coupled:

Y100 = 21011

- $1
[ ]

011 = (MEgmaghty o + (Afyma Mg,

10 * 1 (67) :

Roe
(]

< 33

hor = (MgmagdMy o + (Mfy—a)My,,

where

.
~

Y501

(_x 3-36)

The eigenvalues of Eq. (67) satisfy the following algebraic equation:

(p* + a2(E;-ag)?1 = 0 (68)
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Equation (68) states that, apart from the linearly growing components, there
will be exponential and sinusoidal components in the satellite response, when
(AE;-a,) is large.

The above mentioned cases, identified by Eqs. (66) and (67), are extremes.
A real situation can be portrayed better by assuming (Xfé—a6) 1is non~zero but

very small, leading to a slight coupling in Eqs. (32-40). This causes a small

non-zero value of @ to be developed, although Eqs. (51,52) are satisfied.  With
this compromise, the eigenvalues of Eqs., (32-40) satisfy the following charac—

teristic equation:

2,2 ..2.2. 3 2 2 2 4 2 4
p (@ ) [p ~3109 p- o+ (40 —373189 4+ (373103189 —237-2318)9 ]
- agkp = 0 (69)
— —- 1 -
where it is assumed that Il = 12 -3 13 and
2.2, 4 3 2020042 42 2
K= (AmA)p" = 8M 2,007 + p R [(A5-A]) (5ta a, 00°)

3 2 2 2
+ 2)1129(a7+818)] + 4pQ [A1A2(1+a7alsn ) + Q(Alale-kza7)
+ laja. 002-32) - 22 A (a*a, )] (70)
72185472, 122 (873

In Eq. (70), kl and AZ are given by
A =0 - a, (71)

A, = Afz -a, - : (72)

Equation (69) can be viewed with a better perspective by considering a.,
a5, and aig to be small. This reduced Eq. (69) to the forwm

p3(p2+92)2(p2-31092p+492) -0 73

It 18 now clear that 2 spinning satellite will Legin to satisfy Eq. (73)
immediately in the presence of noise. A three-axes stabilized satellite, on
the other hand, will satisfy Eq. (73) only after & period of linear error growth.
If a 0 18 equal to zero, Eq. (73) predicts a dominant cyclic response with the
uelll known frequencies of Q and 20 . The solutions of Eqs. (32-40), corres=-
ponding to the characteristic Eq. (73), are caslly obtained as follows:

P

Moor = #

v 2
H002 Q

o DR YO
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b

A
2
oo " "0 + (A1+A3t)cosﬂt + (A2-A4t)sin0t

x>

-1 -
010 = T ¥ (AptAt)sinft - (A,-A t)coslt

X

101 = Assinnt + A"cosﬂt

x>
]

o11 = A,sinat - Acosit (74)

>

1 2
200 = C* exp[i a; % t]{chosmt + Dzsinmc} + G, (t)

< %3

1 2
020 = c - exp[ialoﬂ t]{chosmt + DzsinZQt} + Gz(t)

¥
Py
>

1 2
1ty | exply ay40t]
M110 -~ + 3 {(16D1-48109.D2)sin29t
(16+aloﬂ )

- (16D2+48109D1)c0520t} + Ga(t)

where Al, A2, A3, A4, C, Dl and D2 are arbitrary constants, and

a, A, A%
107172 1
Gl(t) 30 nz + Al[rllsinﬂt + rlzcosnt]
+ Az[tnsinﬂt + r22cosﬂt] + 43[r31tsinﬂt + r32tcosﬂt

+ r33sinﬂt + r3acosﬂt] + At. [rutsinm: + rl‘ztcosnt

+ rl‘asinm: + rl’acosnt] (74a)
2
a, Al A
10172 2
Gz(t) =~ —3g -3 + Al[sllcosﬂt + slzsinm:]

Q

+ A2[321c059t + szzsinﬂt:] + A3[531tcosﬂt + 8,,tsinlt

32

+ 333cosﬂt + sal‘sinm:] + A‘.(s“ltcosm: + s,‘ztsinm'.
+ 343cosﬂt + s“s‘inm:] (74b)

G3(t) = Allt11c05flt + tlzsinm:] + Az'[t21cosnt + tzzsinﬂt]

-

+ A3[t31t‘.cosﬁt + :sztsinnc + t33cosf2t + tsl'sinﬂt]

{‘
&
#
i

e
b1
§

+ A,lt, teosat + taétsinﬂt + t;qco8fit + t,,sinft] (74c)
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In Eqs. (74a~74c), the constants rij' '1:]’ and tij are defined as follows:

Let LAY and p be the numbers given by

2 i
T Aot :
p = [9112 + wi]—l (74d)

Then,

3 (3A10 - }.21r1)

[ad
L}

12 == (3 - A M)
2 (74e)

1
= —a 2t 2t12

3T Ry 11 ¥ T12
22, ‘ ]
85y %" Ty, 5"

t
]

3p (3A2!2 + Alﬂl)

1
- (74£)

3_181, 0%n

2 3
i 1-2112911 “2A, T

(812,09 1724 m]

3 2 2., 3
(81, 2%-720, 0 49 an+2 131
2x ) 2t
1 . - . - - 32
Ty = Th ~ 2ty 3 Tap ™ 2y 3 Ty " <253~
26, 2 24

Ty =23 -7R YT % 12~ "R

(74g)

= 2t

31 5 833 " "2ty *

) Q

R e S

tig = ta1 3 b2 T T

2 ”
- 3 _ 2 2
=3 [8111(2 72}\20 m 2111i21rl + Zkzwll
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p? 3 2 2
ty, = 5 [810,2° + 728 0% - 2mn,an? - 2 0d)
2, 2, 2 (74h)

L R R R A R R IT St Ry e 2

2t 2)

41 o 2y

Tao T 244 T T 3 841 T T2y 5 B T 2y vy

26, 2 2t

s, 42

%3 Pt T T st

The nature of the functions Gl(t), Gz(t), and GS(t) can be given a simpler form

if a, . is neglected in Eqs. (74a-74h). 1In this case, the functions are given by

10
A2
1
Gl(:) - - 52-+ . [A -A n(A 3t)]cosnt
- -2—2 A, + Azﬂ(Az-A[‘t)]sinnt
Q 2
2
G,(t) = - ? + = 92 (A4, = A (A -A, 1) Jcost
2 (741)
+ =5 DgAy +20(A +A ) ]sinde
Q
1 1
G4(e) = 5 [A (A HASE) + Xy (A)-A t) + 5 (M Ag+h A ) ]cosne
1 1
- 7 DyAp¥Ase) = 2 (Ag-ALE) - SO AS-AA,) Isingt.

The constants Al A A3, A&’ c, D 1 and D2 are calculated from the appropriate

initial conditions. Equations (66) and (74) provide a basis for comparison of
the error growth rate of spinning and three axis stabilized satellites. If 2109
given by Eq. (62), is large and Al or 12 are small, then a three-axes stabilized

design is warranted. The reverse is also the case. Interestingly enough, all
these predictions have been borme out by analog simulations.

THE PERTURBATION SCHEME

A perturbation solution of Eq. (1) will now be cobtained with the assumption
that A'f., and that the noises associated with the moments of inertia of the
satellite are small. The inertia noises are defined as

I, = fi +e +n(e) 5 1=1,2,3 (75)

where e, and n, are the noises in the sample and time spaces, respectively.

i
'The angular velocity respouses, w,, are assumed to be functions of the seven

EEST

IR T

sz

TR

R R T 1
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small parameters A', e, and ny of the form:

1
S %* 1 ]
Wy = O+ ATugg F Egugy b EQugg ¥ Eqlgg ¥ My, F Nauy g+ Nguge

+ (A')zmi7 + A'elm + A'ezw + A'e

19 3%10 F

18 ST
+ATmp gy + AT ey e+ e
*ehepar Y EM¥g t S t (e %010 + £553015,
* oMy * EMyliag ¥ Eangug, (o3 %uy 55

te3MBige t EaNg¥iay * €3Ng¥08 (“1)2“’129 ARURPEEY)
+nngaggy + %0y 4 npnan + ey, o (6)

In Eq. (76), the cubic and higher powers of the small parameters are neglected.

The quantities Q% are the nominal values of the angular velocities uye It is
assumed that .
% = Ok =
ﬂl 92 [}
Qg = Q = a constant
wy 0) = m2(0) =0 = [m3(0) - Q] any

Equations (75), (76), and (77) are substituted into Eqs. (1) and separate
equations are then formed corresponding to each of the various combinations
of the small parameters. This classical principle of separation of parameters
results in only a few of the multitude of terms on the right hand side of Eq.
(76) being non-zero. Thus, a more compact expansion for the angular velocities

R R R e

B TR R S T T R

i Sy e Ay

is obtained as

2
= ! + ' + 3! + ) + 2! F Y
@ Ao 0 (" u’17 A elmls A e2w19 A e3w110 A nlmlll

1 1
t 1]
F ANy T AR

w

128 229 3¥210

= % 12 ' ' '
2 A Yag + (A ),m27 + Ae.w,, + Ale W, + A'E

t L ] 1]
* ATy F ATNgg1p + ATnguyg,

- 2 ' '
wy Q-+ A'mao + (A") g 4+ A £4U310 + A N3¥g4

Let L* be & matrix differential operator defined by

-

st s

TR
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I, 0 o w 0 (1,-1,)2 0©
)= lo T, o wyt + | (1m0 0 0
o o T Wy 0 0 0

Then the perturbation equations for the components of @ given in Eq. (78) take

the form

T
t = 1 ] [
L*(A mio) [x fl’ A f2, A f3]

(A% 5] = 1@ 0y (lugg), Ty L) (g Wy

L*()!
L*(A'
Lx(2'
L*(\'
L&(A?

L¥(A'

(T,-T,) (o) (o, )17
ejbgg) = f; [0'e, 0Ty T, uyg — Me £y}, AT T,
Eptiyg) = %i-[x'eéfznwzo, —A'szi(ia-—i)ﬂmlo +£,}, 0}t
e3uy10) = [-0egp g 5 Reghuyg 5 —eghigol”
nygg) = = gy s dnyouyg , 01F
ngi1p) = [\'ngfugy  =A'nynyg 5 017

. T
= foa? ' 3t
Ng®y13) = [=ATnaRy5 5 ATngQuyg 5 ~ATnguag]

01t

Equations (79-86) are easily solved. In particular, assuming

the soluti

and hence

=T =27
L, =I,=51I

2 3

' = 3! =
A f2 X f3 o .
ons to Eq. (79) and (80) are obtained as

t
AMuw. . = %}-/ cosﬂ(t-r)k'fl(r)dr

10
, 1
1 t
t = o - \
A Y0 I J sinQ(t-t)A fl(r)dr
1 0
Wg = W7 = Uyy = w3y = 0
U3g0 = U313 = ©

21

(79)

(80)
(81)
(82)
(83)
(84)
(85)

(86)

(87)

(88)

(89)

90)

@9)
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The perturbation solutions obtained so far from Eqs. (89,90) agree closely
with the Fokker-Planck solutions given by Eq. (74). But the drawbacks of the
perturbation scheme become apparent when Eqs. (81-83) are solved. . Equations
(81-83) predict a secular growth of the angular velocities even for the time-
independent sample space inertia noises, €,. This is obviously not true from
a physical standpoint. Thus, all perturba%ion equations involving €,, but not

ng, must be discarded and the parameters €, must ‘be absorbed in T;. Equations

(81-83), then, are discarded and €, are set equal to zero, so that Eq. (78) re~
duces to

= 3! ' ' '
By = Mg F ATngugg T ATy F ATNg0;,
= 11 [ ' '
Wy = Ay F A0y F ARGy F ATNguy 4
= [ ]
wy = @+ Alngug g - (90a)

Equation (90a) predicts that, if A'fi and n,; are independent, then the mean val-
ues of the amplitudes of w, and w, do not grow with time. It also states that

the variances of the amplitudes are stable and oscillatory and that the ampli-
tudes of oscillation of the variances are constants for all time. In other
words, no growth rate of the variances of w, is predicted by Eq. (90a), Con~-
trary to this prediction, it will be seen ifl analog simulations that the ampli-
tudes do erow with time, even if A'fi and n; are independent.

THE MOST-LIKELIHOOD APPROACH

The method of most-likelihood estimates will now be applied to the system
described by Eq. (1). ‘As mentioned earlier, this method is based on maximizing
the joint probability density of the random variables under the constraint
that Eq. (1) holds. It can be shown that this method, when applied on even a
linear equation, finally requires the solving of a nonlinear equation, For
this reason, the nonlinear Eq. (1) needs to be linearized initially to make ana-
lytic manipulations possible.

The well-known linearized form of Eq. (1) is given by

Limy =F
Ty = F (1)

I3w3 = F3

]
g

where
= ' - -
F ALy (I3 1y),
= ' - - -
F AEy = (-1 (92)
- 3!
F Alfy
Let v be ‘the vector defined by
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Y= [Hysbgakgs8,,6,,8,] (93)
Let the matrix elements Nij be defined by

E {v1 vj} = Nijﬁ(t) (94)
Let the functional J be defined by

T -1 .
J = . z kf() {vi[N ]13 vy + ZBk[Ikmk-Fk]}dt: (95)
’Jd s

where B; are arbitrary time-dependent Lagrangian multipliers. It can be shown
[10] that the most likelihood estimates of w, are obtained by minimizing the
functional J in the interval [0,T] with resp@ct to the variables vy and e

The variational equations for minimizing J are given by Eq. (91) and the
following two equations:

-1 9 .

;3 [N ]ij vy + Elﬁ Bk(Ikwk-Fk) =0 (96)
d 9F

3¢ 48,0 + :}i: Sjamk =0 97

The terminal point.condition on 8 is given by

B, (D) = 0. ; (98)
Assuming that

Ny = Np3 = N3y = N3p =0 9
and

N4j=Nj4=0 if § # 4

st = st =0 if §# 5 (100)

N6j-Nj6=0 if j#6

Equation (96) can be opened up to read
My = Ny [Bgug + w8yl Ny [Byuy - 28)0,]
By =N, [Blml + 9“’162] + Ny 8,0y = ﬂslmzl
by = Nyp [Byug + 0B,y - 0)By)) ao
17 Nufy
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8y = V558

63 = ~Nggfs

Using Eqs. (92) and (101), Eqs. (91) and (97) can now be reduced to the follow-
ing forms:

{1, + 11(Bl +Quw, 8 2) + N12(82m2-nslm2)]w + 9[13 2
+ N33{B3 3 + 28w 2“"182)} - N 2(81 +ﬂu182)
- N22(82m2-961w2)1m2 - At £, 44 =0 (102)

(1, + N 2(81“’1 + Qu B,) + sz(Bz 2B mz)m + rz[Il 3

= Npp (B 0+ 8)) + Ny, (Byu)-Biw,) - NyyiBy0, ,
+ n(elmz-wlsz)}]m - A f N5582 =0 (103)
[Ty + NyalBguy + Q(Byu,-w 8y) Hug = X'y + NeeBg = 0 (104)

(T, + Npy (Byugtu,8)) + Ny, (8,0,-08)0,)18; - Q[T
+ Npp (Bioy 0w, 8,) + Ny o{By0,-08,0,) - Ny (B0,

+ ﬂ(Blwz-mlBZ)}]BZ =0 (105)

[Ty + Ny p(Bug¥iiu By) + Npy(Bguy=0Byu0,) 18, - RII4-T,

+ Naq{Bug + QB 0,-w,8,)} - 2(6l +iw,8,)

- Ny, (Bywy-08iw,) 18 = 0 » (106)

(1, + N33{83w3 + (B w,mw,8,)3]8, = 0 (107)

Equations (102-107), together with the initial conditions on w, and the end

conditions on B; given by Eq. (98), form the final two-point bOundary value
problem coverning the stochastic motion of the satellite. To scolve this

problem, a perturbation sequence for Bi and wy ‘has to be adopted.

Let it be assumed that € is a small parameter and the numbers Nij are of
the order of € or less. Let Ni’ i = 1-7, be defined as

Nll - eNl

le = sN2
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Nyy = €N, (108)
Nus = N

N66 - eN7
where

e=Max |N,.| . © (108a)
1, H

Let the variables oy and Bi be assumed in the form

2
mi miO + Ewil + e miz + s
2
Bi = 810 + 8811 + € 612 4+ e {109)
such that
Bij(T) =0 (110)

Substitdting Eqs. (108) and (109) in Eqs. (102-107) and separating the co-

efficients of eo, el, ez, etc., it can be seen that the zeroth order response
ig given by

810 =0 : (111)
—_— . -_ - —F

11“10 + (I3 Iz)ﬂmzo A fl

T - T - = _'— .

12w20 (13 Il)ﬂmlo A fz (112)
R

13w30 A f3

After some involved algebra and the use of Eq. (110), it can be seen that the
predicted response from the higher order perturbation equations has essential=-
1y the same characteristics as.that obtained by the straight forward pertur-
bation scheme explained in the preceding section. Thus, the method of the
most likelihood estimates suffers from the same drawbacks as those of the per-
turbation method. '

THE METHOD OF STOCHASTIC EIGENVALUES

According to this method, the deterministic solutions of Eq. (1) are to
be obtained first. Stochasticity is then imposed on these solutions to esti-

i
:

Lt cmp g
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mate the behavior of the system which was random from the beginning. Although
this method is not exact, it is much simpler than the methods previously dig-
cussed.

FTor example, the approximate deterministic response of a three-axes stabi~
lized ratellite is given by

t A'fi
w, = .fo T—dt ,1=1,2,3 (113)
i

Hence, assuminglef to be a constant, the mean values and the variances of w

are given by [16] i

Elu} = -1 ¢ : a4
T
1
2 2.2
E{mi} = (oi) t (115)
where
—r )
1
2 1 f“1)2”11 + IM
it %’2— ey .
1 1%
WENM,, + T
2 1 (A5 My, + LM
02 = :2" [ § =2 ] (116)
i T2 4 u
2 2 t ¥y
e —
2 1 O £ My, + Mg
3= =2 ]
I T, + My,

In deriving Eq. (116), it was assumed that uy and Gi are Gaugssian random variables.

For the case of a spinning satellite with‘fi = i} = %-is, i“fé = {, and

constant values of ini and'X'fz, the deterministic amplitudes and frequency of

are given by

oscillation of 0y and ,

Freq.[wll - Freq.[mzl = uy

NE, A,
Amp.{w;] = = & p— (117)
il
Loy L@ :
AE.A'E
1
pmp. [uy] = == = =L

Ilw3 Ilﬂ
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when wl(O) = wz(O) = 0,

Hence, the growth rates of the amplitudes and frequency are described by
the variances, which are

i

E{[Freq. [, 11°} = E{[Freq.[u,]1?} = (0,)%? (118)

w2 2.2
GE 202 + o,
Ef[mp. [w,11%} = 25 —223 33)

- L
Ignz Q2 + c§t2
(119)
2 1 (7'?1)%%:2 + nzuM
E{TAmp. [0,)1%} = ot [—F 52—
Iln Q" + c3t

From Eqs. (114) and (115), it is seen that the approximate predictions
for the responses of three-axes stabilized satellites are quite satisfactory.
Equation (118) approximately predicts the frequency growth phenomenon. Equa-~
tion (119) predicts that, when t is small, such that a3t is small compared to

1, the variances are of the form

2 e tele?
E{[Amp.[wl]] } = =3 [ =3 + Mgl (120)
1,0 0

But for large values of t, the variances will reach a constant value. This is
given by

A'E
E{[Amp.[mlllz} = (—;—%)2 . (121)
2

The prediction of an initially growing variance finally levelling off to
a constant value is satisfactory and is corroborated by analog simulations.
The only problem with Eqs. (120) ond (121) is that these equations predict a
lower growth rate and a lower value of the asymptotic variance as i becomes
large. 1In this respect, Egqs. (120) and (121) differ from the Fokker-Planck
formulation and the analog simulations which give higher growth rates and
higher values of the asymptotic variance for larger values of Q.

-

ANALOG SIMULATION

The results of simulation of the satellite response, as given by Eq. (1),
can now be presented. The simplified system block diagram is shown in Figure
1. This system was programmed on an AD-256 (Analytical Dynamics-256) analog
computer. The white noise inputs ny and 6;, i = 1-3, were obtained from a
coupled SDS-930 (Scientific Data Systems-9§0) real time digital computer. A
high frequency RO (Repetitive Operation) clock circuit from the AD-256 was
used to trigger a pseudo-random number generating program in the SDS-930, Sam-

g

T R e
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ples of twenty such pseudo-random numbers were used to form a Gaussian white
noise sequence with a zero mean value and suitable peak values. Six such in-
dependent noise sequences were continuously generated in the 5DS-930 and fed

to the AD-256 through six DAC (Digital to Analog Converter) lines. One test
line was also used to interrupt the SDS-930 and change the peak values of the
noise sequences. A sample of the noise sequences y,, 1 = 1-3, is shown in
Figure 2 at a high brush recorder speed. At any instant of time, the frequencies
of generation and the peak values and, hence, the bandwidth of all p n and & i

i = 1-3, were maintained equal. Thus, §,, 1 = 1-3, are similar 4in nature to
that shown in Figure 2, although all six noise sequences were independent of
each other.

Let r be the ratio defined by

r = [Peak value of y, and §,, 1 = 1—3]/’1‘3 (122)

where I, is the nominal moment of inertia about the spin-axis., Brush records
of the Bimulated angular velocities Wys Wos and Wqs for different values of

The values of r and R, corresponding to

r and 2, are shown in Figures 3-15.
In all cases the initial

each of these figures, are tabulated in Table 1.

values of Wy and w, were taken to be zero.

Table 1: Index to the attached figures showing samples of the sto-
chastic satellite responses.,
Values of r 1 1 1
r=ﬁ=0.083 r-—6--0.166 r-f=0.25
Values of Q, -
rad./sec.
Figure Nos. Figure Nos. Figure Nos.
Fagt spinner: Q= 1,0 3,4 5 6,7
Slow spinner: 2 = 0.5 8 9 10,11
Three-axes stabilized: 12 13 14,15
Q= 0.0

EVALUATIONS AND COMPARISON

The results of the analog simulation will now be evaluated and compared
with the predictions of the analytical methods discussed eariier.

The first important result of the simulation study is that, in every case,
the responses grow with time, The growth phenomenon is predicted by all four
of the analytic methods only for the case of a three-axes stabilized satellite.
This was true because, 1f 1 = 0, Eq. (1) leads to a perturbed equation given by
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Iimi = Avfi 3 1=1,2,3 (123)

Responses given by the cclutions of Eq. (123) are the integrals of A'f, and,
hence, must grow linearly with time, even 1f X"?a are equal to zero. But,
in the case of spinning satellites, only the Fokker-Planck formulation pre-
dicts an Initial exponential growth. The perturbation method and the most-
likelihood approach predict a constant variance. The stochastic eigenvalue
method also predicts a linear growth rate which, however, 1s inversely propor-
tional to 02, Looking at Figures 4, 8, and 12, or at Figures 5, 9, and 13,

or at Figures 7, 11 and 15, it is seen that the variances increase with Q.
Thus, at this point, the Fokker-Planck formulation is apparently the best of
the theories under consideration.

A second interesting result, discernible from Figures 3, 7 and 11, is
that, with time, the response amplitudes reach a stable value. Such stable
values are predicted directly by the stochastic eigenvalue method. The per-
turbation method and the most-likelihood approach also yield the same result
if it is assumed that these methods dre valid only for the asymptotic case.

It is to be noted that the Fokker-Planck formulation can also be made to
yield this result, although not as directly as the other methods, To do this,
let the solutions of M200 and MOZO as given by Eq. (74) be considered:

n ~ 1 2
Myo = C+ exp[z a, t](chrJSZQt + D sin20t} + Gl(t:)

2
124)

f<<83

1 2
020 C - expEE aloﬂ t]{choszﬂt + D251n2ﬂt} + Gz(t)

The exponential terms in ﬁZOO and ﬁOZO appear with opposite signs.
According to Eq. (124), one of the variances must grow and the other de-
cay with time. Thus after a certain time, one of these variances will tend
to be negative. But variances are by definition non-negative quantities.
Hence, D1 and D2 are to be taken as non-zero until one of the variances first

becomes zero. Dl and D2 should then be set equal to zero in order mnot to have

negative values of ﬁ200 and HOZO' This procedure yields the prediction that

the response amplitudes become stable after a certain time, which is in agree-~
ment with the simulation results.

The last obvious result obtained from the simulation is that, for a given
value of @, the variances and the growth rates increase with r. This is ex-
pected, both intuitively and rationally, and all four theories predict it.

A comparison can now be made of the theoretical methods, based on purely
analytical grounds. -The strength of the Fokker~Planck method lies in the fact
that it does not require either uncoupling or linearization of coupled non-
linear systems such as that of Eq. (1). The statistical moments of all orders
are obtained directly as the solution of a coupled linear set of equations.
Hence, digital computer methods can be used -easily ‘to solve such equations.

The other three methods are based on initial 1inearization and possible un-—
coupling. This linearization results in a loss of useful statistical information.

sy

T R R
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There are, however, some disadvantages of the Fokker-Planck method. The
primary disadvantage is that all statistical moments are coupled. Hence, when
the number of dependent variables is large, the resulting set of equations is
more so, even if the third and higher order moments are neglected. This method
then requires some foreknowledge of the higher order moments and the statistical
forms of the input random functions.

In view of the above discussion, the following conclusions can be made:

1) The Fokker-Planck formulation yields the most complete information
on the responses of a satellite with random disturbing torques and stochastic
moments of inertia.

i1) For & satellite with very small inertia noises, the spinning configu-
ration is better than a three-axes stabilized configuration. The reverse is
also the case.

iii) In all cases, the responses have an initial fast rate of growth.
But after some time, this growth rate falls off, leading to a constant variance [
level depending on the variances of the input disturbing torque and on the mean ;
moments of inertia of the satellite.
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STABILITY AND OONTROL OF FLEXIBLE SATELLITES

PART I - STABILITY
T. C. Huang and Aniruddha Das

ABSTRACT

This investigation has two distinct parts. In this first part the environ-
mental and control torques experienced by a satellite are assumed to be random
80 as to account for the inherent errors in the control systems and the lack
of exact models of the environmental torques. It has been shown that under this
assumption the required stability criteria of a satellite is quite different
from that obtained by a deterministic approach. It has also been shown that
a flexible three-axes stabilized satellite can be made almost certainly asympto-
tically stable, while the same 18 not true for a flexible spinning satellite.

NOMENCLATURE
A% = Composite body of a flexible satellite.

[A ] 4 = 1-5 = Matrices assoclated with thé equations of motion of the flex-
ible elements; Eqs. (3), (49), (53) - (57).

(A}, 1 = 1-5 = Matrices similar to [A/]; Eq. (44).

a = Radius of the cylindrical rigid core of the assumed satellite
configuration; Fig. 2.

a¥ = Normalizing factor of the joint probability density; Eq. (17).

B¥ = Additional composite body for a flexible dual-spin satellite.

[BI]’ [BZ] « Matrices associated with combined equations of motion of the
satellite; Eqs. (5) - (7).

bl’ b3 = Elements of a1 Egas Eq. (38).
{c] = Stochastic system matrix; Eqs. (21), (27).
C’i’ i = 1-10 = Coefficients of the characteristic Eq. (71); Eqs. (74) - (77,

(805, (85), (86).

e,y 1 =1-4 = Elements of r i = 1-4; Eq. (38).

i Lair
£(t) = Deterministic forcing function; Egs: (5), (10).
f2' fA = Elements of T Zipr Tg4s Eq. Crh).

£2(t) = Deterministic environmental torque vector on the satellite;
. Eqs. (4), (45), (50).
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M = -
[91], i=15
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Stochastic control matrix, Eqs. (21), (26).
Elements of coefficlent matrix defined by Eq. (63).
Deterministic observed function of x(t); Eq. (13).
Identity matrix.

Moment of inertia matrix of the nominal configuration of the
satellite.

Diagonal elements of [1}; Eq. (52).

The joint probability demsity of (z-z), (u-uw), (£-E) and
[x(0) - x(0)], Eq. (17).

Functional defined by Eq. (17a).

Functional defined by Eq. (18).

Lengths of flexible beams of the satellite.
Submatrices of [Bl]-l; Egs. (28), (29).

Null matrix.

Covariance matrix of [x(0) - -5_(0)]; Eq. (12).

Matrices associated with the angular momentum equations of the
flexible satellite; Eqs. (4), (50).

Matrices similar to [Pi]; Eq. (45).

Eigenvalues of [-51182].

Exponents of the assumed beam displacement function; Eq. (42).
Covariance matrix of [u(t) - E(t)]; Eq. (15).

Elements of the characteristic matrix of Eqs. (49), (50);
Eqs. (70), (71).

Generalized position vector of the flexible elements of the
satellite; Eqs. (3), (4), (49), (50).

Vector, similar to g; Eqs.. (44), (45).
Time dependent part of Yyqt Eq. (42).
Covariance matrix of [z(t) - z(t)]; Eq. (14).

Displacement vector of the center of mass of the flexible sa-
tellite from its nominal position; Eq. (63).
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r..,» 1 = 1-4 = Nominal position vectors of the spring-mass-damper systems;
Eq. (38).
I i = 1-4 = Nominal position vectors of the beam-end masses; Eq. (37).
[SK], K = 1-3 = Coefficient matrix; Eq. (67).

[ = Covariance matrix of [f(t) - z(t)]; Eq. (16).

Generalized velocity of the flexible elements; Eq. (8), (11).

]
L

Terminal point of controlling time interval.

T = Terminal point of the time interval in which the maximum like-
lihood estimates are required.

f = Total kinetic energy of the flexible satellite,

t = Time,

u = Augmented control torque vector; Egs. (5), (9).

u = Control torque vector; Eqs. (4), (45), (50).

X = Stochastic system state variable; Eqs. (21), (24).

x = Deterministic system state variable; Eqs. (5), (8).

Ypi® i = 1-4 = Displacement vector of beams.
Yais i = 1-4 = Components of 131; Eq. (41).

% , 1= 1-4 = Displacement vector of spring-mass-damper systems.,

Yo i = 1~4 = Displacement vector of beamend masses.
z = Stochastic¢ forcing function; Eqs. (21), (25).

- Observed values of the state varisbles; Eqs. (13), (19), (23).

1
L]

a = Characteristic values of Eqs. (49), (50); Eq. (70).

[ak], k = 0-3 = Coefficients of structural equations; Egs. (64) - (68).

s(t) = Dirac's delta function.

|
i

Relative angular displacement vector of A¥* with respect to B%,

I
]

Lagrangian multiplier and state variable; Eqs. (18), (22).

= Lagrangian multiplier; Eq. (18).

oFr IF
n

13 Coefficients of structural equations; Egs. (64) = (66).
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Tbij = Beam displacement mode parameters; Eqs. (46), (47).
Ta = Spring-mass-damper displacement mode parameters; Eq. (48).
f = Nominal angular velocity vector of the satellite.
w ‘ = Perturbed angular velocity vector; Eq. (2).

wk: = Angular velocity vector of the satellite.

_ux‘ = Angular velocity vector of A%.

_Qi ‘- Angular velocity vector of B%.

OPERATORS

") : = Time derivative; —&-% .

{ ]T = Transpose.

'S = Vector cross product operator; Eq. (69).

O = Mean value.

() = Vector.

Det. [ ] = Determinant of the matrix.

El ] = Statistical expectation.

Tr. [ ] = Trace of the matrix.

INTRODUCTION

The primary requirement of an artificial satellite is that it should be
capable of precise orlentation in space. This capability is determined mainly
by the stability and controllability of the satellite when viewed as a dynamic
system. A large number of investigations have been made in the area of flexible
satellite dynamics. But several interesting questions on the stability and
controllability of flexible satellites have not been examined in sufficient de-
tail. The present study looks at two of these questions:

(a) What are the stability criteria of flexible satellites in the
presence of errors in the controlling torques and largely unknown
environmental torques?

(b) For a given control system, and for a given number of torquing
jets, is it possible to increase the controllability of a flexible
satellite by monitoring the deflections of the flexible elements?

In the first part of this study it will be shown that, in the presence of
random errors in the external torques on a flexible satellite, the stability
criteria are far more restrictive than those deduced from a deterministic

I
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approach. The second part of this study will present reasons for an affirma-
tive answer to question (b).

As rentioned earlier, deterministic criteria for the stability of flexible
satellites have been studied extensively [1-4]. It must be noted that, to ac-
count for errors in the external torques acting on the satellite, these torques
and the dynamic state variables of the satellite model must be treated as
stochastic variables. Several studies [5-7] on the state identification prob-
lem have been done. These studies generally assumed Gaussian distributions
and used Kalman filtering techniques. Using methods similar to that given in
Ref. [8], equations ¢of motion and the stochastic angular velocity résponse of
flexible satellites have been computed in Refs. [9,10]. But the problem of
comparing the stability characteristics of various satellite configurations
subjected to random excitations has not been investigated.

DXTERMINISTIC EQUATIONS OF MOTION

Formal deterministic equations of motion of a flexible satellite can be
established. The stochastic stability boundaries can be determined only when
these equations are available.

Let w*(t) be the angular velocity vector of a flexible satellite. For a
single body satellite, w*(t) is a (3x1) vector. For a dual-spin satellite with
two main composite bodies (A* and B%), w¥(t) is usually taken as

W (®) = [eh(t), wh(r), B(e) 1" @

In the above equation, g’é and gé are the (3x1) angular velocity vectors of the

composite bodies A* and B*; while 6 is the (3x1) relative angular velocity vec-
tor of the body A* with respect to B*. Let f be the constant vector of the
nominal values of w*(t), such that the perturbing angular velocity vector w(t)
1s defined by

w(t) = wk(t) - 8 (2)
Let the motions of the flexible elements of the satellite be represented by
the generalized (nxl) position vector g(t). With these definitions, the equa-
tions of motion of the flexible elements can be expressed in the following form:
[ALJE(E) + [A)(,0,2,8)19(t) + [Ay(0,,8,t) }a(t)

= [A,Ju(e) + [A5w,2,t)]ult) 3)

Similarly, the equations for the conservation of angular momentum of the compos-
ite bodies of the satellite can be shown to be of the form:

[P, 1400) + [Py (w,i,2,£)19(E) + [P5(w,0,8,6) 15 (6)

= [p,lale) + [Pg(w2,t) Jule) + uh(t) + £X(t) )

B,
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where u*(t) and f*(t) are the controlling and environmental.torque vectors, re—
spectively.

Detailed methods of developing Eqs. (3,4) are given in Refs, [1-4] and es-
pecially in Re¥s. {11,12], Eqs. (3,4) provide the complete set of equations
of motion of the flexible satellite, Equustion (3) contains 'n' scalar equa-
tions, such that the matrices [A.], [A ] and [A,] are square. Equation (4) con-
tains either three or nine equat:}.ons depending on whether the satellite is of
a gingle body or a dual-spin type.

Equations (3,4) can be combined in the form
B 1x + [By)x = u(t) + £(6) )

where, defining [I] to be the identity matrix,

.
FP4 - 0 ’
(8,1~ A, - O ®)
o o 1]
P, P, -r;
Bl = 1A -y A ™
0 -1 0
L. -
x(t) = a(t), s(t), g)1” ®
ut) = (uk(e), 0, 01 (9
£ = [£*(0), 0, 01T (10)
and
8(t) = 4() an

Equation (5) is the reguired differential equation describing the determinis-
tic motions of a f£lex’ole satellite.
STOCHASTIC EQUATIONS OF MOTION

The stochastic equations of motion of the flexible satellite will now be
obtained following the method shown in Refs. [8,9].

Let it be assumed that the initial values, _:5(0), have a Gaussian distribu-
tion with a known mean value, X(0), and a known covariance matrix, [POJ, given by

(2] = E{[x(®) - 2O 1[x0) - 1" 12

Here the operator E denotes statistical expectation. Let 5((:) te monitored on
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the Earth by measuring a variable z(t) where the mean value, Z(t), of z(t) is
related to x(t) by

Z(t) = h[x(t)] 13)
Let it also be assumed that the variables z(t), u(t), and f£(t) are Gaussian

with known mean values and covariance matrices R(t), Q(t), and S(t), respec-
tively. Hence, assuming zero lag, we get

E{[z(t) =~ Z(t) 1[z(1) - Z()1°} = R(t)8(t-1) s
E{[u(t) - T(t) 1{a(0) - 5(1)1T} = Q(t)§ &-1) (15)
EC(E(t) - T(©) 1IE(D) - £ IT} = 5()8 (t-1) 6)

where T(t) and Z(t) are the mean values of u(t) and f(t), respectively.

Let the maximum-likelihood estimates of the response of the satellite be
required in the time interval [0,T]. In view of the definitions given above,
the joint probability demsity, J, of (z~z), (u-w), (£~f) and [x(0) -~ X(0)] 1is
given by

*
3 = atlexp(- 9] an
where J* is defined as

% = [x0) - 0171217 [2(0) - )]

+ 17 [z - ZO T RO Tz - 2]
+ [u®) - 31T 1 uw - 56)) (172)

_ . -1
+ [£6) - E0 IS 17HE® - Z@©)] at
and 'a*' is the normalizing factor.
The maximum-1likelihood estimates can be obtained by maximizing the proba-
bility density J.  In other words, we minimize the functional J*, subject to

the constraintg that Eqs. (5), (13) be satisfied. This is done by defining
J%% by the relation

Thk = Tk 4 2 J’E Wl z@) - hx)]

+ 27 [x+ BHB,x-u-f}1dar (18)

and minimizing J** by considering x(0), z(t), u(t), £(t), x(t) and the La-
granglan vector multipliers u(t) and A(t) as the independent variables.

It will nov} be assumed that

SRR ST T P L s

H
N
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2(t) = hix(t)] = x(¢) (19)
which means
hom (20)
x )

With this assumption, the variational equations obtained by minimizing J** are
expressed as

() = {CIX(t) + (6TH(D) + 2(t) @D
AM =0 22)
and ‘
x(0) = X(0) + [2,)A(0) ; @23
where
X() = [x(0), A0 , (24)
2 = 57 £, - F2(0)] (25)
le ;
[G} = (26)
0
-5 18 BT [o+s 1B , :
12
(c1 @7
R-l {5 2]'1‘

Equations (21-23) are the réquired stachastic differential equations of motion
of the flexible satellite.

STABILITY CRITERIA

The stochastic Eq. (21) has twice & many scalar equations as the deter-
minigtic Eq. (5). The deterninistic equations are stable if the eigenvalues

of [~ h :LB ] have negative real parts. The stochastic equations are stable 1f

all the eigenvalues of [C] have negative real parts. If there were no errors
involved with u(t) and £(t), the matrices [Q] and [S] would be null matrices.
Consequéntly, Eq. (21) would degenerate into Eq. (5).

The. hypothesis of this study is that [Q] and [S] are not null matrices,
but have positive elements which are very small compared to those of [B,] or
[B }. Hence; half of ‘the eigenvalues of [C] will be almost equal to th& eigen—
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values, Pys of [-BZLBZ] and the other half will be almost equal to “Py That

the eigenvalues of [C] lie symmetrically about the imaginary axis can be veri-
fied by noting that

Tr{C] = 0

and that the eigenvalues of [BlJ‘BZ]T are equal and opposite to those of
~1
[-B,"B,].

In view of this, it is evident that Eq. (21) is always unstable. Even if
the real parts of p, are zerc, the Instability will be caused by the multiple
roots. Thus, according to the classical meaning of the term, no stability cri-
terion exists for the stochastic Eq. (21). The physical reason behind this is
that the probable errors in the dependent variables accumulate with time. This
accumulation causes the maximum-likelihood estimates to be asymptotically di-
vergent, even if the deterministic Eq, (5) is stable. The growth phenomencn,
for a satellite in which the vector x(t) is measured at discrete intervals of
time, Is illustrated in Figure 1. Let the mean values of x(t) be considered
to be given by the solutions of Eq. (5). Let the variances of x(t) be compu-
ted from the differences of the values of x(t) computed from Eqs. (5) and (21).
The errxor functions computed from these mean values and variances are shown at
three instants of time in Figure 1. In Figure 1A, there is a data input and
the computation cycle has been started. Hence the error distribution curve
has a high peak. The variances here correspond only to the measurement errors
of the variables x(t). In Figures 1B and 1C, it is seen that the height of the
error function becomes shorter and shorter, although the mean position given
by Eq. (5) approaches the origin. In Figure 1C, the error function is very
flat just before the new data input., It becomes sharp again just after the new
data input when a new computation cycle is started.

Since Eq. (21) is necessarily unstable, the stochastic stability cirteria
for a flexible satellite must be formulated in a particular manner. The sto-
chastic stability criteria of the response of a flexible satellite are those
which make

(a) the deterministic model given by Eq. (5) stable, and
(b) the growth rate of the stochastic model given by Eq. (21) a minimum.

In the absence of further information about the covariance matrices Q, R and S,
these two requirements are met if the real parts of pj are equal to zero.
Thus, a flexible satellite will be called stochastically stable if all the eigen-

values of ['31132] are purely imaginary. It is interesting to note at this
point that a perfectly rigid satellite satisfies this requirement.

Specific stability criteria can be obtained for a satellite when the ele-
ments of [Bl] and [le are known. TFor this, a particular satellite configura-

tion has to be assumed. In the absence of such a specific configuration, sev-
eral conditions sufficient to make the p N purely imaginary can be established
in terms of the matrices [Ai] and [Pi], i = 1-5, when the matrices are square.
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SUFFICIENT CONDITIONS

The sufficient condition for the Py to be purely imaginary, the matrix
-1
[Bl 82] must be antisymmetric. Let [Ai] and [Pi.]’ i = 1-5, be square
matrices. Let [BI]'] be given by

NN, O
-1
(8,17 = N, N, 0 (28)
0 0 1

Comparing Eqs. (6) and (28), the matrices Ni‘ i = 1-4, are given by

-1, -1
N1 = [B, - BjATA,)

-1, -1
(N, = (A, - A,PT'R,]
2 4~ NP 29)
-1 -1
(N3] = [P,A, APy )
-1 -1
[N,‘] - [AAPI. l’l-Al] .
Hence from Eqs. (7) and (28), [3-1132] is given by
[NlP 5+N 2A5] - [N1P2+N 2A2 ] ~[N 19 3+N2A 3]
-1 ; - _
[Bl BZ] = ["31’5”1.‘5] [N3P2+N4A2] [N3P3+N 10A3] (30)
fo] [-1] [0}
To have [51182] antisymmetric, the required conditions become
NlPS + NZAS =0
N3P2 + Nl.Az =0
= 3
N12’3 + N2A3 0 (31)

N3P3 + N4A3 = ~f

‘Nle + NZAZ - N3P5 + NCAS .
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Eliminating Ny, i1 = 1-4 from Eqs. (29) and (31), the required sufficient con-
ditions are finally obtained as

[P,1 = [p,] (32)
(A3] = {a;] (33)
p,1 = - [P4A11A5] (34)
1A,] = - (A7) (35)
(B ] = [PlAllAsl (36)

The stochastic stability criteria given by Eqs. (32-36) are much too re-
strictive and it will be almost impossible to obtain a practical design of a
satellite satisfying these constraints. For example, Eq. (33) requires that
the natural frequencies of the flexible elements of the satellite should be
equal to unity. This is not a feasible constraint.

In spite of these drawbacks, Eqs. (32-36) do provide several guidelines
for satellite design. It can be easily verified that Eqs. (34-36) are satisfied
identically by a three-axes stabilized satellite in which all subbodies have
undamped, purely elastic mountings. A spinning or a dual-spin satellite, even
if it is free of damping, generally does not satisfy Eqs. (34-36). Equation
(32) 1s satisfied by all types of satellites in which there is an axis of sym
metry, and in which the flexible elements are so constrained that the center
of ‘mass moves only along the axis of symmetry. Hence it can be clalmed that,
among satellite designs with comparable mass, stiffness, damping and covariance
matrices, a symmetric, three-axes stabilized satellite is likely to have the
lowest error growth rate.

A SPECIFIC CONFLGURATION

The constraints given by Eqs. (32-36) are too restrictive because, in their
derivation, no attention has been paid to the Zero elements of the matrices in-
volved. To utilize the location of the zero elements in the matrices [B.] and
[B,], a particular satellite configuration (shown in Figure 2) will now “be con-
sidered. The satellite consists of a rigid cylindrical body with four beams,
four beam-tip masses, and four spring-~mass-damper systems, placed symmetrically
as required by Eq. (32). The beams are perpendicular to the axis of symmetry
and are assumed to be axially rigid. The spring-mass~daiper systems are assumed
to be constrained to move only parallel to the axis of symswtry, These assump-
tions lead to a large number of zeros in the matrices [Bl] and [BZ]’ making the
algebraic manipulations considerably simpler.

The major drawback of any stability analysis with a particular satellite
configuration is that conclusions drawn from it cannot be extended to other
configurations. The method of modelling and analysis of the satellite configu-
ration (shown in Figure 2) that has been used in this study partially overcomes



this disadvantage. In this method, the locatica of zeros in [Bll and [32] re-

main unchanged when the numbers of beams, tip-masses, or spring-mass-damper sys—
tems are changed.

THE DYNAMIC MODEL

Let 'a' be the radius of the main rigid body and £,, 1 = 1-4, be the lengths

of the beams. Let I,y and Xy 1 = 1-4, bé the nominal position coordinates

of the beam-tip masses and the spring-mass-damper systems, respectively. Ac~
cording to the choice of coordinate axes shown in Figure 2, we have

i T
x, = [(are)), 0, 0]

T
X o= [0, -(ati,), 0]
r2 arl, Gn

T
I, [-(atty), 0, 0]

T
£, = [0, (at2,), 0]
Let it be defined that
- T
‘Edl [bl’ 0, 31]

T
g = [0, -5, &)]

. (38)
Ig3 = [y 0, ey

T
Tag = 100 £ 0]
Let x be the distance along the axes of the beams measured from the fixed ends.
S ey 403
Let y_d(t), xbi(x,t) and xdi(t), i = 1-4 be the deflections of the beam-tip
masses, the beams, and the spring-mass-damper systems, respectively. According
to the previously assumed constraints, let it be defined that

2 (®) = 10, v o0, vy (01

L) = [y, 1 ®), 0, 5, (T .
3
1o3(®) = 10, 7.5 5(6), 3,5 3T

(0 = [y 1©, 0,y (@1




59

21 G68) = [0, v ,06e), vy G6E))T

Yo (xst) = [ybz,l(x.t). 0, Yb2’3(x-t)]T

“0)
23000 = 10, yy3 506, 33 401"
zbli(x’t) = [Yb,"l(x,t), 0, Yb4’3(x,t)]T ‘
and ;
24,0 = [0, 0, y (01" 1)

Equations of motion in the coordinates w, Yoq 3 Ypi P and Yag for 1 = 1-4,
’ i

3 = 1,3 are obtained using the method shown in Ref. [l]. The space dependence
of these equations is eliminated by assuming

(x,t) = (&) J[exp (p§x) ~ pix-1] (42)

Ybi,3 lap,5

and applying the Galerkin's method {1,11). The space-dependent shape func-
tions in Eq. (42) are assumed to be known and correspond to those of a canti-
lever beam with a tip-mass.

At this point, the boundary conditions
yri’j(t) = [exp(p}2y) -~ P2y = gy, 4 | (43)
are applied, and the equations of motion reduce to the form
(A113"(e) + [Aé(g,é,ﬂ,t‘)lﬁ'(t) + [A3(0,8,9,t) 1 ' (1)
= {a}1a(t) + [A2(w,)Ju(t) (44)
and
[P'llg'i' (£) + [PJ(w,d,0,£)14" () + [P}(w,0,R,t)]q" (t)
= {Bjla(e) + [P5(u,®)Ju(t) + uk(t) + £*(t) (45)

1 ) - = -
where gq'(t) consists of the non-zero elements of L4 and Yai? i = 1-4, The

set of Eqs. (44) and (45) is of the oxder of 27. It is still quite difficult
to extract any meaningful analytic stability criterion out of this set.

It is now assumed that there exists certain unknown constants Tbij and
Ta1® 1 = 1-4, j = 1,3, such that

(46)

T512%1,2 T T21%2,1 7 T3293,2 T "b41%b4,1

Tp13%1,3 ™ Tb23%2,3 = 533%3,3 T "b43%4,3 a7
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and

Tavar = Ta2¥a2 " Taa¥ds = Taevas “8)

The values of Tbij and Taq CAR be obtained from the eigenvectors of Egqs.
(44), (45). But it is not our intention at this point to look for eigenvalues
and elgenvectors of Eqs. (44), (45). Substituting Eqs. (46), (47), and (48)
into Eqs. (44) and (45), the equations of motion of the satellites are reduced
to the form

14,190 + [A,]4(6) + [A;]q(0) = [A,1d + [Aglw (49)
and

[P,19(6) + [P,]a(t) + [B4]q(e) = [B,1a + [P lu + u*(t) + £4(e)  (50)
where

a0 = [543 Gy 50 Gp,3) 1)

It should be noted that g(t) given by Eq. (51) is a (3x1) vector and all
matrices [Ail and [Pi], i = 1-5, are (3x3) matrices. The Eqs. (49), (50) now

form only a ninth order set of ordinary differential equations. This great re-
duction was made possible by the assumptions of Eqs. (46), (47), (48). It should
also be noted that, irrespective of the number of beams or spring-mass-damper 14
systems introduced at the initial stages of the dynamic modelling, Egqs. (49) i
i and (50) can always be made a ninth order set by suitably augmenting the equa-
I tions in Eqs. (46), (47), and (48).

Let it be assumed that the moment of inertia matrix, {I], of the satellite :

is given by
s
I
Ix 0 0
[1] = 0 Iy 1] (52)
0 0 I, f

The linearized form of the matrices [Ai] and [Pi]’ i = 1-5, can then be shown
to be as follows:

A
o
¢

P S S 0
Pp12 “B11¥%p127B21%b12

3 1 .3
(4,1 = “833%b13 0 (Mp137832513) 6D

1 4 4
(Mg1~833¥g1 0 ~B3gMq)

&
&
g
i
i
B
5
i

ST TR SN A



[A

2]

[a

4,1

[A

[p

[0 '(311“:12 + 321“:12)
0 0
ul) 0
[ 0 iy =81 1M 1o~ 8o 100 0
b127811"p127821¥p12
0 0 “§13
] Va1 0 0
[0 0 V12 1
s Yoy O
_“31 W o |
(o 0 0]
“:13“3 b1gfy O
L“Zu“s Hg1%s 0]
-(“23333'S:1> 12821 (“(1)3832"“':3)
(“23333'531) 12811 (“(2)3332'533)
R (o) 38 +005851-533) 0
F(Sgl_uglégﬁ) B TTRRR R )
(023333_3;.1 "22321 (“(1)3332'5143) o)
i 0 0 0
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(54)

(55)

(56)

(57)

(s8)

(59

TPy

R

LTI

EECRES O




62

1.3 2 3.3
(5y3%093833) o385 (S3ptans8y))

o 1 3_3 2
[Bs) = [-GSigtaypssy)  epsy (5300383 | 9 (60)
0 0 0
r,1-= 1} (61)
(pg] = Q1] - [1 a]. (62)

The undefined constants introduced in Eqs. (53) - (62) are defined by the fol-
lowing relations:

g 0 91,2
= |8y O 91,3 (63)
0

B3

where r 1s the displacement of the center of mass of the satellite from its
=c
nominal "position, and

1 - 2 o3 4 - 5 .
Mp12%12 ¥ Pp12%1,2 T Mp12e,1 t Mh12%c,2 * Mh12%e,1

6 7 8 9 .
+ p19%e,2 ¥ Fp12%e, 1t Yb12%c,2 T Ph12¥s (64)

1 - 2 3 - 4 5 .
Mp13%1,2 ¥ Mp13%1,3 ™ Mp13%c,3 T Pp13®1L * Fp1a¥2

+ o005 + by g0 (65)
uil;dl + “c2115’a1 + “31"41 - ”31;c,3 *ugyy “?11‘:’2
+ uglmls».\:; + ”21”2‘”3 (66)
%3- (i]ﬂ+ T, [ ]w + r, 2[:1 Ju + T, 3[uij]_u_:+ ydlisij]_cg
+ apy, o185 Ju + ayy 50836 + [s19 - ()1, (67)

where T is the kinetic energy functional [1] of the satellite. The operator

(T SR - e B ST
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('-) on any (3x1) vector v is defined by
0 e vy
v = vy 0 -v; (68)
-V, vy 0

such that the cross-product between any two arbitrary vectors u and v is given
by

gxx-;!’--\;g (69)

Analytic search for the eigenvalues of Eqs. (49) and (50) is now quite
easy, because these form only a ninth order set. As in the elements of the
matrices [Ail and [Pi]’ 1 = 1-4, these eigenvalues are functions of the unknown

constants T and t The method of analysis to be adopted now is to obtain

bij di’
the stability criteria in terms of Tpi 4 and T a1 Then we must obtain the union
of all criteria such that the resulting criteria become independent of T 13
and T, .
di

EIGENVALUE EQUATIONS

The characteristic equation in o for Eqs. (49) and (50) is given by

_ 9
[P5+u.P4] -[P3+<!P2+a P1]

Det. 2 =0 (70)
[A5+QA4] -[A3+QA2+G Al]

With the help of Eqs. (53) - (62), it can be seen that Eq. (70) is of the form

. -

Q; 4 0 9, Q5 Y
Q1 QW 0 9y s Oy
0 0o q 0o Q 0 :
Det. 33 35 =0
0 Do Q3 0 Qs 0

It can be verified that the locations of the zeros of the matrix in Eq.
(71) remain the same even if the number of beams or spring-mass~damper systems
are increased.
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Equation (71) can be factorized into
91 %2 Yy Ys
Q Q Q Q
21 22 24 26
Det. Q Q Q Q [Q43Q35'Q33Q45) =0
51 52 54 56
%1 %2 % Qe
Thus, the characteristic equations become
(Q439357033Q5) = © a2)

and

Det. =0 (73)

Equation (72) yields three roots of o and the other six roots are obtained from
Eq. (73). One of the roots of a from Eq. (72) is identically equal to zero.
The other two roots of Eq. (72) are given by the equation

2
C,a” + Cya + Cy = 0 (74)

where

. 1 3 4 9 4 0 0

Cp = [T (10781 W10 81120 + Mp12 (832701 38117%5385001 ()
Cp = = I (8; 110, + 8)1H01,) (16)
2 z'811%12 T B21¥b12

2 7 8
C3 = I, (Mp197813¥p127821Mp12) an

Hence the requirement of purely imaginary roots leads to the conditions

C,=0;C/c, >0 4fC #0. (78)

Expanding Eq. (73), the resulting equation in a is obtained as

6 5 4 3 2
Cau + Csa + C6u + C7a +kcau + C9a. + °10 =0 (79)

To simplify the expressions of Ci, 1 = 4=10, let it be assumed that
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T - - T = - T

b12 b32 ¥ Tp21 b4l P Tp13 T T Tp33 P Tp23 T T Tpas ?

Tar " " Tz P T4 T T Tgy (79a)

This assumed mode corresponds to that which, in terms of pointing accuracy,

we are most interested. This mode leads to pure rotational motions of the rigid
core about its center of mass. With this assumption, the coefficlent C9 is
given by

(<]
]

2 31
g = (I, )93"d1"b13 MECUSTCTICES

+

3 2 14
203 (1 45 /141 Y U1 3018137597 (1T

3 3,7
3“1:1:«1“‘11[523(I L) - Sy - 31(“b13“d 3“b13”dl)}

+

Q {9

2 7 sl 4 b
-8 {“d1Vb13 13(I SIg) AR LRE yS23 + 51 T TP1

3.3 34 6 3,3 6
831 (T,719) (g M1 3P 9gbpy3har) — BaMartp3lTySag+s (- 1)1

+

5. 17 .5 1 4 8 6 4 oh b oh
230001 Mp1 3 p13%a1 b1 3Ma1 “b13“d1)(523 117521513)

+

7 6 3.4 4.1
(“dl“bla “bla“dl) 23513+532511 313523+Sz1531)] (80)

+

Expressions for the other coefficients in Eq. (79) are similarly obtained.
For the roots of o in Eq. (79) to be purely imaginary,

=6 =6
Examining Eq, (80) and similar expressions for- C and C., it becomes evident
that Eq. (81) can be satisfied for arbitrary values of Z and Tai if and
only if

=0 (81)

2

B3 =¥

=0 (82)

Equation (82) is another proof of our previous claim that stochastic stability
is possible only for undamped three-axes stabilized satellites.

THREE~-AXES STABILIZED $ATELLITES

For a three-axes stabilized satellite, the constraints given by Eq. (78)
are almost always satisfied. Also for this configuration,

= C,n= 0 (83)

C. = C 10

5= Cp=Cg=C

9
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such that Eq. (79) becomes

4 2
a’'[CetC 1=0 (84)
Hence the required stability criteria are
. 1.1 1 . b 1.4 4.5 1
02¢ = LI Marp13 ¥ 21135521 + M1 1823 + LyS11Martb1s
1 4 55 6 4 bbb
* IRaMe13513 * (aabpia — Partpas) 511523 ~ 521519 (85
and
Ly b3 b 4.5 2 4.5 3
02 Cs = IyS3karM1s + LySnafartpis * LS2¥brsar
2 4 31 1.2
+ 2byHpy3 5oy + LI, (anas F Markey) - (86)

Constraints given by Eqs. (85) and (86) can be satisfied usually without great
difficulty, irrespective of the values of Tbij and Tag This is due to the

fact that C4 and 06 are mainly the mass and stiffness terms of the satellite

model. Hence, it can be concluded that three-axes stabilized satellites are
more likely to be stable under random environmental and control torques.
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STABILLITY AND CONTROL OF FLEXIBLE SATELLITES:

PART II - CONTROL
T, C. Huang and Aniruddha Das

ABSTRACT

This is the second part of an earlier investigation. In this section, it
is demonstrated that, by monitoring the deformations of the flexible elements
of a satellite, the effectiveliess of the satellite control system can be in-
creased considerably. A simple model of a flexible satellite had been analyzed
in the first part of this work. The same model has been used here for digital
computer simulations,

NOMEN CLATURE

[Ai], i = 1-5 = Matrices governing the equations of motion of flexible struc-
~tural elements of the satellire; Eq, (1)

[B'i], i = 1,2 = Matrices governing the satellite motion; Eqs. (3,7,8).

[g(t)] = Upper (3x3) left corner submatrix of [tb(t)][Bi]-l.
£ = External forcing function; Eq. (6).
f£* = External torque vector on the satellite; Eq. (2).
x [1] = Identity matrix.
[K] = System fundamental matrix; Eq. (22).
[Kl] = Matrix defined by Eq. (28).
n = Number of scalar elements in g'.
(03 = Null matrix. ’
[Pi] , 1 =1-5 = Matrices governing the rotational motion of the satellite;
, Eq. (2}
q', {qi} = Generalized structural position coordinate vector.
i = Generalized position coordinate for the ith beam,
T = Terminal time for optimal control.
t = Time.
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INTRODUCTION

In the first part [1] of this study, the question of stochastic stability
of flexible satellites was discussed. Specific stability criteria were devel~
oped for a simple flexible model of a satellite (shown in Figure 1).
part of the study, we determine whether it is possible to increase the pointing
aceuracy of a satellite by observing the deflections of the flexible elements.

To do this, we use the same satellite configuration (Figure 1) and the theore-

71

Torque magnitude parameter, defined by Eq. (25),
Generalized control vector; Egs. (5), (22).

Control torque vector on the satellite; Eq. (2).
Various control torque functions; Eqs. (14) - (21).
State vector; Eqs. (3), (4), (22).

Uncontrolled response; Eq. (22).

Position vector of the ith spring-mass-damper system,
Position vector of the ith beam-end mass.

Control system parameter; Eqs. (24), (26).

Relative control torque magnitude vector; Eqe. (24), (27).
Dummy time variable.

Fundamental matrix of -[Bi]_l[Bé]; Egqs. (9), (10).
Component matrices of [¢]; Eq. (11).

Angular veloéit:y vector of the satellite; Eqs. (1), (2).

Various simulation responses of w; Egs, (14) - (21).

ticazl model developed in Ref. {1].

Likins and Fleischer [2] have shown that the flexible elements of space~
craft can have a destabilizing influence.
ing a proportional linear control system employing root-locus pleots and eigen=-
The control loop gains in [2] were based on a dynamic model,

value analyses.

using hybrid coordinates, of a spacecraft containing long flexible beams.
essentially similar approach was employed by DiLorenzo and Santinelli [3].

Here also a linear proportional control system was designed by considering the
equations of motion of the spacecraft along with those of the flexible elements.

The spacecraft model in [3] consisted of a rigid body with two spring-mass

systems .

In this study, a time-optimal 'bang bang' control policy has been assumed.
The method of calculating the control torques is essentially the same as that

In this

They have shown a method of design—

P
i
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given in Ref. [4]. Full details of the computation of control torques are pre-
sented in Ref. [5]. Apart from the control policy, this analysis differs from
Refs. [2,3] in another important aspect. In the analyses of Refs, [2,3], the
deflections of the flexible elements are not observed. Heiice, zero initial
deflections and velocities of the flexible elements are inherently assumed.
The present method can accommodate arbitrarily large initial conditions of the
flexible elements of the satellite.

THEQRETICAL BASIS OF COMPARISON

The theoretical analysis and comparison of the satellite responses is
based on the dynamic model explained in Section 6 of Ref, [1]., It was shown
there [1] that, by using the Galerkin's method, the deflections of the flex-
ible elements of the satellite are governed by purely time-dependent generalized
position vectors, _qbi(t), -‘ln(t) and zdi(t:). It was also shown that these vec—

tors can be condensed subsequently, and riduced to a vector g'(t) by applying
suitable boundary and continuity conditions. Usually the number of elements
in q' is much smaller than that in the set [Sbi’ Yoo z“]T.

Let w(t) be the angular velocity vector of the satellite. Let u*(t) and
£*(t) be the control torque and environmental torque vector on the satellite.
Given these definitions, it is well known [],6,7]} that the satellite response
is governed by a palr of matrix equations of the form

(A]1g" (£) + [AJGw,0)1g'(8) + [A3(,0)]g’ (8)

= [A7Ja(e) + [AL(w Ju(e) ey

and
(B11G(6) + [Ph(w,t)1g' (£) + [P4(u,e)]q' (t)
= [2;Ju(e) + [PL(w) Jult) + uk(t) + £X(). (2

Equation (1) governs the flexible motion of the beams, spring-mass~dampers, and
beam-end masses of the satellite model. Equation (2) 1s based on the principle
of conservation of angular momentum of the satellite. If q'(t) is a (nxl) vec-
tor, then there are 'n' scalar equations in Eq. (1). Equation (2) always has
three scalar equations, Equations (1) and (2) correspond to Eqs. (44) and (45)
of Ref. [1].

Equations (1) and (2) are now combined together to form one first order
equation given by !

[ByJx(t) + [B)Ix(e) = ult) + £(&) 3
where

x= [0,4',q"7 “
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u= (w001 )
£ = [£%,0,01° ()

(2,1 -[2]1 (0]
B3 = | (A7) -[A'] (0] ')

[o1 (03 [1]

Pyl -[e31  -[p}]
(331 = | [A5] -[A3]  -[A}] (8

[0} -1 (o]

Let [¢(t)] be the fundamental matrix of the homogeneous eguation
x = -{B!77 B! )x (9)
- 1 2= '
such that the solution of Eq. (3) is given by
x(®) = (80 1x(0) + SELe(e-1)1(8] 1 fu(v) + £(0)Jdr . (10)

Let [¢(t)] be composed of [@l(t)], [02(t)], [@B(t)] and [%(t)] such that

o1 19,] 1%

(3x3) (3xn) (3xn) Qan
{e] =
[¢,]

[2n x(2n+3) ]

when w(t) and q'(t) are (3x1) and (nxl) vectors, respectively. Then the equa~-
tions corresponding to w(t) can be separated from Eq. (10) in the form

w®) = (& (0)1u(0) + [8,()13'(0) + [2,(t)1g" (0)

+ 75 [Ble=0)1{uk(x) + £4(0) Jdr [eb)
vhere [ﬁ(t)] is the (3x3) wpper left hand corner submatrix of [¢(t)][B:'L]—1.
It should be noted that previous investigations [2,3] were concerned main-
ly with the determination of [Ol(t)] and [B(t)] and then with the approximation
of Eq. (12) by

2T e e




74

(e} = [¢,(£)]u(0) + f; [B(t-) 1[w*(x) + £%(x) Jdv 13

It is now clear that a control system based on Eq. (13) will be successful if
[02(1;)] and [tb,%(:)] approach zero sufficiently fast, On the other hand,

as explained in Ref. [1], such large damping rates may create fast error growth
rates in the presence of random disturbances., Hence it is advisable to use
zero damping rates and obtain the control system from Eq. (12) while measuring
4'(0) and q'(0).
NUMERICAL SIMULATION

To illustrate the differences in the responses of the flexible satellite
under the above mentioned control policies, the results of several numerical
simulations are now presented. The assumed satellite geometry, mass, inertia,
and stiffness properties are:

Nominal spin rate of the satellite = 0.05 rads/sec.

Nominal principal moments of inertia of the satellite:
I =100.0 ; I = 200.0 ; I, = 200.0 slug-in,”
x Yy z

Total mass of the satellite = 50.0 slugs.
Diameter of the rigid core = 50.0 ins.
Length of the beams = 30.0 ins.

Linear mass-density of the beams = 0.0625 slugs/in.

Area moment of inertia of the beam cross-section = 0.5 in.4

Young's modulus for the beam material = 30:(].06 psi,

Mass at the ends of the beams = 0.005 slugs.

Mass in the spring-mass-damper systems = 0,005 slugs.

Spring constant of the spring-mass-damper systems = 50,0 1lbs/in.

Damping constant of the s.m.d, systems = 0.1 lbs/sec/in.

Radial distance of the s.m.d. systems from the center of the rigid core =
15.0 ins.

Initial values of w(t):
ml(o) = 0,01 ; m2(0) = 0.0 3 w3(0) = 0,01 rads/sec.
Initial values of g'(t), _i' (t):

4;(0) = q;(0) = 0.01 ; q5(0> =0,3412.
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R S

aj = 6,'2(0) = 0.01 ; "‘3(0) =0 ,3 #%1,2.

The complete numerical experiment is performed through the following
steps:

Step 1: A time interval [0,T] in which the controls are to be effected
is fixed. In this case T was taken as 5.0 secs.

Step 2: The satellite is assumed to be rigidi and without controls, such
that w(t) is given by the solut:ign wt(t), of the equation
S v L
[B,Ju(e) + [P5lui(e) + £%(t) =0 . 14
Equation (14) is integrated and the responses mi(t) and wi(t) are
plotted in Figure 2.
Step 3: The satellite is assumed to be rigid and subjected to a time-op~

timal ’banE—bang' control, ul(t), such that w(t) is given by the
solution we(t), of the equation

(2} 162 (e) + [Llu?() + u(e) + £R(r) = 0 . s)

The _gl(t) are computed so as to yield _u_sg(T) = 0 by the method
shown in Appendix A. Equation (15) is integrated and the res-

ponses mi(t) and mi(t) are plotted in Figure 3.

Step 4: The satellite is assumed to be flexible, without control and
with q'(0) = q'(0) = 0, such that w(t) is given by 9_3(21). Here

f(u) = [# (£} (o) + f; [ﬁ(t-r)]_f_*(r)dr . (16)
The responses wi(t) and mg(t) from Eq. (16) are plotted in Figure 4.

Step 5: The satellite is assumed to be flexible, with é"(o) =q"'(0) = 0.
The satellite is subjected to the control torquée El(t} computed
in Step 3, such that w(t) is given by g“(t), where

W) = [0 ® 1O + I5 B0l + g @l . an

The respon3ies m;‘_(t:) and w;(t) from Eq. (17) are plotted in Figure :
5. :

Step 6: The satellite is assumed to be flexible, with _ci' ) =q'(0) =0,

and subjected to a time-optimal ‘bang-bang' control, _\_1.2(1:) , such
that w(t) is given by 9:_5(#:), where

W) = [o ()10 + S5 B0 A + w' (1 . Q) ‘
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The 9_2(1:) are computed so as to yield 9_5('1‘.) = 0 by the method

shown in Appendix A. The responses mls_(t) and m;_(t) from Eq. (18)
are plotted in Figure 6.

! .
: Step 7: The satellite is assumed to be flexible, with q'(0) ¢ 0 ¥ q'(0)
! and without control, such that w(t) is given by w6(t), where

% @@ = 1o ()10 + [8,()14'(0) + [65(£)1g' (O
: IS B0 HEAD Jer a9

}
; The responses mi(t) and mg(t) are plotted in Figure 7.

t Step 8: The satellite is assumed to be flexible, with .‘.l' 0) 4 04 q'(0)
and subjected to the control torque 11_2(1:) computed in Step 6,

such that w(t) is given by _(9_7(t), where

0 (6) = (9 (0)1(0) + [8,(6)14"(0) + [2,(£) 1" (O)

+ 18 B0 () + £4(D) Jer . (20)

The responses wZ(t) and mZ(t) are plotted in Figure 8,

Step 9: The satellite is assumed to be flexible, with i‘ (0) 4 0 4 q'(0).
It is also subjected to a time-optimal 'bang-bang'! control,
33(:), such that w(t) is given by w”(t), where

: 8 .

w¥e) = 1o, ()10 + (8,()14'(0) + [0,(0) 1" (©)

+ 15 Be-n ) () + B0 lae (21)

The torques _ga(t) are also computed to yield 9_8(’1') = 0 by the
method shown in Appendix A. The respcuses ml(t) and wl(t:) from
Eq. (21) are plotted in Figure 9.

COMPARISON AND EVALUATION

One important result of the simulation, as seen from Figures 2 and 3, is
that the control sequence y_l(t) is very effective on the rigid model of the sa-

tellitc, But Figure 5 shows that, for the same values of w(0), _\_x_l(t) produces
unwanted non-zero values of w(") when it is applied tc the flexible satellite mo-
del, although q(0) and gq(0) ere assumed to be zero, Thus, another important

result, presented in Figures 5 and 6, shows that _gg(t) is more effective than
gl(t) when a flexible satellite model is considered. Up to this point, then, we
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have essentially the same conclusion as that in Refs. [2], [3], that for a flex-
ible satellite the control should not be based on a rigid model. The difference
between Refs, {2], [3] and the present study is in the adopted control policy.

'Bang-bang' controls have been used here instead of linear proportional control.

The most important results are presented in Flgures 8 and 9. When the
_q_(O) and g(0) are observed and found different from zeto, ué(t) does not lead
to the required zero values of W(T). In contrast, u: u3(c), which is based on the
observed values of _q_(O) and _q(O) » ylelds zero values of w(T). Another point
to be considered is the divergence of w(t) from zero in ‘the two cases. The

maximum divergence of w(t) and gz(t) is 11.0 x 10_4 rads/sec, while that with

gs(t) is only 7.0 x 10_4 rads/sec., This bears out the theoretical claims that
a control based on Eq. (12) is more effective than one based on Eq. (13) and
that the effectiveness of a control system can be greatly improved if the de-
flections of the flexible elements of a satellite are observed.
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APPENDIX A

The method of computing the time-optimal control torques for a system
given by

A(E) = y() + [oiK(t-1) Ju(x)dr (22)
is now presented. Reference [5] presunts computing algorithms and other de-
tails of the method. In Eq. (22), x(t) 1s the output vector of the system,

u(r) is the control vector, and y(t) and [K(t)] are known vector and matrix
functions of the time, t.

It is assumed that, for a given t =T, u(t) should be such that
x(T) =0 23)
and I_g(t:)[ for all t is a minimum. Thus, the minimum time problem is converted

to the equivalent minimum control effort problem. The solution for u(t) is
then given by {5].

uj(t) = U(T)ug sgn[i A;Kij (T-t) ] (24)

where
T

u(T) = 1.0/[?21‘? /s [:zL AIKij(T—T)ld'r] (25)
such that

i My, (1) = 1.0 (26)
and

Pk o= - %— [K1]_1y,(T) . @n

. T ,

&1y = Jp [k (=] sem [E MK (T-1) 1dv (28)

The summation convention of repeated indices is not to be used in Eqs. (24)
to (27) above.

)5 v A e Y Ao 0 s A b
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