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LAMINATION RESIDUAL STRESSES IN FIBER COMPOSITES 

ABSTRACT 

An experimental investigation was conducted to determine 
the magnitude of lamination residual stresses in angle-ply composites 
and to evaluate their effects on composite structural integrity. 
The materials investigated were Boron/Epoxy, Boron/Polyimide, Graphite/ 
Low Modulus Epoxy, Graphite/High Modulus Epoxy, Graphite/Polyimide 
and S-Glass/Epoxy. These materials were fully characterized. Static 
properties of [02/±45]s were also determined. Experimental techniques 
using embedded strain gages were developed and used to measure residual 
strains during curing. The extent of relaxation of lamination residual 
stresses was investigated. It was concluded that the degree of such 
relaxation is low. The behavior of angle-ply laminates subjected to 
thermal cycling, tensile load cycling and thermal cycling with tensile 
load was investigated. In most cases these cycling programs did not 
have any measurable influence on residual strength and stiffness of 
the laminates. The only exceptions were the Graphite/Low Modulus 
Epoxy and S-Glass/Epoxy which failed during elevated temperature thermal 
cycling under load and showed degradation during low temperature thermal 
cycling under load. In the tensile load cycling tests, the Graphite/ 
Polyimide showed the highest endurance with 10 million cycle runouts 
at loads up to 90 percent of the static strength. The S-Glass/Epoxy 
had the lowest endurance failing to survive 10 million cycles even at 
25 percent of ultimate. The effects of fiber volume ratio, ply orienta­
tion and ply stacking sequence were also investigated for Graphite/ 
Polyimide. Residual strains during curing, static strength and 
residual properties after thermal cycling under load were determined. 
The [02/±lS]s specimens with the lowest residual stresses showed some­
what higher residual strength. The [02/902]s laminate, having the 
highest residual stresses, showed a reduction in residual stiffness 
and strength. No significant changes were observed in residual 

properties of the three stacking sequence variations of the [02/±45]s 
laminate. 
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IITaI Research Project No. D6073 

LAMINATION RESIDUAL STRESSES IN FIBER COMPOSITES 

1.0 INTRODUCTION 

Advanced filamentary composites, such as boron and graphite 
reinforced plastics, are finding increasing applications in more 
critical aircraft components such as fan blades. The evaluation 
of a given structural component from the point of view of stiffness 
and load carrying capacity requires exact knowledge of the loading 
conditions, stress and strain distributions, material properties and 
failure criteria. Similar information is required in the synthetic 
approach where a structural and material design is sought to meet a 
desired function with its concomitant loading on the component. 

In conducting the stress analysis step in this process it is 
very important to add to the externally induced stresses the pre­
existing state of residual stress. The type of residual stresses that 
are of critical importance are those stresses produced during curing 
and caused by the different coefficients in thermal expansion of the 
various plies of a laminate. An extensive analysis of lamination 
residual stresses was given by Chamis. l Using a linear laminate 
theory he presented results on residual stresses as a function of 
constituent properties, ply-stacking sequence and orientation, fiber 
content, cure temperature and other variables. It was shown that 
residual stresses can reach values comparable to the transverse 
strength of the ply and thus induce cracking across the plies. l ,2 
They can also cause inter laminar separation. 

Before the theory above can be generally applied to design of 
critical components, it must be verified experimentally. A systematic 
experimental program is needed to measure residual stresses directly, 
their possible decay with time, and their dependence on composite 
design variables. An experimental study is also needed of the influ­
ence of residual stresses on the structural integrity, stiffness and 
strength of the composite. 
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To meet the needs above, the NASA-Lewis Research Center is 
sponsoring the current program with lIT Research Institute under 
Contract No. NAS3-l6766. The objectives of the present investigation 
are: (1) to experimentally determine the magnitude of lamination 
residual stresses in fiber-composite angle-ply laminates, (2) to 
evaluate their effects on composite structural integrity, and (3) to 
provide experimental data for verification of existing lamination 
residual stress theory. 

The investigation described in this interim report consists 
of the following five tasks: 

TASK I - Literature Survey and Materials Selection 

The objective of this task was to conduct a selective litera­
ture survey to obtain thermal and mechanical properties of unidirectional 
composites and their constituent matrix and fiber materials and to 
select six fiber/matrix systems for the experimental investigation. 

TASK II - Residual Strains and Static Strength 

The objective of this task was to fabricate and characterize 
the six composite materials selected, to develop instrumentation 
procedures and measure residual strains during curing, and to determine 
the static strength of angle-ply laminates. 

TASK III - Evaluation of Stress Relaxation 

The objective of this task was to evaluate the magnitude of 
!. 

relaxation of residual stresses and its effect on strength. 

TASK IV - Cyclic Loadi!}$ and Residual Strength 

The objective of this task was to measure degradation and 
residual strength of angle-ply laminates subjected to cyclic the~al 
loading, cyclic mechanical loading and cyclic thermal loading under 
tension. 
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TASK V - Effects of Laminate Configuration Variables 

The objective of this task was to determine the effects of 
fiber volume ratio, ply stacking sequence and ply orientation on the 
magnitude of residual stress and residual strength after thermal 
cycling under tensile load. 
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2.0 TASK I - LITERATURE SURVEY AND MATERIALS SELECTION 

2.1 Literature Survey 

The following six fiber/matrix material systems were investi­
gated in this program: 

A. Boron/Intermediate Modulus Epoxy 

B. Boron/Po1yimide 

c. Graphite/Low Modulus Epoxy 

D. Graphite/High Modulus Epoxy 

E. Graphite/Polyimide 

F. S-G1ass/Intermediate Modulus Epoxy 

To aid in the selection of the final material systems, a 
literature survey was performed of candidate systems aimed at 
collecting data on thermal, mechanical and physical properties of 
unidirectional composites and their constituent matrix and fiber 
materials. The survey was conducted with a view to selecting materials 
with the following approximate values for the moduli of the constituents: 

Boron fibers: 380-415 GPa (55-60 x 106 psi) 

Graphite fibers: 345-415 GPa (50-60 x 106 psi) 

Low modulus epoxy: 2.1 GPa (300,000 psi) 

Intermediate modulus epoxy: 3.5 GPa (500,000 psi) 

High modulus epoxy: 4.8 GPa (700,000 psi) 

The boron epoxy system was found to be one of the best 
characterized materials with a great deal of data available. Several 
matrices have been used with boron fibers, such as AVCO 5505 (formerly 
NARMCO 5505) and SP272, a product of 3M Company. Some properties for 
the constituent materials and the unidirectional laminate are tabulated 
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in Tables 2-1, 2-2, 2-3 and 2-4. The principal properties of the. two 
laminates are quite similar. The AVeO 5505 epoxy matrix has a modulus 
of approximately 3.5 GPa (500,000 psi), while the SP272 matrix has a 
modulus of approximately 4.8 GPa (700,000 psi). For this reason, plus 
the fact that it is better characterized and more commonly used, the 
AVCO 5505 system was selected as material system A. 

The following Boron/Polyimide systems were investigated as 
candidates for material system B: 

(1) Boron/Skybond 703, compression molded 
(2) Boron/P13N, compression molded 

(3) Boron/P13N, autoclave molded 

(4) Hercules 6001B 

(5) Boron/WRD 9371 

Of the above, Boron/P13N was found to have the most available 
data. Some of these are shown in Figures 2-1 through 2-8 which are 
taken from Reference 9. Tables 2-5 and 2 .. 6 list properties for the 

"Boron/600lB and Boron/WRD9371 systems as published by the manufacturers, 
10,11. Workability and pertinent fabrication properties for Skybond 703 
and Ciba-Geigy P13N polyimide resins were found in References 12 and 13. 
However, few mechanical property data were found for the cast resins. 
From the information obtained in the survey it was decided to select 
the 4 mil Boron/WRD9371 as the material system B. 

References 9, 10, 11, and 14 through 22 were used to establish 
mechanical properties of various hi&h modulus graphite/epoxy candidate 
systems for selecting a Graphite/Low Modulus Epoxy and a Graphite/High 
Modulus Epoxy. Reference 14 presented the results of an extensive 
literature survey and was used in the construction of comparative tables 
for our selection purposes. Table 2-7 shows the relative performance 
of several graphite fibers. Of the commercially available fibers 
(excluding the Celanese Gy-70 and Thornel 75) the highest specific 
modulus material is the Modmor I graphite fiber with a 415 GPa 
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Table 2-1 

PROPERTIES OF BORON FILAMENT (United Airc raft) (Ref. 3) 

Density, p, kg/m3 (lbm/in. 3) 

Modulus, E, GPa (psi) 

Tensile Strength, ST' MPa (psi) 

Table 2-2 

2,644 (0.095) 

403 (58.5 x 106) 

2930 (426,000) 

PROPERTIES OF NARMCO (AVCO) 5505 RESIN (Ref. 3) 

Density, p, kg/m3 (lbm/in. 3) 

Modulus, E, GPa (psi) 

Shear Modulus, G, GPa (psi) 

Poisson's Ratio, v 

Tensile Strength, ST' kPa (psi) 

Compressive Strength, Se' kPa (psi) 

2-3 

1,257 (0.0457) 

3.84 (557,000) 

1. 36 (197,000) 

0.41 

55,800 (8,100) 

127,600 (18,500) 



Table 2-3 

PROPERTIES OF UNIDIRECTIONAL BORON/EPOXY (AVCO 5505) 
(Fiber Volume Ratio: 0.50) 

Temperature 
Property degK (OF) 81 Units English Units 

Density, p - 2,005 kg/m3 0.0725 Ib/in. 3 

Longitudinal Thermal 297 (75) 4.5 x 10-6 K-1 2.5 I-t €/oF 
Coefficient, all 450 (350) 4.5 x 10-6 K-:-1 2.5 I-t €/oF 

Transverse Thermal 297 (75) 23.5 x 10-6 K- l 13.1 I-t e/oF 
Coefficient, a 22 450 (350) 39.6 x 10-6 K-1 22.0 I-t €/oF 

Longitudinal Modulus, Ell 297 (75) 207 GPa 30 x 106 pSl. 
400 (260) 207 GPa 30 x 106 psi 
450 (350) 200 GPa 29 x 106 psi 

Transverse Modulus, E22 297 (75) 18.6 GPa 2.7 x 106 psi 
400 (260) 12.4 GPa l.8x 106 psi 
450 (350) 7.6 GPa 1.lx 106 psi 

Shear Modulus, G12 297 (75) 13.8 GPa 2 x 106 psi 
450 (350) 1.4 GPa 0.2 x 106 psi 

Major Poisson's Ratio, \1 12 297 (75) 0.20 -
Minor Poisson's Ratio, \I 21 297 (75) 0.06 -
Longitudinal Tensile 297 (75) 1,3.25 MPa 192,000 psi 

Strength, SllT 400 (260) 1,102 MPa 160,000 psi 
450 (350) 1,000 MPa 145,000 psi 

Longitudinal Compressive 297 (75) 1,792 MPa 260,000 psi 
Strength, SllC 450 (350) 896 MPa 130,000 psi 

Transverse Tensile 297 (75) 63,400 kPa 9,200 psi 
Strength, S22T 400 (260) 52,400 kPa 7,600 psi 

450 (350) 38,500 kPa 5,600 psi 

Transverse Compressive 297 (75) 310,000 kPa 45,000 psi 
Strength, S22C 450 (350) 108,000 kPa 15,700 psi 

Intra1aminar Shear 297 (75) 119,000 kPa 17,300 psi 
Strength, S12 450 (350) 37,200 kPa 5,400 psi 

*Numbers refer to list of references at end of report. 
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Reference 
Number* 

-
4 
4 

4 
4 

5 
5 

5,6 

5,7 
5 
5 

8 
8 

3 

3 

3,5 
5 

5,7 

3,4 
4 

3,5,7 
5 
5 

5 
6 

8 
8 



Tab1~ 2-4 

PROPERTIES OF UNIDIRECTIONAL BORON/EPOXY (SP272) 
(Fiber Volume Ratio: ·0.50) 

I Temperature 
I Property degK (OF) SI Units English Units , , 

I Density, p - 2,005 kg/m3 0.0725 lb/in. 3 

Longitudinal Thermal - - -. i Coefficient, 0. 11 
i 
i Tra.nsverse Thermal - - -Coefficient, 0. 22 

Longitudinal Modulus, Ell 297 (75) 207 GPa 30 x 106 psi 
400 (260) 200 GPa 29 x 106 psi 
450 (350) 200 GPa 29 x 106 psi 

Transverse Modulus, E22 297 (75) 22 GPa 3.2 x L06 psi 

Shear Modulus, G12 297 (75) 12.4 GPa 1.8 x 106 psi 

Major Poisson's Ratio, vl2 297 (75) 0.23 -
Minor Poisson's Ratio, v21 297 (75) 0.025 -
Longitudinal Tensile 297 (75) 1,283 MPa 186,000 psi 

Strength, SlIT 400 (260) 1,283 MPa 186,000 psi 
450 (350) 1,115 MPa 162,000 psi 

Longitudinal Compressive 297 (75) 3,050 MPa 443,000 psi 
Strength, Snc 400 (260) 1,870 MPa 272 ,000 psi 

450 (350) 592 MPa 86,000 psi 

Transverse Tensile 297 (75) 80,600 kPa 11,700 psi 
Strength, S22T 400 (260) 55,100 kPa 8,000 psi 

450 (350) 24,800 kPa 3,600 psi 

Transverse Compressive - - -
Strength, S22C 

Intralaminar Shear 297 (75) 129,000 kPa 18,700 psi 
Strength, 812 450 (350) 34,500 kPa 5,000 psi 

. ,~ 

Numbers refer to .list of references at end of report. 
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Number* 

-
-

-
8 
8 
8 

8 
: 

8 

-

-
8 
8 

8 

8 
8 
8 

8 
8 
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-
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Table 2-5 

PROPERTIES OF UNIDIRECTIONAL BORON/POLYIMIDE HERCULES 6001B (Ref. 10) 

Fiber Volume Ratio, FVR 

Density, p 

Longitudinal Modulus, Ell 
(Flexural) 
298 deg K (77°F) 
590 deg K (600°F) 

Longitudinal Flexural 
Strength, SllF 

298 deg K (77°F) 
590 deg K (600°F) 

Interlaminar Shear 
Strength, S13 

Table 2-6 

0.60 

2,100 kg/m3 (0.076 lb/in. 3) 

223 GPa (32.4 x 106 psi) 
210 GPa (30.4 x 106 psi) 

1,950 MFa (283,000 psi) 
1,270 MPa (184,000 psi) 

47,500 kPa (6,900 psi) 

PROPERTIES OF UNIDIRECTIONAL BORON/POLYIMIDE WRD 9371 (Ref. 11) 

Fiber Volume Ratio, FVR 

Density, p 

Flexural Modulus, Ell 

Flexural Strength, SllF 
297 deg K (75°F) 
560 deg K (550°F) 

Interlaminar Shear 
Strength, S13 

2-6. 

0.55 

1,960 kg/m3 (0.071 lb/in. 3) 

172 GPa (24.9 x 106 psi) 

1,730 MPa (251,000 psi) 
1,300 MPa (188,000 psi) 

90,300 kPa (13,100 psi) 



(60 x 106 psi) modulus. Furthermore, this fiber has been prepregged 
with a wide variety of epoxy and polyimide resin systems. It was 
selected as the reinforcement for the current study. A comparison 
of domestic and foreign fiber composite properties for several resin 
systems is shown in Tables 2-8, 2-9 and 2-10. Unfortunately, little 
or no data was available on the cast resin properties for these 
systems. 

In addition to the literature search, several prepreggers . 
were contacted for their capabilities in producing prepreg tape with 
such resins employing the Modmor I high modulus graphite fiber. Two 
commercially available systems were detailed by Whittaker R&D Labora­
tories employing ERLA 4289 (average elastic modulus of approximately 
2.1 GPa (300,000 psi) and ERLA 4617 (average elastic modulus of the 
resin in the range of 5.5 to 6.2 GPa (800,000 to 900,000 psi). 

Matrix resin bulk properties for the ERLA 4289 are shown in 
Table 2-11. Properties of unidirectional laminates with S-glass are 
shown in Table 2-12. The void contents for flat laminates of ERLA 4289 
with S-glass were respectable at 1.8 percent and 2.2 percent for uni­
directional and bidirectional plates, respectively. The 0° strengths 
and stiffnesses of S-glass/ERLA 4289 would depend primarily on the 
filament properties but the transverse modulus of 10 GPa (1.45 x 106 

psi) would not differ much from that of the Modmor I/ERLA 4289 system. 
On the basis of the above information, Modmor I/ERLA 4289 was selected 
as material system C. 

The following Graphite/Polyimide systems were investigated as 
candidates for material system E: 

(1) HMG 50 Graphite/P13N, compression molded 
(2) HMS Graphite/P13N, autoclave molded 
(3) HTS Graphite/P13N, compression molded 
(4) Hercules HM Graphite/600l Polyimide 
(5) Modmor II/Gemon L 

(6) Modmor II/WRD 9371 
(7) Modmor I/WRD 9371 
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Table 2-7 
TYPICAL STRENGTH PROPERTIES AND RELATIVE MERITS OF GRAPHITE FILAMENTS (Ref. 14} 

Graphite Filaments 
Thornel Morganite Courtaulds Celanese Thornel 

Properties HMG-50 50-S Type I Type II HM-S HT-8 GY .. 70 75 

Modulus (106 psi) 50 50 60 40 50 32 75 75 

SpecifiC Modulus 819 814 833 635 721 504 1027 1150 

(10 6 in.) 

Tensile Strength 287 280 250 350 250 300 300 320 

(103 psi) 

Specific Tensile . 4.7 4.75 3.47 5.55 3.47 4.72 4.11 4.93 

Strength (10 6 in.) 

DenSity (gm/ cc) 1.70 1.63 1.94 1.75 1.90 1.76 1.95 1. 86 

(lb/cu in) 0.061 0.059 0.072 0.063 0.069 0.063 0.070 0.067 

.. 

Relative Merits 1. Contin- I. Contino:. 1. Fiber 1. Fiber 1. Contin- I. Contin- I. Contin- I. Contin- ! 

uous uous Surface Surface uous uous uous uous 

2. SpecifiC 2. Specific 2. Specific 2.· Specific 2. Cost 2. Cost 2. High 2. High 

moduli & mOdu1i& mOdulus strength 
3. Specific 

mOdulus mOdulus 

strength strength strength 3. High 3. High 
strength strength 
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Table 2-8 

COMPARISON OF COMPOSITES MADE WITH DOMESTIC GRAPHITE FIBERS (Ref. 14) 

0° Tension 90° Tension 0°- Flexure Horizontal 
Fiber Epoxy Resin (I, ksi E, msi (I, ksi E, msi (I, ksi Shear, ksi 

Thorne I 50* Narmco 2387 132 24.0 6.8 1.6 - -
HMG-50* E-787 93 19.4 6.1 1.3 - -
Thornel-50S * Narmco 2387 134 31.2 - - - -
HMG-50 4617 124 30.1 2.5 1.1 100 5.2 

HMG-50 E-715 108 24.9 1.7 0.8 - 5.1' 

HMG-50 BP-907 134 28.5 - - - 6.6 ' 

Thornel50 ERL-2256 102 23.0 2.6 0.8 - 3.0 

Thorne 1 50 E-798 118 22.5 0.9 0.7 - -
HMG-50 :X-05 (130) 22.9 - - - -

, ... ---- -

*Sandwich data 

( ) Data includes some specimens that failed improperly. 

Reference 

23 

23 I 

23 

24 

25 

24 

26 

24 

24 
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Table 2-9 

COMPARISON OF COMPOSITES MADE WITH HIGH MODULUS GRAPHITE FIBERS (Ref. 14) 

0° Tension 90° Tension o "Flexure 90°FlexurE Horizontal 
Fiber Epoxy Resin a, ksi E, msi a, ksi E, msi a, ksi 0', ksi Shear, ksi 

Celanese Epi-Rez 508 121 47.5 5.0 1.0 124 6.7 9.7 
Celanese Fiberite X-904 (117) 46.1 1.6 1.1 - - -
Celanese * Epi-Rez 508 93 34.5 8.4 1.4 - - -
Celanese Epi-Rez 508 129 47.0 - - - - 8.3 
Celanese Celanese R-350A 117 44.0 4.2 0.8 - - -
Celanese Celanese R-350A (80) 40.7** 3.3 0.8 95 - 8.9 

HMS aercules 3002 (102) 25.6 4.7 1.1 123 - 10.0 

Morganite I Narmco 1004 (76) 23.7 5.8 0.9 111 - 8.1 

I HMS Fiberite X-904 (74) 28.2 (2.6) 0.8 112 - 9.7 

HMS 3M's PR-287 (105) 27.9 5.0 1.1 130 - 10.2 

HMS ERLA 4617 114 28.0 4.5 1.3 - - 11.4 

Morganite I ERLA 4617 126 25.5 5.9 1.2 141 10.2 8.6 

Morganite I Narmco XHB178 106 32.8 4.0 0.9 95 5.2 7.1 

Morganite I Narmco 2387 95 32.0 4.0 1.0 96 5.7 7.2 

Celanese Celanese R-350A - - - - 125 6.0 8.5 

--- - -

*45 v/o Celanese plus asbestos carrier 

**50.4 msi in compression 

( ) Data includes some specimens that failed improperly. 

Reference 

23 
27 
25 
28 
28 
24 
24 
24 
24 
24 
24 
24 
24 
24 
29 



N 
I 

I-' 
I-' 

Table 2-10 

COMPARISON OF 350F RESIN SYSTEMS WITH GRAPHITE FIBERS (Ref. 14) 

o· 90° 0° 90° Horizontal 
Tensile Strength Tensile Stre~ath Fle~xuralStrength Flexural Strength Shear 

%&t. % Ret. % Ret. % Ret. % Ret. Epoxy Resin Fiber RT, kst @350F RT, ksi @350F RT, ksi @350F RT, ksi @350F RTf ksi @350F 

F&H 4617 Type II - - - - 260.9 55.1* 17.0 39.4* 15.3 39.3* Fiberite 4617 Type n - - - - 212.8 85.8* 10.9 - 13.7 43.1* 3M's PR-287 Type II - - - - 149 100.0* 11.0 81. 8* 12.8 68.8* Ciba 95 Type II - - - - 196.2 86.4* 15.5 63.2* 16.1 60.3* Fiberite X-904 HTS 181 87.6 - - - - - - 14.6 (36.0) 
Fiberite X-904 Celanese 117 94.0 - - - - - - 5.5 66.0 
Fiberite X-904 Morganite II 172.8 103.4 - - - - - - 12.0 (44.4) 
Ferro E-293** Morganite II (111.5) 90.5 3.2 25.0 - - - - - -BXP-2401** Morganite n (108.0) 98.7 2.5 117 - - - .,.. - -Narmco 2387** Morganite II (103.6) 120.6 4.7 61.4 - - - - - -Narmco 1004** Morganite II (125.2) 101.4 6.9 63.6 - - - - 11.7 6.1 
Fiberite X - 904 HMS - - - - 111.8 65.5 - - 9.7 54.7 
3M's PR-287 HMS - - - - 129.6 62.0 - - 10.2 50.0 
Narmco 1004 Morganite I - - - - 111.2 57.6 - - 8.1 59.4 
Hercules 3002 HMS - - - - 122.5 70.2 - - 10.0 72.0 
Fiberite X-904 HTS - - - - 150.7 61.9 - - 12.7 53.5 
BXP 2401 Morganite II - - - - 157.0 70.0 - - 14.4 ' 43.0 
Celanese R350A Celanese - - - - 94.8 72.0 - - 8.9 59.5 
Epon 1031/828/CPDA HMG-50 - - - - 89.7 56.2 - - - -
Fiberite X-903 HMS - - - - 99.3 80.0 - - 5.2 67.4 
Fiberite X-904 HTS - - - - 163.3 73.7 - - 11.7 56.5 
Fiberite X-904 HMS - - - - 124.5 83.3 - - 6.9 79.8 
Narmco 2387 Morganite II - - - - 152.7 - - - 12.4 47.0 

*High-temperature tests conducted at 300F. 

**Made with some very early continuous Morganite IT. 

( ) Data includes some specimens that failed improperly. 

Reference 

23 
23 
23 
23 I 
27 
27 
27 
27 
27 
27 
27 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 



Table 2-11 

PROPERTIES OF LOW-MODULUS MATRIX RESIN ERLA 4289 (Ref. 19) 

Modulus, E 
(Tensile) 
(Compressive) 

Tensile Strength, ST 

Compressive Yield Point, SYC 

Ultimate Tensile Elongation, €UT 

Compressive Yield Strain, €YC 
Heat Distortion Temperature 

(at 1820 Pa, 264 psi) 

1.55 GPa (225,000 psi) 
2.56 GPa (371,000 psi) 

33,800 kPa (4,900 psi) 

92,500 kPa (13,400 psi) 

0.185 

0.064 

Table 2-12 

PROPERTIES OF UNIDIRECTIONAL S-GLASS/LOW-MODULUS EPOXY 
994 "s" HTS/ERLA 4289 (Ref. 19) 

Fiber Volume Ratio, FVR 
Void Volume Ratio 
Longitudinal Modulus, Ell 
Transverse Modulus, E22 
Longitudinal Flexural 

Strength, SlIT 
Longitudinal Compressive 

Strength, Slle 
Transverse Tensile 

Strength, S22T 
Interlaminar Shear 

Strength, S31 

0.36 
0.018 
56.2 GPa (8.15 x 106 psi) 
10 GPa (1.45 x 106 psi) 

1.27 GPa (184,000 psi) 

600,000 kPa (87,200 psi) 

21,400 kPa (3,100 psi) 

38,000 kPa (5,500 psi) 

Properties for the high-modulus resin, ERLA 4617, are tabulated 
in Table 2-13 (Ref. 20). Modmor I/ERLA 4617 was selected as material 
system D. 
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Table 2-13 

PROPERTIES OF HIGH-MODULUS MATRIX RESIN ERLA 4617 
(With m~PDA Hardener) (Ref. 20) 

Modulus, E (Tensile) 
(Compressive) 
(Flexural) 

Tensile Strength, ST 

Compressive Strength, Sc 

Flexural Strength, SF 

Ultimate Tensile Elongation, €UT 

Heat Distortion Temperature 

2-13 

5.4 x 106 kN/m2 (783,000 psi) 
6.1 x 106 kN/m2 (890,000 psi) 
5.6 x 106 kN/m2 (815,000 psi) 

132,000 kN/m2 (19,200 psi) 

226,000 kN/m2 (32,800 psi) 

214,000 kN/m2 (31,000 psi) 

0.028 

448°K (175°C) (347°F) 



Typical data of some of the above candidate systems are given 
in Tables 2-14, 2-15 and 2-16 and Figures 2-9 and 2-10. Based on the 

. available data, Modmor I/WRD 9371 was selected as material system E. 
The specific gravity of this material at a fiber volume ratio of 50 
percent is 1.62. 

Three commercially available systems we~e reviewed for material 
sys'tem F (S-glass/intermediate modulus epoxy). These systems, all 
products of 3M Company, are 1002S, 10095 and XP-25l with' S-glass fibers-. 
Property data for these three materials are tabulated in Tables 2-17, 
2~l8 and 2-19. The temperature limitations of 1002S and the dif­
ficulty in obtaining the xp-251-S within the time frame of the program 
were factors in the decision to select the 1009-26S as the material 
system F. 

2.2 Materials Selection 

The literature survey of candidate materials resulted in the 
selection of six final material systems for investigation in this 
program. They are tabulated in Table 2-20 together with typical 
values for constituent fiber and matrix moduli, as obtained in the 
survey. Also listed are the suppliers from which these materials were 
purchased. 

2 .. 14 



Table 2-14 

PROPERTIES OF UNIDIRECTIONAL GRAPHITE/POLYIMIDE HERCULES 600lM (Ref. 10) 

Fiber Volume Ratio, FVR 
Density, p 

Flexural Modulus, Ell 
297 deg K (75°F) 
590 deg K (600°F) 

Flexural Strength, SllF 
297 deg K (75°F) 
590 deg K (600°F) 

Inter1aminar Shear 
Strength, S13 

297 deg K (75°F) 
590 deg K (600°F) 

,:.", 

2-15 

0.61 
1,690 kg/m3 (0.061 1b/in. 3) 

194 GPa (28.1 x 106 psi) 
164 GPa (23.8 x 106 psi) 

1.08 GPa (156,000 psi) 
0.63 GPa (92,000 psi) 

65,000 kPa (9,390 psi) 
40,800 kPa (5,910 psi) 



Table 2-15 
PROPERTIES OF UNIDIRECTIONAL GRAPHITE/POLYIMIDE MODMOR II/WRD 9371 

Fiber Volume Ratio, FVR 
Density, p 

Longitudinal Modulus, Ell 
Transverse Modulus, E22 
Longitudinal Tensile Strength, SlIT 
Longitudinal Compressive 

Strength, SllC 
Transverse Tensile Strength, S22T 
Transverse Compressive 

Strength, S22C 
Flexural Strength, SllF 

297 deg K (75°F) 
560 deg K (550°F) 

Interlaminar Shear Strength, S13 
297 deg K (75°F) 
560 deg K (550°F) 

Table 2-16 

0.55 
·1,540 kg/m3 (0.056 lb/in. 3) 

156.5 GPa (22.7 x 106 psi) 
15 GPa (2.18 x 106 psi) 
1,500 MFa (218,000 psi) 

1,210 MFa (175,000 psi) 
65,500 kPa (9,500 psi 

132,500 (19,200 psi) 

1,380 MPa (200,000 psi) 
925 MFa (134,300 psi) 

85,000 kPa (12,300 psi) 
41,700 kPa (6,050 psi) 

~~~fERTIES OF UNIDIRECTIONAL MODMOR II/GEMON L POLYIMIDE (Ref. 30) 

Fiber Volume Ratio, FVR 
Density, p 

Resin Content, Percent 
by Weight 

Longitudinal Thermal Coeffi­
cient, a 11 (-300°F to 75°F) 
~11 (75°F to 500°F) 

Transverse Thermal Coeffi­
cient, a 22 (-300°F to 75°F) 

a 22 (75°F to 500°F) 

0.62 
1,510 kg/m3 (0.055 1b/in. 3) 

32 

-0.68 x 10-6K- 1(-0.38 x 10-6 in./in./oF) 
0.14 x 10-7K- 1(0.08 x 10-7 in./in./oF) 

27 x 10-6K- 1 (15 x 10-6 in./in./oF) 

45 x 10-6K- 1 (25 x 10-6 in./in./ 0 F' 

2-16 



Table 2-17 
PROPERTIES OF UNIDIRECTIONAL S-GLASS!EPOXY SCOTCHPLY 1002S (Ref. 31) 

Longitudinal Modulus, Ell 44 GPa (6.4 x 106 pst) 

Longitudinal Tensile Strength, SllT 1,340 MPa (195,000 psi) 

Table 2-18 

PROPERTIES OF UNIDIRECTIONAL S-GLASS!EPOXYSCOTCHPLY 1009-26S (Ref. 32) 

Longitudinal Modulus, Ell 

Longitudinal Tensile Strength, SllT 

61.3 GPa '(8.9 x 106 psi) 

1,270 MFa (185,000 psi) 

Longitudinal Compressive Strength, Slle 620,000 kPa (90,000 psi) 

Intra1aminar Shear Strength, 812 14,500 kPa (2,100 ps i) 

Table 2-19 

PROPERTIES OF UNIDIRECTIONAL 8-GLASS/EPOXY SCOTCHPLY XP251-S (Ref. 33) 

Longitudinal Modulus, Ell 57.8 GPa (8.4 x 106 psi) 

Longitudinal Tensile Strength, SlIT 1,720 MFa (250,000 psi) 

2-17 
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Table 2-20 

MATERIAL SYSTEMS SELECTED FOR INVESTIGATION 

Typical Moduli 
Material Systems 

Generic Description Commercial Description 

A Boron/Intermediate Modulus Epoxy 4 mil Boron/AVCO 55051 

B Boron/Po1yimide 4 mil Boron/WRD 93712 

C Graphite/Low Modulus Epoxy Modmor I/ERLA 42892 

D Graphite/High Modulus Epoxy Modmor I/ERLA 46173 

E Graphite/Po1yimide Modmor l/WRD 93712 

F S-G1ass/Intermediate Modulus Epoxy Scotchply 1009-26S 4 

- ~---.-----

Suppliers: 

lWhittaker Corporation, Narmco Division,Costa Mesa, California. 

2Whittaker Corporation, R&D Division, San Diego, California. 

Fiber 

psix106 GPa 

58.5 403 

58.5 403 

55.0 396 

55.0 396 

55.0 396 

12.4 85.6 

3Fothergi1l and Harvey Ltd. Composite Materials Division, Summit Littleborough, 
Lancashire, England. 

43M Company, St. Paul, Minnesota. 

Matrix 

psix106 

0.557 

-
0.225 

0.783 

-
-

I 
-I 

GPa 
I 

3.84 I 

- I 

, 

1.55 

5.40 

-
-
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3.0 TASK II - RESIDUAL STRAIN AND STATIC STRENGTH 

3.1 Material Qualification 

The selected materials were ordered and received in prepreg 
form. The material was inspected visually prior to specimen fabri­
cation. Prepreg sections having large fiber gaps, broken fibers, 
fiber cross-overs, ' resin-rich or resin-poor areas were discarded 

during this inspection. The materials were qualified by determining 

their flexural and interlaminar shear strengths from unidirectional 
coupons, and comparing them with published values for these materials, 

if available, or with values for similar materials. 

The qualification testing was done by means of beams subjected 

to three-point bending. The test specimens were IS-ply thick uni­
directional coupons cut from a plate cured according to manufacturer's 

specifications. Flexural strength test coupons were 10.2 cm (4 in.) 

long with a 6.3 cm (2.5 in.) span length. Shear strength coupons were 

1.5 cm (0.6 in.) long with a span length of 1 em (0.4 in.). The 
standard beam formulas below were used to determine the strength 
values. 

(J = 3P£ 
2wt 2 

for flexural strength, and 

T = 3P 
4wt 

for interlaminar shear ' strength. 

Here, P is the load on the beam, w is beam width and t is the thick­

ness. The fiber orientation in these tests is in the direction of 
the beam axis. 

For material A, 47 m (160 ft) of Boron/Epoxy (Boron/AVCO 5505) 
7.6 cm (3 in.) wide prepreg tape was ordered and received o The 

Whittaker Corporation certified that this material conformed to 

General Dynamics Spec. FMS-200lA. Results of the qualification tests 

are shown in Tables 3-1 and 3-2. The FMS-200l Specification requires 

a flexural strength of 1550 MFa (225 ksi). 

3-1 
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Table 3-1 

QUALIFICATION FLEXURE TESTS ON BORON/Aveo 5505 
I 
I 
I 
I 
I 

Specimen Thickness Width Flexural Strength I 

Number cm, (in. ) cm, (in.) MFa, (ksi) : 
I 
I 

73-0-A-1 0.203 (O.OBO) 1.273 (0.501) 1600 (232) 

-2 0.203 (0.080) 1. 273 (0.501) 1630 (236) 

-3 0.203 (O.OBO) 1.273 (0.501) 1690 (245) 

-4 0.201 (0.079) 1.273 (0.501) 1700 (246) 

-5 0.201 (0.079) 1.273 (0.501) 1790 (259) 

Average: 16BO (244) 

Table 3-2 

QUALIFICATION INTERLAMINAR SHEAR TESTS ON BORON/AVeO 5505 

Specimen Thickness Width Shear Strength 
Number cm, (in o) em, (ino) MPa (ksi) 

73-0-A-1 0.201 (.079) 00632 (.249) 61.B (B.96) 

-2 0.203 ( .OBO) 0 0630 (.24B) 53.4 (7.74) 

-3 0 . 201 (. 079) 0 0635 (.250) 62 01 (9.00) 

-4 0.201 (. 079) 0.632 (.249) 55.2 (8.00) 

-5 0.203 (.OBO) 0.635 (.250) 57.7 (B. 36) 

Average: 58.0 (8.41) 

I 
3-2 I 

I 

I 
I 
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For material B, an order was placed for 1.1 kg (2.4 lb, 
approximately 37.5 ft 2) of 4 mil Boron/WRD 9371. The results of the 
flexure and inter1aminar shear qualification tests are shown in Tables 
3-3 and 3-4. 

Table 3-3 
QUALIFICATION FLEXURE TESTS ON BORON/POLYIMIDE WRD 9371 

Specimen Thickness Width Flexural Strength 
Number cm, (in. ) em, (in.) MPa, (ksi) 

73-0-B-l 00185 (0.073) 1.283 (0.505) 1340 (194) 
-2 0.188 (0.074) 1.285 (0.506) 1240 (180) 
-3 0.188 (0.074) 1.280 (0.504) 1500 (217) 
-4 0.180 (0.071) 1.270 (0.500) 1430 (207) 
-5 0.183 (0.072) 1.278 (0.503) 1490 (216) 

Average: 1400 (203) 

Table 3-4 

QUALIFICATION INTERLAMINAR SHEAR TESTS ON BORON/POLYIMIDE WRD 9371 

Specimen Thickness Width Shear Strength 
Number cm, (in.) cm, (in.) MPa (ksi) 

73-0-B-1 0.180 (0.071) 0.638 (0.251) 4305 (6.31) 
-2 0.185 (0.073) 0.638 (0.251) 40 . 9 (5.93) 
-3 0.180 (0.071) 0.640 (0.252) 41.3 (5.99) 
-4 0.185 (0.073) 0.640 (0.252) 41.6 (6.03) 
-5 0.188 (0.074) 0.640 (0.252) 42.2 (6.11) 

Average: 41.9 (6.07) 

3-3 
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The order for material C consisted of 45.7 m (150 ft) of 
I 

7.62 em (3 in.) wide prepreg tape of Modmor r/ERLA 4289. The material , , 
was received and qualification laminates prepared in accordance with 
the manufacturer's recommended procedure. The cured laminates were 
of unacceptable quality with almost no interply integrity. An exami- , 
nation of the prepreg material showed absolutely no tack to the 
material although drape appeared to be evident. The 4289 system is a 
low viscosity system and according to Cole19 generally has a great 
deal of flow in the molding operation. Indeed, Cole found it useful 
to advance the resin prior to curing in order to minimize the flow of 
resin. This experience was completely contrary to our own with the 
material received since a visual examination of the glass bleeder clot) 
showed some areas completely dry. The qualification plates bleeder 
cloth delaminated with a slight pull of the hand. Furthermore, the 
resin powdered away from the bleeder cloths during flexural folding 
of an individual ply. The dry, low tack, state of the material 
received was interpreted as indicating an advanced state of curing 
of the prepreg, unsuitable for acceptable laminate fabrication. Upon 
consultation with the manufacturer a second order was placed to replacel 
the first. This arrived in tackier condition and with a modified i 
curing schedule specified by the manufacturer. i 

For material system D, 54.9 m (180 ft) of Modmor I/ERLA 4617 ! 
was ordered and received. Tables 3-5 and 3-6 show the results of the 
qualification tests. 

Specimen 
Number 

73-0-D-l 
-2 
-3 
-4 
-5 

Table 3-5 
QUALIFICATION FLEXURE TESTS ON MODMOR I/ERLA 4617 I 

Thickness 
em, (in . ) 

0.185 (0.073) 
0.185 (0.073) 
0.178 (0.070) 
0.188 (0.074) 
0.183 (0.072) 

3-4 

Width 
em, (in.) 

1.275 (0.502) 
1.278 (0.503) 
1.273 (00501) 
1.278 (0.503) 
1.270 (0-.500) 

Average: 

( 

Flexural Streng: 
MPa, (ksi) i 

1140 (166) I 
1140 (165) I 

930 (135) i 
1100 (159) I 
1100 (159) I 

1080 (157) 
I 

i 
I 
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Table 3-6 
QUALIFICATION INTERLAMINAR SHEAR TESTS ON MOOMOR I/ERLA 4617 

Specimen Thickness Width Shear Strength 
Number cm, (in.) cm, (in.) MPa, (ksi) 

73-0-0-1 0.185 (0.073) 0.645 (0.254) 89.0 (12.9) 
-2 0.188 (0.074) 0.645 (0.254) 90.4 (13.1) 
-3 0.188 (0.074) 0.645 (0.254) 90.4 (13 01) 
-4 0.188 (0.074) 0.645 (0.254) 96.6 (14.0) 
-5 0.188 (0.074) 0.643 (0.253) 89.7 (13.0) 

Average: 91.2 (13.2) 

For material system E, an order was placed for 3.1 kg (6.8 1b, 
approximately 400 ft) of 7.62 cm (3 in.) wide Modmor I/WRD 9371 prepreg 
tape. Results of the qualification tests are shown in Tables 3-7 and 
3-8. 

Table 3-7 

QUALIFICATION FLEXURE TESTS ON MOOMOR I/WRD 9371 

Specimen Thickness Width Flexural Strength 
Number cm, (in.) cm, (in.) MFa, (ksi) 

73-0-E-1 0.218 (0.086) \.275 (0.502) 697 (101.0) 
-2 0.226 (0.089) 1.278 (0.503) 491 ( 71. 2) . 
-3 0.224 (0.088) 1.275 (0.502) 604 ( 87.5) 
-4 0.218 (0.086) 1.275 (0.502) 538 ( 78.0) 
-5 0.218 (0.086) 1.278 (0.503) 697 (101.0) 

Average: 605 ( 87.8) 

3-5 



Table 3-8 

QUALIFICATION INTERLAMINAR SHEAR TESTS ON MODMOR I/WRD 9371 

Specimen Thickness Width Shear Strength 
Number cm, (in. ) cm, (in. ) MPa, (ksi) 

73-0-E-l 0.224 (0.088) 0.643 (0.253) 24.4 (3.54) 
-2 0.224 (0.088) 0.643 (0.253) 26.0 (3.77) 
-3 0.226 (0.089) 0.643 (00253) 21.1 (3.06) 
-4 0.224 (0.088) 0.643 (0.253) 22.1 (3.20) 
-5 0.224 (0.088) 0.640 (0.252) 28.0 (4.06) 

Average: 24.3 (3.53) 

For material system F, an order was placed for 65.8 m (72 yards) 
of 10.16 cm (4 in.) wide Scotchp1y S-G1ass/Epoxy 1009-26S-5901 prep reg 
tape. The results of the qualification tests are shown in Tables 3-9 
and 3-10. 

Table 3-9 

QUALIFICATION FLEXURE TESTS ON SCOTCHPLY S-GLASS/EPOXY-I009-26S-5901 

Specimen Thickness Width Flexural Strength 
Number cm, (in.) cm, (in.) MPa, (ksi) 

73-0-F-1 0.246 (0.097) 1.262 (0.497) 1610 (233) 
-2 0.246 (0.097) 1.262 (0.497) 1630 (236) 
-3 0.246 (0.097) 1.262 (0.497) 1590 (231) 
-4 0.246 (0.097) 1.262 (0.497) 1570 (227) 

Average: 1600 (232) 

3-6 
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Table 3-10 
QUALIFICATION INTERLAMINAR SHEAR TESTS ON SCOTCHPLY 

S-GLASS/EPOXY-1009-26S-5901 

Specimen Thickness Width Shear Strength 
Number cm, (in. ) cm, (in.) MPa, (ksi) 

73-0-F-1 0.246 (0.097) 0.635 (0.250) 54.4 (7.89) 

-2 0.246 (0.097) 00638 (00251) 58.5 (8.47) 

-3 0.244 (0.096) 0.645 (0.248) 59.1 (8.57) 

-4 0.246 (0.097) 0.635 (0.250) 55.7 (8.07) 

-5 00246 (00097) 0.635 (0.250) 5605 (8.19) 

Average: 56.8 (8.24) 

3.2 Laminate Fabrication 

Laminate plates were fabricated from each material system to 
provide specimens for the qualification testing,characterization of 
unidirectional laminates, and residual stress studies. Specimens for 
the latter did not have embedded instrumentation. Table 3-11 shows 
the plate dimensions, laminate constructions and number and type of 
specimens fabricated from these plates for each material system. 

Each plate was layed up from prepreg tape on a flat metal base 
in accordance with established procedures. As required, the Boron/ 
Epoxy. and Boron/Polyimide laminates were layed up with one mil thick 
glass scrim cloth between each ply and on the top and bottom surfaces 
of the plate. The other material systems had no scrim cloth. The 
1ayed up plate on its metal base was then placed in an autoclave for 
curing, Fig. 3-1. 

All plates were cured in the autoclave. Postcuring, when 
required, was done in an air circulating oven. All curing schedules 
required vacuum application in addition to heat and pressure. Vacuum 
bagging to the table was done using teflon film as the bagging 
material which was sealed to the autoclave table by means of "Prestight" 
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Plate 
No. 

73-0-X ** 

73-l-X 

73-2-X 

73-3-X 

73-4-x 

Table 3-11 

PLATE FABRICATION FOR CHARACTERIZATION 
AND RESIDUAL STRESS STUDIES 

Length Width Laminate Number and Type i 
cm, (in.) cm, (in.) Construction of Specimens 

I 
I 

15.2 (6) 15.2 (6) [015 J 5 Flexural Strength i 

j Qualification Coupons 
5 Interlaminar Shear 
Strength Qualification 
Coupons I 

2 90-Degree Compression 
Characterization I 

I 

Coupons 

25.4 (10) 7.6 (3) [06 J 2 Tension Characteri-
zation Coupons 

I 
30.5 (12) 15.2 (6) [908 J 2 Tension Characteri-

zation Coupons, 
1 Relaxation Coupon 

l 
2 O-Degree Compression I 

Characterization coupo~ 
\ 
I 

33.6 (14) 10.2 (4) [06 ] 2 10-Degree Off-Axis I 

Intralaminar Shear I 
Characterization Coupon! , , 

25.4 (10) 30.5 (12) [02/+45]s 15 Coupons for Residual 
Stress Studies 

**X stands for material systems A, B, C, D, E, and F. 
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tape vacuum sealant. After closing the autoclave, programmed heat 
and pressure could be applied to the plate layup while a desired 
vacuum level was maintained inside the bag by means of an external 
vacuum pump and a tube line. 

Following are the specific curing schedules used for the six 
material systems. Heating was applied at a rate of 2.8 deg K (5 deg F) 
per minute unless otherwise noted. 

Boron/Epoxy (Boron/AVeO 5505) 

1. Apply full vacuum to bagged layup. 

2. Pressurize autoclave to 587 kPa (85 psi). 

3. Heat to 450 deg K (350 deg F). 

4. Release vacuum and hold temperature for 2 hours. 

5. Allow to cool to room temperature. 

Boron/Polyimide (Boron/WRD 9371) 

Precuring in air circulating oven: 

1. "B"-stage prepreg layup for 3 hours at 375 +1 deg K 
(215 +2 deg F). 

2. Allow to cool to room temperature. 

Autoclave Curing: 

1. Apply full vacuum to bagged layup. 

2. Heat to 375 deg K (215 deg F) and hold for 1 hour. 

3. Heat to 386 deg K (235 deg F) and hold for 1 hour. 
After 15 minutes at this temperature, pressurize 
autoclave to 587 kPa (85 psi). 

4. Heat to 450 deg K (350 deg F) and hold for 1 hour. 

5. Cool to 322 deg K (120 deg F) under pressure. 

6. Release pressure and vacuum and allow to cool to 
room temperature. 
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Postcuring in Air Circulating Oven: 

1. Bag layup in "Silastic" vacuum tight bag and 
apply vacuum. 

2. Heat to 589 deg K (600 deg F) in 24 hours. 

3. Hold at 589 deg K (600 deg F) for 60 hours. 

4. Cool to room temperature in 12 hours. 

Graphite/Low Modulus Epoxy (Modmor I/ERLA 4289) 

Prestaging: 

1. Apply 38 cm (15 in.) Hg vacuum to bagged layup. 

2. Heat to 325 deg K (125 deg F) and hold for 3 hours. 

Curing: 

1. Increase temperature to 393 deg K (250 deg F). 

2. Pressurize autoclave to 276 kPa (40 psi), maintain 
vacuum and hold for 2 hours. 

Postcuring: 

1. Increase temperature to 448 deg K (350 deg F) 
and hold for 4 hours with vacuum and pressure. 

2. Allow to cool to room temperature. 

Graphite/High Modulus Epoxy (Modmor I/ERLA 4617) 

Autoclave Curing: 

1. Apply full vacuum to bagged layup. 

2. Pressurize autoclave to 587 kpa (85 psi). 

3. Heat to 444 deg K (340 deg F) and hold for 1 hour 
with vacuum and pressure. 

4. Allow to cool to room temperature. 
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Postcuring in Air Circulating Oven: 

1. Heat to 444 deg K (340 deg F) and hold for 6 hours. 

2. Allow to cool to room temperature. 

Graphite/Polyimide (Modmor I/WRD 9371) 

Precuring in Air Circulating Oven: 

1. "B"- stage prepreg layup for 1 hour at 366 +3 deg K 
(200 +5 deg F). 

2. Allow to cool to room temperature. 

Autoclave Curing: 

1. Apply 12.7 cm (5 in.) Hg vacuum to bagged layup. 

2. Heat to 366 deg K (200 deg F) at 1.5-2 deg K/min 
(3-4 deg F/min) and hold for 30 minutes. 

3. Heat to 394 deg K (250 deg F) at 1.5-2 deg K/min 
(3-4 deg F/min). 

4. Apply full vacuum. 

5. Heat to 408 deg K (275 deg F) and pressurize auto-
clave to 587 kPa (85 psi). 

6. Heat to 450 deg K (350 deg F) and hold for 2 hours. 

7. Cool to 322 deg K (120 deg F) under pressure. 

8. Release pressure and vacuum and allow to cool to 
room temperature. 

Postcuring in Air Circulating Oven: 

1. Bag layup in "Silastic tI vacuum-tight bag and apply 
vacuum. 

2. Heat to 450 deg K (350 deg F) in 4 hours. 

3. Heat to 589 deg K (600 deg F) in 30 hours. 

4. Hold at 589 deg K (600 deg F) for 10 hours. 

5. Cool to room temperature in 14 hours. 
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S-Glass!Epoxy (Scotchp1y 1009-26S) 

1. Apply full vacuum to bagged layup. 

2. Heat to 422 deg K (300 deg F). 

3. Pressurize autoclave to 173 kPa (25 psi), release 
vacuum and hold at temperature and pressure for 
30 minutes. 

4. Heat to 436 deg K (325 deg F) and hold for 4 hours. 

5. Allow to cool to room temperature. 

The thickness of each finished plate was measured at various 
plate locations. The average ply thicknesses, determined from these 
measurements for the six material systems are listed below. All sub­
sequent stress computations for the various test specimens were based 
on these average ply thicknesses. 

Material System Average Per Ply Thickness 

em, (in.) 
A. Boron/AVCO 5505 0.0130 (0.0051) 
B. Boron/WRD 9371 0.0127 (0.0050) 
C. Modmor I/ERLA 4289 0.0137 (0.0055) 
D. Modmor I/ERLA 4617 0.0127 (000050) 
E. Modmor I/WRD 9371 0.0147 (0.0058) 
F. S-G1ass/Epoxy 0.0165 (0.0065) 

3.3 Characterization of Unidirectional Laminates 

3.3.1 Tensile Properties 

The tensile properties of the unidirectional laminates were 
determined by testing tensile coupons instrumented with surface strain 
gages. For this purpose, two coupons for each fiber orientation, 
longitudinal and transverse, were cut from the fabricated plates from 
each of the six material systems. The longitudinal coupons were 6-ply 
thick, 1.27 cm (0.5 in.) wide and 23 em (9 in.) long, with the fibers 
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oriented along the coupon axis. The transverse coupons were 8-ply 
thick, 2.54 cm (1 in.) wide and 23 cm (9 in.) long, with the fibers 
oriented transversely to the coupon axis. 

The test specimens were prepared by bonding gripping tabs to 
the ends of the coupons and strain gages to the test sections. The 
tabs were Fiberglass/Epoxy crossply laminates, each 10-ply thick, 
3 08 cm (1.5 in.) long with a 0.32 cm (1/8 in.) long taper at one end, 
and a width equal to that of the coupon. The strain gages on each 
specimen were two 2-gage 90-degree rosettes bonded to the specimen 
at the center of the test section, one on each side. 

The testing was done by applying incrementally an axial 
tensile load to the specimens in an Instron universal testing machine 
and recording the strain from the gages. A crosshead rate of 0.127 an 
(0.05 in.) per minute was selected as representing static loading. 
The loading was carried to specimen failure. Typical fractures of 
unidirectional tensile specimens are shown in Figs. 3-2 and 3-3. 
The laminate properties obtained from these test data are: longi­

tudinal tensile strength SlIT' longitudinal modulus Ell' major 
Poisson's ratio v 12 , transverse tensile strength S22T' transverse 
modulus E22 and minor Poisson's ratio v21 • Stress-strain curves were 
plotted from the recorded data and are shown in Figs. 3-4 through 
3-17. The strain data were averaged for the pairs of gages on 
opposite sides to compensate for any possible bending effects. The 
moduli and Poisson's ratios were determined from the initial slopes 
of the curves fitted to the data points. The unidirectional laminate 
properties obtained from the data for the six material systems are 
summarized in Tables 3-13 through 3-18 presented at the end of this 

section. * 
The axial strains in the Boron/Epoxy unidirectional specimens 

show noticeable nonlinearities (Figs. 3-4,3-5). In the Boron/ 
Polyimide some nonlinearity exists in the axial strain of the O-degree 
uniaxial specimens (Figs. 3-6,3-7), but the axial strain in the 
90-degree specimen as well as all transverse strains appear linear 
to failure. Although the longitudinal modulus is approximately the 
*Table 3-12 is cited later 
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same in both materials above, since it is a fiber-governed property, 

the longitudinal tensile strength of Boron/Polyimide is significantly 

lower than that of Boron/Epoxy. In the transverse direction, both 
modulus and strength of Boron/Polyimide are appreciably lower than 

corresponding properties of Boron/Epoxy. 

The strains in the O-degree Graphite/Low Modulus Epoxy speci­

men are linear to failure (Figs. 3-10 and 3-11). Transverse data 
were difficult to obtain because the 90-degree plates were extremely 

fragile and broke prematurely. The strains in the Graphite/High 

Modulus Epoxy were also linear to failure. The transverse strength 
is reasonably high (41.9 MPa; 6 . 07 ksi), approximately two-thirds of 
that of Boron/Epoxy. The Graphite/Polyimide shows some nonlinearity 

near failure in the longitudinal strain. The longitudinal modulus is 
higher than that of the Graphite/High Modulus Epoxy. The longitudinal 
strength, governed by the fibers, is approximately equal to that of 

Graphite/High Modulus Epoxy and significantly lower than that of 

Graphite/Low Modulus Epoxy. In the transverse direction, the 
Graphite/Polyimide has a modulus appreciably lower than that of 
Boron/Polyimide and somewhat lower than that of Graphite/High Modulus 

Epoxy. Its transverse strength is somewhat higher than that of Boron/ 

Polyimide but appreciably lower than that of Graphite/High Modulus 
Epoxy. 

The strains in the S-glass/Epoxy are fairly linear to failure 

except in the case of the longitudinal strain in one specimen (Fig . 

3-16). The transverse modulus is the highest of all such moduli in 
the other material systems, and is equal to approximately forty per­

cent of its tensile modulus. The longitudinal tensile strength is 

fai r ly high, comparable to that of Boron/Epoxy. 

3.3 . 2 Compressive Properties 

Characterization of unidirectional laminates in compression 

was done using the IITRI designed compression test fixture , Figs. 3-18 
and 3-19, incorporating some recent improvements in alignment . 

I 
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Although this fixture is not ideal, it represents the best 

features of compression coupon fixtures available elsewhere. The 
development of the IITRI compression test is based on a survey of 
many available systems including the TEl test, a system combining 
the best features of the TEl and the sandwich beam tests, Narmco 
Test Method No. 303, Federal Test Method Standard No. 406, ASTM 
compression test, and the Celanese test. 

The Celanese test uses split conical collet grips which fit 
into matching sleeves which in turn fit into a snugly fitting 
cylindrical shell. One major disadvantage of this fixture is that 
it requires a perfect cone-to-cone contact. This contact is not 
normally achieved due to small variations in tab thickness. Instead, 
contact is limited to two lines on opposite sides of the specimen. 
This unstable condition causes a lateral shift in the seat grips which 
then contact the enveloping cylinder and produce high frictional 
forces. The result is that the Celanese fixture, tested at IITRI, 
results in erroneously high values for the stiffness and compressive 
strength. 

The IITRI fixture represents a modification of the Celanese 
one. The conical grips have been replaced with trapezoidal wedges. 
This eliminates the problem of line contact, since surface-to-surface 
contact can be attained at all positions of the wedges. Furthermore, 
it permits precompression of the specimen tabs to prevent slippage 
early in the load cycle. This is especially important at high strain 
rates. Finally, the lateral alig~ent of the fixture top and bottom 
halves is assured by a guidance system consisting of two parallel . 
roller bushings. 

Two coupons for each fiber orientation, loongitudinal and 
transverse, were used for the compression testing of each of the six 
material systems. The longitudinal coupons were cut from the 8-ply 
plates and the transverse from the 15-ply plates. Each coupon was 
nominally 0.64 cm (0.25 in.) wide and 14.0 cm (5.5 in.) long. The 
test specimens were prepared by bonding pairs of 6.35 cm (2.5 in.) 
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long tabs to each end of the specLmen~ making the specimen test section i 
1.27 cm (0.5 in.) long. The tabs were Glass/Epoxy crossply laminates, 

10-p1y thick, with a 0.32 cm (1/8 in.) long taper at the test section 

end. 
The tests conducted on these specimens determined the longi­

tudinal compressive strength SllC and the transverse compressive 

strength S22C' The results for the six material systems obtained 
from these tests are listed in Tables 3-13 to 3-18. 

In three material systems, Boron/Epoxy, Boron/Po1yimide and 
Graphite/High Modulus Epoxy~ the ~ongitudina1 compressive strength 
is higher (up to 15 percent) than the tensile strength, as expected. 
The validity of the opposite result for the other three material 
systems is questioned. The measured transverse compressive strength 

(S22C) is in all cases appreciably higher than the corresponding 
tensile strength. It ranges from 2.2 to 5.7 times the transverse 
tensile strength. 

3.3.3 Intra1aminar Shear Properties 

The intralaminar shear properties were determined by testing 
off-axis unidirectional coupons in tension. Two coupons per material 
system were tested. These specimens were 6-p1y thick with the fibers 
oriented at 10-degrees with the loading axis, made by machining the 
coupons from unidirectional plates at a 10-degree angle with the fibers. 
They were 1.27 cm (0.5 in.) wide and 33 cm (13 in.) long with specially 
made tapered loading tabs. 

These tabs were 7.6 cm (3 in.) long made of similarly (10-
degree) oriented 6-p1y glass/epoxy material. The taper was approxi­

mately 4.6 cm (1.8 in.) long, making a taper angle of about 1.3-degrees.( 
The reason for the long specimen with the long tapered and similarly 
oriented tabs, was to produce a uniform known state of stress in the 

test section by minimizing end effects. The specimens were instru­
mented with surface strain gages, a 3-gage rosette on one side and an 

axial gage on the other. The 3-gage rosette had one gage oriented 

axially one at 45-degrees and one transversely to the loading axis. 
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The testing was done in the Instron testing machine o The 

specimens were loaded in tension at a rate of 0.127 cm (0.05 in.) 
per minute D The load was applied at increments until failure. At 
each increment of load, the strains and load were recorded. 

The intralaminar properties determined from these data are 
the intralaminar shear strength Sl2 and intra laminar shear modulus 
G12 • The S12 is determined from the relation 

= SxxT sine cose 

where SxxT is the axial tensi le strength. For e = la-degrees the 
formula becomes 

= 0.171 SxxT 

There are two alternate but equivalent ways for determining 
G12 • The first makes use of the transformation equation for ortho­
tropic materials: 

1 _ 1 
G12 - E . 29 2 

xxs~n cos e 

2 cos e 
E . 2 

11 s~n e 
+ 

. 29 
s~n 

2 
E22 cos e 

where e = angle between loading and fiber direction and E the xx 
tensile modulus in the loading direction. For e = 10 degrees the 
relation above becomes 

1 
G12 

= 34 020 
Exx + 

2\)12 - 32.16 

Ell 
0.03 

E22 

By plotting the axial stress axx versus the axial strain € the . xx 
modulus Exx can be determined from the slope of the curve fitted to 
the data. Figures 3-20 through 3-25 show the plots obtained from the 

I 

test data for the six material systems. For each specimen the longi-
tudinal strains measured on the two sides of the specimen were 
averaged to eliminate any possible bending effects . Each figure shows 
the data obtained for both specimens of each material. The value of 

Exx listed in each figure is the average for the two specimens. 
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The modulus G12 was determined from the above formula using 

Exx as determined in Figs. 3-20 to 3-25, and Ell' E22 , v 12 determined 
in the tensile characterization tests. The values of G12 and S12 
determined from the test data are summarized in Tables 3-13 through 

3-18. 
The alternate method for determining G12 requires the use of 

all three strains recorded by the 3-gage rosette as follows. 

The three strains measured as a function of applied load are: 
the axial strain (€x) , transverse strain (8 y) and 45-degree strain 
(845). The shear strain €xy referred to the axes of the specimen is 
computed from the relation 

= 
8 + € 

(x y) 
2 

and the shear strain referred to the material axes of the specimen 
(parallel and normal to the fibers) is obtained from the relation 

€ - € 

= ........;;.;;x __ oI-y sin2e + 
2 € cos2e xy 

where e = 10 deg., the angle between the load and fiber directions. 
The shear stress referred to the material axes is given by 

= CJ sine cose x 

This shear stress is plotted versus the corresponding shear 
strain. The initial slope of this curve yields the in-plane shear 

modulus, G12 and the ultimate value of CJ12 is the intralaminar in­

plane shear strength. Figures 3-26 and 3-27 show shear stress versus 

shear strain curves for the Boron/Polyimide and the .S-Glass/Epoxy 
materials determined by this method . 
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3.3.4 Coefficients of Thermal Expansion 

The ' therma1 expansion coefficients for the unidirectional 

laminates were determined in the residual strain task presented in 
Section 3.4. The details of the method used are presented in that 
section with only a brief description given here. 

The coefficients of thermal expansion were determined by 
monitoring longitudinal and transverse strains with temperature in 
uniaxial [08 ] specimens for each of the six material systems. The 

specimens were 12.7 em (5 in.) long and 2.4 em (1 in.) wide. They 
were instrumented with embedded strain gages and an embedded thermo­
couple for strain and temperature monitoring and recording. The 
thermal expansion strain was established from the strain readings by 
correcting for the pure thermal output of the gages. The slope of 
this thermal strain versus temperature curve for the longitudinal 
and transverse directions yielded the thermal expansion coefficients 

all and a22' The results for the six material systems are listed in 
Tables 3-13 to 3-18. 

3.3.5 Density and Fiber Volume Fraction 

The laminate densities for the six composite systems were 
determined by the displacement method in accordance with the ASTM-D792 
recommended procedure. Briefly, the method involves three steps. 
The composite laminate sample is first weighed in air. Next, the 
sample is suspended by a wire on the weighing scale and weighed 
while totally immersed in a liquid of known density and good 
wettabi1ity. The liquid selected for our tests was alcohol. For 
the final step, the suspended wire is weighed immersed in the liquid 
to the same depth as during the sample weighing. Using these data 
the composite laminate density is obtained from the formula 

= 
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where 

Pc = density of composite 

P,e = density of irmnersion liquid 

W = weight of composite sample in air c 
W = weight of sample and wire while innnersed 

in liquid 

Ww = weight of wire while irmnersed in liquid 

The densities determined for the six material systems are I 
presented in Table 3-12. During immersion the liquid cannot penetrat~ 
into the interior voids of the specimen. Consequently, the absolute ) 
density determined by this method is in error by the amount of voids I 
present in the interior. 

The fiber volume ratios, FVR, were determined 
metric method. This involves a computation using the 
of the constituent materials. The fiber volume ratio 
the following relation: 

by the gravi­

known densities I 

FVR = 

where 

Pc' P r' 

Ps = 

Ys = 

Ns = 

tc = 

6s = 

6s = 

. . b I 
~s g~ven y ! 

I 

I 
I 
I 

I 
1 

Pf = densities of composite, resin, and 
fiber, respectively 

density of scrim cloth fiber 

weight per unit area of a single scrim cloth ply 

number of scrim cloth plies in composite 

composite specimen thickness 

1 if composite contains scrim cloth 

0 for composite without scrim cloth 
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Table 3-12 

DENSITIES AND FIBER VOLUME RATIOS OF COMPOSITE SYSTEMS 

Densities. o. kg/m3 (lb/in . 3) 
Material System Composite Fiber Resin 

Pc Pf Pr 
A. Boron/Epoxy 

(Boron/AVCO 5505) 2034 (0.073) 2680 (0 0097) 1220 (0 . 044) 

B. Boron/Po1yimide 
(4 Mil Boron/WRD 9371) 2000 (0.072) 2680 (0.097) 1180 (0.043) 

~ 

C. Graphite/Low Modulus Epoxy 
(Modmor I/ERLA 4289) 1560 (0.056) 1980 (0.071) 1125 (0 .041) 

D. Graphite/High Modulus Epoxy 
(Modmor I/ERLA 4617) 1540 (0.056) 1980 (0.071) 1180 (0.043) 

E. Graphite/Po1YDmide 
(Modmor I/WRD 9371) 1540 (0.056) 1980 (0.071) 1180 (0.043) 

F. S-Glass/Epoxy 
(Scotchply 1009-26- 5901) 2130 (0.077) 2480 (0 . 090) 1230 (0 . 044) 

---- - -

--------------

Fiber Volume Scrim Cloth 
Ratio, FVR Volume Ratio 

0.50 0.06 

0.49 0.06 

0.51 -

0.45 -

0.45 -

0.72 -
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Table 3-13 
PROPERTIES OF UNIDIRECTIONAL BORON/EPOXY 

(Boron/AVeO 5505) 

Property (Room Temperature 
Unless Otherwise Specified) 

Fiber Volume Ratio, FVR 

Density, p 

Longitudinal Thermal Coefficient, ~ll 
297 deg K (75°F) 
450 deg K (350°F) 

Transverse Thermal Coefficient, ~22 
297 deg K (75°F) 

450 deg K (350°F) 

Longitudinal Modulus, Ell 

Transverse Modulus, E22 

Shear Modulus, G12 

Major Poisson's Ratio, v12 
Minor Poisson's Ratio, v2l 

Longitudinal Tensile Strength, SlIT 

Longitudinal Compressive Strength, SllC 

Transverse Tensile Strength, S22T 

Transverse Compressive Strength, S22C 

1ntralaminar Shear Strength, S12 

SI Units 

.0.50 

2034 kg/m3 

10- 6 K-1 6.1 x 

10- 6 K-1 6.1 x 

30.3 x 10-6 K- 1 

37.8 x 10-6 K- 1 

201 GPa 

21.7 GPa 

5.4 GPa 

0.17 

0.02 

1,375 MPa 

1,600 MPa 

56.0 MPa 

123.7 MPa 

62.3 MPa 

I 
J 

I 

English Unit ~ 
I 

0.073 1b/in. 3 

3.4 \.le:/oF 
3.4 \.le:/oF 

16.9 \.le:/oF 

21.0 \.le:/oF 

29.2 x 106 psi 

3.15 x 106 psi 

0.78 x 106 psi 

199,000 psi 

232,000 psi 

8,100 psi 

17,900 psi 

9,100 psi 

I 
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Table 3-14 

PROPERTIES OF UNIDIRECTIONAL BORDN/POLYIMIDE 

(Boron/WRD 9371) 

Property (Room Temperature 
Unless Otherwise Specified) 

Fiber Volume Ratio, FVR 

Density, p 

Longitudinal Thermal Coefficient, ~11 
297 deg K (75°F) 
450 deg K (350°F) 

Transverse Thermal Coefficient, ~22 
297 deg K (75°F) 

450 deg K (350°F) 

Longitudinal Modulus, Ell 

Transverse Modulus, E22 

Shear Modulus, G12 

Major Poisson's Ratio, vI2 
Minor Poisson's Ratio, v2l 

Longitudinal Tensile Strength, SlIT 

Longitudinal Compressive Strength, SIIC 

Transverse Tensile Strength, S22T 

Transverse Compressive Strength, S22C 

Intralaminar Shear Strength, S12 

3-23 

SI Units 

0.49 

2000 kg/m3 

4.9 x 10-6 K-1 

4.9 x 10-6 K- l 

28.4 x 10-6 K- l 

28.4 x 10-6 K-1 

221.5 GPa 

14.5 GPa 

7.66 GPa 

0.16 

0.02 

1040 MPa 

1090 MPa 

10.8 MPa 

62.8 MPa 

25.9 MPa 

English Units 

0.072 lb/in. 3 

2.7 )..lE/oF 
2 . 7 )..lE/oF 

15 . 8 j..lE/oF 

15.8 j..lE/oF 

32.1 x 106 psi 

2.1 x 106 psi 

1.11 x 6 10 psi 

151 , 000 psi 

158,000 psi 

1,600 ps i 

9,100 psi 

3,750 psi 

L ___________ . __________ ----________ ---.--- ------
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Table 3-15 

PROPERTIES OF UNIDIRECTIONAL GRAPHITE/LOW MODULUS EPOXY 
(Modmor I/ERLA 4289) 

Property (Room Temperature 
Unless Otherwise Specified) S1 Units English Unid 

Fiber Volume Ratio, FVR 

Density, p 

Longitudinal Thermal Coefficient, ~ll 
297 deg K (75°F) 
450 deg K (350°F) 

Transverse Thermal Coefficient, ~22 
297 deg K (75°F) 

450 deg K (350°F) 

Longitudinal Modulus, Ell 

Transverse Modulus, E22 

Shear Modulus, G12 

Major Poisson's Ratio, v12 
Minor Poisson's Ratio, v 21 

Longitudinal Tensile Strength, SlIT 

Longitudinal Compressive Strength, SllC 

Transverse Tensile Strength, S22T 

Transverse Compressive Strength, S22C 

1ntralaminar Shear Strength, S12 

3-24 

0..51 

1560 kg/m3 0.056 1b/in. 3 

-1.1 x 10-6 K- l -0.6 ~E/oF 
3.2 x 10-6 K- 1 1.3 ~E/oF 

31.5 x 10-6 K- 1 17.5 ~E/oF 

27.0 x 10-6 K- 1 15.0 ~E/oF 

188 GPa 27.3 x 106 psi 

4.14 GPa 

4.83 GPa 

0.20 

0.04 

1,115 MPa 

990- MPa 

4.15 MPa 

33.5 MPa 

600,000 psi 

700,000 psi 

162,000 psi 

144,000 psi 

600 psi 

4,850 psi 

---------------------------

I 
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Table 3-16 

PROPERTIES OF UNIDIRECTIONAL GRAPHITE/HIGH MODULUS EPOXY 
(Modmor I/ERLA 4617) 

Property (Room Temperature 
Unless Otherwise Specified) 

Fiber Volume Ratio, FVR 

Density, p 

Longitudinal Thermal Coefficient, ~11 
297 deg K (75°F) 

SI Units English Units 

0.056 Ib/in. 3 

i i 445 deg K (340°F) -.0 . . 9 x 10-6 K- l - 0. 5 !-lE/ of 

Transverse Thermal Coefficient, ~22 
297 deg K (75°F) 

445 deg K (340°F) 

Longitudinal Modulus, Ell 

Transverse Modulus, E22 

Shear Modulus, G12 

Major Poisson's Ratio, vIZ 

Minor Poisson's Ratio, v2l 

Longitudinal Tensile Strength, SlIT 

Longitudinal Compressive Strength, SllC 

Transverse Tensile Strength, S22T 

Transverse Compressive Strength, S22C 

Intralaminar Shear Strength, S12 

3-25 

33.3 x 10-6 K- 1 

58.9 x 10-6 K- l 

190 GPa 

7.1 GPa 

6.2 GPa 

0.10 

841 MPa 

883 MPa 

41.9 MPa 

196.5 MPa 

61.5 MPa 

18.5 !-lE/oF 

32.7 !-lE/oF 

27.5 x 106 psi 

1.03 x 106 psi 

0.9 x 106 psi 

122,000 psi 

128,000 psi 

6,070 psi 

28,500 psi 

8,900 psi 

I 
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Table 3-17 

PROPERTIES OF UNIDIRECTIONAL GRAPHITE/POLYIMIDE 
(Modmor I/WRD 9371) 

I 

I 
I 

--------------------------------~------------~------------- I 
Property (Room Temperature I 
Unless Otherwise Specified) S1 Units English Units 

--------------------------------------+-------------~----------------- I 
Fiber Volume Ratio, FVR 

Density, p 

Longitudinal Thermal Coefficient, ~ll 
297 deg K (75°F) 
589 deg K (600°F) 

Transverse Thermal Coefficient, 
297 deg K (75°F) 

589 deg K (600 OF) 

Longitudinal Modulus, Ell 

Transverse Modulus, E22 

Shear Modulus, G12 

Major Poisson's Ratio, v 12 
Minor Poisson's Ratio, v 2l 

a. 22 

Longitudinal Tensile Strength, SlIT 

Longitudinal Compressive Strength, Slle 

Transverse Tensile Strength, S22T 

Transverse Compressive Strength, S22C 

Intralarninar Shear Strength, S12 

3-26 

0.45 

1,540 kg/m3 

25.3 x 10-6 K -1 

25.3 x 10-6 K- 1 

216 GPa 

4.97 GPa 

4.48 GPa 

0.25 

0.02 

807 MPa 

652 MPa 

14.9 MPa 

70.5 MPa 

21.7 MPa 

0.056 lb/in. 3 

14.1 I-lE /oF 

l4.1I-lE/oF 

31.3 x 106 psi 

720,000 psi 

650,000 psi 

117,000 psi 

94,500 psi 

2,150 psi 

10,200 psi 

3,150 psi 

I 
I 
I 
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Table 3-18 

PROPERTIES OF UNIDIRECTIONAL S-GLASS/EPOXY 
(Scotchp1y 1009-26-5901) 

Property (Room Temperature 
Unless Otherwise Specified) 

Fiber Volume Ratio, FVR 

Density, p 

Longitudinal Thermal Coefficient, ~ll 
297 deg K (75°F) 
435 deg K (325°F) 

Transverse Thermal Coefficient, ~22 
297 deg K (75°F) 

435 deg K (325°F) 

Longitudinal Modulus, Ell 

Transverse Modulus, E22 

Shear Modulus, G12 

S1 Units 

0.72 

2,134 kg/m3 

3 8 10-6 K-l • x 

3 8 10-6 K-l • x 

16.7 x 10.6 K- 1 

54.9 x 10.6 K- 1 

60.7 GPa 

24.8 GPa 

12.0 GPa 

Major poisson's Ratio, v12 0.23 

Minor Poisson's Ratio, v2l 0.09 

Longitudinal Tensile Strength, SlIT 1,290 MPa 

Longitudinal Compressive Strength, SllC 822 'MPa 

Transverse Tensile Strength, S22T 46.0 MPa 

Transverse Compressive Strength, S22C 174 MPa 

Intralaminar Shear Strength, S12 45 MPa 

3-27 

English Units 

0.077 lb/in. 3 

2.1 ~E /oF 

2.1 I-lE /oF 

9.3 IJ E / of 

30.5 IJE / of 

8.8 x 106 psi 

3.6 x 106 psi 

1. 74 x 106 psi 

187,000 psi 

119,000 psi 

6,670 psi 

25,300 psi 

6,500 psi 



The resin and fiber densities, Pr and Pf' for the material 
systems were obtained from the manufacturers of the prepreg tapes. 

They are listed in Table 3-12. Glass scrim cloth was used in the 
material systems with boron fibers. Properties of this scrim cloth 

are 

= 2540 kg/m3 (0.0918 lb/in. 3) 

= 0.193 N/m2 (2.802 x 10-5 lb/in.2) 

The fiber volume ratios determined for the six material 
systems are listed in Table 3-12. These, together with the composite 

densities are also shown in the summary Tables 3-13 to 3-18. 

3.4 Residual Strain 

3.4.1 General Experimental Procedures 

Residual strains were determined in eight-ply laminates of 

~2/±45]s construction for the six material systems selected. These 
specimens were 2.54 cm (1 in.) wide and 22.9 cm (9 in.) long. Uni­

directional [OJ specimens were also used for reference purposes in 
determining the residual strain buildup and for measuring the basic 

coefficients of thermal expansion. These specimens were 2.54 cm (1 in. 

wide and 12.7 cm (5 in.) long. 

The specimens were fabricated and instrumented with surface 

and embedded gages and thermocouples following previously established 
procedures 3,34. The embedded instrumentation requires lead exits 

through the specimen sides which precludes cutting specimens from 

a single plate. Each specimen was therefore layed up individually to 
final dimensions using 2.54 cm (1 in.) wide strips cut from the prepreg 

tape at the required fiber orientation. To assure uniformity in 

properties the specimens were fabricated from the same batch of 

material as the characterization and static strength specimen plates 
described in Section 3.2 and under the same quality control. To 

assure straight parallel sides and maintain width control the specimens 
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were laid up between a pair of parallel steel guides 2.54 cm (1 in.) 
apart mounted on a steel base plate. The guides contained markings and 

cutouts for locating the embedded gages and permitting the leads to 

exit through the sides. For curing, the laid up specimens were 
transferred to another steel plate with cork strips as the parallel 
guides. These served a dual purpose; to maintain width control by 

preventing spreading and shifting of specimen plies under pressure 
in the curing cycle, and as dams against edge flow of resin, forcing 
the resin to bleed during curing only through the top and bottom of 
the specimen. This control is required in order to maintain uniformity 

of resin content over the specimen width. 

The foil strain gages used to instrument the specimens were 
three gage rosettes, used primarily as embedded instrumentation, 
and two gage rosettes, used primarily as surface gages. Special 

requirements on the gages were that they produce no significant 

local thickening when embedded and that they be electrically 
insulated from the conducting fibers. 

In the case of the glass/epoxy specimens there are no 

insulation problems. Hence conventional open-face gages approximately 

0.025 rom (0.001 in.) thick (Micro-Measurements EA Series) were 

used with nickel-clad copper ribbon leads attached. These ribbons 

are approximately 0.025 rom (0.001 in.) thick and 0.38 rom (0 . 015 in.) 

wide. The gages were laid down during specimen fabrication on the 

desired plies in accordance with the typical layouts shown in 
Figs. 3-28 and 3-29. The matrix resin served to bond the gages 
and no additional cement was necessary. The embedded gages in the 

: 02/±45]s specimens were laid down in a staggered pattern (Figure 3-29) 
in order to minimize local specimen thickening. Each gage was 
checked for electrical continuity before it was emplaced and after 
layup. 

A Chromel-Alumel (ANSI Type K) thermocouple was embedded 

in each specimen during layup. The thermocouple wires were 

0.25 rom (0.01 in.) in diameter with fiberglass insulation beyond the 

sensing junction. Because of the thickness and stiffness of 

3-29 
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the wires thethermocoup~e was located at the end of the specimen, 

embedded between the fourth and fifth plies. 

Figure 3-30 illustrates a Glass/Epoxy specimen with 

embedded instrumentation after cure. The embedded gages and 
thermocouple are visible through the material. 

For the boron and graphite fibe~ specimens, previously 
developed techniques were improved and r~fined. Fully encapsulated 

gages were used because these fibers are electrically conducting. 

To minimize local specimen thickening, special gages were procured 

with the backing and encapsulation only half as thick as on standard 
gages. The encapsulated gage thickness was therefore approximately 

0.025 rom (0.001 in.). The attached ribbon leads were nickel-clad 

copper 0.025 mm (0.001 in.) thick and 0.38 mm (0.015 in.) wide. 
They were coated to fully insulate them from the conducting fibers. 
In addition, since the ribbon lead coating was not always available 

or effective, the leads were sandwiched between strips of 0.013 mm 
(0.0005 in.) thick polyimide sheet (Kapton) during gage layup. No 

cement was necessary to emplace the gages since the specimen matrix 
served as bonding material. 

The gages were checked for electrical continuity and gage 

and lead shorts due to accidental contact with the fibers both 
before and after layup. 

r • 

Gages in the ~ 02/±45 I s specimens were embedded in a staggered; 
pattern in order to minimize local specimen thickening. For the l 
uniaxial specimens gage staggering was not necessary since only one j 

gage was embedded. In the case of the boron specimens local specimen; 
thickening due to gage emplacement was minimized by removing an I 
area of scrim cloth equal to the area of the gage and leads where I 

the gage was laid down. Scrim cloth thickness, O. 025 rom (0.001 in.), ! 
is essentially the same as that of the gage. 

For the epoxy matrix specimens, polyimide-encapsulated 

Constantan alloy gages (Micro-Measurements, Series QA) were used. 

An example of such gages are the three-gage rosette QA-06-l25RD-350, 
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option B17l and the two-gage rosette QA-06-l25TQ-350 , option 

B17l. These gages are designed to operate in the temperature 

range of 77 deg K ( 320oF) to 478 deg K (400oF). These gages could 
not be used for the polyimide matrix specimens because of their 
higher postcure temperature. The gages selected for the polyimide 
specimens were the high temperature glass-fiber epoxy phenolic­

encapsulated nickel-chromium alloy gages (Micro-Measurements WK 

Series). An example of such gages are the three-gage rosette 
WK-06-125RA-350, option B156 and the two-gage rosette, WK-06-l25TM-

350, option ]3156. 

In addition to the gages, each boron and graphite specimen 

was provided with an embedded thermocouple of the same type and 
at the same location, as in the case of the Glass/Epoxy specimens. 

In all cases above, all gages and thermocouRles were 
completely wired before specimen curing and connected to a multi­

channel Signal Conditioning and Data Acquisition system for monitoring 

during curing. The instrumented specimens were bagged with the 

gages and thermocouples completely wired and subjected to the 
prescribed curing and postcuring cycles in the autoclave, Fig. 3-31, 

and high temperature oven, Fig. 3-32. 

The combinations of high temperature, pressure and vacuum 

applications during curing and po~tcuring required special techniques 

for wiring and lead emplacement for the specimen instrumentation. 

The three-wire gage compensation technique, Fig. 3-33, was used to 

compensate for the appreciable resistance changes taking place in 

the portions of the lead wires exposed to the elevated temperatures 

inside the autoclave or oven. As indicated in Fig. 3-33 these lead 

wires must be of equal length for the compensation to be exact. The 
use of high resistance strain gages reduces the errors due to de­
viations from this condition. For this reason 350 ohm strain gages 

rather than the more common 120 ohm gages were selected for the 

majority of the specimens. 
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The high curing and postcuring temperatures called for 
suitable lead wires and soldering techniques. In the case of 

the epoxy matrix specimens the lead wires were AWG 26 teflon­

insulated copper wires suitable in the range between 73 deg K and 
473 deg K (-328oF and 392oF). They were soldered to the gage 
leads with a tin-cQmpound solder _a2plicable up to 456 deg K' (36lo

F) . 

For the polyimide matrix specimens the lead wires were AWG 26 

fiberglass-braid insulated nickel-clad copper wires, suitable in 
the range from 4 deg K to 753 deg K (-452oF to 9000 F). These were 

soldered to the gage leads with a silver compound recommended for 
temperatures up to 892 deg K (ll450 F). To prevent air leaks through 
the wire insulation and maintain vacuum during curing, it was 
necessary to bare the wires locally and embed them in the silicon 

rubber gasket used in bagging the specimens. 

The completely wired and bagged specimens were connected 
to a data acquisition system for monitoring of strain buildup 

as a function of temperature during curing and postcuring (Fig. 

3-31 and 3-32). The data acquisition system consisted of strain 

gage bridge balance boxes for signal conditioning plus a digital 

voltmeter with automatic scanning and printing units. 

3.4.2 Determination of Residual Strains and Residual Stresses 

Strain gage and thermocouple outputs were recorded in all 
specimens during curing, postcuring, and in some cases, during 

subsequent thermal cycling . To properly interpret the strain gage 

output £ (apparent strain), it is necessary to separate this output a , 
into the component £t due to the deformation of the specimen (thermal 

strain) and the component £g due to the change in resistivity of 
the gage with temperature (thermal output) 

= 

To determine £ a fused quartz specimen of known thermal 

7 10-6 Kg-l (0.4 ll £/oF), expansion, O. x ~ was instrumented with a strain 

gage and a thermocouple and included along with the laminate 

specimen in all tests. The gage used on the quartz was of the same 
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type and material as those used for the laminate 
measured gage output from the quartz specimen £ 

q 
the thermal output of the gage by the expression 

£ g = 

specimens. The 
is related to 

where £tq is the known thermal expansion strain in quartz . The 

measured thermal output of the gages was checked against similar 
data supplied by the manufacturer with each gage package and the 

agreement was found satisfactory. The true thermal strain £t 

in the composite laminates was obtained by subtracting algebraically 
from the apparent strain the output from the gage on the quartz 

and adding the known thermal expansion of quartz: 

= 

The reference specimen used for measurement of the purely 

thermal output of the gage can be of any material with a known 

constant and stable coefficient of thermal expansion. Figure 3-34 
shows the measured gage output from quartz and aluminum oxide 

(alumina) specimens . 

The residual stresses in each ply correspond to the so­

called restraint or residual strains, i.e., the difference between 
the unrestrained thermal expansion of that ply and the restraint 

I 

expansion of the laminate. Given a ply with material axes 1 , 2 at 

an angle e with the laminate axes x,y, the residual strains at a 

temperature T are given by the relations 

(£r)xx = -J~ a dT +[ £ (T) - £ (T) ] xx xx xx 0 

0 

( £r)xy = -J~ a dT+[£ (T)- £xy (To)j xy xy 
0 

(£r)yy 
_ ( T a dT +[ £ (T) - £ (T)] 
J T yy yy yy 0 

0 
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where C is r the residual strain, E: xx' E: xy' E:yy measured thermal strains, 

2 2 axx = mall + n 0. 22 

a = mn(a22-all) xy 

o.yy = 2 
n all 

2 + m 0.22 

the transformed thermal coefficients of expansion referred to the x-y 

system (m = cose , n = sine). To is the reference temperature, 

usually the curing temperature, at which residual strains and stresses 

are zero. 

The expressions above can also be written in terms of apparent 
strains measured in the unidirectional and angle-ply laminates as 
follows: 

f( £ ) 13 
'1 T 

(£r)aS = (£1)0.131 T = 
L U a ~ 0 

r I T I 
= i(£au)o.s (cal) as) To ~ 

where a, 13 = x,y, and subscripts a, u, 1 denote apparent unidirectional 
laminate and angle-ply laminate, respectively. 

Residual stresses are computed from the residual or restraint 

strains above using the orthotropic constitutive relations, taking 

into consideration the temperature dependence of the stiffness and 

residual strains. The stress difference between two temperature 
levels T and To is given by: 

T ( T 
T = J T [Q) 

o 0 

r ) f' [ ) where L QJ lOi] and £ij. are the temperature-dependent stiffnes s , 
residual stress, and residual strain matrices, respectively. ~fuen t he 

directions i,j above are not principal material directions for the ply , 

the stiffness matrix [QJ referred to the reference axes i, j is used. 
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For the O-degree plies of the 02/ ±45 s laminate , wher e 
the material axes of the ply coincide with the material axes of 
the laminate and the principal stress and strain directions , 

'" dE ll d E22 1 

=J~ Qll( T) + Q12( T) dT ---a-r ---a-r I 
1 

0 

011 (T) 

( T 
Q12( T) 

dE ll 
+ Q22( T) 

dE
22 

I 

d'T =J T ---a-r aT J 
0 

o 
12 (T) 0 

where subscripts 1 and 2 correspond to directions parallel and 

transverse to the fibers . The stiffness matrix components are 

related to measured quantities as follows : 

= 

Q12 = v2l Ell 
I- v12 v2l 

Q22 = E22 
I- v12 v21 

Q66 = G12 

3.4.3 Edge Effects 

to establish whether thermal strain s 

measured in the laminated specimens are uniform across the width 

A test was conducted 

of the specimen . A 2.54 em x 22.9 cm (1 in. x 9 i n. ) :02/ ±45] s 
S-Glass/Epoxy specimen was instrumented with embedded gages (Micro­

Measurements EA-05-062TT-120) at different locations across t he 

width (Fig. 3-35). The specimen was cured and sub s equently subjected 
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to a thermal cycle from room temperature to 435 deg K (32S oF) and 

down to room temperature. Strain gages were recorded at frequent 

intervals and are plotted as a function of temperature in Figs. 3-

36 to 3-39. The agreement among the three gages is very good, 

indicating that thermal strains are uniform across the width of 

the specimen. 

3.4.4 Residual Strains in Boron/Epoxy 

A 2.54 cm x 22 . 9 cm (1 in. x 9 in.) eight-ply laminate 

of [02/±45 : s layup and a 2.54 cm x 12 . 7 cm (1 in. x 5 in.) ~ 08 
specimen were fabric a ted and instrumented with surface and embedded 
gages and thermocouples following procedures discussed before. 

The angle-ply laminate was instrumented with encapsulated three­

gage rosettes (Micro-Measurements QA-05-l25RD-350, Opti.on BI10) on 

the third, fifth and seventh plies, two-gage rosettes (EA-06-l25TF-

120) on the top and bottom surfaces, and an embedded thermocouple 

between the fourth and fifth ply . The unidirectional specimen 

was instrumented with a three-gage rosette and a thermocouple 

in the middle surface and two-gage rosettes on the top and bottom 
surfaces . The embedded gages were fully encapsulated and the 

attached ribbon leads were coated to prevent any current leakage 

through the conducting boron fibers . 

The instrumented Boron/Epoxy and quartz specimens with 

all wiring connected to a Digital Data Acquisition system were 

placed in the autoclave and subjected to the curing cycle described 

earlier. Strain gage and thermocouple. readings were recorded at 

5.5 deg K (lOoF) intervals during the heating and cooling cycles. 

To compare strains during curing with those due to purely 
thermal expansion , the same specimens above were sUbjected to a 

thermal cycle from room temperature to 450 deg K (3500 F) and down 

to room temperature. Strain gages and , thermocouples were 

recorded at 5.5 deg K (lOoF) intervals. 
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The apparent strains recorded during the first part of the 

curing cycle (increasing temperature) showed a great deal of scatter 

and bore no resemblance to those of the second half (decreasing 
temperature). This is probably because no macroscopic stresses 

are built up while the matrix resin is in a fluid state. Residual 

stresses build up after curing is achieved at the peak temperature 
or' of 450 deg K(350 F). Recorded apparent strains for the ~2/±4~ s 

laminate during the decreasing temperature stage of the curing 

cycle are shown in Fig. 3-40. These apparent strains in all cases 
were corrected for the purely thermal output of the gage, by 

subtracting algebraically the output from the gage on the quartz 

specimen and adding the known thermal expansion of quartz. Thus, 

thermal strains were obtained for the second part of the curing cycle 

(decreasing temperature) for the r; and ~2/±4s1s boron/epoxy 
specimens (Figs. 3-41 and 3-42). Also plotted in these figures are 

the thermal strains obtained during the subsequent thermal cycling 

of the specimens averaged for the ascending and descending parts 

of the cycle. The agreement between the two sets of strains is 

satisfactory and it indicates that the curing strains in the second 

half of the curing cycle are caused by thermal expansion of the material. 

Therefore, the residual strains induced during curing are caused 

by differential thermal expansion of the various plies. The small 

discrepancies between curing and thermal strains observed at the 

higher temperatures may be related to different rates of temperature 

variation. It is worth noting that the strain variation during 

curing is perfectly linear with temperature. 

The slopes of the thermal strain versus temperature curves 
(Fig. 3-41) for the unidirectional laminate yields the coefficient 

of thermal expansion below: 

At T = 297 deg K(7S oF) 

6.1 x 10- 6 K- l (3.4 0 
all = 'tl £ / F) 

a 22 = 30.3 x 10-6 K- 1 (16.9 'tlE:/oF) 
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At T 450 0 deg K(350 ) 

a ll = 6 . 1 x 10- 6 K- l (3.lj lH: /oF) 

37 . 8 x 10- 6 K- l (21.0 0 
0. 22 = ]J € / F) 

The residual stresses induced in each ply correspond to 

the so-called restraint strains, i . e., the difference between the 

unrestrained thermal expansion of that ply and the restrained 

expansion of the laminate. The restraint or residual strains for 
r , 

the O-degree ply of the l02/±45 ~ s boron/epoxy laminate were obtained 
by subtracting from the longitudinal, transverse and 45-degree 

thermal strains of Fig . 3-42 the corresponding strain components 

measured in the unidirectional laminate. These strains are plotted 

as a function of temperature by setting the 450 deg K(350oF) 

temperature as the stress-free level (Fig . 3-43). The residual 

strains in the 45-degree ply were obtained in a similar fashion and 

plotted in Fig. 3-44 . 
r 

Residual stresses in the O-degree plies of the L02/±45 s 
laminate were obtained as a function of temperature by using the 

residual strains of Fig. 3-43 and published values for temperature 

dependent stiffness properties in the constitutive relations given 

previously (Section 3 . 4. 2 ) . Here, the stress-free temperature of 

450 deg K(350oF) was taken as the reference temperature T in the 
o 

integral constitutive relations. The temperature variation of the 

longitudinal, transverse and shear moduli, as given by the Advanced 

Composites Design Guide is shown in Figs. 3-45 to 3_49. 35 

The results in Fig . 3-50 show that the O-degree plies are 

under compressive residual stress in the direction of the fibers 

and under tensile stress in the transverse direction. The former 

varies nearly linearly with temperature as it depends primarily on 

the longitudinal modulus Ell which varies little with temperature. 

The transverse residual stress is slightly nonlinear as shown in 
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Fig. 3-50 because it is related to the highly temperature­

dependent transverse modulus E22 . This transverse stress is the 
more significant of the two because ' it is tensile and reaches 
a value of 32,400 kPa (4700 psi), or approximately 50 percent 

of the transverse strength of the unidirectional material. 

3.4.5 Residual Strains in Boron/Polyimide 

Boron/Polyimide specimens similar to the Boron/Epoxy 
specimens above were prepared. A 2.54 cm x 22.9 cm (1 in. x 9 in.) 

, -
laminate of ~02/±45 J s layup was instrumented with three-gage 
rosettes CWK-06-125RA-350, Option B157) on the top and bottom 

surfaces and on the fourth and fifth plies. A unidirectional 
.. I 

1081 2.5 cm x 12.7 cm (1 in. x 5 in.) control specimen was instrumented 
with similar three-gage rosettes on the top and middle surfaces and 

a two-gage rosette (WK-06-125TM-350, Option B157) on the bottom 

surface. Thermocouples were embedded in both specimens. 

The instrumented specimens along with a reference quartz 
specimen instrumented with similar gages were subjected to t he 

curing cycle described previously. This consisted of B-staging , 

autoclave curing, and postcuring in an air circulating oven under 

vacuum. Strain gages and thermo-couples were recorded throughout 
the curing and postcuring cycles. 

trains for the cooling stage of the curing cycle for the 

unidirectional specimen are shown in Fig. 3-51. They are linear 
with temperature. The coefficients of thermal expansion obtained as 

the slopes of these curves are: 

= 

= 

Similar data for postcuring, during the heating and cooling 

stages, were analyzed and the strains are plotted in Fig. 3- 52 . The 

strains again vary linearly with temperature and have the same 

slopes as those during the curing cycle. This means that the 
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coefficients of thermal expansion are constant, at least up to 

589 deg K(600oF). 
r 

Strains in the i 02/±45 : laminate recorded during 
, J S 

curing and postcuring seemed to be erroneous. Subsequent 
determinations of residual strains are based on strains recorded 
during thermal cycling of specimens in Task IV. Apparent strains 
recorded during this thermal cycling are shown in Fig. 3-53, and 
the corresponding true thermal strains in Fig. 3-54. 

Restraint strains in the O-degree and 45-degree plies 
r 

of the ~02/±45 ; s laminate were obtained as before by subtracting 
the unrestrained thermal strains of each ply from the corresponding 
strains in the laminate (Figs. 3-55 and 3-56). As in the case 
of the Boron/Epoxy these strains are linear with temperature. The 

true residual strains must be referred to the stress-free temperature 

level. In this case the stress-free level is at 450 deg. K(350oF), 
the temperature at which the matrix solidifies. To obtain the 

true residual strains, the curves of Figs. 3-55 and 3-56 must be 

shifted parallel to the strain axis ~ntil they intersect the 
temperature axis at 450 deg K(350oF). The maximum residual strain 

in the ±45-degree plies occurs at room temperature in the transverse 

to the fiber direction and is equal to 2950~E. The maximum residual 
strain in the O-degree plies is 2260~E in the transverse to the 
fiber direction at room temperature. 

3.4.6 Residual Strains in Graphite/Low Modulus Epoxy 

A 2.54 cm x 22 . 9 cm (1 in. x 9 in.) laminate of r02 /±45 s 
layup was instrumented with a two-gage rosette (QA-06-125TQ-350. 

Option 171) on the top surface and three-gage rosettes (QA-06-

125RD-350, Option 171) on the fourth and fifth plies. A 2.54 cm x 

12.7 em (1 in. x 5 in.) L08 1 unidirectional control specimen 
was instrumented with two-gage rosettes on the top and bottom 

surfaces and a three-gage rosette and a thermocouple embedded 
between the fourth and fifth plies. The instrumented specimens 
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along with a similarly instrumented reference quartz specimen 

.were subjected to the curing cycle described earlier. Strain 

gage and thermocouple readings were recorded throu~hout the 
curing and postcuring stages. 

Thermal strains for the O-degree unidirectional specimen 

are plotted in Fig. 3-57. The coefficients of longitudinal 

and transverse thermal expansion measured at the two ends of the 
temperature range are: 

At T = 297 deg' K (750 F) 

all = -1.1 x 10- 6 K- l (-0.6 WE/oF) 

31. 5 x 10- 6 -1 (17.5 ~E/oF) a22 
= K 

At T 450 deg K(350oF) 

all = 2.3 x 10- 6 K- l (1. 3 ~ E /oF) 

a22 = 27.0 x 10- 6 K- l (15.0 ~E/oF) 

Results from the [02/±45]s laminate were not meaningful. 
The test was repeated four times with new specimens each time, 

but with limited success. It is believed that the difficulties 
encountered are due to the very brief shelf life of the material. 

3.4.7 Residual Strains in Graphite/High Modulus Epoxy 

A 2.54 cm x 22.9 cm (1 in. x 9 in.) lamin~te of [02/±45J s 
layup and a 2.54 cm x 12.7 cm (1 in. x 5 in.) [08 .1 unidirectional 
specimen was instrumented exactly. as the corresponding Graphite/ 

Low Modulus Epoxy specimens above. The instrumented specimens 

along with a quartz reference specimen were subjected to the curing 

and postcuring cycles described before. 
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Apparent strains during the curing and postcuring cycles 

for the unidirectional specimen are shown in Figs. 3-58 to 3-60. 
Thermal strains were obtained by correcting for the purely thermal 

output of the gages and plotted in Fig. 3-61. As can be seen, 
the transverse thermal expansion is nonlinear with temperature 
and the longitudinal expansion is very small and negative. The 
coefficients of thermal expansion measured as the slopes of these 

curves were obtained at the two ends of the temperature range. : 

At T = 297 deg K(75 0 F) 

all = 0 

33.3 x 10- 6 K- 1 (18.5 0 a ~E/ F) 
22 

At T = 444 deg K(340oF) 

all -0.9 x 10- 6 K -1 (-0.5 IlE/ oF) 

58.9 x 10- 6 -1 (32.7 0 a22 = K ~E/ F) 

Apparent strains during the various stages of curing and 

postcuring for the [02/±45 j s laminate are shown in Figs. 3-62 to 
3-66. The longitudinal strains do not show any significant 
difference in the various stages of curing and postcuring (Figs. 

3-62 to 3-64). The transverse strains recorded during the second 
part of the curing cycle and the heating stage of the postcuring 

are in good agreement (Fig. 3-65), but they are significantly 

different from those during the cooling stage of postcuring (Fig. 

3-66). This can be explained by the fact that curing is not 
completed during the curing ~yc1e, and that a substantial portion 

of it takes place during the dwell period (6 hours) of the post­
curing cycle. 
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Thermal strains induced during curing in the angle-ply 
laminate are plotted in Fig. 3-67. The transverse strain 
reaches a maximum value of 675~£. When the zero reference point 
for these curves is taken at 444 deg K (340oF), the stress-free 
temperature level, it can be seen that the transverse strain 

increases slowly down to approximat ely 378 deg K (220oF) and 
thereafter it varies at a higher rate. This is an indication 
that the matrix material i s not fully cured and is still in a 
semi-solid state. 

During postcuring, the specimen is heated again to its 

stress-free temperature level (444 deg K, 340oF). However, upon 
cooling a new set of residual strains are induced (Fig. 3-68). 
These strains are higher than those recorded during the curing 

cycle and vary nearly linearly with temperature at rates close 

to those of the curing strains at the low temperature end. This 
can be attributed to the fact that after the 6-hour dwell at 

444 deg K (340oF) complete curing takes place and the matrix material 

attains thermal properties similar to those near room temperature 
prior to postcuring. 

Residual (restraint) s~rains in the O-d~gree and 
r 

45-degree plies of the ,02/ ±4:'J s laminate were obtained as 
before by subtracting the unrestrained thermal expansion of each 

ply (Fig. 3-61) from the corresponding restrained expansion 

of the laminate (Fig. 3-68). These residual strains are plotted 

as a function of temperature in Figs. 3-69 and 3-70. Because 

of the large differences in transverse and 45-degree strains 

between the unidirectional and ang.le-ply laminate, the residual 
strains reflect essentially the same nonlinearities of the thermal 

strains in the unidirectional specimen. 

3.4.8 Residual Strains in Graphite/Polyimide 

A 2.54 cm x 22.9 cm (1 in. x 9 in.) laminate of [02/ ±45 ~ s 
layup was instrumented with two-gage rosettes (WK-06-l25TM-350, 

Option B157) on the top and bottom surfaces and three-gage rosettes 

(WK-06-l25RA-350, Option B157) on the fourth and fifth plies. A 
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unidirectional [OS) 2 . 5 cm x 12.7 cm (1 in. x 5 .in.) control 

specimen was instrumented with similar three-gage rosettes on 

the top and middle surfaces and a two-gage rosette on the 
bottom surface. Thermocouples were embedded in both specimens. 

The instrumented specimens along with a reference 
quartz specimen instrumented with similar gages were subjected 

to the curing cycle described earlier . This consisted of 
B-staging in an air-conditioning oven, autoclave curing, and 
postcuring under vacuum. Strain gages and thermocouples were 
recorded throughout the curing and postcuring cycles. Additional 
data were obtained from similar specimens prepared subsequently 
for Task IV. 

Thermal strains in the unidirectional laminate are shown 

in Fig. 3-71. They vary linearly with temperature thus 

indicating constant coefficients of thermal expansion. These 
coefficients are: 

° 
= 25.3 x 10- 6 K- l (14.1 ~£/oF) 

Strains in the angle-ply laminate are plotted in Fig . 3-72. 
They are an order of magnitude smaller than the thermal strains 

of the unidirectional material. This is due to the zero longitudinal 

thermal expansion of the unidirecttonal material which tends to 
restrain thermal expansion in the laminate along the 0- and ±4S deg 

directions. The observed scatter and apparent nonlinearity in 

strains is not significant, but appears pronounced because of the 
small magnitude of the strains. 

Restrain strains in the O-degree and 4S-degree plies of 

the [02/±4S Js laminate were obtained as before and plotted in 
Figs. 3-73 and 3-74. These strains are linear with temperature 

since the thermal strains in both the unidirectional and angle-ply 
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l specimens are linear with temperature. The true residual strains 
\ are referred to the stress-free temperature level of 450 deg K 
\ (350oF) as in the case of the Boron/Polyimide. The maximum 
l 
l residual strain then at room temperature is 375 ~£ in the ±45-
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degree plies normal to the fiber direction. The maximum residua l 

strain in the O-degree plies is 355 ~ £ in the transverse to the 
fiber direction. 

3.4 . 9 Residual Strains in S-Glass/Epoxy 

A 2.54 cm x 22.9 cm (1 in. x 9 in.) eight-ply laminate 

of ~2/±45 ] s layup was instrumented with three-gage rosettes 
(EA-06-l25RD-350) on the fourth, fifth and seventh plies, two-
gage rosettes (EA-06-l25TM-120) on the top and bottom surfaces 

and a thermocouple between the fourth and fifth ply. A uni ­

directional ~08~ 2.54 cm x 12.7 cm (1 in. x 5 in.) control specimen 
was instrumented with a two-gage rosette (EA-06-125-TQ-350) and a 
thermocouple in the middle surface and two-gage rosettes on the 

top and bottom surfaces. 

The instrumented specimens along with a reference quartz 
specimen were bagged and placed in the autoclave and subjected 
to the curing cycle described earlier. 

Strain gage and thermocouple output was recorded through­

out the curing cycle . Subsequently, the same specimens were sub­

jected to a thermal cycle from room temperature to 435 deg K 

(325 0 F) and down to room temperature. Strain gages and thermo­

couples were recorded at frequent intervals. 

As in the case of the boron/epoxy specimens, the strain 

readings for the S-glass/epoxy specimens obtained in the first 

half of the curing cycle were not meaningful. However, a strain 
change, which must be partly attributed to the curing process, 

was observed during the dwell periods at 420 deg K (300oF) and 

435 deg K (325 0 F) . 
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Apparent strains during the decreasing temperature stage 

of curing and during thermal cycling are shown in Figs. 3-75, 
3-76 and 3-77 for the unidirectional and angle-ply laminates. 

These strains were corrected as before for the purely thermal 

output of the gage. Thermal strains obtained for the second 

part of the curing cycle (decreasing temperature) for the 08 1 
and [02/±45 J s S-glass/epoxy specimens are plotted in Figs. -3-78 
and 3-79. Also plotted in these figures are the thermal strains 

obtained during thermal cycling of the specimens subsequent to 

curing. Again, the agreement between the two sets of strains 

is satisfactory, indicating that residual strains due to curing 

are primarily induced by the differential thermal expansion of 

the various plies. The strains in the unidirectional laminate 
are characteristically nonlinear, unlike those in the boron/ 

f . 
epoxy specimen. However, the thermal strains in the ~02/±45 j s 

laminate are essentially linear with temperature. 

The coefficients of thermal expansion of the unidirectional 
laminate were obtained as the slopes of the thermal strain versus 

temperature curves of Fig. 3-78. The following coefficients were 

obtained: 

At T = 297 deg K (75 0 F) 

all = 3.8 x 10- 6 K- l (2.1 l1E/ oF) 

0. 22 = 16.7 x 10- 6 K- l (9.3 l1E/ oF) 

At T = 435 deg K (32SoF) 

all = 3.8 x 10- 6 K- l (2.1 l1c/ oF) 

0. 22 = 54.9 x 10- 6 K- l (30.5 0 
l1E/ F) 
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Residual strains in the a-degree and 45-degree plies 

of the [02/± 45] s S-Glass/Epoxy laminate were obtained as before 
by subtracting the unrestrained thermal expansion of each ply 
from the corresponding restrained expansion of the laminate . 

These residual strains were plotted as a function of temperature 

with 435 deg K (3250 F) as the stress-free level (Figs. 3-80, 
3-81). Unlike the residual strains in the Boron/Epoxy these 

strains for the S-Glass/Epoxy are nonlinear. 

3.5 Static Strength 

Two angle-ply ~2/±45 J s specimens of each material, in­
cluding one with embedded instrumentation, were tested statically 

in tension . Embedded and surface gages were monitored at load 

intervals to failure. In some cases acoustic emission was also 
monitored. 

Stress-strain curves for three Boron/Epoxy specimens are 

shown in Figs . 3-82 to 3-84. The acoustic emission output 

corresponding to the specimen of Fig. 3-84 is shown in Fig. 3-85. 

Pertinent results obtained from the stress-strain curves are the 

initial Young's modulus E ,Poisson's ratio v and tensile xx xy 
strength S T' These results are tabulated in Table 3-19. The xx 
axial strain from Fig. 3-84 was also plotted next to the acoustic 

emission output in Fig. 3-85. The cumulative number of counts 

is low and increases slowly in th~ llnear range of strain response. 

However, it increases at an accelerating rate with the onset of 

nonlinearity, which is related to microfailures. 

The state of strain at any given time is the result of 

superposition of the residual strains induced during curing and 

the mechanical strains produced by external loading. The total 

strain history in the a-degree and 45-degree plies of the specimen 

of Fig. 3-84 is given in Figs. 3-86 and 3-87. As can be seen 

the residual and mechanical strains in the a-degree plies are 

additive only in the 45-degree direction and subtractive in the 
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longitudinal and transverse directions. In the 45-degree plies 

they are additive only in the longitudinal and -45-degree (normal 

to the fibers) directions. 

Stress-strain curves to failure and acoustic emission 

output for Boron/Polyimide are shown in Figs. 3-88 and 3-89. 

The axial strain is linear to failure. The strength is 
appreciably lower than that of Boron/Epoxy. The acoustic emission 

level rises more abruptly than that of Boron/Epoxy, which indicates 

a more catastrophic type of failure. 

Stress-strain curves to failure and acoustic emission 

output for Graphite/Low Modulus Epoxy are shown in Figs. 3-90 
to 3-92. The axial strain is linear up to a point immediately 

preceding failure. The level of acoustic emission rises gradually 

until immediately preceding failure, where it shows a sudden 

jump. (Fig. 3-92). 

j 
I 

I 
I 
I 

Stress-strain curves to failure 

Epoxy are shown in Figs. 3-93 and 3-94. 

for Graphite/High Modulus I 

The acoustic emission I I 
3-93 was very low «104 counts) I level recorded for the specimen of Fig. 

and showed only a gradual rise. This is an indication that the 

specimen might have failed prematurely. A large discrepancy exists 

between the modulus values for the two specimens, without any 

evident reason. 

Stress-strain curves to failure for Graphite/Polyimide 

are shown in Figs. 3-95 to 3-97. All strains are linear to failure. 

Acoustic emission for the specimen of Fig. 3-97 is shown in Fig. 3-98. 

Here, the rise is gradual and the level high, which indicates that 

the microfailure process is widespread and starts at a low load. 

Stress-strain curves to failure for S-Glass/~poxy are 

shown in Figs. 3-99 and 3-100. All strains show some nonlinearity 

even at low loads. An acoustic emission record was obtained for 

another specimen to be described under Task III. 
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The initial Young's modulus, Poisson's ratio, and 
tensile strength obtained from the tests above are tabulated 
in Table 3-19. A cursory look at this table shows that the 

S-Glass/Epoxy is the strongest, but has the lowest modulus. 
The Boron/Epoxy follows closely in strength and has the second 
highest modulus. The Boron/Polyimide with the highest modulus 
has a strength equal to approximately 80 percent of that of 

Boron/Epoxy. The Graphite/Low Modulus Epoxy seems to be some­
what stronger than the Graphite/High Modulus Epoxy and much 
stronger than the Graphite/Polyimide. The average value of 

Poisson's ratio for the Boron and Graphite composites is 
0.72 ± 0.02. Poisson's ratio for S-Glass/Epoxy is substantially 
lower (0.52). 
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Table 3-19 

STATIC TENSILE STRENGTH OF [02/ ±45J s LAMINATES 

Specimen Modulus , Exx Poisson's Tensile Strength 
No. GPa (10 6 psi) Ratio , \) MPa (ksi) xy 

117 (17.0) 0 . 71 750 (109) 
115 (16.6) 0 . 71 680 ( 99) 
114 (16 . 5) 0.67 745 (108) 

117 (17 . 0) 0.72 563 ( 82) 
--- -- 563 ( 82) 

109 (15 . 8) 0 . 74 583 ( 85) 
113 (16 . 4) 0 . 70 552 ( 80) 

--- -- 552 ( 80) 

112 (16.2) 0.71 407 ( 59) 
86 (12.4) 0.72 503 ( 73) 
--- -- 517 ( 75) 
--- -- 511 ( 74) 

104 (15.1) 0. 73 303 ( 44) 
119 (17.3) 0.80 315 ( 46) 
117 (17.0) 0 . 60 412 ( 60) 

36 ( 5.2) 0 . 47 675 ( 98) 
37 ( 5.4) 0 . 56 810 (117) 
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4.0 TASK III - STRESS RELAXATION EV~LUATION 

4.1 Introduction 

The objective of this task is to investigate the extent 
of stress relaxation that the lamination residual stresses undergo. 
The various plies of the laminate are cured under conditions 
restraining their stress-free thermal deformation. The induced 
restraint is directly related to the residual stresses. The 
restraint strains remain relatively fixed, allowing only the 
possibility of relaxation of the residual stresses. Stress 
relaxation is a matrix-controlled property and, therefore, it would 
be most pronounced in the transverse to the fiber direction. 

Several means of evaluation of residual stress relaxation 
were attempted: (1) Direct measurement of strain changes with 
time in angle-ply laminates, (2) Stress relaxation determination in 
90-degree unidirectional laminates, and (3) Elastic and strength 
properties of angle-ply laminates as a function of time after curing. 
Results of these three approaches are discussed below. 

4.2 Strain Variation in Angle-Ply Laminates 

Three 2.54 cm x 22.9 cm (02/±45]s S-Glass Epoxy specimens 
were prepared with embedded strain gages. Embedded three-gage 
rosettes in these specimens were monitored, starting after curing, 
over periods up to five months. To maintain gage stability, the 
gage voltage was maintained constant throughout the period of 
monitoring. At the end of three months, one of the specimens was 
removed for static testing to failure. 

The average longitudinal and transverse strain variation 
for the three specimens is shown iq Fig. 4-1. The variations 
are very small as expected. Stress relaxation in a given ply in the 
transverse to the fiber direction is not accompanied by an 
appreciable strain change, since such a deformation is restrained 
by the other plies of the laminate. Thus, the small strain 
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variations that might acecmpany stress r~laxation are not a 
good measure of this relaxation. 

4.3 Stress Relaxation in 9O-Degree Unidirectional Laminates 

Stress relaxation in composites is a matrix controlled 
property and as such it is most pronounced in th~ transverse to 
the fiber direction. A good measure of the amount of residual 
stress relaxation occurring in a laminate can be obtained by 
evaluating the relaxation characteristics of a 90-deg~ee uni­
directional la.~nate under tension. The specimens were 2.54 cm 
x 22.9 em (1 in. x 9 in.) [90S] coupons. They were loaded in . 
the fixture of Fig. 4-2 by applying a certain fixed elongation 
in a short time. The applied strain corresponded to approximately 
70 percent of the statt~ strength of the 90-degree laminate. The 
change in load with time was monitored with a Schaevitz semi­
conductor load cell and also with an aluminum link instrumented 
with strain gages. The strain in the specimen which is supposed 
to remain constant throughout the test was checked before every 
load reading. Some very small adjustments to the load were 
necessary from time to time to correct for small changes in the 
specimen strain due to the changing load and the finite compliance 
of the load cells. 

The Boron/Epoxy specimen was loaded with a strain of 
2,260 x 10-6 corresponding to a stress of 33.S MPa (4,900 psi). 
The load variation with time is plotted on a semilogarithmic 
scale in Fig. 4-3. Most of the relaxation takes place in the 
first 24 hours and the load (stress) levels off after that time. 
The maximum amount of relaxation observed was approximately 20 
percent. 

The Boron/Polyimide specimen was loaded with a strain of 
800 x 10-6 producing 'an instantaneous stress of 6.9 MPa (1000 psi). 
The load variation with time is plotted on a semilogarithmic 
scale in Fig. 4-4. Two mechanisms of load relaxation are evident. 
One, predominant up to approximately 500 minutes, must correspond 
to stress relaxation in the matrix. The other mechanism related to 
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a sharp decrease in load comes into effect after 1000 minutes 
and is probably related to some failure or degradation taking 
place in the specimen under load. 

The relaxation test for Graphite/Low Modulus Epoxy was 
not successful because of the high fragility of the 90-degree 
material. 

The Graphite/High Modulus Epoxy specimen was loaded with 
a strain of 4,476 x 10-6 producing an instantaneous stress of 
31.4 MPa (4,545 psi). The load variation with time is plotted 
in Fig. 4-5. Stress relaxation was continuing after 25 days of 
loading. 

The Graphite/Po1yimide specimen was loaded with a strain 
of 2,080 x 10- 6 producing an instantaneous stress of 10.5 MPa 
(1,520 psi), approximately 71 percent of the ultimate stress. The 
load variation with time is plotted in Fig. 4-6. The load seems 
to stabilize at 90 percent of its initial value after approximately 
35 days. 

The S-G1ass/Epoxy specimen was loaded with a strain of 
1,560 x 10- 6 producing an instantaneous stress of 39.7 MPa 
(5750 psi). The load variation with time is plotted in Fig. 4-7. 
The load (stress) seems to level off at 86 percent of its initial 
value after 25 days. 

The following Table 4-1 summarizes the results of the 
relaxation tests described above. 

Table 4-1 

TENSILE STRESS RELAXATION IN 90-DEGREE UNIDIRECTIONAL SPECIMENS 

Applied Stress, 0"22 Percent Relaxation 
Material MPa (psi) In 30 Days 

Boron/Epoxy 33.8 (4,900) 22.5 
Boron/Polyimide 6.9 (1,000) 62.0 
Graphite/High Modulus 
Epoxy 31.4 (4,545) 24.5 

Graphite/Polyimide 10.5 (1,520) 9.5 
S-Glass/Epoxy 39.7 (5) 750) 13.0 
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The Graphite/Polyimide displays th~ lowest stress 
relaxation, and the Boron/Polyimide the highest, although both 
have the same matrix. It is conjectured, however, that the apparent 
relaxation in the latter is related to microfailure rather than to 
purely viscoelastic properties of the matrix. Further testing at 
different stress levels would explain the phenomenon. Of the 
epoxy matrix composites, the S-Glass/Epoxy displayed the lowest 
relaxation. This is probably due to the much higher fiber volume 
ratio of this material (FVR = 0.72). 

The results above serve only as indications of the order 
of magnitude of residual stress relaxation that may occur in an 
angle-ply laminate. The actual conditions in the laminate are 
more complicated as each ply is subjected to an in-plane biaxial 
state of stress and interlaminar shear stress. More extensive 
testing would be required to evaluate stress relaxation under these 
more complex conditions. 

4.4 Static Properties of Laminates as a Function of Time After Curinr 

Two specimens of each material system of [02/±45~s layup 
were tested statically at various times to determine any possible 
effects of res.idual stress relaxation on elastic and strength 
properties. Stress-strain curves for 'the various specimens tested 
at various times after curing of the laminates are shown in 
Figs. 4-8 through 4-33. 

Figures 4-8 to 4-10 show stress-strain curves for Boron/ 
Epoxy specimens tested nine and twelve and one-half months after 
curing. Both the elastic mod~lus and strength values are very 
close to those obtained a short time after curing. 

Figures 4-11 through 4-15 show stress-strain curves for 
Boron/Po1yimide specimens tested four and one-half, eight and 
seventeen months after curing. No significant variation with time 
in modulus or strength is apparent. 
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Figures 4-16 and 4-17 show stress-strain curves for 
Graphite/Low Modulus Epoxy specimens tested three and six and 
one-half months after curing. An additional specimen was tested 
sixteen months after curing. The fluctuations in the modulus 
values are not significant. The strength values at times beyond 
three months are all the same 350 MPa (51 ksi) but appreciably 
lower than the initial value of 562 MPa (82 ksi). This may be 
related to the fact that the initial values for the strength 
were obtained from 2.54 em (1 in.) wide specimens, whereas all 
subsequent tests were performed with 1.27 em (0.5 in.) wide 
specimens. The heat produced in cutting the specimens tends to 
soften the matrix and cause delaminations near the edge which 
are more serious in the narrower specimens. 

Figures 4-18 through 4-21 show stress-strain curves 
for Graphite/High Modulus Epoxy specimens tested six, nine and 
one-half and nineteen months after curing. The fluctuations in 
modulus are larger than in other materials but no trend is 
apparent. The fluctuations in strength are very small with 
deviations from the mean of three percent or lower. 

Figures 4-22 through 4-26 show stress-strain curves for 
Graphite/Polyimide specimens tested four, eight and seventeen 
months after curing. No significant changes with time are 
seen in the modulus, but the strength values are somewhat lower 
than initial values. This difference again may be related to 
the fact that all long-time tests were performed with narrower 
(1.27 cm; 0.5 in.) specimens than the initially used 2.54 cm (1 in.) 
wide specimens. 

Figures 4-28 through 4-33 show stress-strain curves for 
S-Glass/Epoxy specimens tested three, six, nine, twelve and one­
half and twenty-two months after curing. No significant variations 
in either modulus or strength exist. The apparent variations in 
strength are due to the fact that two batches of material are 
represented. The individually prepared 2.54 cm (1 in.) wide 

4-5 



coupons with embedded strain gages showed consistantly high 
strength values, 807 MFa (117 ksi), 820 (119 ksi), and 789 MFa 
(114 ksi) initially, three months and six months after curing, 
respectively. The strength values at nine, twelve and one-half 
and twenty-two months obtained from specimens cut from a plate 
are in closer agreement with the initial value of 675 MFa (98 ksi) 
obtained from a similar specimen. 

The results above are summarized in Table 4-2 where the 
modulus, Poisson's ratio, strength and age of the specimens are 
given. In most cases where two or more specimens were tested at 
one time, the average values are shown. Initial values, or values 
obtained within one to three months after curing were obtained from 
Table 3-19. 

4.5 Summary and Conclusions 

Three approaches were investigated for evaluation of 
res.idual stress relaxation in angle-ply laminates: (1) Direct 
measurement of strain changes with time, (2) Stress relaxation 
determination in 90-degree unidirectional specimens, and (3) 
Elastic and strength properties of laminates as a function of time 
after curing. 

Measurement of strain variation is a very insensitive 
means. Strain variations are very small, sometimes of the order 
of experimental variability, as they represent a second order 
effect of stress relaxation. 

A better measure of the degree of residual stress relaxation 
was.obtained by means of direct relaxation tests of 90-degree 
unidirectional laminates. The amount of relaxation in thirty 
days in most cases ranged between 9.5 and 24:5 percent, except fpr 
the Boron/Polyimide where a fracture mechanism was possibly operatin! 
This amount of relaxation represents an upper bound to the ac·tual 
stress relaxation taking place in an angle-ply laminate. It can 
be concluded, therefore, that the amount of residual stress 
relaxation in an angle-ply laminate is small. 
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Table 4-2 
STATIC PROPERTIES OF [02/±45]S AT VARIOUS 

TIMES AFTER CURING 

Strength 
Modu1us6 , E~:x Poisson's SxxT Age 

Material GPA (10 PSl.) Ratio, 'Vxy MPa (ksi) (Months) 

Boron/Epoxy 115 (16.7) 0.70 725 (105) 1-3 
115 (16.7) 0.60 754 (109) .9 
116 (16.8) 0.71 725 (105) 12.5 

Boron/Po1yimidE 117 (17.0) 0.72 562 ( 82) 1 
114 (16.5) 0.76 522 ( 76) . 4.5 
112 (16.3) 0.77 519 ( 75) 8 
126 (18.2) 0.69 578 ( 84) 17 

Graphite/Low III (16.1) 0.72 562 ( 82) 1 
Modulus Epoxy 110 (15.9) 0.71 350 ( 51) 3 

105 (15.3) 0.52 350 ( 51) 6.5 
115 (16.7) 0.80 350 ( 51) 16 

Graphite/High 99 (14.3) 0.72 485 ( 70) 1-2 
Modulus Epoxy 94 (13.6) 0.74 515 ( 75) 6 

107 (15.6) 0.69 510 ( 74) 9.5 
112 (16.2) 0.72 497 ( 72) 19 

Graphite/ 114 (16.5) 0.71 345 ( 50) 1 
Po1yimide 121 (17.6) 0.67 314 ( 46) 4 

107 (15.6) 0.72 290 ( 42) 8 
115 (16.7) 0.65 317 ( 46) 17 

S-G1ass/Epoxy 37 ( 5.3) 0.52 742 (108) 1 
40 ( 5.8) 0.50 820 (119) 3 
44 ( 6.4) 0.43 789 (114) 6 
37 ( 5.3) 0.55 618 ( 90) 9 
36 ( 5.2) 0.53 649 ( 94) . 12.5 
37 ( 5.3) 0.52 696 (101) 22 
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Indirect measurements were made of the effects of 

stress relaxation on elastic modulus and strength of angle-ply 
laminates. No significant variations in modulus ·or strength were 
observed in specimens tested over periods from one to twenty-two 
months after curing. 
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5.0 TASK IV CYCLIC LOADING AND RESIDUAL STRENGTH 

5.1 Introduction 

The objectives of this task are to investigate the 
behavior of angle-ply laminates during load cycling, thermal 
cycling and thermal cycling under load and to determine the effects 
of these cycling programs on residual properties. The laminates 
were Boron/Epoxy, Boron/Polyimide, Graphite/Low Modulus Epoxy, 
Graphite/High Modulus Epoxy, Graphite/Polyimide and S-glass/Epoxy 

of [02/±45]s layup. 

These laminates are subjected to significant residual 
stresses built up during fabrication as shown in Section 3. Mechanical 
or thermal cycling may produce relaxation of some of these stresses 
and thereby influence the residual strength. Such cycling may also 
cause degradation in the form of microcracks and thereby affect the 

residual stiffness and strength of the laminate. 

Strains during mechanical and thermal cycling were monitored 
to determine any possible changes in stiffness or thermal properties 
caused by internal degradation. The final effects of cycling were 
determined by comparing the residual modulus, Poisson's ratio and 

strength with initial values of these properties for uncycled specimens. 

5.2 Specimen Fabrication and Strain Monitoring 

Two sets of [02/±45]s specimens were prepared. Seven 
specimens of each material, 1.27 cm (0.5 in.) wide and 22.9 cm 
(9 in.) long, were prepared for testing with surface instrumentation. 
Seven specimens of each material, 2.54 cm (1 in.) wide and 22.9 cm 
(9 in.) long, were prepared with embedded instrt®entation. For 
each material the surface instrumentation specimens were cut from 
a single [02/±45]s plate and the eniliedded instrumentation specimens 
were layed up individually. In both cases the fabrication procedures 

were those described in Section 3.0. The embedded instrumentation 
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specimens were selectively monitored for strain variation with 
temperature during curing, especially where there were questions 
on the residual strains measured in Task II. Results obtained 
were averaged in and incorporated with results obtained in Task II, 
reported in Section 3.4. 

For each material, each of the two sets of specimens 
was divided into three groups: Two specimens to be used for thermal 
cycling tests, three specimens for tensile load cycling tests, and 
two for tensile load with thermal cycling tests. 

5.3 Thermal Cycling 

The thermal cycling tests consisted of subjecting the 
specimens of that test group to 100 thermal cycles at a rate of 
about 30 minutes per cycle in two temperature ranges; room temperature 
to approximately 80 percent of cure temperature and room temperature 
to 200 degK (-100°F). Specimen strains in the instrumented specimens 
were monitored during selected cycles and the specimens were examined 
periodically for degradation during cycling. 

5.3.1 Between 

The elevated-temperature thermal cycling of all epoxy 
matrix specimens was performed by cycling between room temperature 
and 411 degK (280°F). The specimens were subject to 100 cycles 
of 35-minute duration. Each cycle consisted of temperature increase 
and decrease without a dwell period. It was done in a Blue M 
"Power-O-Matic-60" oven equipped with a temperature cycling control 
apparatus, air circulation and controlled air exhaust system for 
cool down control. 

Two [02/±45]s specimens, one with embedded instrumentation, 
from each epoxy matrix system were cycled. The specimens were 
examined visually at intervals for degradation due to cycling. None 
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was noted. Specimen strains as a function of temperature were 
monitored during the beginning, middle and end of cycling. Figure 
5-1 shows measured strains in Graphite/High Modulus Epoxy in the 
beginning and end of thermal cycling. No significant differences 
exist. The situation was similar for the other epoxy-matrix 
laminates. 

5.3.2 Thermal 
Between 

The elevated-temperature thermal cycling of the polyimide 

matrix specimens was performed by cycling them between room 
temperature and 533 degK (500°F). The large temperature span 
necessary for this cycling required an excessive cycle length with 
the existing oven system. Therefore, to accomplish the required 

30-minute cycle duration, the oven and the method of cycling had 
to be modified. 

The cycling modification consisted of keeping the oven 
at the peak temperature while leaving the specimens in the oven 
for half the cycle and removing them from the oven for the other 

half cycle. Thus, the specimens were exposed for 15 minutes to 
peak temperature and for 15 minutes to room temperature in each 
cycle. To accomplish this, the existing oven door had to be replaced 

with an apparatus to move the specimens in and out of the o,ven 
automatically. To maintain the temperature a new set of oven closures 
were provided to keep the oven closed with the specimens in or out 
of it. This system will be described in greater detail in Section 
5.5 dealing with thermal cycling under tensile load. 

Two [02/±45]s specimens of each of the Boron/Polyimide 
and Graphite Polyimide materials were subjected to 100 thermal cycles 

of 30-minute duration with the modified cycling method described 

above. The specimens were examined visually at intervals for 

degradation due to cycling. None was noted. One specimen of each 

material was instrumented with embedded strain gages which were used 

5-3 



to monitor strains as a function of temperature in the third, 
thirtieth and ninety-ninth cycles. Figure 5-2 shows measured 
apparent strains in the Boron/Polyimide specimen in the beginning 
and at the end of cycling. No significant differences exist in 
the axial and transverse strains, but the 45-degree strain is lower 
at the end of cycling. This obviously is in error since the 
45-degree strain must always equal the mean of the other two strains. 
The situation was similar in the Graphite/Polyimide specimen where 
no differences were observed in the measured strains between the 
beginning and end of cycling. 

5.3.3 Thermal Cycling Between Room Temperature 
and 200 degK (-100°F) 

Two [02/±45]s specimens, including one with embedded 
instrumentation, of each of the six material systems studied were 
subjected to 100 thermal cycles of 30-minute duration between room 
temperature and 200 degK (-100°F). This cold cycling was done in 
a large environmental chamber (Thermovac) of over 5.7m3 (200 ft 3) 
capacity capable of controlling temperature from ambient to 200 degK 

(-100°F). 

The cycling method was the same as that used for the 
elevated temperature cycling of the polyimide matrix specimens. The 
chamber was kept at 200 degK (-100°F) while the specimens were 
moved in and out of it at 15 minute intervals. Thus, the specimens 
were exposed to a 200 degK (-100°F) environment for 15 minutes and 
room temperature for another 15 minutes during each cycle. 

To prevent undesirable effects due to moisture condensation 
during this cycling special procedures were instituted. The exposed 
gage leads of all the instrumented specimens were coated with a 
silicon rubber coating (3140 RTV, Micro-Measurements). After 
wiring the strain gages, all instrumented and uninstrumented specimens 
were completely coated with another silicon rubber coating (M-coat C, 
Micro-Measurements). 
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During cycling the specimens were examined visually 
periodically for degradation. None was observed. Strains as a 
function of temperature were monitored at the beginning and the 
end of this cycling program. Apparent strains at the beginning 
and end of the thermal cycling for unloaded Graphite/High Modulus 

Epoxy and S-G1ass/Epoxy specimens are shown in Figs. 5-3 and 5-4. 
It can be seen that thermal strains do not change as a result 
of the cycling program. 

5.4 Tensile Load Cycling 

5.4.1 General Considerations 

The tensile load cycling tests required two specimens for 
each material system, for each of three loading ranges, to be subjected 
to a cyclic tensile loading of 107 cycles or failure, whichever 

occurred first. Of the two specimens for each load range, one had 
embedded instrumentation. The three loading ranges, based on the 
static strength results reported in Table 3-19, were 0 to 40 percent, 

o to 70 percent, and 0 to 90 percent of the corresponding static 
strength. 

Two cycling frequencies were considered. Preliminary tests 
were conducted to establish whether there is a significant difference 

in results of cyclic loading at 30 and 100 cycles per second. Specimens 

1.27 em x 1.27 em (0.5 in. x 0.5 in.) of [02 / ±45]s layup were prepared 
from the stiffest and least stiff of the six materials, i.e., Boronl 
Epoxy and S-Glass/Epoxy. Two specimens of each material were tested 

at each of the cyclic rates above and at each of two load ranges. The 

load ranges were 70 and 90 percent qf the static strength. No 
significant differences in cycles to failure were observed. The 30 cps 

rate was then chosen as more convenient, as it allows testing of longer 

and easier to instrument and monitor specimens. 

5-5 



5.4.2 Experimental Procedure 

Two types of [02/±45]s specimens were used in these 
tests: Three specimens 1. 27 cm (0.5 in.) wide and 22.9 cm 
(9 in.) long with surface strain gages and three specimens 2.54 cm 
(1 in.) wide and 22.9 cm (9 in.) long with embedded strain gages. 
Thermocouples were bonded to the specimen surfaces for temperature 
monitoring during cycltc loading. Two specimens of each material, 
including one with embedded gages, were cycled between 0 and 40 
percent of the static ultimate, two specimens between 0 and 70 percent 
of ultimate and two between 0 and 90 percent of ultimate. 

The tensile load cycling was done on a Sontag Universal 
Fatigue Test Machine. A constant load amplitude was maintained with 
an R factor of 0.1. Specimens were cycled to failure or to run out 
at approximately 107 cycles. Investigation of progressive degradation 
at frequent intervals was done by (1) monitoring all strain gages, 
(2) recording temperature rise on specimen and (3) inspecting 
surfaces and edges of the specimen for visible signs of degradation. 

An eight-channel recording oscillograph (Bell and Howell 
Type 5-135) with associated signal conditioning instrumentation was 
utilized for monitoring the specimen gages and thermocouple during 
cyclic loading. The recorded data and the applied load were used to 
determine the longitudinal modulus, major Poisson's ratio and 
temperature as a function of number of load cycles. 

5.4.3 Results 

A summary of load cycles to failure for the surface­

instrumented specimens is shown in Table 5-1. The variation in 
longitudinal modulus, major Poisson's ratio and temperature with , 
number of loading cycles for these specimens ,is shown in Fig:ures 5-5. 

through 5-18. 
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Table 5-1 
SUMMARY OF CYCLIC TENSILE TESTS IN [02/±451s SPECIMENS 

WITH SURFACE INSTRUMENTATION 

Material 

Boron/Epoxy 

BQron/Polyimide 

Graphite/Low 
Modulus· Epoxy 

Graphite/High 
Modulus Epoxy 

Nominal 
Width 

cm (in.) 

1.27(0.5) 
1.27(0.5) 
1.27(0.5) 

1.27(0.5) 
1.27(0.5) 
1.27(0.5) 

1.27(0.5) 
1.27(0.5) 
1.27(0.5) 

1.27(0.5) 
1.27(0.5) 
1.27(0.5) 

Graphite/Polyimide 1.27(0.5) 
1.27(0.5) 
1.27(0.5) 

S-Glass/Epoxy 1.27(0.5) 
1.27(0.5) 
1.27(0.5) 

Maximum 
Stress Level Cycles to 

5-7 

(% 0u1t) Failure 

90 30 x 103 

70 460 x 103 

40 107 Runout 

90 103 

70 
40 

90 
70 
40 

90 
80 
70 

90 
80 
70 

70 
40 
25 

5,971 x 103 

1.025 x 107 Runout 

103 

847 x 103 

1.015 x 107 Runout 

Immediate Tab Failure 
512 x 103 

107 Runout 

440 x 103 

1. 553 x 106 

1.047 x 107 Runout 

103 

14 x 103 

419 x 103 



Of the three Boron/Epoxy specimens tested, the one 
cycled to 90 percent of ultimate strength failed at 30,000 cycles, 
the one cycled to 70 percent of ultimate failed at 460,000 cycles 

and the one cycled at 40 percent of ultimate survived 10 million 
cycles. The variation of modulus, Poisson's ratio, and temperature 
with number of cycles for these three specimens is shown in Figures 

5-5, 5-6, 5-7. Some interesting characteristics noticed are the 
early but moderate rise in temperature and the seemingly stepwise 
drops in modulus. In the case of the lowest load (Fig. 5-7) the 

rather abrupt increase in specimen compliance was preceded by a 
gradual rise in temperature. Host of the changes seem to take place 
in the range between 104 and 105 cycles with plateaus on either side 
of this range. 

Results for the Boron/Polyimide material are comparable 

to those of Boron/Epoxy, with 1000 cycles to failure for cycling 
to 90 percent of ultimate strength, 5,971,000 cycles to failure 
for cycling to 70 percent of ultimate and runout at 10 million cycles 
for cycling to 40 percent of ultimate. The variation of longitudinal 

modulus, Poisson's ratio and temperature with number of loading cycles 
is shown in Figs. 5-8 and 5-9. In the case of loading at 40 percent 
of ultimate a gradual increase in temp~rature between 104 and 

6 I 
3 x 10 cycles corresponds to a rather abrupt increase in compliance 
between 105 and 2 x 105 cycles. 

Results for Graphite/Low Modulus Epoxy are plotted in 

Figs. 5-10, 5-11 and 5-12 for the three specimens tested at 90, 70 
and 40 percent of ultimate strength. The first two failed at 1000 
and 847,000 cycles, respectively. The third specimen was cycled to 

a 1.015 x 107 cycle runout. All but one longitudinal gage failed 
after 2 x 105 cycles. Indications are that the modulus remained 
constant to 10 million cycles, although there was a gradual rise in 

temperature to 83°F. 
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The Graphite/High Modulus Epoxy specimens were cycled to 
90, 80 and 70 percent of the ultimate static stress, respectively. 
The 80 percent level was selected after a run out was observed at 70 

! 

percent. The specimen cycled to 90 percent of ultimate strength failed 
immediately at the tab and no strain or temperature data were obtained. 
Results for the other two specimens are shown in Figs. 5-13 and 5-14. 
For the specimen tested to 80 percent of ultimate an abrupt change 
in modulus and Poisson's ratio occurred at 30,000 cycles in the 
region of gradual temperature rise. The specimen failed at 512,000 
cycles. For the specimen cycled to 70 percent of ultimate all gages 
failed after 204,000 cycles but the specimen did not fail at run out of 
10 million cycles. Small changes in modulus and Poisson's ratio are 
observed in the first 5000 cycles. A small but gradual increase in 
temperature is also observed, reaching a plateau at 100,000 cycles. 

The Graphite/Polyimide specimens were subjected to cyclic 
loading corresponding to 90, 80 and 70 percent of the ultimate static 
strength, respectively. As before, the 80 percent level was selected 
after a runout was observed at 70 percent. The 90 percent of ultimate 
specimen failed at 440,000 cycles. No variation in modulus, but a 
gradual rise in temperature from 297 to 298.6 degK (75 to 78°F) was 
measured between a and 50,000 cycles (Fig. 5-15). For the specimen 
cycled to 80 percent of ultimate strength (Fig. 5-16) the modulus and 
Poisson's ratio remained constant whereas the temperature showed a 
gradual rise to a plateau of 298.4 degK (77.7°F) starting at 60,000 
cycles. The specimen cycled to 70 percent of ultimate strength 
survived a runout of 1.047 x 107 cycles. The modulus and Poisson's ratio 
did not change throughout this cyclic loading (Fig. 5-17). A 
temperature record was not obtained due to thermocouple failure. 

The S-Glass/Epoxy specimens were subjected to maximum cyclic 
stresses corresponding to 70, 40 and 25 percent of ultimate static 
strength. The reason for the 25 perce~t level was that both the 70 

and 40 percent levels produced failure after a small number of cycles, 
lamely 1000 and 14,000 cycles respectively. The 25 percent of ultimate 
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specimen failed at 419,000 cycles. An abrupt drop in modulus 
occurred between 20,000 and 30,000 cycles (Fig. 5-18). No 
temperature data were obtained due to thermocouple failure. 

A summary of load cycles to failure for the specimens 
with embedded instrumentation is given in Table 5-2. The 
variations in longitudinal modulus, major Poisson's ratio and 
temperature with number of loading cycles are shown in Figures 
5-19 through 5-32. 

The Boron/Epoxy specimen cycled to 90 percent of ultimate 
strength failed at 100 cycles. The specimen cycled to 70 percent 
of ultimate failed at 430,000 cycles. This specimen exhibits an 
abrupt drop in modulus between 10,000 and 20,000 cycles (Fig. 5-19). 
Poisson's ratio remains fairly constant. The temperature rises to 
a plateau of approximately 303 degK (87°F) and then it increases 
again just before failure. A runout of 107 cycles was obtained at 
a load of 40 percent of ultimate, with small variations in modulus, 
Poisson's ratio and temperature (Fig. 5-20). 

The Boron/Polyimide speci~ens were cycled to 90, 80 and 70 
percent of ultimate strength. The :80 percent level was chosen in 
place of 40 percent, because a runout was obtained at 70 percent of 
ultimate. The 90 percent of ultimate test produced immediate failure 
At 80 percent of ultimate the specimen failed at 1000 cycles. It 
exhibited a constant modulus, Poisson's ratio and temperature behavio 
up to about 300 cycles. Thereafter, it showed a fast dropoff in 
modulus with an accompanying increase in Poisson's ratio and small 
temperature increase up to failure rt 1,000 cycles (Fig. 5-21). The 
specimen tested to 70 percent of ultimate strength survived a run out 
of 1.290 x 107 cycles. It showed a, constant modulus, and an abrupt 
but slight change (3 percent) in Poisson's ratio at 50,000 cycles. 
The temperature remained constant up to 106 cycles and dropped by 

2.8 degK (5°F) thereafter to runout (Fig. 5-22). 



I 

i 

Table 5-2 
SUMMARY OF CYCLIC TENSILE TESTS IN [02/±45J s SPECIMENS 

WITH EMBEDDED INSTRUMENTATION 

Nominal Maximum 
Width Stress Level Cycles to 

Material cm (in. ) (% (Ju1t) Failure 

Boron/Epoxy 2.54 (1.0) 90 100 
2.54 (1.0) 70 430 x 103 

2.54 (1. 0) 40 107 Runout 

Boron/Po1yimide 2.54 (1.0) 90 Immediate Failure 
2.54 (1. 0) 80 1000 
2.54 (1.0) 70 1.290 x 107 Runout 

Graphite/Low 2.54 (1. 0) 90 Immediate Failure 
Modulus Epoxy 2.54 (1.0) 70 Immediate Failure 

2.54 (1.0) 40 107 Runout 

Graphite/High 2.54 (1. 0) 90 18 x 103 
Modulus Epoxy 2.54 (1.0) 90 13 x 103 

2.54 (1.0) 80 28 x 103 

2.54 (1.0) 70 1. 016 x 107 Runout 

Graphite/ 2.54 (1.0) 90 1. 023 x 107 Runout 
Po1yimide 2.54 (1. 0) 80 1. 005 x 107 Runout 

2.54 (1.0) 70 107 Runout 

S-G1ass/Epoxy 2.54 (1.0) 70 Tab Failure 
2.54 (1.0) 40 77 x 103 

2.54 (1.0) 40 44 x 103 

2.54 (1.0) 25 1. 436 x 106 
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The Graphite/Low Modulus Epoxy specimens were cycled 
to 90, 70 and 40 percent of ultimate strength. The specimens 
tested at 90 and 70 percent of ultimate failed after a few cycles. 
The specimen tested at 40 percent of ultimate survived 107 cycles. 
However, the gages failed early producing no strain record. The 
temperature was recorded and 
106 cycles, showed a gradual 
gradual decrease thereafter. 
drop 1.7 degK (3°F) from the 

was essentially constant up to 1.5 x 
increase up to 3 x 106 cycles and a 
The rise was 2.2 degK (4°F) and the 

top temperature of 295 degK (71°F). 

The Graphite/High Modulus Epoxy specimens were cycled to 
90, BO and 70 percent of ultimate strength. Following previous 
procedures, the BO percent level was chosen after a runout of 10 
million cycles was obtained for the 70 percent level. The Graphite/ 
High Modulus Epoxy exhibited small variations in modulus, Poisson's 
ratio and temperature at all stress levels applied, (Figs. 5-23 
through 5-26). The specimens failed at lB,OOO to 2B,000 cycles under 
stresses between 90 and BO percent of ultimate. 

The Graphite/Polyimide specimens were cycled to 90, BO 
and 70 percent of ultimate. They all survived the runout of 10 
million cycles. They all exhibited a very nearly constant modulus 
through runout. The temperature remained constant up to about 
500,000 cycles. Thereafter, all three specimens showed a gradual 
increase in temperature in the range of 2 x 106 to 3 x 106 cycles 
and then a gradual temperature decrease to runout. The temperature 
variations were within ±2.B degK (±5°F), (Figs. 5-27, 5-2B, 5-29). 

The S-Glass/Epoxy specimens were tested at 70, 40 and 25 
percent of ultimate strength. At 70 percent the specimen failed at 
the tab very early. Two specimens tested at 40 percent of ultimate 
failed at 44,000 and 77,000 cycles. The variation in modulus and 
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Poisson's ratio was small, however, the temperature rise was drastic, 
(Figs. 5-30 and 5-31). In one case the temperature rose to a 
plateau of approximately 329 degK (133°F) at 20,000 cycles, it 
dipped to 318 degK (113°F) at 50,000 cycles and then rose sharply 
to 358 degK (185°F) just prior to failure at 77,000 cycles (Fig. 5-30). 
The dip, also noticeable in Fig. 5-31, is attributed to some heat 
dissipation associated with the "brooming" mode of failure. The 
specimen tested at 25 percent of ultimate failed at 1.436 x 106 

cycles with relatively small variations in modulus and Poisson's 
ratio and a not so drastic temperature rise (Fig. 5-32). 

5.5 Tensile Load with Thermal Cycling 

5.5.1 Experimental Procedure 

Tensile load with thermal cycling testing consisted of 
subjecting the specimens of this test group to a static tensile load 
and simultaneously to thermal cycling in two temperature ranges; 
room temperature to 80 percent of cure temperature and room temperature 
to 200 degK (-100°F). The static tensile load selected for each 
material was approximately 70 percent of the average static strength 
at room temperature. The loaded specimens were subjected to 100 
thermal cycles of 30 minute duration. Strains as a function of 
temperature were monitored at selected cycles. Specimens were 
examined periodically to detect visually possible degradation during 
cycling. 

The application of tensile load during thermal cycling , 
required the design and fabrication of special loading fixtures 
unique to this task. The loads required for the individual specimens 
ranged from 4450N to l7800N (1000 lb to 4000 lb). These were too 
large for direct dead weight loading and loading by means of a 
lever arm system was found to be too cumbersome and impractical. 

Iydraulic loading is feasible but is not very versatile and requires 
expensive fixturing. A suitable solution was found by means of a 
~pring loading fixture. 
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Figure 5-33 shows the construction and dimensions of 
such a typical fixture. Each fixture is used to load a single 
specimen and consists basically of a load support frame, screw­
clamped serrated gripping jaws, loading coil spring, spring load 
plate and a threaded loading rod with a clevis link. Mounting and 
loading of the specimen required a careful procedure. To insure 
the alignment of the specimen axis with the central pivot holes of 
the jaws, the specimen was clamped in the jaws in an aligning jig 
outside the loading fixture. The specimen with the clamped jaws was 
then mounted in the load support frame, the clevis and loading rod 
attached and the coil spring and spring load plate slipped over the 
rod. Next, the spring was compressed in a testing machine to a pre­
determined calibrated length and the load nut on the rod tightened 
against the spring load plate. Release of the test machine load 
transferred the spring load to the desired tensile load in the 
specimen. The loading spring for each specimen was selected with a 
sufficiently large deflection, to insure that the thermal expansion 
during cycling did not significantly change the specimen load. To 
prevent twisting of the specimen during spring loading, the clamping 
jaws were arranged to fit closely between the vertical bars of the 
loading fixture. Eight fixtures of this type were built to perform 
the required tests. 

To achieve a 3D-minute thermal cycle duration in the 
presence of the large fixture masses, the modified cycling method, 
briefly described in Section 5.3.2, was adopted. As indicated in 
that section, in the modified cycling method the chamber temperature 
is kept constant while the specimens are moved in and out of the 
chamber. The specimens are thereby exposed for half the cycle to 
chamber temperature and half the cycle to room temperature. This 
approach required the design and fabrication of a cycling apparatus 
and modification of the existing chamber closures. 
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Figures 5-34, 5-35, and 5-36 show this cycling apparatus, 
the modified oven closures for the Blue M "Power-O-Matic-60" oven, 
the loading fixtures and the specimens. Figure 5-34 also shows 
the data acquisition system used to monitor the strain gages and 
thermocouples. The cycling apparatus consists of a fixed support 
frame, a cycling lever, a reciprocating frame, a cycle counter and 
an actuation system operated by a compressed air actuator controlled 
by a solenoid valve. The valve is timed by an electric timer set 
to the desired cycling rate. The reciprocating frame carries the 
specimens in their loading fixtures in front and back of which there 
is a separate oven closure. The oven is therefore kept closed both 
when the specimens are in and out of the oven. 

Cycling between room temperature and 200 degK (-100°F), 
was done in the large environmental chamber (Thermovac) mentioned 
earlier. A similar cycling apparatus and chamber closure system was 
built for this purpose and is shown in Figures 5-37 and 5-38. Cold 
cycling produces moisture condensation on the specimens with 
alternating freezing and thawing. To prevent specimen and 
instrumentation damage the specimens and gage and thermocouple leads 
exiting from the specimens were completely coated with silicon rubber 
(RTV) coatings as described earlier (Section 5.3.3), 

5.5.2 of Epoxy 
erature 

Two [02/±45]s specimens, including one with embedded instru­
entation, of each of Boron/Epoxy, Graphite/Low Modulus Epoxy, 
raphite/H.igh Modulus Epoxy and S-G1ass/Epoxy were subjected to a 
tatic load equal to 70 percent of the ultimate and simultaneously 
o 100 thermal cycles of 30 minute duration between room temperature 
nd 411 degK (280°F). The applied tensile loads were 497 MPA (72 ksi) 
or the Boron/Epoxy, 310 MPa (45 ksi) for the Graphite/Low Modulus 
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Epoxy, 331 MFa (48 ksi) for the Graphite/High Modulus Epoxy and 
524 MPa (76 ksi) for the S-G1ass/Epoxy specimens. Of the eight 
specimens, the Graphite/Low Modulus Epoxy and the S-G1ass/Epoxy 
specimens failed during the first thermal cycle. This is not 
surprising since the strength of S-G1ass/Epoxy decreases rapidly 
with increasing temperature and the low modulus epoxy has a heat 
distortion temperature of 316 degK (109°F). The surviving Boron/ 
Epoxy and Graphite/High Modulus Epoxy specimens were visually 
inspected during intervals of the cycling but showed no apparent 
degradation. Their embedded gages were monitored as a function of 
temperature during the twelfth, sixtieth and hundredth cycles. No 
significant differences were observed in the recorded strains 
throughout the thermal cycling. Apparent strains for the Graphite/ 
High Modulus Epoxy are shown in Figure 5-39 for the sixtieth and 
hundredth thermal cycles. 

5.5.3 Tensile Load with Thermal Cycling of Po1yimide 
Matrix S Between Room Tern erature and 
533 de K 

Two [02/±45]s specimens, including one with embedded 
instrumentation, of each of Boron/Po1yimide and Graphite/Polyimide 
were subjected to a static load equal to 70 percent of the ultimate 
load and simultaneously to 100 thermal cycles of 30 minute duration 
between room temperature and 533 degK (500°F). The tensile load 
applied to the Boron/Po1yimide specimens was 414 MPa (60 ksi) and 
that applied to the Graphite/Po1yimide specimens was 242MPa (35 ksi). 
Of the specimens cycled, the 1.27 cm (0.5 in.) wide Graphite/Po1yimid 

t '~ .!., ,,'/' • 

specimen failed under load during the first thermal cycle. The 2.54 , 
(1 in.) wide specimen survived the cycling without apparent degradati 
or deterioration of residual properties when subsequently tested for 
residual strength. In view of this, the failure of the 1. 27 cm 
(0.5 in.) wide specimen does not represent typical behavior of Graphi 

Po1yimide under t'ensi1e load with thermal cycling. The Boron/Po1yimi. 
specimens showed no apparent degradation due to cycling. 
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Specimen strains of the instrumented specimens were 
monitored as a function of temperature during the third, thirtieth 
and ninety-ninth cycles. Apparent strains in the Graphite/Polyimide 
during these cycles are shown in Figure 5-40. It is seen that these 
strains are essentially the same throughout the 100 thermal cycles 
and nearly the same as the strains recorded in the similarly cycled 
unloaded specimen. 

5.5.4 Tensile Load with Thermal Cyclin~ Between Room 
Temperature and 200 degK (-100°F 

Two [02/±45]s specimens, including one with embedded 
instrumentation, of each of the six material systems studied were 
loaded in tension to 70 percent of the ultimate load and thermally 
cycled for 100 cycles of 30 minute duration, between room temperature 
and 200 degK (-100°F). The applied loads were 497 MPa (72 ksi) 
for the Boron/Epoxy, 310 MPa (45 ksi) for the Graphite/Low Modulus 
Epoxy, 331 MPa (48 ksi) for the Graphite/High Modulus Epoxy, 524 MPa 
(76 ksi) for the S-Glass/Epoxy, 414 MPa (60 ksi) for the Boronl 
Polyimide and 242 MPa (35 ksi) for the Graphite/Polyimide specimens. 
Inspection before cycling revealed that the Graphite/Low Modulus 
:poxy specimen with embedded instrumentation was defective. It was 
'eplaced by a 1.27 cm (0.5 in.) wide specimen cut from a [02/±45]s 
late. 

Periodic inspection during cycling revealed a delamination 
rack in the 1.27 cm (0.5 in.) wide Glass/Epoxy Specimen, (Fig.. 5-41). 
'he specimen, however, held the load and survived the thermal cycling. 
ubsequent testing revealed a reduction in strength but no change 
f longitudinal modulus and an insignificant change in Poisson's ratio 
see Section 5.6.3). 

When the specimens were unloaded at the end of the thermal 

ycling it was noted that the two Graphite/Low Modulus Epoxy specimens 
ere bowing (Fig. 5-42). Closer examination revealed that the two 
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a-degree top plies on one side of each specimen were delaminated 

from the remaining plies (Fig. 5-43). Subsequent testing of these 
specimens (S~ction 5.6.3) showed a reduction in strength, modulus 
and Poisson's ratio. It should be noted that the Graphite/Low 
Modulus Epoxy and the S-Glass/Epoxy materials did not survive the 
tensile load with thermal cycling to 411 degK (280°F). 

Specimen strains as a function of temperature of the 
instrumented specimens were monitored at the beginning and end of 
the thermal cycling. The apparent strains in the Graphite/High 
Modulus Epoxy specimen are shown in Figure 5-44. There is no 
evidence of change due to cycling. Comparing this with the results 
obtained for the similarly cold-cycled specimen without load, (Fig. 
5-3), it can be concluded that the thermal strains for this material 
do not change after 100 cycles between room temperature and 200 degK 
(-100°F). 

5.6 Residual Strength 

All specimens which survived the thermal cycling, tensile 
load cycling and tensile load with thermal cycling tests were tested 
statically to failure in tension. Those specimens which were unin­
strumented were provided with surface strain gages so that stress-str 
data could be recorded for all specimens during the tensile tests. 
The data were used to determine the residual longitudinal strength 
S T' the residual longitudinal modulus E and the residual major xx xx 
Poisson's ratio v The residual property results are presented in xy 
Tables 5-3 to 5-7, and the stress-strain curves are given in Figures 
5-45 through 5- 98. Presented in the tables for comparison are value 
of initial static room temperature properties for similar uncycled 
specimens. These are averages obtained from Table 3-19. All results 
presented here are based on nominal specimen thicknesses. 

5-18 



l.TI 
I 
t-' 
.\0 

Table 5-3 
RESIDUAL PROPERTIES OF [02/±45]s SPECIMENS AFTER 100 THERMAL CYCLES BETWEEN ROOM TEMPERATURE AND 
411 degK (280°F) FOR THE EPOXY MATRIX AND 533 degK (500°F) FOR THE POLYIMIDE MATRIX SPECIMENS. 

COMPARISON WITH INITIAL PROPERTIES 

Initial Properties Residual Properties 

Strength Modulus Poisson's Strength Modulus Poisson's 
Specimen S E Ratio S E Ratio xx xx xx xx 
Material MPa (ksi) GPa (ksi) V

XY MFa (ksi) GPa (ksi) V
XY 

Boron/Epoxy 725 (105) 115 (16.7) 0.70 773 (112) 116 (16.8) 0.72 

Graphite/Low 
Modulus Epoxy -566 ( 82) 111 (16.1) 0.72 614 ( 89) 117 (16.9) 0.67 

Graphite/High 
Modulus Epoxy 483 ( 70) 99 (14.3) 0.72 518 ( 75) 106 (15.4) 0.77 

S-G1ass/Epoxy 745 (108) 37 ( 5.3) 0.52 773 (112) 37 ( 5.4) 0.50 

Boron/Po1yimide 566 ( 82) 117 (17.0) 0.72 518 ( 75) 123 (17.8) 0.74 

Graphite/ 
114 (16.5) 384 ( 56) 116 (16.8) 0.81 Po1yimide 345 ( 50) 0.71 

-- -~- --
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Table 5-4 
RESIDUAL PROPERTIES OF [02/±45J s SPECIMENS AFTER 100 THERMAL CYCLES BETWEEN ROOM TEMPERATURE 
AND 200 degK (-100°F). COMPARISON WITH INITIAL PROPERTIES. 

Initial Properties Residual Properties 
Strength Modulus Poisson's Strength Modulus Poisson's S E Ratio S E Ratio Specimen xx xx xx xx 

Material MPa (ksi) GPa (ksi) "xv MPa (ksi) GPa (ksi) "Xy 

Boron/Epoxy 725 (105) 115 (16.7) O. 70 759 (110) III (16.1) o. 71 

Graphite/Low 
Modulus Epoxy 566 ( 82) III (16.1) 0.72 366 ( 53) 82 (11.9) 0.57 

Graphite/High 
Modulus Epoxy 483 ( 70) 99 (14.3) 0.72 511 ( 74) 104 (15.1) 0.73 

S-Glass/Epoxy 745 (108) 37 ( 5.3) 0.52 731 (106) 36 ( 5.2) 0.52 

Boron/Polyimide 566 ( 82) 117 (17.0) 0.72 511 ( 74) 117 (16.9) 0.79 

Graphite/ 
114 (16.5) 373 ( 54) 115 (16.7) 0.82 Polyimide 345 ( 50) 0.71 

- - -------



l.n 
I 
~ 
...... 

--

Specimen 
Material 

Boron/Epoxy 

Boron/ 
Polyimide 

Graphite/Low 
Modulus Epoxy 

Gr aphi te /Hi gh 
ModulUS Epoxy 

Graphite/ 
Polyimide 

Table 5-5 
RESIDUAL STRENGTH OF CYCLIC TENSILE SPECIMENS [02/±45]s 

Initial Properties 

Maximum Specimen Strength Modulus Poisson's Cyclic Nominal Strength 
S E Ratio Stress Width Sxx xx xx 

MPa (ksi) GPa (ksi) vxv (% <Yult) cm (in.) MPa (ksi) 

725 (105) 115 (16.7) 0.70 40 1.27 (0.5) 752 (109) 
40 2.54 (1.0) 710 (103) 

566 ( 82) 117 (17.0) 0.72 40 1.27 (0.5) 587 ( 85) 
70 2.54 (1. 0) 470 ( 68) 

566 ( 82) 111 (16.1) 0.72 40 1.27 (0.5) 570 ( 83) 
40 2.54 (1. 0) 352 ( 51) 

483 ( 70) 99 (14.3) 0.72 70 1.27 (0.5) 497 ( 72) 
70 2.54 (1.0) 483 ( 70) 

345 ( 50) 114 (16.5) 0.71 70 1.27 (0.5) 438 ( 63) 
70 2.54 (1. 0) 338 ( 49) 
80 2.54 (1.0) 387 ( 56) 
90 2.54 (1. 0) 328 ( 48) 

- -- ._- _L..-

Residual Properties 

Modulus Poisson's 
E xx Ratio 

GPa (ksi) VXy 

120 (17.4) 0.78 
119 (17.2) 0.74 

113 (16.3) 0.82 
102 (14.8) 0.70 

114 (16.5) 0.84 
- -

100 (14.5) 0.68 
107 (15.5) 0.75 

93 (l3.5) 0.71 
119 (17.2) 0.82 
117 (17.0) 0.80 
116 (16.8) 0.54 
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Table 5-6 
RESIDUAL PROPERTIES OF [02/±45]s SPECIMENS AFTER 100 THERMAL CYCLES BETWEEN ROOM TEMPERATURE 
AND 411 degK (280°F) FOR THE EPOXY MATRIX AND 533 degK (500°F) FOR THE POLYIMIDE MATRIX 
SPECIMENS UNDER TENSILE LOAD. COMPARISON WITH INITIAL PROPERTIES. 

Initial Properties Residual Properties 

Strength Modulus Poisson's Tensile Strength Modulus Poisson's 
S Exx Ratio Sxx Exx Ratio Specimen xx Preload 

Material MPa (ksi) GPA (ksi) vxv MPa (ksi MPa (ksi) GPa (ksi) vxy 

Boron/Epoxy 725 (105) 115 (16. 7) 0.70 497 ( 72' 745 (108) 116 (16.8) 0.73 

Graphite/High 
Modulus .Epoxy 483 ( 70) 99 (14.3) 0.72 331 ( 48 497 ( 72) 110 (15.9) 0.65 

Boron/Polyimide 566 ( 82) 117 (17.0) 0.72 414 ( 60 570 ( 83) 119 (17.2) 0.80 

Graphite/ 
Po1yimide 345 ( 50) 114 (16.5) 0.71 242 ( 35 359 ( 52) 119 (17.2) o. 79 

---- ---
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Table 5-7 
RESIDUAL PROPERTIES OF [02/±45J s SPECIMENS AFTER 100 THERMAL CYCLES BETWEEN ROOM TEMPERATURE 
AND 200 degK (-100°F) UNDER TENSILE LOAD. COMPARISON WITH INITIAL PROPERTIES. 

Initial Properties Residual Properties 

Strength Modulus Poisson's Tensile Strength Modulus Poisson's 
S Exx iRatio Sxx Exx Ratio Specimen xx Preload 

Material MPa (ksi) GPa (ksi) vxv l:-1Pa (ksi) MPa (ksi) GPa (ksi) vxv 

Boron/Epoxy 725 (105) 115 (16. 7) 0.70 497 ( 72) 759 (110) 114 (16.4) 0.71 

Graphite/Low 
Modulus Epoxy 566 ( 82) 111 (16.1) 0.72 396 ( 57) 449 ( 65) 91 (13.3) 0.65 

Graphite/High 
Modulus Epoxy 483 ( 70) 99 (14.3) 0.72 331 ( 48) 545 ( 79) 107 (15.5) 0.73 

S-G1ass/Epoxy 745 (108) 37 ( 5.3) 0.52 524 ( 76) 714 (104) 37 ( 5.3) 0.54 
, 

Boron/Po1yimide 566 ( 82) 117 (17.0) 0.72 414 ( 60) 490 ( 71) 115 (16.7) 0.78 

Graphite/ 
Po1yimide 345 ( 50) 114 (16.5) 0.71 242 ( 35) 331 ( 48) 118 (17.0) 0.82 

- --- - .~---'--



5.6.1 Residual Properties of Unloaded Specimens 
Subjected to Thermal Cycling 

All epoxy matrix specimens which were cycled between room 
temperature and 411 degK (280°F) and polyimide matrix specimens 
which were cycled between room temperature and 533 degK (500°F) were 

tested statically in tension to failure. Stress-strain curves for 
these tests are shown in Figs. 5-45 through 5-55. In the case of 
the Boron/Polyimide specimen of Fig. 5-53 a rather abrupt change in 
slope is observed, accompanied by an increasing discrepancy between 
the strains on the two sides of the specimen. This is attributed 
to failure of at least three of the outer O-degree plies and partial 
damage of the remaining O-degree ply. This is further corroborated 
by the fact that the modulus drops to less than a quarter of its 
initial value. The values of longitudinal modulus and Poisson's 
ratio obtained from these curves and the measured strength values 

are tabulated in Table 5-3 where they are compared with the correspon 
initial properties of uncycled specimens. 

The residual moduli seem to be very close to the initial 
values. Any possible relaxation of residual stresses or even some 

matrix degradation during cycling would not influence the longitudina 

modulus. Changes in Poisson's ratio are not regarded as significant, 

since they fall within the variability of this value from specimen to 
specimen. The residual strengths, with the exception of that of the 

Boron/Polyimide, are slightly higher than the initial strengths. The 
differences are small to be taken as significant in view of the small 

numbers of specimens tested, however, they could be attributed to 
some residual stress relaxation. 

All specimens which were cycled between room temperature 

and 200 degK (-lOO°F) were tested statically in tension to failure. 
Stress-strain curves for these tests are shown in Figs. 5-56 through 
5-66. The average values of modulus, Poisson's ratio and strength a: 

tabulated in Table 5-4 where they are compared with corresponding 

initial properties of uncycled specimens. 
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The residual moduli remained virtually unchanged, except 
for the Graphite/Low Modulus Epoxy. In the latter case the signi­
ficant drop in modulus and Poisson's ratio is attributed to de­
gradation during cycling. The lower modulus results primarily from 
degradation of at least one O-degree ply. The lower Poisson's 
ratio would result from some delamination which would remove some 
of the transverse effects of the ±45-degree plies. The abrupt change 
in the slopes of the stress-strain curves (Fig. 5-58) indicates 
further degradation of a-degree plies during static loading. The 
residual strength values in general are not significantly different 
from the initial values except for the Graphite/Low Modulus Epoxy. 
The appreciable strength reduction in the latter, approximately 35 
percent, is due to laminate degradation during cycling. 

5.6.2 Residual Properties of Specimens Subjected 
to Tensile Load Cycling 

All specimens which survived 10 million cycles of tensile 
load at 40 to 90 percent of the ultimate load were subsequently tested 
statically in tension to failure. Stress-strain curves for these 
tests are shown in Figs. 5-67 through 5-77. The values of longi­
tudinal modulus and Poisson's ratio obtained from these curves and 
the measured strength values are tabulated in Table 5-5. 

Most of the specimens showed insignificant changes in 
residual strength and residual modulus. The exceptions include the 
2.54 cm (1 in.) wide·Boron/Polyimide specimen cycled to 70 percent of 

ultimate which showed reduced residual strength and modulus, a 
Graphite/Low Modulus Epoxy which showed lower residual strength and 
the 1.27 cm (0.5 in.) wide Graphite/Po1yimide which had a lower 
residual modulus. Changes in Poisson's ratio do not appear significant 
although, in general, a trend for higher residual values is apparent. 
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5.6.3 Residual Properties of Specimens Subjected 
to Tensile Load with Thermal Cycling 

Of the specimens subjected to tensile load and elevated 

temperature thermal cycling, the Graphite/Low Modulus Epoxy and 

the S-Glass/Epoxy specimens failed during the first cycle. The 
surviving specimens were tested statically in tension to failure. 
Stress-strain curves for these tests are shown in Figs. 5-78 through 

5-86. The values of longitudinal modulus and Poisson's ratio obtained 

from these curves and the measured strength values are tabulated in 
Table 5-6 where they are compared with the corresponding initial 
properties of uncycled specimens. 

The residual moduli and strengths seem to be very close to 

the initial values. The changes in Poisson's ratio are not consistent 
and are not considered significant. Ultrasonic C-scans of the Boron/ 

Polyimide specimen of Fig. 5-84 before and after thermal cycling under 

load did not reveal any conclusive differences. 

All specimens which were cycled between room temperature and 
200 degK (-100°F) under tensile loading survived and were subsequentl 

tested statically in tension to failure. Stress-strain curves for 
these tests are shown in Figs. 5-87 through 5-98. The Boron/Epoxy an 

Boron/Polyimide specimens show some noplinear behavior which was not 
~ 

evident in the original tests or other: residual strength tests, The 

Graphite/Low Modulus Epoxy specimens warped and delaminated under col 

cycling with tensile load as mentioned earlier and shown in Figs. 5-4 

and 5-43. The stress-strain curves of Fig. 5-91 are perfectly linear 

to failure whereas those of Fig. 5-92 are concave upwards near failur 
The latter corresponds to the badly warped and delaminated specimen. 
The stress-strain curves of Fig. 5-98 for the S-Glass/Epoxy correspon 

to the slightly delaminated specimen shown in Figs. 5-41 and 5-43. T 
values of longitudinal modulus and Poisson's ratio obtained from thes 
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curves and the measured strength values are tabulated in Table 5-7 
where they are compared with the corresponding initial properties 
of uncycled specimens. 

The residual moduli remained relatively unchanged except 
for the Graphite/Low Modulus Epoxy which showed a marked decrease 
due to the observed structural degradation. The reduction in 
residual strength for this material is also due to degradation. A 
similar strength reduction was observed in the slightly damaged S­

Glass/Epoxy specimen of Fig. 5-98. The apparent decrease in strength 
for the Boron/Polyimide and increase for the Graphite/High Modulus 
:poxy cannot be explained and may not be significant. In all cases, 
xcept for that of the structurally degraded Graphite/Low Modulus 
poxy, Poisson's ratio remained nearly the same or increased . 

. 7 Summary and Conclusions 

The behavior of angle-ply laminates subjected to thermal 
ycling, tensile load cycling and thermal cycling with tensile load 
as investigated. The laminates investigated were Boron/Epoxy, Boron/ 
olyimide, Graphite/Low Modulus Epoxy, Graphite/Polyimide and S-Glass/ 

poxyof [02~±45Js layup. 

Two specimens of each material were subjected to 100 thermal 
ycles between room temperature and 411 degK (2"80°F) for the epoxy­
~trix composites and between room temperature and 511 degK (500 0 K) for 
,ie polyimide-matrix composites. No visual degradation was evident due 
, the cycling .. Strain gages monitored during cycling showed no 
·,gnificant differences between the beginning and end of cycling. All 
'cled specimens were subsequently tested statically to failure and the 
sidual properties were compared with the corresponding initial 
operties of un9ycled specimens. The residual moduli are very close 

the initial values. Any possible relaxation of residual stresses 

even some matrix degradation during cycling would not influence the 
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longitudinal modulus. Changes in Poisson's ratio were not signi­
ficant. The residual strength, with the exception of the Boron/ 
Po1yimide, are slightly higher than the initial strengths. The 
differences are small to be considered significant in view of the 
small numb.er of specimens tested, however, they could be attributed 
to some residual stress relaxation. 

Two specimens of each material were subjected to 100 
thermal cycles between room temperature and 200 degK (-100°F). 
Periodic visual inspection during cycling did not reveal any apparent 
degradation. Strains monitored in the beginning and at the end 
of cycling did not show any change. All cycled specimens were sub­
sequently tested statically to failure. The residual moduli remained 
virtually unchanged, except for the Graphite/Low Modulus Epoxy which 
showed a significant reduction due to some degradation. The residual 
strengths are not significantly different from the initial values, 
except for the Graphite/Low Modulus Epoxy which showed a significant 
(approximately 35 percent) reduction due to laminate degradation 
during cycling. 

Six specimens of each material were subjected to tensile 
load cycling between 0 and 25 to 90 percent of the static strength. 
The specimens were inspected visually at intervals for signs of 
degradation. Specimen temperature and strains were monitored at 
frequent intervals. The Boron/Epoxy specimens cycled to 70 and 90 
percent of ultimate failed, but those cycled to 40 percent of u1timat 
survived 10 million cycles. In most cases a stepwise reduction in 
modulus concomitant with a gradual rise in temperature was noticed. 
The Boron/Po1yimide specimens showed similar behavior with slightly 
better endurance to cycling loading. Runouts at 10 million cycles 
were observed at the 40 and 70 percent of ultimate levels. The 
Graphite/Low Modulus Epoxy specimens cycled to 70 and 90 percent of 
ultimate failed early but those cycled to 40 percent of ultimate 
survived. The latter showed a small gradual temperature rise. The 
Graphite/High Modulus Epoxy specimens cycled to 80 and 90 percent of 
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ultimate failed whereas those cycled to 70 percent survived 10 
million cycles. Small changes in modulus, Poisson's ratio and 
temperature were observed. The Graphite/Polyimide specimens showed 
the highest endurance to cycling loading with consistent runouts 
at '70 and 80 percent of ultimate and in one case even at 90, percent 
of ultimate. They all exhibited nearly constant modulus through 
runout with very moderate temperature variation. The S-Glass/Epoxy 
specimens cycled to 40 and 70 percent of ultimate failed early and 
even those tested to 25 percent of ultimate did not survive to runout. 
The variations in modulus and Poisson's ratio were not large. The 
temperature variation showed a sharp rise, then a characteristic dip 
just prior to failure (Figs. 5-30, 5-31). This dip is attributed to 
some heat dissipation associated with the "brooming" mode of failure. 

All specimens which survived 10 million cycles of tensile 
load to 40 to 90 percent of ultimate were tested statically to failure. 
,s in the case of thermal cycling, no significant changes in residual 
trength and modulus were observed. The same appears true for Poisson's 
'stios, although some trend for slightly higher values is noticed. 

Two specimens ~f each material were subjected to a static 
ensile load equal to 70 percent of the ultimate and simultaneously 
o 100 thermal cycles between room temperature and 411 degK (280°F) 
or the epoxy-matrix and between room temperature and 533 degK (500°F) 
,or the polyimide matrix specimens. No visible degradation was observed 
uring cycling and the strains monitored in the beginning and at the 
nd of the cycling did not show any changes. The Graphite/Low Modulus 

poxy and the S-Glass/Epoxy specimens did not survive. The remaining 
peci~ns were tested statically to failure. The residual stiffness 
nd strength were very close to the initial values. 

A similar group of specimens was subjected to a static 
ensile load of 70 percent of the ultimate and simultaneously to 100 
hermal cycles between room temperature and 200 degK (-100°F). The 
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Graphite/Low Modulus Epoxy and the S-Glass/Epoxy showed visible de­
gradation. Subsequent static testing showed significant reductions 
in strength and modulus in the Graphite/Low Modulus Epoxy and some 
strength reduction in the S-Glass/Epoxy. The residual stiffnesses 
and strengths for the remaining specimens remained relatively unchange 
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6.0 ,TASK V EFFECTS OF LAMINATE CONFIGURATION VARIABLES 

6.1 Introduction 

The objective of this task was to investigate the effects 
on the magnitudes of residual stress and strength of ply stacking 
sequence, ply orientation and fiber volume ratio. This investigation 
was conducted only on the Graphite/Po1yimide material. Specimens 
with a lower fiber volume ratio than the one' used in Tasks II, III 
and IV, were tested to evaluate the effects of this parameter. 
The effects of ply configuration (layup) were evaluated with specimens 

of [02/±l5]s and [02/902]s in addition to the [02/±45]s specimens 
used in previous tasks. The effects of ply stacking sequence were 
investigated with specimens of [±45/02] s" [0/+45/0/ -45] sand 
[+45/02/-45]s layups. Six specimens, including three with embedded 
instrumentation, were tested for each of the configuration variables 
above. 

6.2 Specimen Fabrication and Strain Monitoring 

Preliminary experiments were conducted for the purpose of 
producing Graphite/Po1yimide specimens with a controlled lower fiber 
volume ratio. It was found that reduction of curing pressure alone 
does not decrease the fiber volume ratio. Tests with different 
degrees of vacuum and various numbers of soak cloth layers were also 
conducted. A reduced fiber volume ratio of v f = 0.37 was obtained 
by curing the laminates between twp pressure plates and using only 
one soak glass paper layer on top.' 

Three 2.54 cm x 22.9 cm (1 in. x 9 in.) specimens with 
embedded gages and an B.9 cm x 22.9 cm (3.5 in. x 9 in.) plate of 
[02/±45]s layup and a fiber volume ratio of vf = 0.37 were prepared. 
In addition to these, a 2.54 cm x 12.7 cm (1 in. x 5 in.) [OB] control 
specimen with embedded gages and an embedded thermocouple, an 

B.9 cm x 22.9 cm (3.5 in. x 9 in.) [OB] plate and an B.9 cm x 22.9 cm 
(3.5 in. x 9 in.) [90 B] plate were prepared. The latter were used 
for preparation of specimens for material characterization. 
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Three 2.54 cm x 22.9 cm (1 in. x 9 in.) [02/±15]s specime+s 
with embedded gages, a 2.54 cm x 12.7 cm (1 in. x 5 in.) [08] I 

specimen with embedded gages and a thermocouple and an 8.9 cm x 2~.9 cm 
! 

(3.5 in. x 9 in.) [02/±15] plate were prepared. These specimens I 

and plate had the same 
Tasks II, III and IV. 

s , 
fiber volume ratio as the material used in! 

! 

I 

Similar sets of specimens and plates as above were prepar~d 
with [02/902]s' [±45/02]s' [0/+45/0/-45]s' and [+45/02/-45]s ply I 

configurations. 

All specimens and plates above were cured and postcured a~ 
" I 

before. Strain gages and thermocouples were monitored during pos~-
I 

curing, since it was shown earlier that the thermal strains in ! 

Graphite/Polyimide are " essentially the same during the second par~ 
(cool down) of the curing cycle and the lower temperature part of I! 

the postcuring cycle. 

6.3 Effect of Fiber Volume Ratio 

6.3.1 Characterization of Unidirectional Laminates 
, 

Unidirectional properties of the Graphite/Polyimide mater~al 

with the lower fiber volume ratio of vf = 0.37 were determined. ,1 
Stress-strain curves for the O-degree material under uniaxial ten io 
are shown in Figs. 6-1, 6-2 "and 6-3. All strains appear to be ! 
fairly linear to failure. The longitudinal modulus is not I 
significantly lower than the corresponding modulus for the higher I 

fiber volume ratio material of "Task II. The longitudinal tensile 
strength is approximately 8 percent lower than the corresponding 
strength for the standard material of Task II. The transverse mo 
is appreciably lower and the transv.erse tensile strength is less 

" " 

than half the corresponding value of the standard material. The 
latter value of course is very much influenced by initial flaws 

I 
I 

i ulps 

and initial curvature of the specimen introduced during manufactu ing. 
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Two unidirectional 10-degree off-axis specimens were 
tested in tension to determine in-plane shear properties. Shear 
strain was computed from the readings of two three-gage rosettes 
used in each specimen. Shear stress versus 
to failure are shown in Figs. 6-4 and 6-5. 
up to approximately 16 MPa (2300 psi). The 

shear strain curves 
The curves are linear 
shear strength is 

higher than the corresponding strength of the standard material with 
the higher fiber volume ratio. 

The measured properties above are summarized in the following 
Table 6-1. Included in this table are the coefficients of thermal 
expansion measured during the subsequent task of residual strain 
determination. 

Table 6-1 
PROPERTIES OF UNIDIRECTIONAL GRAPHITE/POLYIMIDE 

(Modmor I/WRD 9371) 

Fiber Volume Ratio 
Longitudinal Thermal Coefficient, 
all 

Transverse Thermal Coefficient, 
0.22 

Longitudinal Modulus, Ell 

Transverse Modulus, E22 

Shear Modulus, Gl2 
Major Poisson's Ratio, v12 
Minor Poisson's Ratio, v21 

Longitudinal Tensile Strength, 
SllT 

Transverse Tensile Strength, 
S22T 

Intralaminar Shear Strength, 
812 
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0.37 

-0.4 x 10-6 K- 1 (-0.2 ~£/oF) 

27.1 x 10-6 K- 1 (15.0 ~£/oF) 

207 GPa (30 x 106 psi) 

4.14 GPa (600 ksi) 

4.11 GPa (595 ksi) 

0.39 

0.01 

744 MPa (107.8 ksi) 

5.9 MPa (850 psi) 

25.0 MPa (3620 psi) 



6.3.2 Residual Strain 

The embedded strain gages and thermocouples in the 
[02/±451s and [°81 specimens of the low fiber volume ratio 
Graphite/Polyimide were monitored during postcuring. Thermal 
strains in the unidirectional specimen are shown in Fig. 6-6. 
They vary linearly with temperature as the standard material 
described in Section 3. The thermal coefficients of expansion 
determined from these curves are: 

As expected, the transverse thermal expansion coefficient is slightly 
I, 

higher than the corresponding coefficient of the standard materi~l 
of Task II. 

Strains in the angle-ply laminate are plotted in Fig. 6-7'. 
They are approximately one-tenth the corresponding strains in the!; 

I 

unidirectional specimens. They are approximately 30 percent high1er 
than the corresponding strains of the standard material. 

of i 
I 

the 
Restraint strains in the O-degree and 4S-degree plies 

[02/±45]s laminate were obtained as before and plotted in 
and 6-9. They are linear with temperature and they are 

Figs. 
I 6-8 

approximately of the same magnitud, ~s in the standard material 
(Figs. 3-73 and 3-74). 

\ 

\ 6.3.3 Static Strength I 

Two 2.54 cm x 22.9 cm (1 in. x 9 in.) [02/±45]s specimens, 
including one with embedded gages, were tested to failure under II 

static tensile loading. Stress-strain curves are shown in Figs. 6-10 
and 6-11. The average modulus, Poisson's ratio and strength 
determined from these tests are: 
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E = 107.5 GPa (15.6 x 106 psi) xx 

v = 0.87 xy 

S = 388 MFa (56 ksi) xxT 

Results are summarized at the end of this section in Table 6-2. 

6.3.4 Tensile Load with Thermal Cycling 

Two [02/±45]s specimens, including one with embedded gages, 
were subjected to a static tensile load equal to 70 percent of the 
ultimate and to 100 thermal cycles between roOl: L..emperature and 
533 degK (500°F). Both specimens fai~ed during this cycling. 

Two similar specimens as above were subjected to a static 
tensile load equal to 70 percent of the ultimate and to 100 thermal 
cycles between room temperature and 200 degK (-100°F). Strain 
gages were monitored in the beginning and at the end of this cycling 
program. The strain gage readings were inconclusive. The specimens 
were subsequently tested statically to failure. Figures 6-12 and 
6-13 show the stress-strain curves obtained. 

The resulting values for the elastic properties and strength , 
are: 

E = 100 GPa (14.4 x 106 psi) xx 
v xy = 0.85 

SxxT = 383 MFa (55 ksi) 

The modulus is somewhat lower than the initial value, but the strength 
is nearly the same as the initial static strength. These results are 
summarized at the end of this section in Table 6-4. 
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6.4 Effect of Ply Orientation 

6.4.1 Residual Strain 

Embedded strain gages and thermocouples in [02/±lS] s 
and [°2/9°2] Graphite/Po1yimide specimens having the stand~rd 
fiber volume ratio as in Task II were monitored during postcuring. 

Strains in .the [02/±lS] s specimen are shown in Figj 6-14. 
They vary linearly with temperature and are an order of magnitude 
higher than the corresponding strains of the [02/±4S]s spe~imen 
(Fig. 3-72). They are of the same order of magnitude as the strains 

, 

in the unidirectional material (Fig. 3-71) as the [02/±lS]~ layup 
does not deviate much from the unidirectional construction., Restrain 

i 

strains in the O-degree plies were computed as before and ~hown in 
Fig. 6-lS. Restraint strains in the IS-degree ply were co~puted as 
follows: 

r 
EO = 

r 
890 = 

r 8lS = 

a 
£0 

a 890 -

a 81s 

a 
£7S -

u 
£lS 

u 87S 

u (parallel to fibers) 8 0 

, 

1\ 

(normal to fibers) 
I 

where subscripts refer to angle of direction measured from Ithe 
longitudinal axis of the specimen (O-axis) and superscriptsl r. 
a and u refer to restraint) angle-nly laminate and unidirecltiona1 
laminate, respectively. The strains in the unidirectional Irnd 
angle-ply laminates at lS- and 7S-deg directions were compulted from 
the measured strains using the strain transformation equatifn: 

+ 
= 2 

where e = lS- and 7S-deg. 
in Fig. 6-16. 

II 

The computed restraint strains 

cos2e 

shown 
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Thermal strains in the [02/902 ] specimen were very 
small because of the restraint produced.by the fibers in two 
directions. The apparent strains recorded are shown in Fig. 
6-17 ne~t to the purely thermal output of the gage. As can be 
seen, the determination of the true thermal strains involves 
computa~ion of small differences of .~arge numbers. The resulting 
strains in the laminate are shown in Fig. 6-18. The scatter 
appears large because of the enlarged scale and the low magnitude 
of the strains. It is not known whether the small difference 

between the O-deg. and 90-deg strains is significant. Restraint 
! strains in 0- and 90-deg. plies of the laminate are shown in 
Figs. 6-19 and 6-20. As expected, the restraint strains in the 
axial and transverse directions of the O~degree ply (EO and E90 ) 
are equal to the restraint strains in the transverse and axial 
directions (E90 and EO) of the 90-degree ply. Naturally, the 45-
degree strains are equal for both plies. 

6.4.2 Static Strength 

Two 2.54 cm x 22.9 cm (1 in. x 9 in.) sp~~ens of each 
of the two laminate constructions above were tested to failure under 
static tensile loading. In each pair of specimens, one specimen 

was instrumented with embedded gages and the other with surface 
gages only. Stress-strain curves are shown in Figs. 6-21 through 
6-23. The average values for the elastic properties and strength 
are: 

For the [02/±15]s specimens, 

E = 201 xx GPa (29.2 x 106 psi) 

vxy 
.= 1. 53 

S = 606 MPa (88 ksi) xxT 

'lnd for the [02/902]s specimens, 
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Exx = 131 GPa (19.0 x 106 psi) 

vxy = 0.035 

S = 421 MPa (61 ksi) xxT 

These results are summarized in Table 6-2 at the end of this 
section. 

6.4.3 Tensile Load with Thermal Cycling 

Two specimens of each of the two laminate constructions 
above, including one with embedded gages, were subjected to a , 
static tensile load equal. to 70 percent of the static ~ltimate an4 

• . I 

to 100 thermal cycles between room temperature and 533 degK (500°1'\). 
Strain gages were monitored in the beginning and at the end of th~s 

• ! 

cycling program. Apparent strains monitored during the first and 

one hundred and first thermal cycles for specimen [02/±lS)s are 
shown in Fig. 6-24. The axial strains are identical in the i 

I 

beginning and at the end of cycling, but discrepancies appear iri~he' 
45-degree and transverse strains. These discrepancies cannot be i, 

.1 

strains at the .end attributed to structural degradation, since the 
of thermal cycling are in closer agreement with 
strains recorded during curing (Fig. 6-14). 

the thermal 

. The thermally cycled specimens above were tested statically 

to failure. Stress-.strain curves are shown in Figs. 6-25 through I 

6-28. The average values for the elastic properties and strength 
are: 

For the [02/±lS]s specimens, 

Exx = 203GPa (29.5 x 106 psi) 

vxy = 1. 50 

. SxxT = 698 MPa (101 ksi) 
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and for the [02/902]s specimens, 

Exx = 112 GPa (16.3 x 106 psi) 

\)xy = 0.013 " 

SxxT = 338MPa (49 ksi) 

These results are summarized in Table 6":3 at the end of this 
section. In the case of [02/±15]s sp~cimEms the residual strength 
is somewhat higher than the initial strength whereas the two 

moduli are approximately the same. In the case of the [02/9021s 
specimens the residual strength and modulus are both lower than 
the corresponding initial values. 

Two additional specimens, including one with embedded 
instrumentation, of each of the two laminatec()nstructions above 
were subjected to astatic tensile load equal to 70 percent of the 
ultimate and to 100 thermal cycles between room temperature and 
200 degK (-lOO°F). Strain gages were monitored in the beginning 
and at the end of this cycling program. ~pparent strains recorded. 
tSuring this thermal cycling are shown in Figs. 6-29 and 6-30., No 
significant d;i.£ferences appear between the strains recorded in the 
beginning and those recorded at the end of the thermal cycling.' 

The thermally cycled specimens ,above were tested' statically 
'to failure. Stress-strain curves are shown in Figs. 6-31 through 
6-34. The average values for the elastic properties and strength 
are: 

For the [02/±15]s specimens, 

= 201 GPa (29.2 x 106 psi) 

\)xy = 1. 40 

S "= 700 MPa (101 ksi) xxT , 



and for the [02/902]s specimens, 

Exx = 123 GPa (17.9 x 106 psi) 

vxy = 0.045 

SxXT = 393 MPa (57 ksi) 

These results are sUDlIIlarized in Table 6-4 at the end of this 
section. The residual strength of the [02/±15]s specimens is 
somewhat higher than the initial strength whereas the reverse is 
true in the case of the [02/90 21s specimens. These differences, 
however, may not be significant. 

6.5 Effect of Ply Stacking Sequence 

6.5.1 Residual Strain 

Embedded strain gages and thermocouples in [±45/02]s' 
[0/+45/0/-45]s and [+45/02/-45]s Graphite/Polyimide specimens 
were monitored during postcuring. 

Strains in these specimens are shown in Figs. 6-35 through 6-/37. 
They vary linearly with temperature and they are all approximately 
of the same magnitude, within experimental variability, and equal 
to the corresponding strains of the standard [02/145Js specimen 
(Fig. 3-72). Restraint strains in the O-degreeand45-degree plie 
computed as before are shown in Figs. 6-38 through 6-43. All thes' 
strains vary linearly with temperature and are equal for all ply 
stacking sequence variations, including the standard layup [02/±45]s 
(Figs. 3-73 and 3-74). 

6.5.2 Static Strength 

Two specimens of each of the three layups above, including 
one with embedded strain gages, were tested to ,failure unde,r stati 

• 

• 

• 

• 

• 

• 

• 

• 

• 

tensile loading. Stress'-strain curves are shown in Figs. 6-44 thr, h ' • 
6-49. Results are sUDlIIlarized in Table 6-2 at the end of this sect'o 
The average values for the elastic properties and strength are: 

• 
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For the [±45/02]s specimens, 

Exx = 129 GPa (18.6 x 106 psi) 

Vxy = 0.81 

SxxT = 506 MPa (76 ksi) 

for the [0/+45/0/-45]s specimens, . 

Exx = 129 GPa (18.6 x 106 psi) 

vxy = 0.85 

S T = 430 MPa (62 ksi) xx 

and for the [+45/02/-45]s specimens, 

Exx = 126 GPa (18.3 x 106 psi) 

\)xy = 0.76 

SxxT .- 497 MFa (72 ksi) 

Except fOJ:: the somewhat lower strength of the [0/+45/0/-45]s 
layup, all other properties seem to be approximately the same for 
all three layups. All strengths are appreciably higher than the 
basic [02/±45] laminate tested under Task II. This di;t:ference may s . 
be related to the fact that the laminates above were cured in a 
separate batch at a much later date. 

6.5.3 Tensile Load with Thermal Cycling 

Two specimens of each of tpe three laminate constructions 
above, including one with embedded.gages, were subjected to a static 
tensile load equal to, 70 percent of the static ult.imate and to 100 
thermal cycles between room temperature and 533 degK (500°F); Strain 

,gages were monitored' in the beginning and at the end of this cycling 
program. No significant differences were observed in the recorded 

.' strains between the beginning and the elld of cycling. 
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These specimens were subsequently tested statically to \ 
failure. Stress-strain curves are shown in Figs. 6-50 through I 

6-55. The average values for the elastic properties and strengthi 

are: . .' '\ 

For the [±45/02Js specimens, 

Exx = 125 GPa (18.1 x 106 psi) 

vxy = 0.79 

SxxT = 465 MPa (68 ksi) 

for the [0/+45/0/-45]s specimens, 

Exx = 131 GPa (19.0 x 106 psi) 

vxy = 0.81 

SxxT = 440 MPa (64 ksi) 

and for the [+45/02/-45]s specimens, 

Exx = 128 GPa 
. . 6 

(18.·6 x 10 psi) 

v = 0.77 xy 
S = 462 MPa (67 ksi) xxT 

The.se results are sununarized in Table 6-3 at the end of 
this sect·ion.No significant differences exist among the three 
layups and between residual and initial properties. The largest 
differences, up to 10 percent,' appear in the strength values. 

I 

Two additional specimens of each of the three layups above, I· 
including one with embedded gages,were subjected toa static tens'~e 
load equal to 70 percent 6f the ultimate'and to 100 thermal cycles I 

• 

• 

• 

• 

• 

• 

• 

• 

• 

between room temperature and 200 degK (-lOO°F). Strain gages we~e I • 
! monitored in the beginning and at the end of this cycling program. 
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These specimens were subsequently tested statically to failure. 
Stress-strain curves are shown in Figs. 6-56 through 6-61. The 
average values for the elastic properties and strength are: 

For the [±45/02] s specimens, 

Exx = 125 GPa (18.1 x 106 psi) 

0.79 v xy 

SxxT = 531 MPa (77 ksi) 

for the [0/+45/0/-45]s specimens, 

Exx = 122 GPa (17.7 x 106 psi) 

\)xy = 0.82 

S~xT = 431 MPa (62 ksi) 

and for the [+45/02/-45J s specimens, 

Exx = 128 GPa (18.5 x 106 psi) 

\.I xy = 0.83 

S = 458 MPa (66 ksi) xxT 

These results are summarized in Table 6-4. No significant 
differences appear between initial and residual properties and among 
the three layups. The largest differences, up to 10 percent, appear 

lin the strength values. 

6.6 Summary and Conclusions 

The effects of fiber volume ratio, ply orientation and ply 
stacking sequence on the magnitudes of residual stress, stiffness 
ind strength of Graphite/Polyimide laminates were investigated. 



I 
Residual strains in the lower fiber volume ratio laminates 

! 

were approximately the same as those of the standard material. 
Restraint strains, in the O-degree plies of the [OZ/± 15] s are 
approximately one-fourth of those in the O-degree plies of the I 

[02/±45J s layup. This is because the ±15-degree plies offer less I I 

restraint to transversal contraction oftheO-degree plies than ! I 
do ±45-degree plies. Restraint strains in the O-degree plies of Jhe; 
[02/902)s laminate are higher than corresponding strains in the 
[02/±45]s laminate by approximately 8 percent. Ply stacking sequ~nc1 
was found to have no measureable effect on the magnitude of residJal, 
strains. These strains were almost identical for all four variatJons 
of ply stacking sequence: [02/±45] s • [±45/02 ] s' [0/+45/0/-45] s a1d I 

[+45/02/-45]s' . . 

. i 
Results of static tensile tests are tabulated in Table 6-a. 

The modulus and tensile strength of the low fiber-volutne-ratio I 

laminate were lower than corresponding properties of the standard I 

material by approximately the same ratio as the corresponding fibJr 
volume ratios. The ratio of FVR's is 0.45/0.37 = 1.22 and compar s 
closely with the ratio of measured moduli .of 18.5/15.6 = 1.19 and 
the strength ratio of 69/56 = 1. 23. This means that the stiffness 
and strength per ply are not affected by moderate changes in the 
fiber volume ratio. The modulus of the cross-ply laminate [02/902]s[ 
is only slightly higher than that of the [02/±45]s laminate and ' 
its stacking sequence variations, but its strength is lower by i 

approximately 12 percent. The [02/±15] s layup showed .the most drs a~ic.· 
influences of ply orient'ation. The modulus of 201 GPa (29.2 x 106 plsi) 
approaches that of the unidirectional m.ate.rial and the strength is . I 

, . 

higher than that of the [02/±45] S layups by approximately 28 perce tie 
The most pronounced result is the high value of 1.53 for Poisson's 
ratio. Stacking sequence variations of the basic [02/±45]s had no 
significant effect on measured modulus and strength, although the 
[0/+45/0/-45]s layup displayed consistently lower strength values. 
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Table 6-2 

STATIC TENSILE STRENGTH OF GRAPHITE/POLYIMIDE ANGLE-PLY LAMINATES 

Laminate Modulus, E Poisson's Tensile Strength, S T xx Ratio, vxy 
xx 

GPa (106 psi) MPa (ksi) 

[02/±45]s 108 (15.6) 0.87 388 (56) 
(Lower FVR) 

[02/±15]s 201 (29.2) 1. 53 606 (88) 

[02/902Js 131 (19.0) 0.035 421 (61) 

[±45/02] s 129 (18.6) 0.81 506 (73) 

[0/+45/0/ -45] 129 (18.6) . s 0.85 430 (62) 

[+45/02/-45]s 126 (18.3) 0.76 497 (72) 

--------



The effects of fiber volume ratio and ply orientation 
and stacking sequence were also evaluated by subjecting specimens 
to a. tensile preload and to 100 thermal cycles between room 
temperature and 533 degK (500°F). The low fiber volume ratio 
specimens failed during thermal cycling under a tensile preload 
equal to 70 percent of the static ultimate. All other specimens 
survived the cycling under a similar preload. Strains monitored 
during thermal cycling did not disclose any significant changes 
between the b~ginning and end'of cycling. Residual properties of 
all surviving specimens were determined by t~sting them statically 
to failure after thermal cycling. Results are tabulated in: Table 
6-3. The [02/±15J s specimens show somewhat higher residual strength 
and unchanged modulus. The [02/902Jslaminate, having the highest 
residual stresses. showed a reduction in both strength and stiffnessf 
No significant changes between initial and residual properties I 

were observed in the three stacking sequence variations of the basic 

[02/±45]s laminate. 

The effects of the same parameters above were evaluated for 
thermal cycling between room temperature and 200 degK (-100°F)' underl 

. I 

tensile preload. Strains monitored during this cycling did not r 
disclose any significant differences between the beginning and end 0 

cycling. Results on residual properties of all cycled specimens are 
tabulated in Table 6-4. The strength in the low fiber-volume-ratio I 
specimens remained unchanged, but the modulus showed some reduction.: 
The [02/±15J s specimens showed higher residual strength and unchange~ 
modulus. The [02/9021s laminate, having the highest residual stressfs, 
showed a reduction in both strength and modulus. as above. The I . 
stacking sequence variations of the basic [02/±45] laminate showed I s ' 
no significant changes between initial and residual properties. Agalin, 
as fn the case oJ initial static properties and residual properties I 
after elevated temperature· cycling, the [0/+45/0/ -45] s layup showed I 
a somewhat lower strength than the other stacking sequence variationls. 
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Laminate 

[02/±15]s 

[02/ 902]s 

[±45/02]s 

[0/+45/0/-45] . s 

[+45/°21-45 ]s 

Table 6-3 

RESIDUAL PROPERTIES OF GRAPHITE/POLYIMIDE SPECIMENS AFTER 
. 100 THERMAL CYCLES. BETWEEN ROOM TEMPERATURE AND 533 degK 

(500°F) UNDER TENSILE LOAD 

Initial Properti~s Residual Properties 

Strength, Modulus, Poisson s Tensile Strength, Modulus, 
S xxT ·Exx Ratio, Stress S xxT Exx 

.MPa (ksi) GPa (106])si) \)xy MPa (ksi) MPa (ksi) GPa i106psi) 

606 (88) 201 (29.2) 1. 53 425 (62)· 698 (101) 203 (29.5) 

421 (61) 131 (19.0) 0.035 290 (42) . 338 (49) 112 (16.3) 

506 (73) 129 (18.6) 0.81 352 (51) 465 (68) 125 (18.1) 

430 (62) 129 (18.6) 0.85 297(43) 440 (64) 131 (19.0) 

497 (72) 126 (18.3) 0.76 345 (50) 462 (67) 128 (18.6) 

~ 

- - -- -

Poisso n's 
Ratio, 
\)xy 

1. 50 

0.013 

0.79 

0.81 

0.77 
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Table 6-4 

RESIDUAL PROPERTIES OF GRAPHITE/POLYIMIDE SPECIMENS AFTER 
100 THERMAL CYCLES BETWEEN ROOM TEMPERATURE AND 200 degK 

(-:-100°F) UNDER TENSILE LOAD 

Laminate 

[02/±45J s 
(Low FVR) 

[02/±15J s 

[02/902]s 

I 

Strength, 
SXXT 

MFa (ksi) 

388 (56) 

606 (88) 

421 (61) 

[±45/02Js 506 (73) 

[0/+45/0/-45]s 430 (62) 

[+45/02/-45J s 497 (72) 

Initial Properties 

ModuTus, 
Exx 

GPa (106psi) 

107 (15.6) 

201 (29.2) 

131 (19.0) 

129 (18.6) 

129 (18.6) 

126 (18.3) 

Foisson·s 
Ratio, 

vxy 

0.87 

1.53 

0.035 

0.81 

0.85 

0.76 

Tensile 
Stress, 
MPa(ksi) 

270 (39) 

425 (62) 

290 (42) 

352 (51) 

297 (43) 

345 (50) 

Residual Properties 

Strength, Modulus, Poisson's 
SxxT Exx R~tio 

MPa (ksi) GPa (106psi) xy 

383 (55)1 100 (14.4) 0.85 

700 (101)1 201 (29.2) 1. 40 

393 (57)1 123 (17.9) 0.045 

531 (77) I 125 (18.1) 0.79 

431 (62) I 122 (17. 7) 0.82 

458 (66) 1"128 (18.5) 0.83 
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7.0 SUMMARYO CQNCLUSIONSAND RECOMMENDATIONS 
FOR FUf·RE WORK . 

An experimental investigation was conducted to determine 
the magnitude of lamination residual stresses in angle-ply composites 
and to evaluate their effects on composite structural integrity. The 
investigation consisted of five tasks. 

Task I dealt with a selective literature survey to obtain 
thermal and mechanical properties of unidirectional composites. Six 
fiber/matrix systems were selected for the experimental investigation: 
Boron/Epoxy (4 mil Boron/AVCO 5505), Boron/Polyimide (4 mil Boron/ 
WRD 9371), Graphite/Low Modulus Epoxy (Modmor I/ERLA 4289), Graphitel 
High Modulus Epoxy (Modmor I/ERLA 4617), GraphitelPolyimide (Modmor 1/ 
WRD 9371), and S-Glass/Epoxy (Scotchp1y 1009-265). 

In Task II, the six materials selected were characterized, 
instrumentation procedures were developed, residual strains were 
measured during curing, and the static strength measured of (02/±45]s 
angle-ply laminates. Material characterization consisted of deter­
mination of longitudinal and transverse tensile and compressive properties, 
in-plane shear properties, coefficients of thermal expansion, density 
and fiber volume ratio. Results of this characterization are tabulated 
in Tables 3-13 through 3-18. 

The longitudinal modulus of the polyimide-matrix.systems is 
somewhat higher than that of epoxy-matriX. systems with the same fibers: 
This is not the case for the transverse moduli. The transverse modulus 
of Boron/Po1yimide is appreciably lower than that of Boron/Epoxy and 
the transverse modulus of Graphite/Polyimide is lower than that of 
Graphite/High Modulus Epoxy. The S-Glass/Epoxy has the highest 
transverse modulus as well as the highest ratio ·of transverse to 
longitudinal modulus ( ... 0.4) .;lnd the highest shear modulus. The longi­
tudinal tensile strength of the polyimide matrix systems is noticeably 
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lower than that of epoxy-matrix systems with the same fibers. 
Furthermore, the longitudinal tensile strength of the Graphite/ 
High Modulus Epoxy is significantly lower than that of the 
Graphite/Low Modulus Epoxy. The transverse tensile strength of 
the polyimide-matrix systems is appreciably lower than that of the 
epoxy-matrix systems with the same fibers. The same strength for 
Graphite/Low Modulus Epoxy is very low (4.15 MPa; 600 psi). 

The longitudinal compressive strength for Boron/Epoxy, 
Boron/Polyimide and Graphite/High Modulus Epoxy is higher, by up 
to 15 percent, than the tensile strength. This is not the case for 
the other three systems, but that conclusion is not .definite. The 
measured transverse compressive strength (S22C) is in all cases 
appreciably higher (2.2 to 5.7 times) than the corresponding tensile 
strength. As in the case of other strengths, the intralaminar shear 
strength for the polyimide matrix systems is lower than that of the 
corresponding epoxy-matrix systems. 

Techniques were developed and applied to the measurement 
of subsurface strains in composite laminates at elevated temperatures. 
They consist primarily of embedding encapsulated foil strain gages ; 

I 

with attached insulated leads between the plies of the composite durin~' 
lamination, and recording the output during curing and subsequent I 

thermal and mechanical loading. The strain gage output at elevated 
temperatures. was separated into one part due to deformation and 

another part due to change in resisti,Yity of the gage with temperature 
(thermal oUtput). The latter part was determined from a reference 

quartz specimen instrumented with similar strain gages. 

Strains during curing and thermal cycling were measured in 

[02/±45J s and [OSl laminates of the six systems selected. Strains 
recorded in the first part (heating) of the curing cycle are not 
significant as they correspond to the fluid state. of the matrix. 
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• 

• 

• 

• 

• 

• 

• 

• 
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Strains measured in the second'part (cooling) of the curing cycle 
were in satisfactory agreement with strains measured during sub­
sequent thermal cycling. This indicates that residual· stresses are 

set up during cooldown as a result of differential thermal expansion 
of the various plies. The strains in most specimens vary linearly 
with temperature, except for the unidirectional S-Glass/Epoxy and 

'the Graphite/High Modulus Epoxy specimens. Restraint or residual 
., strains were computed for the O-deg. and 45-deg plies of the [02/±45]s 
laminates by taking the differences of the measured laminate strains 

. : and the corresponding unrestrained strains of that ply. These strains 

vary linearly with temperature for most materials except the Graphite/ 
'High Modulus Epoxy and the S-Glass/Epoxy. 

Residual stresses as a function of temperature were computed 
from the residual strains by using the anisotropic constitutive 

:relations and taking into account the temperature dependence of the 

stiffnesses and strains. In the case of the O-deg. plies in the 
Boron/Epoxy laminate a maximum transverse residual stress of 32,400 kPa 
(4,700 psi) was determine~. This means that approximately 50 percent of 

!the transverse strength of these plies has been exhausted in the curing 

process. 

Two [02/±45]s specimens of each material, including one with 
~mbedded instrumentation were tested statically in tension to failure. 
i 
Strains and acoustic emissiqn were recorded. The initial Young's 

modulus, PoissoI1-'s ratio and tensile strength are tabulated in Table 

3-19. The S-Glass/Epoxy is the strongest but has the lowest modulus. 
The Boron/Epoxy follows closely in strength and.has the second highest 
I . 

modulus. The BQron/Polyimide with the highest modulus has a strength 

~qual to approximately 80 percent of that of Boron/Epoxy. The Graphite/ 
tow Modulus Epoxy seems to be somewhat stronger than the Graphite/High 
Modulus Epoxy and much stronger than the first bat·ch of Graphite/Polyimide 

p~cimens. The average value of Poisson's ratio is 0.72 ±0.02, except 

or the S-Glass/Epoxy which has a much lower Poisson's ratio (0.52). 
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The extent of relaxation of lamination residual stresses 

was investigated in Task III. Three approaches were followed: (1) 
Direct measurement of strain changes with time, (2) Stress relaxation' 
determination in 90-degree unidirectional specimens, and (3) Elastic' 
and strength properties of laminates as a function of time after 

curing. The first approach proved to be very insensitive. The 
measured amount of relaxation in 90-degree specimens after thirty days 
in most cases ranged between 9 .. 5 and 24.5 percent, except for the Bor~m/ 

Polyimide where a fracture mechanism was operating. The relaxation 
measured in the 90-degree specimens is an upper bound to the actual 
relaxation of residual stresses in an angle-ply laminate. Therefore,: it 

can be concluded that the amount of residual-stress relaxation is sma[l. 

No significant variations in stiffness or strength were observed in 
specimens tested over periods from one to twenty-two months after 
curing. 

In Task IV the behavior of angle-ply laminates subjected to 

• 

• 

• 

• 

• 

thermal cycling, tensile load cycling and thermal cycling with tensile • 
load was investigated. Specimens were subjected to thermal cycling 
between room temperature and 411 degK (280°F) for the epoxy-matrix 
composites and between room temperature and -533 degK (500°F) for the 

polyimide-matrix compos'ites. No visual degradation was evident and no • 
differences were detected in measured strains between the beginning and 

the end of cycling. Residual moduli were very close to initial values. 
I 

The residual strengths, with the exceptioQof the Boron!Polyimide, were 

slightly higher than the initial strengths. Although the differences • 

are too small to be considered significant in view of the small number 

of specimens tested, they could be attributed to some residual stress 

relaxation. 

Cycling between room temperature and 200 degK (-100°F) did 

not reveal any apparent degradation or any differences in measured : 

thermal strains between the beginning and the end of cycling. Subsequent 
s.tatic testing showed that the residual moduli and strengths remaineJ 
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I 

! 
I 

I 
I 

Unchanged, except for the Graphite/Low Modulus Epoxy which showed 
s!ignificant reductions in both modulus and strength (approximately 
3p percent) due to degradation during cycling. 

I 
I A group of spec.imens were subj ected to tensile load cycling 

bf:tw~en 0 and 25 to 90 percent of the static strength. Strains and 
t~mperature were monitored during cycling. The Boron/Epoxy and Graphite/ 

r' 
Lpw Modulus Epoxy survived 10 million cycles to 40 percent of ultimate. 

I 

T~e Boron/Polyimide showed runoutsat loads of 40 and 70 percent of 
uttimate. The Graphite/High Modulus Epoxy hadrunouts at 70 percent 
of ultimate. The Graphite/Polyimide had the highest endurance with 
r~nouts at 70,80 and, in one case, even 90 percent of ultimate. The 
S+Glass/Epoxy had the lowest endurance and did not survive 10 million 
c~cles even at 25 percent of ultimate. All surviving specimens were 
t~sted statically to failure with no indications of any changes in 
rJsidual modulus or strength. 

I 
I 

i A group of specimens were subjected to a static tensile load 
equal to 70 percent of the ultimate and simultaneously to 100 thermal 

I . 

cYtcles as the unloaded specimens before. The Graphite/Low Modulus Epoxy 
a~d S-Glass/Epoxy did not survive the·elevated temperature thermal 
cYicling. The same·materials showed visible degradation as a resultbf 

I 

t~e low temperature thermal( cycling. The. residual modulus and strength 
rebained relatively unchang~d, except for significant reductions in 
st~ength and modulus in the Graphite/Low Modulus Epoxy and some strength 

re~uction in the S-Glass/Epoxy. 

t The effects of fiber volume ratio, ply orientation and I'ly 

strcking sequence on the magnitudes of residual stress, stiffness and 
strength of Graphite/Polyimide were investigated in Task V. 

i I Residual strains in the lower fiber volume ratio laminates 
wefe approximately the same as those of the standard FVR materia1. 

Re.traint strains in the O~degree plies of the [02/±15]s are approximately 

\ 

I 
I 
I, 
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one-fourth of those in the O-degree plies of the [02/±45]s layup. • 
This is because the ±15-degree plies offer less restraint to trans­
versal contraction of the O-degree plies than do ±45-degree plies. 
Restraint strains in the O-degree plies of the [02/902Js laminate are 
higher than corresponding strains .in the [02/±45]s laminate by • 
approximately 8 percent. Ply stacking sequence was found to have no 
measurable effect on the magnitude of residual st!ains. These strains; 

were almost identical for all four variations of ply stacking sequence 

[02/±45J s ' [±45/02Js ' [0/+45/0/-45J s and [+45/0 2/-45]s' • 

Results of static tensile tests are tabulated in Table 6-2. f 
The modulus and tensile strength of the low fiber-volume-ratio laminat~ 

, 
were lower than corresponding properties of the standard material by 
approximately the same ratio as the corresponding fiber volume ratios. 
The ratio of FVR's is 0.45/0.37 = l.22 and compares closely with the 
ratio of measured moduli of 18.5/15.6 = 1.19 and the strength ratio of 
69/56 = l. 23. This means that the stiffness and strength per ply are I 
not affected by moderate changes in the fiber volume ·ratio. Themodul~s 

I 

of the cross-ply laminate [02/902]s is only slightly higher than that I 
of the [02/±45J s laminate and its stacking sequence variations, but ith 
strength is lower by approximately 12 percent. The [02/±15]s layup 
showed the most dramatic influences of ply orientation. The modulus 
of 201 GPa (29.2 x 106 psi) approaches that of th~ unidirectional material 

and the strength is higher than th~t of the [02/±45]s layups by ! 

approximately 28 percent. The most pronounced result is the high valu~ 
of 1.53 for Poisson's ratio. Stacking sequence variations of the . l 
basic [02/±45] s had no significan't effect on measured modulus and I 
strength, although the [0/+45/0/-45]s layup displayed consistently lowfr 
strength values. j 

I 
i 

I 
Specimens were subjected to a tensile preload equal to 70 

percent of the static strength and to 100 thermal cycles between room 
i 

No changes in measured strains were! temperature and 533 degK (500°F). 
observed between the begitming and the end of cycling. The low FVR I 

7-6 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 
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• 

• 

• 

• 
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• 

\SpeCimens failed during cycling. Residual properties were mea~.ured 
Ifor the, surviving specimens. The [02/±15J s specimens show 
Ihigher residual strength and unchanged modulus. The [02/902]s 
Illaminate, having the highest residual stresses, showed a reduction 
lin both strength and stiffness. No significant changes between 
initial and residual properties were observed in the three stacking 
I 

,~equence variations of the basic [02/±45J g laminate. 

j 
I Similarly loaded specimens were subjected to 100 cycles 
~etween room temperature and 200 degK (-100°F). No strain changes 
tere observed between the beginning and the end'of the cycling. The 
yesidual strength of the low FVR specimeris remained unchanged, but 
¢he modulus showed some reduction. The [02/±15]s specimens showed 
~igher residual strength and unchanged modulus. The [02/902]s 
laminate, having the highest residual stresses, showed a reduction 
~n both strength and modulus, as above. The stacking sequence variations 

9f the basic [02/±45]s laminate showed no significant changes between 
~nitial and residual properties. Again, as in the case of initial 
sltatic properties and' residual properties after elevated temperature 
c~cling, the [0/+45/0/-45J s layup showed a somewhat lower strength 
than the other stacking sequence vari.ations. 

I 
I 
j One major contribution of this phase of ' the program is the 

dkvelopment and successful application of techniques for measuring 
r~sidual strains during curing. Residual strains were measured for six 
c6mposite systems and, in the case of Graphite/Polyimide, for two 

f ber volume ratios, three layups and four stacking sequence variations 
o one layup. The same techniques can be readily applied to measure-

nt of residual strains in hybrid angle-ply laminates and evaluate 
t e influence of hybridization on the magnitude of residual stresses 
a d residual strength. Hybridizing Graphite/Epoxy with S-Glass/Epoxy 
a dKevlar 49/Epoxy should be investigated. 

The effect of residual stresses on laminates with defects 
damaged areas would be of importance. Specimens with cutouts, 
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cracks or other defects could be prepare~ with varying ply configura­
tions resulting in different states of residual stress. Strain 
concentrations and maximum strain at failure would be determined to 
evaluate the effect of residual stresses on fracture a.round defects. 

In all the tasks conducted in the present phase of the 
investigation, the effects of residual stresses are measured in an 

j 

indirect manner, because there is no comparison with similar residual-: 
stress-free specimens. The independent influence of residual stresse~ 

• 

• 

• 

on elastic response and strength can.be studied by comparing con- • 
ventionally fabricated angle-ply laminates with similar stress-free 
laminates produced by bonding together at room temperature precured 
plies. 

The combination of residual stresses and interlaminar 
near edges can be beneficial or deleterious. These combined 
stresses near free edges should be investigated. 

I 

stresses 

Knowledge of the complete relaxation characteristics of 
unidirectional composites for different fiber orientations and at 
different temperatures will help in evp.luating the exact amount of 
relaxation of lamination residual stresses. Similar relaxation 

I 
I 

properties in shear and under states of biaxial stress would help describe 
the response of individual plies in an~le-ply laminates. 

The small number of tests described in this report where 
acoustic emission was used point out the potential of this technique 
in assessing structural degradation in composites. This technique 
could be very useful in conjunction with other strain measuring 
techniques, including embedded strain gages .. It could be used 
effectively in monitoring progressive degradation in thermally or 
mechanically cycled la.minates. 

The effects of residual stresses on dynamic response of com­
posite laminates is of great relevance to the foreign-object-damage 
(FOD) of jet engine turbine blades. Stress wave propagation for a 
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I 

~ariety of material and loading parameters, including residual 
btresses, should be studied. Stress wave studies should include 
I 

oetermination of propagation velocities of different types of 
I 

waves, i.e., dilatational, distortional and flexural waves, and 
~ttenuation, reflection and induced fracture types and fracture 
I 

propagation. Experimental techniques, such as surface and embedded , 
I 

~train gages, photoelastic coatings and moire grids are very 
~uitable; 
! 
I 
I 
i 

Impact resistance of composite laminates should·be studied 
,S a function of lamination construction, hence residual stresses. 
the effects of hybridization should also be studied. Ultrasonic 
I . 
techniques are very suitable for damage assessment in such studies. I . . 
: Proper evaluation of results of dynamic loading of composites 
tequires knowledge of the basic mate~ial properties for similar 

¢imescales, i.e., at high strain rates. Very little work has been 

~
one in the area of dynamic (high strain rate) characterizatiortof 

omposites. Such characterization of unidire,ctional and angle-ply 
aminates as a function of strain rate for tensile, compressive and 

shear loading is greatly needed. I ' 
I 
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