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Tho effect of diffusion of specie upon the flow M ' c
v '41"

,-40
about	 a	 transverse	 flat	 plate moving horizontally n'*ta

a r+ n
rM:^1

in a viscous stratified medium	 is considered. '•'`o
•	 tin

Asymptotic expansions are used cu d p `ine a parameter r ^ n

n
regime where a viscous-diffusive-buoyancy balance 'J'	 A

n^
is dominant.	 The solution,	 expressed	 in	 terms of nx

s
an	 inverse Fou-ier transform,	 is numaricaliy	 into- ►^

a	 a
h

grated.	 The	 results	 show that, as	 in the non-dif-

fusive problem,	 a	 region of closed streamlines W
x

exists ahead of the body. 	 However, unlike	 the w c	 Z
wa	 ^

j	 case where diffusion	 is	 neglected,	 the density	 field
N a	 w

within this	 recirculating	 region	 is uniquely determined

J
and	 found	 to be	 statically stable.	 It	 is also found

that varying the relative amount of diffusion affects

not only the density distribution, but the velocity

profile as well, indicating a strong coupling between

the vorticity and specie equation.
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INTRODUCTION

It is a well-knc.wn feature of stratified fluid motions that the

influence of a body moving horizontally can extend far in the upstream

and downstream dir.:ctions.	 In the limit of very large stratification
lb

and negligible viscous forces, Yih 1 has shown that this influence is

contained in a slug of fluid of infinite horizontal extent. 	 In reality,

however, viscous and diffusive effects will -Codify this behavior se

.	 that far from the body the fluid is undittur'--d• 	 Long  has shown that,

far ipstream of an obstacle, the velocity perturbation decays alge-

braically as X -3/
►l
 as a result of viscous stresses. 	 In a subsequent

work, Lor.g 3 showed that diffusion of the stratifying agent across

streamlines alters this far field behavior such that the velocity decays

as X -2/3 . This X-2/3 dependance was also obtained by Koh l for the

case of a viscous-diffusive flow towards a sink.

Graebel s , using Fourier integral technicues, extended Long's 2 far

field similarity analysis and found a solution for the upstream influence

of a body in a nondiffusive fluid which is uniformly valid for X 7 O(Re r,i)I

where Re and R  are the Reynolds number and Richardson number respec-

tively. Graebel 5 showed that this solution is valid provided Ri)71,

Re R i )> ],and the Prandtl number is infinite. However, Browand and

Winant6 in discussing Graebel's 5 analysis, s`iowed that this solution is

uniformly valid for the entire flow field, except in the neigh5orhood of

the singular points at the edges of the body, provided that the addition-

al requirement	 R e /8.441 is satisfied. Th- calculations of Browand and

Winant 6 show that immediately ahead of the body there is a large recirculation
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region containing closed streamlines, and they experimentally verified

the existence of such a region. Hawever, because diffusion of the

stratifyi,,g agent was neglected, a unique solution for the density dis-

tribution within this region containing closed streamlines does not exist.

Thus, Browand and uinant 6 were unable to present a realistic description

of the density structure within this region.

The present study extends Graebel's analysis to include the diffusion

term in the energy equation. The results show that when the stratifying

agent is allowed to diffuse across streamlines, the density structure within

the recirculating region is uniquely determined, and the calculations

reveal a density structure whirr is physically plausible. The method

employs a^: •/mptotic expansions applied in a straightforward manner, and

it is shown that the elegant procedure followed by Freund and Meytr
7
 who

also considered this problem, is not required.

APIALYSIS

The problem to be considered is a linearly stratified infinite fluid

medium flowing past a two dimension transverse flat plate, as depicted in

Fig. 1.

For a steady two dimensional f1 ,)w of an incompressible Boussinesq fluid,

the equations governing the vorticity and energy are given by:

7.
p— L (x, z,'V) - R 1 R 0 7	 - ^_L = 0	 (1)

i	 e

2
i (x , z Y) _ 1	 +	 = 0	 (2)

R S	 ax(! C
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where,

L (x ' L' Y)	 lej a
x - ^x az

4 (X, Z) = ()0 -
101 ) + ^ (x,z )

_ c h)? 
R i
	 2	 Rc y	 S c	 0	 u^ ^z 	 wx

U0 0

C oordinates are nondimensionalized by h, velocities by U 0 , and ))and J are

respectively the kinematic viscosity and diffusion coefficient.

The far field asymptotic behavior of Eqs. 1 and 2 may be examined

by compressing the horizontal coordinate by e(Re , R i , S c ) such that

x = x r (r4< 1), and scaling the density per-urbation by 5 ( Re , R i , Sc)

such that g'(x,z) _	 '(x,z) ( S « 1).	 By introducing this scaling

into the governing equations it is found that a viscous-buoyancy halanco

exists in the far fi •^ld provided

_-	 1	 L< 1

i;e 

S
c

P, .
i

It is also found that the nonlinear terms in the vorticity and energy

equation may be neglected provided

f if	
1/ R i S c L<1

r

P r L< 1

y

n ►

t
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The Equations, to this order, may bt combined to yield

'"^__	 + a--^ s 0
aZ	 ax

Eq. 3 may be solved using Fourier transform techniques. By imposing ,i

boundedness constraint upon 	 as x.•,► + W , the solution may be written

as:
(11

(7, z) =	 F(k)e k xsin(kz)dk
0

where F(k) is the Fourier sine transform of the "initial condition" at

x = 0. The derivation of this quantity is the crucial element in the

solution of the present problem (and also in the solution presented by

Graebel 5), but tf,e physical reasoning entering its determination has not

here-to-fore been made explicit. Hence, we present .a discussion of the

intricacies involved in both the Graebel 5 and Freund ind Meyer solutions.

The important elements in spec i fying the "initial condition" are that

the horizontal mass flux is conserved and that the integral solution (14),

when written in terms of Long's 3 upstream wake similarity solution (which

must hold as x —* m ), matches uniformly with that solution. That is, the

correct initial condition must yield a solution satisfying the constraint

of constant momentum flux defec t_ in -he upstream wake and continuity of

horizontal mass flux at x = 0. 	 This is sketched illustratively in Fig. 2.

The only conditions meeting these t^•.o 

(

requirements simultaneously are these

with

u(x = 0, z)	 -^^ (' + 1 ) + ^(z - 1 )I . I LI L 1	 (5a)

_

for nondiFfusive motion and

	

- 1- (z`-1)
	

LI ZI + (z	 - 0 2	 ^7^>1	 (5b)

v
r	 4f,

x.. F .

^3)



for the diffusive cast, The first condition was used without comment by

Graebel5 :end the latter condition was derived via an integral equation

approach by Fruend and Meyer . Note that the effect of diffusion is clearly

seen in spreadin g the initial conditioi and weakening the singularities at

z = +1. The strength of these (integrablN) singularities are determined

^	 solely by the mass rlux requirement, and their type is determined by the

asymptotic momentum flux requirement.

Thus, by imposing upon Eq. 4 the condition at x = 0 suggested by

i'ruend and Meyer ? and given by Eq. 5b, we obtain their solution which i;

written as:

iI	 or_, 	 cos(kz)

W	 k?
3-

sin(kz)

	

(x, z) =	 J1 ( k )e - k x	 sin(kz)	 dk	 (6)

p	 k
0 -1

^:	 sin(kz)

The solution given by Eq. 6 is valid within the region x = 0 (R e RiSc}.

Close to the plate, the equations may be resca)ed 	 hear layer coordinates

(see i'ig. 3). Within this region a second solutior, .:ing a viscous-buoyancy

balance: may be obtained by Stretching the vertical coordinate as:

z-1

[Re

t.

J t c

Nonlinearity may be neglected provided

	

R	
1/3

c

R.S	 G< 1

	

^	 c

R S 2
	 1/3

k.
C

	 << 1
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and the resulting equation is identical to Eq. 3, which governs the far

field flow. However, contrary to the nondiffusive probler, (L'rowand and Wi-

nant 6), no similarity solution is possible in this case. 	 Thus, under these

more stringent conditions the entire flow field, except in the neighborhood

of the singular points at z - + 1, is governed by a linear viscous-buoyancy

balance, and the solution given by Eq. 6 is uniformly valid. The impor-

tance of the inertial terms near the edges of the plate shows clearly the

need to derive the appropriate "initial condition" via the procedure dis-

cussed above - a procedure .vhich circumvents solution of the complete

equations in the neighborhood of these singular points with subsequent

asymptotic matching to determine F(k).

RESULTS

The solution given by Eq. 6 was numerically integrated and the results

are given in Figs. 4-8. Fiqure 4 shows the streamline pattern surrounding

the body, and it is observed that the recirculation region ahead (and

symmetrically behind) the body exists even wh , ^ diffusion across stream-

lines is not negligible. 	 Although not shown in Fig. 4, it is noted that,

as in the case considered by Browand and Winant 6 an infinite number of

such recirculating regions exist. 	 It should be remembered, however, that

the present solution is uniquely determined within these regions, while

theirs is not.

Figure 5 shows the horizontal velocity ahead of the body in the plane

of Symmetry. The stagnation point located furthest upstream occurs at

x 13 - •335, and this defines the extent of the recirculating fluid. Also

shown in this figure i_.-Long's 3 similarity solution which satisfaetorally
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approximates the flow field for 
x1/3> 

1.4.

Figure 6 shows the velocity distribution at various upstream locations

both within and outside of the region of closed streamlines. Ong can see

the marked increase in velocity as the singular points located at the

edges of the plate are approached.

It is interesting to note that the velocity profile contains a single

inflection point around T = 1 and then monotonically decays toward zero.

This is contrasted with the oscillatory decay of the velocity at large

values of z for the nondiffusive problem

The density perturbation profiles at various horizontal locations

are shown in Fig. 7. 	 It should he r pm,-,nbered that the density perturba-

tion is scaled by the parameterVrTC/—T which must be small if the theory

is to be valid.	 Thus, the density profile through the recirculation region

is always statically stable, and varies only slightly from the. linear

gradient of the unperturbed fluid. This shows that, for the present model,

the velocities are so low and diffusion is so important that, as a fluid

parcel is convected about, it is never far from being neutrally buc

The effect of different diffusion rates upon the velocity and

profiles is shown in Fig. 8. The two cases shown are S c _ .72 and

which roughly correspond to thermal diffusion in air and water resp

ly.	 It is interesting to note that changing the Schmidt number not

affects the density distribution, but also has a profound influence

the velocity profile. This indicates a strong coupling between the

ticity equation and the energy equation.
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FIGURE CAPTIONS

FIG. I. Geometry and coordinate system.

FIC. 2. Required horizontal velocity at 	 x - 0 for diffusive and

nondiffusive case.

FIG. 3. Shear layer coordinate system close to the singular points at

the edge of the plate.

FIG. 4. Stream line pattern showing the recirculating region.

FIG. 5. Upstream variation of centerline horizontal velocity.

FIG. 6. Horizontal velocity profile at various UDStream locations.

FIG. 7. Density perturbation profiles at various ups~ream locations.

FIG. 8. Effect of diffusion upon density perturbation and horizontal

velocity profiles.

10

r



.-+
____.^_.

I

^	 Nx ti



-x

z Z

DIFFUSIVE CASE	 NONDIFFUSIVE C-ASE



L
X

0

N



f	 f	 l	 _ Ln 
/LQ
	 9

	
o	 -

I
"	 1

/^^
Ln0

 1 I co
C\j	

ro

F3 i %il I 	 ^s0

co

3

co	 C\j



up--

co



K • O Ln In Lf)

O N 
N r`
N M

~!X

i	 I

	

O	 `V

	

.^ N
	

—	
dO'
.

^	 r

r
r

O

do

Jq

i

,

I

i

00 ^-
I^ U

oD	 c,	 W
N
>

J

z^O— N
I	 --

1

O
O
N

I



r-

Ln L() (^

o	 N Imo- -=
—	 — N rr)

I	 „^

r^^

C/)

_ do I^

°' •	 ` N

o

a ,

m
t

O 1 // 1i^

N
r\i



i	 • I

A

- r-
)O

I,E

I.

Z; h

-2.0	 -1.6	 -1.2.	 -.8	 --.4	 0
HORIZONTAL VELOCITY , u

0

,.5
'2

1

.4	 .a	 I.^	 I.0	 - 2.0
DENSITY PERTURBATION -p'


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf

