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ABSTRACT

The three-dimensional, primitive equations of motion have been solved
numerically for the case of isotropic box turbulence and the distortion of
homogeneous turbulence by irrotational plane strain at large Reynolds
numbers. A Gaussian filter was applied to governing equations to define
the large scale field. This gives rise to additional second order computed
scale stresses (Leonard stresses). The residual stresses are simulated
through an eddy viscosity. 16x16x16 and 32x32x32 uniform grids were used,
with a fourth order differencing scheme in space and a second order
Adams-Bashforth predictor for explicit time stepping. The results were
compared to the experiments and statistical information was extracted

from the computer generated data.
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CHAPTER 1

INTRODUCTION

1.1 Historical Background

As computer capabilities grow, the three-dimensional time-dependent
computation of turbulence is becoming possible. However, the retention
of all scales of motion is not yet feasible (and probably never will be),
so the best one can hope for is the simulation of the large scale
structures. The large scale structures are strongly dependent upon the
nature of the flow, but there is considerable evidence that the structure
of the smaller scales 1s independent of the large scale structure. This
suggests a mixed approach in which one computes the large scale motions
and models the small scales.

To define the large scale motions, some sort of averaging operator
has to be applied to the governing equations to filter out the small
scale motions. However, in three-dimensional computations to date, the
definition of the small scale motions was not precisely related to the
filtering operation and consequently the meaning of those motions was
not very clear. In any case, the resulting equations for the filtered
field contain so-called sub-grid scale or residual scale Reynolds stresses,
which must be modeled in the computation.

Two distinctive solution methods have been used in solving the re-
sulting equations. The first is a conventional finite difference mesh
calculation. In this approach, the simplest and perhaps the most usual
way of relating the residual scale turbulence to the filtered motion is
by a local eddy viscosity model. Smagorinsky (1963, 1965) related eddy
viscosity to the local strain-rate of the filtered field. Deardorff |
(1970a,b) applied this model to three-dimensional turbulent channel flow
and planetary boundary layer problems, and Schumann (1973) applied it to
plane channels and annuli. Deardorff (1973) and Schumann later introduced
more sophisticated residual Reynolds stress transport equations. Other
examples of this approach are given by Lilly (1964, 1967), Smagorinsky
et al (1965), Fox and Lilly (1972), Fox and Deardorff (1972). Previous

work mentioned above has not paid sufficient attention to the basic
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aspects of this type of simulation, sc as yet this approach has not
really progressed very far.

The second approach is the spectral (Fourier) method much advocated
by Orszag (1969, 1971la,b). While this method has mathematically attrac-
tive features for certain problems, it is generally more difficult to
extend to flows with interesting geometries. Moreover, work to date
ignored the residual Reynolds stresses, and it is not clear how these

could be incorporated in a Fourier calculation.

1.2 Motivation and Objectives

At the time this work was initiated there were some serious problems
with work done previously:

(1) There was a need to define the large-scale field precisely,
so that the equations can be systematically developed.

(2) There was a need to carefully evaluate the accuracy requirements
to be sure that computational errors are higher order than
the residual stresses.

(3) There was a need to carefully assess just what can really
be learned from this type of turbulence simulation.

The main objective of this study was to carefully develop a numerical
simulation method for turbulent flows away from solid or free boundaries,
and to apply this method to study decaying isotropic turbulence and
homogeneous turbulence with irrotational plane strain.

The present study is one in a systematic program investigating large
eddy simulation of turbulence, and reports the details of the initial

computations under this program.

1.3 Summary ,
The contribution of the present work includes

(a) a precise definition for the large-scale field (after
Leonard (1973)),

(b) a study of the optimum averaging scale, as compared to the
grid mesh scale,

(c) a study of two residual stress models, and evaluation of the

model constant for each,:

2



(d)

(e)

(£)

(g)

(h)

a demonstration that the model constant is independent of
mesh size,

a fourth-order differencing scheme that properly conserves
energy and momentum,

a method for calculating the pressure so as to conserve

mass at subsequent time steps,

a demonstration that a coarse mesh can be used to obtain
surprisingly good predictions for the Reynolds stresses in

a straining flow,

an evaluation of certain aspects of simple turbulence closure

models.

Although many questions have been answered by this work, new ones

have been raised. Suggestions for follow-on work in this project are

made in Chapter VI.



Chapter II

Theoretical Foundations

2.1 Definition of the Filtered and Residual Fields

To resolve the smallest scales of turbulence in a grid-based cal-
culation, the mesh size has to be smaller than the dissipation length,
which is on the order of the Kolmogorov microscale, n = (v3/€)1/4 .
Here VvV 1is the kinematic viscosity and € 1s the energy dissipation
rate per unit mass. It is known that (see Tennekes and Lumley 1972)
€ = q3/L where q 1is the R.M.S. velocity and L 1is the length scale
of large eddies. Thus the minimum number of mesh points that must be
used in a three~-dimensional grid computation that resolves both the

large and small scales can be estimated as
3 9/4
SORIC A
Using this estimate, we find that an RT of lO3 s, typical of turbulent
flows, would require 2 x 107 worlds of storage for four variables. This
is approximately 50 times the Large Core Memory of the CDC 7600, and
about 10 times the available memory of the ILLIAC IV disk.

It is clear that one can not do a full simulation, except at
extremely low Reynolds number. The best one can hope for is a computa-
tion that will yield the large-scale motions. Fortunately these contain
- most of the turbulence energy, and are responsible for most of the tur-
bulent transport, and so a large-eddy simulation technique would be
very useful, especially if it could handle arbitrary flows.

The first problem one faces is in defining the large scale field.
Conventionally the large scale motions have been defined by volume-
averaging in a continuous manner over compﬁtacional grid boxes (e.g.

Deardorff 1970a). Schumann (1973, 1974) applied a slightly different

technique involving averaging over the surface of grid boxes.
A more general approach that recognizes the continuous nature of

the flow variables is the "filter function" approach of Leonard (1973).
Let f(x) denote a field variable, for example velocity. f may contain

4



large and very small components. Then, we define the filtered field
?'by
£(x) = fG(g_z_-i') £(x') dx' (2.1a)

where G 1is a selected filter function. For C = C , where C 1is a

constant, the filter G must satisfy

/G(g{_) dx = 1 (2.1b)

Now f can be decomposed into its filtered field (FF) component, f ,
and residual-field (RF) components, f' , by

£f = £+ £' (2.2)

Note that f i1s not the conventional mean used in the classic-turbulence
literature.

In the present work we treat only flows that are homogeneous, for
which the integration in (2.1) extends over all space. Careful considera-
tion will have to be given to the domain of iﬁtegration when one desires
to treat a flow near a wall.

Now note that, 1f G 1s plecewise continuously differentiable and

G(r) goes to zero as r * ® at least as fast as l/r4 ,

—gé = / G(Bi_.}s') %;f{_-' di'
= ’ﬁé/ - f(x') 2 G(x-x') dx'
X)) g XX X
0 —00 -0
« 2 [ ex") £x") dx'
ax X=X X' ) dax
9 =
= 3§.f (2.3a)
of of
Also, 3¢ " 3t (2.3b)



However,

fg ¢ fg (2.3c)

2.2 The Dynamical Equations
Applying (2.1) to the Navier-Stokes equations, and using (2.2) and

(2.3), one obtains (for incompressible flows)

5—1 = 0 (2.4)
du -
i g — - 1 op 2
T + —axj uiuj 5 3xi + vV a, (2.5)
The advection term is
P e an ' IR | 1., 1
uiu:j (50"'-') uiuj + uiuj + uiu._l + uiuj
= uiuj + Rij : (2.6)
where
= Ty ! 1oy =0
Rij uiuj + uiu:I + uiuj
Rij is the residual field contribution to the advection term. -pRij is

called the "residual stress."
To localize the first term on the right in (2.6) we carry out a Taylor

series expansion,

19y (&t = /G(ggo-z) Giﬁj (x) dx

(<]

) %, , ¥,
- f {t*i(zo't) M S T B i S TS e Y

-Q0

%
(x,,t) + 51

+ O(x-xo)3§ Yy ;G 5%, (1 =% )

225

1 3
+: -3@3{; (o) (g g + 0Cxx)” £ Glx,mm) dx

(2.7)

3



For the above filtering of the dynamical equations to be useful, the
integrals in (2.7) must exist. This requires that G(r) > O exponentially

as r >« ,

2.3 Filter Selection
(a) Sub-Grid-Scale filter
Let us first seek a filter that makes the scales of motion in the

residual field smaller than the scales in the filtered field, in the

Fourier sense. Let

£ = f Fe) elkX gy (2.8)
Then, © o
. ~ o !
f = / /f(p G(x-x') X' 4x' dak (2.9)
-0 -—00

We want to have £ contain all scales larger than a cut-off scale. Thus

we want +k
= € A ikex
£f = f f(k) e==dk (2.10)
-k
(o3
where kc is the cut-off wave number. Hence, we can write
0 o o
~ . ~ . '
/H(k) £ (k) eiE-’idg = / £ (k) /G(g—g') elkx dx' dk
-C0 =00 00
(2.11a)
where 0 if ki >k for any 1
H(k;k)) = : ¢ (2.11b)
1 otherwise
So we have an integral equation for G ,
- ,
'—
H(k;k ) = / G(x-x") elk(x'-x) dx' (2.12)
The solution to (2.12) is
3 sin w(x, -x!)/A
G(x-x") = I ﬂ( 1 1 A (2.13)
1=1 3™y



where AA = TT/kc is the averaging or filtering length scale. This is

the proper filter if one wishes to have the residual field really be

"sub-grid scale."

A grid-based computation made using this filter

would be equivalent to a Fourler computation.

The second moment of G involves integrals like

sin(ﬂx/qA)

dx (2.14)

0
2
j( X

-Q0

mX

This integral does not exist, and hence the expansion (2.7) could not

be used.

This filter is not suitable for a grid-based numerical method;

hence one can not expect to really have the residual field be sub-grid

scale.

(b) Top-hat filter

The filter used implicitly by many workers is the top-hat,

G(x-x")

Then the filtered velocity is

u(x)

1/4

o

1

By

3

8
y  for |xx'| <o
AA (2.15)
|z-x'| > 5
bar2
J/. u(xtE) dE (2.16)

B2

This is equivalent to volume averaging.

(x)

e

{n

Here #(k)

f

ba/2

A

bas2

Al2

{=]1 ki Ap/2

The Fourier transform of (2.16) is

ulxrE) e =% dxag

S o5 gg

8

(2.17)

is the Fourier transform of u .



Equation (2.17) shows that the spectrum of the filtered field will
contain components of all wave-numbers. Moreover, at the wave-numbers
for which the coefficient of #(k) 1n (2.17) is zero, the inverse trans-
form will be singular. This makes it imposaible to predict the actual
spectrum O(k) from the filtered spectrum u(k) , and this very unde-
sirable feature of the top-hat filter renders it useless if we want to
compute spectral features with a grid-based method. However, the top-
hat filter could be used 1f gpectral results were not sought.

Using (2.15) in (2.7), and carrying out the integration over x ,

w,u, (x,t) = uu,(x c)+f-‘2’ﬁv2(ﬁﬁ)+ W) (2.18)
1Yy oo 1% %o 24 14 A .
The second term on the right is called the Leonard term; —pAi Vz(ﬁiﬁj)/ZA
is called the "Leonard stress.' As will be shown later,
Rij - O(Ai) and AA = 0(A) . So both the residual stresses and the
Leonard stresses have to be included; moreover, the computational dif-
ference scheme must be accurate to O(AZ) to avoid introduction of
numerical errors comparable with these stresses.
(c) Gaussain filter
A filter with much more desirable properties is
1 3 2,2
G(x-x') = Jl— exp {-y(x-x')</A (2.19)
- = T A A - = A
where Y 1s a constant. Then the filtered velocity is
2,,2
_ L\ 7 -y (x-x") /8
u(x) = J%Z— / u(x') e ~dx! (2.20)
A -00

The Fourier transform of this is



L] o 2,.2
o 3 Y E°/A
n = Y1l -ik°x A
u(x) (\/: A A) _[ _[ u(xtE) e dx df
o 2,,2
3 . Yy E7/4
- (ﬁzl‘) f 4 E= . A
A -0
2
3 A
1 1 % ,2,.2,.3
= (E.A:) a(k) exp {- Z -Y— (kl + k2 + k3)}
A2
= (k) exp (- ﬁ k2) (2.21)

Consider now the three-dimensional energy spectra of the actual and
filtered fields:

2

E(k) = 2m k° < G(k) + G*(k)> | (2.22a)

E(K) = 2m k%< fx_(p . i*(5)> (2.22b)

Here < > denotes an average over an ensemble of experiments, and
* denotes a complex conjugate. Equations (2.21) and (2.22) show that

_ by
E(k) = E(k) exp -W-k (2.23)

We see that the use of the Gaussian filter will result in a filtered
field that misses only a very small amount of large scale motion; most
of the small scale motions are placed in the residual field. Thus, in
many respects this filter has the desirable properties of the sub-grid-
scale filter. However, its behavior at r > ©® makes the integrals in
(2.7) exist. Moreover, the conversion back and forth between the
spectrum of the filtered field and the spectrum of the actual field is
easily accomplished, and hence the Gaussian filter is perferable to the
top-hat filter.

10



Using (2.19) and (2.7), one obtains
2

A
V (u u,) + O(A ) (2.24)

,t)=t-1\-1(x,t)+4 194

173

uiuj (zb
When vy = 6 , the Leonard term in (2.24) 1is exactly the same as in (2.18).
Hence the Gaussian filter with Y = 6 was chosen for the present study.
This filter is illustrated on Fig. 2.1 and an example of E and E
relation (2.23) is shown on Fig. 2.2,

2.4 Residual Stress Models

The following eddy viscosity model is used for R

1y
R,, = XR. 6. .-2v5s (2.25)
13 " 3 Rk Oq4 7513 .
where - -
3 3
Sy " %(3’1 a—xi)
%y 1

is the strain-rate tensor, and V

with the residual field motions.

T is an effective viscosity associated

(a) Smagorinsky model

Smagorinsky (1963) suggested a model for Vp s

1/2 (2.26)

Vo= (eghp? (@5 i3 S19)
where Cg 1s a constant. In experiments one observes a sharp separation
of turbulent regions, contalning vorticity and non-turbulent regions which
are irrotational. A weakness of this model is that, in a non-turbulent
irrotational region, V¢ will have a non-zero value. This will give

rise to residual stresses in the non-turbulent flow outside of a boundary

layer.
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(b) Vorticity model

A way around this drawback is to relate v
A likely possibility is

T directly to vorticity.

v, = (cAA) W, ‘ (2.27)
where ® = curl u is the vorticity, and c, 1s a constant.

2.5 Governing Equations for the Filtered Field

Now, neglicting the molecular viscosity term, and dropping terms of

higher order than A , filtered momentum equations become

3a A2
109 f[-- B4 2-- _ ¢
2+ 5 (1;1 +op VA, - 2stij) ey (2.28)

i
- R4 1
where P 0 + 3 Rii . This may be written as
53
i d A
e - M T, - B (2.29)
where A2
A 9 - A L2 - =
hi s - xj i j 2% v uiuj szsij)

It is in this form that we shall deal with the problem computationally.
The manner in which continuity was used to fix P 1s discussed in the

next chapter.
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CHAPTER II1I

NUMERICAL METHOD

3.1 Grid Layout and Notation

A uniform cubic mesh is used, as sketched below. The mesh width

need not be the same as the averaging scale AA introduced in the

previous chapter.

vl

/L
2'/ +1
1

m-1 L=
z k-1 k k+1

The 4i-component of the filtered velocity at the nth time step is

written as

-(n)
u
i(kaz‘:m)

where (k,%,m) is the meshpoint index for (x, y, z).
We now define the following operator notations:

6/6xi = finite difference operator corresponding to 8/31'::l

6/6¢t finite difference operator corresponding to 3/dt
G = finite difference form of gradient operator
D = finite difference form of divergence operator

-g—(u f) = transport operator corresponding to 2 (u, £)
ij i ' ij i

Further details of these terms are given next.
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3.2 Space Differencing

A fourth order differencing scheme is applied where fourth order
accuracy 1s needed. Since the Leonard and residual stress terms are
second order, they can be approximated by second order formula to give
the same accuracy. The central difference fourth order scheme is, for
example,

L U S S
5x 128 )% k-2) " 8%(k-1) * 8Ua+1) T V(k+2) (3.1

For simplicity, the subscripts £ and m are not shown.

Suppose we represent u by a discrete Fourier expansion,

T Y a kX (3.2)
n
where k, = 21 n wave number in the direction
1 NA ™1 ]
A, = N/2,..0,0,1,...,G - 1)

N = Number of mesh points in one direction

The sum extends over all n, ’ n, , and n, . Substituting (3.2) in (3.1),
the Fourier transform of 6&u/6x is identified as

N _ 4
— -12Ak -iAk iAk 12Ak
Su 1 1 1 1 1, 2
Tx 128 (e 8e + 8e e ) u
i z
e { 8 sin(Akl) - sin(ZAkl) } u - (3.3)
If a modified wave number, kj'. y 18 defined by
VY
K 2 {8 sin(Ak,) - sin(20k,) } (3.4)
then the Fourier transform of DE = 0 can be written as
'2 =
kiui 0 (3.5)

Note that the exact transform of div E is kiai . Hence, ki may be
interpreted as the wave number that allows continuity to be satisfied in

grid space.

14



I1f instead one were to use a second-order central difference scheme,

Su 1 /- -
Sx Z_A'(u(k+1) - u(k—l)) (3.6

The modified wave number , k; , would be

>

1
" =
kY A sin(Ak,) (3.7)
kys ki and k; are compared in Fig. 3.1.
The fourth-order D and G operators are therefore (again only

subscripts different from k, 2, or m are explicitly shown).

D(u). = -g—:+g—;+g—‘z'
= 213 - 8% + 83 -3
128 )% (k-2) Y(k-1) Ytl) T Y (k+2)
+L§; - 8v + 8y -v
125 (V(2-2) (2-1) (2+1) " V(e+2)
+Lga - 8w + 8w - %
12A (m-2) (m-1) (m+1) (mt+2)
= div 3+ 0(a% (3.8)
. &8 8 )
G(P) = (ex6x+e 6_y+ez<‘5_z)P
- & 12A ; Per-2) = 81y * 8Py T P(k+2);
+ & —3;-, - 8p +8P, .. -P ;
2 )F-2) (2-1) (2+1) " Pev2)
A 1
+ ¢, 125 1P2) - a1y * SPra1) - P(m+2)£
= grad P + 0(0%) (3.9)
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where ax, éy, €z are unit vectors in the x-, y-, and z-directions.

3.3 DG Operator

)

8
DG(P) = E ' (&: P) (3.10)

Expanding one term of (3.10), using the fourth-order difference scheme,

=~ P)] = —=— {P - 16P + 64P
6x \6x (12A)2 (k-4) (k~3) (k-2)

+ 16P(k-1) - 130P(k) + 16P(k+1) + 64P(k+2)
- 16P(k+3) + P(k+4)} (3.11)
If P 1s expanded in a discrete Fourier series, similar to (3.2), the

Fourier Transform of (3.11) is identified as,
P '

& fse\ . 1 J4Bky o 438k o, 128Kp o dAK)
6x \6x (12A)2

- 130 + 16e”18KL 4 g4e7i28kL | 16138k e'i4Ak1§ 4

- 1 ~65 + 16 cos(Ak,) + 64 cos(24k,)
72A2 1 1

- 16 cos(3Ak,) + cos(éAkl)} P

= k% ) (3.12)

(3.12) may be obtained directly from (3.4). Therefore, in Fourier space DG

operator becomes
(3.13)

s <! k!
DG ki ki

Compare (3.12) to the following fourth order central differencing scheme,

which is a commonly used approximation to 32/8x2 operator;

16



) 1 z
L_p = L1 p + 16P - 30P, . + 16P -P
ze 12A2 (k-2) (k-1) (k) (k+1) (k+2)
(3.14)
A
5%p 1
(-——-) a - — { 15 - 16 cos(dk,) + cos(2Ak.)} p
2 2 1 1
§x 64
A _ *i 5 (3.15)

where El is defined by (3.15). ki, kiz , and.ﬁi are compared in Fig.

3.2 for N =16 .

3.4 Transport Difference Operator

Differencing the transport terms in the form of (2.28) will auto-
matically conserve momentum in an inviscid flow. But the
computation becomes unstable and the kinetic energy increases. This
happens in real flows in spite of the dissipative nature of Rij and
the Leonard term. This non-linear instability, first reported by Phillips
(1959), arises because the momentum conservative form does not necessarily
guarantee energy conservation, and truncation errors in the energy equa-
tion are not negligible.

Arakawa (1966) devised a differencing scheme that conserves both
mean square vorticity and energy in two-dimensional calculations that use
the vorticity and stream function as dependent variables. This is not
useful in a three-dimensional flow.

A fourth-order transport differencing scheme that does conserve

energy and momentum was developed for the present work:
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§ = 1§, -
3 D = 37 3(Uf)(k+1) = b 1y

*ulE oy~ Faeny? F EQgay T Yger))

1 — _— - = -
~ 4B 3(“f)(k+z) = W oy T Uy~ Erre2)y)

+ f(u(k+2) - u(k-2))£ (3.16)
Again we only show subscripts that differs from k, £, or m . For details
see Appendix I. In the present work this was used for the terms
B(Giﬁj)/axj ; for the Leonard term a second-order version of (3.16) was

used,
L @ - % |@H - (uf)
8= 48 ) (k+1) (k-1)

+ u(f(k"'l) - E(k_l))'f‘ f(a(k+1) - G(k—l)) (3.17)

The familiar second-order central difference approximation was used for

V2 in the Leonard term,

+hl

62
§x

2f

o * Fany) (3.18)

N

1 -
ZE (f(k+1) -

For the residual stress terms, (3.17) was used. The strain-rates and

vorticity were computed from the second-order central difference (3.6).

3.5 Time Differencing

" A second order Adams-Bashforth method was used for the time inte-
gration. As shown by Lilly (1965), this method is very weakly unstable,
but the total spurious computational production of kinetic energy is
small.

The Adams-Bashforth formula for u, at time step nt+l 1is

1

18



D i e (2 - 30D) soa) s

where H, 18 defined by (2.29). Note that this is an explicit scheme.

i

3.6 Pressure Field Solution
To study this problem in detail, let us rewrite (2.29) as

i oP
3 " hi - (3.20a)
i
Again, continuity is
aﬁi
= 0 (3.20Db)
X

Taking the divergence of (3.20a)

sz
2 9 9 i
VP = =—h, - —
Bxi i ot Bxi

= g (3.21)

The usual computational procedure involves choosing the pressure
field at the current time step such that continuity is satisfied at the
next time step, i.e. so that the new flow field will be divergence free.
This must be done very carefully. Let's look at three possibilities.
These take advantage of Fourier transformation, for it is known that
fast Fourier transforms provide an excellent way to solve the Poisson
equation, at least in a rectangular domain.

(a) Method 1
' The Fourier transform of (3.21) is

«%P = g (3.22)
- 2 2,,2,.2
where g is the difference approximation to g, and k ='kx+ky+kz .

kx’ ky’ and kz are wave numbers in =x-, y-,and z-directions. By inverse
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transformation, P can be obtained. However, as will be shown shortly,
this method does not give a next velocity field that is divergence-
free in grid space. Hence this approach is unsatisfactory.

(b) Method 2

A second approach is to use the difference form of (3.21),

+ + P = g (3.23)

Then P can be obtained by Fourier transforming (3.23),

A
~

—kiki P = g8 (3.24)

As will be shown shortly, the pressure from this does not give a divergence-
free field in grid space at the next time step. Hence, this method, which
was used by Jain (1967), is also unsatisfactory.

(c) Method 3

The finite difference forms of (3.20a) and (3.20b) are

Su,
il VR R sl 4 (3.25a)

Dai = 0 (3.25b)

where Ei is difference approximation to h If we apply the D

i L]
operator to (3.25a),

Bi u h = 1
DG P = g (Du) +Dh, = g (3.26)

Then, taking the Fourier transform of (3.26), and using (3.13),
"' P = o
k! P g (3.27)

Now let's compare the three methods. The Fourier transform of
(3.25a) 1is
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61-11 2 ~
—— = —-— f
5t hi i ki P (3.28)

To satisfy continuity in grid space, we want to -have
5 %Y
5 =, -0
_ Y |
for a flow that has Du1 = 0 to start. From (3.5), this is equivalent

to k{ﬁi = 0 at the first and next time steps. Using (3.21), and sub-

~ A
stituting P 1in (3.28) by P from (3.22), (3.24) or (3.27) and operating

with D on the resulting equations, one obtains,

for method 1: 5 " " kik' "
nn bt = > 0 '
. Y (kiui) (hi kz hj)ki ¢ 0 (3.29)
for method 2:
§ .. .2 2 kiky 4 ‘
= ku) = | B -—,,ilhj) k] § 0 (3.30)
k

for method 3:

~ A k'k' A
S = = s o347 '
3t (kiui) (hi 12 hj )ki 0 (3.31)
The error introduced by method 1 and method 2 can be seen clearly by
observing the magnitude of the ratio k'2/k2 or k.2/§2 as illustrated
in Fig. 3.2. Method 3 satisfies continuity at the next time step in

grid space, and hence is chosen for pressure field solution here.

3.7 Summary of Difference Equations

Momentum equation:

- 2
du A 2
1 § J--.°A & - - ~
& T 8x, Uyt 7 8%, 8% (uguy) = 2vpSy,
)
6xi
= b, - %‘P— (3.32)
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Poisson equation

where

wi
n

i3

for P:

DG(P) = D(Ei)

2 (25

(chA)2 <aiai>1

8
|
1jk 6xk

constant

13513

)1/2

/2

22

Smagorinsky model

Vorticity model

(3.33)



CHAPTER IV

DECAY OF ISOTROPIC TURBULENCE

4.1 Problem Description

Perhaps the most basic problem in turbulence is the decay of incom

pressible homogeneous isotropic turbulence. It is with this primitive
turbulent flow that our study began. This flow was used to determine the
value of the residual stress model constant (Cs or Cv)’ for use in sub-
sequent calculations of other flows. It also provided a basic testing
ground for the computational methods being developed in this program.

The experimental grid turbulence data of Comte-Bellot and Corrsin
(1971) were used as the ''target" for these predictions. Such experiments
closely approximate homogeneous isotropic turbulence, when viewed in a

coordinate frame translating at the mean flow velocity.

4.2 The Benchmark Experiment

The pertinent information from Comte-Bellot and Corrsin's (1971)
experiments will be reviewed now. The wind tunnel test section, which
has a slight secondary contraction to isotropize the turbulence, is
sketched in Fig. 4.1 . The turbulence was generated by a biplane square
rod grid with mesh size, M , of 5.08 cm. The free-stream air speed, Uo R
was 10 m/sec, giving grid mesh Reynolds number U M/v of 34,000 . The
streamwise (<u2>) and transverse (<v2> . <w2>) tugbulent energy components
remained nearly equal to each other during the decay along the test sec-

tion. These were closely fit by

Ui (Uot )1.25
=21\ —— - 3.5 (4.1a)
<u2> M R
Ug Ui <Uot )1'25
. e 20(-2-- 3.5 (4.1b)
<v2> <w2> M

Correlations, energy spectra and other quantities were measured using
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hot wire anemometry at Uot/M = 42, 98 and 171. The Reynolds number

based on the Taylor microscale, Rk = '¢(u2)xlv , was 71.6, 65.3 and
60.7 at these points.

4.3 Mesh Size Selection

The choice of the computational mesh size requires consideration of

the turbulence spectrum (Fig. 4.3). The smallest scales that can be re-
solved have wave number m/A , where A 1s the mesh width. If there
are N points in one direction, the largest scales that will be repre-
sented in the computation have wave number 27/(NA). N and A must be
chosen such that the computation captures as much of the turbulence
energy as possible. It is also desirable that the computation extend
to the so-called inertial subrange (Tennekes and Lumley 1972).

The mesh systems used were as follows:

163 mesh

A = 1.5cm, N=16, At = 6.25 x 10 “sec

323 mesh

A = 1l.0cm, N= 32, At

6.25 x 10 Jsec

The model constants were first evaluated using the 163 mesh; the 323

calculation then verified that the constants are independent of mesh size.

The corresponding Courant numbers were:

Ne = Jq3/3 At/bx q2 = TP + P>+ <w>

163 mesh

Ne < 0.06
323 mesh
Ne < 0.1
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4.4 Initial Conditions
We want to prescribe an initial profile that has the proper energy

content and spectrum, and is isotropic. A technique for generating a
random field that meets these conditions, and also satisfies continuity,
was developed for this purpose. Since the computation will treat the
filtered field, we matched the initial filtered spectrum and not the
initial measured spectrum.

We generated initial filtereg field, ;;<§) » by first establishing

its discrete Fourier transform, ;;(En) ’
XN

1
2 a ¢
i - LTT Sae @.2)
N
n —_
2

) 2m
Here gn is the wave number vector defined by (kn)i =B ni , where n,

is an integer ranging from -1/2N to 1/2N-1 for an N° mesh system. Note
that the maximum wave number is k = m/A . If u 1is discretized at
N points, then the Fourier transform u can only be evaluated at N
discrete wave numbers, and that is why the summation must have non-sym-
metric limits.

The commonly used fast Fourier transform requires N to be 2" ’
where m 1is an integer (see Cochran et al. 1967). Physically N has
to be large enough so that wave-number spectra can be treated as smooth
functions. As will be shown later, 163 or 323 mesh systems gave fairly
smooth three-dimensional energy spectra.

Now, we can approximate the spectrum function, ¢ of the filtered

13
field (see Tennekes and Lumley 1972) as,

o, (k ) = <u (k )u (k > ' (4.3)

where < > denotes an average over an esemble of experiments or, alter-
natively, over a spherical shell in k-space with radius kn (see Section
4.6).
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The filtered 3-D energy spectrum, E , 1s given by

Ek) = 272

<1>:L 1 (k) (4.4)
E(k)dk 1is the energy content of a differentially thick spherical shell
in wave-number space. Using (4.3), E(k) is approximated by

— . 2 £ Lo
E(kn) = 2mk"< ui(kn)ui (kn)> (4.5)

n

To establish the initial field we need to fix the Fourier amplitudes
u a u.*
ui(kn) . Equation (4.52 was used to fix ui(kn)ui (kn) for each k .

The vector components u, were chosen by a technique described below.

To get ;i to satisfy continuity in grid space, the real and imag-
inary parts of the transformed velocity vector, u , must be perpendicular
to the modified wave-number vector, k' (see Equation (3.5)). 1In the
actual computation, we have N3 point/g in k-space, and, for any k ,
k' can be obtained by (3.4). Then, E has to be selected on a perpen-
dicular plane to k' in k-space. R

To ensure statistical isotropy, the real and imaginary parts of E
must be chosen randomly. First we picked a unit vector A , perpendicular
to k' , by turning a random angle, ¢ , from a reference frame (Fig.
4.2). Here ¢ was selected with uniform probability over the interval
0 to 2m . We then repeated to get a second rindom unit vector B,
also perpendicular to k' . The real part of E was made proportional
to the vector A and the imaginary to B , and hence continuity was sat-
isfied. We still ne’e\ded to fix the relative magnitudes of the real and
imaginary parts of E(k) » which we did by a random choice of an angle,
6 . Then we defined a and b by " ’

a = cosb , b = sinbd (4.6)
Finally, we set
2 2 o 1/2
uj(gn) = [uy (& )y, @n)l (aAj + 1bB,) 4. 7)
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N

Now, by inverse transforming ;i » We obtained ;i , which must be

real and will be real if the Fourier transform satisfies

(k) (4.8)

-1

l:L?

In essence, the imaginary contribution for each negative kn exactly
cancels the imaginary contribution of the same positive kn . Hence, we
only needed to generate .;i by (4.7) for the upper half of the k-space,

i.e. for O f_n‘i?g - 1. However, this won't fix u for ni = --g .

Moreover, if <§ is not zero, the velocity field will have an imaginary

part (see (4.2)). 1If instead we wrote (4.2) as

N/2
- 2 ik - x
u (x) = )IDIDD u (ke
-N/2

. then ;i would be real. However, then we could not take advantage of

the FFT routine to invert :i + As a practical solution to this dilemma

we set uj equal to zero for the wave numbers corresponding to n, =

-1/2N . Then (4.2) is essentially the same as

N
G- ik - x
- 2 n =
1@ = X 2L uk)e
-G -1

and ;i will be real, and an FFT routine may be used. The resulting
energy spectrum was therefore slightly low at the highest wave number.
However, the effect of this discrepancy was insignificant and became
invigible after a few time steps in the computation.

We remark that the field generated by this procedure is quite iso-
tropic. However, as will be shown it has zero skewness, whereas real
turbulence has a non-zero skewness. As will be seen, this condition

corrected itself in only a few time steps.
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4.5 Boundary Conditions

The computational problem can only extend over a part of the experi-
mental region. To get around this difficulty we have used '"periodic"
boundary conditions, which are of course not really correct. However,
if the computational grid system extends over a distance large compared
to the scale of the energy-containing motions, the periodic boundary con-
ditions should not introduce appreciable error. The periodic boundary
conditions have a great advantage in dealing with the Poisson equation

for the pressure by fast Fourier transform (FFT) methods.

4.6 Extraction of Statistical Information from the Computation

The statistical quantities of interest are averages over ensembles
of experiments. Since we made only one computational realization in
each case, the statistical quantities had to be inferred from appropriate
ergodic hypotheses.

In physical space the ensemble average < > was replaced by an
average over the flow field. This was done by taking a mean value over

N3 mesh points, i.e.

N
1
<f(x)> = Fzzzf(k,z,m) (4.9)
k,2,m=1

The differencing schemes described in Chapter III were used to calculate
these quantities.

In wave number space, the ensemble average was replaced by an aver-
age over a shell in k-space ("shell average'). Since we have only 'N3
discrete points in k-space, the < > average was made by taking a mean
value over the poiﬁts between the two shells with fadius (k-1/2Ak) and
(k+1/25Kk). R

To get the filtered spectrum, 'E(k) R Ehe trinsformed velocity, :E ,
was obtained by FFT (see 4.2). Then, éﬁi(gn)ﬁi*(gn)> was calculated
by shell-averaging. The choice of the band width, Ak , i1s somewhat

arbitrary and was set to be 0.1 cm-l here. Then, from (4.5),
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E(k) = == (k) : (4.10)

where Nk is the number of points between the two shells with radius

(k-1/2Ak) and (k+1/2Ak) . The resulting spectra, evaluated at 0.1 cm-l
wave-number intervals, were smooth enough to be represented by continuous
curves as shown by solid lines in Fig. 4.4, 4.5, and 4.7 . The filtered

spectrum, E{k) s ﬁas then compared to the filtered experimental spectrum,

which we obtained using (2.23).

4.7 Selection of the Averaging Scale

Considerable thought was given to the choice of the averaging scale
AA . Our failures are as important as our successes, and both will now
be discussed.

Consider first the computation with AA = 0 . This zero averaging
length is equivalent to the unfiltered calculations used in laminar flow,
and implies that we are trying to resolve the complete spectrum by a fin-

ite difference method. The Leonard term in this case is equal to zero,

tee. By u = U

The unfiltered initial energy spectrum is plotted in Fig. 4.3 . The
amounts of unfiltered energy for the 163 mesh and 323 mesh systems are
also shown. Figure 4.4 shows the computation for a value of Cs that
gives the proper rate of energy decay. Note that for k > l/2kmax the
spectrum is distorted considerably at tUO/M = 86.5 and become worse as
time increases.

In an instantaneously fluctuating field, higher derivatives are not
small and the convergence of the Taylor series is eipected to be slow.
Use of AA = 0 and the consequent exclusion of the Leonard term caused
much distortion of the spectrum, i.e. aliasing error. Indeed, the fin-
ite difference method with N mesh points in one direction can only re-
solve the unfiltered field up to k = m/(24) = kmax/z , which 1s a half

the maximum wave number in one direction (see Orszag 1969, Orszag and
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Israelli 1974). Judging from Fig. 4.4, in a computation without filter-
ing the non-linear interactibns transfer too much energy from large to
small scales. This excess up-scale energy transfer could be somewhat re-
duced by using a larger coefficient in the residual stress model. How-
ever, this brings an unreasonably high energy decay rate. We conclude
that one should never use AA = 0 in a turbulence simulation; filter-
ing is essential.

Let's look next at what happens when the averaging scale AA is
equal to the mesh scale A . Figure 4.5 shows a computation with a value
of Cs that gives tﬁe proper energy decay. Note that the errors in the
predictions of the filtered spectrum are significant at high wave numbers.

Consider now the computations with AA = 2A , shown in Fig. 4.6, run
for values of Cs and Cv that give the proper energy decay. The pre-
dictions of the filtered spectrum for both residual stress models are
remarkably accurate, even in the coarse 163 calculation!

To investigate the effect of the Leonard term separately from the
filtering, an additional calcﬁlation with AA = 2A was run with the
vorticity model, excluding the Leonard terms (Fig. 4.7). The prediction
1s poor on high wave number side. Evidently the Leonard terms assists
in removal of energy from high wave numbers. We conclude that good re-
sults will be obtained with AA = 2A , and that the Leonard terms must
be included.

4.8 Selection of Cs - and Cv

An analytical way of determiniﬁg the residual stress model constants,
Cs or Cv , 18 not known. Lilly (1966) estimated Cs = 0.2 using sev-
eral ad~hoc assumptions. Later workers (Deardorff 1971, Fox and Deardorff
1972) calibrated this constant to get the best computational results. In
these cases, the required CS was between 0.10 and 0,22 .

In the present study a series of 163 mesh calculations were run with
different values of each constant, and values selected that gave the best
prediction for the filtered rate of energy decay as judged by consideration
of the slope of the curve (Fig. 4.10). The constants obtained were as
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*
follows;

cC = 0.206 , C_ = 0.254
S v

Figure 4.9 shows the sensitivity of the predicted filtered energy decay
to CS . Figure 4.10 shows the excellent agreement of the energy history
with the data for the final constants.

Figure 4.11 shows the energy decay rate from the 323 calculation
with these same constants. The spectral results are shown in Fig. 4.8 .
The excellent agreement with data confirms that the model constants do
not vary with the mesh size, at least in the range covered.

In comparing Fig. 4.10 and 4.11, it must be remembered that these
are the filtered energies, which are different in these two mesh systems.
Because of the discrete Fourier approximation, not all the turbulent
energy is captured (see Fig. 4.3). Filtering improves the situation, be-
cause less energy is omitted from the filtered field at high wave number.
However, the energy in the discrete approximation to the filtered field
was still less than that in the filtered experimental field. To facili-
tate selection of the constants, the filtered exﬁerimental history was

shifted as shown in Fig. 4.10 and 4.11 .

4.9 Energetics of the Filtered Field
Multiplying (2.28) by .Ei , and taking an ensemble average, and as-

suming homogeneity, one finds

2
d a9 .  --
at 7 £ (eR + sL) (4.11a)

where q2 = <ui ui> .

The dissipation ¢ 1is seen to have two parts, a part representing

transfer to the residual field,

*
The three digits are not meant to imply accuracy. We actually ran
with :

2 _ 2 _
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3
eR = - <ui ij (2\),1, _Sij)> . (4.11b)
and a Leonard term part,
€ =+<—_3_(A_§v2_—) (4.11c)
L Y 3x, ‘24 Y Y e

To see the relative contributions of the Leonard term and the re-
sidual scale motions to the energy decay rate, eLleo and t—:R/eo are
shown in Fig. 4.14. Here €, is the sum of € and € at (Uo t/M -

L R
3.5) = 42 where the computation started. EL is much smaller than
Leonard estimated (1973). As shown by Leonard (1975), € takes energy

mostly from the large wave number side thus preventing the damming up of

energy in the smaller eddies.

4.10 Other Aspects

No significant difference is observed between Smagorinsky and vor-
ticity models. However, some differences are expected in future applica-
tions to unbounded flow problems with turbulent and non-turbulent regiomns.

The skewness, which is a measure of vorticity production in the
energy cascade process, is shown in Fig. 4.12 and 4.13. Since the initial
field is randomly generated, the skewness is zero initially, but quickly
adjusts to essentially a constant value. For the 163 calculation the
value 1s clearly too low (the experimental skewness is about-0.4). For
the 323 calculation the skewness seems slightly high.

We have emphasized the need for a fourth order differencing scheme,
and wonder why others have been able to do so well with second order
schemes. The reason may be that the second order difference form of the
advection term implicitly includes Leonard-like second order truncation
terms and thus the Leonard term is partially taken care of by the trunca-
tion. If a fourth order scheme is to be used, the Leonard terms should
be included explicitly. We have seen that they are important, particularly
at the high wave numbers. We conclude that, for a grid calculation of
the type run here, the best results will be given by the fourth-order

difference scheme that incorporates the Leonard terms.
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A question arose as to the behavior of the vorticity under the dif-
ference scheme used here. A two-dimensional irrotational flow was input,
vT was set equal to zero, and two time steps were taken. The vorticity
remained exactly zero, indicating that, at least in a two-dimensional
flow, the differencing scheme will not produce unwanted vorticity. This

aspect of the computation should receive further study in the future.

4.11 Computational Details
The calculationsdescribed above were executed on the CDC 7600 at

Lawrence Berkeley Laboratory, using programs written in FORTRAN (Appendix
II). The total storage requirements (octal) for 60 bit words were as
follows:

163

Large Core Memory: 230,360

calculation

Field Length (Small Core) required to load: 121,200

323 calculation

Large Core Memory: 1,100,234
Field Length (Small Core) required to load: 121,200

The computer time per computational step was approximately as follows:

3

16~ calculation: CPU time = 3 sec

323 calculation: CPU time = 20 sec

The calculation program was carefully checked before these production
runs. To check each term in the difference equation (3.32) and (3.33),
we imposed systematically artificial flow fields. For the terms involving

first derivatives of velocities such as S s E&,"vT . S (ﬁi ;5) and

ij 6xi
ﬁ;i » the following linear velocity field was used:
U = x+2y+ 3z
v = 4x + Sy + 6z
w = 7x + 8y + 9z
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Then the computed results were compared to the exact values. For the

terms with second derivatives, the following quadratic expressions were

used:
T = x4+ 2y% + 322
v = 4x2 + 5y2 + 622
v o= I+ 8y2 + 922

Then, at randomly picked mesh points, the computer results for the ad-
vection terms, the Leonard terms, ﬁi , and D(Ei) were compared to the
exact values obtained analytically.

For the Poisson solver, a sinusoidal pressure field was used to
generate DG(p) , then the computer results were checked against the im-
posed pressure field. The initial field was generated as described in
Section 4.4 and two time steps were advanced. The subsequent results
provided a testing ground for time stepping, the maintenance of a di-
vergence-free velocity field, the overall sequence of computing, and
input, output, tape handling, and data reduction routines.

The computer program is given in Appendix II.
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CHAPTER V

DISTORTION OF HOMOGENEQUS TURBULENCE BY
IRROTATIONAL PLANE STRAIN

5.1 Problem Description

Shear may be viewed as a combination of pure strain and rotation.
Therefore, a basic problem is that of homogeneous turbulence acted upon
by an imposed uniform homogeneous irrotational strain. Tucker and Reynolds
(1968) approximated such a flow experimentally by passing grid-generated
turbulence through a passage designed to produce uniform strain in a
coordinate system translating with the mean flow velocity. This experi-
mental flow approximates the problem of box turbulence with a constant
rate of strain, shown in Fig. 5.1b.

In this chapter we discuss the computation of an idealized homo-
geneous flow with irrotational pure strain, comparable to the Tucker-
Reynolds laterally strained flow. In addition, we treat the return to
isotropy following the removal of strain, which roughly corresponds to
the experiment in the uniform channel downstream of the straining section.

Tucker and Reynolds did not measure the energy spectrum and hence we
cannot make an exact comparison with their data. However, for a qualita-
tive comparison, the initial turbulent intensities in the computation
were set to be equal to the experimental values at the beginning of the
strained section. Two cases were run. The first case was run with
approximately the same initial anisotropy as the experiments. However,
there are problems in that the anisotropic field so generated had improper
shearing stresses. Therefore, a second calculation was made with an
initially isotropic field, and this flow has been used to study the effects
of pure strain on homogeneous turbulence. '

The initial field for the computation was based on an energy spectrum
similar to that used in Chapter IV. However, the Tucker-Reynolds initial
energy level was much higher than the energy in the grid flow studied in
Chapter IV. To adjust the energy, the amplitude of the Fourier coefficients
were multiplied by a constant. The initial one-dimensional energy spectra
are shown in Figs. 5.11 and.5.12 by solid curves.
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The strain-rate used in the calculation was different from that of
the Tucker-Reynolds experiments. In an initial calculation their strain
rate was used, but the energy-decay rate in the relaxation section did
not match their experiments. The difference was attributed to differences
between their (unmeasured) spectrum and that used to start the calculation.
We first computed the energy-decay rate in the absence of strain as shown
by the solid lines in Fig. 5.5 and 5.8. Then, the strain-rate was deter-
mined to get the same total strain as in the Tucker-Reynolds experiments
at a point in the flow that would have the same energy in the absence of
strain. The final calculations were performed using this strain rate.
Therefore, the calculation should be regarded as a "'Tucker-Reynolds-like"

flow, and not as a simulation of their flow.

5.2 Governing Equations

To handle the imposed mean strain, we express the local velocity

and pressure field as*

u (&e) = U @)+ uf(x,t) (5.1a)
p(x,t) = P(x) + p"(x,t) (5.1b)
where
U, = (U,v,00 = (I'x,-Ty,0) (5.2a)
P v =202 o 4y (5.2b)

I' 18 the constant strain-rate. With this decomposition, the Navier-

Stokes equations for incompressible flow become

3 " 9 " "
3¢ (Ugtup) 4 x, {(Ui*'“i)(uj"‘“j)}
1.3 ny 49 ), 9 "

*Note that we place the strain in the X X%, plane, while Tucker and
Reynolds placed it in the x) X4 plane.
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2 "
3;; (Ui+ui) 0 (5.3b)

Now, using the definition (5.2), and noting that 32Ui/8xk3x2 = 0,

this reduces to

3 " i_ " i _a_ " "
T + axj u:Lu.:l + 3xj (Uiuj + Ujui
aull
. _._9 p" ) i
3%, 0 + %, (" ij) (5.4a)
i (5.4b)
axi '

These are the equations that will solve by the methods presented pre-
viously. The only modification (compare (2.5)) comes from the third
term on the left; this term may be regarded as a forcing function due
to the mean strain.

Now, we express each variable quantity, f" , as

£" = f + f' (5.5a)

where

Tw - forx) "G @' (5.5b)

Note that f 1is now the filtered f" field. The Ujuj term in (5.4a)
is filtered using the method described in chapter II, giving

au_ (x )
— 1
Uguy(x) = /-G(ﬁ,fo) [Ui(:_to) +3—x; ° ("k"‘ko)]

— 2_
du, (x ) 0 u, (x)

I 07y - L _1" - -

HE) Y ) FIEg e B TRe) o)

2
A o2 .= 4
7 ¥V Vg + 0(4,) (5.6)
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The model for the residual stress, Rij , 13 taken as

1
Rij = 3 RZR. Gij - \)T Zsij (5.8)
where now Sij is the total strain-rate,
S, = iz (U4 + 30 - Wy 3)) (5.9a)
13 2 |3, it 13 |

Since we expect the strain-rate to be dominated by small scales, the
eddy viscosity, Vp s Was evaluated using the vorticity model,

1/2

Vo = (C A ) (5.9b)

T (ii)

E = curlE (5.9¢)

Since the imposed flow is irrotational, Vo is based on the total RMS
vorticity.
Then, filtering (5.4), and again neglecting the viscous term, the

following equations are obtained (compare (2.28)).

du, 3 _ Az _
E Juy =V @) - 2vT(s1j+}1j)}

1]
9P
i
aﬁi
3 = 0 (5.10b)
X
i .
where _
s R4 1
P 0 + 3 Rii (5.11a)
and
au au
S 3 SR S |
/313 2\, + 8:-:1) (5.11b)
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Fi are the terms through which the major effects of the mean strain come

in. These are

2
A
a -
Fi = 5;; [?iuj + Uju + = 74 V (U +Uju )] (5.11c¢)

Note the appearance of a Leonard correction term.

For the computation, the difference form of (5.10) is used,

— 2
Su A
: 5 {__ &2 }
—= & - fu,u,+ 5~ 2v(s +,3
ot 6xj 173 kaﬁxk Y4 j 1j ij
- G(P) + F, (5.12)
whete Fi is the difference form of Fi and
Su, Su
s = if L4 1
Sij 2 <6x + 0x ) (5.13)
3 i
The exact expressions for ,8 1y vere used. As before, the Poisson
equation for P 1is obtained by operating with D on (5.10a),
DG(P) = D(h,) + D(F,) - = D(a,) (5.14)
i i ot i :

2

where A 2

g 6{-— A _§ - = S

B o= - {Tu F e TG - 2v.(5. 4, )8 (5.15)
i ij 17j 24 kaéxk 173 T 1] 43

The space differencing and the time advancing schemes are the same as

those explained in Chapter III. Periodic boundary conditions in all

three directions were imposed, and the same solution procedure as

described in Chapter IV was applied.

5.3 Anisotropic Initial Condition

Anisotropy in grid generated turbulence is not ﬁegligible in many
experiments (e.g. Grant and Nisbet Q957), Uberoi (1963), Tucker and
Reynolds (1968)). Therefore, to make the initial condition reasonably
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close to the experiments, it was felt desirable to generate an initial
field with anisotropy. A method for this will now be described.

Suppose that the u and v components of turbulence energy are
equal while the w component is different,

€§2> = <$2> (5.16a)

> = (1+R) <ud> (5.16b)

where < > denotes an average over an ensemble of experiments. For
the Tucker-Reynolds experiments, w 1is in the mean flow direction and
R = 0.45, Now let us decompose w into its isotropic part, ;i , and

anisotropic part, ;A » such that

<CWre<T>ac G&2> (5.17a)
and

woo= Wy + vy (5.17b)
If we assume that the isotropic part can be generated by the method in

Chapter IV, then, for continuity to be satisfied,
D (w,) = 0 (5.18)
This is a crude assumption. However, unless we know more about the

initial turbulence structure, this is perhaps the best we can do. Now

(5.18) in Fourier transformed space can be written as,

2 _
v, k3 0 . (5.19)

where ~ denotes a Fourier transform and ké is defined by (3.4).

Therefore, w can have a non-zero values only when k! = 0 . Then,

3
following the same procedure discussed in Section 4.4, we get
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. 1/2
W, (k ,k,y,0) = (—R— az) (at+ib) (5.20)

where

and a = cosf, and b = sine are obtained from a random angle, 6 ,
with uniform probability from O to 2m .

The initial condition for the first run was generated by this pro-
cedure and, for an input R of 0.45 , the generated field emerged with
R = 0.43 . This field had shearing stresses not present in the actual
flow, and so the second run was made using an isotropic initial field
génerated by the method described in Chapter IV. Further stﬁdies in
Section 5.5 and 5.6 are based on the second run. Both runs are reported

for completeness.

5.4 Results

The results of the following two cases are presented.

(1) Anisotropic initial field

<§2> é§2>
$2 e 2 x 143
<u> <v’>

(2) 1Isotropic initial field

<32> <> = <ud>

For both cases, the mean stream speed was taken as v, = 240 1in/sec,
I = 1,457/8ec., A = 0.59 in and At = 5.36x10-'3 sec. This corresponds
to a Courant number q2/3 + Uiax At/8 < 0.15 . The 163 mesh system

was run using the vorticity model, with Cv = 0.206 as obtained from
the isotropic decay studies.
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For convenience of reader, three of the Tucker-Reynolds measurements
for the turbulent intensities, <u >'/W2 »- the turbulent energy ratios,
<ui>'/q » and the structural parameter, K, = {<v2> - < >}/{<v2> + <u >}
are replotted in Figs. 5.2, 5.3 and 5.4 For the case 1 , the same quanti-
ties are plotted in Figs. 5.5, 5.6 and 5.7. Here, for comparison, the
time in computed results, t , are converted into the downstream distance,
Z ,by Z= Wot . The behavior of these are comparable to Tucker and
Reynolds results. However, when the strain is turned off, the rate of
return to isotropy is much slower than in the experiments. It is inter-
esting that this is consistent with the feelings of some workers that the
return to isotropy in the Tucker-Reynolds flow is too rapid (Reynolds
1975), perhaps because of defects in the experimental simulation of
homogeneity., The same quantities for case 2 are shown in Figs. 5.8,

5.9 and 5.10.

One-dimensional energy spectra were obtained in a similar manner
to that described in Chapter IV (see Tennekes and Lumley (1972)). The
only difference is that the shell average in Chapter IV is replaced by

a plane average in wave-number space, i.e.

Ej (k) = 2 2% u(k ) u*(k) (5.21)

2 3
Here, the notations are the same as before. These spectra were computed
at three different times or downstream locations (Figs. 5.11 and 5.12),
At zeroth time step, ial(kl) , Eéz(kz) and i%3(k3) are almost identical,
as they should be. By the end of the straining period (75th time step),

and E22 have become quite different. E11 is flatter on the large

E
eiiy side while both small-scale spectra are nearly the same. Over the
last period, in which there is no strain, the spectra approached one
another very slowly, as seen by the spectra at the 125th time step.

The calculations were run on a CDC 7600, and required approximately
7 minutes for each case. Storage requirements were similar to those for

isotropic decay.
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5.5 Energetics of the Filtered Field

Multiplying (5.10) by Gi , taking the ensemble average, and
assuming homogeneity, one finds (compare (4.11))

_L —e -
- +PL - - g (5.22)
where
q2 - é;;;i> (5.23a)
au
@ = -<uiuj> a—x‘} (5.23b)
2
By~ p 3
G)L = -7 ’<ui —,q (U u )> + <ui o x, v? (Uj i)> (5.23c)

€, and € are the dissipation terms discussed in Section 4.9. (F’ and

6;2‘ are the production terms. Note the appearance of a Leonard production
term, GDL » that comes from the non-linear interaction between the mean
strain and the filtered field.

The computed behavior of these terms is shown in Fig. 5.13. Note
that (;&‘ contributes significantly, particularly where the anisotropy

is large near the end of straining period.

5.6 Assessment of Turbulence Closure Models

Turbulence computation of the conventionally averaged (ensemble or
space) quantities has been based on some ad hoc closure models with a
number of adjustable constants. As pointed out by Reynolds (1974a,b),
more systematic approaches are desirable for generalized turbulence
models. Even though laboratory experiments provide actual quantities,
experiments are limited because important properties like the pressure-
strain correlations are difficult to measure directly. On the other
hand, computer-generated experiments provide a vast amount of data on the
flow field, and hence the numerical experiments can be used to study
the closure models. We have attempted to study the pressure-strain terms

and other statistical quantities using the present computation. Even
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though the 16x16x16 mesh calculation gives good results for the energy
components, as will be shown shortly we cannot use the computer generated
field to compute the pressure-strain term directly, at least not in the
present calculation.

The exact Reynolds stress equations for homogeneous flow without

mean deformation are

dR ‘
B -
it Tij Dij (5.24)
du du
where T = <p —i-+_i >
1] ox ox
h | i
du, du
4+ _3
Dyy = V%
Here uy denotes the turbulent components of velocity and p 1is the

turbulent pressure divided by the fluid density.

The pressure-strain term Tij is responsible for the return to
isotropy following removal of strain. The modeling of Tij has been
the subject of much discussion. Since no direct measurement of this
term is known, we tried to estimate this term using the present compu-
tation in the return-to-isotropy portion of the computation,

The computed pressure-strain term, (T,,) , was obtained from

13
du, du
1 1
Tygde =< P(axj * axi>> (5.25)

Here < > denotes an average over the flow field. The fourth order

central differencing scheme was used for the G/ij terms.

For comparison Tij was obtained a second way. Using Dij = 2/3 €
(see Reynolds (1974b), (1975)), Tij' was obtained from the computed Rij
history as
(T,.,) L TRy | (5.26)
ij°R dt 173 3771]
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€ was estimated from the energy equation, which in the absence of strain
is

d <u,u,/2>
i1
€ = - dt (5.27)

€ agreed well with ¢+ EL , computed directly. The time derivatives

R
were approximated by a second order central differencing formula.

Finally, we predicted T by Rotta's (1951) model for T in the

13 i]
absence of mean strain, .
(Tij)m -Aoe bij (5.28)
where Ao is a constant and
b, = by Sy
ij 2 3
q

We used Ao = 2,5 , as suggested by Reynolds (1975).

These three results are shown in Fig. 5.14. It appears that (Tij)c

is quantitatively poor. This is attributed to the coarseness of the

163 mesh . We conclude that undoubtedly contains some Leonard-like

Tij
terms, and this must account for the difference between (T

(Tij)R . While Tij 13

(5.26), it cannot be computed directly from the calculated field with

ij)c and

can be estimated from the R equation 3 la
such a coarse grid. A repeat of this work using a 323 grid is recommended.
This should be accompanied by a careful analysis of the Leonard terms

arising in the R equations.

1]
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

In this thesis we have developed the basic approach to computation
of three-dimensional time-dependent turbulent flows. We have seen that,
with a modest 16x16x16 mesh and a residual scale stress model, many
interesting features of experimental flows can be computed. Work remains
to be done in the development of better approaches for using this type
of computation to assess turbulence model equations, and to extend the
procedure to other flows.

It would be informative to study the effect of the initial spectrum
on the rate of return to isotropy. This might be done by removing the
strain at different points along the straining portion of the Tucker-
Reynolds flow, allowing isotropy to be restored from points with different
spectra.

In extending the method to other interesting flows, problems to be
resolved include the handling of non-periodic boundary conditions, solid
boundaries, and free boundaries connecting the region of computation to
irrotational flow outside.

One useful problem to study would be the case of homogeneous tur-
bulence near a wall, without mean shear, for which some experimental data
exist (Uzkan and Reynolds (1967)), and would be the diffusion of tur-
bulence into a non-turbulent region, again without shear. It is recommended
that experience with these simple problems be gained before a more com-
plex flow is attempted.

When one moves on to handle flows like jets, wakes, and mixing regions,
it should be possible to take advantage of the fact that the flow outside
of the superlayer is irrotational, and to use the exact solution for
unsteady 1rrotational flow to extend the calculation to infinity out
beyond the mesh. Care must be taken that the numerical scheme does
'ngt produce vorticity in an irrotational flow; the diffusion of vorticity

by v, will also have to be handled in a way that prevents its diffusion

T
into the irrotational external field.
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Eventually it may be possible to treat practical flows, such as
boundary layers, wakes, combustion, etc., by these methods. But much
more effort should first be devoted to fully understanding the nuances
of the residual scale models, grid-schemes, differencing schemes, filters,

etc. that are the bases for this type of numerical simulation.
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Fig. 2.1. Gaussian Filter
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Fig. 2.2. Filtered Energy Spectra, E(k,t)

8, = 2A (see Eqn. 2.23)
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Fig. 3.1. Comparison of Modified Wave Numbers
(see Eqn. 3.4 and 3.7)
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Fig. 3.2.

n

Comparison of Div(Grad) Operator
2

kl = exact
Ef = fourth order.(see Eqn. 3.15)

kiz = fourth order (see Eqn. 3.12)

N = 16
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Fig. 4.1. Sketch of Wind Tunnel Test Section for a
Generation of Isotropic Flow.
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Fig. 4.2. Determination of A or B Vector
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Fig. 4.13 Comparison of Skewness, S . (see Fig.4.12 for

Definition of S ):

8, = 2A

Smagorinsky Model:
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Fig. 4.l4. Components of Dissipation.
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Fig. 5.1a. Schematic of Wind Tunnel Producing Constant
Rate of Strain in x-y Plane
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y
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Fig. 5.1b. Equivalent Representation of the Plane Strain

in a Box T = 1.457
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Fig. 5.2..
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(Z+10) (in)

Tucker-Reynolds Flow. )
Turbulent Intensities. The solid lines are for
decaying turbulence in the absence of strain.

Z = Downstream distance from the beginning of
strained section.
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Fig. 5.3. Tucker-Reynolds Flow
Turbulent Energy Ratios
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Fig. 5.5. Simulation of the Tucker-Reynolds Flow
Turbulent Intensities. The solid lines
are for decaying turbulence in the absence

of strain. (Anisotropic Initial Condition)
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Fig. 5.6. Simulation of the Tucker-Reynolds Flow

Turbulent Energy Ratios under the Plane
Strain and the Return to Isotropy in
Parallel Flow. (Anisotropic Initial
Condition) .
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Fig. 5.7. Simulation of the Tucker-Reynolds Flow

Change in Structural Parameter.
(Anisotropic Initial Condition)
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Fig. 5.8. Simulation of the Tucker-Reynolds Flow

Turbulent Intensities. The solid lines
are for decaying turbulence in the absence
of strain. (Isotropic Initial Condition)
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Fig. 5.9. Simulation of the Tucker-Reynolds Flow

Turbulent Energy Ratios Under the Plane Strain
and the Return to Isotropy in Parallel Flow.

(Isotropic Initial Condition)
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Fig. 5.10. Simulation of the Tucker-Reynolds Flow
Change in Structural Parameter, K1
(Isotropic Initial Condition)
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Fig. 5.14. Comparison of the Pressure-Strain

Correlations Normalized by W
and Computational Box Size,

L = NA

(see Eqns. 5.27, 5.28 and 5.29)
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APPENDIX I

ON THE FOURTH ORDER CONSERVATIVE SPACE DIFFERENCING SCHEME

To explain the difference formula used here in detail, consider the

following equations.

i, 3
du
i
axi 0 (A.2)
u, - (aA.1)
Ju
i )
LV rvs +-ui axj uiuj = 0 (A.3)
3 (1%), 1 5 uguy duy '
ac( 2 )*2 3, U1%1°% t = o 0 (4.4)
Integrating (A.4) over all space
d ugu, ugu, 331
= / 5+ dv = -f T (A.5)
v ) A\ 3

If divu=0,

d Ugly
I / 5 0 (A.6)
v .

Now look at difference form of (A.3)

11 . _, S
2 1 8%, 1Yy (A.7)

S
§t
Summing over all mesh points

T 5 Z%ag L (4.8)
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The RHS of (A.8) has to be zero as in (A.6). Therefore Guiuj/ij must
be devised such that RHS summation of (A.8) goes to zero thus conserving
the total kinetic energy. The difference formula for 5uiuj/5xj depends
on the type of mesh and the number of neighboring points used.

The following is a fourth order energy consérving scheme using five

points in one direction. Following usual convention

i 1 A A
= 3 [f(x +5) + f(x - 2)]
(A.9)
1 A A
£, = K[f(x-*?) -f(x-f)]
Note that
% L T, ol o cw Bl o2
ox X 2A
Cf | 4 ex _1=—2x 4
= 3 I -5 5. + 0D (A.10)
= L (s -8f _+8E . -f ) +o00Y
128 ‘*i-2 1-1 1+1 142

Now fourth order momentum and energy conserving form of (A.l) and (A.2)

are

1,4 mxi-x _ Ll =2%.-2x -
3 + 3 (uiju j)xj 3 (ui ju,j j)zxj 0 (A.11)
2x
4 X, _l—~—""1 _
3(ui)xi' 3(ui zxi 0 (A.12)

To show that these are indeed energy conserving, work with the expanded
form of (A.ll).
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i@;az)z - %(Gi’azz)zz % -0 (A.13)

where ug is either u, vorw. ug x (A.13) gives the energy equation.

Then sum over all mesh points.

2ug 65_‘? - X [“z{%(‘-‘;‘—‘x)x - 3G, )
+ {v and w - component}]
- Tlud{t et
(@ e o w2}

o)

ul 4 —_— —
- -ET [-3- {(ulu): + u(ul)::}

-Hewg @]

~+ v, w, - component
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The first summation on RHS of (A.1l4) 1is zero for periodic boundary
condition. Therefore (A.1l4) becomes
6“1 upuy
Zul—ét— = = div u in 4th order; (A.12) (A.15)

So if the numerical divergence of velocity is zero, the RHS of (A.1l5)
is zero and (A.l1ll) is indeed energy conserving.

The accuracy of the LHS depends on the time advancing scheme and,
as mentioned earlier, the Adams-Bashforth predictor method introduces
very weak instability on computational mode. 720 show that (A.ll) and

(A.12) are really fourth order accurate, work with a typical term:

ﬂ(;xax)x _.l(;2x62x)

3 3 2x

1 ) '
T 1) T W ey Y Vo) T Vik-1)

1
Vg My T u(k—l))$ T 28 ;(V“)(k+2) = (Vo) oy

+ - . -
b Va2 T Vk-2)) Ve @ae) u(k—2))£
Substitute RHS by Taylor expansion as usual. After some algebra, it can

be shown that

4 -x-x 1l,-2x-2x
V), - FOTT

A4
(vu) - ) (vu)v +v' +4d’

o
™ + ... (A.16)

Therefore it is indeed a fourth order scheme. An extension to higher
order differencing scheme can be done on the same basic idea. Overall
fourth order accuracy 1is obtained for advective term by using second
order energy conserving scheme for the Leonard term.

For convenience, fourth and seéond order advection term is

recapitulated below.
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ij i7)
@, L A
s, -3
+ \%(Gziﬁz)z - %(uziz—zz)u 1& + o(a™)
i \LA &(“1“’ () ) e T (g ) RN
- (W) (x-2)

+u ((“1) ) (uy) (k-2
. ‘
*X A ‘_(“i") () (o) (9-1) v ( (uy) (g41) (u) (9,-1))
- (") (2-2)

A" (o " "(M)M

v ((“1) (2 () (-2
B o -
§3A {2 o @1 (CRIESY (s (w10
| N

sy () v 2P ‘(“1"’ (@) (9% (g-2)

wu (G @) SR (m-z)\ +uy (Y@ "(m—mm

\ .
+ O W) (A.l‘l)
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Second order scheme:

3 ' 3 )
8% (uiuj) = 3 u,u + 3y u,v +

2 W
] 1 9z 41

o ITX-K ~y=-y ~2~2 2
(uiu )x + (uiv )y + (uiw )z + 0(A%)

1

48 :(“1“)(k+1) = ) gy 8 (0 gy - @0 )
g (21 T Baen) O ey T O (a1
+v ((“1)(2+1> = () gy) * (”(a+1) - V(g~1))

W) gy T gy TV (o) ey - ) mo1y)

+ 089 (A.18)

oy (w(m+l) - w(m—l))

The subscript isg shown whenever it is different from (k,&,m), i.e.

Yertl) T Y(k+l,2,m)
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APPENDIX II

FLOW CHARTS AND PROGRAM

Overall Flow Chart

INITIATION
(SUBROUTINES INICON & START)

)

CALCULATE EDDY VISCOSITY
(SUBROUTINE VISCS & VISCV)

!

CALCULATE hy (EQUATION 3.32)
(SUBROUTINE VELOC)

4

CALCULATE RHS OF POISSON EQUATION
FOR PRESSURE
(MAIN, SUBROUTINE DIVGCE)

!

PRESSURE FIELD SOLUTION
(SUBROUTINE PRESS, FFTX, FFTY AND FFTZ)

:

ADVANCE ONE TIME STEP BY
ADAMS-BASHFORTH METHOD
(MAIN)

y

DATA REDUCTION AND PRINT OUT

h
NO T 4)
TERMINATE ?
‘\
YES

WRITE DATA ON TAPE FOR CONTINUATION
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Flow Chart for INICON

READ INPUT
( INITIAL PROBLEM ? )—i—)@
YES

READ IN FILTERED EXPERIMENTAL SPECTRUM
y

DETERMINE AMPLITUDE OF THE VELOCITY
FLUCTUATION (EQUATION 4.5)

DETERMINE A, B, a AND b (EQUATION 4.7)

y
DETERMINE VELOCITY AT CONJUGATE POINTS
(EQUATION 4.8)

' Y
INVERSE TRANSFORM THE VELOCITY FIELD
(SUBROUTINES FFTX, FFTY, AND FFIZ)

&

READ IN DATA FROM TAPE
FOR CONTINUATION

Y
PRINT OUT THE VELOCITY FIELD AND ENERGY
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*DFCK MAIN
PRNGRAY MAIN CINPUT,NNTPIIY ,  TAPFOQ,TAPE )

([T A A A I I I Im T I I rr o a2 a2 22 322 A2 S K2 2 0 4 )
C THTS CONTRALS THE NVERALL SENRUENFE NF COMPUTATINN,
C THF COMPUTATINN T8 PERFORNMEN MNSTLY IN TWE Suall CnNRF AY TRANSFERING
€ NaT: FROM ThE | 4PGE CORE “EMORY, AT THE ENN NF FACH TIME STEP THE
C SYATISTIral DUANTITIES 4Rf PRINTED 60T, AT THE ENn 0OF THE CNOMPUTAe
C TIOM VFIRCITIFES ANP THE RIGHT MaAND STDE OF MpuERTUM FQUATTINNG ARE
C STPRED FOR CNANTTHDATION,
C.Q""..tititttti"QQQQQtOQQi'i‘ﬁﬁ#itQiiﬁ..tf.i.‘."Qt..“ﬁ‘....'..fﬂ'
INTEGES TIME,Z20,2M1,7242,2P1,7P2,7, 240N} ,ZLESSY, 2SAVE,PLANE
Y LTSTaART,TEND

FEaL %, NLEN,NAVEG

LARGE FP(1h,16,10),0601h,18,18),F(1h,16,18),ET(t0,16,14),
1 CI(1a,16,16),D2(1F,1R,1A),8D1M(16,%),RPN(192)

LARGE 1M (e16,16,18),V4(1h,1h,16), %M (16,106, 18) ,6U(16,18,15)
- f.V(]ﬁ 16.'6) (.t'\(‘h" ‘A’

LeRGE Gvrln.ib.1e\.~Vf1e.te.1b) QAC1A,16,16),P1C1hs1h,15)
. ZyCUL (1M, 16,18),0V1(18,1A,14),121(106, 15 16)

DIMERSTON L(1e, 1k, 80,V (16,16,57,%(VA,1,8),P(14,16,5)
1 UM EY (16, 10,6),3T00(16,16,3), K(16,16,3), FRO1A,16),FI(16,15)
7 yTRECR,3),TRICR,3),G0(14),6T(16),NWAVE(16),NFFT(3)
COMMCN/NATAL /U, Y

COMMNL/DAYAR/P

COMMUNZDATAR/SIG,¥

COMMONZDATAU/DIIMMY

CUMMUNZL A TAS/EH T, TRK,THT

COMMUN/ZOATAT/FR,FT

COMMONL/DATAR/MNWAVE  NFFT

COM DL DATAQ/TMAY  IaX , LMaY, NHA|F,NAVG, N EN,NSPEE
COEFYIst ,/7(14U  +DELTARRY)

COEF2=rerELTARD,S

rOEFuet, /24,

COEFRzy /(U ,#DELTACNT)

COFFRzY2 /DELTA

COEFT=1,/7(12,+NFLTA)

COPETiz ,/(T2,+DEL TaRe))

CLErE2?,/7(3,+0:7)

CUEF 9=V aDELTAs5, /1,

ALPHA=NT/(UR, «NELTS)

FEtasl./(ua,anLTAy

fOFg) ,n FOR THE FIRST YYME STEP 21,5 AFYEPwARnS

UTHpPu Hn.t/M.} S

HTMlE AN co~v5c11v: DOHNSTREAN VELOCITY

* R %R P NR

wasasINTTIATION

OO NHOOOOD

I"RITERY

HIMeRCR3A, S

HOM21000,/5,08

€CCGF120,9

£ALL INICON (CREF|,CPEED,COFE3,rNEFL,CNEES,CNEFL,CNEFT,COEFA, COEFQ
3,C0EF LY, CNEFIU,ALPHA,COF,NELTA,NT,COMST HFR,NWRITE,GAMMA,
2 TSIART,TEMD ,AMNADEL)

NETL T2

wSz1, /7 (HFRxe2)

GAMMASELAMMARRD

GCOFSGAMMTAACOEFTY
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ReBRANMA G,
ROSGANVA/DELTA
GD230,5+0D
COFFlaE(NELTACLAVG *a2 /24,
COFFI78(CORFLII/70FE L TAYRRD
COFFT1aCNEFT/(h #DELTAY
RETASCNEFT/U,
TOlvey /70094,
c R
C-.-.-rO"PL'YAYtnh S‘APTS
c
NO 30¢ TTMERTSTARTY,TEND
10 CONTINIE .
CowowelCMpUTE FDNY VISCOSITY ®F",
2=\
Mt
20=2
7Pted
Cowwosf ]5ST TRANSFEF DATA FRNM LCx TO SCM FOR THE PLANFS LBLMAX AND {
SHALLTN (U, 1,1), 1M 01,1,L"a%),286)
SYALLTIY (v(1,1,1),vM1.1,LM8%),256)
SMALLIN (01,1 ,1),%(),1,| »2Y),286)
SHALLIN (H(1,1,2),1001,1,1),256)
SMALLTN (V(L1,1,2),V01,1,1),256)
SHagLIN (w(1,1, 2).”‘(1.\.1) ?Sb)
no 700 Lef,LMAX
LP1zl et
IF (. JEQ, LMay) LPimy
c TRONSFER VELCCTYTIES FOR THE PLANERL +1
SMALLIN (U(1e1,2P1Ye")Mi01o1aLP1Y,256)
SMBLLIN PVI1,1,2ZP1),VMY,1,LP1),256)
SMA LM (VE),),2%1)Y,vM(1,1,LP)),2%8)
¢ THER WE CAN COMPUTE EPDY VISECNSITY AT THe PLANE-L
60 10 (20,28) MrODFL
en CALL VISCS(ZIN,7"1,7P1,7,C0EF2)
GL TO 30
28 CAaLL VvISCV(ZO,7™M1,2P1,2,C0FFQ)
In CONTINUE
c THF EppY VISCOSITY ON TWE PLANEglL 1S TRANSFERED TO £ IN LCM
: SHALLONT (k(5,1,2),E01,1,L),256)
795AVERZMY
%1820
2087ZP1
ZFP12ZSAVE
700 FONTINUE
ComeeslOMPUTF W(1), YKEN STORE THEM TN GU, GV & GK
Mes1
IHt=z2
20ey
2P 124
IP2=S .
SMLLLIN (UG, 1,0 00,1, x=1),5812)
SMALLTN (V1 ,1,1),Vv™(1,1,LY2Y=1),512)
SMALLIN (rn(1,8,1),vM01,1,LM0Ye1),512)
SEFALLIN (U(Y,1,3),0M01,1,1),7h8)
SHALLIM (VY ,1,%),VM(1,1,1),76R)
SMELLIM 01 ,1,3),u"(1,1,1),768R)
SMALLTIY (re1,1,8),BE(Y,1,LM0YY,2588)
SYALLIN (R{1,1,2),F0),1,1),512)
2LESS1my
7132
7atpted
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PO 700 PLANE®R],| MaY *
CalL VELOC (20,211, 2"2.201.zpz.7.ZLE%=i'7A001.nEYA.cﬁerb COEF?,
1 CY,COF ,GANMItA,AMMAS ,GCNF,G02,6D,NELTA,Ge)
[MALLOUTIDUMMY (1,101, G!(1.1.9La~t) ?568)
SHALLOMTIDUMPY (1 0102),6V071,1,PLANEY,258)
SMALLOGUTIRUMSY (1,143),6w(1,),PLANEY,2S8) |
SMALLOUY (SIGTY,3,1),D008,1,PLANE),258)
SMaLLOoUY (S1G01,1,2),02103,9,PLANE),256)

¢ PlLIPHESSHRE CHMNIKIRUTION KY MEANM MOTION
SPALLONT (OUFAY (L, 1,8),6HH1001,1,PLANEY,294)
SFHALLOUT (OLPrey (1 ,1,S8),6VI01,1,PLANEY,294)
SMALLCHT (DUMPY (L, A) ,Cu1(),1,0LAVE);25A)
FaLL NIVARCE (Z20,2%1,2#2,72P1,2P2,CNEFT)
SMALLOMT (DUMeY (] ,),8),R(1,1,PLANE),258)
2SAavEgZLESSH
70688132
7824001
750n1x7288VE
LEP) ANE 4D
SMALLIN ((1,1,24001Y.F¢1,1,1),288)
78AvEg2M2
7+2a2t1y
Irig0
70x7Py
2P1elF2
7P227SAVE
L2FANFe%
IF ¢L .67, LMex) (sLelMAY
SMALLIN 13, 1,2P2Y,UM01,1,1),2%6)
SHALLTIE (VI1,1,2P2),VMI1,1,13,28h)
SEALLIN (wll,),72P2Y,WH (Y ,1,1y,256)

760 CONMTINUE

Cowmaahil GIl,GV,Gk 4RE COAMPUTED AMp DIV U 1S STORED IN 6,

c COMPUTE DIV(GLY, THEN GET ©
2v2a1 :
7M1g2
70e%
7P124
7F2aS
SHALLIN thtt,1,1),060(01,1,LMAYe1),512)
SMALLEY VeI, 1,1),0VvE),1,L.M8Ye8),512)
Seaptlin (w(1,1,1),6001,1,L.MaYeyy,512)
SHALLINM fU(Y1,1,3),G001,1,1),76R8)
SEALLIY CVI1,143),6V(1,1,1),76R)
SHALLIMN (X (1,1,3),6v(Ct,1,1),768)
RO 770 FLAMERY L MAX
CALL DIVGRCE(Z0,271,2M2,751,792,CNEFY)
SEALLONT (Dumty(1,1,6),0M(1,1,PLANEY,256)
754AvER7M2
7r2slny
™1z70
70=s7P)
1AAR T1.r
7P2s2SAVE
| 8PLANMESY
TE (L 6T, LFMEX) LslelMaAY
SUALLIN CUCE, 1, 7P2Yo6GtIC1,1,L9,256)
SMALLIN (V(1,1,7P2))0RVI1,1,LY,258)
SMALLIN (wW(1,51,2P2)Y, G*llal'L):?ﬂb)

770 CONTINUE
CoomueN(GU) IS STOREDL IN PM
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NO 780 L3j,LMAX
NC 78n Jey,JMRY
NO 780 Iz, IMAX
PY(TsJ,LYICODEFRaG{I,J,L)¢PM(T,J,L)
730 CONTIMUE
Caven=NOW G 1S TEMPORARILY STORED IN P
c..---r0~pUTF 61
IMesl
I“is2
1021
2P 1ad
7p2eS
SMALLTN (UG, 1,1),60101,1,LaXe1Y,512)
SMAL LN (V(L1,1,1),6vI(1,1,LMaYe1Y,512)
SMALL TS (a(1,1,1),6w1(1,1,LMAYN=1),512)
SYMALLTIN (U1, 1 3, Rt (t,1,1Y,7hR)
SMALLIN (VII,1,3),6v(1,1,1),76R)
SMAL LN ("(’0103)‘“""(10‘0’)0168’
DY 1770 PLAMFEY ,LMAY
CALL DIVRCE(70,1%1,242,7P1,702,CNEFT)
SALLOLT (OUMMY (L ,1,6), G(!nl.”LlME)-?Sb)
ISAVER?M?
YAPL AR |
v1gln
20=7F
7F1=2P2
7FP=22SAVFE
LIPLANE+Z
1F (L ,GT, LMAY) LzlLelMaY
SYLLLTIE (UCYaY,2P2Y,6GU1(01,1,1),2886)
SMBLLYM (VE1,1,2F2),0V1(1,1,L),256)
SMALLIN x(Y,3,2F2),6~1¢1,1,0).,250)
1770 COMTINUE
CameeslOMEUTF Pt
ralLL FRESS (CNEF3,CNEFL11,LNEFTY
Camowshr:livc STNRE Py TR Py FROM Pm aAND SWIFT G FrOM Py TO G,
N0 1BR) Lmy,LMAX
SMALLTNS (DUMMY(3,1,1),P104,¢,L),256)
SMALLIN (DUMMY(1,1,2),P%(1,1,1.),254)
SEALLCIT (DUMMY (], 1,1),6C01,1,L),256)
SEALLDUT (DUM»Y(L,1,2),81¢1,1,L),256)
{RRA CONTIMUE
c
PRIMNT 90O%
00 400 Lel, 14
PRINT 904, L
eRINT 602, (E(T"OIL"I.1'|6‘
a0 cOMTTINUE
PRINT Q17
LG G401 d=1416
PRIMY 918,y
PRIMY 902, (E(1,J,10),121,16)
401 CONTIMUE
(o )
CALL PRESS(CNEFILCNEFLY,FOEFTL)
CamooeSTORE 1,V ,w,p BT FIVE STEP INTERVAL
1F (MSTORE FQ, 5y GO 10 10
MSTORERMSTORE o
an 10 20
110 NTIME sTTHMEeY
WRITE (9) MNTIME, UM VM, WM PM, P
FND FILE @
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NSTNRFE®]
120 CONYIMIJE
ConeasDHSgGU(IY=DP/NY(])
Coewe=STOKE YnS(N) TN RQUM, THEN ADVANCE | STEp
PO RON Lel,LMax ‘
tM2ele?
1LMisle
LPY1zL 4+
LP2xl +2
GO T (Te1,7R2,74%,745, 7AS, 7:% 745,745, 725,785%,785,785,7A85,78S, -
- 781,7R4) L
7K1 Lk2eLraXel
I Mlglmd)
0 10 7RSS
TR2 LMPzLmaX
r0 10 788
763 | Peet
=0 10- 78%
TRy | Plel
LP2e2
7A€ CUONTIKUE
r0 RON Jel,JMAY
Jresla?
JMizJet
JPtedet
JP2ele?
en 10 (7nb.7a7 790,790,790,790,790,790,79¢,790,796,790,790,790,
e TAR,7R9) J
784 JM2eJMAXe)
_'P’.!:J."AX
enoTH 70a
TET7 J4PsJdrAY
¢C YO 79¢
788 JP2=1 )
60 Y0 790
789 JPi=l
JP2=z?
790 COMNTUIALUE
PO &afQ Imi,IMaY
IMPa]e?
Mtelat
JP1alet
1PPel42
GO TU (791,792,795,795,795,795,795,795,795,79%,795,795,795, 795,
- 703,704) 1
791 1M2altiXel
IM1al~ax
GO 10 708
792 1M2=lnax
GO 70 795
79% 1R2et
GO 70 795
794 JPI=t
{P2g?2
795 cOLTINLE . i
LI OT, 1)2GUIT,J,L)=COEFT#(PM(INA,J,L)eB 2 (P¥(TY1,],L)ePM(TPL,],L)
e YepV(TP2,J,L)) .
REUM(T,2VBGV (], JpL)=COEFTa(PI(T,. 12, )b o (P (T, 11,L)1ePM(T,IP),L)
= )eP™(1,0P2,L))
uDIW(t.hsﬁﬂlnpL)-CﬂFF'h(PN(X JoLM2)aB e (PM(T,J,LM1)aPM(T,],LP1)
e Jepk(er,J,LP2))
WM CT o JoLISUMIT, J,L)eNTa(CNFePDIsel, 1Yo GeR(T,J,L))
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VHLT o JoLIBVM(T ,J, LY eNTe(COF200UN (], 220§+ V(],J,L))
WMCLpJd,LYBRM(] ,J L)Y ¢DT«(COF4RNUM(L,31m0,8¢RA(],J,L))
QUIT»J,LYBROUIMN(T, 1)
FV(T»JdsLYBRNUIMIT, )
F4(TsJoLY)RULM(T,3)

AQQN CONTINUYE

. C.---.YU‘;PULENY E"'ESGY

T U0,
TRV=0,
YngO.
rD 230 Letl,LMAY
LOUM(L,1vm0,
FOUM(L,2)80,
Rizum(y,3y=0,
G 230 Jri, IMAY
N 2% Tsl,1*4x
TAU2TRISUM (T, J,L) #n
TRV Tavev (T, J, ) es2
TuugThubgun(l,J,L)ee2
ROUSIIL,IIYSADUR L, 1Y+ (T, J,L)
QDUMCL 42YSEDIMeL 420V 1Y, T,
SOUMIL L 3YSEDIM L, 34 (T,J,00

230 FUNTILIE
TlizgTkilaTD]IV
TRV TxvaTDLIV
1hvizTuwseTDIV

1Hsimag,

vSUMRD',

wSUMEO

PO pUp Lel, LAY
CnULELAUT IR, 43

VSLImZ Sitvg RDLIM (L, 2)
WEIIMSWSUMARIIN (L, 3)

up CONYINUE

c
cnfFet 5
FRINT 910
PRINT QGR
TXKSUMaTRIIGTRYeTRNW
FRINT 0O, TIVE ,TKI,TKV,TWh, TKSIM
“TIMERT]1"EsDT
PISTBIFR aRT T YE
SHRATIOSFEXP(0,F1ARSL1A&DITST)
p"‘IhT Q‘S'QTI"F'DISY,SQATIO
TKDIV=y , /TKSUM
TR BTKUSTKDIY
TRVIZTRVITRDYY
THW{ITRWeTKDTY
TR =l ThValkII)/(TKVSTKINY
PRIMT GOk, Tail], TRV, TR, TKY
TP gUQOMaTIMESDT $ITHNRA
HOUST, NE+N6/TKII
U0Vl NELs0R/THY
VOwe) NESNB/THW
HOAe3 NE+06/THSUM
PRINT G, LTM, 10,10V, 10K, 110
‘W TKiiewns
VHEBTEYaUNS
KaBTKLali0S
NweThSINtaw0$
PRTIMT Qia,!'w, v, Wi, N
FeweeeNISSIPATION TERMS; LFONARD, &GS, TOTAL,
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DLENSQ,
nPSRszo,
DO 2491 Ley,LMay
DG 2uy Jst,J»ax
DO 241 Imy,IMex
DLEVEALENSRYL(T,Jd,0Y
NSGserSGSeN2(1,J0,0)
24y COMTINUE
CTOTSOLEMSNSGS
PRIAT @YY, NLEN,NPSGRS,DTNT -
CovoarSrERNESS CHECR
Sk3=n,
SXoz0,
A0 2R0 ley,IMAY
142zle2
T*tslet
1P1slet
1P2=142
1F ¢I T, 2)Y GO YO 2S%
GO TL (281,2582) 1
251 tMiglmax
1+2zlv8Xe]
GO 1C 256
282 tr2zlmaAX
aC 10 284
29% I1s1¥axey
1F ¢1 L7, I1) 60D 7O 2Se
122TMAYeT ¢
a0 10 (285,294) 12
251 1P2=z)
0 Y0 256
294 1¥13)
1PPE2
256 COMYIMUE
PO 260 JzY, JHAY
NG 260 Lep,LMey
PUNXIUMETNY,J, L) o8 a(UMITIML, I, L)euM(1Py, ',L\)-tmtt’a.J L)
SKkI=SkieN{iDX223
XISk 2+4NUDXReD
260 CONTINUE
QK}-SK}*TDIV
EKP2=(SK2+TDIVInnl §
SKeSk3/5k2
PRINY Q42,8K
€O 10 (270,2R0) NFILT
270 KFILTe2
6N 10 281
2RO METL Tey
PH1 CONTINUE
PHINT 30R
PEINT QQS
PO G410 Lel,NKALF
PRINTY Qon,L
PRINY 902, ('I™(1,1n,L), lmf,NHALF)
PeInT 002, (V™ (1,10,L), Tsi,NHALF)
PRINY QnD, (w™{1,10,1), J31,NHALF)
PRINY Qn2, (RPUA(L,IY,121,3)
410 CONTINUE
PRIMT 902, USUM,VSUM,ASUM
300 FONTIMIE
WRIYE (Q) TIME,UM,vv,ur,pmM Pi,RIJ,RY,RW
END FILE 9 ’
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320 CONTIMUE

902 FURMAY (X, BIE14,A,X))

003 FORMAT (///,)X,*EDOY VISCGSTITY AT Jsi10t)

90U FORMAT (X,*#PLANE = +,11)

A0S FASHAT (/7//7,Xx,+»VELOCITY AT 1210 § U +)

906 FRRYUAT (X, 1he,8Y, 0ilpe/8tg , F14,7, SY, QHVer2/31)Ms .'E|a.7.
1 SY, QHwee2/5iiMz , Eta,7, Sx, s¥13(V2e2Y/(Vv24112)3¢, F1d,7,9X,1Hs)

QOR EFTIRUAT (X, 13 et atteredtvvatdtpettdetotaoetattatscthtnnddtlotienin
L RS R R R R R A R R R I I T s .2 2 axa r T2 s 2 AR R A R A A D )
oesdttatgpdbahp ] )

Q09 FORAT (Y,1Hs, RX, ¢T[Mg STYFPge, Tu,S5X,%2 24,F14,7, SX, *V2 2¢,
© K1U,7, SX, w2 ze, F{U,7, * SUm3e, E14,7, 19Y, {He)

Q10 FCF3T (1wW1) )

Qi1 FGErAT (Y, lhe,SX, U001 /M2e,F12 .5,3Y,4tn2/0282,F12,5,3x,+102/V28e,
o F12,5,%¥, au02/woe E12,8,T%, +ul2/itAvEIee, E12,5,10X,1H4%)

Q1D FUOWHAT (¥, ke,CY,aQqRrENFQCemD/NY) 34+ ,E12 R,91x, M)

Q1Y BURSAT (X, 1Ma,SY,«0n1S8TPATIANE  LEQMARDxe,E12,%,3Y, «SGS3+,E42,S,

1 Iv, «70TaL=e, F{2,8, 49Y, {me)
918 FuNMAT (Y, J-e, SX, *REAlL TIivEasx, FR 4, QX, *DISTANCE=e, F9,4,
1 s INe, BY, aS5TRA[N ReTIQ0zs, F7,3, Stl, thin)

Q1h FUSVAT (X, 1he, SY, 126haa2/vead 3 ,E14_7, dX, {2HVeeQ/40%42 2 ,
1 FYa, 7, 4, 12reetd/ugee? a LF18,7, 4X, 12HDax2/%0ee? =,E14,7,
2 AN, {He)

917 CUPVYAT (7/7,%,+ENDY VISCASTTY AY PLANEgiA®)

Q1A FhiEsAr (¥, Iz, [3)
STOP
[

*NECY THTIcON )
SHAQCUTINE INTPON (CNEFY,CNEEP,ANEFY,CNEFULLNEFS,COFFs,CNEFT,
SFFFB, COFEG,COEFT | ,CREFI1U, LPHA,COF,DELTA,NT,CANST,UTH, NJIK]ITE,
€ GaAMMA,TSTART,TEND,MYOREL ) ‘
Chret VR A AN et tad it tsptOoaretnthatitttrrttdetatobtodtatontnbeddetiavodd iy
C THIS SUEpRNUTINE T TTIATES ThE PRINERAM, FNW SYATINR PRORLENM, THE [M[=»
C TIal FIgElLn 1§ GENERATEN, FP2 cNMTIIATINN PROS3LEN, THE NnaTa STOREDH *
C 0K TaFE AT TWwF ENMD NF TRE PREVIANS S11% AQF Reah IV, *
(X 2 AR A R R R R R A X R S Y RN R R R AR AR 22X 2 R A AZARE AR A SRS R AR A4S A 04
1HTEGER PLANF,TSTART, TEND
FEAL MOJVY ,MI2, MY, NSIKR K, NLEN,MAVG
LERGE PH16,tn,16),501A,1m,1R) F(1h,16,1R),E1(16,15h,1K),
1 PYICLA, YR, tm) NPT A, 1A, 1A, EN(AD),ENT (00N, ENTI(AN),EN2(69)
LARCE UR(1bh,16,18),VR(14,16,18),47(1A)16,106) l”r(‘ﬁotﬁolb’
- JVICIA 1R, 16),21(16,16,1A)
FPARGE RU(1A R, 10,2V 1A, 1A,'A),25(1A,16,14),P1(16,1h,10)
. dOULIIA L, 1A), BN (1R, 1h,18),Rvi(1b,1h,18)
PIMELRTON B (R, thalh)  milh, 1 1R),FRE1O,163,FT{14,14),TR5(2,1)Y,
e TRI(R,I) NP (IA,2Y,63(16),51(16),N4AVE(LA)INFFT(I)
COMMWON/PATAS/.R,G1,TRR, TR
COMMON/DATATIFER ,F ]
roMPEONZOATARZMWAVE JWFFRTY
COMMBN/DATAO/ TN 8, IH8X, | MLX, 81 FNSVG, Ny EN, HSPEC
CoevenriTakTEeYt STALTING FROM TIMg STEO3()
faseen STARTE? CONMTINUED FROM DREVINS QUM
Cavsaw[HAYSMAYTH(IM RESH \NIJURER M YeNTRERTION
Comooe lMiy3va MM MEGH NUMKED IN YeNIRECTION
Comwmal “AXsMAXTUUM NE 8K NUYRFR [N 7aNIRECTIONM
Coaeaa?STARTZSYARTING TIME STEP
Cewman TENNEERDTING TIME STEP
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Cewee=DE TA2 ~ESK SI17E
CamesoeNl2tIrF STEP
CoeowwaalCaMnDEl CONSTOMTY
Cavoant AVRENEL TA(AVERAGBINGY/NFLTA(MESHY
Cowvend TS0z R IN ECDATION (5;1bg,
CoeeasGaMnaaSTIRAIN WATE -
Cowment=NE| 31 FOR SMAGLRINSKY MODEL
CD-O..‘J"rjf‘ELga FQOW VP’RYTCIYY VnnEL
CEAD 7A3,NSTART ,1MAX, JuAX,| 4aX,TSTART, TEND ,NMODEL
RE&n 4, PELTA,NT,C, MAVA,8HT&O, (ITH,GAUMA
PLENSNAVGeRQ
reERhetp
MEALFSMESH/2
ShPyaMEAlL Fed
P2yt G}
F18S0S3,/7(3,¢80180)
TEVP=ANISOZY,
EALTIS(aSnRT(TEMRP)
cC=y,
TFACRIMANR JMAY o MAY
FAC=SOT(TFAC)
COEFIEY 70144 ,«0ELTa0 4D
COFFP=CanNELYARO S
COEFNzy Js24, .
COEFSe1, /(0,»0FLTARY)
CRFFoz12, /RFELTa
CCEFT=1,/(12,+DELTA)
FUEFT2=2CNEF T2,
COEFE=Z2 /(T 4PT)
COFFYzZA 11U15920515R094
TLTF a3, 1415%2n3 38R A/ nmaLr
COef112CO0EF)Q
CENFF1233,101572553539842)
ALPHRAZDY /(UR, «NFLTA)
Cut ST2COEF10/7 PELTA
FONSTS2CNANST e
CUEFIUSCOEFI2+FACACUMSTS
COFFIS2CREF12+FAC
Pl1=CNEF 10
PlezPl1a?,
CALL START (CNEF3,COEF11,CFLTA)
GC TD (3,1000,50D0), NSTARY
{ COFgel,0
HCONT 2
no 2 vay,2$
Y9EPREN(X9)
2 COMYTINUE
CoevaefFuiY SOPECTRUM PATA
Camne= " 4 [MTECOVLL 1O T ¢ THEM G IMTEOVALL WP Tn 8,0
Cowsenft 1S TWE ENFuY SPECTALM FOR TWE TSGTQUOIC PART, ENQ I8 FNR THE
C ANISNTICQPIC PART,
N 3 vey,24,R
Y=o
FEAD 4, (EN(VY™),MMed,MT7)
3 CONTINYE
N0 w0y Mgy ,24d,A
Ly B 1 A 4 .
PEAN, U, (ENMQ(MM),HrMaM, uT)
50% COMTIMUE >
u FOLwal (BE10,40)
- RO 8§ Lay,L™Max
Y g Jey,JrAYX

-
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PO 5 Tsl,1maX
HRC1,J,L)80,
Vq("J.L)GOQ
kg(‘ "JDL“OQ
W1 (1,J,LY80,
vi{t,J,L)=0,
vI(1,J,0V20,
pU(,'JlL ):n.
¥VI(1,J,0L)20,
Re(1,J,L)e0,
€ CONTINUE
DO a0 Lat,MHALF
lLLsL
N3g =g
MNISENTen)
NG 30 .1pg ,NMY
JInpExsJza
JIsJenHpPriaJIMnE YR JUAY
Moz JemHALF
1r28aNDee?
ro 20 Teq,Mmy
1INpEX31 /R
Ilz1er=FPrelJrnEXaIMAY
NimJenwalF
NiSzMieed
LE0RENISeM2S4%3S
TF (NEER LT, 0,1) GO YO 20
VAVNEBSROKRT (NSQK)
KDYy /WAVN
Ml2znySen2S
I (M1e A7, ¢
1F ¢saS¢rq1y ¢
CowvashEY FrilRIgR &~
7 YSCONSTaWAVN
NREGEN4Y . .
GO TH (310,315,315,315,315,315,315) NREG
310 MEX/0,1
YMEYe(, 1 4M
vlgu¢’
FOBEM (MY YeEN(N)
FANERGYREM(M)SENEYMRIN,
EDAZEr Y (M1 )wENY (M)
FAarNTISOAENT (F1Y4EDAYMRtQ,
t3 TC 320
115 Mztyey )#2,
YMEXxe) o0 S5&M
MEZMal0 /
Yiemed :
ENZEN (M1 YmEN(M) .
FNERGYSE! (M) 4FNeYMa2,
FOASENY (V] )eENL (M)
EAMISORES T (M) eFCARYMRD,
20 ASeENEOAGYLRISO/(COFF1ISaYon2)
PN EORT(NS)
CS8sEa*1S0eQISO/ICNEF1SaXanel)
NhagSN&T (NSAY
CowmanlHANGE WAVE M MEFER VECTNA® TN SATTIFY NIMERICSL DIV FREF
Cavewa®] K2, AND BRI ARE THE MOPIFIEN wavE NUMBER
A0 10 (330,340) NCOMT '
330 CONTINMUE
ARGYEP Ty Ny
ANGREFIeNY

1) wWitaige : ,
o NHALF _ANDT ARS(N2Y LEO NHALFY NCONTa2
LITURE OF THE INTTIAL FTELD AD NESCQRIRED 1IN SEC 4,4

L]
a
P

'
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RIS(8,e8TH(ARGI)eSTIM(ERG2YIACOEFTY2
ARGIEP]1an?
LkG2EBFI2eN2 )
RO3(L,eSIN(ARGI )= INIARGD)I4LNEFT2
ARGIEPT|aNY
ARGPBPTI2aNY )
RIS (8 ,eSTH(ARGI)eSIN(ERG2)ICNEFTR
P1SeP1ea?
G28eF2ae?
£3Se~3ar?
P12SER1SeR2S
PSR3R128+RYS
GO YO (335,340) NCOMY
338 COMTINUE
R12=80RT(R128)
R1201Ivay /P12
POTVEYL ,/SANT(RSN)
C eceaEY &4 &k # VECTOR
C FIRST CHONSE WARDNM PHY
Id0 CONTINUE
yYy=eGeEN(XX)
brT1=YYea(NREF12
CP™12COSIPN]Y
SPHIES[M(FNTY
60 TC ( R,11) rCONT
R CONTINUE
Al=(oR290PHIeRI«RTACITVASPHTIV*RYITLY
APE(R1aCCHT 4R a3 eRiiTLaSPMTYeRIINIY
A3zeF12400TVasPHY
C FALL RANNOM PHT
vYZ3IRUEM(X2)
PHT2Y2«(NFF 12
rFPR]eCAS(PHTY
SEHIESINPH]Y
RHIZS(ekpelPHIIR1oRIeRN]VLSPHT YRR DIN]Y
R2S(FI4CPHTIARDARIaRTITVESPHT Y& RIIN]V
R32aC10#2ROTIVaSPHT
0 YO 12
11 CONTINLE
TNDEXS(YYeD , 28)24
PHIZC, 78530982420 1N0EXa])
Atesin(pPyl)
A2sCOS(PHI)
A3E0,
vYiseGEN(YYL)
THDE XS (Y140 ,25) 4
9"1:0,7ﬂ<3°82t(Zt]NﬁE!-y)
Frssin(pPul) ’
Aes(CS(PHT)

Rlzp,
rCONTeY -
12 CONTINHE
¢ DETERYINE A4 AMD R T FGUATINAN (u.6)
c RANRCH THETA

YISRGEN(XY)
THETAYZLCNEFID
CAsCOS(TYETA)
CESSIN(THETAY
URCTL,JJ,LL)aNNMaCanad
VRITI,JJ,LLYsiiNaC4an?
wROIT,JJ,LLYsMaCaedd
l'l(,Y.JJ,LL).‘tN'CS.f“
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c
c

20
30
4o

VIC(I1,JJ,LL)eANACRRD

h!(II.JJ.LL)lﬂNiCRt83

JF (N3 MnE, O0) GO TO 20

wSIGNZARS(83) /43

VSIGNEABRS(RI) /RS =~
WRarBICNA«CAWRANESD

w]ArENNLeCRARAMTISO

wh €11, 00, LL)SWRETT, 1T,LL)e4RAMaLSIGN

SICIT, 00, LWy T (1T, JJ,LLYerTaNMaVSIGN

CONTINUE .

COVMTINNIE

CONTINUE

NOW THE (IPPER MALP NF TWE Ko8PACF HAS REEW PETERMINED
GET THE TRANSFNARMEN VELOCITY AT THE CONJHGATE POINTS

CoweesCONJUGATE FORM

tra 0

4y

4z

ay

N33y YD 7, Ny R NMlze? TO 7
nNyz|w) CLUAEIRG

Ir: BN eN2s ]V

N0 utl L=2,8

LMz ¢1deal

ne w4t dst,te
LESSASR-DWAR
JrzJs(tde2n])aM

rO w! T=|,16
»E(T¢15)/717
TUZT+(1Be2t])wM
URCTY I, LMY8 URCT,J,L)
VR(IM,IM,LM)e VR(T,J,L)
WPPrI™,IM, L ¥Ys vR(T,J,L)
vIeIM, L MYyseI (Y, J,0)
V"Y“u~'"nl_”)='vl(lg\,'l.‘
WI(I™,d¥, L ¥)sen](1,J,L)

CUNTINUE
NIz, Mia) TO 7, AMDze? TO 7
DO 02 13216 N i

ITMZ]+1Re2r]

no 42 Jst,t1e
ME(J*1517217

JVEJe (1de20]) e

IF (J LER, 9) 62 19 42
URETIM,I™,1 )2 UR(],J,1)
VROIM,J™,t e VR(T,J,1)
WREIM,IM, 1 YE wP(T1,J,1)
VICIM, I, Yzelil(1,J,1)
Vl(!”oJ”-l )a.VI(IpJ“)
WMICIHM, I, 1 JIEenl(T1,J,1)
CONTINIIE

NisN3=z0

N0 43 J=2,A
JMZJ+1Re2ad

HROYpJ™,1)8 UR(T,0,1)
VR(1,d,1)8 VR(1,]J,1)
MR IV, 1)8 WR(T,.0,1)
NYTC1aJM,1)Emli] (1 ,.0,1)
VIigy,JY,1)8evI(Y,J,1)
wl(tsJY,t)emwl(y,J,1)
CONTINUE

TNVEHSE TRANSFNRM

X AND ¥ TRANSFNRM
SIGN=.'.

N0 S0 L=1,LMax

SMALLIN ¢FR(1,1),UR(C1,1,L),256)

(uiRiHQAL,Ith, : ”;ig“;i-iv‘
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SMALLIYM (FI(1,1),UuT01,1,L),2%8)
CCALL FFYY(SIGN)
CAlL FFTY(SIAN,CC) .
SMALLADTEFR(L,1Y,UR(¢1,1,L),286)
SMALLOUT(FI(t,13,01(1,1,L)028A)
SMALLIN (FO(1,1),vP(1,1,L),25%6)
SMALLIM (FI(Y1,1)avTI(t,1,LY02560)
CALLL FFTX(SIfNY
CALL FFYY(STINAN,CC)
SMALLNDIT(FQ(Y,1),VR(1,1,L),256)
SMALLO TS T (L, 1,1 (1,1,L),256)
SMALLIN (FR(1,1)s2R(1,1,L),286)
SMALLIY (FI(1,4),al(1,t,L),250)
CaLL FFIXY(SIGM)
CALL FFYIV(SInN,CEY
SHALLOUT(FR(Y,1),%P(1,1,L),286)
S?‘ALLQ"T(’I("’)u'“](';‘,‘.)'?gb)
S0 COMTINUE -
C 7 TRAMSRFQRM™
SMALLIN mM(1,1,1),0(01,1,1),d00A)
SMALLIN (M(1,1,1),0'701,1,1Y,409)
CALL FFRTIZ21STGN, uM )
SMALLQOE'T (™01, 1,1),09(1,1,1),48096)
SMALLONIY (M1 ,1,1),00(¢),1,1),4n94)
S"ALLIN ('“"(1.1:‘)'\'"{(‘-!'1‘0“09“)
S“ALLIN rH(1,1,1),V1(1,1,1),4096)
CALL FETZ2(STOGN, M, W)
SMALLEUT (9M0Y1,1,1),Vitr1,1,11,un98)
SMALLOIT (M1 ,1,1),vT0t,1,1),0008K)
SMALLTIN (R0, 1,1),9%9(01,1,1),4094)
SMALLIN R, 1,1),"T11,9,1),409n) N
CALL FFTZ(SINON,HY,N) -
SHALLOBT (HM01,101)0 T (14141Y,U098)
SHALLOUT (MY, 1,1),=101,1,1),4004)
CowmeeThf JMTITTAL FIELD W38 AFEN GFHERATEDN, THE FOLLUWING 1S TD PRINTY
c CUT  INEDPRMATINN NN THE RENERATED FLELD '
t VELOCITIFS ARE STDRRED T LR, VR AND wWR
c--..-TUDEULEMY E?JERGY CHECK
TKU:O.
TKVz0,
TXKw=0,
TK1=0,
PO 9S L=y, LMay
PO 95 J=t, Jmax
N0 @5 Ist, Ivax
TRUsTYUSIIR(T,J,L)2¢2
TRVeTaVevw(],J,L)ve2
TeweTwenRl],J,L)ee2
Gy CONYTINUE .
TOIVE1, 7u098,
TKU=TxaTNTY
TRKVaTuVeTDIV
TXezTxweTDIV
TRSIIPSTKIIeTKVeTKW
TKURETKUIZTKSUIN
TKVRESTKV/TKSHIH
TRUESTHY /TRSUM
FRINT! 704
PRINT T00,DT,PELTA,C,MAVE
PRINT 702, TKU,TEV,Txw:w, TKSUM
FRINT 702, TKUR, TKVR, TKWR
PRINT 704
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115 CONTINUE
PRINT 601
uroran,
viGtae,
wi0Yz0, -
N0 120 L31,LMAX
PRINT 7i0,L
TEILE TUR
vSsursn,
w§limzn,
0N 11e Jxi1,JMax
NG 116 I=1,TmAX
pSUmauSUM+IR(T , J,L)
vSit»zySitrevr (Y ,J,0)
aSuMseSiivenRi],J,0)
116 CONTINUE
DHINY 7”’, (L'Q(Ip)"),l,).T'-'loS)
eQInY 702, (VECTI, 19,001,721 ,R)Y
PRINT 02, (wR(TI,19,L),Is1,%)
ORIMT 702, USUM,VSIL®, QUM
HIQYT2NHTINT4+LISUY
VIQTSVTINTVSUM
WINTSHTOT 4wSUm

120 COMTINUE
PRINT 72¢2,0TI0T VIOT,NTNTY
G0 10 139

1non COF=1,8
PRINT 707
PRINTY T0A
Priar 2y, 0Nl 8,0
REAN (19) KRTI%E IR VI, wi,Ph Gd,RkV,RW
MTTMESAT TN E ey
PRINY 7685, MTIME
PRINY 706

601 FORMAY (y,aur VM, wMe)
PRINT AQ1
Nt 125 Lst,LMAX
PRINY 710,L
eRINY 702, (UFIT,10,0L),131,14AX)
PRIMT 702, (VR(I,10,L),1m1,TM8Y)
PRINT 709, (WR(T,10,L),121,1nMAXY

128 CONYINUE -

130 COMTINDE '

700 FORuMATY (¥ ,«INIYIAL CONDTYION, DYee,Ffln,d,s OFL.Tase,F10,4,

1. C2w,FT,0,%x,«AVERAGING ARINaa,Fa,1, & DELTAax)

701 FORMAT (X,el8%,]3)

702 FORVAT (Y,A(ELL,7,Y))

JCY FORRAT (101D .

T04 FORVAY (UER20,14)

766 FORMAT (Y, «CNNTIMUED AT TIVE GTFPxe,¥4,/,/)

P0h FURMFAT (X, 130 esavotnantttoattonrttbodotytistiatantaventitvadiontn
QOtt.iﬁatﬁto‘ttttttﬁ'.ttqiattcataftﬁtttti«t*t'itthgtitgoﬁtttttoﬁant
SethetadARANE )

707 FOPSAT (1HY) .

710 FORMAT (X ,#P| 2MFae, I3

T11 FNRMAY (x,% INTIT4L CONDPITINN®,/,X,anTaw, E£10,4,+ DELTAReY, E10,0
®« ,¢ GIe,fT U, & (IC2x, E10 4,/

N 10 K000 e
5a00 COMTINUE

CoFzl, 0
6N00 CONTINUE
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RETURN
END

ADECK PRESS
SURROUTIVE PRESSICNEFILLDEF1Y,CNEFTY)
C'ttito'a.!tﬁitattttoattttftiQt.taotttthoitio'gt't't.ﬁtttttiitttanttﬁiit
c SOLVE BUISSON FRUATION Ay FAIIRTIED TRANSFOPY HETHAN, .
Cﬁ'tﬁ‘.ﬁ't'tttti.tti't'it‘cttﬁtttttﬂQ.O'Q.QtQ'Qt'tii'to't'ttattnttﬁitttﬁ
LARGE PMI16,1h,16),0018,10,10),E(16,1h,3R),ETL16,14,1A),
1 DIC14, 16, 1R, P20 0, 1R, 14),FrR(aMEYLrRD)LERITAN),PRUM (14,3,
4 Pne12) .
LARGE UMCLI6,16,16 Y, v (1R, 1H,1n) (1R 16,18) »1JIftn,1R,18)
- 'VIflbiiﬂa'h)-“1(1001b,‘6,
LARGE RUC16,16,168),09 (14,116,108, Qs (1A, 10,15V,P1 (16, lb,lh)
o 2B (118, 1A, BV (10, 18,15),0¢1(15,14,14)
DIMENSTON HMIIA,In,18),n (1A, 15,14)
DIMENSION FRILA,18),FICth,108),TEI(8,3),Te](2,3),RnR014Y,51 (16)"
. o NWAVE (14),NFFTCY)
CDM“UN/DAYASIGD.GI.YQQ.YRI
COMMOM/DATAT/IFR,F
COMPON/NBATAR/ NWNAVE , uFF Y
COMMON/ZDATAS/ZTVAY , JraY L MaL, NHALF ,NAVG,N) EN,NSPEPR

c FORwARD TRANSFORE )
¢ FORWARD TEANSFNOwM Tr EACW PLa~F, AFTER TaanSFOQM STNIE FR & FI TA 6 8 P,
SIGMEsy,

NO 20 Lst,LMax
SMALIIN (FRE1 1Y . A71.1.1),08AK)
CALL FETN(SIG™)
CALL FFTVY(SIGNY,COEF LY T
SMALLOUTeFRR(1,1),P9(1,1,L),25h)
SMALLOUT (FIC1,1),6(1,1,LY,2568)
20 CONTINUE i

SMALLIN (H™(1,1,1),Pv(1,1,1),4998)
SMALLIN (H(1,1,1),5(t,1,1),4096)
CaLL FFY? (SIGM, k¥, =)
SYALLOUTIHM(L,1,1),F%(1,1,11,4004)

COSHALLOUT (R, 1,1),0(01,1,1),4004)

ComsanlGETl TRANSFORMER PR AND PT STNREN IN o aANp PM

NPYIsNHALF 41
PO 210 Ls=1,LMaY
HMSLIQ
MSMbR 64
ARGIECNEF 1a(LeM)
ARG2=ARGI =2, /
ARG3I=ZARG)+3, :
ARGUBARGI»M,
waAVEL= COG(APGa)flb «rcns(awrx)-cnsttncx)»‘bu *LOS(ARG2)18S,
DO 20Q Jzi,JMAY
MMz /9
MSMMR] ARGt
ARGISCOEF 118 (JeM)
ARG224RGY 2,
ARGISARG =3,
ARGUSBARG Y =d,
uAVEJECUQ(Ansu).ib t(cncrnﬂni)-cnS(ARGI))ohu *CUS (ARG2YehS,
DO 20p I=1,1IMaAYX
MmE1/9
MEMME A4
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208

204
209
210

AMGIEBCOEF 1 e (laM)

ARG2EZ ARG %2,

ARGIZARGI2Y,

ARGUZACGY#d, .
waVFIECOS(ARGUI 416, 2 (COSCARRL)=CASCARGT) 1404, 2CARCARNA2 =4S,
WVE(RAVETeWAVE JeWAVEL)SCNEF T -

TTESTE1 e el ]

TF (8RS (wVY LT, A,.0001) GN TN 205

WAVESY  /uV

GLI,J,L)=G(Ll,J,L)evaVvE

PrP(1,J,LYSPHM(T,JoL)swWAVE

RO T 2(¢A

G(chlL)'oo

PM(I»JsLYEO,

CONYIMUE

CONTINIIE

CONTINUE

Coorasb XTRAPNLATF FOP LAST ~NPMER POTNY

o

300

210
Q0
903
Q04

tenp]
REAID!
LeANPy
Nt =RNHALF
- P LS RS
ReT,Jd, L)z ety Jt el N, 1)e6C,J,N%1))
| e (MR, T, LY (Y, M2, L )en(I,0,NM2))
LeT,d,0)2601,J,L)/7%
9"(1;.!.L)=2.'(P*(?\P1.J;LH"‘frl.“‘U.LH""IIoJoNMl))
1 e (PY (NN, 0, L 14PM T N2 LY4PY(T,J,N%2))
PreT,t,LYeP»(I,J,L)73
TMVERSE TYRANSFORM
s;bm:.\.
Du 302 Lsy,LMAY ]
SEHAL LTS (FR(1,1),PM(1,1,L),256)
SMALLIN (FT(1,1Y0,G01,1,L),256)
CatL FEIYVISIGN,CNEFY)
CALL FFIx(S16GA\)
SMALLDUT(FRCL,1),P4(1,1,L),256)
SrALLOUT (FI(1,1),601,%,L).256)
CONTINUE
SHALLIA (HME1,1,1),P%(1,1,1),40006)
SMALLIN "“(1'!")'6‘1"")50096’
CALL FFTY72 (SIGN,,Hiu )
SMALLGUT(HM(1,1,1),PH(1,1,1),4096)
SHMALLOUT(R(1,3,1),601,1,1),40968)
PRINT ©Opu
nO 9te 21,8
PEYNY 90%,1. )
PRINT 001, (P(l,10,L),15{,8)
CONTTINUE
FNRMLT (Y, R(E14,7,%))
FORVATY (Y, «PLA%FER, 13)
FORMAY (1h0,«FRESSURE AY Jsine)
RETIIRN
gEnD

#DFCX VELONC

SUBFOUTINE VELNE (70,281,2%2,7P1,2P2,2,21 E8S1,24001,RETA,CNEFs,

1 COFFT, 0T, CNF Gar s, Bt MMaS, 60NF,6n2,60,DELTA,ARAR)
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CANE e ARt A NG e P RN AN I RN B I PRI A IR G E T RGP C AR N RN RNTAERNN R AN ORI RARORER
€ THIS SURRQEUTYINE COMPUTES =CT1) Ta EQuUATTOY (3)32), *
C*t'i'ttitﬁtﬁaﬁtttﬁoooﬁaOtﬁtaorﬁt*ttt.oﬁtttt't.ttgittt.'ttﬁi'ttﬁt..t.ﬁtt
TNTEGER 70,72%1,2Y2,7P1,7P2,2.,2LFSS1,74001
DEAL K, MLEN,MAVG
RIMEMGTO® (LA, 16,5,V 16,16,5),5(16,16)8),831G(146,16,3),XK(16,14,%)
- P16, 16,8) ,NyMtY(16,16,5)
COMUAN/DRTEY /M, V, W
CNFMBR/0ATAR /P
OB elN/DATAR/SIG, K
COMVDLIPATAN/NIINMY
COFMONZDATAC/MAX  Ji*AX ) 44X MWALF ,NAVG NLEN NSREC
FOlvsy /7HETA
JIFs Tz 1AY e
1TFESTsTvAxm]
M 210 =t ,Jrd)
AINE N
-"‘-1:-,’-‘
JHZSJO?
REREN Y
AP22J+2
IF ¢J 6T, 2) G0 10 30
0 TQ §n,20),0
10 1" 22J%AXe)
J¥1=sdvax
6 10 AQ
2o Jv2=Juax
Q0 10 A0
30 1F (JJ LT, JTESTY GO 10 60
JizJdJedvaxe?
GO TU Taa,350),31
an Jdrest
GO 10 A0
50 Jeist
Jp2=2
50 CONTINUE
Y2(J=T7,5)+0EL TR
YvesvenFL TA
YPEYSNFL TS
no 200 T=t,IMax
1”2:!.?
T“izlel
1Ptslet
1P2z21e?
1F (1 .6Y,2) 60 Tn 99
(0 YO tY0,30), 1}
70 1+2zTMAYel
ThizIrax
EAN 4 VI I )
RO 1M2=z[wvay
O TO 120
80 1R (1 LT, TTESTY GU TR 129
TiIZ[eIMaYeR
LD thD t100,080Y, I
1¢cn P22
GO YN 1213
110 1P1gd
1P2=¢
120 CONTInYE
X=(127,5Y+DEL TA
xhayspFL TA
XPEY+DNF TA
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c
c U COMPONENT
o
Covmnw=ANVELTION TEVvaeeli CANPAMENT
SIBU(TI0,J,20)01 (1P, J,20)euf 1My ,d,20)xbcMy,d,20)
SISSEeUCT,J, 20V elP1, ], 20 al'(Tut,J,20))
S1=S e (T, 0,200« (Li(1P) 1,20 it (1%),J,IN)Y A
SIESTat' (1,000,720 ev (1,001,708 v e T, IV, 70vev ], 179, 20) s0v(l,J,70)¢
CtUCT v dPL, 20t (L J 20V (T, 0, 20)0(V (], 0P, 2M)av(],J1,23))
S1xSYeli(T?,.0,2P1Ye¢1,10, Zﬂl\.u(t.I,7P|)0'fanp7“l)04(7 JeT M) et
PELY B S I 791)-“{1 JeZP1Y )01, 3,70y {8 (1,0, 2P )], ,0,7M1Y)
sesu(yoz,k.zny.atro; J,20)eiieIx3,0,70)ebietV2,J,20)80:(1,J, 21)'(
CTP2, 0,70 eI D, 0, 20y)eu(T,d,20)¢(11(TP2,J,20)=0(T"2,0,201)
=2=<2.u(t,lpa,zn).V{!.Jb A0Vl (T, M, 70 eV T, 0D, 20VeV(T,Jt,Z002(
.‘?(]‘Jp?,7C)'U(’,J‘\?,Z')\)6',‘('.._1,2(").(\’(1’,"”2,2(—""/(1,\"‘?,2!.‘,)
S2352611CT,.0,2P2)¢0(1,0,7P2) et (1,0, 22)awr],J,242 e (T,0,70)a(
T, J, 7P )i, 0, 242040 (1, 0,20 )a0~(T,J,7E2)=%(1,J.2%21)
ADVEL sela,#5142,#4582
R180{1™2,0,70 ek w2 (TMY,J,20)=n(101,d,20))ati{1P2,.7,70)
S23U(),J 2,70 YeR, efitt], 1M1 ,720)e1¢],J01, 203 )=U(T, !Pe 10y
83 = Gr@‘i(YtSZ-X'51)OGA“VltU(T.JaZO)
ADVEC= AT VFCeRNTVAST
Cowse=FESQL VAR E SCalt LPSS TERM ¢t ENMAKRD TERM Dwawil chD(_WEMT
S31=UeTIPR, 0,70 4!t 18D,0,20)411(Iny,J,7090pil(IP2,J,20)eit¢1,J,20))
SIS+ (IR, 0, 20)e0it(1P2,1,L01e2(1,J,Tn0))
SI =S4l (1R, 001 201V TP, Py, 70 el TPy, 058,20V (I0y,J11,20)
S35 eV (1R, I, 7032 (U12), 1P, 70 =Li(1P1,J1y,L0))
$31283 SUEIPYL, T, 70V4(V(101,001,20)aV 701,01, 20))
S31=253t1elr(TPy, g, 791)*«1191.~ 2P Y=l (TPt 0, 2'1)~Nr!°'.J ZMY)
QT =S u r"‘",_"?‘.,.‘ 1,|,t—y)-'\r"|'la"l”
¢31=53|4“11?1.J,Zn)n(w{lpt.J,ZDL)-ﬂ(1P1'J.lHt)) : -
§S32=e(1M2, 0,20 atr e T2 Y 70yl ,0,20)e(M01,3,20)aitqY¥2,0,20)Y))
832253240 (TM, 7,20 0 6000Y,0,70) e (1M2,0,20)) :
S3225%240 Ty, dP1, 70V (T, 000, 70 el (THy,Ju e, 70V IV ,I7,20)
S32=28224v (Mg, 0,20 iy, 008,70 a1, 041,20)
33225137 SUCT 3, 2 a (VT 1, 000, 20 yav 1m0, 20
S§32282400( M1, 3,200 0 u(IM1, 3, ZP 1 it (T 3,2 ) an(Y91,],241)
S323S 24w (1), 1,20V (UI(TMY g, 2P Y (T, 7,201 )Y
S32253240(TM1, 1,720V 0w (11, 1,208 mu(T 1, 01,2410
SAYsU(TIPE,JPI, 20t (TP, 101,720 ati{TMY, IRy, 20011 TmY, g0y ,70)
SUIaSUYeN(Y, P, 70 )% 1PY, 101,70 )=iitTul ,JPL,Z0))Y
SHISSOI e, IR, 7o) et (1P, JPY, 70 eti(Iul, JPY,20)Y
sat1zSat SUCT G IP2,7032v (], 002,208V IT, P 1, Z0)«((T,JP2,20)=
ST o Z0N)S (T JPL, 2N %tV (T, 002,70 ev(T,.1,20))
SUISSUleil(Y,IP1,701 )k (], R ,701 e (1, 1P, 21 )ew(],JP1,2M1)
SUTSU 4w (1, IP1,70)1€Ciif], 0P¢,7P1 Y/ i(T, tP1,241))
SA12Sutl ¢, JPY 20V 0l (Y, 01, 7P 1 Ym=(Y,,1P1,2+1))
SQUPSIN(TPI ,IMY 70320100, 190 I0Yat (TN, 1M, 20)80 (MY, 0v1,20)
SU2=2S542+40 (1, 01,202 CLrIPY v, 70 et Tl ,d%1,20))
SK2TSLR4UCL, ", 20 (U IPY, tv1,20)eil(T 1 ,J41,20))
SUP2BuURel (T, 182, 722V, 0%2, 70 4V (T, 0% 7202 (U(T,J,ZM)elif],3M2,20)
1)
QUP=SUZ411( T, 01,20 60V 0T,Je70)e J(I,J“ REDR
S4s Su?oﬂ(l"w1.7°1)t~(l.1"1.791\-0(1.'4',2'1)'~(I.J"1.2Ml)
80?:5024‘»‘(!,JP’.7..’”*(&}(7,.!"!,291)-”(1,,7."!'2'71))
SU2SURe1 (T, 0, 20)«l a1, ,2P 1 Yeu( 1,00 ,701))
SSI1aUCIP1 I, 2P JPY, 3,70 Ymileany, 3, 7P e (1M, 3, 7P ) &1, J,27P1)
.HU('IPMJ-ZPi)-H(I“-\.J.ZFH\.
8512591 U, Js 70120 ( 1P, J,2P ) )ell( TN, 0,2P1)
W YSINCT IR, 201 )aVT, 0P, 2P )eti(Y, 0" 1,2P1)ev(t,JM1,2PY)
855125514V (1,0,72P10(01rT 1P, 201 )it (J,04),20))) i), 0.20000(w(],J P
e s 1PV (T, 0 ,2P1))
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861:=2551 Y, 0,202)04(01,3,2P2V44(1,0,7P1)e(t1(Y,J,2P2)=
JHLT 7032000 1,0,70 1 a(u(T1,),2P3 e (],1,70))
8522l (TP, Jy251)2UCIPL, I, 2 Vet (T¥1, 3,781 )sU0(IMY, 0,21 )eU(T,J,2M1)
tUCIP, T, 241 el I"],J,21))
§52358482 SUCT, o2tV U (TP, J, 2 Yali(IM,J,7%))
ST IR, ZMI YoV (T, JPY, 241 Yail ], 091,781 )evIi],JM1,21¢)
SS2=5S2¢v (1,0, 7%1)ef0(1,IP),201) a0l ,J1,248) 80 ,0,241)(V(],
oJP1, 2 Yav (1, 0%1,241))
§52:=8%2 (T, 3,72V W( T Je2"8Y¢m(T,JeZMLYR(UCT,. 0,200
oot (o de2V2N V000 o) 7M1 )0 (T, 0,20 )ow(],J,7112))
S6z1 (TP, 0,200V 0:0(1P1,J,70VYen(11,.J,20)¢U01"1,J,20)
Sbeseei(1,J, znwatulvbi.x 2Mret (1Y, 5,200
S6s86 ST, 1,200V« CTPY s 1,20) il T~1,0,20))
SbeskelifT, J°'.70\tV(T.7"1./0)-“(1 JHY, 7082V (a0, 20)
SOESHIVIT, J, 2% (1 T1,0P1,20)atifT,J"1,20))
S$b6sSh Y, d 7YY, 1P, T yav (T, 0% ,20Y)
Se=Cagsii(l,J,2P1)ax(1,d, IPI)-”(I.I.Z*I)' T JeZHAtve e, 0,20)0(0¢1.d
e o ZP 1Y@ (1,07 1YL, 0,20 et n(1,J,2P Y2 dl],Js21:1 M)
RESZIVSw) Sa(ST148324SU1434245014552 eh,456)
QESNLVvERESOLVert bn
Stz exParti (102, 0,20)eli 01, 1,29))eva(i)(12],0P1,20)ait(1PY,J91,70))
SRz Xt ([oJs7001a1{T2, 0,701V e(Li(T~1, tF1,20)@1(TML,]1%1,20))
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SH=CFFaaS?)
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S9sx (7,JP1,2)+591
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S2EVIIDN2,.JeZ0) et (ID2,5,20)ev (TN 2,J,203eU01%2,J0,20)41)(1,0,20)(

VIR, 0, 70VeV(TH2, 0,20V 6V IT,de?0)o(lI(TP?,J,20)e11(T12,1,20))
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SU1aSt v IRy, 0, 20y e(u(ln2,1,/Mel(l,J,20))

S312S3 eV (IR, 0P, 70)aV TP, 191,700V (TP, T4, 204V TP, 11,70
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SI2=C R4V 1,0, 7810012, 1,201 0@V (T, 9,7 ) as(T0,0,7M1)
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SesSo+V(T,JP1,20)sv (I, 91,20 VeV, IM1,20 eV (],IM1,20)
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SS2aXa(VITIP1,J,2P)ev (11,0, 76y vV ], JP1,2P 1YV (],11,2P1))
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'-(W<In', TP en IV, 0,700y
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=s1:5<1¢v!f.d ZPII*C T, 0P, 20 e ], JdM1,2P 1)) ed(],0,2P1)n(V(T,JPY
02 ZP1Yeav(l,0"1,2P1))
8% =88} Sl Je2ZPY 2 (1, 0,2P2V¢4(1,J,701)8(¥(1,0,2P2)=
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e (A(IPY, 1,241 )eu(]1,1,72"1))
852e8s? 00,0200 % 00 (TP, J,Zn et ( T, 5,2141)
WIHNEY P T e VT, 0P 2 e (T, 0, 20 ) eV (T, VY, 24
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S12 QYPS(A(JP2,J,72M)mu(],0,20))eYstw(]0], 1P1,20)a{]P], 1,20))
S2SeXMe (vl Ty ),20)wv 0D, 0,20 8y 0lt oMY, 11,20 =yt 11,20))
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K2k ¢IPy,J,2 I+SS

§St= w01,J,20)eu0 (TN, 0,20)4U¢1"1,J,2P1)ali(141,5,2MY)

Sz5.%(IM1,J,7 y=SS1

SAZLOFEF bS5

$= WET,JP2,20)en(l, 0,204V (T,JP1,2V )V T, P1,2¥])
92x (1,JP1,Z )a§

582 W(T,J,70Ye (1,072,204 (F,JM1,2P1)my],Jd™,241)

SQ=5°.K(1'\'M'!Z)’SS
SS9 e (1,J,280N))e2, 00w (1,3,200)en(],J,201)
CO2CUEF A+ (SO (1,0, ZLF8S1 122, ¢(<(J,J,20) w=(1,1,242)))
SG32564859 :
AOMeY Y, Y T)2idF TAR(eRVEC aRESNLV4RARS¢+RERAND)
FLbdY (Y, ), m)2ANRVELCS+RESAND
1}, ,|)=<7 (1,1,11eQFSLVven(T,],2n)
C[{,([' »2)% Sln(lonja”.qﬁc"‘(rp\ 70)

2ca Cnxtl“uf

218 cONTINMUE
KE TuRn
END

-, LS N
CL st ane

SURROLTINE GTVRCE (70,711,7mp3,7204,2P2,0U08k )
‘C'f""ﬁ”‘tﬁ"tﬁf‘t"'Qt.0"*‘00000"'00"!‘..'0QiIQOQ.'QQOOQQQO".tifﬁ
C THYS SttpkiT i€ Col TULATES THE NTVEGGENCF NF (d,V,%) FNR TuE PLANE 20«
C THFEM ¥hg vALDE I8 STO&RED [H Ausey (T, 1,48), *
Cttttﬁ'ihoi.tﬁ*i'tiitt..if’tthttt'tt‘ta"iOit*ii'ifitﬂﬁttﬂﬁi"Q'ﬂdtiitﬁﬁ
TNTEGER 20,2y ,7%2,191,72¢2
NINENSTON S{1h,16,8),VI1A,15,9),5010,14,8),0UHMRY(16,1h,6)
COra0pr  DATAS U,V W
CORMOMIDAT BD /Drimby
COPLDMZIAT AR /I AX, JVAX, L AN, NHALF, MAVE NLEM, MSPEE
JTEST=zImaxe)
YTEST=Iraxey
L0 210 J=y,Jdnex
REER
:“"?:J-z
JH1sJe
JR1zJet
AP 22042
1F (J LG¥, 2) N 1O 30
LOOT0 (10,20),J
10 IV22driXed
Jyi=sJrAX
G0 10 60
2n Jr2sJMAX . ,
cC 10 &0
3p JF ¢JJU LT, JTEST) 60 To &0
12 Jdagtraxe
e 10 (40,S50),.01
q0 JpPrRetd
LG 10 an
&n IP1st”

A
"L
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JP2s2
60 CONTINUE
NO 200 J=1,IMaX
1M2ele?
I¥izley
TP1zle
1P2=2142
IF (1 ,GY, 2 60 10 Q0
60 10 (79, &0),1
70 1MPzlvixe)
Tr1zlvax
GO TG 1210
Be IMR2lvex
G 10 3129
9n IF (1 LT, ITEST) GO TO 120
Tiztelrayvsp
GG TN (100,110, I
tnp TP2e2d
60 10 29
11n TPtel
1P2e2
129 CONTTIHUE
DIVENCIMP, 20 Yt 0162, 0, 20%44G(1,.1P2,70)ov(T,JP2,20)
:”IV:Q.‘I\I"’-‘(lp"c7"’""(I'Jl7p?‘
ST, 0,70 (171, 3,70)e¢VIT,001,20)ev(T,Ji"1,20)
S384~(1,J,2P e (1,0,IM1)
NlvzRIvap 48
NUPRY (T, 1,6)s0VeCnEFRY?
200 CONTINUE
210 CONTINUE
WETURA
FND

2DFCY STARY
SUGRCITINE STABYICREFS, COEF11,NFLTA)
[T A R R I I I Y I I I L L A A a2 2222 222 2 2 2 2 2
C TSTS SURFQUTINE INMITTATES T=F FruSTantS FO2 FFY ROHTIAES, *
c&.‘ti“it‘*ﬂﬁiOOQOQOihii'&t'."'.0tﬁﬁoi't'ﬁ.'tt*t"ﬁ.'tit’it"i.titQtit
PTHEMSION TRR(A,3),TRI(A,3),6R116),01(16), uBVE(15),NFFT(3)
COMMOM/NATAG /AP G, TP, TR .
COMMOM /AT AR/ v AVE , Y FFY
COMMUONZDATAGZIMAX I AX I MaX , Mg F ,NAVG M EN,MSPER
DATA EWAVF’1095511‘:‘:“,7:\qvagiopb.iﬂ'ur’alenib/
COFFd=t /16,23
COEF1123,131892A83889F /R,
~¢ fT{11BFR
VEFFT(2)=¢
MEFT(3Y2)D
PO 30 .'="3
TER(Y,J)=1,
TEYI(y,Jva0,
In CONTINUF
no 4 t1=2,8
REFLTAT(1)=),
BR=PsOOFEF Y
YRR¢1,1)=C08(K)
TRI(l,t)paSIN(R)
an CONTINMUE
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00 So 1s2,4
RafFLnaT(1)=),
S2 ,vFeCDEFYY
TRe(1,2)180CS(P)
THTI(l,2)s=STN(R)
an CONTINUE

Rea, «fNEFY)
TRP(2,3)=CLSER)
TRU(2,3V==8]i(R)
RETURN
END

anNFCx FFYYXY :
SIRQONTIME FEIX(S IR .
Crotertd g ras Attt R 460 a4d ¢ 08 dttteattintdtetalaRtgtdgdogabedqgertntan sy
£ FAST PPRUNTER TRAYSFORS Ih YeNIFREeTTIr:w 3
(Q'*Q““ﬁiti¢‘00‘.‘bi‘ﬁtﬁittﬁOt‘tttﬁttt'.t‘t"t‘ii!f"t"'til’ibt'iiti\
CIMFHRTON ‘Hf"’l"".aF]'151“1“"i‘g‘nls)oynlfnlsilr‘ﬁ(Q")nr_:t(ib\
» YPYAVELER),LFFY ()Y
COMNOR/LAY B0 /00, 00 ,1FY, IR
COMpUn/DeTAT/FO,E
COFmOL /A TAR/NVANE ' FFY
COMPON/DATAQ/ LAY, T AX, | MAX, UALF,HaVG, M EN,MSPEC
F (S16Gy LY, f,) fir THh 3
0 D Jzi,J veY ‘
ne 1 1=y,1vay
FItr.Jisn,
1 COnTINDE
2 CurTlnye
3 CONYINHE )
PO 100 J=1,JMay !
Jrey
rO 20 mrp=2y,3
1ENEEO
INCRENFFTY (MM)
1F2p
§ COMTIMUE
TSTaKT=ta P
TEMNSISTAPY+INCR=)
et
CO 10 IsJSTARY,TJEHN
IP=TsINCH
GUUMI2FR(T,JV«FR({F,.1PY
CDIM2ZFT(T,J)4F Y (TP, 8
SULRISFRI],, VbR (10,08
GOUmu=F1 (Y, J)er 1R, 0P
GRS AT e TRE(M M Yan PG TR T (v, “1ryss1InM
CDHnaz2GDU T3 aTRT (F Yo QRTGNGODIMg o TRR M P00y
FRCI,JY=(s0ey
Fl1(1,J)=6DUre
FROIP,IPysGNiIINE
FI1CIP,J0F 2G0hims
L 3- 1S | .
10 COmTImNLF
IF ¢IP 1T, I™AX) GEE TR §
20 CLONYIMUF
C FIeT™ 4,2,3, E€TC,
ef DD 70 1s1,IMAX,2
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IP=let
COUMTZFRI1,J)eER(1P,.1P)
GOUN22FTIrl,J)eF1(]1P,JP)
GOUMI=FK ], )=FFR(1P,JP)Y
GClUIkU2F1(],J)=FI(]IP,JP)
GR{I)zRLMY
G120 uUnp
GR(TPYanDIImY
GI(TP)scryMu

70 COMYTTaniE
c LEY TuanSFURCET VAILUE QARNEREN
RO AN T=z1,lusx

IMshuavE(T)

FR(w,JvSGReOTY

FY(le, =2R1(Y)

An  COMTIXUF

100 CONVINGE
RETLRY
EMD

#DECX FFTY

SURROUTINE FFTIY(SIAN,COFFR)
Cgttainniﬁ't‘tﬁttt’hOQtt0t*t'n'attt*t.’i#ti't!ytﬁtttt*att*tit*f’tttt**tt
C FASTY ENMnkIEr TRANSFNFY 14 YaPTREATION i *
Carveesa v vt aanddtadddd didd 2gatiPis et PN ettt W odiashbraadworbriiny

mIMEREIAL ELte TR B TLA RN TRACR,R),TOTI(A,3Y,ne(1A),AT(16)

. s PAAVE(IRY,CFFTIR)

O CQreD /G ATAS /R, AL, TR, TR

COMMUM/NDATAT /R, F

COMr O /P ATAR /b aVE , <FFT

COMMOMIDATAD/IMAaY, JYAX, L¥AY ,NHALF HaAVG, My B0, N8PEE

c Yo TROLSFNRI
ne 200 Yz, IvAY
1Pal
n 120 Fu=1,3
JEnpEY
INCRBNFEFRT (MV)
P2

108 CUNYINUE.
ISTakTzy e JP
TEMNZSISTART ST CPay L
LR
00 11c JmIQTARY, LEND
JPz 1+ INCR
GDIMIeFREY,JYI+FE(1P, 0P
fOUM2ZPI(T,J)4F TP, IR
GO 3Pk (], J)eFR{1P,.1P)
GOUMOSEI(T,JYeF T (1P, 1P
Cﬁ”“S:CDU”]*TQNfMi““\-RPH”U.YQI(M,Mﬂjgglnn
GRUNESRU I TRTEY (P, M Y48 RN eRNUIMa e TRR (1 lisey
FR{T,JV¥=GOUMY
F1(1,J)=60UM2
FR(1P, tPYZGOUNMS
FICIP,3PYaGDhIIMA
L LY
t10 cONTINUIF .
16 (JP LT, JmBX) GU THh 9198
120 CONTINUE
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nO 170 Jsai,JMax,2
JP3J+1
GOUMIZFR (1, J)+FR(TP,JPY
GRUS2=FT(1,J)¢FTLTIP,JP)
GRUMIeFR(],J)eFk (10, JP) °
COUNMOSET (], )ef T 1P, .0F)
1F (S1an LT, 0,) 6 1O te0
GR{J)ernDitry *
Il eniling
GRUIPYsOAULY
CIOJIPYsSGRUMY
G0 T0 t7n

ten COMTINUE
CR{I)enNt ) sCOFF3
G1¢3¥=0ru22+CLEs?
GR{JIPY2GPRLU“TCrREFS
GI(JP)=GNUMUeCCEFS

17¢ cONTINUE

C GFY TRKNDERED SFY

R 18E Js1.JMeY
Jmznv AVE(J)
FR(T.JMIeGR (Y
FI€1,J%)=0R1(3)

180 CONYINUE

200 CONTTHYE
RETURWM
END

*NECK FFYZ2

SUPRCIITIME FFYZ(STIAN,FH W)
Ctoﬂotﬁltoﬁottitttatctﬁa0¢0¢¢-totaotbttt'ﬁ'tﬁitﬁﬁﬂfﬁoatt‘tt'att’taqt'ttt
C FASY FNURIFE TWRANGFMM TM ZeDIRFATINN *
CQQtQOOCOQ'tti'ﬁ“tt!ttthﬁitt"tf&,httoﬂtto'.lg“t‘.ﬁiiift*tiit"tt‘i‘bt

CIMENSION HMITA,16,18), HITA, 1A, 16),H0UMNITA,2),TRE(A,3Y,TRT(R,T),

oGREIO),ET(16),AravE(YAY,HFFT (D) .

COMrOM/ATAS/GR,GT,TOR, TRY

COMMON/DATREE /L W AVE  ~FFTY

COMMON/ZDATEQ/TIreEY LY L MAY, NHALFOaNAVG, N FM, NSPEC

DO 200 J=1.1kax

NO 20¢ Jsi,JdMeX

DO t12n m4el,3

1END=O

TNCQSNEFT(MM)

LP=0o

105 CONTINUE

1ST2RT=14LP

TENUESISTARPT4INCRe

~3t

O 11¢ L=21STAKY,TEMC

LPSLsIMNCR

NUMESHEM (T, J,L)enM (], 0,LP)

DU"?”"CI.J.L)H‘(I.-"Lp)

- DUMIEBRM(T, 1, L)ert(T,0,LP)

ﬂUPQ'H(InJoL"“'!oJ!,Lo)

NUMSELIN JaTRR(M, M )uNlIMgeaTRT (- ,%U)eSTGN

DUMASDUMI s TR (#, MY Y4 STANSDUINUsTHR (M, MM)

HM(1,J,L)s0UMY

H(l,J,L)ysCUm

118
ORIGINAL PAGE IS : L
OF POOR QUALITY o



HM(T1,J,LP)BDUMNS
H(l,J,LPYENUMS
MEMy ]

110 CONTINUE
IF (LP LT, LMAX) G TO 10S

120 CONTINUE
PO 176 Let,LMAX,2
LPs| +}
PURISH(T,Jel)ew(T,J,LF)
NUMBER=(T,J,L)enF (Y, T,LR)
pUMTZH (I, J,L)=x(),.1,LP)
00”03H”(T.J,L)-ﬂ"(T.J.L°)
LIS R B E DL
HOLF(L,2)Y=DUL2
MoUM(L P, )E0LMY
BEUM(LP,2)sD10

176 CUrTIsUE

c GET ORNPERED SET

RO 14N Lst.lLMAX
LHMENwAVE (L)
CIGINREE LIGAATIUEE)
(T d LY )ERRNUN (L, 2)

1RO CONTIMUE

200 COMTINIIE
RETURN
END

DECK VISCUORTY
SURFLUUTINE VISCV(2n,241,7PY,7,L0EF2)
CQt“itf‘tﬁﬂiQ{"Q‘0"9it"t"t'it‘itQttbitt.t*iﬁqittibtitittii'ititttﬁ*
C THIS SURRNUTTINE CALCIILATES THE ENRRY v13cnSt1Ty Py VORTYCITY MODFL *
ngitttttﬂii'#ittitdtﬁittittﬁttt'o.t*gﬁttitt.t.’ttfiﬁttttiittiﬁtitﬁlttﬁi
INTEGER 70,21,2P1,12
REAL Kk, MLEM,MAVG
PIMENSTON U(Va,16,5),V (16, 15:5):w(1he1he5)s51G08a,10:3Y,%016016,3)
COMPON/DATAL /), V»
FOM»ONZDATAX/STIN
COMUNN/DATAQ/ M AX , JAX  LMAY , nd) FyNAVG, N EN,NSPEL |
¢ fOFF2=raDELTACG,S
N0 210 JJg=1,Jr48(
RLAT RALY
JPisJJ+t
1F (JJ ,EQe 1) JMisiray
TF (JJ JE0, JuAx) 1P{e=y
DO 200 Iz1,Imax
7?131-1
1Pisle+)
TP (] KR, 1) T¥isThAx
1F (1 ,Ern, TMax) IPI3y
Sz (h(I.JPl-Iﬂ)-v(1.J“!.7°)-V(I.JJ,ZP|)0V(1;JJ,7M1))at2
828 (U, JI 7P 1)l 1), 7 1 ee (TP],0.0,200¢a(ll"1,.10,70))as2
QI (VII®Y,JJ,70)mv (1M1, 00,7012 (T,3P1,20y 1 (1,J¥1,20) w02
SUsS14524853
w(l,3J,2y2COEF2+SR0T(S8a)
200 COMTIMUE :
210 CONTINUE
RETURN
END
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«DFCx VvISCSraG
- SURRCUTIVE VvISCS(20,7t1,7P1,7,CNEF2)
Cansnetdtest000itdetisotqpedtetitcsdpottonttndtatyptyidpitiotatedrorssbtintsp
C THTS SUERNLTIME CALLULBYES THE EFDY VISCOASITy Ry SunnanPINSky MNGEL, &
CQtt.ottﬁo'.oo.aaoaoootootan..0.b..otofctaota*aatitihto.|000g'¢'tottﬁott'
TNIFGER 7“-2”‘.Z°).Z
wEAL v, VBN, AYR
CIFFNSICN U(YA,1A,8), v (1A, 14,8),5(1n,158,8),S1G()k,16,3)Y,(1e0,14,3)
COMMON/DATEYI U,V
FLEMsCH/DATAY/STG, Y
COPMMDL/GATAD /T aY , TV AX VAN, HHAL F MAVG N EN ,MSPFEF
c fCFFE2sCaPELTAsN S
JIER Tz I Y e}
1168 TT axe
e 210 Jley,Juey
RERN
JM2=2dJe?
RLAE ALY
JPi=JJet
JF2=JJde2
F (JJ AT, 20 GO 10 30
GO YO (10,20),J)
10 Jr2sdtaxe)
RIS B LAY
GN TC aC
oo eadrsy
O 10 b0
In 1P (JJ LT, JTESTY GO YO H6 -
JigsJJe I AX 42
Nt (un,S80), I
ap JFPel ;
A T0 AQ
Sn IP2=?
JPi=}
en CONTINUE
r0 200 I=t1,1Max
TH2alep
J“1glet
1F1e]4
1P2=142
1IF (1 ,GY, 2) RE Y0 00
0 70 (70,R0), 1
1 1M2zIMANay
TMy=]rkAX
G0 70 120
8o 1H2=21vax
¢0 Y6 120
9 tF ¢I LT, JTEST) G&: 1N 120
Tisl=]"AYe2
G0 TU (100.110),11
100 P22t ’ T
6C 10 12n
110 1P2sx¢
191l
12¢ CONTIMUE
12 q(U(IPY,J,70)elt¢IrY, 5,700 )e%? a(V(T,0P1,70)ev(],J%1,70))en?
1 (W (T,0,2F1)en(],J,I41Y10s)

~
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S22tUCT,.IP1, 20 el (T, J1,20)evIIPY,0,20)ev(In],J,20))®n2
S¥Z(ULT,J,2P 1 )elil),J,771)er 1151 ,.0,20)euw(T%),.],20))0e2
SAUSIVET, 3,2F1)eb (1, U0,2M1)40(1,001,20 v (Y, J11,20))ne?
€929 ,481452+S83454 .
kK(1,J,2)sCDEFP2eSGRT(S5)Y

260 CONYIMUE .

219 CONTINUE
FETURN
ENMD

-

o SHMFILE (MPLT
1 16 16 16 1 15 1

1,5 N.00625 8,26 2. 0, 1000, 0, .
6S, 130, 301, 384", 179, 325, 28C, 2ua,
214 183, r9, ag, 22. 12, €,4 3.5
1,7 n.R n, Ay 0. v, b, 0.

65, 139, 301, 384, 379, 325 2R¢C, RuR,
214, 1R3 Ao, uy, 2?. 12, b, $e5
'.7 0,8 . 0, 0. a, a, G
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